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P energy ~§»- energy

absorption, fluorescence spectra etc.
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> time > time

temporal profile of fluorescence light intensity, etc.

ensemble measurement single particle measurement

size and shape local internal structure
microenviroment

Fig. 1-1 Some ambiguity of convensional spectroscopies arises from
the fact that the optical response from the system under investigation
is an averaged result for an ensemble of many particles. Thus, it is
important to attempt single nanoparticle spectroscopy in order to
give precise description of the electronic states and their dynamics
excluding imhomoginity of particle size, shape, local environment,
and internal structure.



& EAEEL OO D EICHELMIZ LBl . EREHELS R E R
V=IO TR HAEDEA L THE—F JRF 7 2 A PR EDOHE
2% BIh L 72410

12 B—JF ) RFFEOBIK

FIHTFEAVT REF. HTFERELIBTFRELRT 0. TOXY
WOk, £, BHOTE?SELTbLTWa, ZOMBBICIISLTFIE
PULERTRKTH D B—ERFHEIIOWTEES N, TS, BBELS
FIZoWTHEBRE L, ThoBRed <5,

B S MBS R I EME L A b S I ETEEICE
BEL L) BE—DFAROEEART PV EMETEDSlE/27 x4 M -
Cappl—¥—RELI Y7V 75 b VEHIIEH L VIR M) -7 A 2T %
BEDEDIEILEoT, B—F /HFOREBMELE ¥ I B OR ML
THRDLZEDTHEETH S, LAL Fig 12 [SRLZE )0, HAEEISE
BREETHRERELG>OREKE LR -BBOATH Y, BERKELD 2 #
HEOBHRLPE L 2. RIS EERTE, TR BIR R BALTICE
FTE A7, BERESSDOEEEIUE b 7% D BRIZERYITNTHE
TEETH Do f€oT Fig. 12 ITRENTVS L) ILREEFHEREBOATE
BRI, BETRERE. 1+ kL P REOETREOHR
PELN, L) —BHESRFELEX 5, tEAEMES B BEMRING
JeE i — A TRV SR TV AL, 7o 7. ZORMSHEE 7 = 4
MPL—F— L E Y F—TO—TEXAVEIL T2 A M= —Th 5
(7 L2 L. 70— 7HOEXARy MEGEHBERICL VHRSN S 720,
METEE R FORE S IIYTIA 70 A -V TH5, Fig. 1-3 IZRT &9
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e s . temporal
sensitivity | particle size detectable states and species resolution

fluorescent species

fiuorescence very high 4 mtonm (the lowest electronic excited ps

spectroscopy state)
fluorescent and
nonfluorescent species

absorption (higher electronic excited

spectroscopy low >pm states, ionic states, s
vibrational excited states,
etc.)
fluorescent and

light nonfluorescent species

ght . (higher electronic excited
scattering high to 10 states, ionic states. fs
spectroscopy #mio 1V nm ’ ’

vibrational excited states,
etc.)

Table 1-1 Comparison between some time- resolved microspectroscopy
methods for single particles

A ionic state

-—1— higher excited singlet (S,) state

—h

_¥

4

—l

rmemseme  the lowest excited singlet (S,) state

meiemssemmiess  the ground singlet (S,) state

Fig. 1-2 Gray arrows mean electronic transition down from S, to S,
with fluorescence, while black arrows mean electronic transition
from S, to higher states with light absorption.



probe light

objective lens

transmitted light << stray light

(@)

probe light

transmitted light+stray light

scattered light

(b)

Fig. 1-3 (a) When the particle size is smaller than the spot size
of probe beam, stray light intensity is larger than transmitted
light one in absorption spectroscopy. (b) Scattered light can
be separated from stray light.
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VE—=DMTHbB, HTFEHATCEENOEED SIZBIT 55T ASHE & HELE
DHTRENDH, TNENDOBY, B¥% E,E,* H H, LHRET 2,

E=E+E, H=H+H, (1)
FEAD T AN F -5 Poynting X7 P VTUTD L H 2RI D,

() =(S)+(S)+(Sa) @D

<S, >OYWHIERII W, & LTTFRICERS, 7271

(8)=FR(EH,)  (S..)=2Re(EH,, "

sca” " sca

(S)=§R4EH@*+EWH*) (2-3)

HFRDOBEHzHLE LTHSRELERATHEND AN F—F2EH
5L, RRAZEBRT 5T AN F—FROENEITRFIC L 2 IR ICZE L vy,

W, =W+W_+W,

abs — sca

—W ‘Vabs

CTHEDORRIZ VDT W, = 0 Thb, RINERKo,, & W, /1. SKELET
% W A%o,, LRTE, W /A4=0,, DBRERCHL YIRS TEII L,

+W,, (2-4)

>
A

10



28 HHLRT A EFITTE

é\am(/l)

A
Incident light
Gext()')
—
—>
R @ —
y  9u(4) o
;L ’ __________» aos

Fig. 2-1 Light scattering, absorption, and extinction by single particle,
whose cross sections are given as 0, (4), 0,,(A), and 0, () , respectively.
A is wavelength.
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EEING, MIASHERETH 5,
MFDPHOERIIH L THFIPEVE E(EH x<<1 B2 | m | x<<1), 7275L

27N, a N(A)

x= eny m=

A N .
B F 2 H— BT & P(Rayleigh o) L TASH & DE/EH 2SR TE 5,
ZZT N, ZRAYDEIFE, a BHTEE. NOIKFOBFETHE, 20
VATEL Y ML ORF-13 Rayleigh fiF & FHITN TV %, Rayleigh . FDo,, & o,
ix.

2 —
o, =ma’4x Im{ mz 1} ~ O, (2-6)

2-7)

TERINB[]o CORPPKY DL E x<<1 BB M bo,, >0, %5,
£2T0O, =0y EERTIV, IRFFTFEBRDLHEBRA RS b VEIE TRIX
WIS RO ONLBEHTH S,

Ble LT3-5EITHEET /RTFEFICIY 6, &0,,I20W T~ Fig.
22 L&D/ 2 OERBITRERT[2]o 400 nm & Y EHEERICE S5 2%
ENY FEBRBICEAEE., BEEMICLD Lo TIFEBEIMEZEFOETF
(HHEF)OEFRE & L THE SN TVWAB[3], Fig. 2-3 | Fig. 2-2 DEERIT
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((v)'N)>d

Im(N,(1))

S NS, N ®

| 1 i 1 | L 1 1 0'0
400 800 1200 1600

wavelength / nm

Fig. 2-2 Real part (black line) and imaginary part (gray line) of
refractive index of gold [2]. A band in the short wavelength
region shows a contribution of electron in interband, and raising
curve in the long wavelength region shows a contribution of
electron in the conduction band.

Ton(2)
()™

1 1 1 1

450 500 550 600 650 700

wavelength / nm

Fig. 2-3 Calculated light scattering (black line) and
extinction (gray line) spectra of single gold Rayleigh
particle based on the equations of (2-6) and (2-7).
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Detector

Fig. 2-4 Spherical polar coordinate system centered on a spherical
particle. @ is the scattering angle, a is the radius of particle, 1, is

* %in

the intensity of unpolarized incident light, I, is the intensity of
scattered light, and r is the distance from center of the coordinate
system to the detector. The detector responds only to the scattered

light.

7

(

Electric field n=1

(@)

Electric field n=2

(b)
. \.
DR
XS
Electric fiel

(©)

\

o.

n=3

Fig. 2-5 Electric fields far away from the
nanoparticle, where n is given in the
equations of (2-12, 13). n =1, 2, and 3
correspond to the electric dipole,
quadrupole, and octupole modes. [4].
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femtosecond(fs) Ti:sapphire laser system
780nm, 3mJ/pulse, 170fs, 10Hz

28 SN R FAELBITFEE
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Fig. 2-6 Schematic diagram of the fs light scattering microspectrospyic system. (a)
An experimental setup to measure scattering spectra of individual nanoparticles
under a dark-field condition. (b) An experimental setup of the fs absorption
microspectrospyic system
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Fig. 2-7 Spectrum of o, (A) of the frost plate calculated as 1 - 0,,(4). 0,.(4)
was measured by absorption spectrometer.
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Fig. 2-8 Typical spectrum of the white-light continuum generated by focusing
the fundamental pulse from Ti: sapphire laser system into water.
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Fig. 2-9 A spectrum of scattered light intensity of He-Ne laser. FWHM
corresponds to spectral resolution of the present system.
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Fig. 2- 10 A dependence of peak intensity of surface plasmon
band (600 nm) on position of gold nanoparticle (mean radius 50
nm). FWHM corresponds to spatial resolution of the present

system.

scattered light intensity

wavelength / nm

(a) )

Fig. 2- 11 Scattered light spectra from the single gold nanoparticle
(black line) and back ground light intensity (gray line) using a
pinhole with 300 pm (a) and 150 um (b) radii.
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Fig. 2-12 Comparison between signal and noise spectra as a function of
particle size. Each spectrum (black line) was obtained from single gold
nanoparticle, whose mean radius is 125 (a), 40 (b), and 15 (c) nm,
respectively. Back ground scattering spectrum (gray line) was obtained from
each PVA film. Signal to back ground ratio of each sample is (a)30 : 1,
(b)12: 1, and (¢)3.5 : 1, respectively.
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Fig. 2-13 Transient light scattering spectrum of a single
perylene crystal (10X10 « m) at 1ps after 390 nm excitation.
An absorption at 730 nm corresponds to S,«—S, transition (A).
Measurable spectral range is 480 to 780 nm.

AS (0.05/div.)

