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ABSTRACT

Robots, especially human-like robots, become more popular these days. They involve

in many fields of human life, such as in manufacturing and in rehabilitations. Solving

the redundancy problem is a key issue to improve the dexterity and stability of robots'

performance so that they can work compliantly and safely with humans. This requires an

understanding of the neuro-mechanical control of limb movements, which is necessary to

integrate biological information with the mechanical system into a single architecture that

is more flexible and more adaptive to a variety of environments. This understanding is also

needed for the effective design of interfaces to transfer the skillful movements of humans

to robots.

The synergy hypothesis suggests muscle synergies as a solution to the redundancy prob-

lem. On the other hand, the equilibrium point hypothesis is a promising hypothesis in motor

control to interpret the physiology of movements. Inspired by the synergy hypothesis and

the equilibrium-point hypothesis, we proposed two concepts, the agonist-antagonist (A-

A) ratio and A-A activiry, as variables to investigate muscle synergies. The derivation of

the A-A ratio and A-A activity concepts was based on the analogy between the biological

system and a robot system with antagonistic artificial muscles. The A-A ratio is directly

and linearly related to the equilibrium joint angle for a desired motion. The A-A activity

is directly and linearly associated with the joint stiffness at any equilibrium joint angle.

We expected that these concepts would be applicable to the biological system, providing

variables to extract muscle synergies from muscle activities.

We then provided a method to extract and implement muscle synergies from the human

electromyography (EMG) for human upper limb movements. We conducted a hand-force
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production task to investigate the mechanisms of the human's skillful hand-movement at

producing force while manipulating objects. Using principle component analysis (PCA)

algorithm, we reduced the dimension of the EMG dataset. Furthermore, using a linear re-

gression analysis, we estimated the hand-force deviation in response to the reduced data

of the measured EMGs with the constraint that all muscle contractions were isometric. A

high correlation between the EMGs and the hand-forces was observed. From the regres-

sion model, muscle synergies can be extracted. While other methods cannot clarify the

mechanisms of how the synergies generate forces, we can explain physical meanings of the

extracted muscle synergies. Considering a polar coordinate frame centered on the shoulder

joint, one synergy seemed to generate hand-forces in the angular direction, while the other

synergy seemed to create hand-forces in the radial direction. This interpretation suggests

a simple method to generate desired movements through two synergies resulted from a

unique combination of multiple muscles.

Based on the human analysis results of the hand-force production task, we hypothesized

a framework for motor control of the human upper limb. The framework suggests a simple

and unique solution to generate upper limb movements. To implement the framework to

musculoskeletal robot control, we proposed a synergy-based control method using two

synergies as manipulated variables. This synergy control method is simple and flexible to

be applicable to more complicated musculoskeletal robotic systems and for a wide range

of tasks.

Last but not least, we conducted experiments to observe the performance of two human

subjects in a coordinated task. The observed role sharing would be helpful to improve the

performance of musculoskeletal robots that involve in interaction tasks with human.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Robotics plays an important role in many areas of human life. One of its important

applications is in rehabilitation. Robots are expected to contribute to motor training in

neurologically impaired patients by repeatedly guiding correct behavioral movements, to

support elderly and disabled people by amplifying muscle forces, and to provide other

services to assist in rehabilitation, such as haptic devices. There is a need to improve the

dexterity and stability of robots so that they can work compliantly and safely with humans.

This requires an understanding of the neuro-mechanical control of limb movements, which

is necessary to integrate biological information with the mechanical system into a single

architecture that is more flexible and more adaptive to a variety of environments. This

understanding is also needed for the effective design of interfaces to transfer the skillful

movements of humans to robots.

The flexibility of human movement is governed by the redundant degrees-of-freedom

problem posed by Bernstein 1321. The movements we make, even the simplest ones, are

the result of the coordinated actions of multiple muscles and joints across the limbs and

trunk. The redundancy of degrees of freedom caused by multiple muscles and joints pro-

duces numerous possible solutions to a given task. Moreover, similar joint trajectories can

be created by different muscle activation patterns [14]. This biomechanical redundancy

requires the central nervous system (CNS) to solve the problem of choosing a unique so-

lution to control the task-variables. In addition, the physiological mechanism of how the

brain controls muscles still remains unknown. There are several hypotheses to explain how

the CNS uniquely specifies control commands to each muscle and joint and how to interpret
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the nature of the physiological control of the muscles by the brain.

The synergy hypothesis suggests muscle synergies as a solution to the redundancy prob-

lem [3, 11]. Bernstein first suggested that the CNS might simplify the control of movement

by coupling small groups of muscles into more global units, thus reducing the number of

controlled variables [32]. Many researchers have experimentally supported the idea that the

CNS can generate a wide range of behavioral movements by combining groups of muscles,

or muscle synergies f2, 12, 19,25,41,461. In addition, Ting [26] used muscle synergies

to explain the mechanism of the transformation of neural commands into specific muscle

activation patterns related to task-level variables. Muscle synergies transform the desired

control of task variables into high-dimensional muscle activations to produce biomechan-

ical outputs that generate sensory signals mapping onto task-variables. This framework

presented the hierarchal control that the CNS uses to regulate muscle synergies, which

refl ect task-variable information.

A promising hypothesis in motor control to interpret the physiology of movements is

the equilibrium-point (EP) hypothesis (2 model) proposed by Feldman [4]. According to

this hypothesis, the CNS sends motor commands, each consisting of a reciprocal command

and a co-activation command, to peripheral muscles to select a desired equilibrium posi-

tion and its apparent stiffness. The reciprocal command is associated with the change in

the equilibrium position. The co-activation command is related to the change in the stiff-

ness. In order to produce behavior, the CNS has to translate task-level goals (the input)

into these motor commands (the output). Because the input is generally low-dimensional

compared to the output, an apparent problem of redundancy exists in this translation that

may be involved in creating muscle synergies. Unfortunately, analysis of the translation

between task-level goals and motor commands has been difficult due to the fact that the ob-

served variables, such as forces and displacementso are indirect reflections of equilibrium

trajectories [30]. The ambiguous relationship between the EP hypothesis and the notion of

synergies is another problem at the moment.
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1.2 Background and scope of the dissertation

There has been alarge amount of research examining motor synergies using statistical

analyses of electromyography (EMG) during behavior, without considering the EP hypoth-

esis. These conventional experiments commonly tried to measure EMGs, to analyze EMGs

using statistical methods, to evaluate the combination of extracted synergies, and to link the

identified synergies to task relevant variables [29]. However, there has been a little work

on examining the physical meanings of the muscle synergies extracted from EMGs. In

addition, there has been a few trials to implement extracted synergies in robotic systems.

A significant work is Artemiadis's e/ al.136l. They extracted muscle synergies from EMG

signals and applied them to a motor-driven manipulator. The large dimension of muscle-

activation datasets was reduced into lower-dimensional motion primitives, which were then

decoded back into high-dimensional joint space. This study would be useful for transfer-

ring human motions to a robot using movement profiles extracted from EMGs, but it did

not address the stiffness information, another important aspect of motor control.

This dissertation consists of the following three main points:

1. Analysis of human muscle activities in a hand-force production task to identify mus-

cle synergies. From the observed physical meanings of the extracted muscle syn-

ergies, we proposed a framework for neuro-mechanical control of the upper limb

movements.

2. Design of a synergy control method for musculoskeletal robots based on the hy-

pothesized framework and the analogy between human muscles and the pneumatic

artificial muscles.

3. Role sharing between two human subjects in a crank-cooperation task. The role

sharing was approached from the viewpoints of muscle synergies and kinematic.

How to extract and implement muscle synergies from EMGs based on the EP hypothe-

sis is a key issue to deepen our understanding of the mechanism underlying motor control.
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In our previous studies , we analyzed the surface EMG signals associated with human move-

ments, such as hand-force control [17], walking U5l, and running 1431, based on the Ep

hypothesis. We extracted muscle synergies by defining the concept of the A-A ratio as the

ratio of the EMGs of agonist and antagonist muscles. Note that this is different from the

reciprocalcommanddescribedbyFeldman [5] intheframeworkof theEPhypothesis. The

derivation of the A-A ratio and A-A activity concepts is based on the analogy between the

biological system and a robot system with antagonistic artificial muscles. For biological

muscles, the equilibrium length and stiffness of a muscle can be changed by the muscle

activation [8]. Analogously, the natural length and elastic coefficient of an artificial muscle

change according to the internal air pressure. The A-A ratio, defined as the ratio of the air

pressure of the extensor artificial muscle and the sum of the air pressure of the extensor and

flexor artificial muscles, is directly and linearly related to the equilibrium joint angle for a

desired motion. The A-A activity, defined as the sum of the air pressure of the extensor and

flexor artificial muscles, is directly and linearly associated with the joint stiffness at any

equilibrium joint angle [47]. We expected that these concepts would be applicable to the

biological system, providing variables to extract muscle synergies from EMG signals.

In this work, we provide a method to extract and implement muscle synergies from hu-

man EMGs to reproduce synergy commands that can be applied to pneumatic-driven robots

to generate movements. To this pu{pose, we conducted a force-producing task experiment

and examined the extracted muscle synergies with respect to the hand-forces generated.

The number of synergies was chosen based on the number of principal components re-

sulting from a principle component analysis (PCA) algorithm applied to the EMGs. In

particular, two synergies were addressed. Using a linear regression analysis, we estimated

the hand-force deviation in response to muscle synergies with the constraint that all muscle

contractions were isometric. The regression results had a high coefficient of correlation,
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emphasizing the high correlation between the extracted muscle synergies and the hand-

forces. More importantly, the results led to the interpretation of the identified muscle syn-

ergies. Considering a polar coordinate frame centered on the shoulder joint, one synergy

seemed to generate hand-forces in the angular direction, while the other synergy seemed

to create hand-forces in the radial direction. Based on these results, we hypothesized a

framework for motor control of the human upper limb. The framework suggests a simple

and unique solution to combine multiple muscles generating muscle activities in order to

produce desired movements.

From the outcomes of the human analysis, along with the proposed motor control

framework, we devised a synergy-based control method for musculoskeletal robots whose

joints are controlled by several pairs of pneumatic artificial muscles. The advantage of the

method is that it employs a small number of variables to manipulate a number of joints.

Instead of using a number of manipulated variables as other common control methods, this

method uses only two synergies as manipulated variables to dealt with multiple degrees-

of-freedom. Therefore, this method is suggestive for high-redundancy systems. To verify

the efficacy of muscle synergies in motor control, we tested the synergy control method

on a pneumatic-driven robotic arm whose structure mimicked the human arm's structure.

The robotic arm had two links with three pneumatic artiflcial muscle pairs. The successful

verification experiments proved the simplicity and efficacy of the synergy control method

in making the robot generate movements properly as expected. This implementation would

be useful for the developing neuro-rehabilitation assistance robots, as it satisfies a safety

requirement that a neuro-rehabilitation assistance robot for the upper-limb motion should

be capable of activating the arm movement gently and correctly.

