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PREFACE

. This dissertation work was conducted under the supervision. of Professor Hiroshi.

Umakoshi at the Division of Chemical Engineering, Graduate School of Engineering Science,

Osaka University from 2007 to 2013.

The objective of this thesis is to establish the methodology to design the liposome

membranes for the recognition of biomacromolecules, together with the control of their

conformation and function. The physicochemical properties of liposome membranes and their

interaction with biomacromolecules are investigated, especially focusing on the nano-domain

formed at the membrane, in order to understand the key factors for the recognition of

biomacromolecules.

The author hopes that this research would contribute to design the liposome membrane

surface as a functional platform of the recognition of biomacromolecules and, also, control

their functions. Utilization of the "Bio-Inspiret' membranes will contribute to the

development of innovative chemical and biochemical processes, such as in vitro synthesis of

proteins, drug delivery system for transfection of polynucleotide.
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Summary

Liposome membrane is a self-assembly of phospholipid bilayer with a 5 nm thickness and affords an

interface between polar surface and non-polar inner membrane. The liposome membrane has been reported to
interact with thp biomacromolecules, aqd can therefore be utilized as a platform of their accumulation and

functionalization. In this study, the method to design the liposome membrane for the recognition of
biomacromolecules and the control of their conformation was studied, focusing on the micro-phase separation
and nano-domain on the liposome in order to utilize the liposome membrane as a platform of bio-/chemical
processes.

In Chapter 1, the role of liposome membrane on the in vitro gene expression in an E coli cell-free
translation system was studied, in order to find out the specific interaction of the lipid membrane with
biomacromolecules. The charged liposomes were found to regulate GFP expression at the translation and

folding steps via interaction with single-stranded RNA molecules and GFP polypeptides. Characterization of
biomacromolecules indicated that the nascent mRNA and GFP polypeptide were unstable, and were likely to

interact with the liposomes via electrostatic, hydrophobic, and hydrogen bonding interactions.

In Chapter 2, the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-
dipalmitoyl-sn-glycerc-3-phosphocholine (DOPC/DPPC) and DOPC/cholesterol (DOPC/Ch) binary lipid
mixtures of large unilamellar vesicles (LI-fVs) were characterized, and nano-sized ordered domains were
detected by using a newly-developed TEMPO quenching method. Analysis of membrane fluidity and polarity
revealed the existence of immiscible "microscopic" segregated regions in the DOPC/DPPC binary lipid
mixture of LUVs. The TEMPO quenching method clarified that the nano-sized ordered domains with 13-36 A
were formed in the DOPC/DPPC and DOPC/Ch liposomes. The phases diagram of the liposome membrane

was clearly shown based on their physicochemical properties, focusing on fluidity, polarity, microscopic phase

separation, and nano-sized domain.

In Chapter 3, the method to control the specific interaction of the liposomes with biomacromolecules was
clarified, by selecting single-stranded RNAs (mRNA, tRNA) as case study. It was shown that mRNA was
bound to the heterogeneous cationic liposome in an "active" state. Raman and Fourier transform infrared
(FTIR) spechoscopic analysis clearly indicated that the nucleobases (A, G, C) in single-stranded RNAs
interacted with the lipid molecules. Analysis of circular dichroism spectra indicated that the cationic liposome

in disordered phase denatured the conformations of both the single-stranded loop (dzos) and double-stranded

(026) regions in mRNA, while the heterogeneous cationic liposome partially denatured the mRNA
conformation. The Ch-modified liposomes with the micro-domain were found to interact with the cytosine
residue. The key of liposome membrane design for the biomacromolecular recognition can be understood as

"co-induction" of multiple interactions, such as (i) electrostatic interaction, (ii) hydrophobic interaction, (iii)
entropic forces with the dehydration of membrane surface, (iv) hydrogen bonding interaction, (v)
micro-domain formation at the contacting surface.

In Chapter 4, the scheme of the liposome membrane design for the recognition of biomacromolecules was

finally established, together with the control of their folding and function. The liposome membranes were, in
practice, designed for recognition of biomacromolecules, such as hammerhead ribozyme (HHR) and IRNA.
1,2-Dioleoyl-sn-glycero-3-phoshoethanolamine/DPPc (DOPE/DPPC) (8/2) liposome was designed for the
recognition of HHR, showing that HHR can bind at the interface regions. As a result, its conformational
change was induced with the enhancement of its activity, despite of the absence of Mg2*. In the case of tRNA,
DOPC/sphingomyelin/Ch (41313) with the nano-sized domain (45-76 A) was found to recognize the stem and

loop regions in tRNA, resulting in the induction of its conformational change.

A general strategy to design the liposome membrane as a platform for the recognition of biomolecules,
accompanying with their folding and functionalization, was thus proposed based on the physicochemical
properties of liposome membranes and their interaction with the single-stranded RNA and polypeptide
molecules. The obtained results in this study were summarized in the general conclusions together with
suggestions for future works.



General Introduction

A biomembrane can act both as a "physical boundart'' that can enclose a variety of

biomolecules and as an "active interface" that can transduce the signal across the membrane.

A biomembrane, which consists of various kinds of phospholipid, membrane protein and

other chemicals (Fig. L), plays essential roles in permeability, signal transduction, membrane

transport, and biogenesis (Luckey, 2008). It is in general known that the biomembrane of

biological cell acts as a physical barrier that separates the biomolecules within a cell structure

from the extemal environment. The biomembrane can therefore protect inner compartments

from the environmental stresses, such as heat stress, pH changes, and oxidative stress. The

typical characteristics of biomembranes are known as membrane fluidity, raft (micro-domain),

surface charge density, etc., which can be related to the interaction of the above membranes

with biomacromolecules, such as proteins, enzymes, DNAs, and RNAs. It has been reported

that the liposome, a model biomembrane with a variety of size (30 -10000 nm), can regulate

the biological reactions (Walde, 2010); the liposome reactivates the fragmented superoxide

dismutase (SOD) under an oxidative condition in the presence of Cu2* and Zr?* (Tuan et al.,

2008); the liposome modified with Mn-PyP exerts both SOD activity and peroxidase activity

(Umakoshi et al., 2008); the liposome itself also affects the in vitro expression of green

fluorescent protein (GFP) (Bui et a\.,2008). One of the essential roles of the biomembranes is

to localize the functions of biomacromolecules on their membrane surfaces (e.g., the

ribosome can bind to the endoplasmic reticulum membrane). It is therefore important to

understand their roles in recognition of biomacromolecules and functionalization of them.

A general design for novel biofunctional materials is definitely required in order to

develop innovative bio-/chemical processes. A variety of specific recognition of

biomacromolecules and chiral materials are known to be achieved in biological cellular



Possible role of biomembranes
. Physical barrier
. Signal transduction
.Transport
. Platform for biological events (recognition, functionalization)
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Fig. 1 Structure of biomembranes and their roles (Collawn et a1.,2008).

systems to maintain the cellular homeostasis through nano-machineries relating to metabolism

and also gene expression (Tzareva et al., 1994; Korostelev et a1.,2006)- For example, RNA

aptamers have been developed as molecular recognition tools, which recognize various kinds

of biomolecules (e.g., flavin mononucleotide (FMN), adenosine monophosphate (AMP),

arginine, Tobramysin, and so on) (Patel et a1.,2000). However, there are some difficulties to

perform the selective separation or molecular recognition in designing the above-mentioned

artificial systems owing to their limited properties in physicochemical potentials. A key of the

biofunctional design is a molecular recognition, which can act as a "glue" of different

molecules and can induce an "emergence" on the self-assembly. As an example of

"Bio-Inspired' mateials, the molecular imprinting technology has been developed, where the

self-assemblies, such as polymer matrixes with the micro- or nano-sized cavities fitting

precisely to the template molecule, can recognize the target biomolecules (Caldorera-Moore

et a1.,2009), as well as the "lock and key'' model in enzyme and substrate. It is therefore
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recognition potentials.

necessary to develop "Bio-Inspiref' systems (Yoo e/ al.,20ll) by utilizing "self-assemblies"

as effective platforms for recognition (Fig. 2).

There are various kinds of self-assemblies, which play fundamental roles in living

cell systems. Lipid membranes, one of essential components of a cell, have also been utilized

as "Bio-Inspired' materials for drug carrieq biosensor, and as platform of biochemical events

(Table 1). Focusing on the molecular recognition, self-assembly systems play an important

role on their interaction with target molecules (Borocci et a1.,2003; Banchelli et a1.,2001;

Caldorera-Moore et a\.,2009). Based on the previous reports, the liposomes have been shown

to recognize biomacromolecules through the combined interactions, such as electrostatic,

hydrophobic, and hydrogen bonding forces; (i) the liposomes interacted with damaged

proteins and fragmented enzymes (Yoshimoto et a1.,2000;Tuan et a1.,2008); (ii) the anionic

liposomes induced spherulitic aggregation of amyloid B peptides (Shimanouchi et a|.,2012);

(iii) the liposomes regulated the in vitro gene expression (Bui el a1.,2008; Bui et a1.,2009);

(iv) the liposomes induced conformational change of single-stranded RNAs (Suga et al.,



Table 1 Self-assemblies utilized as " B io-Inspiref' svstems

Reference Lipid membrane type and its application

Yoshimoto el al.,1998'

Peetlaet a1.,2009

Yoo et al.,2oll

Shimanouchi et al., 2010

Ceritelli et a1.,2007

Liposome-immobilized chromatography for detection of denatured proteins

Liposomes utilized as a model cell membrane for lipid-drug interaction

Design of the virus carriers for drug delivery

Liposome-immobilized membrane chip analysis for the membrane-membrane interaction

Block copolymer vesicles for intracellular drug delivery

Caldorera-Moore et a1.,2009 Molecular imprinting polymers as intelligent and responsive biomaterial-based systems

Stgaya et a|.,2010 Liposome-immobilized hollow fiber membrane module for dialysis of damaged protein

20II). It is therefore suggested that the liposomes can be regarded as the "Bio-Inspired"

self-assemblies, and can be utilized as functional platforms for recognition and

functionali zing of tar get biomacromolecules.

The basic structure of a lipid membrane is the lipid bilayer at a 5 nm thickness with

the interface between polar membrane surface and non-polar inner membrane, where lipid

molecules can freely diffuse, depending on the phase state of the lipid membrane (Jeon et al.,

2012). The typical characteristics of lipid membranes, such as liposome systems, are known

as (i) "macroscopic" characteristics as "system", (ii) "microscopic" characteristics as '1ipid

molecules", and the (iii) "dynamic behavior" of the membrane in the variation of surrounding

condition and in the interaction with a variety of biomacromolecules (Fig. 3). Several

techniques have been developed to understand the phase state of lipid membranes as

sunmarized in Table 2. Sphingomyelin (SM) and cholesterol (Ch) are typical components

that can form the raft domains in liquid-disordered (/6) membranes (De Almeida et al.,2005).

Because the formation of membrane domains depends on the lipid composition and

surrounding environment (e.g., temperature), the phase diagrams of membranes in binary and

ternary lipid mixtures have been systematically studied as summarized in Table 3. The



(i) "Macroscopic" characteristics
as

“System"
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membranes.Fig. 3 Characteristics of lipid

Table 2 Summary of the phase diagram of the lipid membranes

T..T.

Reference Components Method Existing phases +

Veatchet a1.,2005

Juhasza et al.,20ll

Foxet a\.,2007

dc Langc ι
`α

ム,2007

Schnlidt ι′αム,2009

DOPC/PSⅣνChol

DOPC/DPPC/Chol

DOPC/DPPC

DPPC

DPPC/Chol

DOPC/DPPC

Fluorescence microscopy

Confocal fluorescence microscopy

DSC, Raman spectroscopy

Fluorescence microscopy, FRET

Raman spectroscopy

2HNMR

Onc‐ liquid¢α,五。),神0‐liquids

¢α電♪,Ⅱqlld―sdid¢計島)

ιd,gcl,flbHl

ια,PO',ι β,Lc

ιd,ι d■ Z。 ,ん。,島,Zd+5。 ,Z。+S。
,

ιd七計島

ιd,ι。,1%,ZdやS。,Z。 ¥Ss

ιω gcl,sub―gcl,Zαttgcl,

Zα+sub‐gcl,Zα+gclttsub―gcl

Dc Almcida`′ α′,2003   POPC/PSM/Chol

* Phase state of lipid membrane
Lo, Ld : disordered liquid crystalline; liquid-disordered phase

Lo : ordered liquid crystalline; liquid-ordered phase with Ch and sphingolipids
Ip, S", Bel : lamellar orthorhombic; solid-ordered phase

1", sub-gel: lamellar crystalline orthorhombic; sub-gel phase

PB' : hexagonal periodical; ripple-gel phase



Table 3 Summary of the membrane domain size

Reference Liposome/vesicle Domain size (method)

Parasassi ι′αl,1995    DMPC/Ch

Pathak ι″αl,2011

Ch 30～ 70 mo10/。

bSM/POPC/Ch(1/1/1)

De Almcida ι′αl,2005  PsM/POPC/Ch

Vcatch`′ αム,2005 DOPC/PSヽ″Ch

Hcbcrlc ι′αl,2010     DSPC/DOPC/Ch

Sachl ι
`α

l,2011 DOPC/SM/CWDOPG/DPPE/biotinc

(29/39/25/5/2)

Kiskowski`′ αム,2007  DOPC/DPPC/Ch“ 0/40/20)

20 - 50 [A] (fluorescence)

-r5o tAy 80 -roo l1^l/ < 40 tAl (FREr)

> 75 - 100 [nm] (Microscopy and FRET),
< 20 [nm] (FRET only)
1-5 [pm](Microscopy)

- s [nm] (ESR)

< 20 [nm] (FRET)

6 [nm] (Simulation)

membrane characteristics, which can be observed by a microscopy, are herein defined as

"macroscopic" properties, although these techniques can clarify the "visible" information of

membranes. The "micro-"domains, which are almost smaller than 100 nm and caffrot be

visualized by a microscope, are observed by using a fluorescence resonance energy transfer

(FRET) technique, where the domain size has been reported to be ca.20 nm (De Almeida et

al., 2005). However, conventional techniques are known to have some restrictions on

hardware for the analysis (".9., a high-quality microscope) and have not yet enabled us to

detect nano-sized domains smaller than < 5 nm. It is therefore important to characterize

"microscopic" properties of lipid membranes and detect "nano-"sized domains in order to

understand the behaviors of lipid molecules and utilize the lipid membrane as a platform of

the reco gnition and functionali zation of biomacromolecules.

For explaining the essential roles of lipid membranes, it is important to consider the

localization of functions on the membranes through the binding of biomacromolecules (Walde,

2010). It seems that the binding of biomacromolecules can be well related with the

"macroscopic" and "microscopic" properties of the lipid membrane. It has been previously



reported that lipid membranes affect not only the recognition of proteins and enzymes but also

the conformation and function of them (Umakoshi et a1.,2009; Ngo e/ a1.,2010; Umakoshi er

a|.,2012), where the "micro-"domains formed in the liposomes can contribute to recognition,

folding, and functionalization. [n most cases, a protein folding process is irreversible, while a

folding of polynucleotide is reversible. In both cases, the conformational stability of

biomacromolecules is absolutely-required factors to induce and regulate their functions (Figs.

4 and 5). According to Janas et al., specific RNAs can bind to ordered phospholipid bilayers.

They observed that the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPCySIWCh (60/30/10)

liposome effectively interacted with RNA l0 (-15% binding), whereas DOPC/SM (70130)

and DOPC/SN/VCh (40130130) did not (<5% binding). These reports suggest that the design of

physicochemical properties of the lipid membranes, such as surface charge density, membrane

fluidity, membrane polarity, micro-domain structure) are extremely important for recognition
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of biomacromolecules through

interactions driven by entropic

forces caused by the matching

(i) electrostatic interaction, (ii) hydrophobic interaction, (iii)

forces, (iv) hydrogen bonding interaction, (v) van der Waals

of the contact surfaies (Fig. 6). Based on'the strategy, the
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strong interaction between liposomes and biomacromolecules can be expected, as well as, the

molecular recognition in the antigen-antibody or the base-pair formation in nucleic acids.

A cential dogma in moleculhr biology shows that the gene expression process is

constructed from at least three sequential steps, such as (i) transcription, (ii) translation, and

(iii) folding (Fig. 7). The development of the cell-free translation (CFT) system enables us to

synthesize proteins in a test tube, with a mixture of enzymes and substrates (the plasmid DNA,

T7 RNA polymerase, ribosome, transfer RNA (IRNA), nucleotide triphosphates (NTPs),

amino acids, and so on) (Spirin et al., 1988). Using the CFT systems, high-throughput

production of the target protein can be achieved within several hours, excluding a risk of

biohazards or unexpected products, although there have been still some limitations of protein

expression due to mRNA stability or misfolded intermediates. Further improvement has been

needed for the CFT systems. One of the most ideal environments for protein synthesis is cell

compartment. The lipid membranes have been reported to play important roles such as

molecular localization (Walde, 2010). The liposomes have been utilized in CFT system as the

(i) Transcription (ii) Translation

DNA + mRNA + Polypeptide +Protein
Fig. 7 Central dogma in molecular biology. A cell-free translation system has been developed

based on this scheme.

燿PrOtein

Unfold
polypeptide

(lil)Folding

Ribosome



cell-like reactors. Functional protein synthesis has been reported to be performed inside the

liposome (Yu, et a1.,200I; Ishikawa, et a1.,2004; Kuruma, et al., 2009). Therefore, the

combination of CFT system and liposomes thaf mimic the cell-like environment can bring us

an innovation to the in vitro protein synthesis. Although much information from the viewpoint

of genome and proteome has been accumulated, the role of liposome membranes on the gene

expression has not been clarified yet.

A possible breakthrough, which overcomes such problems in the CFT systems, is to

understand the role of liposome membranes, focusing on the recognition of

biomacromolecules included in the CFT systems and the functionalization of them on the

lipid membranes (Fig. 8). In the previous reports, it has been reported that the liposomes

externally added to the CFT system can also regulate the in vitro expression of GFP (Bui et al.,

2008). It is also shown that the liposomes affect the biological reactions (e.9., transcription,

translation, and folding), although the key parameters for regulation strategies of

biomacromolecules have been still unclear. From the viewpoint of "molecular recognition", it

is possible to assess the idea that the liposomes specifically interacted biomacromolecules in

the CFT system. Therefore, it is important to find out the key biomacromolecules that can be

"recognized" by liposomes.

(i) Transcription (iii) Foldins

mRNA, IRNA Unfold PePtide

Fig. 8 In vitro gene expression on the surface of liposome membrane.
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The final purpose of this thesis is to establish the methodology to design the

liposome membranes for the recognition of biomacromolecules and the control of their

conformation in order to utilize the liposome niembrane surface as'a platform of

bio-/chemical processes. The physicochemical properties of liposome membranes and their

interaction with biomacromolecules are investigated in order to understand the key factors for

the recognition of biomacromolecules, together with their folding and functionalization. The

framework and flow chart of the present study are schematically shown in Figs. 9 and 10,

respectively.

In Chapter 1, the role of liposomes in an Escherichia coli cell-free translation (CFT)

system was studied, focusing on their specific interaction with biomacromolecules at

elementary steps, such as (i) transcription, (ii) translation, and (iii) folding. It was shown that

the surface characteristics of liposome membranes (e.9., surface charge density, phase state)

were key factors to regulate (ii) translation and (iii) folding steps; the interaction between

liposome and biomacromolecule is defined as "Biomembrane Interference", wherein the

liposomes specifically interact with the biomacromolecules, and thus regulate their folding

and function. The target biomacromolecules to be recognized and regulated on the lipid

membranes were selected through the analysis of PDB data, together with the partition

method using aqueous two-phase system (ATPS) for the evaluation of surface hydrophobic

properties. It was found that the single-stranded RNAs and the nascent GFP polypeptide were

unstable, in other words, they were possible to interact with the liposomes. Based on these

findings, the polynucleotides (RNAs) and polypeptides were found to be key

biomacromolecules, which can specifically interact with lipid membranes.

In Chapter 2, the liposome membranes were characteized, focusing on "microscopic"

phase separation and 'omicro-domains" formed in the DOPC/I ,2-dipalmotoyl-sn -

glycero-3-phoshocholine (DOPC/DPPC) and DOPC/Ch binary lipid mixtures. The fluorescent
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Fig. 9 Framework of the present study.
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Chapter 1

Key Biomacromolecules to Govern the Liposome-Regulated in vitro Gene Expression
-Biomembrane lnterference for Polynucleotides and Polypeptides-

-Effect of Various Liposomes on the in vitro GFP Expression

-Evaluation of the Translation Efficiency in the presence of Liposomes

-Kinetic Analysis of GFP Refolding

-Characterization of Macroscopic Surface Properties of Biomacromolecules

-Designs of the Liposome Membranes for Recognition of the Polynucleotide and Polypeptide

Ghapter 2
Characterization of Liposome Membrane Focusing on "Microscopic" Phase Separation
and Nano-Sized Domains

-Fluorescent Probes Analysis for Estimation of the Binding Depth in Liposome

-Evaluation of the Membrane Fluidity of Liposomes

-Membrane Polarity Determined by Using Laurdan

-Heterogeneity of Membranes Evaluated by Pyrene

-Raman Spectroscopic Analysis of Liposomes

-Detection of Nano-Domains by TEMPO Quenching Method

-Phase Diagram of DOPC/DPPC/Ch Ternary Liposomes

Chapter 3

Mechanism of Liposome Interaction with Biomacromolecules -Design for Recognition
of Single-stranded RNAs and Polypeptides together with Their Folding and
Functionalization-
-lnhibitory Effect of CLs at the Translation Step of the rn vitro GFP Expression

-Characterization of Physicochemical Properties of CLs

-mRNA Binding to CL Membranes

-lnteraction Mechanism of Liposomes with IRNA

-Conformational Change of Single-Stranded RNAs

-Liposome Affinity to tRNA during Heat Stress Condition

Chapter 4
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Their Conformation -Recognition of RNA molecules-

-Design Scheme for Biomacromolecular Recognition, Folding, and Functionalizing

-Design of PE/PC Liposomes for HHR Recognition and Regulation

-Design of "Raft" Domain liposomes for IRNA Recognition

Fig. 10 Flow chart ofthe present study.
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probes, such as 1,6-diphenyl-1,3,5-hexatriene (DPH), 6Jauroyl-2-dimethylaminonaphthalene

(Laurdan), and 6-(p-toluidino)-naphthalene-2-sulfonate (TNS), were used in order to measure

the membrane fluidity, polarity, and hydrophobicity, respebtively. "Macroscopic"'properties of

liposomes were also determined by Raman spectroscopy, because Raman spectroscopic

analysis depends on microscopy techniques. In order to investigate the nano-sized ordered

domains, the TEMPO quenching method was newly developed, where DPH molecules

present in both disordered and ordered (liquid-ordered, (6) or solid-ordered, (so)) phases were

quenched by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), which preferentially

distributes in the /6 phase membranes. Based on the above results, phase diagrams of

DOPC/DPPC/Ch liposomes at various temperatures were finally shown as the basic

information for the membrane design.