METEE T
25 5.0 7.5
delay time /ps

Fig. 2-14 The temporal resolution of the present system is
approximately determined to be 400 fs from the rise time of

temporal profile of AS of (A) in Fig. 3-9.
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Fig. 2-15 A base line of transient light scattering spectrum obtained
by the present system. Accumulation number of measurements is

300 times.
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Fig. 2-16 Schematic illustration for dependence of zero delay
time on probe wavelength.
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Fig. 2-17 Dependence of zero delay time on probe
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Light

Electric field Surface charges

Time (t) Time (++T/2)

Figure 3 - 1 A scheme illustrates the excitation of the dipole surface
plasmon oscillation of spherical gold nanoparticle. The electric field of
an incoming light wave induces a polarization of the (free) conduction
electrons with respect to the much heavier ionic core of a spherical gold
nanoparticle. A net charge difference is only felt at the nanoparticle
boundaries (surface) which in turn acts as a restoring force. In this way a
dipolar oscillation of the electrons is created with period T. This is
known as the surface plasmon resonance.

Geometry Resonance frequency

Bulk metal o, =0,
wP

Planar surface 0, = 2

Thin film (thickness ; d) o, =2 iz expl(k),d]
\/'2_ x
7]

Sphere (dipol d o, =—=

phere (dipole mode ) =7
Ellipsoid (dipole mode ) o, =0,L,

Table 3-1 Plasmon resonance frequency for various sample geometries in

vacuum. ®, is plasma frequency, L,, denotes the depolarization factor [1], d is the
film thickness, and x gives the direction parallel to the film. The results for the
sphere and ellipsoid refer to the quasi-static limit.
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Fig. 3-2 (a) Experimental (black lines) and calculated (gray lines) results of light
scattering (a, upper) and extinction (a, lower) spectra of gold colloidal solution
(NV,,, 1.33) with radii of 15 to 50 nm. (b) Experimental (lower solid circles) and
calculated (lower open circles with line) results of dependence on the particle
radius upon peak wavelength of light scattering spectra. Experimental (upper solid
squares) and calculated (upper open squares with line) results on dependence of

the particle radius upon peak wavelength of light extinction spectra.
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Fig. 3-3 Experimental (a, upper) and calculated (a, lower ) results of light scattering
spectra of gold colloidal solution (¥,, 1.33) with radii of 50 to 125 nm.
Experimental (b, upper) and calculated (b, lower) results of light extinction spectra
of gold colloidal solution with radii of 50 to 125 nm .
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Fig. 3-4 (a) The sample film was prepared on a glass substrate by spin-coating a
mixture of aqueous solution of PVA, colloidal gold particles (mean radius 40 nm), and
ethylene glycole as dispersant. The average film thickness was about 40 nm. (b) PVA
multilayer sample (average thickness 330 nm). On the film (a), a neat PVA film was
further overlayed three times by spin-coating an aqueous solution of PVA (3 wt%). The
average thickness was typically about 330 nm. (c) The PVA film was first prepared on
a glass substrate by spin-coating several times up to the average thickness of 520 nm,
and then, colloidal gold particles (mean radius 40 nm) was dispersed. Further, on the

film, a neat PVA film was overlayed three times by spin-coating an aqueous solution
of PVA (3 wt%).

36



3E BH—gF  WTOEKETTXEHBDOHE, BIREFE

Fig. 3-4Q)DREHE T / KT DEPVA T~ F A v FEYDIEBEIZOW TR
b, 3 wi%®D PVAKBHEZ SHERTHTIAEREICAE Y Ta—-bTHIL
2 & Y EER 500 nm O PVA JEZER L. £® LIZ Fig. 3-4@tFLCean A
FPVA KB T A a— 135, BIZZFDLIZ3 wt% D PVA KE# % 2 [
BERTARAEYI- T2 LICEYEER 230 nm D PVARZa—F L., PVA
TNy FREZERL

Fig. 3-5 \ZE BB A 2B (Fig. 3-4(2) D EER B TEMEE(SEME /R,
HEHRICEF I HFE—RTOSRLTBY ., F/HNTORERE: LIIBE
ENed o7z, Fig 3-6 ITEEISRAZHHE Fig. 3-4) DRI HEBMBEBR 7RI
ABHLICBEED L) £F /BT L 2HEALAR Y PFREL TV L 07
Ghe FDEARY VHPBE—FF /I NFTHAZ LZHRTAH/720DIT SEM
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BHPKELRL L, 11 BET /HFORBE AR PV EHIE L. Fig. 3-7(b)
-2 BEDO Y — 7 BEKTFEERT. E—J7REORERV 7 MIL b %
A -V HEOHMMIBETE S, TRODEREREZHBET LD, 2 ET
%wt%§7ijXA%mw\%ﬁﬁZNﬁmeﬁQ%TU—fﬁwﬁE
A BTFERE 2, HELAE 6. £ /KT OEREHE N, BY) OREOEN
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FIG. 3-5 A scanning electron microscope images of gold
nanoparticles (40 nm) embedded in a PVA film, which
were taken from randomly chosen parts of the sample film.

Fig. 3-6 A dark-field optical images of gold nanoparticles
(40 nm) embedded in a PVA film, which were taken from
randomly chosen parts of the sample film.
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Fig. 3-7 (a) Light scattering spectra of the single gold nanoparticles of a sample
illustrated in Fig. 3-4 (a) ; some experimental data (solid) and calculated scattering
efficiency (dotted) for particles of different radii from 30 (bottom #1) to 50 (top
#5) nm with 5 nm interval. (b) Peak intensity vs. peak wavelength; experimental
data (closed circles) and calculated data (open squares with line) (left line (N,,,=
1.3), middle line (N, = 1.4), and right line (N,,= 1.5)) for different radii from 30
(bottom) to 50 (top) nm with 5 nm interval.
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Fig. 3-8 (a) Light scattering spectra of the single gold nanoparticles of a PVA
multilayer sample (typical thickness 330 nm) illustrated in Fig.3-4 (b); some
experimental data (solid) and calculated scattering efficiency (dotted) for particles
of different radii from 35 (bottom #1) to 50 (top #4) nm with 5 nm interval. (b)
Peak intensity vs. peak wavelength; experimental data (solid circles) and calculated
data (open squares with line) (N,,= 1.5) for different radii from 30 (bottom) to 50
(top) nm with 5 nm interval.
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/NE\, Fig. 3-7(a), () TRV /20 & FRROFHEREIT % Fig. 3-8(a), 8M)ICXF L T
To720 WYL Y ZXDN. A (0NH50=60" £30° DOHPHDKHEDIEEELA
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DEBEDENIZX B ARY P VOBLIZZERIZH /A SV, Lo T Fig. 3-8(b)
IR FEEOEICE B ARY VY7 AT Fig 3-7(b) & LB L X 1) BHREICER
NTWwd, $-0FRE. EFRHSFIAEVRBOE -7 BRI O FHEE
BRLLILAHELIEERBLTWS, £F /HT%2#H) PVA KEDR
5 ATy EADOFEOEEN LML 4 EITELRT %0

3-4-2 £ 7T X v LB OIREEHE

Fig. 3-4Q)NHRB (& T/ HTFFE PVA T F4 v FE)Z HVWARES X
%47 - 72, Fig. 3-9 (a)i Fig. 3-7(a) & { URFEEMHTHE L -€ T / HF DK
FHARY FVEFRT, Fig. 3-9@IRRB 2 HBEA RS MV ZIKET/RY o Fig.
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7 BRI % R ¥ o Fig. 3-9(b)id F A EUT E fITHF+4E% 30 2°H 50nm
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Fig. 3-9 (a) Typical (gray line) and illeguer (black line) light scattering
spectra of single gold nanoparticles of PVA sandwich film illustrated in Fig.
3-4 (c). (b) Peak intensity vs. peak wavelength; experimental data (solid and
gray circles) and calculated data (open squares with line) (N, = 1.483) for

env

different radii from 30 (bottom) to 50 (top) nm with 5 nm interval.

® 9 @0

glass substrate

Fig.3-10 Schematic illustration of possible
images of #1, #2, and #3 of Fig. 3-9.
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Fig. 3-11 The light extinction spectra (a),
(b), (c), (d), and (e) for gold nanorods of
average aspect ratios 2.0, 2.6, 3.3, 4.3, and
5.4, respectively. The longitudinal surface
plasmon extinction band of gold nanorods
mainly depends on the average aspect ratio

[9].
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scattered light
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Fig. 3-12 An experimental setup to measure polarizer angle (©)
dependences of scattering spectra of individual gold nanoparticles or

particle pairs under a dark-field condition. Zero angle of @ was defined
as input angle of probe light.
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Fig. 3-13 (a) Polarization dependence of back ground light spectra, when
black and gray lines correspond to the angle difference of 90° , (b) peak
intensity vs. polarization angle (©) of back ground light spectra, (c)
polarization dependence of light scattering spectra of typical single gold
nanoparticle (radius 50 nm), when black and gray lines correspond to the
angle difference of 90° , and (d) peak intensity vs. polarization angle of
the gold nanoparticle. .
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Fig. 3-14 (a) A scanning electron microscope image of gold nanoparticle pair
(radius 50 nm) embedded in a PVA film, (b) polarization dependence of light
scattering spectra of the gold nanoparticle pairs. Black spectrum is measured
with the light polarized along the gray arrow in (a), while a gray spectrum is
measured with the light polarized along the white arrow in (a).
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Fig.3-15 (a) Polarization dependence of light scattering spectra of single

gold nanoparticle, (b) peak intensity vs. polarization angle (@) of light
scattering spectra. Scattering efficiency at (A) and (B) in (a) correspond
to solid and gray circles with line in (b), respectively
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48 H—F / NFORESIXE HBOBIEKEN
4-1 KA XEVHBOFHDBITREKERE I 2L —vay