Finally, we conducted experiments to observe the performance of two human subjects in

a coordinated task. The observed role sharing would be helpful to improve the performance

of musculoskeletal robots that involve in interaction tasks with human.

5
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1.3 Organization of the entire dissertation

Chapter 2 presents the concepts of A-A ratio and A-A activity for artificial muscles and

for human muscles. The physical meanings of the concepts are clarified. That is, the A-A

ratio is directly and linearly related to the equilibrium joint angle for a desired motion. The

A-A activity is directly and linearly associated with the joint stiffness at any equilibrium

joint angle.

Chapter 3 exhibits the analysis of the human muscle activities in a hand-force produc-

tion task. The technique to measure and to pre-process EMG signals is provided. Using

A-A ratios, the physical meanings of the extracted muscle synergies can be elucidated.

That is, considering a polar coordinate frame centered on the shoulder joint, one synergy

seemed to generate hand-forces in the angular direction, while the other synergy seemed

to create hand-forces in the radial direction. Based on the outcomes of the human muscle

analysis, a novel framework for the motor control of the human upper limb movement is

hypothesized. This framework suggests a simple and unique solution to combine multiple

muscles, generating muscle activities in order to produce desired movements.

In Chapter 4, the synergy control method based on the proposed novel framework is

demonstrated along with its verification implementation to a pneumatic-driven robotic arm.

Chapter 5 deals with the analysis of the dyad perfoflnance in a crank-cooperation task.

Role divisions between the two dyad were observed, bringing suggestions to improve the

performance of musculoskeletal robots that involve in interaction tasks with human.

Finally, Chapter 6 sums up the study and gives future plan.

6
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A‐A RATIO AND A‐A ACTIVITY CONCEPTS

Based on the analogy between the human muscles and the artificial muscles, we de-

vised the concepts of A-A ratio and A-A activity. At first, we investigated the characteris-

tics of pneumatic artificial muscles (PAM) model and from that we proposed A-A ratio and

A-A activity concepts. Then, we modified the concepts for human muscles.

2.1 A-A ratio and A-A activity for pneumatic artificinl muscles

This section presents the derivation of A-A ratio and A-A activity concepts based on the

investigations of the characteristics of PAM models. First, we present a single-joint model

with one pair of PAMs to establish the basic characteristic of PAMs. Then, we expand the

single-joint model with one pair of PAMs to a two-joint model with three pairs of PAMs.

2.lJ A single-joint system with one pair of PAMs

In this section, we represent the characteristics of a PAM model based on the Fujimoto

model t401. The Fujimoto model, which was modified from the general PAM model pro-

posed by Chou and Hannaford [6], is a linear approximation model of PAMs. It brings the

advantage of a linear equation between the contraction force and the contraction ratio. It

also addresses the account ofenergy loss.

Consider a PAM with the natural length Zo [m]. Call P [Pa] the internal air pressure of

PAM, f' tNl the force produced by PAM, and L[m] the length of PAM. The contraction

force can be expressed by the following linear equation

F〓 κ(P){L― L(P)).

This equation indicates that a PAM can be modeled as a spring whose the elastic coefficient
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Figure 1: Sketch of a single-joint PAM model.

K(P) and the natural length he) change according to the internal air pressure P. These

characteristics can be described as

ι2

κ(P)=ε l P+ε 2,

Lo(P)=灰
そ卜,+ε

4

２

　

３

where ci (i = 1,2,3,4) are property parameters of PAM. Equation (2) indicates that the

elastic coefficient K(P) increases as the internal air pressure P increases, while (3) indicates

that the natural length LoQ) decreases as the internal air pressure P increases. Assuming

that the internal pressure P is the command for muscle contraction, these characteristics of

a PAM are analogous to those of a biological muscle [8].

Consider the single-joint model with one pair of PAMs as illustrated in Fig. 1. To in-

vestigate the physical properties of PAMI, we measured the changes in its length and con-

tractile force according to the change in the internal pressure of PAM2. For more details,

please see [47]. The system setup is illustrated in Fig. 2.
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Figure 2: Experimental setup to identify PAM's properties. PAM's length was measured

by a linear encoder; contractile force was measured by a force sensor.

2.1.l.l A-A Ratio Concept

In the equilibrium state, the contraction forces of two PAMs balance each other, or

K(P){L| - h?t)} =,<(PzX h - hQ)\.

The geometry constraint condition brings:

Rθ =L一 Ll=L2~L・

Equation(4)and(5)yicld thejoint anglc θ:

9

(4)

(5)

^ L-ct K(Pt)-K(Pz)o=;-;ffi' (6)

Referring to (2) and constructing P; = Pi - czlct, (i = 1, 2), we can rewrite K(P;) as

κ(P,)=ε I Pル

Thejoint angle θ in(6)then Can be cxpressed as

(7)

作雫 。(轟―封・ (8)
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We deine A―A ratio r as

r=ρ
l+2・
              (9)

Substituing(9)intO(8),a linear relationship between θ and r can be obtained,

10

θ=2(L―
σ4)(r―

:)

=C(r―
:)

where C = 2(L- cq)lR. As C is a constant, (10) indicates a linear relationship between

the equilibrium angle 0 and the A-A ratio r, bringing two advantages for controlling the

antagonistic systems compared to other methods. First, it brings a unique solution of A-A

ratio r according to the equilibrium angle 0 although there are infinite candidates of PAM

pressures that can achieve that condition. Second, it suggests a simple way to control joint

movement by using the linear relationship between equilibrium angle d and A-A rutio r.

2.1.1.2 A-A Activity Concept

A change of dd results in a restoring force that drives the joint angle towards a new

equilibrium angle 0. Let Fi [N] and .F'i tNl be the forces generated by PAM1 and PAM2,

respectively. Fi and F'" can be represented by the following two equations:

(10)

(11)

(12)

(13)

=Fl― K(Plヌδθ,

=F2+κ (P2ヌ
"・

The restoring torque & [Nm] is

δτ=(F,一 Fl)R

〓留((Pl)十 KてP2)}R2δθ.

From(7)and(13),wc can dcrive thejoint stifFncss G=ケ /′θ[Nm/rad]as

弓

　

弓

G=εlR2(pl+P2)・ (14)
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Figure 3:Sketch ofthe PAM model with twojoints and six antagonisuc muscles.

Deining A― A act市 ity as

α=Pl+P2,

the stifFness G in(14)can be rewritten by

G = ctRza.

(15)

(16)

This linear expression between the joint stiffness and A-A activity enables us to uniquely

set the joint stiffness at any equilibrium angle and offers a simple control for the system.

2.1.2 A two-joint system with three pairs of PAMs

We expand the single-joint model with one pair of PAMs into a two-joint model with

three pairs of PAMs. The PAM model mimics a human arm's structure with the shoulder

and elbow joints and six antagonistic muscles around and connecting the two joints. The

PAM model's structure and parameters are illustrated in Fig. 3. The six PAMs are labeled

from PAMI to PAM6. The names of the muscles corresponding to the six PAMs are listed

in Table 1. Call Pi [Pa] the internal pressure of i-th PAM; /; the length of i-th PAM; 0' [rad]
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Figure 4: The experimental two-joinr PAM model.

Table 1l PAMr -d "orr.rpor4ng 
muscles.

PAM No. Corresponding muscle
Deltoid posterior
Deltoid anterior

Triceps long head
Biceps

Triceps lateral head
Brachioradialis

Fl― F2+F3~F4=0:

F3~F4+F5~F6=0・

PAMl
PAM2
PAM3
PAM4
PAN15

PAM6

and 0, [rad] the shoulder- and elbow-joint angles; d. the length of moment arm with the

assumption that the moment arm of the shoulder joint and that of the elbow joint are equal.

Figure 4 shows the experimental model.

In the equilibrium state, set 0, = 0r0,0" = /eo, Pi = P0, and /; = l,. At this state, the

contraction forces of the six PAMs balance each other. such that

(17)
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Considering (l), we can rewritten (17) as

κ(Pl){Jl― Jo(Pl)}― K(P2)〔 J2~JO(P2)〕 +κ(P3){J3~JO(P3)}~κ(P4){J4~JO(P4)}=0;

K(P3){J3~JO(P3)}~K(P4){J4~JO(P4)}+K(P5){J5~JO(P5)}~κ (P6){J6~ι O(P6)}〓 0。

(18)

Thc geometry constraint condition b五 ngs

13

ιl=L― dmδθs;

J2〓 Ij+dmδθs;

J3=L~dm(δθs+δθθ);

J4=二 十dm(δθs tt δaの ;

′5=L~dmδθ
`;

J6=二 十dmδC                       (19)

where Js=θs― θsO and δe=c― cO are deviations ofthejoint angles。

G市en(3),subStituting(19)intO(18),we can Obtain

l【

(Pl)+III::IIllll+K(P4)κ

(P3)十 11:ilIIlil:+κ (P6)|llll

=二
::「

生
li:|:!:II[||:::li:li::II[||:|||・

 (20)

as Cliven(7),the deviations ofjoint angles 

δθ= lδθs,δθ′lrin(20)then Can be expressed

δθ=2(Ij―
ε4)|::| ::: :::|

(21)
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where

14

all =

al2 =

dtz =

hzt =

Azz =

hzz =

(ノ1+2)(鳥 +a+鳥 +鳥)(ギぉ-0・ 5)
14 + Fry1fu + F) +(4 + Pi(Fr+ 4) + (4 + P)(F, + F)'

tA + aXA + P6)(#,- o.s)

1P, + Pr11F, + FD+ (4 + FD(Fs+4) + (& + F)@, + P)'
-(& + pD(Ps* &XrF; - 0.s)

1r, + Fr11F, + FD+ (4 + FD(P'+4) + (4 + Pd@r + P)'
-(Pr + D(F, * fuX#- 0.s)

.

1P, + Pr11F, + PD+ (4 + Pi(Ps+ Po) + (4 + puXP, + P)'
(h + F)(Fz + FD(#,- o.s)

.

1P, + Pry1P., + FD+ (4 + PD(pr* 4l + (4 + Fd(F, + P)'
f4 + AlfPr + Pz+ F3 + Pn(#- 0.s)

P2,-1
■=p2_1+鳥

J'

の=ち ,判 +為 J;

=Aδr

蜂∵ 1眈餡
ケ=卜Lδりδttr.

(ノ1+2)(鳥 +2)+(鳥 +2)(A+鳥)+(A+鳥)(pl+2)

From (9) and (15) we have the A-A ratio and A-A activity for each pAM pair as

where i indicates the PAM pair index (i = 1,2,3). Setting the ratio deviation 6ri = y, - 0.5,

the deviations of joint angles 60 in (21) can be rewritten as

(22)

(23)

(24)

where
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Table 2: Definition of A-A Ratio and A-A activity.