In Chapter 3, the interaction mechanism of liposomes with biomacromolecules was

investigated, focusing on the recognition, folding, and functionalization by selecting

single-stranded RNAs as target. It was found that an inhibitory effect of mRNA translation

was dependent on the phase state of cationic liposomes. Laurdan spectra indicated both an

ordered phase (Em : 440 nm) and a disordered phase (Em : 490nm) in the DOPC/

3B-[N-(N',N'-dimethyl-aminoethane)-carbamoyl]cholesterol (DOPC/DC-Ch) (70130)

liposome, suggesting that a microscopic phase separation occurs. The binding sites of mRNA

were identified by Laurdan analysis, Raman,' and Fourier transform infrared (FTIR)

spectroscopies. The conformation of RNAs was evaluated by using circular dichroism (CD)

spectroscopy. Based on the above findings, the key factors for liposome design for recognition,

folding, and functionalizingof biomacromolecules (i.e., polpucleotide and polypeptide) were

finally shown as a design scheme.

In Chapter 4, the liposome membranes were designed based on the schemes, together

with schemes described in Chapters 1, 2, and 3, by selecting a Hammerhead ribozyme and

tRNA as the target biomacromolecules. In the case of HHR, phosphoethanolamine/
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phosphocholine (PEiPC) (812) liposomes were optimizedby modifying acyl chain lengths.

The role of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine/DPPc (DOPE/DPPC) (8i2) itself

on HHR was also determined in the absence of Mg2*, showing th'at the liposomes can directly

interact with HHR and regulate its conformation and activity. In the case of tRNA, the

interaction between DOPC/SV/Ch liposomes and tRNA were investigated, focusing on the

"raft" domain size. The TEMPO quenching method was carried out to detect nano-sized

ordered domains in DOPCiSMiCh membranes. The binding moieties of tRNA was evaluated

by using SYBR Green I (SGD and SYBR Green II (SGID, which binds to double-stranded

stem regions and single-stranded loop regions, respectively.

The results obtained in this work are summarized in the General Conclusions section.

Suggestions for Future Work are described as extension of the present thesis.
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Chapter I
Key Biomacromolecules to Govern the Liposome-Regulated

in vitro Gene Expression -Biomembrune Interference for

Polynucleotides and Polypeptides-

1. Introduction

Biomembranes play crucial roles through their interaction with various

biomacromolecules in biological systems. Recent studies have investigated that the surface of

biomembranes can be a functional platform in biological reactions (Brown et al., 1998;

Lingwood et a1.,2010). Artificial lipid membranes, such as liposomes, Langmuir-Blodgett

monolayers, and so on, have been studied as model biomembranes that mimic biological

interfaces (Oberholzer et a|.,1999; Brezesinski et a|.,2003). One of the essential roles of lipid

membranes is to Iocalize the functions on the membranes through their binding with

biomacromolecules (Walde, 2010). For example, biomacromolecules existing in at:'

Escherichia coli (E. coli) cell exist under crowded condition (300-400 mg/ml, in growth

phase (Zimmerman et al., I99I)), and, therefore, they can exhibit their functions due to

localization. From the viewpoint of the synthetic cell biology, it has been conventionally

reported that the roles of biomembrane can be explained by a compartment effect (Stano et al.,

20Il; Kato et al., 2012) and, furtherrnore, the functionalization of biomacromolecules at the

membrane surface (Walde, 2010). It is therefore important to understand the role of lipid

membrane, focusing on the specific interaction with biomacromolecules.

The cell-free translation (CFT) system has been developed as a powerful tool for the

in vitro protein slmthesis (Spirin et al., 1988; Spirin et a1.,2004). Using the CFT systems,
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high+hroughput production of the target protein can be achieved within several hours,

excluding a risk of biohazards or unexpected products. The CFT systems coexisting with

various kinds'of liposomes been studied to model the gene expression in a redl biological

environments. As an example, the functional protein synthesis has been reported inside the

liposome to investigate the "compartmenf' effect of liposome membrane (Yu, et al., 2001:,

Ishikawa, et a\.,2004; Kuruma, et a1.,2009). Therefore, the combination of the CFT systems

and liposomes that mimic cell-like environments can bring us novel insights into the deeper

understanding on the roles of lipid membranes. In our previous reports, the liposomes

externally added to the CFT system have been shown to regulate the in vitro expression of

green fluorescent protein (GFP) (Bui et aL.,2008;Bui et a\.,2009). These results indicate that

the lipid membranes themselves can inteiact with biomacromolecules and regulate their

functions, although the key factors which are necessary for recognition of key

biomacromolecules have not been clarified yet.

In this chapter, the role of liposomes in an E. coli CFT system was studied, focusing

on their specific interaction with biomacromolecules (i.e., polynucleotide, polypeptide) at

elementary steps, such as (i) transcription, (ii) translation, and (iii) folding (Fig. 1-1). Because

an in vitro gene expression is a sequential process, the possible variation (promotion or

inhibition) of each step is due to the liposome interaction with key biomacromolecules. Using

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes modified with

cholesterol (Ch) or charged lipids, it was shown that the surface characteristics of liposome

membranes (e.g., surface charge density, phase state) were key factors to regulate the (ii)

translation and (iii) folding steps; the interaction between liposome and biomacromolecule

can herewith be defined as "Biomembrane Interference" (Suga et al., 20ll), wherein the

liposome specifically interact with the biomacromolecules, and then regulate their folding and

functions (cf., RNA interference; Hannon,2002). It has been previously reported that the

liposomes can interact with various kinds of biomacromolecules, such as DNA, RNA, protein,
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andenzyme(Thomas eta1.,2005;Janasetal.,2006;Tuanetal.,2007;Buietal.,2009;Kato

et a1.,2009; Umakoshi et a1.,2012). Because an E. coli CFT system contains more than 40

kinds of biomacromolecules, including messenger RNA (mRNA),'transfer RNAs (tRNAs),

and, of course, nascent polypeptide as a gene product (Murtas et a|.,2007; Stano et al.,20Il),

the target biomacromolecules to be recognized and regulated on the lipid membranes were

selected through the analysis of PDB data, together with the partitioning method by using

aqueous two-phase system (ATPS) for the evaluation of surface hydrophobic properties from

a macroscopic viewpoint. It was found that the single-stranded RNAs and the nascent GFP

polypeptide were unstable and, in other words, they were possible to interact with the

liposomes. Based on these findings, the polynucleotides (RNAs) and polypeptides were found

to be key biomacromolecules, which can specifically interact with lipid membranes. As a

summary of this chapter, a general strategy to specify the "key biomacromolecules" to be

recognized on the lipid membranes was shown as a scheme.

ln vltro Gene Expresslon
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Fig. 1-1 Conceptual illustration of Chapter 1.



2. Materials and Methods

2.L Materials

1-Palmitoyl-2-oleoyl-sii-glycero-e-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glyce-

ro-3-phoshocholine (DPPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), and

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(I'-rac-glycerol) (POPG) were purchased from

Avanti Polar Lipids, krc. (Alabaster, AL, USA). Ch, transfer RNA (tRNA) originating from,E

coli, nucleotide monophosphate (NMP; AMP, UMP, CMP, and GMP) were purchased from

Sigma-Aldrich (St. Louis, MO, USA). A Rapid Translation System RTS 100 E. colt HY Kit

(RTS-Kit) was purchased from Roche Diagnostics (Indianapolis, IN, USA). T7 fuboMAXrM

Expression Large-scale RNA Production System and SV Total RNA Isolation System were

purchased from Promega (Madison, WI, USA). Custom-synthesized poly-(dA) and poly-(dT)

were purchased from Life Technologies Japan Ltd. (Tokyo, Japan). Other chemicals were

purchased from Wako Pure Chemical (Osaka, Japan) and were used without further

purification.

2.2 Liposome Preparation

A solution of phospholipids in chlorofonn was dried in a round-bottom flask by

rotary evaporation under vacuum. The obtained lipid films were dissolved in chloroform and

the solvent evaporated. The lipid thin film was kept under high vacuum for at least 3 h, and

then hydrated with distilled water at room temperature. The vesicle suspension was frozen at

-80 'C and then thawed at 50 "C to enhance the transformation of small vesicles into larger

multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs were

used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 times

through two layers of polycarbonate membrane with a mean pore diameter of 100 nm using

an extruding device (Liposofast; Avestin [nc., Ottawa, Canada). Liposomes with different

compositions were also prepared by using the same method. Surface charge densities of
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liposomes were calculated assuming unilamellarity spherical shape, a bilayer thickness of 3.7

nm, and a mean head group area of POPC, POPG, and SA were 0.72, 0.72, and,0.20 nrr?,

respectively (Taran et al., 1996; Korrier et al., lgg4), and bonsidering that the fhosphate

group of POPG and SA are fully ionized at pH 8.0 (Tocanne et al.,1990;Ptak et al., 1980).

2.3 Transcription and Purification of mRllA

pIVEX control vector GFP (Roche) was used as the plasmid DNA. The plasmid DNA

was treated once with the restriction enzyme ApaL I for one hour incubation at 37 oC in order

to cleave the AmpR gene and to obtain line DNA fragments harboring the GFP gene before its

transcription. The transcription of the mRNA encoding the GFP gene (861 bp) was carried out

by using T7 RiboMAXrM Expression Large Scale RNA Production System (Promega,

Madison, WI, USA), which includes T7 RNA polymerase as a transcriptional enzpe.

Transcription was performed for 30 min at 37 "C.The obtained mRNA was recovered and

purified with the SV total RNA Isolation Kit (Promega, Madison, WI, USA). The mRNA

products were quantified from the absorbance at 258 nm and the electrophoresis on I Yo of

agarose gel.

2.4Bvaluation of GFP Expression Using E.coli CFT System

GFP expression was performed by using E. coli CFT system, RTS-Kit. GFP was

expressed in the presence of liposomes, where gene vectors were pIVEX control vector GFP

(plasmid DNA) or the transcribed mRNA. In the case of evaluation at translation step,

liposomes and mRNA were pre-incubated at 30 o for 15 min, and then added to the RTS-Kit.

GFP expression was performed for 6 h at30 "C, and the obtained GFP was kept at 4 oC for 24

h. The amount of GFP synthesized by using the RTS-Kit was evaluated by SDS-PAGE

analysis and the fluorescence of GFP (Ex : 395 nm, Em : 509 nm), based on the

previously-published methods (Bui et al., 2008).
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2.5 Total RNA Isolation: Evaluation of Transcription

mRNA synthesis in the presence of liposomes was performed for 3 h at 30 "C, using

RTS-Kit without amino acids. Synthesized RNA was purified with SV Total RNA Isolation

System (Promega) (Kobs, 1998; Otto et al.,1998). The reaction solution containing RNA was

diluted in lysis buffer, and then RNA was denatured for 3 min at 70 "C. The denatured RNA

in solution was separated by a centrifuge (14000Xg) for 10 min, and then the upper phase

was added to a spin column assembly. RNA binding to spin column was eluted in

nuclease-free water. The purity of isolated RNA was determined by absorbance ratio of Azeo

lAzso, and isolated RNA was analyzed by UV absorbance A26s using a UV spectrophotometer

(UV-1800, SHIMADZU, Kyoto, Japan). The amount of RNA transcribed without liposomes

was defined as 100 %.

2.6 Kinetics Analysis of GFP Refolding: Evaluation of Folding

Recombinant GFP (nature GFP) was completely denatured in 5.4 M guanidine HCI

(GdnHCl) for 3 h at 30 oC for kinetic measurements, the reactions were initiated by the

manual mixing of denatured GFP and diluent solutions; unfolded GFP (5.4 M GdnHCl) was

diluted 100-fold in refolding buffer containing 0.25 mM of liposomes. The final concentration

of GFP was 0.001 mg/ml. The mixing resulted in a jump in the concentration of GdnHCl from

5.4 M to 0.05 M. Time course of GFP fluorescence at 509 nm was measured with an

excitation of 395 nm. The refolding kinetics and refolding yield were analyzed for 20 min.

The kinetic data were fitted by nonlinear least squares using the following equation:

A(t): A(*) -\LAie-Ht ,

where A(t) and A(a) are the fluorescence intensities at time t and the infinite time,

respectively; in addition, Miandh are the amplitude and the apparent rate constant of the i-th

phase, respectively (Enoki et a1.,2004).
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2.7 Evzlantion of Surface Properties of GFP and tRNA Using ATPS Method

The surface properties of various kinds of biomolecules have previously been

evaluated in our previous works (Kuboi et al., 1994; Kuboi et al., 2004; Uinakoshi et al.,

2008). The partition coefficient of molecules in ATPS is defined as follows:

ln K: Kelctrostatic * Khyd.ophobic * Kalt * K1g*a * ...,

where Ketctrostatic, Khydrophobic, Ksatt, and Ktigu,ra represent the contribution by electrostatic,

hydrophobic, salt, and ligand effect, respectively. Under the pI and low ionic strength

condition, the values of K1ry6rop1ro616 and Ksn11 can be ignored (Albertsson, 1970), thus the

partition of biomolecules is simply dependent on the hydrophobicity:

ln K: Khydroprrobic

The hydrophobicity of AIPS was determined based on the partitioning behaviors of amino

acids. The hydrophobicity differences between two phases in AIPS can herewith be defined

as hydrophobicity factor, HF:

ln K: HF x (RH + B),

where RF1 is the relative hydrophobicity determined based on the Nozaki-Tanford value

(Nozaki et al.,l97I) and B is the normalization constant defined as the ratio of the partition

coefficient and the hydrophobicity of glycine, ln K61rlAGcry. The l'lF values of various kinds

of AIPS, determined based on partitioning behaviors of amino acids, are reported (Kuboi e/

a1.,2004). A liner relationship can be obtained between HF and,ln K, where the surface net

hydrophobicity (,F/FS) of biomacromolecules is defined:

ln K: HFS X HF

The local hydrophobicity (Lm is determined by the partitioning behaviors of

biomacromolecules in AIPSs with and without a hydrophobic ligand-modified PEG, Triton

X-405:

LH : Aln K: ln K1+;rrton - ln K1-;r.iton ,

where ln K6;rriton and ln KOrrton are the partition coefficients in the presence and absence of I
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mM Triton X-405 in PEG6000/Dex AIPS, respectively. The total concentration of IRNA in

ATPS was 1.4 pM.

2.8 Statistical Analysis

Results are expressed as mean t standard deviation. All experiments were performed

at least three times. The distribution of data was analyzed, and statistical differences were

evaluated using the Student's t-test. A P-value of <5o/o was considered significant.
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3. Results and Discussion

3.1 Effect of Various Liposomes on the in vitro GFP Expression

' The GFP gene wds expressed in an E. toli CFT system in thd presence of various

kinds of liposome in order to study the possible role of the liposome membrane surface in the

recognition of biomacromolecules relating to the gene expression.

3.l.L Enhanced Effectof Zwitterionic Liposomes on GFPExpression

It has been reported that POPC and DPPC liposomes at 100 nm diameters most

effectively enhanced GFP expression (Bui et al., 2008). The surface characteristics of

liposomes have been reported to depend on the composition of lipid and the surrounding

temperature (De Almeida et al., 2003). Phosphocholine lipids which have unsaturated

aliphatic chains (e.g., POPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) are in

liquid-disordered phase (/a) with higher fluidities, while those having saturated aliphatic

chains (e.g., DPPC, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) are in solid-ordered

phase (so) with lower fluidities (Boggs et al., 1987; Ichimori et al., 1990). Cholesterol

molecules make a membrane surface rigid, which is known as liquid-ordered phase (/") (Jeon

et a1.,2012). Using the zwitterionic liposomes with different phase states, the effect of the

liposomes on GFP expression was first investigated at 30 'C (Fig. 1-2). Both POPC and

DPPC enhanced the GFP expression to 140 %o, althongh they are in different phase states.

POPC/Ch (70130), which is in heterogeneous 0a + /.) phase, most effectively enhanced the

GFP expression. Bui et al. reported that POPC/Ch (70130) enhanced GFP expression at

transcription, translation and folding steps, showing that the phase state of liposome can play

important roles in the enhancement of the in vitro GFP expression.

3.1.2 Inhibitory Effects of Charged Liposomes on GFP Expression

The effect of charged liposomes on GFP expression was evaluated (Fig. 1-3), by
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Fig. L-2 Effect of zwitterionic liposomes on GFP expression. Table show the phase state of
liposomes at 30 oC (De Almeida et a1.,2003).
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Fig. 1-3 Effect of charged liposomes on GFP expression. The phase states of these liposomes

were estimated to be in /a phases through the membrane fluidity analysis.

using the same method as described in above sections. The expression of GFP decreased with

an increase in the molar ratio of charged lipids. The cationic DOTAP liposome at 3 mM

completely inhibited the GFP expression (Bui et al., 2008; Bui et al., 2009). The amount of
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GFP expressed in the presence of anionic POPC/POPG (9317) and cationic POPC/SA (88/12)

was almost the same with the control (without liposome). It has been reported that the

negatively-charged liposomes inhibited the in vitro GFP expresiion due to their effect on the

folding step (Bui et al., 2009); positively-charged liposomes inhibited the in vitro gene

expression at the translation step (Tachibana et al., 2002); charged vesicles affected the

production rate of GFP (Kato et a1.,2012).It is therefore shown that the liposomes regulate

the in vitro GFP expression, depending on their surface characteristics.

[r order to study the role of liposomes at the (i) transcription, total RNA in the

expression mixture was isolated for the evaluation of the RNA transcribed from DNA (data

not shown). In the presence of the liposomes, the amount of isolated RNA increased in spite

of the variation of the surface charge density of liposomes. It has been reported that both the

cationic and anionic liposomes can interact with polynucleotides (Patil et a1.,2000;Liu et al.,

2007; Milani et a1.,2009; Klein et a1.,2010), suggesting that the liposomes can also interact

with RNA molecules via electrostatic, hydrophobic, and hydrogen bonding interactions.

Detail mechanisms of liposome-RNA interaction are discussed in Chapter 3. It is therefore

shown that liposomes can interact with RNAs (e.9., nascent mRNA of GFP (861 bp), tRNA

(75 bp)) and the nascent polynucleotide, and can regulate the (ii) translation and (iii) folding

steps.

3.2 Evaluation of the Translation Efficiency in the presence of Liposomes

The translation is the most influent step in the whole process of gene expression

(Sawasaki et al.,2002).It is therefore expected that liposomes can be significantly affect the

(ii) translation step. The direct translation of mRNA was performed by SDS-PAGE analysis,

in order to determine the effect of liposomes at the (ii) translation step (Fig. l-a(A)). The GFP

band at 27 l<Da was observed in the presence of POPC/Ch (70130), while that was not

observed in the presence of the cationic DOTAP liposome. It was thus demonstrated that the
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(B) GFP expression from mRNA(A) SDS-PAGE analysis
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Fig. 1-4 Direct translation of mRNA in the presence of charged liposomes. (A) SDS-PAGE

analysis for GFP peptide synthesis. (B) Fluorescence analysis for the amount of folded GFP.

Table shows the relative activitv of mRNA.

cationic liposomes inhibited mRNA translation. The analysis of GFP fluorescence indicated

that POPCICh (70130) enhanced the translation and folding steps, while POPC/POPG (70/30)

inhibited the folding step (Fig. 1-4(B)) (Bui e/ a1.,2009).ln order to estimate the relative

activity of mRNA on the translation step, mRNA adsorption was determined by

ultracentrifugation method (Fig. 1-4 (Table)). The calculated values of the relative activity of

mRNA binding to the liposome also indicated that POPC/Ch (70130) activated mRNA via

liposome binding. Because the cationic liposomes form their complexes with polynucleotides,

so called as lipoplex (Klein et a1.,2010), strong interaction between cationic liposomes and

RNAs interferes the translation step (Tachibana et al, 2002; Bni et al., 2009). Although

previous researchers reported only RNA bindings to lipid membranes (Janas et al., 2006;
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Michanek et a1.,2010), the detail mechanisms in RNA interaction and regulation have not

been clarified yet. The liposome-RNA interactions were further investigated in Chapter 3.

Based on the dbove results, it is shown that liposomes can r'egulate the (ii) translation step via

interaction with mRNA.

3.3 Kinetic Analysis of GFP Refolding

From the viewpoint of synthesis of functional proteins, the expression of folded

proteins is also required in the CFT systems (Swartz, 2006). Using the GFP fluorescence

assay for the evaluation of the expressed GFP amount, it is shown that liposomes can affect

the in vitro GFP expression, including the (ii) translation and (iii) folding steps. The GFP

fluorescence is deeply relating to its conformation (folding), because GFP has its fluorescence

when the chromophore is completely formed (Zimmer,2002).It is therefore expected that the

liposomes can also affect at the (iii) folding step of the nascent GFP polypeptide. The GFP

refolding was performed in order to evaluate the effect of liposomes at the (iii) folding step

(Fig. 1-5). The GFP in a native state was fully denatured by 5.4 M GdnHCl, where the

denatured GFP had no fluorescence at 509 nm. The refolding kinetics of the denatured GFP

was observed by the recovery of GFP fluorescence. The refolding yield of GFP without

liposome was 0.8, revealing that the GFP refolding was not fully achieved in the test tube

environment (Fukuda et a1.,2000). In contrast, the denatured GFP was fully refolded in the

presence of POPC, indicating that the protein folding can be promoted in the lipid membrane

environment. DPPC liposomes slightly enhanced the GFP refolding (refolding yield: 0.85),

while the anionic liposomes inhibited it. It has been previously reported that the refolding of

proteins and enzyrnes can be assisted by hydrophobic environments, such as detergents,

micelles, and liposomes (Zardeneta et al., 1994); the refolding of lysozyme was enhanced in

the presence of zwitterionic and anionic liposomes; (Kuboi et a1.,2000); the refolding of

carbonic anhydrase (CAB) was enhanced by immobilized liposome chromatography
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Fig. 1-5 Kinetics of GFP refolding and obtained refolding yield.

(Yoshimoto et a1.,1993); the oxidized and damaged superoxide dismutase was recognized and

reactivated by the liposomes. The refolding kinetics was also analyzed by a time course

measurement of GFP fluorescence (Fig. 1-5 (Table)). GFP is a typical molten-globular protein

(MG) (Enoki et a\.,2004). Based on the hydropathy plot calculation (Abraham et al., t978),

the unfolded GFP peptide tends to induce self-aggregation (Enoki et al., 2006). In the

presence of the anionic liposomes, the electrostatic repulsion could keep a denatured GFP

molecule away from membrane, which induced the aggregation of MG intermediates. On the

other hand, the MG intermediate, which has negative charge in net, strongly interacted with

the cationic liposome membranes. The aggregation was observed in POPC/SA (70130), while

it was not observed in the case of other liposome samples, suggesting that the cationic

liposomes inhibited the GFP refolding due to the membrane fusion, based on the membrane
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fusion model (Yoshimoto et al., 1998). It is therefore shown that liposomes, which have

optimal surface charge densities, enhanced the refolding of GFP, indicating that liposomes can

control ihe (iii) folding step of the nascent polypeptides during the in vitro GFP expression

process.

3.4 Characterization of Macroscopic Surface Properties of Biomacromolecules

Based on the above results, it is shown that liposomes can interact with

biomacromolecules in the CFT system, especially with the mRNA and nascent polypeptide.

The electrostatic, hydrophobic, and hydrogen bonding interactions were expected as possible

driving forces between liposomes and biomacromolecules. It is thus important to understand

the surface properties of polynucleotides and polypeptides in order to understand the role of

liposomes in the recognition of biomacromolecules. In this section, the surface properties of

biomacromolecules were determined, focusing on the PDB data analysis, together with the

partition method using ATPS. In our previous reports, the surface characteristics of

biomacromolecules in RIS-Kit were calculated: the surface net charge (z), hydrophobicity

(Aq, hydrogen bonding stability (p), using their amino acid sequences (Table 1-1). The

protein- and enzyme-liposome interactions have been reported; the possible driving forces are

electrostatic (z), hydrophobic (Aq, and hydrogen bonding interactions (p) (Yoshimoto et al.,

1998; Yoshimoto, PhD thesis (1999); Yoshimoto, PhD thesis (2005); Yoshimoto et a1.,2006).