AETREET T AT RBORBKAEMEB—5F ) HT 05 RlED
CHLICT B, $TE£ITL FERERAVZLEE - R <2 P VoER
BRI TE&FT /RFOER S XEVIIA Y OBEICERICIDE L 20t
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HMAEICBNWTHLNERERE 2 ETHB: Mie BELER ICETOEHE %
RAWREET 5, 72, 3 BETRRZEDICER 2 EROHEBIER T2, RH
&0 4 FIERCEYRLTEE : 40 nm, EHEREZE : 8 nm, EMGC40, 7523
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HATET / RFICE U B ARk L (HELIFER. HRNERILRA L),
TRRETIXEVHBNY FIIRERBANY 7 T 5, Fig. 4-1(), 1(b)IZR
SN2 L) ICHHERRIERERE X (CFEL. Me HELEREHVES
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Fig. 4-1 Experimental (black lines) and calculated (gray lines) results of light
scattering (a, upper) and extinction (a, lower) spectra of gold colloidal solution
with N, from 1.33 to 1.41. (b) Experimental (lower solid circles) and calculated
(lower crosses with line) results of dependence on N,,, upon peak wavelength of
light scattering spectra. Experimental (upper solid circles) and calculated (upper
crosses with line) results on dependence of N,, upon peak wavelength of light
extinction spectra.
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Fig. 4-2 (a) The film was prepared on a glass substrate by spin-coating a mixture of aqueous
solution of PVA, colloidal gold particles (mean radius 40 nm), and ethylene glycole as
dispersant. The average film thickness was about 40 nm. On the film, a neat PVA film was
further overlayed three times by spin-coating an aqueous solution of PVA (3 wt%). The
average film thicknesses were about 190, 290, and 330 nm after each spin-coating procedure.
(b) The PMMA film was prepared on a glass substrate by spin-coating with the average
thickness of 3 pm. On the film, colloidal gold particles (mean radius 40 nm) was dispersed by
spin-coating. (c) The PVA film was prepared on a glass substrate by spin-coating with the
average thickness of 520 nm. On the prepared film, colloidal gold particles (mean radius 40
nm) was dispersed. Further, on the film, a neat PVA film was overlayed three times by spin-
coating an aqueous solution of PVA (3 wt%).
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A¥ A=+ LHBOBRFEMER LT T A Y I MiFg. 4-30)D
FEEIL 190 nm Lk o/zo AV I— FORBRTET / RFOSHHFEDL-T
BHT, A—D&F /KNFEZRDOTHIENTES, BEIEV(Fg. 4-30)&
%mﬁﬁﬁéézﬁvbﬁﬁgég<mg4«W?%&%i%:&ﬁ%éo:
NIEDE ) RARY POXKBEARS PVHIEDRP OET /T TIEIRLATT
AEEWRD L<IE PVA RRIZTE2MMTH S EFHL TS, PVA EODAY
Ya—bFEEC 3 ATV, FREYI- MRICFELBTICE T /T E RO
% Z E ARz, Fig. 4-3(a), 3O)DEHBELLA Ry P SBE—&F /W FITHE
THILIF3IEIRL,

Fig. 4-4(a), 4(b), 4 CH—EF / NFDOHBAL L 72 HEBELA R P V2R
BIZDWTRT, Fig 44 (ZED 5 &4 EE 30, 190, 290, 330 nm ® & X DXH
BLARZ FUVHBRRENT VDS, RETSI7XEV{HBOY -7 FERFEEOLE
meEBICRERY 7 ML, BEH 290 nm fHETE—-27KES 7 ML
TWh, 3BTHERBRLZLHIC, ZOE—7EENZELIZ Fig. 3-7 DHEA L [F
RRICET /HFORL 2EHMERIE N, DELE LTHLMITE S, 0F
D, &EF/NTFLEROERED LLIE PVA 71 VLADEIOBEKIE N, DB
MELTRETSXAEVRBNAY FEREERY 7 MEEDZILZHL2IIIRL
TWwb, ¥7:2 Fig. 44 IIRENTZARZ PVDOT 7 M LERE 7T X € 1B
NV FIEY 10nm A — 5 - DRI EFEREIFEICBEHERTHL L2 5,
BIZ, ZOE—7KEY 7 FOBMIZET /T2 EEK 200 nom DEIEIC
INVRETIXEVEBNY FONEZRDDLZ 2B L TWAM],

Fig 4-5 D#2, #3, #5 13 F 2N Fig 4-4(a), 4(b), 4()lxE L TV %, Fig4-5
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Scattering efficiency (a.u.)

(a) (b)

Fig. 4-3. Dark-field optical images of gold nanoparticles (mean radius
40 nm) embedded in (a) a PVA film with an average thickness of 30
and in the film after overlaying a 150 nm neat PVA layer. The images
show the almost same distribution of gold nanoparticles in the two
films. Some spots in (a) disappeared in (b), which means that further
coating may cover the defects on glass substrate or PVA film.

Fig. 4-4. Light scattering spectra of the
same single gold nanoparticles with
different average PVA film thickness of
30 (light gray), 190 (gray), 290 (dark
gray), and 330 (black) nm, respectively.
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Fig. 4-5. Dependence of average PVA film thickness on the
peak wavelength of light scattering spectra of single gold
nanoparticles. #1 to #5 mean single gold nanoparticles.
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Fig. 4-6. The peak wavelength vs. peak intensity of the light

scattering spectra with average PVA film thickness of 30 nm

(open squeres) and 190 nm (gray circles), respectively. #a to
#h mean single gold nanoparticles. '
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BEEO#EMICIE L) E-7ERORERY 7 PERL TV S, ThERD
&F JRTFOE—2HEEY 7 MIOWTUTIZEET 5, FHEE 30 nm D &
X#1 L#2 L3RR B E—ZE 590 nm & 600 nm Z RO, BEEAT 330 nm (2
BT A LALE—Z7%E 650 nm NV 7 Y5, FHEE 30 nm DL FiFR
W79 AEVHBE -7 BERICHT 28 ) BEORY —rEdRETHI L
% Fig. 3-7 127R L72o FHBEE 30 nm (2817 241 L#2 O¥ — 7 ERDE VI,
FNENDOET /RFORTFERIZIZIZHE LV, KTFEH ) BEEIH L h#2
5% 50 nm (Fig. 4-5 T#1l L2 DE— 7 FEROZEZEEDOZEL LTRAED S L)
EwizdELbER NS, 0%, EEOMEME & b IZERTE2H I EE
DARE—EHIFTIZRY . MFEEOATE - HEREPRIL L) IR D#
L# DY~V BEENE L 2o bBRTE S, 7. Fig. 3-8 O)DFIHEER
YOREDH#1 E#2 ORTFEEIZ 65 nm ERED bz, Th# L#2 DFE
YAddiic#a, #5 13 FHEE 30 nm TiXFE U ¥ — 7 R 570 nm 2 FHEO0 YR
B %330 nm (2T 5 L FRFRE— 2713590 nm & 610 nm 125N 5, F3
BEE 30 nm (CBIT5#4 L#5 OE—7BHLVvoid, TREhORTFHEIIR
Bods, WFEHOEEIH L V#5s FEVLDELEEX LD, D&,
BEEOHEME & bI2#1 b2 LABICHTFEROATE - ERVPRESL L)
2o 72 LR T E B[4], ¥ 72, Fig. 3-8 O)DFEFR L OLE N OH#4, #5 D
B FF1EE 50,450m & RED b/,

Fig. 4-6 \ZFXEE 30nm & 190 nm D & & DEET /K F(#a B H#)D I
AR FVOE— 2 REL -2 BEORBRERT, PHREOEME L
I F— 7 OSBRI LTVAE I DI b, TNEIZEET /RTFEH) BE
DEHHEEDREME L SHAHICHITHIERRLTEY, KEOENL
LLICY— 2 BEREF HTFOEROAIL o THERIL LV )RR EIIFL
TWwa, ¥, BFETSI7XEVHBOY -7 EEIZEY 10 nm +— 5 —DFEH
HAEBEIECKECBLT A2 LIE—&F /RTORBEARY P VHllE
X ) BRI ZEEORY —HoflE. BIIRFHFEREDOWUENTETD
5T LERBRL TS,
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4-3-2 RKE 75 XF OB EKEM

Fig. 4-2b)DFE (&F / KT8 PMMA )% B\ 72, PMMA & 1258
LB —&F  RNTFORBEAXRY MV EHIE LZD%, BEKIBIFE 1.33)
XIIBEHEH L~ — T a v 4 VIBITE 1516, ) 32 THV., BER
—D&EF I RFDOXBEARZ PVERRE L BO5NARN L LHELR <
7 MVEAL% Fig. 47 RS, TX—Va v I A VOBE, BEKOBEED
WE—EEPREERY 7 T2, BEKOBEDY 7 FEIZFH 45 nm Td
LEDIXLII—=TarFANVBEDY 7 FEIEIFEH 65 nm b, BHORE
WEOEML EBLKA TSI AEVKBOC - EEFEERES 7 T52
% Fig. 41 TIRLZD, COZLERLEREY 7 BRI Y—Ta 40V
DIBEFEPKICHRTREVLDTHELEZONS, YLD LS ICR—DH
FeR2HEHTHETSI LT, 4 X0%E L BAROEADBITEORE
ZHREIC T TR OSHISR A Z E AR & N7z, Feldmann et. al 3€F /714 X
ZIBVTHRHEA R PVHIEZIT., #EREBEEOFHEITEL AV:725
BT, U BEOEEEY 7 MVEOWTERBEEL LR85, &F
RFCTRERDOBREOLEFEROBINEI VB ENS -0, EHEIT
FERVLFETIRE -2 7 F 2BHUEL VS, 6]o