Ratio Physical property

15

rl=η4/(“1+協2)
r2=″ち/(“3+“4)
r3=“5/(“5+“6)
r4=″η/(47+“ 8)

Shoulder extension
(Shoulder) elbow extension

Elbow extension
(Elbow) wrist extension

Activity Physical property
αl=“ 1+″り
α2=〃ら十

“
4

α3=“ 5+Z6
α4=“ 7+“ 8

Shoulderjoint stifFness

(ShOulder)elbOWjoint surness
Elbowjoint stifFness

(Elbow)W五 Stjoint stifFness

This equation indicates that if {ayaz,atl are constant, the relationship between 60 and 6r

is linear, thus, suggesting a simple way to control the system that replicates the human arm

with two joints and three pairs of antagonistic muscles around and connecting the joints.

2.2 A-A ratio and A-A activity for the human muscles

For PAM systems, we defined A-A ratio and A-A activity with respect to the pressures

supplied to each PAM as in (22) and (23), respectively. To apply these definitions to the

human muscles, we selected the antagonistic muscle pairs from anatomical point of view

and modified them with respect to the EMGs of each muscle. The A-A ratio and A-A

activity are respectively defined by

″り2j-1
均 =“
2J-1+“2j'

αj=協 2,-1+“ 2, (25)

where I indicates the i-th muscle pair. Here, we examined four pairs of antagonistic muscles

that mainly contributed to the studied task, or (i = 1,2,3,4). Physical properties of A-A

ratio and A-A activity of the four examined muscle pairs are given in Table 2.

By defining A-A ratio as in (25), we can explain the kinematic of joint movement.

For example, the kinematic of the shoulder joint can be elaborated by the change in A-A
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ratio 11 = mtl(mr + mz). When ml increases and m2 decreasas or tft1is greater thanm2,

the A-A ratio rl increases. Because the extensor muscle /r?1 works harder than the flexor

muscle m2, the shoulder joint will extend. Hence, a change in the A-A ratio 11 will relate

to the kinematic of the shoulder-joint movement. This mechanism can be elucidated by

a linear relationship between A-A ratio and joint angle which was reported in the case of

musculoskeletal robots built with pneumatic-artificial muscles [48]. The linear relationship

between the A-A ratio and the equilibrium state [47] also supports for the physical meaning

of the proposed A-A ratio. That is, when the agonist and antagonist muscles contract

unequally, or the A-A ratio varies, joint movement will be generated, driving the system to

a new equilibrium-joint angle. In addition, the linear relationship between the A-A ratio

and the equilibrium-joint angle also offers a simple way to control the joint movement.

On the other hand, as the stiffness of a muscle is proportional to its level of activity [45],

the joint stiffness is proportional to the sum of the activity level of agonist and antagonist

muscles across the joint. Therefore, by defining an A-A activity as the sum of the EMGs

of an antagonistic muscle pair, we can explain the contribution of each muscle pair to the

joint stiffness. For example, when both muscl as m1 drrd m2 contract or m1 and m2 increase,

the A-A activity ar = ftt7 + m2 will increase. Physiologically, the contraction of these two

muscles results in an increase of the shoulder-joint stiffness. Hence, the A-A activity a1 is

related to the shoulder-joint stiffness. This relationship between the A-A activity and the

joint stiffness was also experimentally proved inl4ll.

In short, using the proposed A-A ratio and A-A activity, we expected to easily and

separately control the equilibrium joint angle and the joint stiffness, which, consequently,

generates arm movements. This separate control was evidenced for the motor cortex of

the monkey [10]. When stimulating one neuron group, the joint movement was generated;

when stimulating the other neuron group, the muscle co-contraction was activated.

16
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CHAPTER ⅡI

EXTRACTION AND IMPLEMENTAT10N

OF MUSCLE SYNERGIES

IN HAND‐FORCE CONTROL

3.1 Introduction

The need of solving the problem of multi-degrees-of-freedom in motor control is in-

creasing as human-like robots become more popularthese days. Muscle synergies hypothe-

sis is a prominent suggestion for this problem. This chapter presents an investigation of the

muscle synergies extracted from human subjects in a hand-force production task to explore

the mechanism of the human's skillful hand-movement at producing force while manipu-

lating objects. We observed a high correlation estimation of the muscle synergies with the

hand-force, and derived a role division of muscle synergies in generating the hand-force

as well. These results give an optimal but simple way to control robots so as to make the

robots' movement as skillful as human's.

Recent research have focused on the muscle activation characters of the human hand,

a high degree-of-freedom structure. Levin [35] tried to establish the patterns of muscle

activation in association with movement orientation. They cited an insufficient explana-

tion of how the CNS manages muscle groups to produce limb movements. This matter is

likely solved by concerning the muscle synergies hypothesis. That is, the CNS controls

hand movements by using muscle synergies to reduce the dimensionality of the multiple-

dimensional structure; the control, therefore, becomes simpler and easier. d'Avella [1]

investigated extracted muscle synergies in point-to-point movement in different conditions.

They reported that, given a set of synergies, the time-varying model can describe muscle
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patterns parsimoniously. All characteristics of each individual muscle activity are orga-

nized into muscle synergies, hence, characteristics of muscle pattern for reaching can be

the results of the combination of a few muscle synergies. Turner [9] explored the direction-

dependent muscle synergy behavior at different arm joints during reaching movements.

They discussed that a range of muscle activation synergies in healthy subjects can en-

able precise and well timed reaching movements in different direction with robot-induced

force fields. This suggests that muscle groups can act in a modular fashion. However, no

clear interpretation of the meanings of muscle synergies has been approached. In addition,

there has been a little work that tried to implement extracted synergies in robotic systems.

Artemiadis presented a human-machine interface using EMGs [36]. However, they did not

discuss the stiffness control. Motivated by these research, we investigated the correlation

between muscle activities and hand movements, and the role of muscle synergies in gen-

erating hand-forces, by focusing on muscle activities and its output, the hand-force vector,

instead of the muscle force as they are task-relevant variables. Assuming that all muscle

contractions are isometric, we examined the regression model for the hand-force deviation

bearing on muscle activities, and explored muscle force synergies. Using A-A ratios, we

can investigate the physical meanings of the extracted muscle synergies.

3.2 Materials und methods

3.2.1 The task

The aim of this experiment is to investigate the properties of muscle activities in gen-

erating the hand-forces in an isometric condition. To this aim, we measured EMGs and

hand-forces in an isolated movement and examined the relationship between them. Sub-

jects were asked to produce 8 N of force pointing along eight directions in a horizontal

plane, starting at direction 1 and shifting orientation by 45' in the counterclockwise rota-

tion until ending at direction 8 (see Fig. 5). The task goal was to produce a hand-force as



CHAPTER 3. ExrnacuoN AND TMpLEMENTATToNoF MUScLE syNERGIESIN HAND-Foncr coxrnoll9

-7
I

Figure 5: Experimental setup, top view. Subjects were asked to produce force along eight

directions in order, from direction I to direction 8. The task was performed with each arm,

and it was identical for both arms.

close to the reference force as possible and to keep maintaining the force in a 6-second du-

ration before producing a hand-force into the next direction. The task was performed with

the left hand and the right hand, and it was identical for both hands. Subjects performed

the task at four different arm postures (at node 1, node 2,node 3, and node 4).

3.2.2 Subjects

Three healthy volunteers (22 years old, healthy male, righrhanded) with no record of

neuromuscular deficits participated in the experiment. The experiment procedures were

conducted with the approval of the Ethics Committee, Osaka University'

3.2.3 Experimentalsetup

Subjects sat comfortably on chairs, with the elbow lifted by a string to reduce the grav-

itational effect and to allow the shoulder and elbow flexion-extension in a horizontal plane.

Subjects grasped the joystick and pulled or pushed it to produce hand-forces at a comfort-

able speed while looking at reference forces displayed on a screen. For analysis simplicity,

the wrist movement was prevented by a splint so that it could be ignored. The posture was
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considered regarding to [34] to examine the characteristics of single-joint and two-joint

muscles in producing the hand-forces. EMGs of eight muscles (see Fig. 6) which mainly

contribute to the studied task were collected by using multi-telemeter system (WEB-5000,

Nihon Kohden) at 1000 Hz. A force sensor (USL06-H5-200, TecGihan) was attached un-

der the joystick to measure the hand-forces. For every trial, the EMGs and hand-forces

were synchronized and collected at a sampling rate of 1000 Hz.

EMGs measurement

Electromyograms are electrical activities of muscles. Recording and evaluating electromyo-

grams is a technique called electromyography (EMG). Recently, EMGs are the common

tool to investigate muscle activities. EMGs are also the control interfaces for robotic de-

vices. Investigating the EMGs of the human muscles, we can directly clarify the charac-

teristics of muscle activities or the input of movements. However, EMGs contain a lot of

noises so the measurement and processing should be carried out with much care. In the

following, we present the procedure to collect EMG signals.

EMG signals of examined muscles were collected by using multi-telemeter systems

(WEB-5000, Nihon Kohden) at 1000 Hz. We examined eight antagonistic muscles of the

upper limb that mainly contribute to the studied movements in a horizontal plane. Exam-

ined muscles (see Fig. 6) were identified according to the guidelines in [16]. First, the skin

was cleaned to reduce the resistance below 10 kO. Then, surface electrodes were placed

on the examined muscles. Figure 7 illustrates the placement of surface electrodes on the

examined muscles. The distance between two electrodes was 2 centimeters. EMG signals

were band-pass filtered (0.03 to 450 Hz), hum filtered (60 Hz), amplified (x2000), and

stored in a computer.

Initially, the Maximum Voluntary Contraction (MVC) or the maximum value of EMGs

of subjects' muscles were measured. The subjects then practiced the task several times to

get familiar with the system and the task goal. After practicing, subjects performed the

experiment trials.
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Figure 6: Sketch of examined muscles which mainly contribute to the studied movement

in the horizontal plane.

Figure 7: Illustration of the placement of electrodes on examined muscles of subjects.

3.2,4 Data processing

3.2.4.1 EMG pre-processing

The raw EMG signals, which contain many noises and artifacts, need to be pre-processed

to become more reliable for the analysis. The process includes:

1. Band-pass filter (10-450 Hz) the raw EMGs to reduce anti-aliasing effects within

sampling.

Full-wave rectify EMGs to make them more readable.

Smooth EMGs by a low-pass filter (5 Hz).

Amplitude normalize the signals to MVC so as to eliminate the influence of the

2.

3.

4.
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detection condition and to make the data comparable between different muscles as

well as between different subjects.

