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Abstract

In recent decades, one of the essential issues in condensed matter physics has
been the elucidation of the origins of anomalous behaviors observed in strongly
correlated electron systems. In particular, some heavy fermion systems show
anomalous properties such as an unconventional superconductivity, non-Fermi
liquid behaviors in various physical quantities and so on. These anomalous
properties are caused by competition between the Kondo effect and other ef-
fect such as the crystalline-electric-field effect, an inter-site magnetic corre-
lation between f-electrons caused by the RKKY interaction. In this thesis,
we investigate the properties given by some of these competition effects in
impurity systems in order to give clues to understand the anomalous phenom-
ena observed in lattice heavy fermion systems on the basis of the numerical
renormalization group method.

In chapter 2, we discuss the enhanced Hall coefficient inside an antifer-
romagnetic phase where the Néel temperature Ty coincides with the Kondo
temperature Tx. CeRua(Si;_,Ge;) at z ~ 0.1 is one of the candidates which
shows such a behavior. First, we investigate the charge transfer susceptibility
between f- and conduction electrons in the two-impurity Anderson model on
the basis of the numerical renormalization group method. When the conduc-
tion bands hold the particle-hole symmetry, the charge transfer susceptibility
diverges logarithmically at the unstable fixed point due to the competition be-
tween the Kondo-Yosida singlet state and an inter-site spin-singlet state. Even
without the particle-hole symmetry of conduction bands, the charge transfer
susceptibility is also enhanced at the point where the ground state crosses over
between these two singlet states. Second, we obtain the correction terms of
the diagonal conductivity and the off-diagonal (Hall) conductivity due to the
charge transfer susceptibility, and show that the Hall coeflicient increases at
the unstable fixed point in the two-impurity Anderson model. This result gives
a possible scenario for understanding the enhancement in the Hall coefficient
observed in CeRuy(Si;_,Ge,) at £ ~ 0.1 where Ty coincides with Txk.

In chapter 3, we discuss the magnetic field effect on f*-crystalline-electric-



field (CEF) singlet systems with tetragonal symmetry. If the hybridization
between f-electrons and conduction electrons is changed, the system passes
through the quantum critical point (QCP) caused by the competition between
the f2-CEF singlet state and the Kondo-Yosida singlet state in this system.
Around this QCP, the characteristic temperature T at which the entropy
starts to decrease toward zero is suppressed by the effect of the competition,
compared to both energy scales characterizing each singlet state, the lower
Kondo temperature (Tk2) and the CEF splitting (A) between the ground state
and the first excited state. We show that Tp is not affected by the magnetic
field up to H} which is determined by the distance from the QCP or charac-
teristic energy scales of each singlet state, and is far larger than 7} and less
than min(Tk2, A). As a result, in the vicinity of the QCP, there are parameter
regions where the non-Fermi Liquid behavior is robust against the magnetic
field, at an observable temperature range T > T, up to H:. This result
suggests that such an anomalous non-Fermi liquid behavior can also arise in
systems with other CEF symmetries, which might provide us with a basis to
understand the anomalous behaviors of UBe;s.

In chapter 4, we reveal the magnetic field effect on the criticality due to the
competition between the f2-CEF singlet state and the Kondo-Yosida singlet
state in the tetragonal symmetry. Around the QCP due to this competition,
the magnetic field H breaks the unstable fixed point due to this competition
by two mechanisms: one causing the magnetic polarization of f-electrons and
the other giving the “channel” anisotropy. These two mechanisms make a
difference in the magnetic field dependence of the characteristic temperature
Ty(H), the crossover temperature from non-Fermi liquid behavior to Fermi-
liquid behavior. While the magnetic polarization of f-electrons gives Tx(H) o
H® (x ~ 2.0), the “channel” anisotropy gives the H-independent Ty (H) as
discussed in chapter 3. These two mechanisms cross over continuously at
around the crossover magnetic field H,,, where an anomalous H-dependence of
Ty(H) appears. Such T (H) well reproduces the H-dependence of T} observed
in Thy_;U,RuySip with z ~ 0.03. We also find that the H-dependence of the
resistivity and the magnetic susceptibility are in good agreement with the
experimental results of this material.