Fig. 4-20)DFABHE T /HTF 58 PMMA > F4 v FE, &5/ BF5
#PVA ¥ FA v FEYEHVE—&F ) HTFORBERARZ M VHIEET-
720 MY DBREZH—IITHI L THEEDELELERICOEEBIZLZANRY
MDD 7 b Wiz, EDFERE Fig. 4-8 (a) - 8 (A)ICERT 5, Fig. 4-8 (a), 8 (b)
\ZPVA, PMMA > F A v FEIZOWTREN L2 HEEA XY PV %, Fig. 4-8
©), 8 (DIZEFDE—HMEDE - ERKFUERT, E~ 7 EROEREY
TMIEBRVE-JBENEMLTWEDD D95, PVA ¥ F4 v FER
B& PMMA > FA v FIRABOERER 2 LB T2 & PVA & PMMA D&
WRELZTRE T XY HROE -7 FEITTR TS Z L A7 Fig. 4-8(c),
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Fig. 4-7. Red shift of the light scattering spectra due to environmental

refractive index increase. Light scattering spectra of the single gold
nanoparticles on PMMA films covered with air (refractive index N = 1.00)
or water (N = 1.33) (@), and air or oil (¥ = 1.52) (b).
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Fig. 4-8 Light scattering spectra of the single gold nanoparticles of PVA (a) and
PMMA (b) sandwich films illustrated in Fig. 4-2 (c); some experimental data
(black lines) and calculated scattering efficiency (gray lines) for particles of
different radii from 40 (bottom #1) to 50 (top #4) nm with 5 nm interval. Peak
intensity vs. peak wavelength of PVA (c) and PMMA (d) sandwich films;
experimental data (solid circles) and calculated data (open squares with line) (N, =
1.48 for PVA and 1.56 for PMMA) for different radii from 30 (bottom) to 50 (top)
nm with 5 nm interval.
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' Fig. 48 (75 b0 5%, ART FBRERET S L PVAT Y FA v FRO
BIRETEHER L ITIZHE L 2501 L. PMMA ¥ FA v FEDGEIXZD
A7 PVIEDETERRE L VL5, PMMA BEZEIZEC L7ZABORIEIC
BT, BHELEOEBETHICL ) ABEARY PP ELZ L3RR L2720,
A7 P NARRL B BEEE L THEDED PMMA BERNIZBT 5 THORRD
ZEzbhb,

44 5ES

AETIE, B—2F /RFOXKESI5 X HEORERFHEICOVTHR
R B BABAFTR—E&F /RFOXBEARY PVEIEZITW. BAFI
EBEANRY P VELERERE 7 I X EVEABROFBEOBINRMFERE L LTHHL
770 BIZ, MFZ2H O BEOHEMIE L) KBEARZ PVORKEEY 7 b
o, EET T XEERIIKTORERN 200 nm OBHFRTHRILILzH
LMLz SNLDOERIGE—ET /HNTORATIAEYHEZHTT
J A=At —=F—ORFFEREOHAF TR THSE I L 2R LTV,
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5% H—4&F /) NFOXBRME LSRR
5-1 EDBEEREFF AT I 7 ADOHFEDOHIK

SOBERER v — 7 BRI L > TR D Fbh, THAECTHEET /S
Y FOBEFOESLIZENY FOBFOEELIIFITEZLIENTES,
2] EDORFHE CLETFRE CIIFIZITERTE 4 24X10° Im K", 2.0X10°
MK LR D KELBLES, FoT 72 VBV ATEEHETSELEITE
FHERL. FORBTREFEATE2 LV BRI FT —F—TkEES
3l ZDERIT7 = s PEFBERIR, ERFHEZHV,. €135V, B, 5
JRFREIZOWTHEEINTE 2, Rosei FFEMICROLNTVEEDNY
FEET AV, EFRELACIZMETF Y FOREFOFERIINT HH55
DEAL(d—sp BBHERDO L) R FHEE T ML L 7. ZOFHE T 7 VI Fig. 5-1 (a),
GYREN TV EAEDOREL ERAEEH I LICIBZRET I AT VKBNS F
DY — 7 BEORE L PEEOEME ERIICHA TSI LIS LS - 6]
TiZ7 b PR BRINARS MVRIEOBITICAVONEDBEEETY
A+ 32 ADOBHEIEL > TWAB[T - 17]o B 2L, Hartland ¥ Rosei DEHETF
ErEV, 7o VIHHEOEIcEd R dosp EBHEREOR{LL LTEREL
BRIt b H)RATIXE VBNV FOE— 7 BEORE L PEROEMZ
i<ﬁ%bfw%moﬁﬁﬂyFbﬁ%u\?l$wﬁﬂ§®7lwsli
VEF—Ep il 734 eV ZDTENDETRELRICLZFERITTHEENVF
DEFDODESIILAERZ Y,

EONN I REEZAVZ7 2 5 PRERSHEICE ) EF-BF(e-e)flibl.
BEF-HKTF(e-ph)BiELIC X 2 BT DX MBS HLER ST S, T ORERA
~ 3 ps) L FRBBEREEI RO bNTWB[3], 2B ICFMZER L FIEEAT
I2E D ee HELIC X BRBIREFORIBEORKERIE 10 - £ 100 fs, e-ph
BELC L B2 EOBTFEHBREOBERYHE ps THS LRDOLNTV5([8-10]. &
FIRF RV 7 2 A FORIEIEIZ L D) ee BEL. e-ph BEL. BT
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Fig. 5-1 Temparture dependence of the plasmon resonance

band for the gold nanoparticles with radius of 11 nm in glass
substrate (a) [5] and of 6 nm in water (b) [6].
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(ph-ph)BXELUR AN D RILEGRTE) I & 5 KEhE MBS HERr ek k. HME
WAL LB ITRO LN TWAB[11-13]e BIE&T /R F DX Hai
DRFH A X, IR, BEHEL LOERIITbN Iz, KRN 8% 1
FFH A4 X, BRIZIEKE CERF L2V, RFEENE nm 127425 LA
L TEILT A I EBRENTVWA([14-17), T2, ETIREF /R F%
AW RIRIRARZ P VORBE 7T 7 7 4 VIZBENHIREIEED,S 7 =
LML —F—FRIZEVEF RTFICELBREONT I 1 X, BRIEEHE
BRARLNTVS[1821]c UEDIHCE&T /HNTOBERES 1T 3I7 R
B4 &G TERARCIVAEEREINTVS, LELEF /HTFEDY 1 X,
ik, BIRERI LV ZNLDOBEBELTEFIAF I AZEHET LIS
BE—&T HFHEFEETH L, B—€T /HFOBEFIFATI7 ADH
EFE LTIIRESBTHEZHW 0055 522, 23], LA LE—&TF /H
FOBFFAFTIZRAEARY PVOREREAP LRI BHE I I NGO T
THbo

RETIE7 =& FEBEBES RV AT L2 BE—&F /RFITCH L 72K
BAEBRDB, LEERBEOBEIEEHREANRS FVvOR{LEHIEL, &F /K
FORBEMBGHBE L ERT 5. HEERDEFREDOER L, £D eph
HEIC L DEFRPOBFRNDIANT—BE L E Y D phph BELIC L B8
FADBIAFANF-BEICLZ2ET. BF2E0ET / NTEFROREET
PRETWVWAILERL, BICHTFREDENICL 58T /KT DOREIEME
BHBRIZIOWTEET 5,

528 RLEE

5-2-1 7 = & P BXEELA RS Vil

FH L LTS/ HFSEPVA R T4H4%: 40 nm) (Fig. 34@)&E
F ) BT PVA ¥ ¥ K4 v FECEDRFE4E: 40, 125 nm) (Fig. 3-4) T AV
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720 B—&F /NTFOBBRRETF AT IZA%ARLD7 = 2 MELHE
SHBEEIT 0720 BHIEN/ VR0 Ho)Z# 1 BREET /W7 IR L., REt
BIBOXHEART PUPELL VL IFEXE SV ADIAVF-% TFIiF 2
ZET, 77— ary LEWEL ) +HEWNEE0 Wiemd)% B/ SV A0
TANF =& Lz, BREASHABELE (AS) (3A5=1-5,,/Spuor & EFE L 720
ASIZDOWTEHLKIZ2EZHR) T TS, & S b3 Fig. 5-2@I2RT & 9 IS,
ZREIERERHRO 70— 7 ROBAMETH B, Fig. 5-2b) B 2
(390 nm)FEE7E 1 ps 2*5 10 ps ¥ TORMGHHEHEA X7 M VASW)ZERT
KEEERICKE 7 XEL /N FOE—Z35EL 10 ps TIZIZEET S S
EBR SN, ZOBRIGERIICE T T FARBEORE BB RS
BEDFHER LB LTH 5[12],

Fig. 5-2(c)iZ 580 nm ICBIT B AS DWE L BIE %R T, Fig. 5-3 IZRENT W
% &9 TR ENZBEFOIFNF— IMMHBM(Fig 5-30)ICHE ee BLHEL
(Fig. 5-3bNICL Y BAL L., TDBRIZ 7 = & PRSIV AFHEEE 10 fs BLAIC
BDB[11-17]c L2 LEGHRBED A 7 L OREESEREIZ 400 fs TH B, Lo
TRUINTAS OB 7O 7 7 A VIIRBIEICE Y ERBLABFRED, 20
BRI GHBETHBEATE S, Thbb, Fig. 53 IRENTVB XS I1248T
JHFRIZBIT 5 eph BELIC X 2BF R SBTR DTN F—BEIBE
(Fig. 5-3@) & &F 7 MF LB Y OBREPVA) O ph - ph HEIC L 24F /8T
25 ) DEAFENT IOV F — P BB (Fig. 5-3(d)E KB L T3, eph BiEL
WEBTOERTET OLRIZEERENS,

dI,

CAT)=-8L-1) (5-1)
dT,
C}—dT’ =g(T.-T) (52

CITgldephFEEEHLMINE0105)X10" W m?K!' Tdh 5, e-ph FELIC
L BB RV ¥ — OFHABRORERIZE Y 28, ph-ph BELC & 2HkEL

66



scattering efficiency (a.u.)