3.2.4.2 Data normalizing

The dataset of EMGs in each trial is a n x 8 matrix:

lr
lmt(t) mzG) ms(t)l
tlm(r)=l i : : : | (26)tltl
l*r(r") mzQ) *r(t")]

where mi(t) is the time-varying EMG signal of i-th muscle at time t; andn indicates the

time points in a trial. To observe the whole process of generating movements in each trial,

the EMG signals are averaged with respect to time. The dataset of the averaged EMGs in a

trial is a 8 x 8 matrix corresponding to the eight directions:

(27)

where ft indicates the direction. Here, since the task was to produce hand-forces into eight

directions, (k = 1,2,.. . ,8). In addition, we standardized the EMGs as follows

“
(た)= “

★
(た)

where m" (k) is the averaged EMG of a muscle at k-th direction (k = 1,2, . . . ,8) and m* is

the average of m*(k) over all directions.

The hand-force data are also averaged with respect to time. The dataset of hand-forces

(Fr, Fy) in a trial is a 8 x 2 matix corresponding to the eight directions ks:

(28)

Σl=1(4☆ (た)一 Z★ )2

(29)
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3.2.5 A-A ratio and A-A activity datasets

In Chapter 2,we proposed the definitions of A-A ratio and A-A activrty for the human

muscles as in (25):

Z協2J-1
為 =“
2j-1+42j'
“

2j‐

αj=Fのj-1+協2,

where jindicates the j―th muscle pain

A―A ratio of the data in(27)with the EMGs“ (た)deined as in(28)then Can be ex―

pressed as a 8× 4 1natnx corresponding to the eight directions

A-A activity of the data in (27)withthe EMGs m(k) defined as in (28) is a 8 x 4 matrix

corresponding to the eight directions

(30)

(31)

Now we present the way to reduce the dimension of the A-A ratio and A-A activity

dataset. A widely used statistical technique for reducing the data dimensionality is the

principal component analysis (PCA) [18]. For example, Artemiadis et aI. 136l embedded

the high-dimensional dataset of muscle activations and corresponding joint angles into two

manifolds of fewer dimensions. This reduction has two advantages. For joint angles, using

fewer variables to describe movement suggests motor primitives. For analysis reasons, it is

attractive to represent back the two manifolds into the high-dimensional space. Therefore,

it is suggestive that applying PCA to the datasets of the A-A ratio we can find a new

representation for these data and can represent the arm motion in the Cartesian space by
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Table 3: Percentage of variation accounted for by the first two PCs.

Node Subject
Right hand

PCI PC2 Total
Left hand

PCl PC2 Total
Ａ

Ｂ

Ｃ

81.27

65。 14

66.42

16.53  97.80

29。70  94.84

30。77  97.19

69.35  29.84  99.19

71.55  25。 97  97.52

49。99  45。 47  95。46
Ａ

Ｂ

Ｃ

2

74.65

67.85

63.79

20。 58  95.23

29.51  97.36

33.37  97.16

72.05  25。 81  97.87

74.05  24。76  98。 81

50。 95  37.22  88。 17

Ａ

Ｂ

Ｃ

77.47

73.71

62.61

20.56  98.03

24.91  98.62

32.70  95。 31

88。45  10.63  99.08

60。 13  34.98  95。 11

62.53  30.23  92.76

Ａ

Ｂ

Ｃ

83.23

61.79

57.69

14.34  97.57

34.54  96。33

33.85  91.54

67.84  29。97  97.81

68.30  28.34  96。 64
68.86  26。 58  95。 44

using fewer independent variables. For example, the A-A ratios can be represented by a

linear combination as
4

δr=Σ ″j(た)S,
i=l

where dr = r(k) - 16, with re is the averaged value of r(ft) in all directions; w;(ft) and s; are

the l-th principal component score and the l-th principal component vector, respectively.

Principal components (PC) are found from covariance matrix.

3.3 Results and discussion

3.3.1 EMGs reducing

The number of PCs retained was chosen so as to preserve the most information of

EMGs. For this task, the first two PCs of the A-A ratios contributed over 90Vo of the total

variation of the A-A ratios (see Table 3). Therefore, the A-A ratio data can be reasonably

represented by the first two PCs. Here, we present the analysis results of only one subject

(subject A) as the obtained results were consistent across all of the subjects.

(32)
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(a) node 1

Figure 8: PC vectors resulting from PCA algorithm of left hand (upper row) and right hand

(lower row). Thick solid lines: PCl vectors; dashed lines: PC2 vectors. A11 thick-solid-
line quadrangles (PCl vectors) stretched uniformly into four edges, and located between

the outer and inner squares; dashedline quadrangles (PC2 vectors) seem to be stretched

horizontally.

3.3.2 PC vectors

A correspondence between PC vectors resulting from PCA of the left hand and those

of the right hand was observed. Figure 8 shows the PC vectors of the left hand (upper row)

and those of the right hand (lower row). Thick solid lines represent for PCI vectors; dashed

lines represent for PC2 vectors. In each graph, the outer square is level 1, the inner square

islevel0, andthecenterislevel-1. Axes {rr,rz,rt,rql indicatesthevalueof theelement

corresponding to {n,r2,r3,r41, respectivelyl thus, the horizontal axis accords with two-

joint muscle activities while the vertical axis conforms to one-joint muscle activities. Each

element of the PC vectors is within the range of [-1,1]. As seen in this figure, plot of PC

vectors of the left hand and that of the right hand are almost the same shape at symmetric

positions (at node I for both hands, at node 2 for the left hand and node 4 for the right hand,

at node 4 for the left hand and node 2for the right hand, and slightly different at node 3). A

symmetry between the PC vectors of the left hand and those of the righthand, hence, can be

(b) node 2 (c) node 3 (d) node4

(e) node 1 (f; node 2 (g) node 3 (h) node4



CHAPTER 3. ExrnecuoN AND IMpLEMENTATToNoF MUScLE syNERGTESTN HAND-FoRcE covrnor26

concluded. They are similar when the left and right arm postures are symmetric. Besides,

the PCl vectors are all located uniformly between the outer and inner squares while the

PC2 vector shapes seem to be horizontally stretched, suggesting that the first vector was

generated by all the muscles at a same level whereas one-joint muscles took the major role

in generating the PC2 vector. This result gives a practical idea of using PC vectors in the

robot control.

Moreover, PC vectors indicate muscles' combinations. For PCl vectors, all the el-

ements are positive. For PC2 vectors, the element corresponding to 11 is negative; the

element relating to 14 is positive; and the remaining two elements are approximate 0. The

even location of the elements of PCl vectors on all the axes implies a similar contribution

of all muscle extension, whereas the distribution of PC2 vector elements, weighting to 11

and 14, infers a simultaneous contribution of the shoulder flexion and elbow extension. PC

vectors, therefore, can also be considered as the representation of synergies that merge the

coordination of multi-articular muscles [3 I ]. Particularly, in case of the hand-force genera-

tion task, any force vector in a horizontal plane can be generated by two synergies. Muscle

synergies, which are commonly difficult to understand from the original EMGs, becomes

interpretable when being represented by PC vectors derived from A-A ratios of the original

EMGs. In other words, by using PC vectors we can clarify the physical meanings of muscle

synergies more clearly. This characteristic will be discussed in detail in the next section.

3.3.3 PC scores

Figure 9 plots the hand-forces and the scores of the first two PCs (trial at node 1). The

left column presents the observations of hand-force deviation (Fr, Fr); the right column

indicates the PC scores (wr wz).The top row is the result of the left-hand test; the bottom

row is the result of the right-hand test. As seen in this figure, the PC scores all go around

a central point, just like the generated hand-forces. Each observation (Obs) corresponds

to one force direction (Dirn). Arrows represent for the observations from direction I to
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direction 8. There is nearly a symmetry between the PC scores of the left hand and those

of the right hand; for example, PC scores for direction I (Obs 1) of the left-hand trial are

about the same as those for direction 5 (Obs 5) of the right-hand trial; only Obs 5 for the left-

hand trial and Obs 1 for the right-hand trial are vaguely symmetric. The correspondence is

summarized as in Table 4. Since the shape of PC scores resembles the circle-like shape of

the hand-forces, it is expected a high correlation between PC scores and the hand-forces.

Moreover, the PC scores of the right hand are almost the same as those of the left hand

at symmetric positions, reflecting the fact that the right and left arm postures are symmetric

(see Fig. 10 and 11). These facts suggest an interesting aspect of bimanual movements,

that is, it is easy for us to make simultaneous movements of the hands if the patterns for the

two hands are mirror images of each other [38].
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TaЫ e 4:Correspondence between left― hand tst and right― hand test。

Corresponding positions

Left¨hand test  1  2 3 4 5 6 7 8
Right_handtest 5 4 3 2  1  8 7 6

Obs 2

Obs3

Obs 4

Obs5

［乙

Ｃ
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ヽ
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‐12                                                 _2
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Obs2

‐12                                              _2                       ~
-12   -8    ‐4     0     4     8    12         _3    -2    -1     0     1     2     3

0臨臨 e PCl
(d) PC scores

Figure 9: Observations of hand-force and PC scores corresponding to force vectors atnode
I for the left-hand trial (upper row) and the right-hand trial (lower row). Plots of PC scores
almost resemble the shape of hand-force. Plots of PC scores of the left-hand trial and those
of the righrhand trial are about the same due to a physical symmetry.
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3,3.4 Hand-force estimation

Here, we assume that hand-forces are generated by manipulating the equilibrium joint

angle defined as A-A ratio. Let 60 be a deviation of the equilibrium joint angular vector

giving joint torques ? as a result of the joint stiffness such that

τ=Kδθ

where K is ajoint stiffness matrix. Moreover, since the hand-force can be converted into the

equivalent joint torques according to the relationship r = JzF where J" is the transpose of

the Jacobian which represents the infinitesimal relationship between the joint displacements

and the hand position, the hand-force is determined by the following linear equation

F=(J7)~lKδθ,

(33)

(34)

(35)

(36)

(37)

provided that the Jacobian is non-singular. Considering the linear relationship dg = Adr in

(24),we obtain

tr'- 1Jz;-lKAdr,

which means that the hand-force can be controlled by A-A ratio.

Also worth noting is that the A-A ratio data can be approximately represented by the

first two PCs of the A-A ratio as

夕 (た)≒ Wl(た)Sl+ルツ2(た)S2

where s1 and s2 ropreseflt muscle synergies in terms of A-A ratio r. Then (35) yields the

following relationship between the hand-force and PC vectors

F(た)≒ ″1(た)QSl+″2(た)QS2

=″1(りpl+″2(た)p2

where Q = (Jr)-1KA is a linear mapping operator onto the hand-force vector space, and

pr = Qsr and p2 = Qsz are muscle synergies represented in terms of the hand-force vector.
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faOe S: n"gt ttionrn. .