Becausenucleic acids have hydrophilic backbones andhydrophobic nucleobases (Sasaki et al.,

1987; Shih et al., 1998), such hydrophobic molecules are expected to interact with lipid

membrane via hydrophobic and hydrogen bonding interactions. It has also been reported that

the rRNA helix 59 (H59 domain) in E. coli ribosome can directly contact with

negatively-charged POPG molecules (Frauenfeld et al.,20lI). It is therefore important to

evaluate the hydrophobic properties of biomacromolecules, such as the surface net

hydrophobicity (f/FS) and the local hydrophobicity (Z//).
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As indicators of the surface hydrophobicity of tRNA and GFR the HFS and LH

values were evaluated (Table l-2), based on the PEG/Dex ATPS method (Kuboi et al.,1994;

Kuboi et al., 2004). The FIFS and LH values of biomacromolecules are summarized in Figs.

1-6 and 1-7 (Kuboi et a1.,2004; Umakoshi et a1.,2008; Shimanouchi et a1.,2010). It was

found that the surface of IRNA was hydrophilic at physiological temperature (30 'C), while it

turned to be hydrophobic at 70 "C. Because the melting temperature (Z-) of tRNA was

reported as 52 "C (Carmona et al., 1999), tRNA is expected to be denatured at a higher

temperature. It was also shown that the nucleotide monophosphates (NMPs), such as AMP,

GMR CMR and UMP, were hydrophobic than tRNA, revealing that the denatured tRNA with

exposed nucleobases turned to be hydrophobic. These results indicate that the single-stranded

RNAs can interact with the liposomes via hydrophobic interaction. The LH values of tRNA

were also analyzed at various temperatures. The higher LH values indicate the intensity of the

hydrophobicity pockets on the local domain in the molecule surface, and their number

(Shimanouchi et a1.,2010).The LHvalues of tRNAwere maximal within a temperature range

of 20-40 oC, indicating that tRNA has a larger number of clustered hydrophobicity pockets, in

contrast to those at 50-80 "C. The obtained results in Table l,-2 also indicated that the surface

hydrophobic properties of GFP varied, depending on its conformation. According to the

previous reports, a protein or erzyme in a partly-denatured state, known as MG, shows a

higher LH value, and it has high affinity with molecular assemblies (Yoshimoto et al.,1998;

Yoshimoto et a1.,2000), such as molecular chaperone (i.e., GroES). The HFS and LH values

are possible indexes to reflect the driving force in their interaction with liposomes. Based on

the AIPS analysis, it is shown that tRNA and GFP at partially-denatured states are likely to

interact with liposome membranes through hydrophobic attraction forces. In the in vitro GFP

expression process, the nascent mRNA and GFP polypeptide vary their conformation and the

relating physicochemical properties, indicating that the liposomes can selectively interact with

such unstable biomacromolecules during the (ii) translation and (iii) folding steps.
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Table 1-1 Surface properties of biomacromolecules (Bui el a\.,2008)

Structure ″ w
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Table 1-2 Surface properties of IRNA and GFP (in this study)
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3.5 Designs of the Liposome Membranes for Recognition of the Polynucleotide and

Polypeptide

Based on the above results, it is indicated that the liposome membranes can interact

with the specific biomacromolecules in the in vitro gene expression process, where the

polynucleotides (mRNA, IRNA) and polypeptides (nascent GFP polypeptide) were shown as
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key biomacromolecules which were recognized and regulated by the liposome membranes. It

is therefore shown that the liposomes can regulate the (ii) translation and (iii) folding steps

through their specific interaction (recognition) with the key biomacromolecules. In order to

design the liposome membrane for the recognition and regulation of biomacromolecules, the

"key diagnostic scheme" is established, based on the obtained results in this chapter (Fig. 1-8).

This scheme was constructed, assuming that the liposomes do not inhibit the (i) transcription

step, because the previous report indicated that the (i) transcription step was not inhibited in

thepresence of liposomes (Bui et a1.,2008; Buiet a1.,2009). As an example of the case of

cationic liposomes, the relative GFP expression decreased (else); the total RNA synthesis

increased (else); mRNA translation was inhibited (inhibition); and the z and ZF1 values of

tRNA were found to be -0.68 and 1.03, respectively (z <0, LH >0.5).It is therefore shown that

the cationic liposomes can specifically interact with the single-stranded RNAs, including

mRNA and IRNA in an E. coli CFT system, and the (ii) translation step was thus inhibited due

to their strong interaction with the cationic liposomes. In the case of anionic liposomes,

mRNA translation was not inhibited (else); the GFP refolding was inhibited (inhibition); and

the HFS and LH values of unfolded GFP polypeptide (denatured GFP) were found to be -59.1

and 0.32, respectively (IIFS >-100, LH >0.5), showing that the anionic liposomes can

specifically interact with the nascent GFP polypeptide (Bui et a1.,2009), and the (iii) folding

step was thus inhibited in the presence of the anionic liposomes. It is therefore concluded that

the liposomes can specifically recognize the biomacromolecules, such as polynucleotides

(mRNA, IRNA) and the nascent GFP polypeptide.
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Key Diagnostic Scheme

Select Liposome/ CFT system

Select Liposome Characteristics
(Surface Charge Density, Phase State)

in vitro Expression of Proteins from DNA

Relative GFP Expression

(i)Analysis of Transcription Step

Total RNA Synthesis

(ii)Analysis of Translation Step

RNA ttrans:alohal AcJ

(iii) Analysis of Folding Step

Refolding Yield

z, AG, p, HFS, L

z <0, LH >0.5

Fig. 1-8 Key diagnostic scheme for designs of the liposome membranes for recognition of
biomacromolecules and control of their functions in the in vitro gene expression process.
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4. Summary

The effect of the liposome addition on the in vitro gene expression in an E coli CBT

system was 
'determined in order tti find out the specific"interaction of lipid mbmbrane with

biomacromolecules. It was shown that GFP expression was ef,lectively enhanced by POPC/Ch

(70130) in (/6 + /o) phase, while it was inhibited by the charged liposomes at the (ii) translation

and (iii) folding steps via interaction with RNA molecules and GFP polypeptides. Based on

the SDS-PAGE analysis, the cationic liposomes inhibited the (ii) translation steps, revealing

that cationic liposomes can recognize mRNA and other RNA molecules due to electrostatic

interaction. The zwitterionic liposomes enhanced the folding step, while the anionic

liposomes and POPC/SA (50i50) inhibited, suggesting that the nascent GFP polypeptide is

also a key biomacromolecule to be recognized by the liposomes. Characteization of

biomacromolecules indicated that the nascent mRNA and GFP polypeptide were unstable, and

were likely to interact with liposomes via electrostatic, hydrophobic, and hydrogen bonding

interactions. It is therefore concluded that the liposomes can recognize the polynucleotides

and the nascent GFP polypeptide in the in vitro GFP expression process of an E. coli CFT

system.

The (ii) translation step was found to be significantly regulated by the liposomes,

depending on their characteristics (e.g., surface charge density, phase state), suggesting that

the liposomes can interfere with RNA molecules. Focusing on the POPCiCh liposomes,

POPC/Ch (70130) liposomes effectively enhanced the (ii) translation step because it can

interact with RNA molecules via hydrophobic and hydrogen bonding interaction (Janas et al.,

2006; Michanek et aL.,2010). It has been reported that the raft domain on the membrane plays

important role in biological systems (Brown et al., 1998). These results suggest that the

surface properties of liposome (i.e., fluidity, polarity, and heterogeneity (domain)) are also key

factors to regulate liposome-biomacromolecule interaction.

Based on the above findings, a diagnostic scheme to find out key biomacromolecules
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was finally proposed. In Chapter 1, the "macroscopic" analysis is mainly discussed in

relation to the specific interaction with liposome and biomacromolecule. In the following

chapters, the details in the physicochemical properties of liposome membranes (Chapter 2)

and in the interaction mechanisms of liposome membranes with biomacromolecules (Chapter

3) were discussed focusing on "microscopic" behaviors.
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Chapter 2

Characterization of Liposome Membrane Focusing on

ooMicroscopic" Phase Separation and Nano-Sized Domains

l.Introduction

Insights into the possible effect of surrounding environment on the conformation and

function of enzymes and nucleic acids are important to clarify the in vivo mechanisms of

biomacromolecules. The formation of membrane lipid domains ("rafts") in cells has attracted

much attention because of its implications for membrane-related processes, including

bacterial and viral infection, signal transduction, and so on (Pathak et a1.,2011). Recent

studies have also revealed that the lipid membranes can activate the biomacromolecules and

regulate their functions (Walde, 2010; Umakoshi et al., 2012). Liposomes, which are

self-assemblies of various kinds of phospholipids, have been intensely studied as a

biomimetic environment of lipid bilayers. Previous studies have also found that the

polynucleotides can accumulate on the micro-domains of lipid membranes (Janas et a1.,2006;

Kurz et aL.,2006). From the viewpoint of membrane-protein (or enzyme) interaction, the large

unilamellar vesicles (LUVs) modified with a positively charged cholesterol derivative show

enhanced the accumulation and enzymatic activity of hexokinase (Umakoshi e/ al., 2012). It

is therefore important to understand the physicochemical properties of LUVs, such as their

phase state, micro-phase separation, and domain formation on the membrane.

Lipid membranes composed of natural lipid molecules exhibit several important

dynamic behaviors, such as thermal undulation, morphological change of the entire lipid

membrane (e.g., fusion/fission), (transient) pore formation, and formation of heterogeneous

structures (i.e., phase separation/domain formation) (Yeagle, 2005; Shimanouchi et a1.,2011).

０
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Sphingomyelin (SM) and cholesterol (Ch) are typical components that can form the raft

domains in liquid-disordered (/6) membranes (De Almeida et al., 2005). Because the

formation of membrane domains'depends on the lipid composition and 
.surrounding

environment (e.g., temperature), the phase diagrams of membranes in binary and ternary lipid

systems have been systematically studied (De Almeida et al., 2003; Veatch et a1.,2005;

Schmidt et al., 2009; Heberle et al., 2010). Fluorescence microscopy and fluorescence

resonance energy transfer (FRET) assays have been developed to detect domains in living

membranes. However, despite advances in far-field optical microscopy, subwavelength lipid

domains have never been directly visualized, although their sizes are predicted to be <20 nm

(Eggeling et al., 2009). FRET is therefore often used to characterize these nano-sized domains

(Heberle et a1.,2010), because it can detect the nature of nano-domains even if they are

transient (Sachl et al., 20Il). The phase diagrams and lipid domains have been studied by

using microscopy (Veatch et a1.,2003; Veatch et a1.,2005; De Almeida et a1.,2005), FRET

(De Almeida et a1.,2003; Brown et a1.,2007; Sachl et al.,20ll; Pathak et al.,20Il), 'H NMR

spectroscopy (Schmidt et al., 2007), ESR spectroscopy (Heberle et al., 2010), molecular

dynamics (Monte Carlo method) (Kiskowski et al., 2001), and fluorescent probes (Parasassi

et al.,1995), as summarizedin Table 2-1. Membrane characteristics, which can be observed

by a microscopy, are herein defined as "macroscopic" properties. "Micro-"domains are known

to be observed by using FRET, where the domain size has been reported to be ca.20 nm (De

Almeida et a1.,2005). Because there have however been little reports about "nano-"sized

domains (<5 nm) formed in the lipid membranes, it is therefore important to characteize

"microscopic" properties of lipid membranes and detect "nano-"sized domains.

In this chapter, liposome membranes were characterized, focusing on "microscopic"

phase separation and "nano-domains" formed in the DOPC/DPPC and DOPC/Ch binary lipid

mixtures (Fig. 2-1). The fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), was used to

monitor lipid order and motion in liposome bilayers (Lentz et al., 1976; Lertz et al., 1993).
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Table 2-l Sunlmary ofthe domain size

Liposome/vesicle r[。c] Domain size (method) Reference

DMPC/Ch
Ch 30～ 70 mo10/0

bSM/POPC/Ch

(1/1/1)

PSM/POPC/Ch

DOPC/PSM/Ch

DOPC/SM/Ch/
DOPG/
DPPE/biotinc

(29/39/25/5/2)

DOPC/DPPC/Ch:

(40/40/20)

(50/50)

DOPC/Ch

MLV

LUV
(100 nnリ

LUV

GUV

GUV

MLV

LU鴫/

(100 mlつ

20

10/

23/

45

23

25

20 - 50 [A] (fluorescence)

-150 [Ay
80 -1oo IAy
< 40 [A] (FRET)

> 75 - 100 [nm]
(Microscopy and FRET),
< 20 [nm] (FRET only)

1-5[pm](Microscopy)

Parasassl θ′αl,

(1995)

Pathak ι′αl,

(2011)

De Almeida ι′αl,

(2005)

Lヽatch ι″αl,

(2005)

Hcbcrlc ι′αl,

(2010)

Sachl`′ αム
,

(2011)

Kiskowski α αム
,

(2007)

DSPC/DOPC/Ch        GUV 22     ～5 1nm](ESID

<20[nln](FRET)

30 6 [nm] (Simulation)

DOPC/DPPC                              13.9[Å ]

25 (TEMPO qucnching)
13.2[Å ]

This study

r70/30ヽ                                         (TEMPO quenching)

Another fluorescent probes, 6-lawoyl-2-dimethylaminonaphthalene (Laurdan) and

6-(p{oluidino)-naphthalene-2-sulfonate (TNS), were used to study the dipolar relaxation of

liposome membranes (Parasassi et aL.,1991; Niu et al.,1992; Parasassi et aL.,1995; Parasassi

et a1.,1998). The physicochemical properties of LUVs were alalyzed by using DPH, Laurdan,

and TNS as molecular probes. "Macroscopic" properties of liposomes were also determined

by Raman spectroscopy, because Raman spectroscopic analysis depends on microscopy

techniques. Laurdan spectra indicated both an ordered phase (Em:440 nm) and a disordered

phase (Em : 490 nm) in the DOPC/DPPC (50/50) liposome, which suggests that the

microscopic phase separation occurs. Heterogeneity of liposomes was analyzed by

l-pyrene-dodecanoic acid (Pyrene), where a dimer of Pyrene molecules shows the excimer
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fluorescence at 475 nm (Pillot et a1.,1996). To investigate the nano-sized ordered domains,

DPH molecules present in both disordered and ordered (liquid-ordered (L) or solid-ordered

(so)) phases were quenched'by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl '(TEMPO), which

preferentially distributes in the (/6) phase. Because of the Fcjrster radii of DPH (36 A) and

TEMPO (12 A), the maximum size of the DPPC domain is expected to be about 48 A. Based

on the remaining DPH fluorescence, Qtiporo.", nano-sized ordered domains can be detected in

the DOPC/DPPC/Ch ternary lipid mixture.

ordered 

- 

dtsoJdered
Hydrophilic (e- 8Ol

Hydrophobic (e- 3)

Fig. 2-1 Conceptual illustration of Chapter 2.
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2. Materials and Methods

2.1. Materials

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), I,2-dipalmitoyl-,sn-glyce-

ro-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1,2-di-

mirystoyl-sn-glycero-3-phosphocholine (DMPC) were purchased from Avanti Polar Lipids,

Inc. (Alabaster, AL, USA). Ch was purchased from Sigma-Aldrich (St. Louis, MO, USA).

Other chemicals were purchased from Wako Pure Chemical (Osaka, Japan) and were used

without further purification.

2.2 Characterization of Fluorescent Probes

The fluorescent probes, 6-(p-toluidino)naphthalene-2-sulfonate (1INS), 6-lauroyl-

2-dimethylaminonaphthalene (Laurdan), and 1,6-diphenyl-1,3,5-hexatriene (DPH), were

excited at 340, 340, and 360 nm respectively. Fluorescent spectra in water/dioxane solutions

were monitored using FP-6500 or FP-8500; JASCO, Tokyo, Japan).

2.3 Liposome Preparation

A solution of phospholipids in chloroform was dried in a round-bottom flask by rotary

evaporation under vacuum. The obtained lipid films were dissolved in chloroform and the

solvent evaporated. The lipid thin film was kept under high vacuum for at least 3 h, and then

hydrated with distilled water at room temperature. The vesicle suspension was frozen at

-80 oC and then thawed at 50 "C to enhance the transformation of small vesicles into larger

multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs were

used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 times

through two layers of polycarbonate membrane with a mean pore diameter of 100 nm using

an extruding device (Liposofast; Avestin Inc., Ottawa, Canada). Liposomes with different

compositions were also prepared by using the same method.
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2. Bvrluation of the Membrane Fluidity of Liposomes

The inner membrane fluidity of the liposomes was evaluated in a similar manner to

previous reports (Yoshimoto et al.,20071' Hayashi ef al., 20Il). Fluorescent probe DPH was

added to a liposome suspension with a molar ratio of lipid/DPH : 25011; the final

concentrations of lipid and DPH were 100 and 0.4 pM, respectively. The fluorescence

polarization of DPH (Ex : 360 nm, Em : 430 nm) was measured using a fluorescence

spectrophotometer (FP-6500 or FP-8500; JASCO, Tokyo, Japan) after incubation at 30 oC for

30 min. The sample was excited with vertically polarized light (360 nm), and emission

intensities both perpendicular (1r) and parallel (11) to the excited light were recorded at 430

nm. The polarization (P) of DPH was then calculated byusing the following equations:

P : (Ill GI t) I ( 11+ G1r)

G: iil i11,

where i1-afidi 1 are emission intensity perpendicular and parallel to the horizontally polarized

light, respectively, and G is the correction factor. The membrane fluidity was evaluated based

on the reciprocal of polarization,IlP.

2.5 Evaluation of the Polarity of the Membrane Surface Using Laurdan

The fluorescent probe Laurdan is sensitive to the polarity around itself, which allows

the surface polarity of lipid membranes to be determined (Parasassi et al., 1998;

Hirsch-Lemer et al., 1999; Viard et al., 1997). Laurdan emission spectra exhibit a red shift

caused by dielectric relaxation. Thus, emission spectra were calculated by measuring the

general polarization (GPyo) for each emission wavelength as follows:

GPyo: Qcqo - Iqgo) I (I*o * Iqso),

where I44o and Iaes arc the emission intensity of Laurdan excited with 340 nm light. The final

concentrations of lipid and Laurdan in the test solution were 100 and 2 pM, respectively.
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2.6 Raman Spectroscopic Analysis

Raman spectra of liposomes were measured by using a confocal Raman microscope

(LabRAM HR-800; HORIBA, Ltd., Kyoto, Japan) at a wavblength of 532 nm, with laser

power of 100 mW and a total data accumulation time of 30 s. For each sample, the

background signal of the solution was removed, and then the baseline was coffected. The

peak intensities at 2882 and 2930 cm-l were evaluated according to previous reports

(Batenjany et al.,1994; de Lange et a|.,2007):

R: Izssz / Izsn,

where R indicates the packing density of lipids. The final concentration of lipid in Raman

samples was 100 mM.

2.7 Evalaation of Heterogeneity of Liposomes Using Pyrene

Pyrene shows a monomer emission peak at 398 nm and an excimer emission peak at

475 rrmr, when it is excited at346 nm. An excimer peak increases when the pyrene molecules

form dimer. Heterogeneity of the membranes was estimated by measuring the

excimer/monomer peak ratio E/M, as follows:

E/M: I+to I l1,11s,

where Iqts and \s5 ara the emission intensity of Pyrene excited with 340 nm light. The final

concentrations of lipid and Pyrene in the test solution were 100 and I pM, respectively.

2.8 Fluorescence Quenching of DPH by TEMPO

The quenching of fluorescence from DPH by TEMPO was measured (Bakht et al.,

2007; Pathak et al., 20II). Liposome suspensions (1 mL) containing lipid (1 mM) and DPH

(0.025 pM) were incubated for 30 min at room temperature (25 "C) to complete the insertion

of DPH into the lipid membrane. A solution of TEMPO in ethanol (0-10 mM, 20 prl.) was

added to each sample. After incubation for 10 min, the fluorescence of DPH (Ex : 360 nm.
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Em : 430 nm) was measured. The 2liporo-, value was then calculated by using the following

equation:

' 
QliP..o ": F / Fg,'

where F and Fs arc the fluorescence intensity of DPH in the presence and absence of TEMPO,

respectively.

2.9 Calculation of Domain Radius

The minimum size of each ordered domain was estimated by using an excess of

TEMPO against DPH. Based on Qlipo.o.", the domain radii of ordered phases (so and /o) were

calculated. TEMPO molecules prefer to bind to (/a) domains (Bakht et al., 2007), whereas

DPH is distributed evenly over both disordered and ordered domains (Lentz et al., 1976

Ahmed et al., 1997). Therefore, TEMPO strongly quenches the fluorescence from DPH in

disordered domains, but only weakly quenches fluorescence from DPH in ordered domains.

The Ftirster radii of DPH and TEMPO, RopH and Rrerrapo, ffe 36 and 12 A, respectively.

Based on these principles, it is considered that glipo.o." depends on the size of the ordered

domains. The domain radius, X, canthus be calculated according to Eq. (L).

X: [Ropn * Rrprrapo] t l(Ouporo-"- Qoopc) I (Qorrc- Qoopc)] Eq。 (1),

where Qoopc md Ooppc are the remaining fluorescence from DPH in DOPC and DPPC

liposomes, respectively, in the presence of TEMPO. The geometry of each domain was

assumed as circular arca at the 2D-interface of lipid membrane. The number of lipid

molecules per domain (lD is calculated by using Eq. (2) and (3).

N: ,l I 148 x (x,nppc l(*,orpc + x,cn) + 40 x (acr' /(anppc + x,o')] Eq.o)

NreL : ly'liporo." /Noppc Eq.● ),

where S is the calculated domain &raa,, x,pppg ard x,g6 are the mole fractions of DPPC and Ch,

respectively, and ly'rppc is the number of lipid molecules in a DPPC domain with a size of 48

A. ttre number of lipid molecules per single liposome was calculated to be ca. 40000, where

45



the liposome was spherical shape, 100 nm of diameter, and the mean head group area of 72

AZ lfiu et a1.,2004; Luckey, 2008). The areas of the head groups of DPPC and Ch are 48 and

403 A2, respectively (Marrink bt al., 2004; De Meyer et al., 2009). Calculations were

performed under the conditions: lipids (1 mM), DPH (0.025 pM), TEMpo (6 mM), 25 "c.