58 M—gF N FOKXGENE L BEFBE

after E
2
S
1 : I : 1 Y
550 650 750 <
wavelength / nm
(@
500 600 700
wavelength / nm
(b)
F T T T T T
0.00 %y
~ - e at 580 nm ;
S -004F -
< 5
<
S -0.08F
2 B
0.12
3
-5
delay /ps
©

Fig. 5-2 (a) Light scattering spectra of a single gold nanoparticle (mean
radius 40 nm) before (black line) and after (gray line) laser excitation. (b)
Transient scattering spectra of a single gold nanoparticle at 1, 2, 4, and 10
ps after 390 nm excitation. (c) The kinetics of surface plasmon band at
peak wavelength (580 nm) from delay time of -2.5 to 25 ps.
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Fig. 5-3 Schematic illustration of the electron distribution in the
conduction band of a metal (gold nanoparticle). (a) Excitation with a
laser pulse promotes electrons with maximum energy equal to the
excitation energy (390 nm). This electron distribution is nonthermal with
regard to Fermi-Dirac statics which describes the electron distribution for
a given electron temperature. (b), (c) Electron-phonon coupling and
phonon-phonon interactions with the surrounding medium lead to the
cooling of the electron gas as illustrated by the other curves. (d) Finally,
the system returns to its starting electron temperature.
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FANVEF-BEOEEERIZ 50 ps LLELHRE SN TVS([11-17]c Fig. 5-2(c)DAS D
EEER0ps I TORB IO 7 7 ANVEREBBERT7 v 77 LI2ET A,
BIEORERIE 3 ps Thole ZORRIIEITUA FEEHRTFHE 15 nmyK
BROBESBHRERSBHErORDONIfEE L V—FE L, LD X
ARG HY AT LATE—&F VRTFOBERET AT I 7 AOWENTE
5ZERRLTVWA[12]

5-2-2 SeEhEINE & BGRABRE DN ERFNE

Fig. 3-4C) DR EFHVT = A PRBEART P VHIEEFT o720 BB
AWzeF ) HFOFHRFEEIL 40 nm & 125 om TH 5B, ¥ F v FIR
DBA, ZRICEVEY ORIFTEIHTEICRRLILIFMRALOND 2D 3 &
TRLZEIICKRHEEARZ VO -V BEP LR TERERBOHL LN
W2, #0FE%E, Fig. 5-4(a) & Fig. 5S-5@ICRSN/Tc g —F I NFH(ZhZh
#1, #2 LIER)ORHBER Y PVOY -7 EEDP L ENETIH L#2 OHTFF
212 55, 120 nm L RED N, B4 D 2 OBE—&F /KT OBEEILEHE
MBAHBROBERRERT . BEAESVAZFINVF-RZTTL—arl
XWEL )T EVEEIDE, 830 ulem® & L7, Fig. 5-4()& Fig. 5-5(b)
WCEIREYE SV 2 (390 nm)BBEEE 1 & 12 ps DRFESHEAEHELA RS P VASA) %
777 o Fig. 5-40b) CAABRER KT 7 XE NV FOE- 7 REL 12ps
TIZIZEMET % 2 & PEH S 2% Fig 5-50) TIXASQ)DEILESF P 2§ ET
RET 5 XEYNY F¥— 27 OELEHRT & 2% o 72, Fig. 5-4(c) & Fig. 5-5(c)
IEE 7T AEVERBOY— 7 EEICBIT5AS OBE L B L EERE 25 ps
¥ TRT o AS DER/AMEIZ#1 £5-02 Z2DIIx L#2 13-0.04 & 7% 1) [F] UM
TOEDS DL DAEI NS EPFHLPIC R oz, TOEEE LT 120 nm DL
FOBESIER TS XE VNV FORHIR72ORBERLIH LT 55 nm DFL
FOLH)ICHBICEIEL W EFEL OIS, $FRADBINENELRY
FRBED 55mm ORFICHAN 120nm ORFHE»Z NENZ LI TFEINS,
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Fig. 5-4 (a) Light scattering spectrum of a single gold nanoparticle
(radius 55 nm) before laser excitation. (b) Transient scattering spectra of
single gold nanoparticle at 1ps (b, upper) and 12 ps (b, lower) after 390
nm excitation. (¢) The kinetics of surface plasmon band at peak
wavelength (610 nm) from -2.5 to 25 ps. (d) The kinetics of its surface
plasmon band at peak wavelength (610 nm) from -2.5 to 1000 ps.
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Fig. 5-5 (a) Light scattering spectrum of a single gold nanoparticle
(radius 120 nm) before laser excitation. (b) Transient scattering spectra of
single gold nanoparticle at 1ps (b, upper) and 12 ps (b, lower) after 390
nm excitation. (c) The kinetics of surface plasmon band at peak
wavelength (660 nm) from -2.5 to 25 ps. (d) The kinetics of its surface
plasmon band at peak wavelength (610 nm) from -2.5 to 1000 ps.
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Fig. 5-4(c) & Fig. 5-5(c)DAS DBIERFE 30 ps T TORE SO 7 7 4 V23K
BMBT714 9707 Lk Zs, BEOEERIIZNEN 33 ps & 40 ps Th
NIZIZF L THhHo/ze CORRIEETTL FRITFEZE 15 nmKBR OB S
FESH BT CHEDXIMDP 5B ONEOEENTH Y eph HELICL A EF
R ORFRNDIANF—BEBEEE L TV 5[12]. Fig. 5-4(d) & Fig. 5-5(d)
DAS DIEERFE 1 ns T TOREELIE, BIZ—BIZRZ2ESHH 5, A
DEGF T A FEBZ AV JZICOWTRIEEREY 1 mlom® 4 — 57— {4k
DEBEMEDEICHREZINTE)., £F /HFOREFZRICHRTHED T
S BBLRIIBHEN, TNV OEDREETIIEA I N TV V[, 8-10]
Lo THED PVA FEiRICE ) BENICEERET S LI2L o THELLHEED
BmZ LICERT2AS OB L LTELZ L NS,

RIZEF /HFOLABESRED 5, Fig. 5-6(a), 6(b), 6(c)IZFNFNEL
5 RLF-HEE(15, 55, 120 nm)DEF / KL F O REBHTER A X7 b Vo, ) (K#E)
L EREEMERANRY PV oA EBETRT. 2 ETHALALREQ10), -
INZETVIT) XL ERVEEE2To 720 EOERBIRRIIN VI DEEH W
[241c N, 13 PVA O 148 Z i\ 2720 &7 /7 R FICRIRBTERE XA X2 b Vo, )
oML o MDETKREINS, KIFHED 15 nm D & &6,,(390 nm) i3
0,390 nm)?D 28 FETH VHERW LT ANF—XIZ L A YL F /RFITRIT
ENDEEZTEIVH, FFEEH 55mm, 120nm D & X T FNFUT 3.2 £,
19 &), BBEICIZRIANVF-—DBREEERL TE&TF / HF ORI
LZZ A NVF—25 B L2 iTh v, ZORKR. #1 L#2 Do, VHiIZFR
FR1IX10 m? & 624X 10" m? & % 5o BRI/ SV A T3 )L ¥ — 830 wiem?
DEZDHL L2 BRITWD LAV F —%#1 L#2 OFEETES L 2.0X10° J/m®
& 72X10 I’ &2 B EDBEFHELERTFRHBESDINITH L2 DERELE
TRBMOL I LKL, ITETHREROFEBELZMHEIIIT). 72V IFKOA
FOBFIRBIANT-OXELZTT, 72V IKONENCHEAR L-BF
DAVBRIANTF -2 ZITWE, Lo TEFREIZEFILT7 =V I ZRO/E
A LB TFOBNFHEZ 5720, BFLHE C AL, EUWICR C(T) =

72



58 E—g7)  WTFONLBENE L BERAEE
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Fig. 5-6 Spectra of 6_(A) (gray line) and o, (A) (black line) of the single
gold nanoparticles; (a) particle radius of 15 nm, (b) 55 nm, and (c) 120
nm. 6, (A) - 6.(A) corresponds to G, (A).
radius a /nm ‘ 55 120
volume V/m® 7.0 X107 72.4 X107
absorption cross section O, /m’ 1.69 X107 - 6.24X10"
electron temperture AT K 2450 1450
lattice temperture AT /K 83 30

fluence of excitation pulse (390 nm) I, =8.3 X 10’ Jm®
electronic specific heat Ce=1.98 X10°Jm’K"at300K  Ce=¥Te =66 Jm’K*
lattice specific heat C1=2.4X10°Jm’K"

Table 5-1 Electron and lattice temperture rise calculated as the

parameters of particle radius, absorption cross section, fluence of
excitation pulse, electronic specific heat, and lattice specific heat.
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YT, THR 5%, pdTHE 66 T m?® K2 % Fv72[25, 26], BENEHE L HIZC
PEMTAHI LR, T,AREVELBETFOGHEEIN B 25 LE2RLTS
NERIZL o TOHPDOLNT WA, 13], TDHER, #1. 2D T,OLRIZ#
NEN 2450° & 1450° L RBED bNize BRI ANF—IE L L TH# L#2
DimE EFIZ 1000° £, AS OFR/MEDEVORERRE B b S, HFHE
CURREDTNAIRED165 K TH S, TN LD iFE0IIERNEIRGE00 K)
TIIZIZ—EE LIS, HFEETM LA 83" & 30° LREbOIA, ik
SCERE 2.4 X 10°J/m?K 2 7z, #1 L#2 DAS OEIEDEEERIZF N EN 33 ps
40 ps TH) EROBERLFDERTH B, BINZANVF—D3 5%
THOEDORERIZI1IBICL2rL25T, BREOHBEN L W2 5[13], Table 5-1
CEET /HTFORERREI LD,

5-3 ¥E

AETIE, 7z "BRABES L AT HVWAE L2 BE—&F ) HF
DEBEEBTF VAT IZ AV THR, 7 x4 MRV XFHERTHZ DL
HELA XY P VHIEZIT. RSB EBELA )7 MLz Bk, v A B ERRH
DEKELTRDZZEICHEIIL., AERREIBEEROEFRE LR IH]
BFRPOBTRNOIZINF—BEHLET /HTF25E ) ORE~DHT X
VE—BEIE LTHBT A LN TE, REOERBINGRIZ, 724 M
BEROEBES EEIFEEICERETHK 100m OF VHFOBEERETF Y1 F 3
JADBE—F ) NFHECEHNTHSZLERLTV S,
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6 = HE—FHEESOBEBEEES X

6-1 %S

B ROSKHE TR, BEHELT AV ESRAENEICHVDL
NTE, LaL. BEORFELRMGT, BHEEE LTHRR YA XOFRE
ERERTADIE—BICHETHL, ZOHE, METEIR/NOEET A X
70— T HOEXARY VOF A ATHRED, Bpm THD, HITMER
BEESOBTFREBICHTABRE2EL DI, RETIE, B—FRF/E&D
SHHEFEE L TERERE S ELER LIBREBR5, IRHBROINEE
EANRZ MEFHBTAEIETY T um~Bpym A XOE—FRBAFOE