Node R2fortt R2for Fy Regression model

1     0.86     0。 95
△Fχ

△Fν

-2.20

2.47
Wl+|
3.59

3.71
W2

2     0。87     0。 92
△Fχ

△Fッ

-2.21

2.62
Wl+

5。 1

4。22
W2

3     0。93     0。 67
△Fχ

△Fν

-2.44

1。 17
Wl+
4.3

7.35
W2

4 0。87      0。 80
△Fχ

△Fν

-2.93

1.47
IWl+

４

６

２

６

２

４
W2

Table 6: Regression model for hand-force by PC scores (tig!l!q44).

Node R2for Fκ  R2for Fy Regression model

1     0.69     0。 93
△Fχ

△Fッ

1.51

2.92 l*t *
-5。36

4。22
W2

2    0。71 0.84
△Fχ

△Fν

2.1 5

1.91
Wl+

-1。90
4.74

W2

3     0.98     0。89
△Fχ

△Fv

2。 15

1。24
Wl+
-1.83

4.67
W2

4     0。 88     0。 96
△Fχ

△Fッ

1。80

1.85
Wl+

-4。42
46.67

W2

In the following, we call (pr,pz) synergy force vectors. Synergy force vectors can be

estimated by the linear regression model of (37).

As indicated in Table 5 and 6, in most cases, this model can explain approximately

more than 80Vo of the variation in the hand-force profiles (the regression coefficient, R2,

exceeds 807o for both hands for most of cases). Figure 12 visually illustrates how well

the predicted values fit the measured values. Figure 13 exhibits the normalized vectors of

(pr, pz) denoted (pi, pi). As seen in this figure, for each hand, the two vectors are almost

orthogonal to each other; and for both hands, they are nearly symmetric. The physical

meaning of this reflection is that, in respect of a polar coordinate frame centered on the

shoulder joint, the first synergy represented by p1 Sooms to generate the hand-force in the
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Figure 12: Hand-force and its estimation
hand test (right graph).

angular direction and the second synergy represented by p, seems to induce the hand-force

in the radial direction. This result suggests that we can control movement by adjusting

the hand-forces, which can be regulated by changing the weight of (w1,w2). Hence, it

suggests a simple method to deal with the redundancy problem in the control of muscle-

like robots. That is, using a few number of muscle synergies extracted from A-A ratios of

EMG signals we can control pairs of antagonistic muscles and can consequently activate

limb movements.

Along the same line, Ivanenko et al. [49] applied PCA to EMGs collected from 12-16

muscles in a walking movement. They found that five component factors accounted for

about 90Vo of the total EMG patterns of activation muscles. However, they were unable

to interpret how these factors functionally group the muscles and how they relate to force

demand during locomotion. In this study we applied PCA to the A-A ratios derived from

EMGs instead. This analysis has two advantages. One advantage is that the method offers

a smaller dataset, which makes the analysis less tedious. The other advantage is that using

PCA algorithm on the dataset of A-A ratios, which is related to the kinematics. the reduced
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Figure 13: Synergy force vectors.

dataset would reveal the relationship between muscle activations and the hand-force pro-

duction. Indeed, regression analysis results implied a strong relationship between the two

identifled synergies corresponding to the two PCs resulting from PCA and the hand-force

produced. This method is also applicable to extract the muscle synergies of the human

lower limb movements. Using the same measurement and analysis methods, we decom-

posed two patterns of the human running [43], walking [20], and pedalingt44l.Moreover,

this method is also applicable to extract muscle synergies of multi-joint movements in

3-dimensional space [33]. We found three synergies that could represent for the muscle

activities of 12 muscles of the human upper limb movements in 3-dimensional space.

3.4 A novel framework of human motor control

Based on the results of PCA and the regression analysis on EMGs discussed above,

we hypothesize anovel framework for neural-mechanical control of the human arm. The

general control scheme of the proposed framework is illustrated in Fig. I4(a). An example

of using the framework to explain the hand-force production task is illustrated in Fig. 14(b).

The motor control procedure includes the following steps:
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1. The controller determines the task variables (the hand-forces F). The task variables

may include feedback elements.

2. The hand-forces are converted into synergy variables reflecting muscle synergies rep-

resented with reference to a polar coordinate frame ((wrw)).

3. Synergy variables are transformed into A-A ratio as

δr=″lsl+″ 2S2・ (38)

which corresponds to (36).

4. Muscle commands are generated from A-A ratio and A-A activrty. Following (25)

muscle activities can be derived from

l7l2i-1 = f;Ai,

m2i=(l-r)at

where i indicates the muscle pair index.

(39)

Though here we omitted the details of A-A activity, task variables include the endpoint

(hand) stiffness, which is transformed into A-A activity, another variable to represent the

activrty of an antagonistic muscle pair.

This framework, based on the analysis results of EMG signals, is expected to be ef-

fective for the control scheme of musculoskeletal robots because of its simplification and

flexibility. The only one important procedure in the synergy-based control scheme is to

determine the desired synergy variables based on the desired task variables. This frame-

work brings benefit to the redundancy problem since it uses a small number of variables

to generate behavior movements. Moreover, it clarifies the function of synergies in pro-

ducing forces, an important aspect of motor control. In a related study of cat locomotion,

Drew et al. l42l suggested a model for motor cortex control. They identified synergies by a
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novel associative cluster analysis based on the onset and offset of EMG activities, provid-

ing a flexible definition of synergies. However, they were unable to explain the underlying

procedure of producing force.

3.5 Summary

This chapter presents the analysis of the human upper limb movement in an isomet-

ric task. We assessed the muscle synergies extracted from the A-A ratios of the measured

EMGs. The analysis of muscle synergies based on A-A ratios is less tedious compared

to that based on original EMGs. In addition, it helps to clarify the physical meanings of

muscle synergies more clearly. Two synergies were identified, one relating to the angular

movement and the other resulting in the radial movement, referring to a polar coordinate

frame centered on the shoulder joint. This result suggests a possibility of generating behav-

ioral movements by using only two synergies patterns. The framework, which was devised

based on the outcomes of the human analysis, is simple and flexible to be applicable for

robotic systems and for different tasks.
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Figure 14= l4(a) Scheme of human motor control, 14(b): an example of hand-force gen-
eration scheme (right hand). The mechanism of the hand-force generation in 14(b) can be
interpreted as follows. 1) The controller gets the task variables information (hand-forces
(F,, Fr)) and 2) identifies the synergy variables. 's I ' and 's2' indicate PC I and PC2 vec-
tors, respectively. Each bar indicates the element coresponding to lrt,rz,h,rtj, respec-
tively. All of the elements of PCI vector are positive, implying a similar contribution of all
muscle extension. PC2 vector indicates a significant difference of {r1, 14} compared to the
others; thus, implying a simultaneous contribution of the shoulder extension (r1 > 0) and
elbow flexion (r+ < 0). 3) From these PCs, A-A ratios at each movement are obtained. This
expression implies the co-contraction among muscles within the antagonistic pairs. For ex-
ample, the first bar of 11 represeflts for the ratio of m1 and m2 towards (F* = 8N, Fy = 0N).
At this state, the high value of 11 indicates that rn 1 exceeds ftr2, or the shoulder joint is ex-
tended. 4) Generates muscle commands to activate muscles, e.9., at the state of shoulder-
joint extension the muscle activities {mt,mzl are generated, activating these muscles to
extend the shoulder joint, thus, producing a hand-force towards the desired force. This is
valid for other force directions, and this process is valid for other muscle pairs' activation.
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CHAPTER IV

IMPLEMENTATION OF MUSCLE SYNERGY

IN MUSCULOSKELTAL ROBOT CONTROL

4.1 Introduction

Robots have been playing an important role in the human society. They involve in

many flelds of the human life, such as in manufacturing, entertainment, and especially in

rehabilitation; and even replace human in several hazardous fields which are unsafe for hu-

mans to work in or in delicate work which require thorough accuracy that humans cannot

perform. Robotics, therefore, are edged projects. Among various types of robots, the robots

involving in cooperation tasks with human receive much more consideration. It is optimal

to design the robots that can mimic the human motions. The more flexible and adjustable

the robots become, the better they can contribute to the human tasks. In the previous chap-

ter, we proposed a novel framework of motor control for the upperJimb movement, which

is based on the synergy and equilibrium point controls. In this chapter, we present the

implementation of the framework to pneumatic-driven robot systems. Verification experi-

ments with a pneumatic-driven robotic arm will be included.

4.2 Synergy-based control method

The framework presented in the previous chapter was devised based on the results of

human synergy analysis in an isometric task. However, we expect that this method can be

extended to the movements in a larger scope, such as a reaching task. To verify the efficacy

of the synergy control, we applied it to a pneumatic-driven robotic arm (the PAM model

described in Section 2.1.3) with two joints and six pneumatic artif,cial muscles to perform

a reaching task in a horizontal plane.
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First, we modified the definitions of A-A ratio and A-A activity by considering the

correspondence between muscle commands mi end pressure commands pi andthe PAM

model presented in Section 2.1.2, such that

烏 =れ ,

Aj=′2,-1+′2,

where(′ =1,2,3)indiCates the PAM pair index.Given A― A ratio RJ and A― A act市 ity Aぉ

the pressure commands′ 2J-l and′2,Can be de五 ved as

(40)

(41)

Pzi-t = RiAr,

pzt=(l-R)Ai.

Second, we determined muscle synergies for the robotic arm since muscle synergies

extracted from EMG signals ((sr, sz) in (38)) are not directly applicable to the robotic arm

whose musculoskeletal structure is different from that of a human. In the following, we

explain how to determine muscle synergies for the robotic arm.

In the hand-force production task, we regarded the hand-forces represented with ref-

erence to a polar coordinate frame as the synergy variables. Here, we regard hand-tip

displacements defined with reference to the same polar coordinate frame as the synergy

variables and assume the relationship between synergy variables and A-A ratio

w=Hδ r, (42)

r l/
where w = lw1,w2l are the synergy variables and H is the Jacobian matrix representing theL " 'l
infinitesimal relationship between the synergy variables and a deviation of A-A ratios. If
we experimentally obtain H, muscle synergies for the robotic arm (s1, s2) can be determined

by using the pseudo-inverse of H. That is,

Ⅱ+=卜1司。

The steps to determine H include:

(43)
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1. Run the robotwith a set of randomA-A ratios, R = {Rr,R2,...} where R; is a 3-

dimensional vector of A-A ratio at the i-th trial, and collect synergy variables V =

{wt,w2,...}.

2. Calculate the Jacobian matrix H from the linear regression model of (42), giving

H = VART(ARART)-' (M)

4.3 Experimental setup

4.3.I The task

We implemented the synergy control method in a robotic arm to perform a reaching

task. The task was to move the robot's hand-tip from an initial position towards a target

position with a displacement dx6 = [r"0, 
dyo]t. The hand-tip movement was tracked and

recorded.

4.3.2 Apparatus

The robotic ann was built with six PAMs (McKibben, Kanda Tsushin Kogyo). The

robot's mechanical structure is illustrated in Fig. 3 and the robotic arm's appearance is

displayed in Fig. 4. The robot's PAMs corresponded to three antagonistic muscle pairs of

human (see Table I); thus the A-A ratios of the robot {R1, Rz,Rzl corresponded to those of

human {4,12,ry}.