2.10 Statistical Analysis

Results are expressed as mean * standard deviation. All experiments were performed

at least three times. The distribution of data was analyzed, and statistical differences were

evaluated using the Student's t-test. A P-value of <5%o was considered sienificant.
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3. Results and Discussion

3.1 Analysis of Fluorescent Probes which Bind to the Different Depth in Liposome

Membrane

Fluorescence probes are sensitive to the surrounding environment. DPH, Laurdan,

and TNS have been used as micro-polarity-sensitive probes for lipid membranes (Edelman er

al., 1968; Lentz, 1993; Parasassi et al., l99l). Because lipid membranes have a

hydrophobicity gradient in the vertical direction of lipid bilayers (Cevc, 1990), fluorescent

probes reflect the micro-environmental infonnation, depending on their binding depth. The

emission spectra of TNS (Ex:340 nm), Laurdan (Ex:340 nm), and DPH (Ex:360 nm) are

shown in Fig. 2-2, where the dielectric constants of solvents were controlled with

water/dioxane mixtures (Critchpield et al.,1953). The halftone area in each column shows the
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Fig.2-2 Charucteization of fluorescent probes, (A) TNS, (B) Laurdan, ffid (C) DPH in

water/dioxane solutions. Table shows the dielectric constant of solutions.
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ranges of emission wavelength of the fluorescent probe in liposome solutions (DOPC, POpC,

and DPPC). Because TNS and Laurdan are polar probes, their emission peaks were blue

shiftdd and their fluorescence intensities increased in proportion to th'e hydrophobicity of

solvents. tn the presence of liposomes, the ranges of TNS emission wavelength of TNS were

438-446 nm, indicating that TNS are inserted at water-membrane interface regions (e 25-35).

Furthermore, the intensity of TNS fluorescence was higher value in DOPC liposome, while

that was lower in DPPC liposome at 25 "C, indicating that the membrane surface of DOpC

was more hydrophobic than that of DPPC. It is therefore shown that the fluorescence intensity

of TNS can be an indicator of the hydrophobicity of lipid membrane. In the case of Laurdan,

the binding regions are estimated to be at 5 <s <30, which is slightly hydrophobic region than

that of TNS. On the other hand, DPH, which is non-polar probe, showed no peak shifts in

hydrophobic solvents (e <50), and its fluorescence intensity increased in proportion to the

hydrophobicity of solvent. DPH inserted into liposome membranes indicated the emission

peak at 428 nm and its fluorescence intensity is ca. 70, showing that DPH is inserted into

hydrophobic regions (a 4-6). It is concluded that the surface properties of liposome

membranes can be monitored using TNS (e 25-35), Laurdan (e 5-30), and DpH (t 4-6), and,

the characteristics of each probe was summaized in Table 2-2 andFig. 2-3.

Trble 2-2 Characteristics fluorescent probes in the presence of liposomes

Probe Structure Ex [nm] Em [nm]
Dielectric

constant,
Binding region
(depth [nm])

340WS

H

ポONa 438‐ 446

440‐ 490

ε

25‐35

5‐30

interface
(-lnm)

intcrfacc

l-lm

lnner mcmbranc

←2nln)

340

DPH

48

430 4‐6



H.J.,,v "(o

Fig. 2-3 Summary of the binding depth of fluorescent probes.

3.2 Evaluation of the Membrane Fluidity of Liposomes

DPH has been widely used to evaluate the membrane fluidity of various kinds of

lipid membranes (Hayashi et a\.,2010). The temperature dependence of membrane fluidities,

llP is shown in Fig. 2-4(A) (DOPC/DPPC binary lipid mixture) and Fig. 2-4(B) (DOPC/Ch

binary lipid mixture and DOPC/DPPC/Ch ternary lipid mixture). The membrane fluidity of a

/6 phase liposome was higher (llP >6) than that of a so phase liposome (IlP <3). For the

DOPC/Ch liposomes, the decrease in membrane fluidity depended on the molar fraction of Ch

at the same temperature. At 30 oC, the l/P value of DOPC/DPPC/Ch (40140120) liposome was

higher than that of DPPC (so), but lower than that of DOPC/Ch (50/50) (/o), indicating that

there are two phases (so and io) in the DOPC/DPPCICh (40140/20) liposome. It was found that

the membrane fluidity was dependent on both the lipid composition and temperature. Because

DPH is distributed evenly in both disordered and ordered domains (Lentz et a|.,1976;' Ahmed

et al., 1997), the IIP values reflect membrane fluidities originating from both ordered and

disordered phases. Therefore, analysis of membrane fluidity provides us with "macroscopic"
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information about lipid membrane phase states, such as fluid phase (/6), gel phase (so), and

mixed phase (16 + lo (s")) (Luckey, 2008). The phase transitions of DOPCiDPPC liposomes

were revealed by DSC analysis (Fig. 2-5). It was found that the DPPC liposome indicatbd a

phase transition temperature (2") at 42.6 "C, and the DPPC liposome at 45 "C showed higher

membrane fluidity (l/P >6).Therefore, the thresho Id of l/Pvalues between la andso phases is

estimated tobe IIP: 6. It was also found that the /o phase DOPC/Ch (50/50) indicated lower

membrane fluidities (IlP <6) in the ranges of 20-50 "C.

(A)DOPC′ DPPC (B)DOPCノCh,DOPC′DPPC′Ch

1

Temperature [oC]

Fig. 2-4 Evaluation of membrane

DOPCiDPPC/Ch liposomes.
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3.3 Membrane Polarity Determined by Using Laurdan

Laurdan has been used as a molecular probe to monitor the heterogeneity of

liposoines. Laurdan shows Specific emission peakS at 440 and 490 nm that originate from

lipid membranes in an ordered phase (/o, so) and disordered phase (/6), respectively (Parasassi

et al., l99I; Parasassi et al., 1995; Parasassi et al., 1998). Figure 2-6 shows fluorescent

spectra of Laurdan at 30 oC and the GPyo values in the range of 20-50 oC. A single peak at

490 nm was observed in the case of DOPC (/a), whereas a single peak at 440 nm was

observed in the case of DPPC (sJ. These results indicate that DOPC and DPPC liposomes are

in homogeneously disordered and homogeneously ordered phases, respectively. In contrast,

DOPC/DPPC (50/50) and DOPCICh (70130) systems exhibited emission peaks atboth 440

and 490 nm. An isosbestic point was observed in the spectra of the DOPC/DPPC binary

system, but not in those of the DOPC/Ch system. The GP3as values of the systems were

measured as an indicator of the degree of hydration of the membrane surface (Parasassi et al.,

1998; Viard et al., 2007). As the DOPC liposome was heated from 20 to 50 oC, the GPtqo

values decreased gradually in proportion to the increase in temperature. The GPtqo values of

DPPC from 20 to 40 oC were almost constant, while they decreased significantly at

temperatures above the 2". For the DOPC/Ch liposomes, the GPtd,o values decreased gradually

as the temperature increased. The Gha,g values of DOPC/DPPC/Ch (40140120) were higher

than that of DOPCiCh (50/50) below 30 oC. However, the GP3as values of the

DOPCiDPPCICb (40140/20) liposome were slightly lower at temperatures exceeding 40 'C.

This result indicates a possible phase transition of the DOPC/DPPCICb (40140i20) liposome

between 30 and 40 'C. Laurdan spectra in the liposomes (e.g., DOPC/DPPC (50i50) and

DOPCiCh (70130) showed two peaks, indicating that there are at least two kinds of phases

with different hydrophobic environments in their membranes. The spectra of Laurdan in Fig.

2-6( ) show an isosbestic point, while those in Fig. 2-6(B) do not. It is suggested that the

DOPC lipid and DPPC lipid are immiscible, while Ch is miscible with DOPC. These
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Fig. 2-6 Evaluation of membrane polarities using Laurdan. Fluorescent spectra of Laurdan
excited at 340 ffi\ (left column) and GP3as values (right column) are shown for (A)
DOPC/DPPC liposomes and (B) DOPC/DPPC/Ch liposomes.

results also imply that the fluorescence of Laurdan can be used to monitor "microscopic"

phase separation and the coexistence of ordered and disordered phases in liposome

membranes. Because the GP3as values of DOPC liposomes were <-0.2 in the ranges of 20-50

"C, the threshold temperature between disordered and ordered phases is estimated to be Gptco

: -0.2.

3.4 Heterogeneity of Membranes Evaluated by Pyrene

Pyrene shows a monomer emission peak at 398 nm and an excimer emission peak at

Wavelength [nm]
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475 nn, when it is excited at 346 nm (Canpos et al., 1995; Pillot et al., 1996). Figrare 2'7

shows the E/M ratio of liposomes. It has been reported that POPC liposomes containing Ch

inolecules indicated higher E/M ratio values (Yoshimoto, 2005). Within zwitteriohic

liposomes, DOPC/Ch (70130) indicated the highest value of EiIVI ratio, showing that

DOPC/Ch (70130) is in the most heterogeneous membrane. Although DOPC/DPPC/Ch

(40140120) has possible membrane domain (Veatch et al., 2003), the E/M ratio of

DOPC/DPPCICb(40140/20) was almost the same with that of DOPC. It is thus suggested that

l-pyrenedodecanoi acid, which has a negative charge at headgroup, is oriented to /a phases. It

was also found that so phase DPPC indicated a higher E/IVI ratio, while DOPC/DPPC binary

liposomes showed similar values with DOPC. It is therefore shown that Pyrene can monitor

the heterogeneity of disordered phases in the zwitterionic liposomes. Because "raft" is in

ordered phases, other methods are needed to detect the domains formed in the membranes.

l  DOPC
2  DOPCノDPPC(75/25)
3  DOPC/DPPC(50/50)
4:  DOPC/DPPC(25/75)
5  DPPC
6.  DOPC/Ch(90/10)
7.  DOPC/Ch(70/30)
8  DOPCノCh(50/50)
9  DOPCノDPPC/Ch(40/40/20)

Fig.2-7 EiM ratio of liposomes evaluated using 1-pyrenedodecanoi acid.
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3.5 Raman Spectroscopic Analysis of Liposomes

Raman spectroscopy is a powerful tool to anaLyze materials in site without any

labeling cir staining. It has been reported that the packihg densities of lipids can be monitored

using Raman spectroscopy (Batenjany et al., 1994). Figure 2-8(A) shows Raman spectra of

the DMPC liposome at 20-40 oC, and corresponding peak assignments are summaized, in

Table 2-3 (Batenjany et al.,1994; de Lange et a1.,2007;Fox et a1.,2007). The intensity of the

peak at 2882 cm-r was strong at temperatures below 20 "C,while it decreased at temperatures

above 30 "C. Because the T" value of DMPC is 23 "C, the packing density of the DMPC

liposome varied in the range of 20-30 oC. To evaluate the phase transition of the pure

liposomes, the variation of R values F lzstz I lzmo) that indicate the lipid packing density

(Batenjany et al., 1994) was investigated in relation to various liposomes (Fig. 2-S(B) and

(C)). The 7i values of DOPC, DMPC, and DPPC are -18.3, 23.6, and 41.3 "C, respectively.

The R values of DOPC were found to be lower (R <1.2) in the temperature range of 20-50 .C

than those of DMPC and DPPC (R >1.7) under 2". Therefore, a liposome with a lowerR value

is in the disordered phase state (/6), while one with a higher R value is in the ordered phase

state (so). Figure 2-8(C) shows the temperature dependence of R values for DOPC/DPPC

liposomes. The Z" values of DOPCiDPPC (75125), (50/50), and (25175), were estimated to be

<20, <25, and <35 "C, respectively. However, the R value of DOPC/DPPC/Ch (40140120) was

lower (R <1.3, data not shown), and decreased slightly in proportion to the temperature

increase. Therefore, Raman spectroscopic analysis can also reveal an information on a phase

transition of so to /a for the phospholipid liposomes (Fox et al.,2007), although the liposomes

containing Ch indicated a slight variation in R values. Because the Ch molecule itself has

stable Raman intensities around 2800-3000 cm-t 1de Lange et a1.,2007), the packing density

of the phospholipids, analyzed by the vibrations from hydrocarbons in the acyl chain regions

(Orendonf et al., 2002), cannot be used in the presence of Ch without data deconvolution.

Thus, studies based on membrane fluidity and polarity are necess ary to estimate
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values of DMPC at the temperature

liposomes.

Table 2-3 Peak assignment of lipids

20   30   40   50
Temperature[。 C]

of liposomes.体)Raman
range of 20…50 °C,(C)R

ODMPC
◆DOPC
▲DOPC/DPPC(75/25)
●DOPC/DPPC(50/50)
▼DOPC/DPPC(25/75)
■DPPC

spectra of DNIIPC,(B)R

values of DOPC/DPPC

(C)DOPC′DPPC

Peak[Cmlll Assignment Intensity

714

873

1062

1086-1090

1126

1298

1438

1654

1740

2850

2882

2930

3040

N+(CHJ3 symmetric str.

N+(CH3)3 asymmetric str.

C-C trans str.

C-C gauche str.

C-C trans str.

-CHr- twist

-CH2- bend

C:C str.

C:O str.

-CHr- symmetric str.

-CHr- asymmetric str.

-CH, slnnmetric str.

-CI! choline asymmetric str.

S

m

W

W
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m
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the physicochemical properties of DOPC/DPPC/Ch temry systems containing LUVs. In order

to determine the nano-sized domains, it is important to evaluate the distribution and

orientation of lipid molecriles or fluorescent probes.

3.6 Detection of Nano-Domains by TEMPO euenching Method

It has previously been reported that micro- and nano-sized domains are formed on

the vesicle membranes in binary and ternary lipid mixtures (Veatch et a1.,2005; De Almeida

et al., 2005; Heberle et al., 2010; Pathak et al., 20ll). The size of these domains was

calculated by using the TEMPO quenching method described in the Materials and Methods.

TEMPO prefers to bind to /6 domains (Bakht et a1.,2007),whereas DPH is distributed evenly

over both disordered and ordered domains (Lentz et al., 1976; Ahmed et al., 1997). In a

membrane that is partially or totally in an ordered phase, TEMPO quenching is weak, while it

is strong in a membrane that is completely in the /a phase. Figure 2-g(A) and (B) show the

Oriporo*" values in the presence of TEMPO. The pppp6 wore higher than the Qoopc,indicating

that TEMPO quenching is strong in the /6 phase. At 50 oC, the difference in both glipo.o,n.

values was quite small (Fig. 2-10), because the DppC liposome (7": 42.C) is in the /6 phase

at 50 "C. The estimated domain size and related properties calculated by using Eq. (1)-(3) are

summarized in Fig. 2'9(C) and Table 2-1. Because the head group diameter of both DppC

and Ch is ca. 4 A (Manink et a1.,2004; De Meyer et a1.,2007), it was able to show that

liposomes could definitely form nano-sized ordered domains (>4 A). Determining the size of

nano-domains by FRET requires knowledge of the partitioning of donors and acceptors

between nano-domains and the remaining /6 bilayer. Assuming realistic distribution

coefficients of the fluorescent probes, previous studies have explored the theoretical limit of

FRET to determine nanodomain size (Sachl et a1.,2011). In the present study, the TEMpO

quenching method, where DPH was quenched by the TEMPO distributed in the disordered

phase (Pathak et al.,20lI), was developed. Microscopic phase separation was found to occur
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at 30° C inthe DOPC/DPPC(50/50)lipOSOme,which is an cquimolar lipid m破 ture of DOPC

(■ <30° C)and DPPC(■ >30° C).

There areぬ.40,000 phospholipids on the surface of an LUV with a diallneter 6f 100

11m. Becausc the expc五 ments were perfolllled at a lipid/]DPII molar ratio Of 40000/1, one

DPH molecule was distributed in cach ordcrcd phasc of a liposOmc. TEMPO qucnching

strongly dcpends on the distance between TEMPC)and]DPH;the sunl ofthcir Fё rster radii is

48Å.Ifa DOPC/DPPC(50/50)lipOSOme is pcrfectly segregatcd,its 21ipOsome value Should be

the same with the 2DPPC・ Howevet the 2DOPC/DPPC(50ん 0)WaS 10Wer than the 2DPPC,lndiCating

the follllation ofordered domains with a size of 13.9Å 。COnvcrselゝ DOPC/DPPC(75/25)did

not fo..1l domains(2DOPC/DPPC(7525)2 2DOPC)。 Furthelll.ore,there was no differencc in

21ゎ。some values at 50° C,indicating that the TEMPO quenching method can detect nano― sized

ordered domains in LUVs.Because this TEMPC)quenching lllllethod simply depends on the

distance betwccn]〕PH and TEMPC),it could be speculated that the nano¨ domains forlned in

DOPC/Ch binary lipid m破 turc(J.θ 。,nano¨domains with a size of 13.2Å in DOPC/Ch

(70/30))and DOPc/DPPC/Ch terllary lipid m破 ture(J.θ 。,nanO― domains with a size of 35.5Å

in DOPC/DPPC/Ch(40/40/20))。

3.7 Phase Diagram of DOPC/DPPC/Ch Ternary Liposomes

Cartesian diagram, that shows membrane fluidity (llP, x-axis) and polarity (GPyo,

y-axis), were shown in Fig.2-11. The cross point of .r- and/-axes is the threshold points of

the phase transition in DPPC liposomes (IlP : 6.0 and GPtco : -0.2).Based on Cartesian

diagram analysis, the liposomes in the 4th quadrant are in disordered phases, while those

existing in the 2"d qtadrant are in ordered phases. The liposomes in the l't quadrant, i.e.,

DOPC/DPPC (50/50) and DOPC/Ch (70130), are thus in heterogeneous phases at 30 oC.

Because the llP values depend on the lipid/DPH molar ratio and DPH is oriented to ordered

phases, the IlP values decreased in proportion to the molar ratio of DPPC; DOPC/DPPC
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(25175) were also estimated to be heterogeneous, but the l/P value were lower due to rich

DPPC. Laurdan analysis also revealed that DOPCiDPPC (50/50) and DOPC/Ch(70130), were

thus in heterogeneous phasds, as shown in Fig. 2-6. These analyses can be useful to sketch the

membrane domains and heterogeneity. Span 80 and linoleic acid vesicles are also plotted in

Fig. 2-11 at 30 "C. Span 80 vesicles are reported to consist of nonionic bilayer structure with

a higher fluidity (Hayashi et al., 20lL), which fits comfortably into Cartesian diagram. ln

contrast, linoleic acid vesicles were found to be fluid and heterogeneous, possibly due to the

dynamic behaviors of fatty acid vesicles (Chen et a1.,2004). It was also found that Cartesian

diagram analysis could be effective for the monitoring of the possible phase transitions.
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Fig.2-11 Cartesian diagram of DOPC/DPPC/Ch liposomes
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Based on the present results and previous reports, the phase diagrams of

DOPC/DPPC/Ch ternary system of LUV liposomes were shown in Figure 2-12.

Conventional techniques depend on hardware (e.g., a high-quality microscope) ahd have not

yet reported the phase diagram and not detected nano-sized domains in LUVs. [n contrast, the

assays of DPH, Laurdan, and the TEMPO quenching method can provide new insight into

lipid nano-domain formation. Lipid domains play important roles in biological systems. Our

previous studies have shown that the heterogeneous liposomes containing Ch exhibited

significantly enhanced biological reactions (Bui et a1.,2008; Umakoshi et a\.,2012), and the

lipid membranes are therefore shown to be a functional platform in biological systems

(Brown et aL.,1998).

Cholesterol

\

Fig.2-12 Estimated phase diagram of DOPC/DPPC/Ch temary system of LUV liposomes.
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4. Summary

The physicochemical properties of DOPCiDPPC and DOPC/Ch binary lipid mixtures

of LUVs were det'ermined, and nano-sized ordered domainS were detected using a

newly-developed TEMPO quenching method (Fig. 2-13). Analysis of membrane fluidity and

polarity revealed that the DOPC/DPPC binary system with LUVs formed immiscible

"microscopic" segregated regions. These nano-sized ordered domains were detected by using

the TEMPO quenching method, and average domain sizes of l3-9,36.2, -I3.2 and 35.5 A

were determined for DOPC/DPPC (50/50), DOPC/DPPC (25175), DOPCICb (70130) and

DOPC/DPPCICb (40140120), respectively. Based on the obtained results in Chapter 2, the

scheme for membrane characterization is thus established (Fig. 2-14). The design of

nano-domains on lipid bilayer membranes is very important to regulate the interactions of

nucleic acids and other biomacromolecules with lipid membranes. It has been reported that

the heterogeneous liposomes can interact with nucleic acids, depending on the surface state of

the membrane (Janas et a1.,2006; Michanek et a1.,2010). This suggests that not only Ch, but

also the nano-domains on membrane, could be important factors that regulate the interaction

and function of nucleic acids. Therefore, it might be possible to design a liposome surface that

can recognize a target biomacromolecule with a structure that fits with the shape (1.e.,

concavity and convexity with domains) of membrane surface. The detection of nano-domains

formed on lipid membranes can also aid the deeper understanding for the function of

biomembranes. It is therefore important to understand the structure and function of lipid

membranes in biological systems, and to develop artificial biomembrane systems to regulate

biomacromolecules. Present findings may be a key to understanding self-assembled systems,

and to designing the " B i o -Inspired' membranes.
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Fig. 2-13 Summary of Chapter 2.
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Chapter 3

Mechanism of Liposome Interaction with Biomacromolecules

-Design for Recognition of Single-stranded RNAs and

Polypeptides together with Their Folding and Functionalization-

l.Introduction

ln recent years, attempts have been made to use various kinds of self-assemblies for

gene delivery techniques in medical and industrial applications (e.g., RNA interference)

(Hannon, 2002). Liposomes, which are assemblies of various kinds of lipids, have been

studied as carriers for nucleic acids and drugs, whereby liposome-nucleic acid complexes

(lipoplexes) are delivered to target cells through endocytotic or direct membrane fusion

pathways (Xu et al., 1996; Tohra et al., 2007; Koynova et al., 2009). Modification of

liposome surfaces improves the efficiency of gene delivery (Macdon ald et al., 1999; Chabaud

et a1.,2006; Zohra et a1.,2007; Xu et a1.,2008; Klein et a1.,2010). Cationic liposomes (CLs),

that are modified with cationic lipids such as 1,2-dioleoyl-3-trimethylammonium propane

(DOTAP) and 3B-[N-(N',N'-dimethyl-aminoethane)-carbamoyl]cholesterol (DC-Ch), are quite

useful for forming lipoplexes (Mufloz-Ubeda et a1.,2010; Giatrellis et al.,20lI), although

there is little information about the surface properties of CLs and their relation in interaction

with nucleic acids. From the viewpoint of gene therapy strategy, there are many advantages in

the delivery of RNA molecules by using the liposomes as carriers: siRNA delivery for RNA

interference that can knock down target genes, while mRNA can be delivered directly to the

cytosol and target organelles (Zot et al., 2010). With regard to synthetic cells, the

pollmucleotide-lipid membrane interaction has recently attracted significant attention (Luisi,
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2007; Ricardo et al., 2009; Walde, 2010; Kurihara et al., 20ll; Stano et al., 2011). It is

therefore important to clarify the liposome-polynucleotide interaction and control the RNA

functionS. In order to develop high-affinity liposomeS for RNA molecules, the design based

on not only electrostatic forces, but also hydrogen bonding, hydrophobic forces, van der

Waals forces, is necessary to obtain an appropriate interaction between the liposome surface

and polynucleotides. Co-induction of multiple attracting forces on an accumulating surface

can be able to produce higher affinity, similar to the molecular recognition in the biological

systems (Tezarcva et al.,1994; Onda et a1.,I996;Patel et a1.,2000).