EARE, BERBOETFARY MVICHT2EHREBLIZLZHMLL. 9.
RYLVE—BESADOBE LRIV T, 28 ICEREAFMEE LT
EHERTWBERY D TEF LV F/ERICEALIZEREENS,

6-2 B —fh T SR

KEDORY L S <) L ¥ (Guaranteed Reagene, Nacalai Tesque ft)/T
¥ ) — VEHBE L AEERETF A - BRETHILTHOLNZ, "YUV
VESHIZBIIANRY LU FTFOEEIL 5.32 molliter ThHhb, X LI FFD
EFEEREBORGEBIEREICE o TRE 225, 390nm TH 7X10° liter
mole” ecm? TH B[] T ¥ /85— b - R—VAIFHEY LD ERET S &, JME
% 1/10 12 7 B B3R PEEE(Skin depth)iZ 2 ~3 pum & RFED b7z,

H1) V7 F L ¥ (poly(DCHD)) T/ #ECFHHFEGE DY A X 200 nm)iIFALK
FHEFEErI SREEI N LD TH S, polyDCHD)T / Feuld P T7EF L v
It THbD 51-FFhTA4V-1,12-TVF—V CA@-TrF T A NVKEZNVRAF
VoL ¥ ) @BCMU)DE ) v —BERZRNRICIVEMHEST A LICX
D RBERESFESE LTHE SN2, poly(DCHD)I O 4 FK&EW® = AV Fig.

7



6 F B —HRHEEE DBROLEE Tt

3-4) fERL L 7= D L [F U H BT poly(DCHD) T/ ¥ &8 PVA H > F A v+
Bz ERR L7z,

6-3FERLER
6-3-1 X1 L ekt & D SEROEHEL T

NV YHRDEFANRS PVEMICRARLATE Y, HETERY LY
T/RBIBNTT A ADENIZIEELART PVOBEVIHREINA TV S
Blo £/, ¥a® - F/BREREARI MVHIEEBHVWI X v —EE L2 L0
BETFSAF I 7 ADMEIEHEL P oiTbRTER(, 41110 LA L. FiRIiZ
BWTERY VU HEROBEREFIAFI 7 AEERARY P VEIEE AW
TEEBEN T OEZRETH ). 72 VIEBEESESHZHV-ERHEDS
IThNTWVB[12]e A IZE —~RY LV UVEESD 7 24 PHRINA~Y PV E
7z b MEFEANRZ PVAEEITVCHENEERORBE L BEERETF Y1+
IV AEBW LI, HEASHBRINA R PV Fig. 2-6 O)DLER T AVIE
L7z #4 X 50X50m & 10X10um DR LU EEEHVE, ym +—%
—DFEETIRRADHREDEAR LR LI VERETOFFOBEFIREENH A X
LICRERBI LS D 2T, BN RBESHCRALET Y4 F 3 7 A3 lE
HELLEZOND, BRIV KELERZOABETIE. BEABTHOEZE
KEFEL B 720, K2 7HICE D BEHICTE2ZRRINUC & Y BELDES RS
F3o EoT. BESELHEANYS FLIC, BEARENA S b LI
UHMrEns &2 b5,

Fig. 6-1 (a), 1(b)ICFhRERR 1 ps #°5 7 ps T TORFEDHBILA RS bV LB
RO BEREELA RS PV ETRT . BIELEREIX TN EN 6.7 ml/em® & 6.4 m/em?
THbo HHDART PVERIZ LSBTV S, R L #EEICIE 7200m 128
EEF R 1 BEREES,)ORIN. 630nm (< S, & BFEEKIES)D A v 7Y &
FEBIEILoTHELEZIFII—(E)DPWINFHETHZ EFHONT
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Fig. 6-1(a) Transient absorption spéctra of
and (b) transient light scattering spectra of

500 550 600 650 700 750
wavelength / nm

(b)

perylene crystal (50 X50 2 m)
perylene crystal (10X10 2 m)

from 1ps to 7 ps after 390 nm excitation. An absorption around (A)
corresponds to excimer (630 nm), and that around (B) corresponds to S,

(720 nm).
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Wh([1]e S, DFMITNRY L /b VI v BT OB BRI E Tk B
/W TH o7z, Fig. 6-1 (@DBYIRENIREFEGBRINA T MVIZBWTS,
ZHIET 5 720nm fHEDREERE Y 2B TROLZEAH LRI ETRT. ZORK
DIIEBEI S, PHFETAHILICLVAELS S-S, 7=kl —Taryis 8D
RECRLTVETAEEND S, T-HEEICS, & SGPHEETLHIELIZLS
BELIF U —AERICES S, OXFELRLTWAAERELRERTWVB[12],
R 3 ER XA X 7} V@ 630nm (Fig. 6-1@)DANDE— 71X S, & S, 25 v 7
VY7 LELLIXF U —ORINERL TWA[12], FBDOEMIHES @B
BELANR PVOAEBIZHDBENTWEZ LibH 5, FiZERR7 720nm
& 630nm DAabs & AS DEEEIZE{LZ Fig. 6-2(a), 200)IR T, BRI EIRIT A ~<
7 M VERBRSBRIEBELANRY PVORBTORLAL I, S, DFEERZD
B EPERT 720nm BT BAabs LASOBLEZFIT—DWoL YL
72 % F Y 630nm BEMAFFZEON, T O—BUIHE SR EEL S ik T
BRI ek L FRR BB RET S A F I 7 AR TELILERLT
W5, Fig. 6-2 IZBWT S, DR ERDITHIDT 5 ¥ 2~ —D AP Him
BRlEh e olz, F72720nm (ZB1F 5 Aabs £ AS DI H EA%IE 630nm L[ U
Tholz IZZNIT S, DEBEEBAHEIZ S-S, 7=kl —a iZisdbon
THh, TF v —OERIIEICECREEREFE SR 400 s DA)TRD
SDTWVEIEEZRLTWAUESEND S,

RYVVHERET A ZDEBNZ L DUEEROBCIIOWTLUT THRT 5,
Fig. 6-3(@)IH 4 XD R B R L U EFE#, #2, 43, #4, #5)OFEMEBZ R T
Fig. 6-3(b)IZLERELA 27 P VDR R 4 XK %R+, BT mEie L.
HEEARST PVITH A AT EICEL 2 BB OREEEFBR SN2, K5
AR EIRBBEDEBIZT TR FOEE B RL > T\ b, Fig. 64 IZIRH)
DI HBEBRERERT A XDBRBRERT o fdaT A XITHHI L TIREIOFHE
BRUIHENT 50 THIIREEEIEREATICBIT 2 70— T HOLEREHC
EB5THILLIZBDTHEILERL TS, R4 X0BME & b IZIRE
BEDESPEL 2501, HET A XK EVIT ETREVEED 5 OEELED
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Fig. 6-2 Temporal profiles of transient absorption (a, ¢) and transient light
scattering (b, d) at 630 nm (excimer) and 720 nm ( S,). A decay time constant
of the S, band was 2 ps. Fast decay of the S, dose not correspond to the rise of
the excimer, thus this fast decay might be due to S-S, annihilation.
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Scattering efficiency (a.u.)
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Fig. 6-3 (a) Microscope images of individual perylene microcrystals. (b) Light
scattering spectra of individual perylene microcrystals. (b) Transient light
scattering spectra of individual perylene microcrystals at 2 ps after excitation.
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Fig. 6-4 Mean frequency of oscillation vs. crystal size;
experimental data (solid circles) of each crystal (#1 to #4
of Fig. 6-3) and its fitting curve (black line).
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Fig. 6-5 Period of oscillation of light scattering
spectra of #3 in Fig. 6-3 vs. wavenumber
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BERELRILZY, o THERLERPLD /A X242y, B
BLEDTHESET L, REEEFE T > T LEDLNRB, Fig. 6-5 1Z#3 IC
DWTEBERBABOREBRERT . BEA/HE VI EREFMHITES 25 C
DD E, THENRY VY OBITROEBKAFERZRL TB Y. BEIVNE
WIRETRITRIVNE 22 7D EFHHATE B0 WEEBBERIC D) B
—ETHhHBKR)AF L YERTOHEETIRERIC LIFBFHIE—ETh o7,
Fig. 6-3(c)IZ eI 1% 2 ps DREMSBEHBELA T PV ORI 4 ZIKEH
ZRY o Fig. 6-3(b) & [ UAHOIREIEE D], 2 IOV TREBHI SN 5, e
HERFHRER LR LD S1 & ZF I~ —DRIRD 72 DIREIHE & D IRIE A
BA$ 5 Z LI2X D Fig. 6-3(b) & B UAHOREEEI N L £ 2 5N 5 Fig.
MMWM&MJSKowfﬁﬁﬁﬁﬁﬁgéﬂ&w®MHg6xm&ﬁtﬂ$?
HY. BEXOTHEROETIRRATHL LELZLND,