A computer computed commands according to the targets input from the keyboard and

transferred them through A/D converters (PCI-3346A, PCI-3522A) to a pneumatic regu-

lator (APC-C300-16, Hitachi Medical Corp.). The regulator converted voltage commands

into pressure commands and then sent those to an air compressor (JUNAIR12-25). The air

compressor supplied air pressures to each pneumatic artificial muscle, making the robotic

arm to move accordingly. Motion tracking devices (OptiTrack system) captured the hand-

tip movement. The experimental system is illustrated in Fig. 15.
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Figure 15: Robotic ann system.

4.3.3 Muscle synergies for the robotic arm

We experimentally obtained the Jacobian matrix Hin (42) by following the steps de-

scribed in Section 4.2. Using the pseudo-inverse of H, we can describe the inverse relation

of (42) as

δr=″lsl+″2S2 (45)

which corresponds to (38).

Considering the relationship d0 = Adr \n (24) and 6x = J60 (where J is the Jaco-

bian matrix representing the relationship between the joint displacement and the hand-tip
tf

displacement dx = 
[0.r, 

Of| ), (45) is converted into

回
↓

δx=″ lJAsl+″ 2JAs2

=″lpl+″2p2 (46)
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where pr = JAsr and p2 - JAsz are muscle synergies (called synergy displacement vectors)

represented in terms of the hand-tip displacement. Figure 16 illustrates the normahzed

synergy displacement vectors (pi,pi) estimatedby using the regression model of (46). The

regression model to estimate the deviation of the hand-tip position from synergy variables

(wyw2) is;

aK=||:j:IWl+lli∫。IW2 (47)

with regression coefficients R2 = 0.97 for dx and R2 = 0.98 for dy. These vectors (pi, pl)

are similar to the synergy force vectors in the hand-force production task of the human

case (see Fig. 13). As shown in Fig. 16, the first synergy seems to generate the angular-

directional movement while the second synergy seems to induce the radial-directional

movement, with reference to a polar coordinate frame centered on the shoulder joint. This

result suggests the validity of the model (46) and confirms the physical meaning of the

muscle synergies in generating movement.

4イ

4。 4。1

Performance of the synerg! control

Feedforward synergy control

Let us consider the reaching task, which is to move the robot's hand-tip from an ini-

tial position towards a target position with a displacement 6x6 - [a"o,Oyo]t. 
dx6 are

the task variables in this task. The only one important procedure in the synergy-based

control scheme (presented in Section 3.4) is to determine the desired synergy variables

wFF = (wu,wza) corresponding to the desired task variables dx6. In feedforward (FF) syn-

ergy control, the desired synergy variables \ilpp oro calculated by the model (47) with a

displacement of dx6. The synergy variables wpp &ro then transformed into A-A ratio, from

which pressure commands of pneumatic artificial muscles are generated. Figure 17(a) il-

lustrates a trial with a small target displacement in x direction (dx6 = 
IOO,O]I 

mm). A

quick response of FF synergy control was observed but a steady-state error was involved,

which was due to the model uncertainties. Note that A-A activity was fixed in this task to
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Figure 16: Synergy vectors estimated from PC scores using regression analysis in FF
synergy control mode. The first synergy vector seemed to generate angular-directional
movement while the second synergy vector seemed to induce the radial-directional move-
ment, regarding a polar coordinate system centered on the shoulder joint. This functional
synergy vectors are similar to the synergy force vectors in the hand-force production task
of the human case.

show the efficacy of the proposed control scheme clearly.

4.4.2 Feedback synergy control

It is well-known that the use of feedback (FB) loops makes the system response rel-

atively insensitive to the model uncertainties. For example, a conventional PID-type FB

control can be implemented to the synergy control. The feedback signals e = dx - dxa,

the error between the desired task variables and the measured ones, are converted into the

synergy variables w" through the model (47) with e instead of dx6 as in FF synergy control.

Furthermore, the synergy variables are modified and updated with PID control algorithm

as

r
wFB= Krw"+Ki I w"dt+K1iv,

J (48)

where (Kp, Ki, K) ne gains of the PID controller. The synergy variables \ilps aro then

transformed into A-A ratio related to pressure commands. Since the correction of the FB

starts only after it receives the feedback signals (the error), a very large error may cause

an unacceptable upset in a process before the controller can compensate for it. This cause

the system overshot. Choosing appropriate feedback gains can help to tune the system
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Figure 17: Robot performance. 17(a) shows the robot performance in different control

modes (single FF synergy control, single FB synergy control, and combination FF+FB

synergy control modes). FF synergy control mode is faster than FB synergy control mode,

but less accurate. FF+FB synergy control mode is more accurate than FF synergy control

mode and is faster than FB synergy control mode. 17(b) illustrates the reaching points in
three control modes with a larger target displacement, indicating the accuracy of FF+FB

synegy control mode compared to the FF synergy control mode.

smoothly. However, how to choose feedback gains to obtain smooth response is difficult.

One alternating solution is to compensate small errors instead of a big error at once. The

task variables, therefore, need to be adjusted by small portions to keep the performance

smooth and to avoid making the system overshot. Figure 17(a) illustrates a trial using the

FB synergy control with the same small targetdisplacement as that was tested with the FF

synergy control above. As seen in this figure, the FB synergy control is effective in terms

of accuracy but not in terms of execution time.

4.4.3 Feedforward and feedback synergy control

Although FF synergy control could manipulate the robotic arm to reach a position

close to the target, there was a deviation existing. On the other hand, the result of FB

synergy control indicated its effectiveness in terms of accuracy. Hence, we designed a

control scheme combining FF and FB synergy controls. FF synergy control was to drive

the robot towards the target and FB synergy control was to reduce the error between the

reaching point and the target point. In this FF + FB synergy control, the synergy variables

‐200 -100  0   100 200
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were modified as

WFF+FB=WFFtWfS. (49)

As seen in Fig. l7(a)), when using FF+FB synergy control, the robot can perform a smooth

movement with much shorter execution time compared to when using FB synergy solely.

Figure 17(b) illustrates the robot reaching performance with a larger target displacement.

When using FF + FB synergy control, the robot's performance was much more accurate

compared to that when merely using FF synergy control.

4.4.4 Learning control

For robot manipulators that perform repetitive tasks, learning control is a perspective

control method. The first English paper about the learning control was published in 1984

[39]. Since then, the learning control has been vigorously studied.

Let u;(r) and x;(r) be the input and output of the i-th control process of a dynamic

system, ui*r(/) be the input for the (l + l)-th control process, and e;(r) = d*;(/) - d*o(r) be

the error in the i-th process. A typical learning control process can be written as follows.

ui*r(/) = ui(/) + f(r) 6i(/) + Y(r)e;(|

where f(r) and Y(r) are coefficient matrices. The convergent condition is

ur*r(/) = u;(/) + Kabi(t - ") 
+ Kiei(t - r)

where r is the time lead, {Ka, Ki} are gains.

llC;(r)ll + 0 as i -r oo. (51)

For simplicity, in (50), the coefficients are set to be constant gains Ka and. Ki. The

control law becomes

ui*r(/) = ui(/) + KaEiQ) + K;ei(t). (52)

To achieve more precise control, the time lead in the control process is addressed as

(50)

(53)
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Figure 18:Lcarlling control with crank― rotation task.

The learning task that we wanted the robotic arm to perform was a crank-rotation task.

That was to move the hand-tip in the counterclockwise rotation, drawing a circle with a

given radius. One cycle was expected to be completed in one second.

The task variables in this case are the desired running target dx6 = 
[0"0, 

ayo]t. fn"

synergy variables wpp llow are modified as

W,(′)=Wi_1(′ )十 KしOJ_1(′ ―τ)+Klej_1(′ ―τ). (54)

The synergy variables are then converted into pressure commands supplied to the pneu-

matic artificial muscles. When the error ei(r) is acceptable, the iteration can be stopped.

Figure l8 presents a crank-rotation learning process of the robotic arm, drawing a circle

of 40 mm in radius. Each circle was completed in one second. The horizontal and vertical

axes indicate the robot hand-tip's displacement in x- and y-directions [mm], respectively.

As shown in these graphs, the trajectory is gradually improved. The trajectory of the 20-

th trial is almost a close circle and it is less distorted than the trajectory of the first trial

(see Fig. lS(b) and 18(a)). The robot's trajectory then gradually gets closer to the target

trajectory. From about the 50-th trial, the robot's trajectory is close to the target trajectory

as illustrated in Fig. 18(c).

(a)
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4.5 Summary

Applying the proposed synergy control method to a pneumatic-driven robotic arm, we

validated the efficacy of the novel hypothesis of motor control for the upper limb movement.

Although A-A activity was fixed in this task to show the efficacy of the proposed control

scheme clearly, we have investigated human adaptation to variable-stiffness assistance from

the view point of muscle synergy analysis based on A-A activity and reported that stiffness

control of the knee exoskeleton implementing the A-A activity of an able-bodied person

reduced all muscle activities of the user's lower limbs [7]. In addition, utilizing the syn-

ergy control method, our group has succeeded in controlling a pair of pneumatic-driven

robotic legs in performing pedaling movements [44]. Although the pedaling project also

implemented the synergy control method based on A-A ratios since it specially focused

on the equilibrium posture, one important phase of movement besides the stiffness control,

it suggested the important of A-A activity in movement control to achieve smoother and

more humanJike pedaling movement.
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CHAPTER V

ROLE SHARING IN A C00RDDJAご ED TASK

5.1 Introduction

The use of robots in cooperative interaction tasks with humans is increasing. An un-

derstanding of the cooperation between two human subjects in a coordinated movement

would benefit to the performance of robots which involve in coordinated tasks with hu-

man. In a coordinated task, there are multiple ways to combine the redundant controls

[13]. From empirical understandings of the facts that an appropriate division of roles often

improves work performances I21,22,231, and muscle activities have an effect on move-

ment 1271, this experiment focuses on the role division of two persons in a crank-rotation

task by examining the muscle activities and the hand-forces of the two members.

Reed's l24l defined two kinds of cooperative strategies when two persons works to-

gether. One strategy is 'active/inert' dyad. That is, one member provides a force toward the

target in early of the trial and then late in the trial that subject provides force to decelerate

the motion. The other member creates counterproductive force all the time. The other strat-

egy is 'specialized' dyad. That is, one member mainly contributes to the acceleration phase

while the other member mainly contributes during the deceleration phase. He observed

that the dyads worked faster than their constituent members working alone. However, he

did not offer a clear explanation for the improvement of the task performance when two

members working together.

In this experiment, we approached the role sharing between two human subjects in a

coordinated task from the viewpoints of muscle activity patterns and hand-force patterns.