One of the essential roles of lipid membranes is to localize functions on the

membranes through the binding of biomacromolecules (Walde, 2010). It has been reported

that lipid membranes affect the conformation and function of enzymes (Umakoshi et al.,

2009; Ngo e/ a1.,2010; Umakoshi et a1.,2012).ln most cases, a protein folding process is

irreversible, while a folding of polynucleotide is reversible. In both cases, the conformational

stability of biomacromolecules is absolutely-required factors to induce and regulate their

functions. Polynucleotides, such as DNA or RNA, can be functionalized on biomembranes

and their mimics, liposomes (Kato et al., 2009; Kato et a1.,20t0; Tsuji er al., 2010). Indeed,

lipid membranes can (i) recognize biomacromolecules, (ii) induce minor conformational

changes, and thus (iii) regulate their functions. According to Janas et al., specific RNAs can

bind to ordered phospholipid bilayers, where it has been shown that the DOPCiSM/Ch

(60/30/10) liposome effectively interacts with RNA 10 (-15% binding), while DOPCiSM

(70130) and DOPC/SN{/Ch (40130130) do not (<5% binding). These reports suggest that the

design of the physicochemical properties of lipid membranes, such as surface charge density,

membrane fluidity, membrane polarity, and nano-domain structure, are extremely important

for the recognition of RNAs or other biomacromolecules, and controlling their conformation.

In this chapter, the interaction mechanism of liposomes with biomacromolecules was

investigated, focusing on the recognition, folding, and functionalization by selecting
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single-stranded RNAs as target (Fig. 3-1). Liposome surfaces were modified with cholesterol

(Ch), DOTAP, and DC-Ch, and the physicochemical properties of liposomes were analyzed

by using fluorescent probes, 1,6-diphenyl-1,3,5-hexatriehe (DPH) and 6-lariroyl-2-

dimethylaminonaphthalene (Laurdan), as described in Chapter 2. Laurdan spectra indicated

both an ordered phase (Em: 440 nm) and a disordered phase (Em: 490nm) in the

DOPC/DC-Ch (70130) liposome, which suggests that a microscopic phase separation occurs.

In the presence of mRNA, the dehydration of membrane surfaces was evaluated by the

variation of general polarity of the Laurdan spectra (general polarization, GPsas). The binding

sites of mRNA were identified by Raman and Fourier transform infrared (FTIR)

spectroscopies. The dissociation constant, K6, was calculated in order to discuss the effect of

membrane designs for RNArecognition. In addition, the conformational change of RNAs was

evaluated by using circular dichroism (CD) spectroscopy. It was found that the liposomes

Folded
---+activated

Membrane Design

Denatured
---+inactivated

Ch-domain (13A)

Kd 2.9 x 10'8 [M]

Cationic domain (16A)

Kd 9.1 x t0-e IMI

DOPC (non-domain)

Kd - 10n [M]

Electrostatlc Interacton
Hydrophoblc Inloractlon
Hydrogen bond Inieracllon

Fig. 3-1 Conceptual illustration of Chapter 3.
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affected the conformation of single-stranded RNAs, which is a key parameter affecting their

functions (Laso et al., 1993; Lilley, 2005; Marsden et al., 2006). The dependence of

lipbsome-RNA interactioh on the phase state of CLs is also discussed. Based on the above

findings, the key factors for liposome design for the recognition, folding, and functionalizing

of biomacromolecules (i.e., polynucleotide and polypeptide) were investigated, especially

focusing on their interaction mechanism.
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2. Materials and Methods

2.l Materials

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glyce-

ro-3-phosphocholine (DPPC), 1,2-dioleoyl-sn -glycero-3-phosphocholine (DopC), l,z-

dioleoyl-3-trimethylammonium propane (DOTAP), I,2-dipalmitoyl-3-trimethylammonium

propane (DPTAP), and 3B-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Ch)

were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Cholesterol (Ch),

transfer RNA (IRNA) originating from E. coli, nucleotide triphosphate (NTP; ATp, UTp,

crP, and GTP) were purchased from Sigma-Aldrich (St. Louis, Mo, usA). A Rapid

Translation System RTS 100 E coli HY Kit (RTS-Kit) was purchased from Roche

Diagnostics (Indianapolis, IN, USA). T7 RiboMAXrM Expression Large-scale RNA

Production System and SV Total RNA Isolation System were purchased from promega

(Madison, WI, USA). Other chemicals were purchased from Wako Pure Chemical (Osaka,

Japan) and were used without further purification.

2.2 Liposome Preparation

A solution of phospholipids in chlorofonn was dried in a round-bottom flask by rotary

evaporation under vacuum. The obtained lipid films were dissolved in chloroform and the

solvent evaporated. The lipid thin film was kept under high vacuum for at least 3 h, and then

hydrated with distilled water at room temperature. The vesicle suspension was frozen at

-80 oC and then thawed at 50 oC to enhance the transformation of small vesicles into larger

multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs were

used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 times

through two layers of polycarbonate membrane with a mean pore diameter of 100 nm using

an extruding device (Liposofast; Avestin lnc., Ottawa, Canada). Liposomes with different

compositions were also prepared by using the same method.
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2.3 Transcription and Purification of nRNA

pIVEX control vector GFP (Roche) was used as the plasmid DNA. The plasmid DNA

was treated once with the restriction enzyme ApaL I for one houf incubation at 37 "C in order

to cleave the AmpR gene and to obtain line DNA fragments harboring the GFP gene before its

transcription. The transcription of the mRNA encoding the GFP gene (861 bp) was carried out

using T7 RiboMA)(rM Expression Large Scale RNA Production System (Promega, Madison,

WI, USA), which includes T7 RNA polymerase as a transcriptional enzyme. Transcription

was performed for 30 min at37 "C. The obtained mRNA was recovered and purified with the

SV total RNA Isolation Kit (Promega, Madison, WI, USA). The mRNA products were

quantified from the absorbance at258 nm and the electrophoresis on I Yo of agarose gel.

Z. Bvalaation of GFP Expression Using E.coli Cell-Free Translation System

GFP expression was performed by using E. coli CF, RTS-Kit. GFP was expressed in

the presence of liposomes, where gene vectors were ptVEX control vector GFP (plasmid

DNA) or the transcribed mRNA. [r the case of evaluation at translation step, liposomes and

mRNA were pre-incubated at 30 oC for 15 min, and then added to the RTS-Kit. GFP

expression was performed for 6 h at 30 oC, and the obtained GFP was kept at 4 "C for 24 h.

The amount of GFP synthesized by using the RTS-Kit was evaluated by SDS-PAGE analysis

and the fluorescence of GFP (Ex: 395 nm, Em: 509 nm), based on the previously-published

methods (Bui et a1.,2008).

2.5 Evaluation of Membrane Fluidity and Polarity of Liposomes

The inner membrane fluidity of the liposomes was evaluated in a similar manner to

previous reports (Lentz et al., 1976)- Fluorescent probe DPH was added to a liposome

suspension with a molar ratio of lipid/DPH :250111' the final concentrations of lipid and DPH

were 100 and 0.4 trrM, respectively. The fluorescsnce polaization of DPH (E*:360 nm, Em
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: 430 nm) was measured using a fluorescence spectrophotometer (FP-6500 and FP-8500;

JASCO, Tokyo, Japan) after incubation at 30 oC for 30 min. The sample was excited with

verticblly polarized light (360 nm), and emissiori intensities both perpendicular (1r) and

parallel (11) to the excited light were recorded at430 nm. The polarization (P) of DPH was

then calculated by using the following equations:

P:(11- GI)l(11+G/r)

G:it /i11,

where it andi 1 are emission intensity perpendicular and parallel to the horizontally polarized

light, respectively, and G is the correction factor. The membrane fluidity was evaluated based

on the reciprocal of polaization,llP.

The fluorescent probe Laurdan is sensitive to the polarity around itself, which allows

the surface polarity of lipid membranes to be determined (Parasassi et al., 1991). Laurdan

emission spectra exhibit a red shift caused by dielectric relaxation. Thus, emission spectra

were calculated by measuring the general polarization (GPg+o) for each emission wavelength

as follows:

GPtqo: (Iqqo - Icgo) I (Iqqo -r lqgo),

where laas and la,go are the emission intensity of Laurdan excited with 340 nm light. No

fluorescence was observed from an mRNA solution (without liposomes). The final

concentrations of lipid and Laurdan in the test solution were 100 and 2 pM, respectively. The

final concentration of lipid and Laurdan was 10 pM and 0.2 pM, respectively.

2.6 Agarose Gel Electrophoresis for Evaluation of mRNA Binding onto Cationic

Liposomes

mRNA samples were prepared in the presence of DOPC/DOTAP liposomes or

DOPC/DC-Ch liposomes, containing x1 loading buffer (01% SDS, 5 %o glycerol 0.005 % of

bromophenol blue). The final concentration of mRNA and lipid was 1 pM and 1 mM,
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respectively. After 30 min of sample incubation at 30 oC, electrophoresis was performed in a

I Yo agarose gel with a voltage of 150 mV for 20 min, the running buffer is a xl TBE buffer

(89 mM Tris, 89 mM boric acid,2' mM EDTA). The gel'was stained with SYBR Green II,

which is a RNA-specific fluorescence probe that enables quantitative analysis of RNA

(Morozkin et al., 2003), and the density of mRNA bands was analyzed by using the SCION

image software obtained at http://www.scion.com/. The densitometer analysis was caried out

at least three times at different points along the lane.

2.7 Evaluation of UV Spectra

The turbidity of liposome suspension in the presence or absence of IRNA was

evaluated by using a UV-1800 Spectrophotometer (SHIMAZU, Kyoto) and an Ultramark

microplate reader (Bio-Rad Japan, Tokyo). The turbidity at 405 nm (ODqos) was measured

using a quartz cell (1 cm path length) for a spectrophotometer and with 96-well plate for the

microplate reader at 30 oC. The increase of OD+os was defined as AODa,os ;

AODo,os= ODcos,(+) RNA - ODqos,G)RNA.

It was confirmed that no absorbance (at 405 nm) was observed in the case of tRNA only. The

final concentration of tRNA was 2.2 pM, where the lipid concentration was 1 mM for the

zwitterionic (POPC/Ch) liposomes and 1.17 mM for the cationic (POPCiDOTAP) liposomes.

Dissociation constant, K6, woS calculated based on the previous reports (Stephanos et al.,

1996; Marty et a1.,2009).

2.8 Fluorescence Measurement of TNS

TNS was directly added to a liposome suspension and was then incubated for one

hour at room temperature in order to complete TNS insertion into lipid membrane. After the

addition of tRNA, samples were incubated in the dark for 30 min at 30 oC. The fluorescence

spectra of TNS (Ex : 340 nm) were measured from 380 nm to 500 nm using a fluorescence
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spectrophotometer (FP-6500; JASCO, Tokyo, Japan) with 5 nm light path. The final

concentrations of TNS and lipid were 20 pM and 0.5 mM, respectively. TNS fluorescence

was not observed with'tRNA onlv.

2.9lnfrared Spectroscopy of tRNA

A 30-pl tRNA sample was applied in 50-pm-thick cell with a CaFz window. The

infrared spectra were measured by using an FTIR 4100 spectrometer (JASCO, Japan)

equipped with an Hg-Cd-Te detector. The resolution was set up at2cm-r; the frequency

range from 1750 to 1150 cm-t was collected for each sample. The infrared spectrum of water

was subtracted from those of the samples. The accuracy of the frequency reading was better

than +0.1 cm-t. One hundred scans excluding buffer and liposome background signals were

accumulated. The spectra were smoothed with the Savitzky-Golay procedure (Conn et al.,

1998; Madore et a1.,1999). The concentration of tRNA and the lipid was adjusted at 3.94 mM

and 0-98.5 pM, respectively, and the lipid/tRNA molar ratios were 0/100, 1/100, and 1140.

2.10 Raman Spectroscopic Analysis

Raman spectra of mRNA and nucleotide triphosphates (NTPs) were measured using

a confocal Raman microscope (LabRAM HR-800; HORIBA, Ltd., Kyoto, Japan) at a

wavelength of 266 and 532 nm, with laser power of 50 and 100 mW, respectively. A total

data accumulation time was 30 s. For each sample, the background signal of the solution was

removed, and then the baseline was corrected. Peak intensities were normalized by the peak at

878 cm-r (1s7s) for excitation laser of 266 nm, and at 1090 cm-l (./roso) for that of 532nm, as

inner references. The final concentration of mRNA and lipid in Raman samples was 0.77 pM

and 50 or 500 pM, respectively.
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2.11 Evaluation of the Conformation of mRNA Using Circular Dichroism (CD) Spectra

The conformation of RNA was evaluated by using a JASCO J-820 SFU

spectropolarimeter (JASCO, Tokyo) (Suga et al.,2CIll). The CD spectrufn from 300 nm to

200 nm was measured with a q.uartz cell (0.1 cm path length) at a scan speed of 50 nm per

min and a width of 2 nm. Five scans excluding buffer and liposome background signals were

obtained at 30 oC, and the data was calculated as molar ellipticity. Each sample was prepared

with0.77 pM of mRNA and 10 mM Tris-HCl at pH 7.8 in the presence or absence of CLs.

2.L2 Statistical Analysis

Results are expressed as mean t standard deviation. All experiments were performed

at least three times. The distribution of data was analyzed, and statistical differences were

evaluated using the Student's t-test. A P-value of <5o/o was considered significant.

73



3. Results and Discussion

3. 1 Inhibitory Effect of CLs on the Translation Step of the in vitro GFP Expression

The inhibitory effect of cationic liposomes on the "translation" step was investigated

by initiating the in vitro GFP expression from the mRNA. The attractive electrostatic

interactions between negatively-charged nucleic acids and positively-charged CLs containing

DOTAP or DC-Ch are very strong. Thus, although CLs can offer higher transfection

efficiency in a variety of host cells, these strong electrostatic interactions inhibit the release of

the gene, preventing gene expression (Xu et al., 1996; Barreau et al., 2006). In order to

determine the inhibitory effect of CLs on the translation step, DOPC liposomes were modified

with 10-50 molYo of cationic molecules (DOTAP or DC-Ch), focusing on the lipid structure

(Fig. 3-2), and the amount of GFP expressed from the mRNA was evaluated as a function of

cationic lipid concentration (Figs. 3-3 and 3-4). Both DOPCiDOTAP and DOPC/DC-Ch

liposomes inhibited the in vitro GFP expression with an increase in total lipid concentration.

1,2-Dioleoyl-3-trimethylammonium propane (DOTAP)

Ⅵ Π こ 館 坤 f‖1‐

3p-[N-(N', N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Ch)

ぷユN規

Cholesterol (Ch)

Stearyl amine (SA)

HzN@

Fig.3-2 Structure of lipids.
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Fig. 3-4 Relative GFP expression in the presence of various liposomes.
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There was similar inhibition efficiency between DOPC/DOTAP (90/10), DOPC/DOTAP

(70/30), and DOPC/DOTAP (50/50) formulations (Fig. 3-3(A)), while that of DOPC/DC-Ch

liposomes'was different (Fig. 3-3(B)). Because Ch causes rigidity in a lipid'membrane (De

Almeida et al., 2003), DOPCiDC-Ch liposome membranes can also be rigid, depending on

the mole fraction of DC-Ch molecules. It is expected that a difference in the phase state of

DOPC/DC-Ch can affect the inhibition effrciency of CLs. To estimate the effect of cationic

lipid type, GFP expression was performed in the presence of DorAp-, DC-ch-, and

SA-modif,red DOPC liposomes (Fig. 3-a). The zwitterionic liposomes (DOPC and DOpC/Ch

(70130)) enhanced GFP expression, while CLs, containing DOPC/DOTAP (70130),

DOPC/DC-Ch (70/30), DOPC/SA (7030), and DOTAR inhibited expression. The inhibition

efficiency was lower C5%) in the case of DOPC/DC-Cb (70130) at 1 mM, while that of

DOPC/DOTAP (70130) or DOPCiSA (70130) was higher (-25%), and that of DOTAp was

markedly higher (-80%). The interaction between CLs and single-stranded RNAs depends

both on the surface charge density of membranes and on the amount of cationic lipids in the

experimental systems (Thomas et al., 2005), indicating that the inhibition of mRNA

translation is due to the interaction between CLs and the mRNA (Tachibana et a1.,2002).

These results suggest that the inhibitory effect of CLs on mRNA translation, although their

interaction is likely to be related to the physicochemical properties (i.e., fluidity, polarity, and

heterogeneity) of CLs.

3.2 Characterization of Physicochemical Properties of CLs

DPH and Laurdan are micro-environment-sensitive fluorescent probes that are used

to characterize liposome membrane surfaces (Lentz, 1993; Parasassi et al., 1998). Figure

3-5(A) shows a Cartesian diagram of CLs (at 30 oC), where the .r- and y-axes indicate

membrane fluidity (rlP) and membrane polarity (Gpzqo), respectively. DopC,

DOPC/DOTAPs and DOPC/SA (70130) are located at similar positions in the diagram,
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Fig. 3-5 (A) Cartesian diagram of CLs and (B) Radar chart of CLs on GFP expressron.

indicating that these liposomes are in liquid-disordered (/6) phases. Although a strong

interaction between the phosphate groups [-POz--] of DOPC and trimethyl-ammonium groups

[-N+(CH3)3] of DOTAP is expected to be induced (Troutier et a1.,2005), the membrane

fluidities of DOPC and of DOPC/DOTAPs are similar, suggesting that DOTAP molecules are

distributed homogeneously on the membrane surface. On the other hand, /o phase DOPC/Ch

(50/50) (Veatch et a1.,2003) and DOPC/DC-Ch (50/50) indicated similar physicochemical

properties and appeared in the 2"d quadrant. It has previously been reported that DPH

anisotropy of the DC-CWI,2-dioleoyl-sn-glycero-3-phopshoethanolamine liposome increased

with an increase in the DC-Ch content (Muffoz-Ubeda et a1.,2010), indicating that the

membrane fluidity decreased in the presence of DC-Ch molecules, as well as Ch molecules. It

is therefore shown that liposomes located in the 2nd quadrant in the diagram are in ordered

phases. DOPC/Ch (70130) and DOPC/DC-Ch (70130) appeared in the l" quadrant, indicating

that they are in heterogeneous (/6 + /o) phases. Laurdan is sensitive to the polarity of
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suffounding media which differs in dielectric constant, and shows the specific emission peaks

at 440 and 490 nm, originating from the lipid membrane in disordered and ordered phases,

resp'ectively (Fig. 3-6) (Parasassi et al.,1998). DOPC/Ch (70130) and DOPCiDC-Ch (70130)

indicated peaks at both 440 and 490 nm. It is therefore shown that the phase states of

DoPC/Ch (70130) and DoPCiDC-Ch (70/30) are in heterogeneous (/6 * /o) phases.

Figure 3-5(B) shows a radar chart, which compares relative GFP expression,

membrane fluidity (IlP), membrane polarity (GPtco), and ( potential (z) inthe presence of 1

mM liposomes. In the presence of /6 phase liposomes, DOPCiDOTAP (70130) and DOPC/SA

(70130) inhibited GFP expression, demonstrating that the CLs in disordered membranes have

an inhibitory effect on mRNA translation. Although DOPC/DC-Ch (70130) has a

positively-charged membrane, similar to DOPC/DOTAP (70130) and DOPC/SA (70i30), it

slightly inhibited GFP expression. This indicates that heterogeneity of the liposome surface is

key to regulating RNA functions. In the following sections, the liposome-RNA interactions

are determined, focusing on the RNA binding affinity and its mechanism together with the

conformation of RNAmolecules (shown in Fig.3-7).

1.  DOPC
2.  DOPCrCh(9oノ 10)

3.  DOPCノ Ch(70r30)
4.  DOPC′ Ch(50r50)
5.  DOPC′ DOTAP(90ノ 10)

6.  DOPC′ DOTAP(70r30)
7.  DOPCrDOTAP(50ノ 50)
8.  DOPCrDC‐ Ch(90“ 0)

9.  DOPCrDC‐ Ch(70/30)
10.  DOPC′DC‐ Ch(50ノ50)
11.DOPCrSA(70r30)

425   450   475   500   525 425   450   475   500   525425   450   475   500   525

VVavelength inm]   vvavelength inmi   VVavelength inm]

Fig.3-6 Laurdan spectra of liposomes at 30 oC.
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5o9{

IRNA (75bp)

mRNA (861bp)

Fig. 3-7 Schematic illustration of RNA structures.

3.3 mRNA Binding to CL Membranes

3.3.L Evaluation of m[tNA Binding Using Agarose Gel Electrophoresis

Electrophoresis of mRNA using a lYo agarose gel was performed to elucidate the

difference in mRNA adsorption of 1 mM of CLs (Fig. 3-8). The amount of mRNA adsorption

onto DOPCiDOTAP liposomes and the inhibition efficiency increased in proportion to the

mole fraction of DOTAP molecules, suggesting that DOPC/DOTAP liposomes inhibited

mRNA translation by strong electrostatic interactions with mRNA. However, mRNA

adsorption onto DOPC/DC-Ch liposomes reached a plateau at30 molo/o DC-Ch. Although the

amount of mRNA binding was almost the same (-44%) at the total lipid concentration of 1

mM, the heterogeneous DOPC/DC-Ch (70130) slightly inhibited mRNA translation. This

result implies that the mRNA bound onto DOPC/DC-Ch liposomes exists in an "active" form

for translation, while that binding onto DOPC/DOTAP liposomes is "inactive".
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(A) Gel electrophoresis (B) Density analysis
lane lane lane
136

Fig. 3-8 (A) Agarose gel electrophoresis of mRNA. 1, mRNA; 2, +DOPCIDOTAP (90/10); 3,

+DOPC/DOTAP (70/30); 4, +DOPC/DOTAP (50/50); 5, +DOPC/DC-Ch (90/10); 6,

+DOPC/DC-Ch (70130); 7, +DOPC/DC-Ch (50/50). (B) Densitometer analysis.

3.3.2 Evaluation of mRNA Binding Using Agarose Gel Electrophoresis and Laurdan

The polarity of the membrane was investigated by using the fluorescent probe,

Laurdan (Viard et al,, 1997; Hirsch-Lerner et al., 1999), and the general polarization (Ghas)

was measured as an indicator of the hydration degree at the membrane surface. In the

presence of mRNA, the spectrum of Laurdan for the CLs was shifted to that at hydrophobic

environment, while that of DOPC was not (Fig. 3-9(A)). The hydrophobic-hydrophilic

interface of the lipid membrane, which can be monitored by Laurdan, is one of the possible

binding sites for nucleic acids (Kikuchi et al., 1999; Michanek et a1.,2010), suggesting that

mRNA binds at the interface region of CL membranes. The variations of GPzqo values of CLs

were examined in the presence of mRNA (Fig. 3-9(B)). An increase in the GPtqo value was

observed in the presence of CLs, while it was not observed in the presence of DOPC. Because

Laurdan does not possess fluorescence in aqueous solution or in a mRNA solution (data not
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(A) Laurdan spectra
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Fig. 3-9 (A) Laurdan spectra of liposomes in the presence (bold line) or absence (dotted line)

of mRNA. (B) Variations of GPr+o values. AGPta,o: GPzco,(+)mRNA - GPtqo,G)mRNA.

shown), the increase of GPyo value is due to dehydration of the membrane surface caused by

mRNA binding. The surfaces of liposome mombranes and nucleic acids are well hydrated

(Auffinger et al., 1997; Shih el al., 1998; Shimanouchi et al.,20ll). Studies also show that

the localization of nucleic acids onto lipid membrane induces dehydration (Hirsch-Lemer et

al., 1999), and subsequent conformational transitions in nucleic acids by entropic driven

forces (Clark et al., 1997; Kato et al., 2010). It is therefore possible that the mRNA-CL

interaction is governed in an entropy-driven manner through water of hydration. The degree

of dehydration of DOPCiDOTAP (70130) and DOPC/DC-Ch (70i30) reached a plateau at

nucleotide/lipid molar ratios of 0.9 and 1.3, respectively. If negatively-charged nucleotides

interact only with cationic molecules in CLs, the nucleotideilipid molar ratio will reach a

plateau at 0.15-0.3. The results also suggest that the nucleotides in mRNA interact not only

with cationic molecules but also with zwitterionic DOPC molecules. The calculated

△DOPC
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dissociation constant, Ka of DOPC/DOTAP (70i30) and DOPC/DC-Ch (70130) was 5.0X 10-e

and 9.1X 10-e M, respectively, while that of DOPC was >10-8 M. Laurdan is located at the

hydrophilic-hydrophobic interface of the lipid membrane, where the hydrocarbon moiety in

Laurdan is aligned parallel to lipid acyl regions, and the fluorescent naphthalene residue is

located at the level of the glycerol backbones (Parasassi et a1.,1995). Therefore, mRNA was

found to bind CLs at the level of glycerol backbones of lipids, where the interaction moiety of

mRNA was assumed to be the phosphate backbone and the nucleobases.