Fig. 6-6(a)!Z Fig. 6-3(a)D#4 (22 THRIEGRR -1, 1, 8 ps DIEHELA XY
M VBRI RORER) & HBEA NS P VEBERT, R L VI 7200m
\ZS; DRI, 630nm 2 E, DWINHDFFFET 5 2 E Db N T 5[8], Fig. 6-6 (a),
6(b) 630nm & 720nm (2B % AS DAL E RT3 E 2 IR LX) 12,
Fig. 6-6 IZ E,DW o> ) L72@AZRL TV 5, Fig. 6-6 DIIRENT S, D
ﬁ&u&&7:tu—vay;5&@%ﬁ%%bfw%oHg&ﬂ@ﬁﬁg&
3@)D#2 I DV TEIEEEE -1, 1, 8 ps DIEELA XY b VERRI S RIRE) &
KBEART PIVERERT . REBESZOFH2E 2 TREIBI LT
W< DA DB 5, Fig. 6-7 (a), 7(b) 630nm & 720nm (ZBi) % AS DEEREEIL %R
o EHERIC Fig. 6-2 (a), 2(b), 2(c), 2(d) & Fig. 6-6 (a), 6(b)IZRE Nz & [F Uk
ML Z/R$H5, Fig. 6-7 OICREN S, ORBIITLIVELRZ S, Zhiks,
DERERIEIZL B LV ERDBITRORLIC L ) IREEEDIRIBOA T
R ZFDOFOE L EICXATEREELD S,
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Fig. 6-6 (a) Light scattering (gray line, right axis) and transient light scattering
(black line, left axis) spectra of the single perylene crystal #4 of Fig. 6-3 (8.0X8.0
pm) at -1 ps (upper), 1 ps (middle), and 8 ps (lower) after 390 nm excitation. The
kinetics of excimer (b) and S, (c) from delay time of -4 to 9 ps.
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Fig. 6-7 (a) Light scattering (gray line, right axis) and transient light scattering
(black line, left axis) spectra of the single perylene crystal # 2 of Fig. 6-3 (1.7 X
1.7p4m) at -1 ps (upper), 1 ps (middle), and 8 ps (lower) after 390 nm
excitation. (b) (c) The kinetics of excimer (b) and S, (c) from delay time of -4
to 8 ps.
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Fig. 6-8(a) Polarization dependence of light scattering spectra of single
poly(DCHD)nanocrystal (mean particle size 200 nm) in a PVA sandwich film, (b) peak

intensity vs. polarization angle () of light scattering spectra.
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Fig. 6-9 Light scattering spectra of single poly(DCHD) nanocrystals (mean
particle size 200 nm). Inset shows that positions of peak wavelength are
different from each other.
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Fig. 6-8(a)!C Fig. 3-12 D HZFERICIVPEL-E—-KY V7 ExF1L v
(poly(DCHD)) T / #& @ DHEELA R 7 M VDO KFEM % /RT, Fig. 6-8(b)IZkEk
EARZ PVOY -7 BEDOERERERT, 04270°0 & X 2B S hTw
7z poly(DCHD) 7 / #& s D HERELA X7 PV A180° TIZESIZHE IR T % o
poly(DCHD)IE EH FMICZDEE RSN L Tn- B RICHRT 2 ICKE
REBEBFERD. Lo T Fig. 6-8 BIBBIBRFIF—FMEHVTWE I &
Z/ L. Bl E N7z poly(DCHD) T/ #E P BAER TH 2 Z L #RL TWwab, Fig.
6-9 IZHEEITEUMIRE L 72— poly(DCHD) F / #E @D HEEA XY F VERT,
FHRELARY PV E— 7 BETHREE L, BRILICFORBE A~ b
VIEIRIZER R B, Fig. 6-9 DIFEARICEHBEARS POV — 2 DIEkE %R
To MBI EIZEDE - RIZEL 5, poly(DCHD) T / #E& Bk ER % B
WEMHZEICB W THREY 4 XPEMT 5 L BHBARY PLOY -2 kE
BRERY 7 FTAZLPHEILOONTEY, Fg. 69 IIRENT-FNFLDOR
BEARY ML OBNIERT A XOBCE LTELLNS2], BEFA X0
BEMIERT -7 EREIEEREY 7 VoYBENERRBEETI o0 oTH
53, BE. EFHREEENICBIT S 70— T ROTHEMie HEYODHRED
RED»HHFEEIN TV 5,

6-4 FS

BH—~) L i s & Bi— poly(DCHD) J- / # & DBEMOEEEL S %247 o 720

T A X 12~20pm OXRY L UHEERED 7 = & N FPE RS RESEMOCEEL 56
BETV, TOBFIAFTITAZER LIz, BBELARY PVICKERY 1 X
umﬁbt%%%mﬁﬁhé:k%mb\ﬁ%wﬁﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬂx
N7 PVICHEND Z L ZRL7Z. IREVBPOBITRERD 5 70— 7 HORE
MBI A SERNTHICL o TREMBEEVE L DD TH B L EEE L,
poly(DCHD) 7 / #& & IZ DO W TH FEBICE L2 2 KBELA R PV ERIE Lz, &
DFERZEMWEDOERER L OB LT A ADEVERBL TWE EEX

88



6 7 H—H B E DBBOLEELT L

bbb,

2% (K

1 R. M. Hochestrasser, J. Chem. Phys. 40, 2559 (1964).

2 3 ¥, WALKRFEE L FEMEIT (1996).

3 T. Seko, K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama, and J. Tanaka, Chem.
Phys. Lett. 291, 438 (1998).

4 M. D. Cohen, R. Haberkorn, E. Huler, Z. Ludmer, M. E. Michel-Beyerle, D.
Rabinovich, R. Sharon, A. Warshel, and V. Yakhot, Chem. Phys. 27, 211 (1978).

5 E. V. Freydorf, J. Kinder, and M. E. Michel-Beyerle, Chem. Phys. 27, 199 (1978).

6 K. A. Nelson, D. D. Dlott, and M. D. Fayer, Chem. Phys. Lett. 64, 88 (1979).

7 H. Auweter, D. Ramer, B. Kunze, and H. C. Wolf, Chem. Phys. Lett. 85, 325 (1982).
8 H. Nishimura, A. Matsui, and M. Iemura, J. Phys. Soc. Jpn. 51, 1341, (1982).

9 B. Walker, H. Port, and H. C. Wolf, Chem. Phys. 92, 177 (1985).

10 H. Nishimura, T. Yamaoka, K. Mizuno, M. Iemura, and A. Matsui J. Phys. Soc. Jpn.
53, 3999, (1984).

11 K. Mizuno and A. Matsui, J. Lumin, 38, 323, (1987).

12 EERERIL . RIRKZEE LFALRR30(1998).

89



7

7T E B
ARETEARBLICBIAIEEZRIEL., 20ERTBRS,

1 BETR, BE—F VRFSEOBR EFEMABESHOER IOV TR, B—TF
JHFREICE ) 20XYEEZ YA X, BIR, BFREL 20BEFRELOMHBEO Db 12
HODPIZTHIEHNTED, B—F /W FAHE LTEE. BIL. BEELS D LE % R
B, HIETik2EFBE, BESEEL LIZOVWTHW, 2088, ¥—F JHFOETF
ART MPVEIFB L. 2OFDFAFI 2 A2HLPICT AFERE L CEBIEHELT LD
EHTHLI LE2H L7,

2 BTE, SRV AT LAEBRFEICOVTRN, 5. F/RFLEROHEEA
% Mie (iELER  HVHB L7z RICEMEHELSBOREEZR L., BABIERA & 54
YT T ATV - LBV REMEE AVER L7 = & PRBEEEEELS Y A5 A
COWTHH L, MIEkER, RESHEE. RUEBRZ2 O A F 208E 285
L7z,

3BT, BE—&F /RFOXE TSI XE Ly XBORE., BREEEOBEEIZOWT
BHEHELG Y AT 22 & T /T RHTICEA LR 2R, W—2EERIcaE L7
EF I HF—RBOXBEARZ PVERIEL. BONIRTFEORRELANRY P LOE
WERFHFEDBWIIISGRE I ATV HEOEIL LT Mie BELHEZZHEVTER L
720 BICHBELANRS PVIC2DOOKRE TSI AT DORBY — 7 BBNBIEEAITONT,
KEELANRT P VORKIEEEZHEL, TOBRETRTORKRE 2 RFEHELEHOBS
PHOEELTL,

4 ETE, BE—F /HNTFORAE T 7 X EBOREKRER OB E IOV THEML
BELF KA T L2 B—&F /HFICH LR 2R, A—0&F 7 HFI2onT
Y OEGEEEA TS THEEARY PVOBLZREL, 2OEREER ST XE
YABORGEOBIREKFROB I OBR L2 BIC, €7 /HF2HO &80 FEES

90



7 & BE

LR . FNICE b D) RBEARY MO LRE T T XE Y DOHEBIZE Y # 200
nm DBIFRTCHRILZIELEXFHELRLICL. 2. &F /HFORE T 7 XEVHEIZ/E
%% 10nm D RFTFEREBICEFICBRICIDETLILERLT,

5 ®TIE, B—4F BT OREIENS L BEBROREICO VT 7 = & MERE
HESHY AT L EE—EF JRTFICHEA L, REEEOBELHER <2 LV OBRE
REREDD. &/ KFORREMNS L BSHBE 2 %% L. BREROETFRED
FRE. 2ORBET-ETHRAEERCL 2EFRPOBTR~OIAVF—BEHLEY
DEA~DBIINFE—BEICLHET. BFrE01EF  HFLEORERETIEE
TWVWB I LR L. BIZET /RFOREHEME L BBABREOY A TEAFEIZONT
EE | Mie HELEGR T HVTEEL

6 ETIX., 7zl NOEBMAEEES K AT LERY VUBEREER) DT EF LY
F I REEIER LR R, T, RV UG E NS L ) BV TR R R R
E L BEASEEREABNEETV. BRETRED S 1+ 37 AW THKRDOHERTRF L
N3z L xMEEEREORED SR LIz, BHELA RS MV ERBSELHELA RS bV
TS A4 DRI L7 REEESEN A Z L 2R, CORBEERLX SO - T HOKERE
HIZB AL ERSTEHBICLoTELLZDIDTHAEILER LI, T2, RV TV TEFL
Y F I EREOKELA 7 P VOREEED S E—FBT / BROGTHHEFTRETH S
ZEERL, BIEEY S A0BVIGERT AHFEDARY PVOBVIIDVWTEREL
726

Bif. BEHEFREELE—F  RNFORBEANRY PVoflEEk s L TER L7ZER
TFDPRE S NIEDTVE A, B—F /R TakEE UTRILLZOEFMETHDO T
Thhbo |

A2 CRIR L SEMAERES Y AT L F /RF—RDODEFART VOl
L AF AL LTHELOEETELILEET /T AVIERE Mie BUELER T H
WEEEIZ L ORI LTz BICASEY AT MITAER T /R FICOBERATRERLEZ L ZRY
SreFLrF I EREHVRL. £/, B—&F JRTORE S5 ATV #HK%E 7T