We expected to find correlation patterns of the dyad members in the dyad performance in

order to improve the synergy-based control for musculoskeletal robots so that they can work
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Figure 19: Experimental setup, top view.

more gently compliantly with humans. This chapter presents the details of the experiment

and experimental results with discussions.

5.2 Materials and method

5.2.1 The task

Subjects were asked to move a crank into a target area as quickly as possible and to

hold it there until a new target appeared. Each experimental run had 40 trials, including

clockwise rotations and counterclockwise rotations. Resting time between each rotation

was within 1-3 seconds. and was set randomlv.

5.2.2 Subjects

Two healthy volunteers (male, righrhanded), aged 2I and24, participated in the exper-

iment. All of them gave informed consent conforming to the Ethics Committee of Osaka

University. Call the subjects O and S.

5.2.3 Experimentalsetup

Figure 19 illustrates the experimental setup. F, stands for tangential force. F, stands

for radial force. The crank with two handles is hidden behind a black curtain so that two

48
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(a) Single trial

49

(b)Dyad tial

Figure 20:Expe五mcntal view.
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subjects cannot see each other during the test. A force sensor (USL06-H5-200, TecGihan)

is attached under each handle to measure the hand-force at 100 Hz. The arm movement

of each subject is tracked by the motion capture system (Optitrac[ NaturalPoint, Inc.) at

100 Hz. A separate camera is used to capture the crank movemont. The crank movement,

together with targets, is shown on the displays hang in front of each subject. The crank

angle 0 is the angle between the crank and the x-axis. The targets (end points), identical for

two subjects, are set to be within 0 = 50 - 60 deg on the right side to 0 = 140 - 150 deg on

the left side. The monitors also display the elapsed time and the trial information. Muscle

activities are observed through EMGs. EMGs are recorded by using a multi-telemeter

system (WEB-5000, Nihon Kohden) for one subject and by another multi-telemeter system

(WEB-7000, Nihon Kohden) for the other one, at 1000 Hz. All measurement devices

are synchronized. The procedure to measure EMGs was similar to the EMGs measuring

process described in Section 3.2.3.

Figure 20(a) illustrates a real experimental setup. The subjects sit comfortably on

chairs, leaning on the chair's back. The subjects' shoulder joint, elbow joint, and wrist

joint are in a horizontal plane. To reduce the gravitational effect, carts that can move freely

in the work place are used to support the subjects' elbow. For analysis simplicity, subjects'

wrist is fixed to prevent wrist movement. For the single task, only one subject performed

the task. For the dyad task, two subjects performed the task together (see Fig. 20(b).

First, each subject individually completed ten single trials (single O and single S). Next,

we asked the subjects to perform the dyad task (dyad OS). Two subjects worked together

to complete ten runs.

Measured EMGs of each trial were pre-processed. The pre-processed EMG signals and

the measured hand-forces of each trial were averaged with respect to time. For details,

please see Section 3.2.4.

50
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Table 7: Execution time of dyads and single subjects

Execution time [second] dyad OS single O single S

51
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Figure 21: Improvement through trials during an experimental run (dyad trial).

5.3 Improvement of performance in dyad work

Execution time is the time for moving the crank from the staft point to reach the

end point. We confirmed that dyad perfonnance achieved less execution time than single

performancel24,37l. Table 7 presents the averaged execution time of dyad OS, single

O, and single S. As seen in this table, dyads completed the task faster than individuals.

Moreover, the performance was improved through trials. The execution time gradually

reduced from the beginning of the test until the end of the test (see Fig. 21).

5.4 PCA results

5.4.1 A-A ratio

For both single task and dyad task, the first two PCs contributed over 90Vo to the per-

centage variation of the A-A ratios of each subject (see Table 9). Therefore, it is reasonable

to represent A-A ratios by using the first two PCs.
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Table 8:

52

of variation accounted for the nrsttwo PCs(A― A ratio)
Counterclockwise

PCl  PC2  Total  PCl
Clockwise

PC2  Total

Single trial
Ｏ

Ｓ

84.08  12.27  96.35

73.68  21.69  95.37

93.56  3.48  97.04

70.80  23.59  94。 39

Dyad trial
Ｏ

Ｓ

77.05  21.22  98。 27

52.93  45。07  98.00

70。99  27.14  98。 13

61.42  33.55  94。 97

5.4.1.1 PC scores

1. PC1 scores

In the counterclockwise rotation

Dyad trials: PCI scores of each dyad member were similar in shape (bang-bang

type) but phase lag. Figure 22 illastrates the PCl scores patterns of A-A ratio

(rPCl) of dyad OS in nine trials in the counterclockwise rotation. As seen in

this figure, rPCl scores of subject O is phase lead in the first half of the trial but

rPCl scores of subject S is phase lead in the late half of the trial. This pattern

is the specialized pattern. The phase lead increases through trial times. In the

early trials (trial 1, 2, and 3), rPCls of two members almost start at the same

time, and have similar movements (see Fig. 22(a), Zz(b), and 22(c)). From

tnal4, the role division occurs more clearly as the phase lead between rpCl of

subject O and that of subject S more increases.

Single trials: in most cases, the PCI score patterns of each subject were similar

to the pattems of that subject in the dyad trials. Figure 23 shows the PCl scores

patterns of subject S and subject O in the single task. Subject S's pattern shows

an acceleration in the first half of the trial but a weak adjustment in the late half

of the trial. This pattern is different from the pattern of subject S in the dyad

trials. In the dyad trials, his pattern implies a clear adjustment in the late half

of the trial, following the lead of his partner O. Subject O's pattern in the single

trials is similar to his pattern in the dyad trials, accelerating in the first half of
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the trial and decelerating in the late half of the trial.

In the clockwise rotation:

Dyad trials: rPCl scores of each dyad member were similar and less phase lag.

Figure 25 shows the rPCl scores of dyad trials in the clockwise rotation. As

seen in this figure, rPCl scores of one subject are phase lead while rPCl scores

of the other subject move along (active/inert dyad).

Single trials: The rPCl score pattern of each subject in the single trials was

similar to the rPCl score pattern of that subject in the dyad trials.

PC2 scores

In the counterclockwise rotation:

Dyad trials: PC2 scores of each dyad member were also similar in shape. Fig-

tre26 demonstrates the PC2 scores (rPC2) of dyad OS in the counterclockwise

rotation. As seen in this figure, rPC2 of two members have a similar startup,

but in late of the tial,rPC2 of subject O raises up while rPC2 of subject S grad-

ually reduces, indicating an adjustment of subject O to the movement and the

passive movement of subject S (see Fig.26(a),26(b),26(c),26(d), and 26(e)).

However, after five trials, the two members present more similar strategy. Their

rPC2have a similar startup and slowing down patterns, but different in phase.

Subject O mostly leads the movement. This pattern is active/inert pattern.

Single trials: the rPC2 score pattern of subject S keeps unchanged (see Fig. 27).

Subject O's pattern shows an adjustment in the end of the trial, just similar to

his performance in the dyad trials.

In the clockwise rotation:

o Dyad trials: the rPC2 scores of two dyad members were similar, but different in

phase. Most of the cases, one member led the movement in the first half of the

53
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trial and the other member led the movement in the late half of the trial. or this

pattern is specialized pattern (see Fig. 28).

o Single trials: rPC2 pattern of each subject was similar to the pattern in the dyad

trials but less adjustment in the end of the trial (see Fig.29).
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5.4.1.2 PC vectors

l. PCI vectors

In the counterclockwise rotation:

o Dyad trials: PCI vector of A-A ratio of each dyad member was similar. Fig-

ure 30 illustrates PC vectors of dyad OS in the counterclockwise rotation. For

PCI vectors (rPCl), the elements corresponding to {r1, rz,rql are the same sign,

which are different from the element corresponding to 13. This pattern implies

that the antagonistic muscle pair 4 (the one-joint muscles pair around the el-

bow joint) works differently with the other pairs, extending/flexing while the

other pairs flexing/extending, to produce the movement in the angular direc-

tion. The value of each element is approximately equal, indicating that the

extending/flexing of each muscle pair is approximately equal.
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(a) Subject S

Figure 32: PC vectors of A-A ratio of dyad trials in

60

(b) SubjectO

the clockwise rotation.

(a) Single S (b) Single O

Figure 33: PC vectors of A-A ratio of individuals in the clockwise rotation.

o Single trials: PCI vectors of individuals are similar (see Fig. 31). All elements

of rPCl are the same sign.

In the clockwise rotation:

Dyad trials: all of the elements of rPCl have the same sign, indicating a similar

activation (extending/flexing) of all of antagonistic muscle pairs (see Fig.3z).

Single rials: the rPCl vectors of each subject in single trials are different from

the patterns they produced in the dyad trials (see Fig. 33).

2. PCz vectors:

In the counterclockwise rotation:

o Dyad trials: the element corresponding to 11 is different in sign compared to the

others (see Fig. 30). Thus, for the movement in the radial direction, which is

２
●
一
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Table g: Petc" tivitY)

Counterclockwise Clockwise

PCI  PC2  Total  PCI  PC2  Total
68.04  29。76  97.80  88.16  11.28  99。 44

66。 71  23.44  90。 15  79。 36  14.51  93.87

77.44  20。 44  97.88  85。 59  13。 94  99。53
Dvad trial

55。 11  36。 67  91.78  61.90  33.55  95。 45

related to rPC2, three antagonistic muscle pairs {r2, rz,rqJ work in concert with

each other and that is different from the pafu 11.

. o Single trials: PC2 vectors of individuals are similar (see Fig. 31). The elements

corresponding to {r1, r2l are negative, the elements corresponding to {ry,ra]1 are

negative. These patterns are different from the patterns of each member in the

dyad trials.

In the clockwise rotation:

Dyad trials: the patterns of rPC2 vectors can be divided into two groups (see

Fig.32). One group is positive, and one group is negative. This pattern indicates

that the two groups work in contrast with each other to produce the movement.

In addition, the high value of the element corresponding to rr indicates a strong

flexion of the shoulder joint.

Single trials: the rPC2 vectors of each subject in single trials are different from

the patterns of each other and are different from the patterns they produced in

the dyad trials (see Fig. 33)

5.4.2 A-A activity

For both single task and dyad task, the first two PCs contributed over 9O7o to the per-

centage variation of the A-A activities of each subject (see Table 9). Therefore, it is rea-

sonable to represent A-A activities by using the first two PCs.

Single trial  :

Ｏ

Ｓ
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5.4.2.1 PC scores

1. PCI scores:

2. PCz scores:

62

Dyad trials: PCI scores of A-A activity of each dyad member were similar in

shape. Figure 34 shows the PCl scores (aPCl) of dyad oS in the counterclock-

wise rotation. They all have a similar shape but different in phase. In early

practices, subject S's aPCl are always phase lead. This pattern is active/inert

pattern. The phase lead reduces through practices. This pattern is also valid for

the clockwise rotation (see Fig. 36).