3.3.3 tIV resonance Raman Spectroscopic Analysis for Liposome-RNA Interaction

Mechanism

UV resonance Raman spectroscopic analysis is useful for the direct observation of

biomacromolecules (Benevides et a1.,2005; Nagatomo et al.,20lI). Figure 3-10 shows UV

resonance Raman spectra of mRNA. The peaks at878,1245,1338,1485, and 1578 cm-l are

assigned as D-ribose (inner reference), cytosine (C), adenine (A), A/guanine (G), and GiA,

respectively (Table 3-1) (Lanir et a1.,1979;Mathlouthi et al., 1986; Zhelyaskov et a1.,1992;

Florian et al.,1996; Billinghurst et a1.,2009; Singh, 2012). The relative peak intensities of A,

G, and C increased in the presence of CLs. Increases in Raman intensity are caused by a

decrease in base stacking (Carmona et al., 1999), while decreases in Raman intensity are

caused by a hydrogen bonding or hydrophobic surrounding (Nagatomo et al., 20ll). Raman

spectra of NTPs and their mixture indicated that Raman peak intensities varied due to the

hydrogen bonding interaction (Fig. 3-11(A)). Because nucleobases are more hydrophobic than

phosphate backbones (Sasaki et al., 1987), nucleobases can interact with the hydrophobic

regions in lipid membranes. In order to estimate the liposome-nucleobase interaction, Raman

spectroscopic analysis of NTP was performed in the presence of CLs (F'ig. 3-11@)). In the

presence of a higher concentration of NTPs (30 mM), NTP can form non-Watson-Crick base

pairs each other (Leontis et a1.,2002).It is therefore suggested that the increases in Raman
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Fig. 3-10 (A) UV resonance Raman spectrum of mRNA. (B) Relative peak intensities of
mRNA in the presence of liposomes.
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peaks of NTPs can be also an evidence of hydrogen bonding interaction with liposomes. FTIR

analysis implied that tRNA could bind to the liposome membranes via electrostatic,

hydrophobic, and hydrogen bond interactions (See following sections). It is therefore revealed

that nucleobases, A, C, and G in mRNA can bind to the CL membranes by electrostatic,

hydrophobic, and hydrogen bond interactions. The effects of CLs on mRNA are summarized

in Table 3-2. The CLs inhibited mRNA translation due to their strong electrostatic

interactions. Not only phosphate backbones but also nucleobase moieties in mRNA or NTPs

interacted with liposomes via hydrophobic and hydrogen bonding interactions. Based on the

case sfudy of cationic liposomes, it was found that heterogeneity of membranes was key

factors to control the interaction and function of mRNA molecules. In the next section, a

smaller single-stranded RNA, IRNA, and its interaction mechanism were estimated.

600    800    1000   1200   1400
Raman shiftiCm-11

(B)Raman peakintensity Of NTP

1600   1800

+DOPC/DOTAP
(70/30)

―+DOPCノDC―Ch
(70/30)

Fig. 3-11 (A) Raman spectra of NTPs. Bold line and dotted line show the Raman spectrum of
the sum of NTP and that of the NTP mixture, respectively. (B) Relative peak intensities of
NTPs in the presence of liposomes.
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Table 3-2 Effect of liposomes on mRNA interaction

DOPC DOPC/DOTAP(70/30) DOPC/DC… Ch(70/30)

Phase state

(Cartesian diagram)

mRNA adsorption*r
(Electrophoresis)

mRNA translation-r
(RTS-Kio

Dissociation constant, K6
(Laurdan)

Nucleobase interaction*2
(UV resonance Raman)

NTP interaction*I,*3
(Raman at 532 nm)

1370/0

>>10‐8M

G,A

A/Nl
U/08

G/N7,011
C/N8

Jd

43.0%

75.20/0

5.O X 10‐9M

G,C,A

A/Nl
G/OH

Jd+ち

46.40/0

95.4%

9.l X 10~9M

G,C,A

A/Nl
U/08,N3
G/OH
C/07

.l Lipid concentration at 1 mM.

.2 Lipid concentration at 500 mM
'3 NTP concentration at 30 mM

3.4Interaction Mechanism of Liposomes with IRNA

3.4.1 Binding Mechanism of tRNAwith Liposomes

The interaction between liposomes and tRNA (the structure of tRNA was shown in

Fig. 3-7), which is a model single-stranded RNA, was investigated by using a fluorescent

probs TNS. Although TNS fluorescence in bulk water solution was very weak, TNS inserted

into the vesicle membrane was found to emit strong fluorescence (Fig. 2-2), indicating the

micro-polarity of the lipid vesicles or liposomes (Eisenberg et al., 1979; Guo et a1.,2009).

The variations of relative fluorescence intensity of TNS are shown as a function of tRNA

concentration (Fig 3-12). The emission peaks of TNS embedded in the membrane of various

liposomes were 44I-446 r:rnrt, indicating that TNS was embedded approximately 1 nm below

the liposome surface (Cevc, 1990). Because no peak shift was observed at higher tRNA

concentrations, the decrease of fluorescence intensity was possibly due to the replacement of

TNS by tRNA. The values of relative fluorescence intensity of TNS became lower as the

tRNA concentration increased: 85 o/o for POPC, 96 % for POPC/Ch (70130), and 49 Yo for
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Fig.3¨12 Relativc fluorescence illtensity ofWS in the prescnce oftRNA.

POPC/DOTAP (70130), where the fluorescence intensity of TNS without tRNA was defined

as 100 %. These results can be regarded as an evidence for the binding of tRNA to liposome

surfaces. POPC/Ch (90/10) and POPCICb (70130) indicated the slight decrease of TNS

fluorescence, showing that tRNA binding was so weak and bound tRNA was not inserted into

the liposome (TNS was not altered). To confirm this point, the turbidity of liposome

suspension (ODqos) in the presence or absence of tRNA was measured (Fig. 3-13). The

turbidity of POPC/Ch (70i30) was markedly increased in the presence of tRNA although no

increase was observed with POPC/Ch (90i10), suggesting that the liposome-RNA interaction

was dependent on the phase state of liposome membrane. This turbidity increase suggests the

formation of a liposome-RNA complex (Janas et al., 2006). These results indicate that the

binding mechanism of tRNA can also vary, depending on the physicochemical properties of

liposome.

『
ド
］
∽
Ｚ
卜

い
ｏ

ゝ
〕
ち

Ｃ
Ｏ
〕
Ｃ
一
Ｏ
ｏ
ｃ
０
０
の
Φ
』
０
コ
」

Φ

・
≧

〕
０
一①
∝

『
ド
一
∽

Ｚ

卜

」
０

、
）
ち

ｃ
Ｏ
〕
Ｅ

Ｏ
ｏ
ｃ
Ｏ
ｏ
梁
】

０
つ
」

Φ

・
≧

ギ
璽

①
α 0           10          20          30

tRNA concentralon[μ MI

POPC/DOTAP(70/30)

I .    0  _          .

POPC/DOTAP(50/50)

●

●
●

●

DOTAP

冒
 .    .

●

86



４０
〓
ぃ。ざ
ｏ
ヽ

(A) Variation of ODoou

●POPCノDOTAP(70ノ30)

◆POPCノCh(70r30)
●POPC

106      1045      104       10-3
日pid conc.[M]

Fig。 3-13(A)VariatiOn of OD405 Values in the

OD405,(― )tRNA・ (B)CalCulated κd values based on

(B)CalCulated Kd values

POPCノDOTAP(70/30)

DOTAP

枷ｍ
「明ヨＫ́【一唱〓ゴヨ＝唱〓・一詞「

Ｃ

∝

∝

∝

Ｐ

Ｐ

Ｐ

Ｐ

０

０

０

０

Ｐ

Ｐ

Ｐ

Ｐ

presence of tRNA. AODas5 : ODqos,(+)tRNA -
the norrnal ized AO D as5.

3.4.2 Binding of Nucleobases of tRNA onto Liposomes

The liposome-tRNA interaction mechanism was investigated in details by using

FTIR spectroscopy (Fig. 3-14). It has been reported that the hydrophobic interaction between

the lipid acyl-chain and the hydrophobic parts of tRNA was estimated by FTIR studies (Marty

et al., 2009). In the presence of liposomes, increases in the peak intensity derived from

nucleobases were observed (data not shown): 1706 cm-r (guanine C:O stretching), 1656 cm-l

(uracil C:O stretching), 1603 cm-r (adenine C:N stretching), and 1492 c--t lcytosine plane

ring vibration). The observed peak shifts were summanzed in Fig. 3-14 (Table). In common

with all kinds of liposomes, the peak of [-fOr--1 asymmetric stretching at 1236 cm-t was

shifted to a higher frequency (1240-1242 cm-t). The phosphate backbone of IRNA has a

negative charge and lipid head groups of POPC, DOTAR and DC-Ch have a positive charge,

clearly indicating the electrostatic interactions. Giel-Pietraszuk and Barciszewski have

previously reported that the blue shift of IR peak is due to an increase of bond energy as a

result of the shortening of the hydrogen bonds followed by dehydration of tRNA. It is

therefore found that the higher frequency-peak shift was caused by liposome

御岬
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Guanine (C:O stretching)

Uracil (C:O stretching)

Adenine (C:N stretching)

Cytosine (plane ring vibration)

P02- (asynmetric stretching)

Fig. 3-14 FTIR spectra of tRNA in the presence of liposomes. Table shows the peak shift and

the peak assignment (Marty et a\.,2009).

binding, and that phosphate backbones and nucleobases of tRNA were dehydrated. A

hydrophobic interaction between the lipid aliphatic tail and tRNA has been reported to occur

in a specific nucleobases, such as guanine, adenine and uracil (Marty et a1.,2009). In the case

of POPC/Ch (70130) liposome, a specific peak shift at cytosine (1495 cm-r) was observed,

while other Ch-modified POPC liposomes did not show such peak shifts at cytosine.

DOPC/DC-Ch (70130) also indicated the peak shift at 1495 cffi-r, showing that the

micro-domain liposomes can specifically interact with cytosine of tRNA. Raman

spectroscopic analysis also revealed that heterogeneous liposomes (DOPC/Ch (70130),

domain size -13.3 A; DOPC/DC-Ch (70130), domain size - 16 A) interacted with CTP at Oz

moieties.
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Such a specific interaction of the nucleobases with lipid membranes would be

important from the viewpoint of functionalization of biomolecules on the membrane surface

(Gno et a1.,2009). The'peak shifts of all four nucleobases were"observed in DOTAR

indicating the strong hydrophobic interaction with nucleobases.

3.5 Conformational Change of Single-Stranded RNAs

3.5.L Evaluation of Single-stranded RNA Conformation by CD Spectra

Single-stranded RNAs, €.g., mRNA and tRNA (Fig. 3-7), have A-form conformation

(Gregoire et al.,1997;Bailor et a1.,2007), and their biological functions are closely related to

conformation (Laso et al., 1993; Lilley, 2005; Marsden et a1.,2006).It has been reported that

tRNA in A-form double helix conformation shows a negative CD peak at 208 nm and a

positive peak at 265 nm (Gregoire et al., 1997; Carmona et al., 1999). The positive peak at

265 nrn in the tRNA and mRNA CD spectrum is an indicator of base stacking (formation of

intra-molecular base pairs), where the negative peak at208 nm is the A-form marker (Clark et

al., 1997; Gregoire et al., 1997). Figure 3-15 shows CD spectra of IRNA and mRNA.

Although it is difficult to predict the conformation of mRNA due to its large molecular weight,

the CD data indicated that the mRNA was also in an A-form double helix conformation,

similar to the case of IRNA (Fig. 3-15(A)). The decreases in CD peaks of tRNA were

observed in water/methanol solutions (Fig. 3-15@)), suggesting the IRNA denaturation in

hydrophobic environments. Furtherrnore, the decreases of CD peak intensities were also

observed in both cases of tRNA and mRNA in heat stress conditions (Fig. 3-15(C) and (D)). It

was therefore found that the decrease of peaks at 208 and 265 nm indicated the denaturation

of single-stranded RNAs. Because liposomes have hydrophobic regions in their membranes,

the conformational change of RNA molecules is expected to be induced when RNA molecules

bind to liposome membranes at deeper regions.
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(A) CD spectra of mRNA and tRNA (B) IRNA in water/methanol solutions
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Fig. 3-15 (A) CD spectra of mRNA (bold line) and tRNA (dotted line). (B) CD spectra of
IRNA in water/methanol solutions. The graphs (C) and (D) show CD spectra of mRNA and

IRNA in heat stress conditions, respectively.

3.5.2 Conformational Change of tRNAInduced by Liposome Binding

CD spectra of tRNA were measured in the presence of liposomes (Fig. 3-16). Under

the experimental condition at 30 "C, tRNA conformations in the presence of POPC and

POPC/Ch (70130) were maintained, wherein CD peak intensities slightly decreased. In

contrast, IRNA significantly denatured in the presence of CLs (POPC/DOTAP (70130) and

POPCiDOTAP (50/50). CD peak intensities decreased in proportion to the surface charge

density of liposomes. Because the anionic liposome, POPC/POPG (70130), had little effect on

the tRNA conformation, it was therefore indicated that the CLs denatured IRNA conformation

0 % methanol (E -78)
25 % methanol (e -69)
50 % methanol (€ -59)
75 % methanol (6 -47)

100 % methanol (€ -33)
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due to the strong electrostatic interaction. In order to discuss the conformation of IRNA on the

liposomes, the melting temperature (2.) of tRNA was calculated under heat stress conditions

(Fig. 3-17), whereiri the Z- value is defined as a parameter to describe the stability of RNA.

The coexistence of Mg2*, that stabilizes the RNA conformation (Conn et a1.,1998; Madore et

al., 1999), resulted in the increase of the Z,n value (48 'C to 60 oC), whereas POPC/Ch

(70/30) destabilized the IRNA together with the decrease of Z'o (48 "C to 38 "C). Because

lipid membranes in /o phases are tightly packed, tRNA insertion would be difficult. It is

therefore speculated that the binding sites of IRNA would be limited to the membrane

surfaces (Michanek et a1.,2012).In contrast, the T^ values increased in proportion to the

surface charge density of CLs, indicating that CLs denatured IRNA and then the denatured

tRNA was stabilized on the CL membranes. In other words, CLs induced tRNA denaturation,

and the denatured tRNA conformation was preserved on the CL membranes. It is therefore

found that conformational changes of tRNA were induced by liposome binding. Similar

conformational changes are expected to be induced in the case of mRNA.

225 250 275

Wavelength [nm]

Fig. 3-16 CD spectra of tRNA in the presence of liposomes at 30 oC.
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3.5.3 Conformational Change of mRllA and Its Relation with mRNATranslation

The conformational change of "mRNA" in the presence of liposomes was also

investigated (Fig. 3-18), based on the above results on tRNA. mRNA in A-form also has a

positive peak and a negative peak at 265 and 208 nm, respectively. The CD spectra of mRNA

in the presence of DOPC/DOTAP (70130) and DOPC/DC-Ch (70130) are shown in Fig.

3-18(A). Both peaks decreased in proportion to the increase in lipid concentration, while the

tendencies of CD spectrum variations were different (Fig. 3-18(8)). The addition of the

homogeneous DOPC/DOTAP (70130) gradually decreased the peak intensities at208 and265

nm with increasing lipid concentration. Because a decrease in CD peaks is due to

conformational change in RNAs (Johnson et al., 2005), it is therefore found that

DOPC/DOTAP (70130) denatures mRNA. In contrast, heterogeneous DOPC/DC-Ch (70130)

indicated different tendencies which can be regarded as mRNA denaturation, resulting in

partial conformational changes of mRNA. The peak at265 nm gradually decreased, while the

degree of decrease was not so large as compared with that of DOPCiDOTAP (70i30). The

peak at 208 nm decreased despite the variations of the lipid concentration. These differences
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Fig. 3-18 (A) CD spectra of mRNA in the

peaks.

300               0

presence of CLs at

in the mRNA denaturation are due to the phase state and the lipid mobility of CLs. The

DOPC/DC-Ch(70130) membrane, which is in the (16+ l.) phase, is a partially ordered (i.e.,

micro-domain) structure, with limited lipid mobility. Therefore, nucleobases carurot freely

attack the hydrophobic region of the membrane. Based on the results shown in Figs. 3-10 and

3-11, heterogeneous DOPC/DC-Ch (70/30) could interact with cytosine residues in mRNA.

These finding suggest that the difference in mRNA interaction can affect its translation.

The conformation of RNAs is strongly related to their functions (Laso et al., 1993;

Marsden et a\.,2006). The conformation and translational activity of mRNA are shown in Fig.

3-19. POPCICh (70130) liposome maintained nRNA conformation and enhanced GFP

expression to 116 o/o as compared with the control (without liposomes). Because the Zrn value

of mRNA decreased in the presence of POPC/Ch (70130), a suitable destabilization of mRNA

was found to enhance mRNA translational activity. In addition, liposomes recognized not only

mRNA but also other single-stranded RNAs (e.g., tRNAs), and the condensation effect is

likely to be a reason for the enhanced effect at translation step (Yu et a1.,2001; Stano et al.,

2011). On the other hand, CLs inhibited mRNA translation, depending on the degree of
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mRNA denaturation. The addition of the homogeneous POPC/DOTAP (70/30) significantly

denatured mRNA and inhibited mRNA translation, while heterogeneous DOPC/DC-Ch

(70130) partially denatured mRNA and slightly inhibited mRNA translation. Taken together,

these results imply that liposomes can functionalize biomacromolecules, including mRNA

and IRNA, at the membrane surfaces.

3.6 Liposome Affinity to tRNA during Heat Stress Condition

The physicochemical properties of both liposome membranes and

biomacromolecules are known to vary, depending on the surrounding temperatures. At a

higher temperature, the surfaces of RNA and polypeptide turned to be hydrophobic (Chapter

1) (Kuboi et a|.,2004). The values of the dissociation constant of tRNA with liposomes under

heat stress condition were summarized in Table 3-3. It was also found that POPC lch (70130)

showed l4-fold higher affinity with denatured tRNA, in comparison with POPC liposome.

Lipid or Ch molecules also show an affinity with IRNA, although there is little difference
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Table 3-3 Conformation of IRNA conformation and dissociation constant, k6

Folded(30° C) Unfolded(50° C)

tRllA conformation

IIFS [kJ/mol]

+POPC

+POPC/Ch(70/30)

(Ch dOmain)

κd=40x10‐
7[M]

(COntr01,1-fold)

角 =6.5x10‐ 8[M]

(6-fold afflnity)

-100[kJ/m01]

角 =31x10‐7[M]

(13-fold afflnity)

為 =2.9x10‐ 8[M]

(14 fold afflnlty)

(Marty et al., 2009). The reversibility of IRNA conformation was determined in the presence

of POPC, DPPC, DOTAP, and DSTAP (Fig. 3-20). The irreversible conformational transition

was observed in the presence of DSTAP, which is a cationic liposome with saturated acyl

chains (2", osrep :60 oC), while the conformational transition in the presence of DOTAP was

found to be reversible. Phase states of DSTAP at 30 and 70 "C has been reported to be in so

a;nd /,6, respectively (Lobo et a1.,2002).It is therefore suggested that tRNA cannot interact

with hydrophobic regions in DSTAP membranes at 30 "C, while it turns to be accessible at

70 "C due to the phase transition. The DSTAP affrnity for tRNA at 30 and 70 oC was

estimated to be 40-fold and 182 fold, in comparison with that of POPC. It has been reported

that the proteins and enzymes can also show such higher affinities to the surface-modified

liposomes under oxidative or heat stress conditions (Yoshimoto et aL.,1998; Tuan et a|.,2008,

Ngo e/ al., 2010). It is therefore shown that the design of liposome membranes can be

important factors for recognition and functionalization of biomacromolecules.
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Fig. 3-20 Reversibility of IRNA conformation during heating and cooling processes.

4. Summary

The mechanism of the liposome interaction with single-stranded RNAs was

investigated, focusing on their conformation and functions. An inhibitory effect on mRNA

translation in the presence of CLs was explored by using an E. coli CFT system by employing

its mRNA as an initial template of GFP gene. The membrane fluidity and polarity analyzedto

identify the phase state of CLs; DOPCiDOTAP (70130) for homogeneous (/d), DOPC/DC-Ch

(10/30) for heterogeneous 0a + /.) phases. The CLs in /6 phases markedly inhibited the

translation of mRNA bound to membranes in an "inactive" state, while heterogeneous

DOPC/DC-Ch (70130) slightly inhibited the translation of mRNA, which was bound to

membranes in an "active" state. Using Laurdan, which locates at glycerol backbones, it was

found that membrane surfaces were dehydrated via mRNA binding, indicating that mRNA

binds to CL membranes at the level of phosphate [-POr--] to carbonyl [-C:O-] moieties.

Wavelength [nm]
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Raman and FTIR assays indicated that nucleobases (A, G, C) in mRNA interacted with lipids

in CLs, while those in DOPC did not. Cytosine residues interacted with the heterogeneous

liposbmes; DOPC/Ch (70130) with 13.3 A-domain and DOPC/DC-Ch with 16 A-domain.

POPC/Ch (70130) maintained mRNA conformation, resulting in an enhancement of mRNA

translation. In contrast, DOPCiDOTAP (70130) denatured the conformations of both the

A-form (208 nm) and that of base stacking (265 nm) in mRNA. DOPC/DC-Ch (70130)

denatured the A-form structure, despite the variation of lipid concentration. It is therefore

concluded that heterogeneity of liposome membrane plays an important role in the regulation

of the mRNA conformation and its function. Characterization and design of lipid membranes

(De Almeida et al., 2003; Veatch et al., 2003) is also important in the research fields of

sSmthetic cell biology, liposome-based drug delivery systems, and biomacromolecular

engineering (Lonez et a1.,2008; Luisi, 2009; Walde, 2010; Stano et al., 20Il). Using the

behavior of lipid membranes, further improvements can be achieved in the regulation of

liposome-RNA interactions and the RNA functions.