91



7 & #BE

— 7 LT/ EROFEREMNEF TR TH DI EE2HELMII LT,

BMAEBELT VAT LI T2 MR TN, TO—THhEZEATHILICLD T
A MBOBROBEETE—F /) NFORBEARY P VORIEEZTEEE LS & I3AR
VRN TH L, €5/ NFOERBITERD LA REIZF /I —HNEOBREEE
FFAF IV RABEATELEETH D I EIREN,

ABRIC L o T, BEBMEEES BB EME, BEXET AR, N4 TRV —% L
LLTHRENBETHA )B4 LBEOT / HTFoWt. K. #ite —HEDY 1 X,
BK, BATSEL CoBKE LTRATZFRE L TEETH L I EFHL ML o727
TR, TN F/NFEOMEER., 7/ RFLRIREOHEERZHEHLM?IILT
FTLEARTR2FEE LTHEFTOA T L ELLRE,

RGHERZ T < ok, EEREMBEARM, NSOM, SEM % &), k~v=¥al—3
v ERALFELEAEDRIIETAVAIY Yy 2 ROFH LOHESEH 24 ) BI X
KHD R 91 = X L DBHALH LRBERORER., H25 i 2oEmsifbicEmL Twz
LEEIFT B, BlxiE, EFIESHR. EROLHELS LE L REEE T ~ v ok r EAE
bt s = L TREBM L& T/ RTFOFA4 X, ik, BB L COMKE LCREH
7~ YRHROWE - HHZITV, BICBHEAR, REWEONEEL L THYL LTT
(FETH 5,

92



E7- g

E®JAB
AN ER SIS ERBIR T 5 RE R 3L

1. "Femtosecond light scattering spectroscopy of single gold nanoparticles"
Tamitake Itoh, Tsuyoshi Asahi and Hiroshi Masuhara
Applied Physics Letters Vol. 79, No. 11, pp. 1667 - 1669 (2001)

2. "Direct demonstration of environment-sensitive surface plasmon resonance band in single. gold
nanoparticles”
Tamitake Itoh, Tsuyoshi Asahi and Hiroshi Masuhara
Japanese Journal of Applied Physics (accepted)

3. "Development of a femtosecond light scattering and absorption microspectroscopic system and
its applications to organic and metallic single nanoparticles”
Tamitake Itoh, Tsuyoshi Asahi and Hiroshi Masuhara

Review of Scientific Instruments (submitted)

4. "Direct observation of surface plasmon resonance spectra in two contiguous gold
nanoparticles"
Tamitake Itoh, Tsuyoshi Asahi and Hiroshi Masuhara

(in preparation)

1. "Extremely fast-response, highly nonlinear doped-silica single-mode fibers"
Tamitake Itoh, Ryuji Morita and Mikio Yamashita
Japanese Journal of Applied Physics Vol. 35, pp. L1107 - L1110 Part 2, No.9A (1996)

2. "All-solid-state mirror-dispersion-controlled sub-10 fs Ti:sapphire laser"
Koichi Yamakawa, Makoto Aoyama, Tamitake Itoh and Christian Spielmann
Japanese Journal of Applied Physics Vol. 35, pp. L989 - L991 Part 2, No. 8A (1996)

93



FEUR R

3. "Time-resolved surface scattering imaging of organic liquids under femtosecond KrF laser pulse
excitation"
Koji Hatanaka, Tamitake Itoh, Tsuyoshi Asahi, Nobuyuki Ichinose, Shunichi Kawanishi,
Tsuneo Sasuga, Hiroshi Fukumura and Hiroshi Masuhara
Applied Physics Letters, Vol. 73, No. 24, pp. 3498 - 3500 (1998)

4. "Time-resolved ultraviolet - visible absbrption spectroscopic study on femtosecond KrF laser
ablation of liquid benzyl chloride"
Koji Hatanaka, Tamitake Itoh, Tsuyoshi Asahi, Nobuyuki Ichinose, Shunichi Kawanishi,
Tsuneo Sasuga, Hiroshi Fukumura and Hiroshi Masuhara
Chemical Physics Letters, Vol. 300, pp. 727 - 733 (1998)

5. "Femtosecond laser ablation of liquid toluene: molecular mechanism studied by time-
resolved absorption spectroscopy”
Koji Hatanaka, Tamitake Itoh, Tsuyoshi Asahi, Nobuyuki Ichinose, Shunichi Kawanishi,
Tsuneo Sasuga, Hiroshi Fukumura and Hiroshi Masuhara
The Journal of Physical Chemistry A, Vol. 103(51), pp. 11257 - 11263 (1999)

94



FEYX P

AN ICICEREBGRT 2 ERRERER

"Development of femtosecond time-resolved scattering spectroscopy system and its

application to single organic microcrystals"

Tamitake Itoh, Tsuyoshi Asahi and Hiroshi Masuhara

The 8% JST international symposium molecular processes in small time and space domains, 3 - 4
March 2000, Nara, Japan

"Femtosecond time-resolved scattering microspectroscopy of single organic microcrystals”
Tamitake [toh, Tsuyoshi Asahi and Hiroshi Masuhara

The 2000 international chemical congress of pacific basin societies, 14 - 19 December 2000,
Hawaii, U. S. A

By 5 ERRBRER

"Femtosecond optical pulse propagation in highly nonlinear doped-silica single-mode fibers"
Tamitake Itoh, Ryuji Morita and Mikio Yamashita
International Conference on Optical Fiber Sensors, 21 - 24 May 1996, Hokkaido, Japan

"Numerical Simulation of Extremely Chirped Pulse Formation with an Optical Fiber"
Tamitake Itoh, Akihiko Nishimura, Kazuyoku Tei, Thoru Matoba, Hiroshi Takuma,

~ Mikio Yamashita and Ryuji Morita
Joint ICFA/JAERI-Kansai International Warkshop 1997, 14 - 18 July 1997, Kyoto, Japan

95



HEF

A

ABFTEIZ, 1999 £ 4 A5 5 3 FBITHE Y KIRKFEKFR T EMERICHY
BZEERIIBVWTHE £ #ROMEZEDOD L IfTbR-bDTH) ., Z0OMH
G DFAITHHENREEE L, STICHATREHOELZRLE T,

AHEZITICHY, REBDLHBE, HEELBY F L2ARKE
REGRTFHERZER HBE £ RECLrSEHHVZLET,

H4 DR REFICERBNTEORE, THREB Y T L RETEHK
FRBEE FE B RECLPSEH LTS,

AETHEFERRE WH B 4. BEE +F X %4, g %
F REL kA, BEdR AN FF BACE. RERICH AL TR
WerRE, BEGZHBRZEBRY E L. SR IERH#HZLES,

H4 DMBREFIIBNTELOEELRITHEEZ VW& T LAKET M
ZEHRBTF T B2 BECEHLELETE T,

SEOEMREBLTCEDEELIHEZBY T LM B— B+,
SR T L. Victor Volkov EHIZE S BH#H V2L T,

YEIL R RRICIIAREMRE 6 BIIBITAERICBWT X S kFERE
ELTELKDTHIEBVF Lz LEVEHEHLET,

DAL O T4 R ECTBHEICR ) LABERE S LV — 7 O®HEIC
ROBRBHLLETIT. BICREOER EF . B LHRORE ¥7
. B3 OEE R BE HIL R 2B NE RICIEXCEY BEEICRY
Tl DL YEFHALET,

BRI, REE—BB NI LTSN E LB AT o T NAEFKRIEH
72LET,

2002 £ 1 A
FiE BR

96



	171-00001.pdf
	171-00002.pdf
	171-00003.pdf
	171-00004.pdf
	171-00005.pdf
	171-00006.pdf
	171-00007.pdf
	171-00008.pdf
	171-00009.pdf
	171-00010.pdf
	171-00011.pdf
	171-00012.pdf
	171-00013.pdf
	171-00014.pdf
	171-00015.pdf
	171-00016.pdf
	171-00017.pdf
	171-00018.pdf
	171-00019.pdf
	171-00020.pdf
	171-00021.pdf
	171-00022.pdf
	171-00023.pdf
	171-00024.pdf
	171-00025.pdf
	171-00026.pdf
	171-00027.pdf
	171-00028.pdf
	171-00029.pdf
	171-00030.pdf
	171-00031.pdf
	171-00032.pdf
	171-00033.pdf
	171-00034.pdf
	171-00035.pdf
	171-00036.pdf
	171-00037.pdf
	171-00038.pdf
	171-00039.pdf
	171-00040.pdf
	171-00041.pdf
	171-00042.pdf
	171-00043.pdf
	171-00044.pdf
	171-00045.pdf
	171-00046.pdf
	171-00047.pdf
	171-00048.pdf
	171-00049.pdf
	171-00050.pdf
	171-00051.pdf
	171-00052.pdf
	171-00053.pdf
	171-00054.pdf
	171-00055.pdf
	171-00056.pdf
	171-00057.pdf
	171-00058.pdf
	171-00059.pdf
	171-00060.pdf
	171-00061.pdf
	171-00062.pdf
	171-00063.pdf
	171-00064.pdf
	171-00065.pdf
	171-00066.pdf
	171-00067.pdf
	171-00068.pdf
	171-00069.pdf
	171-00070.pdf
	171-00071.pdf
	171-00072.pdf
	171-00073.pdf
	171-00074.pdf
	171-00075.pdf
	171-00076.pdf
	171-00077.pdf
	171-00078.pdf
	171-00079.pdf
	171-00080.pdf
	171-00081.pdf
	171-00082.pdf
	171-00083.pdf
	171-00084.pdf
	171-00085.pdf
	171-00086.pdf
	171-00087.pdf
	171-00088.pdf
	171-00089.pdf
	171-00090.pdf
	171-00091.pdf
	171-00092.pdf
	171-00093.pdf
	171-00094.pdf
	171-00095.pdf
	171-00096.pdf
	171-00097.pdf
	171-00098.pdf
	171-00099.pdf