Single trials: For different movements, counterclockwise and clockwise move-

ments, aPCl score pattern of subject S changed while that of subject o kept

the same (see Fig. 35 and 37). Moreover, aPCl score pattern of subject o is

similar to his aPCl score pattern observed in the dyad trials.

Dyad trials: PC2 scores (aPCz) of each dyad member were similar. Figure 3g

and 40 exhibit the aPC2 of dyad OS in dyad trials in the counterclockwise rota-

tion and in the clockwise rotation, respectively. apC2 of subject o is smoother

than that of subject S in most of the trials.

Single trials: aPC2 score pattems of subject S in the counterclockwise rotation

and in the clockwise rotation are different, and they are different from his aPCZ

score pattern observed in the dyad trials. On the other hand, aPC2 score pattern

of subject O kept the same.
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The patterns of PCI vectors of A-A activity (aPCl vectors) of the two dyad members

were similar in both counterclockwise rotation and clockwise rotation. Figure 42 and 44

present the aPCl vectors of the dyad OS in the dyad trials in the counterclockwise rota-

tion and in the clockwise rotation, respectively. aPCl vector represents the major part of

variation in the stiffness of the upper limb. All of its elements have the same sign, indi-

cating that both of the subjects adjusted the stiffness concertedly. The values of elements

of subject O's aPCl are almost the same but those of subject S's aPCl are not as stable as

that, implying that subject O produced smoother movement as he controlled his stiffness

smoother.

For aPC2 vector, in the counterclockwise rotation, the patterns of two dyad members

were similar. Figure 42 shows the PC vectors of A-A activity in the dyad trials in the

al a2 a3 a4 al  a2 a3 “
・・■
■
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counterclockwise rotation. As seen in this figure, the elements coffesponding to {a1,a2l

are different sign with those corresponding to {az,aql, or the upper-arm's stiffness increas-

es/decreases while the forearm's stiffness decreases/increases. In the clockwise rotation,

however, aPC2 vector of two members are different. Subject S's aPC2 vector has three

positive components and one negative component. Subject O's aPC2 vector stays the same

as in the counterclockwise rotation, or he produced a similar stiffness in this task. In addi-

tion, the value of the element corresponding to a1 is high, indicating a high stiffness of the

shoulder joint.

The PC vectors of each subject in the single trials were different from each other's PC

vectors and were different from his PC vectors in the dyad trials (see Fig. 43 and 45).
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Figure 47: Hand-force profiles in the counterclockwise rotation (single triat).

5.5 Hand-force results

Considering the tangential force, which is positive when placed towards the target, role

divisions between two dyad members were observed. Call Fn", the sum of each member's

force, F6;6 the difference force of the two members' forces. The net force Fn", is the task-

relevant force that accelerates the crank. The difference force has no physical effect on the

crank motion. Two types of strategies were observed. Figure 46 shows the performance

of dyad oS in the counterclockwise rotation. Fn"t = Fs + F5 is the sum of subject o and

subject S's forces in the dyad task. Faif f = Fo - Fs is the difference force, measuring the

6「――― ――――一
‐―      ―――
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Figure 49: Hand-force profiles in the clockwise rotation (single trial).

disagreement of the members. As seen in this figure, in early of the trial, subject O leads

the crank movement while subject S performs a slow response. In the late half of the trial,

subject S takes over the role of pushing the crank to move (Fs > 0) while subject O tries

to decelerate the crank (Fo < 0). The difference force changes its sign. This performance

is active/inert strategy. In the clockwise rotation, however, they demonstrated a different

strategy. As seen in Fig. 48, both of the subjects solely push the crank towards the target.

Subject O leads the movement. The difference force stays the same sign. This performance

is similar to the specialized strategy.

|
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The performance of the subjects in the dyad task was different from their performance

in the single task. Call singleF the force of the individual in the single task. Figure 47(a)

and 47(b) show that when working alone, both subject S and O present the acceleration

strategy in the first half of the trial and the deceleration strategy in the late half of the

trial. In the clockwise rotation, subject O simply pushes the crank towards the target (see

Fig. a9@)) while subject S performs a bang-bang type control (see Fig. a9@)).

5.6 Discussion

Role divisions were observed by investigating the synergy variables. In the coun-

terclockwise rotation, the rPCl pattern, which is related to the movement in the angular

direction, was a specialized pattern. That is, rPCl of one subject was phase lead in the flrst

half of the trial and rPCl of the other subject was phase lead in the late half. However, in

the clockwise rotation, rPCl of one subject was always phase lead while rPCl of the other

subject followed. This pattern is an active/inert pattern. In contrast, rPC2, which results in

the movement in the radial direction, was active/inert in the counterclockwise rotation and

specialized in the clockwise rotation. On the other hand, role divisions can be approached

by observing the hand-force profiles. In the counterclockwise rotation, one subject mainly

pushed the crank in the first half of the trial while the other subject mainly produced force

to move the crank in the late half of the trial (active/inert dyad). In the clockwise rota-

tion, one subject led the movement while the other subject pulled along (specialized dyad).

These roles observed from the hand-force profiles contrast with the roles observed from the

pattems of rPCl (the input of the angular-directional movement) but agree with the roles

observed from the patterns of rPC2 (the input of the radial-directional movement).

In addition, the PC vectors of A-A ratio in the counterclockwise rotation and those in

the clockwise rotation were different, or the activation level of each antagonist muscle pair

was different at different movements. Moreover, the PC vectors of A-A activity can explain

how the subjects distribute the stiffness over antagonistic muscle pairs. When the stiffness
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was changed smoothly, the resultant performance observed was smooth.

Finally, the performance of dyad work was improved through trials. The synergy vari-

ables patterns also showed that in later trials, the phase lead decreased. It seemed that as

practicing together, the dyad members tent to synchronize each other and adjusted their

performance to work more compliantly with the partner. This fact may be the cause of the

improvement in performance of the dyad work.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

This dissertation provides a method to extract, analyze, and implement muscle syner-

gies to the upper-limb movement control. Here, we summary the conducted experiments

and achievements.

First, we proposed A-A ratio and A-A activity concepts, setting the variables for analyz-

ing the muscle synergies for movement generation of pneumatic artificial muscles systems

as well as for human muscles. We provided a method to extract and to implement muscle

synergies from A-A ratio of EMGs in a hand-force production task. The analysis based

on the A-A ratio dataset was less tedious compared to the conventional analysis based on

the original EMGs. The physical meanings of extracted muscle synergies were elucidated.

That is, considering a polar coordinate system centered on the shoulder joint, one synergy

seemed to generate hand-forces in the angular direction, while the other synergy seemed

to create hand-forces in the radial direction. There have been some research that having a

similar idea of using PC vectors and defining them as synergies. For example, Santello's

work presented a method to obtain sSmergies from hand postures [28]. Our study, however,

provides a way to identify synergies from muscle activities. The input for the ana$sis is

more direct as muscle activities are the input of movements. In addition, they found that the

first two principal components accounted for over 157o. Our method found the contribution

of the first two principal components was over 90Vo (almost all cases), or our reduced data

can represent the original data more significantly, thus, offering a better investigation on

the data.

Second, we hypothesized a novel framework for motor control of the upper-limb move-

ment. Using the hypothesized framework, we can explain the underlying procedure of
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producing force. The proposed framework is a foothold to explain the mechanism to gen-

erate movements clearly. Furthermore, it enables us to make robots perform a wide range

of tasks, such as a reaching task. In this dissertation, we demonstrated an implementation

of the framework to control pneumatic-driven robots with synergy variables. There has

been a few researches that transfer the characteristics of muscle activities to control muscu-

loskeletal robots. Our work, however, proposes a synergy-based control method to control

musculoskeletal robots. The simplicity and flexibility of the synergy control method make

it a promising control method for high-redundant systems. It is applicable for other sys-

tems with more degrees-of-freedoms or to more complex tasks. In fact, we have tried it with

pneumatic-driven leg robots that have 16 PAMs [44] andwith movement in 3-dimensional

space [33].

Finally, we investigated the performance of two people in a crank-cooperation task.

Role divisions were observed in the dyad perfonnanco, suggesting the mechanisms that

improve the dyad work. The observed role sharing would be helpful to improve the perfor-

mance of musculoskeletal robots that involve in interaction tasks with human.

For future plan, it is necessary to deeply investigate the stiffness that is reflected by

the A-A activity to optimize the relationship between the input (synergy variables) and

the output (hand movements). The experiment to observe the coordinated performance

between two human subjects should be conducted with more subjects so as to provide

fruitful information, making the observation more reliable. In addition, the performance of

dyad task should be validated with robot perfonnance.
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APPENDIX A

EXPERIMENT DEVICES AND THEIRS SPECIFICAT10NS

Figure 50: Electro-Pneumatic regulator

Figure 51: Air compressor

Table 10: Specificatio or

Name

Output ports
Max pressure

Control pressure range

Interface

APC―C300-16
16

0。7[■lIPa]

0～0.5[NIIPa]

Single― endcd O～ 10[V]

Tt
Name
Output

JUNAIR 12-25
0.80[kW]

Maximum pressure 0.80 [MPa]
Air delivery 120 fliters/min]

Tank size 25[litcrS]
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Figure 52: Force sensor
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Name
Load range F,, F,y

Load range F.
Nonlinearity
Hysteresis

Operating temperature
Overload

Recommended voltage

Table 12: Specifications of force sensor

Figure 53: Force sensor's conditioner

USL06-H5-200N
±100[N]
200[N]
within l.0%RO

within R0

10～60[° C]

120%
1～3[V]

±5[V]
±0.1%[FS]

nUn tgt Sp..mr"t
Name DSA-03A

Measurement channels 3

Sensor application 120-350 [C)]
Applied voltage DC 2.5[V]
Zero attustmCnt rangc  +500レ ε]
Low―pass■ ltcr    5,20,200[Hz]

Output voltage
Nonlinearity

Operating temperature 0-50 ['C]
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Figure 54: WEB-5000 receiver
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属

Figure 55: WEB-5000 transmitter

Table 14: Specifications of EMG measuring sets

Name
Number of measurement channels

Wide cut-off frequency
Low-pass time constant

Sensitivity
Max input

Noises

Ⅶ B-5000
8

100[HZ]

0.03,0.01[sec]

0.2,0.5,1[mV]
±5[mV]
42レ V]
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Name PCI-3346A

Conversion time 10 fusl
Interface Flat cable 50 Pin

Output channels 16

Output method Unipolar
Input voltage range 0-10 ryl

Table 16: Specifications of A/D converter

Name
Conversion time
Conversion time

Interface
Output channels
Output method

Input voltage range

PCI-3522A
10[″S](flXed Channel)

60レs](SWitChing channel)
Flat cable 50 Pin

8

Single‐ ended

O～ 10[V]
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