Based on the obtained results in Chapter 3, the key important factors of liposome

membrane design for biomacromolecular recognition can be shown as follows (Fig. 3-21); (i)

surface charge density of liposome: electrostatic interaction; (ii) membrane fluidity:

hydrophobic interaction; (iii) membrane polarity: interactions driven by entropic forces; (iv)

the proton donor and acceptors in lipid molecules: hydrogen bonding interaction, especially

for cytosine residues; (v) the micro-domain formation: van der Waals force caused by the

matching of contact surfaces. Temperature setting is also important because of the increase of

hydrophobic interaction between membranes and denatured biomacromolecules in unstable

conformations. In this section, it is shown that heterogeneous membranes containing the

micro-domains can play important role on recognition of biomacromolecules. It is therefore

possible to design the liposome membrane that can recognize biomacromolecules and control

their conformations, which are deeply relating to functions of biomacromolecules.
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Interaction Mechanism Scheme

Interaction Mechanism

Kd - 10-e [Ml
(i) Electrostatic interaction

with phosphates
(ii) Hydrophobic interaction

with C
(iii) Entropic driving force

caused by dehydration
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with C
(v) Surface matching

with nano-domain

Kd - 10'8 [M]
(i) Electrostatic interaction

with phosphates
(ii) Hydrophobic interaction

with G
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Fig. 3-21 Scheme for the interaction mechanism between the liposome and

biomacromolecules.
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Chapter 4

Liposome Membrane Design for Recognition of

Biomacromolecules and Control of Their Conformation

-Recognition of Rl[A molecules-

1. Introduction

A general design for novel biofunctional materials is definitely required in order to

develop innovative bio-/chemical processes. A key of the biofunctional design is a molecular

recognition, which can act as a "glue" of different molecules and can induce an "emergence"

on the self-assembly. A variety of specific recognition of biomacromolecules and chiral

materials are known to be achieved in biological cellular systems to maintain the cellular

homeostasis through nano-machineries relating to metabolism and also gene expression

(Tzareva et a1.,1994; Korostelev et a1.,2006). For example, RNA aptamers were developed

as molecular recognition tools, which recognize various kinds of biomolecules (e.g., flavin

mononucleotide (FMN), adenosine monophosphate (AMP), arginine, Tobramysin, and so on)

(Patel et a1.,2000). In order to achieve the recognition and functionalizing of target molecules

to be employed as building-block of the novel biofunctional materials, it is important to

design a flexible surface of the "platform" that can freely match with the three-dimensional

structure of target molecules. However, there are some difficulties to perform the selective

separation or molecular recognition in designing of the above-mentioned artificial systems

owing to their limited properties in physicochemical potentials. It is therefore necessary to

develop "Bio-Inspiref' systems (Yoo e/ al., 20II) by using "self-assemblies" as effective

platforms for reco gnition.
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There are various kinds of self-assemblies, which play fundamental roles in living

cell systems. Lipid membranes, one of essential components of a cell, have also been utilized

as the 'oBio-Inspiret' mateials for drug carrier, biosehsor, and platform of biochemical events

(Yoshimoto et al., 1998; Peetla et al., 2009; Shimanouchi et al., 2010; Yoo et al., 20ll).

Focusing on the molecular recognition, self-assembly systems play an important role on their

interaction with target molecules (Borocci et al., 2003; Banchelli et al., 2007). Based on the

previous reports, liposomes have been shown to recognize biomacromolecules by

co-induction of multiple interactions, such as electrostatic, hydrophobic, and hydrogen

bonding forces; (i) the liposomes interacted with damaged proteins and fragmented enzyrnes

(Yoshimoto et a1.,2000; Tuan et al., 2008); (ii) the anionic liposomes induced spherulitic

aggregation of amyloid B peptides (Shimanouchi et a1.,2012); (iii) the liposomes regulated

the in vitro gene expression (Bui et a1.,2008;B:ui et a1.,2009); (iv) the liposomes induced the

conformational change of single-stranded RNAs (Suga et al., 20II). In Chapter 3,

heterogeneous liposomes were shown to induce the specific interactions with cytosine

residues in mRNA and tRNA, indicating that the nano-domain structure can also be a key

factor for recognition of biomacromolecules. It is therefore suggested that liposomes can be

utilize as functional platforms for recognition and functionalizing of target

biomacromolecules.

Based on the results described in Chapters l, 2, and 3, the design scheme of

liposome membrane for biomacromolecular recognition was herewith proposed, especially

focusing on the recognition, folding, and functionalization of single-stranded RNAs as case

study (Fig. a-1). Because the liposome-biomacromolecule interactions depended on the

surface properties of biomacromolecules, decision of the surface charge density of liposomes

are important. In the case of mRNA, the cationic liposomes strongly interacted with

negatively-charged mRNA, while its translational activity decreased due to the

conformational change. Cartesian diagram analysis is useful to understand the phase state of
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liposome at various temperatures. Using fluorescent probes, such as 1,6-diphenyl-

1,3,5-hexatriene (DPH), 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), and 6-(p-

toluidino)naphthalene-2-sulfonate (TNS), the binding depth of RNAS can be evaluated. The

interaction mechanism of liposomes and biomacromolecules should be then investigated, and,

finally, the recognition of the targetbiomacromolecules and the relating functions of them can

be controlled on the liposome membranes.

In the previous reports, the heterogeneous liposomes, including cholesterol (Ch),

have been reported to induce the remarkable behaviors that can affect various biochemical

reactions. The oxidation of cholesterol in the liposomes was found to modulate the catalytic

functions of amyloid B-Cu complex (Yoshimoto et a1.,2005). From the viewpoint clarified in

this thesis, because the amyloid B was found to be hydrophobic with higher values both in the

surface net hydrophobicity (HFS) and local hydrophobicity (LII) (Figs. l-6 and l-7), itcan be

recognized by the Ch-modified liposomes that possess the heterogeneous surface with

nano-domains. [n addition, the refolding of carbonic anhydrase (CAB) was effectively

enhanced in the presence the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/Ch

(POPC/Ch) (2lI), while that was not so significant with POPC only (Yoshimoto, PhD thesis

(1999)). These previous findings suggest that the Ch-modified liposome can recognize the

unstable polypeptides, showing that the micro-domain can act as a platform of the recognition,

folding, and functionalization of the biomacromolecules. The oxidation of liposome surface

can also vary the physicochemical properties of liposomes, indicating that their functions,

such as the recognition, folding, and, functionalization of biomacromolecules, can be affected

by the oxidative stress. It is therefore important to design the liposome surface as a functional

platform, focusing on the hydrophobicity and the nano-domain.

_ In this chapter, liposome membranes were designed based on the scheme, together

with the schemes described in Chapters 1,2, and 3, by selecting a Hammerhead ribozyrne

(HHR) and IRNA as a target biomacromolecule (Fig. a-2). Focusing on the natural
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Fig.4-2 Conceptual illustration of this chapter.

phospholipid bilayer membranes, including phosphoethanolamine (PE) and phosphocholine

(PC), the recognition of HHR by utilizing the PEiPC liposomes were investigated in the case

of HHR, where the artificially synthesized HHR (HHR-l, 5'-GUACGUCUGAGCG-3'

(substrate); HHR-2, 5'-CGCUCACUGAUGAGGCCC-3'; HHR-3, 5'-GGGCCGAAA-

CGUAC-3') were used. The PE/PC (8/2) liposomes were optimized by modiffing acyl chain

lengths, and their physicochemical properties were analyzed by fluorescent probes, DPH,

TNS, and Laurdan, based on the scheme descried in Chapter 2. Because ribozymes are

sensitive to both hydrophobic interiors (Chen et aL.,2005) and cations (Boots et aL.,2008), the

liposome membranes are expected to act as optimal environments for the recognition of HHR:

inner regions of bilayers for hydrophobic platform, and ethanolamine groups in PE molecules

for quaternary ammonium cations. The IJV resonance Raman spectroscopic analysis was

embrane Design

\

IRNA Recognized
by 48-76 A Domain
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performed to evaluate the interaction mechanism of HHR. It was shown that the conformation

and the self-cleavage reaction of HHR were regulated by the pEipC liposomes.

Furthermore, the interaction tietween DOPC/SNOCh liposomes and tRNA was

investigated, focusing on the "raff'domain size. The Cartesian diagram analysis and the

TEMPO quenching method were carried out for the physicochemical properties and the

nano-sized ordered domains in DOPC/SVIiCh liposomes, respectively. The binding moieties

of IRNA was evaluated by using SYBR Green I (SGI) and SYBR Green II (SGII), which

binds to double-stranded stem regions and single-stranded loop regions, respectively. It is

shown that the DOPC/SI\{/Ch (413/3) can selectively recognizeboththe stem and loop regions,

resulting in the conformational change of IRNA. It is therefore shown that the design of

liposome membranes through the schemes described in this thesis is useful for the recosnition

and fiction alization of biomacromolecules.
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Materials and Methods

2.L Materials

' 1,2-Dioleoyl-sn-glycero-3-phosphoethanblamine (DOPE), I,2-dipalmitoyl-sn-glyce-

ro-3-phosphoethanolamine (DPPE), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and sphingomyelin (SM) were purchased

from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Cholesterol (Ch) and transfer RNA

(tRNA) originating from E coli were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Hammerhead ribozyme (HHR) were synthesized by Darmacon Inc. (Lafayette, CO, USA).

Other chemicals were purchased from Wako Pure Chemical (Osaka, Japan) and were used

without further purifi cation.

2.2 Liposome Preparation

A solution of phospholipids in chlorofonn was dried in a round-bottom flask by rotary

evaporation under vacuum. The obtained lipid films were dissolved in chloroform and the

solvent evaporated. The lipid thin film was kept under high vacuum for at least 3 h, and then

hydrated with distilled water at room temperature. The vesicle suspension was frozen at

-80 "C and then thawed at 50 oC to enhance the transformation of small vesicles into larger

multilamellar vesicles (MLVs). This freeze-thaw cycle was repeated five times. MLVs were

used to prepare large unilamellar vesicles (LUVs) by extruding the MLV suspension 11 times

through two layers of polycarbonate membrane with a mean pore diameter of 100 nm using

an extruding device (Liposofast; Avestin Inc., Ottawa, Canada). Liposomes with different

compositions were also prepared by using the same method.

2.3 Evaluation of Membrane Fluidity and Polarity of Liposomes

The inner membrane fluidity of the liposomes was evaluated in a similar manner to

previous reports (Lentz et al., 1976). Fluorescent probe DPH was added to a liposome
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suspension with a molar ratio of lipid/DPH :25011; the final concentrations of lipid and DpH

were 100 and0.4 pM, respectively. The fluorescence polarization of DPH (Ex:360 nm, Em

: 430 nm) was measured using d fluorescence spectrofhotometer (FP-6500 and FP-8500;

JASCO, Tokyo, Japan) after incubation at 30 'C for 30 min. The sample was excited with

vertically polarized light (360 nm), and emission intensities both perpendicular (1r) and

parallel (11) to the excited light were recorded at 430 nm. The polaization (P) of DpH was

then calcllated by using the following equations:

P: (Ill- GI) I ( 11+ G1r)

G: i, / i11,

where i1 and i1 are emission intensity perpendicular and parallel to the horizontally polaized,

light, respectively, and G is the correction factor. The membrane fluidity was evaluated based

on the reciprocal of polarization,llP.

The fluorescent probe Laurdan is sensitive to the polarity around itself, which allows

the surface polarity of lipid membranes to be determined (Parasassi et al., 1991). Laurdan

emission spectra exhibit a red shift caused by dielectric relaxation. Thus, emission spectra

were calculated by measuring the general polarization (GPl+o) for each emission wavelength

as follows:

GPtqo: Qqco - Icgo) I (I+qo i lqso),

where laas and laes are the emission intensity of Laurdan excited with 340 nm light. No

fluorescence was observed from an HHR solution (without liposomes). The final

concentrations of lipid and Laurdan in the test solution were 100 and 2 pM,respectively.

2.4 Fluorescence Measurement of TNS

TNS was directly added to a liposome suspension and was then incubated for one

hour at room temperature in order to complete TNS insertion into lipid membrane. After the

addition of HHR, samples were incubated in the dark for 30 min at 37 "C. The fluorescence
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spectra of TNS (Ex : 340 nm) were measured from 380 nm to 550 nm by using a

fluorescence spectrophotometer (FP-6500; JASCO, Tokyo, Japan) with 5 nm light path. The

final concentration's of TNS and lipid were 20 pM and 0.5 mM, respectively.' TNS

fluorescence was not observed with HHR only.

2.5 Kinetic Analysis of HHR Reactions

HHR was stained with SGI for 30 min at 37 "C. Fluorescence of HHR was measured

at the excitation of 494 nm. Kinetics of HHR reactions was calculated based on the previous

reports (Ferrari et a1.,2002).

2.6. Raman Spectroscopic Analysis

Raman spectra of mRNA and nucleotide triphosphates (NTPs) were measured by

using a confocal Raman microscope (LabRAM HR-800; HORIBA, Ltd., Kyoto, Japan) at a

wavelength of 266 and 532 nm, with laser power of 50 and 100 mW, respectively. A total

data accumulation time of 30 s. For each sample, the background signal of the solution was

removed, and then the baseline was corrected. Peak intensities were normalized by the peak at

878 cm-l (Iszs) for excitation laser of 266 nrn. The final concentration of HHR and lipid in

Raman samples was 100 pM and 1 mM, respectively.

2.7 Evzluation of the Conformation of RNAs Using Circular Dichroism (CD) Spectra

The conformation of RNAs was evaluated by using a JASCO J-820 SFU

spectropolarimeter (JASCO, Tokyo) (Suga et al.,20ll). The CD spectrum from 300 nm to

200 nm was measured with a quartz cell (0.1 cm path length) at a scan speed of 50 nm per

min and a width of 2 nm. Five scans excluding buffer and liposome background signals were

obtained at37 "C, and the data was calculated as molar ellipticity. Each sample was prepared
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with 1 pM of HHR or tRNA, and 10 mM Tris-HCl at pH 7.8 in the presence or absence of

liposomes.

2.8 Evaluation of the Binding Site of tRNA by Using SGI and SGII Assay

IRNA was incubated with liposomes for 30 min at 30 oC. After incubation, tRNA

was stained with SGI or SGII and incubated for 30 min at 30 oC. The fluorescence spectra of

SGI and SGII (Ex : 494 nm) were measured from 500 nm to 550 nm by using a fluorescence

spectrophotometer (FP-6500; JASCO, Tokyo, Japan) with 5 nm light path.

2.9 Statistical Analysis

Results are expressed as mean t standard deviation. All experiments were performed

at least three times. The distribution of data was analyzed, and statistical differences were

evaluated using the Student's t-test. A P-value of <5Yo was considered significant.
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3. Results and Discussion

3.1 Design of PE/PC Liposomes for HHR Recognition and Controlling Its Conformation

RNA catalysis (ribozyme) plays important roles'inside a living cell in biological

systems, and its behavior has been paid much attentions in the research fields of biology, gene

therapy and life evolution in early Earth (Hammann et a1.,2002).It has been conventionally

known that ribozymes, which show a self-cleavage reaction, molecular switch, self-splicing

andsoon,arefunctionalizedinthepresenceofmetalions(e.g.,Mgt*)(Curtis eta1.,2001).

Hammerhead ribozymes (HHRs), which is originally discovered in plant virus satellite RNA,

is a self-cleavage ribozyme, and its active center is comprised of three double-helical

segments joined by single-stranded regions. The self-cleavage reaction of HHR has been

reported to be sensitive to environmental conditions (Mg2* concentration, and so on) (Curtis

et a\.,2002; Boots et a\.,2008). HHR shows higher activity in the presence of 10 mM Mg'*,

while not in the physiological Mg2* concentration (-1 mM). Therefore, there are other

environmental factors that play important roles in regulating ribozyme activities in biological

system. It has been reported that the accumulation of HHR within a limited compartment can

lst RNA   S′・・・GUACGuCuGAGCG ・・・3'

2nd RNA  メ・・・ CCCuCACUGAUGACGCCC ・・・y

3rd RNA   メ・・・ GGGCCGAAACGUAC ・・・3'

●
3′  5'

Fig. 4-3 Conceptual illustration of the recognition of HHR and the control of its activity.

PE region
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enhance its self-cleavage reaction (Strulson et a1.,2012), suggesting that the accumulation of

HHR on the liposome membrane might also enhance its activity. In this study, the artificially

'synthesized HHR, which are three core building-blocks of natural HHR, were used in ihis

study (Fig. 4-3), and the PE/PC liposome membranes were designed in order to recognize

HHR and to control the conformation and the relating function of HHR.

3.1.1 Design of Liposome with Optimal Physicochemical Properties for IIHR

Recognition

In order to determine key factors for the recognition of HHR, the physicochemical

properties of PE/PC liposomes were evaluated by fluorescent probes, TNS and Laurdan,

based on the strategy described in Chapters 2 and 3. Figure 4-4 shows the relative

fluorescence intensities of TNS and GP3as values at37 "C. Membrane fluidities increased in

proportion to the molar fraction of unsaturated lipids (DOPE and DOPC). Ghqo values

decreased in a similar manner, while TNS fluorescence showed the maximum value with

DOPE/DPPC (812) liposome, indicating that DOPE/DPPC (8/2) liposome has the most

hydrophobic surface. It has been previously reported that the adsorption of single-stranded

RNA was significantly increased in membranes with lower packing density (Michanek et al.,

2012).It is therefore shown that the HHR can be bound at the interface regions (i.e., t 25-35

(Fig.2-2)) in the DOPE/DPPC (812) membranes. Because PE lipids have positively-charged

ethanolamine groups, the PE molecule is expected to act as a monovalent cation, which is

necessary for the self-cleavage reaction of HHR (Curtis et a1.,200I; Boots et a1.,2008). It has

been reported that the smaller RNA molecules can be in rod-like structure and the

hydrophobic nucleobases are exposed (Navarro et a1.,2000), suggesting that HHR are also

expected to be hydrophobic, and are likely to be recognized by the liposome membranes.

Because the DOPE/DPPC (8i2) liposome was found to be the most hydrophobic (the highest

TNS fluorescence) (Yoshimoto, PhD thesis (1999)), it is shown that the DOPE/DPPC (812)
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can be a suitable liposome for the recognition of HHR. ln the following section, the

mechanism of HHR binding together with its conformational change was estimated, focusing

on the DOPE/DPPC (812) liposomes.

3.1.2 Evtluation of the Binding Depth of HHR into the DOPE/DPPC (8/2) Liposome

Membranes

Ribozyne activities are relating to the conformation of their active csnters (Lilley,

2005; Strobel et al., 2007), although the HHR deforms its structure due to self-cleavage just

when the conformation of the active center is constructed. In order to prevent the HHR

reactions and measure its conformation, a single-stranded DNA was used in replace of the

HHR-I (substrate). In the following, HHR-IC was studied focusing on the interaction

mechanism and conformation. The binding depth of HHR-IC into DOPEiDPPC (8/2)

membranes was determined by measuring TNS fluorescence and GPtco values (Fig. a-5).

After the addition of HHR-IC to the liposomes, the decreases of TNS fluorescence was
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Fig.4-5 Variations of TNS fluorescence and AGP3as values in the presence of HHR-IC.

observed, while GPyo values did not significantly vary. According to the findings in Chapter

2, TNS shows a strong fluorescence in hydrophobic environments, while it had little

fluorescence in water solutions (Fig. 2-2). It is therefore revealed that the HHR-IC can bind to

the interface regions (i.e., e 25-35), where the binding depth is estimated to be ca. I nm from

the bulk-water layer (Cevc, 1990). Because Laurdan monitors membrane polarities in the

regions of phosphate to carbonyl groups, these regions can be excluded from the possible

binding sites of HHR-IC in the DOPE/DPPC (8/2) liposome membrane.

3.1.3 Estimation of the Binding Moieties by UV Resonance Raman Spectroscopy

The binding moieties of HHR-IC were estimated by UV resonance Raman

spectroscopic analysis. Figure 4-6(A) shows UV resonance Raman spectrum of HHR-IC and

relative peak intensities. Peaks at 1250, 1367, and 1487 cm-r are assigned as adenine (A),

guanine (G), and G/A, respectively (Table 3-1) (Lanir et al., 1979; Mathlouthi et a1.,1986;
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(A) UV resonance Raman spectra (B) CD spectra
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Fig. 4-6 (A) UV resonance Raman spectra and the relative peak intensities. (B) CD spectra of

HHR-IC in the presence of DOPEiDPPC (8/2).

Zhelyaskov et al., 1992; Florifn et al., 1996; Billinghurst et al., 2009; Singh, 2012). The

decreases in Raman intensity are caused by a hydrogen bond or hydrophobic environment

(Nagatomo et a1.,2011). The relative peak intensities of A and G decreased in the presence of

Mgt*. It has been reported that Mg2* binds to the AsGro.r motif of HHR (Tanaka et a|.,2004),

suggesting that the decreases in Raman peaks was due to Mg'- binding. The larger decreases

of Raman peaks were observed in the presence of DOPE/DPPC (8/2) liposome, indicating

that DOPE/DPPC (8/2) could interact with HHR-IC atA and G moieties, includingAsGro.

3.1.4 Evaluation of HHR-IC Conformation by Using CD Spectra

The conformation of HHR-IC was found to be in an A-form double helix structure

(Fig. a-6(B)). The decreases of CD peaks at 208 and 265 nm were observed in the presence of

DOPE/DOPC (S/2). Based on the findings in Chapter 3, the decrease of CD peak indicated

the conformational change of single-stranded RNAs. It has been reported that the

conformational transition is required to form the active center of HHR (Hammann et al.,

2002). The present results indicated that A-form structure (Qoa) and base stacking (Q6) of

White:HHR-lc j
Red: +Mg,' s

1250 cm l 1367 cm‐ 1 1486 cm‐ 1



HHR-IC decreased via liposome binding. Although the formation of the active center of HHR

is very fast (Ferrari et al-,2002), it was shown that the liposomes affected the conformation of

HHR-IC. Because monovalent cdtions, e.g., Na*, f*, arid N[I4*, also induce the self-cleavage

reactions of HHR (Curtis et al., 200I; Boots et a1.,2008), the direct interaction between pE

molecules and HHR can also induce the self-cleavage reaction of HHR.

3.1.5 Effect of PE/PC Liposomes on HHR Kinetics

The recognition of HHR by the designed liposome was performed for the folding and

functionalization of the HHR according to the scheme. The self-cleavage of HHR was

determined in the presence of Mg2* through the TOF/MS spectroscopy analysis. In the

absence of Mg2*, three notable peaks which indicate three RNAs constructing HHR were

observed. [r contrast, after adding 1 mM of Mg2*, the peak of HHR-I (4157.g5) disappeared

and two new peaks (1916.6I and2245.70) appeared, indicating that HHR-I was cleaved and

resulted in the observation of these fragments. Because the molecular weights of two

fragments agree well with theoretical values of those (GUACGUC and UGAGCG), it is

suggested that the self-cleavage reaction of HHR can be performed with Mg2*. In order to

determine the effect of liposomes on HHR reactions, a kinetic assay was monitored by using a

fluorescence probe, SYBR Green I (SGD @ig. a-1|l. Because SGI is intercalated into various

double-stranded DNA or RNA (Zipper et a1.,2004), similar to the ethidium bromide (Fenari

et al., 2002), the self-cleavage of HHR causes the decrease of SGI fluorescence due to

disruption of HHR conformation. The reaction rate of HHR, frorr, was calculated by assuming

a first-order kinetics based on the previous reports (Fenari et al., 2002)..Figure 4-7 (inefi

figure) shows the SGI fluorescence spectra of HHR. A strong peak at 524 nm was observed

and it decreased after the substrate (HHR-l) addition, indicating that the self-cleavage

reaction of HHR can be monitored by decreases of SGI. It was indicated that the HHR

activity was effectively enhanced in the presence of the DOPE/DPP C (Bl2) liposome, due to
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Fig.4-7 Kinetics of the self-cleavage reaction of HHR in the presence of liposomes.

the HHR binding to it (Fig. 4-7 (Table)). The kou. values in the presence of PE/PC liposomes

with diflerent acyl chain length also show that the liposomes, which have higher fluidities due

to enough unsaturated acyl chains (DOPE/DOPC (8i2) and DOPE/DPPC (812)), indicated

higher fro6, values, resulting in that the liposomes with higher membrane fluidity can

efficiently activate the self-cleavage reaction of HHR. Although the enhanced degree of fror'

values in the presence of liposomes with lower fluidities were found to be not so high,

resulting in 1.l2-fold for DPPE/DPPC and 1.16-fold for DPPE/DOPC. These results suggest

that the HHR reaction with various PE/PC liposomes depends on their phase states.

3.1.6. Self-Cleavage Reactions of IIHR in the absence of Mg2*

In the absence of Mg2*, the self-cleavage reaction of HHR was not observed. In
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contrast,HHR activities werc observcd with the DOPE/DPPC(8/2)lipoSOmes(Fig.4… 8(A)

and (B)), in spite of the "absence" of Mg2*. Although the fro6, value was 0.23-fold lower in

comirarison with the valu'es in the presence of Mg2*, it is expected that that the DOpE

liposome membranes can act as a platform of the recognition and folding of HHR without

Mg2n, and monovalent cations of the DOPE can act as a co-factor of its action center. UV

resonance Raman spectroscopic analysis revealed that the addition of DOPE/DOPC (8/2)

liposome itself reduced the Raman peaks of HHR-IC (Fig. a-8(C)). It is therefore suggested

that DOPE/DOPC (8/2) liposome directly interacted with A and G moieties. CD spectra

analysis indicated that the addition of DOPE/DOPC (8/2) liposome significantly reduced the

CD peak at 208 nm (A-form), showing that the liposomes can induce the conformational

change of HHR and thus achieved the self-cleavage reaction of HHR because of the

construction of "active-center" like conformation.

Based on the above results, it is concluded that the DOPE/DPPC (8/2) liposomes can

(i) recognize the A and G residues in HHR, which containing AsGro.r motif of Mg2* binding

sites; (ii) induce conformational change of HHR, especially at A-form structure, and (iii)

enhance the self-cleavage reaction of HHR. The use of DOPE/DPPC (8/2) liposomes as a

(A) Kinetics of HHR reactions
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platform of the nucleotide recognition was found to give the highest frou, value of the

self-cleavage reactions of HHR without Mgz*, because the packing density of membranes

were lower'than others (TNS assay). Exposed inner hydrbphobic regions are pcissible binding

sites of biomacromolecules, together with the fact that Mg2* bind to PE membranes

(Gromelski et a1.,2006).It is therefore shown that the liposome membrane can be utilized as

a functional platform for recognition and controlling of HHR.

3.2 Design of 66Raft" Domain Liposomes for tRNA Recognition

The "raft" domain is one of the most functional membrane domains in biological

systems (Brown et al., 1998). It has been previously reported that the "raft" domain can play

important role in recognition of RNA molecules (Janas et a\.,2006).ln Chapter 3, it is shown

that the micro-domain liposome (POPC/Ch (70130)) can recognize tRNA molecules, although

the role of micro-domains in the recognition has not been clarified yet. From the viewpoint of

the lipoplex formation in drug delivery system (DDS), the mechanism of biomacromolecular

recognition by the liposome membranes is required to be clarified in order to design the

high-affinity liposomes with siRNAs. In this section, the effect of micro-domain size on the

recognition of biomacromolecules was investigated by using tRNAs as model polynucleotides

(Fig. a-e).

3 .2.1 Char acter tzation o f D O PC /S n/VC h Lip o s om e s

The recognition of tRNA by designed liposome was performed by focusing on

"nano-domain" of liposomes according to the scheme. Cholesterol (Ch) and sphingomyelin

(SM) are main components of lipid "raft" in biological systems (De Almeida et a1.,2003;

Veatch et a1.,2005). The physicochemical properties of DOPC/SI\{/Ch were analyzed by

using fluorescent probes, DPH and Laurdan (Fig. a-10), as described in above sections. The

liposomes containing >30 mol% of Ch indicated the lower values of membrane fluidities
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Fig. 4-9 Conceptual illustration of the recognition of tRNA.
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Fig. 4-10 (A) Membrane fluidity (llP) and (B) membrane polarity (Ghco) of DOPC/SI4/Ch

liposomes.

(IIP) at the temperature range of 20-50 oC. Because DPH is likely to be distributed to ordered

phases (Pathak et al.,20IL), it is suggested that large ordered domains can be formed in the

DOPC/SN{/Ch membranes. The GPtcovalues were proportional to the molar ratio of SM and

Ch. It has been reported that SM can form hydrogen bonding with Ch due to its amide groups,

while DPPC unlikely (Guo e/ a1.,2002). These results indicate that the liposomes containing



SM and Ch (>60 mol%) are in liquid-ordered (/") phases. These /o phase domains were

so-called "raft" domains.

3.2.2Detection of Nano-Domains Formed on DOPC/SI\4/Ch Membranes

Figure 4-11(A) indicates the Cartesian diagram of DOPC/SN,I/Ch liposomes at25 "C.

Based on the scheme described in Chapter 2, it is shown that DOPC/SN'IiCh (8/l/1) and

DOPCiSN{/Ch (61212) can be in heterogeneous phases. Studies based the microscopy analysis

has been reported that only one-liquid phases were formed within these liposomes (Veatch e/

al., 2005), while the AFM studies has investigated the nano-sized domains (-1 nm) in

DOPC/SI\OCh membranes (Yuan et a1.,2002). According to the obtained results in Chapter 2,

the TEMPO quenching method can quantitatively detect the nano-sized ordered domains in

the liposome membranes. Because this method depends on the distance between TEMPO and

DPH, it can also be possible to quantiff the'oraft" domain sizes in DOPC/SVI/Ch liposomes.

According to the remaining DPH fluorescence, plipo.o." (data not shown), domain sized were

calculated (Fig. a-11@)). It is notable that the Q,sruucr,(5/5) values were higher (99 Yo) than

that of DPPC (Qoppc, -70 yo), showing that the '?aft" domains in the DOPCiSM/Ch

liposomes are tightly packed, and are larger than 48 A. tn the present study, the variation of

the domain size can be estimated to be 11-78 A. Although Veatch et al reported the visible

membrane domains (-pm) in DOPC/SVVCh systems of giant unilamellar vesicles, the present

study investigated that nano-sized /o domains formed in DOPCiSM/Ch membranes (Fig.

4-12). The "raft" domain plays important roles in biological systems (e.g., signal transduction,

biogenesis and so on) (Brown et a1.,1998; Lingwood et a1.,2010). It has been reported the

specific interaction between DOPC/SN{/Ch (6/3ll) and RNA 10 (Janas et al., 2006),

suggesting the recognition of RNA molecules. Because SM and Ch molecules have donors

and acceptors of hydrogen bonding (Boggs, 1987), possible hydrogen bonding interactions

are expected between DOPC/SIU/Ch liposomes and biomacromolecules.
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′.,2005)(B).

3.2.3 Recognition of tRNA by Using DOPC/SM/Ch Liposomes

The binding sites of IRNA to liposomes were further studied by using fluorescent

probes, SGI and SGII (Fig. 4-13). It has been reported that SGI binds to double-stranded stem

Cholesterol

One!iquid

辺
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Fig. 4-13 (A) SGI binding assay for stem regions in tRNA. (B) SGII binding assay for loop

regions in IRNA.

regions (Zipper et a1.,2004), while SGII binds to single-stranded loop regions (Morozkin e/

at.,2003). SGI Fluorescence significantly decreased in the presence of DOPCiSN{/Ch (41313)

(Fig. 4-13(A)), showing that DOPC//SNOCh (41313) can bind to stem regions in tRNA.

Analysis of SGII fluorescence indicated that DOPC//SVI/Ch (41313) also bound to

single-stranded loop regions (Fig. a-13(B)). Together with these results, it is shown that

DOPC/SN{/Ch (41313) can bind to IRNA, where DOPC//SMICb (41313) recognized the stem

and loop regions. The conformation of IRNA was changed in the presence of DOPC/SIWCh

and loop regions. The conformation of tRNA was changed in the presence of DOPC/SN{/Ch

(41313),while that was not so much in the presence of DOPC (Fig.  -la). It is therefore shown

that the DOPC/SVI/Ch liposomes can recognize tRNA molecules, depending on the domain

size, and can induce the conformational change of tRNA.

121



［Ｏ
Ｅ
Ｏ
や
Ｅ
ｏ
・
Ｏ
①
ユ

ｄ
一一一Ш

．Ｏ
Σ

［Ｏ

Ｅ

Ｏ
お

Ｅ

ｏ
・
Ｏ
①
己

ｄ

一一面

．一Ｏ
Σ

DOPC/SM/Ch (4/3/3)

- 

Lipid. 0 mM
-------- Lipid: 0.6 mM
-----'-- Lipid: 1 mM

250

Wavelength [nm]

250

Wavelength [nm]

Fig.4-14 CD spectra of tRNA.

4. Summary

A general design scheme for the recognition of biomacromolecules, accompanying

with their folding and functionalizing, was proposed based on the results described in

Chapters l, 2, and 3. Liposome membranes were, in practice, designed for recognition of

biomacromolecules, such as polypeptides, HHR, and IRNA.

In the case of HHR, DOPE/DPPC (812) effectively enhanced HHR activity in the

presence of Mg2*. TNS and UV resonance Raman spectroscopic assays indicated that HHR

bound to the interface regions (e 25 -35), and the binding moieties of HHR were estimated to

A and G. HHR interactions at A and G moieties were also observed in the "absence" of Mg2*.

The liposomes induced the conformational change of HHR-IC. DOPE/DPPC (8/2) liposomes

fulfilled the conditions that are required for HHR activities, suggesting that DOpE molecules

act as monovalent cations alternate to Mg2*. In the case of tRNA, DOPCiSIWCh (41313) was

found to bind the stem and loop regions in tRNA, because DOPCiSN{/Ch (41313) liposome

has /o phase domains with a radius of 48-76 A, which can be fit to the stem resions in tRNA.
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Above two cases indicate that not only physicochemical properties of membranes

(fluidity, polarity, and heterogeneity) but also membrane structures with nano-sized domains

are important tb recognize biomacromolecules. Based on'the present findings,'liposome

membranes can be utilized as a platform to control biomacromolecular functions. In early life

on earth, lipid vesicles are likely to accumulate biomacromolecules on the membrane surface,

and thus the life can be evolved (Ricardo et al., 2009). Recent researchers try to understand

the diversity of biomembranes, although the functions of biomembranes, especially

recognition, have not been clarified yet. Liposome membranes are one of optical biomimetic

membranes, because the surface design of membranes provides us a new insight into the

biomacromolecular recognition. From the viewpoint of DDS, it is important to design the

liposomes, which have higher affinity with small RNA molecules (e.g., siRNA). The

conventional strategy to prepare the lipoplex is the use of cationic liposomes, although the

strong electrostatic interaction between the liposome and RNA has been reported to prevent

the release of RNAs at the target cells (Xu et a1.,1996; Barreau et a1.,2006). Based on the

present results, the domain size is one of key factors for design the RNA recognition. Because

the phase states of liposome membranes are sensitive to the surrounding environment

(temperature, etc.), it is also possible to design the "catch-and-release" strategy of the target

genes, by utilizing the heat stress, for example. Not only polynucleotides but also

polypeptides, proteins, and enzymes can be recognized by designed liposomes (Yoshimoto er

al., 2000; Tuan et al., 2008; Umakoshi et al., 2012). Utilization of the "Bio-Inspired"

membranes will develop innovative chemical and biochemical processes.
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General Conclusions

The methodology to design the liposome membranes for recognition of

biomacromolecules and control their conformation was established in order to develop

innovative bio-/chemical processes. Focusing on the physicochemical properties and

"microscopic" domains of liposome membranes, the key important factors required to

recognize polynucleotides and polypeptides was analyzed based on the case study of

single-stranded RNAs (mRNA, tRNA, HHR) and unfolded GFP peptides. It is important to

design "Bio-Inspiref' membranes, which have a flexible surface of the o'platform" that can

freely match with the three-dimensional structure of target molecules to be employed as

building-block of the novel biofunctional materials.

In Chapter 1, the effect of liposome addition on the in vitro gene expression in an E

coli cell-free translation (CFT) system was determined, in order to find out the specific

interaction of lipid membrane with biomacromolecules. It was shown that GFP expression

was regulated by charged liposomes at the translation and folding steps via interaction with

RNA molecules and GFP polypeptides. Characterization of biomacromolecules indicates that

the nascent mRNA and GFP polypeptide are unstable and are likely to interact with liposomes

via electrostatic, hydrophobic, and hydrogen bonding interactions. Focusing on the POPCiCh

liposomes, the surface properties of liposome (i.e., fluidity, polarity, and heterogeneity

(domain)) were also shown to be key factors to regulate liposome-biomacromolecule

interaction, especially for RNA molecules.

In Chapter 2, the physicochemical properties of DOPC/DPPC and DOPC/Ch binary

mixture of LUVs were determined, and nano-sized ordered domains were detected using a

newly-developed TEMPO quenching method. Analysis of membrane fluidity and polarity

revealed that the DOPC/DPPC binary mixture of LUVs formed immiscible "microscopic"
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segregated regions. These nano-sized ordered domains were detected by using the TEMPO

quenching method, and average domain sizes of I3-9, 36.2, -13.2, and -35.5 A were

determined for DOPCiDPPC'(50/50), DOPCiDPPC (25175), DOPCiCh (70130) and

DOPCiDPPCICb (40140120), respectively. It can be possible to design the nano-domains that

can recognize atargetbiomacromolecule with a surface structure of membrane that fits to the

shape (i.e., concavity and convexity with domains). Present findings may be a key to

understanding self-assembled systems, and to designing "Bio-Inspired' mernbranes. The

detection of nano-domains formed on lipid membranes also aids in understanding the function

of biomembranes. It is therefore important to understand the structure and function of lipid

membranes in biological systems, and to develop artificial biomembrane systems to regulate

biomacromolecules.

In Chapter 3, the mechanism of the liposome interaction with single-stranded RNAs

was investigated, focusing on their conformation and functions. An inhibitory effect on

mRNA translation in the presence of cationic liposomes (CLs) was explored by using an E

coli CFT system by employing its mRNA as an initial template of GFP gene. The membrane

fluidity and polarity were analyzed to identify the phase state of CLs. CLs in /6 phases

markedly inhibited the translation of mRNAbound to membranes in an "inactive" state, while

heterogeneous DOPC/DC-Ch (70130) slightly inhibited the translation of mRNA, which was

bound to membranes in an "active" state. Possible bindings site in the liposome-mRNA

interaction was estimated to be at the level of phosphate [-POz--] to carbonyl [-C:O-] moieties,

where nucleobases (A, G, C) in mRNA interacted with lipids in CL membranes by analysis of

Raman and FTIR. Cytosine residues interacted with heterogeneous liposomes; DOPC/Ch

(70130) with 13.3 A-domain and DOPCiDC-Ch with 16 A-domain. POPC/Ch (70130)

maintained mRNA conformation, resulting in an enhancement of mRNA translation. In

contrast, DOPC/DOTAP (70130) denatured the conformations of both the A-form (208 nm)

and that of base stacking (265 nm) in mRNA. DOPC/DC-Ch (70130) denatured the A-form
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structure, despite the variation of lipid concentration. It is therefore concluded that

heterogeneity of liposome membrane plays an important role in the regulation of the mRNA

conformation and'its function. Charactbrization and design 'of lipid membranes is also

important in the research fields of synthetic cell biology, liposome-based drug delivery

systems, and biomacromolecular engineering. Utilizing the behaviors of lipid membranes,

funher improvements can be achieved in the regulation of liposome-RNA interactions and the

RNA functions. The key of liposome membrane design for the biomacromolecular

recognition can be understood as "co-induction" of multiple interactions, such as (i)

electrostatic interaction, (ii) hydrophobic interaction, (iii) entropic forces with the dehydration

of membrane surface, (iv) hydrogen bonding interaction, (v) micro-domain formation at the

contacting surface. Temperafure setting is also important because of the increase of

hydrophobic interaction between membranes and denatured biomacromolecules in unstable

conformations. In the present study, it is shown that heterogeneous membranes containing the

micro-domains can play important role on recognition of biomacromolecules.

ln Chapter 4, the liposome membranes were, in practice, designed for recognition of

biomacromolecules, such as polypeptides, HHR, and IRNA. In the case of HHR, the

DOPE/DPPC (812) liposome was designed and its physicochemical properties were analyzed

by using TNS and Laurdan, showing that HHR can bind at the interface regions (e 25 -35).

Using the UV resonance Raman spectroscopic assays, it was indicated that the binding

moieties of HHR were A and G. The DOPE/DPPC (8/2) liposome induced the conformational

change of HHR-IC, resulting in the effectively enhanced HHR activity in the presence of

Mg'*. The interaction of the liposomes with HHR at A and G moieties was also observed in

the "absence" of Mg'*. Although the frou, value was 0.23-fold lower in comparison with the

values of Mg2*, it is expected that that the DOPE liposome membranes can act as a platform

of the recognition and folding of HHR without Mg'*, and monovalent cations of the DOpE

can act as a co-factor of its action center. In the case of tRNA, DOpC/SvI/Ch (4/313) was

126



found to bind the stem and loop regions in tRNA, because DOPC/SN{/Ch (41313) liposome

has lo phase domains with a radius of 48-76 A. These results indicate not only

physicochemical propeities of membranes '(fluidity, polarity, h'eterogeneity) but alSo

membrane strucfures with nano-sized domains are key factors for recognition of

biomacromolecules. Based on the present findings, liposome membranes can be utilized as a

platform for the recognition of biomacromolecules and controlling of their conformation and

functions.

A general design scheme for the recognition of biomolecules, accompanying with

their folding and functionalizing, was proposed based on the results described in this study. In

early life on earth, lipid vesicles are likely to accumulate biomacromolecules on the

membrane surface, and thus the life can be evolved (Ricardo et aL.,2009). From the viewpoint

of self-assemblies, cholesterols in lipid membranes are shown to play important roles in the

formation of nano-sized domains, and in the recognition of cytosine residues of

polynucleotides, as well as the unstable proteins and enzyrnes, described in the previous

research. The liposome membranes are one of optical biomimetic environments, because the

surface design of membranes provides us a new insight into the biomacromolecular

recognition. Utilizing of the "Bio-Inspired'mentbranes will develop innovative chemical and

biochemical processes. It is therefore possible to design the liposome membrane that can

recognize biomacromolecules and control their conformations, which are deeply relating to

functions of biomacromolecules.
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Suggestions for Future Works

To expand the findings obtained in this work, the following studies are

recommended.

(l) In vitro selection of Biomacromolecules on the Liposome Membrane

The basic findings obtained in this study can apply to the liposome-based separation

and technology by utilizing the liposome membrane as a platform for the recognition of target

biomacromolecules. Because the liposomes, as well as other molecular imprinting membranes,

can induce multiple interaction forces with target biomacromolecules, the fine tuming of

liposome membrane, e.g., surface charge density, fluidity, polarity, nano-domain, etc., will

provide us to develop an innovative recognition technology. It is important to design the

liposome membrane that can recognize not only biomacromolecules but also small

biomolecules, such as amino acid, nucleic acid monomer, and chiral species. Further studies

are necessary to understand the recognition mechanism of liposome membranes for various

kinds of biomolecules and biomacromolecules.

(2) Characterization of Various Kinds of Vesicles and Lipid Self-Assemblies

The vesicle formation and its characteization are important research topics in many

fields: self-assembly science, drug delivery system, spthetic cells, bioreactor for chemical

reaction, and so on. The fatty acid vesicles and detergent vesicles have withdrawn a lot of

attention because of their lower cost as compared with phospholipid vesicles, and their

dynamic behaviors. The methodology for the characterization of liposome membranes,

described as the membrane characteization scheme in Chapter 2, can also be applied to

chatacteize such vesicles. The fluorescent probes, TNS and Laurdan, can be utilized to

monitor the water-lipid interface regions; Raman spectroscopic assay enables us to directly
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monitor the behaviors of lipid molecule, such as the packing density of lipid membrane and

the phase transition. The Cartesian diagram can visualize the heterogeneity of membrane, and

the TEMPO quenching method can dete0t the nano-sized ordefed domains in the membrane.

These studies will provide us a deeper understanding for the self-assembly mechanism.

(3) Design of Novel Chemical Processes Utilizing the Interface Region of Liposome

Membranes

The interface region of liposome membrane can be utilized as a platform for the

recognition of biomacromolecules. There are various kinds of chemical reactions which

require the transfer of products across the hydrophobic and hydrophilic phases. The

quaternary ammonium ion is known as a catalyst for the migration of a reactant from one

phase into another phase where reaction occurs (phase-transfer catalyst, PTC). It is expected

that the PTC process with liposome membrane can be realized to achieve faster reactions,

obtain higher conversions or yields, make fewer byproducts, eliminate the need for expensive

or dangerous solvents that will dissolve all the reactants in one phase, eliminate the need for

expensive raw materials and/or minimize waste problems. Although the mechanism of These

studies will contribute to the investigation of the reaction mechanism at the interface regions

between the hydrophobic and hydrophilic environment.
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List of Abbreviations

ATPS aqueous two-phaSe partition system

CAB carbonic anhvdrase

CFT cell-free translation

Ch cholesterol

CL cationic liposome

DC-Ch 3B-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol

Dex dextran

DMPC 1,2-dimethyl-sn-glycero-3-phosphocholine

DOPC 1,2-dioleoyl-sr-glycero-3-phosphocholine

DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DPH 1,6-diphenyl-1,3,5-hexatriene

DPPC I,2-dipalmitoyl-sn-glycero-3-phosphocholine

DPPE 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

DOTAP 1,2-dioleoyl-3+rimethylammonium propane

DSTAP 1,2-distearoyl-3-trimethylammonium propane

DSPC 1,2- distearoyl-sn-glycero-3-phosphocholine

E. coli Escherichia coli

Em emission wavelength

Ex excitation wavelength

GdnHCl guanidine HCI

GFP green fluorescent protein

Laurdan 6-lawoyl-2-dimethylaminonaphthalene

la liquid disordered

lo liquid ordered
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LUV large unilamellar vesicle

HHR hammerhead riboz5rme

MG molien globule

MLV multilamellar vesicle

NTP nucleotide triphosphate

PAGE polyacrylamide gel electrophoresis

PEG polyethylene glycol

POPC 1-palmitoyl-2-oleoyl-sn-glycerc-3-phosphocholine

POPG 1-palmitoyl-2-oleoyl-sn-glycerc-3-phosphogrycerol

Pyrene l-pyrene-dodecanoic acid

RTS-Kit Rapid Tbanslation System RTS 100 E. coIiHY l{tt

SA stearyl amine

SDS sodium dodecyl sulfate

SGI SYBR Green I

SGII SYBR Green II

SM sphingomyelin

16 solid disordered

TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl

TNS 6-(p+oluidino)naphthalene-2-sulfonate

tRNA transfer RNA
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