In chapter 5, we investigate the fixed point of the f2-configuration system
with the I'; singlet ground state and the I'y first excited triplet state in the
cubic symmetry. There are two possible ground states: the singlet ground
state and the triplet ground state because the 'y first excited triplet state is
stabilized due to the hybridization. The feature of the singlet state crosses
over between the CEF singlet and the K-Y singlet states smoothly, although
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it has been shown in chapters 3 and 4 that, in the tetragonal symmetry of
the crystal, these two singlet state compete and give rises to an unstable fixed
point. In the present model with the cubic symmetry, the unstable fixed point
is caused by the competition between the singlet fixed point and triplet fixed
point, giving rises to non-Fermi liquid behaviors in various physical quantities
such as resistivity, the Sommerfeld coefficient, and the magnetic susceptibility.
Moreover, when the system comes near by the unstable fixed point from the
K-Y singlet ground state region and goes into the CEF singlet ground state
region, the experimental result that the lattice constant of UBe3 gives the
maximum Sommerfeld coefficient among the series of a system of solid solution
U;_,T,Be;s can be reproduced. This result possibly provides us with a basis
to understand the anomalous behaviors of UBe;s.
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Chapter 1

Introduction

In recent decades, one of the essential issues in condensed matter physics has
been to understand the origins of the quantum critical phenomena which oc-
cur in strongly correlated electron systems. When we consider the properties
of most materials, an approach based on the Fermi liquid theory introduced
by Landau [1, 2] often gives a good description. In the Fermi liquid theory,
low energy states are described by quasiparticles which have an enhanced ef-
~ fective mass through the renormalization effect due to the interactions among
electrons, called the many body effect.

However, there exist some materials in heavy fermion compounds and high-
T. cuprates which cannot be fully described by the Fermi liquid theory. These
systems are called non-Fermi liquid systems and appear in several materials
located near the quantum critical point (QCP) around which quantum fluctua-
tions in the spin, the orbital and the valence are highly developed. Around the
QCP, anomalous temperature dependence (non-Fermi liquid behavior) occurs
in various physical quantities, the unconventional superconductivities induced
by such quantum fluctuations .

In particular, heavy fermion systems are mine of these anomalous phys-
ical phenomena, such as the multiple superconducting phases in UPtg, the
“Hidden order” state in URu5Siy, and the valence fluctuation mediated super-
conductor observed in CeCuy(Si;_,Ge,)s, etc. These heavy fermion systems
usually include f-electrons which have both itinerant and localized characters
in contrast to essentially itinerant conduction electrons corresponding to s-
, p-, and d- electrons. These f-electrons are considered to be the origin of
the anomalous physical phenomena noted above. Considerable theoretical re-
search has been carried out by including interactions among f-electrons and
hybridization between the f-electron and conduction electrons in order to un-
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1. Introduction

derstand these anomalous physical phenomena around the QCP. Moreover,
through investigations of heavy fermion systems, new concepts in solids and
new theoretical approaches have been created, often offering important con-
cepts to discuss other strongly correlated electron systems. Thus, clarifying
origins of the QCP in heavy fermion systems is one of the most fascinating
issues in strongly correlated electron systems.

1.1 Kondo Effect

One of the most fundamental origins of the anomalous phenomena in heavy
fermion systems is the Kondo effect, which is caused by an interplay of strong
correlations among f-electrons and the hybridization between conduction elec-
trons and f-electrons giving rise to the exchange interaction among them. In
high temperature regions, the f-electron behaves as almost like a localized
magnetic moment, causing a resonant scattering of conduction electrons, i.e.,
the Kondo effect. As temperature decreases, the exchange interaction between
the f-electron and conduction electrons grows logarithmically. Below a certain
temperature, the f-electron starts to make a resonant state with the conduc-
tion electrons, i.e., the Kondo-Yosida singlet state. This Kondo effect is a key
concept in the discussion of properties of heavy fermion systems. The temper-
ature at which a crossover between the high temperature region and the low
temperature region occurs is called the Kondo temperature (Tx). At T < Tk,
the system can be described by the local Fermi liquid theory, i.e., the low
energy excitations of the systems are described by the “quasiparticles”, which
are complexes of the localized f-electron and conduction electrons.

The Kondo effect originated at the resistance minimum phenomenon ob-
served in dilute magnetic alloy in 1930s. In 1964, J. Kondo studied the s-d
model in which the conduction electrons are subject to the exchange interac-
tion with the localized magnetic moment, and proved by means of the second
order Born approximation that the resistivity shows logarithmic divergence as
temperature decreases [3]. Owing to the first theoretical work by J. Kondo, it
is clarified that the origin of the resistance minimum phenomenon is the an-
tiferromagnetic exchange interaction between the localized magnetic moment
and conduction electrons, although there remained the problem that the re-
sistivity diverges at zero temperature. (Recently, the s-d model is sometimes
called the Kondo model.)

In order to answer this question, H. Suhl discussed this issue on the basis
of scattering theory and obtained the result for the temperature dependence
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1.1 Kondo Effect

of the resistivity in the whole temperature region: i.e., p(T) o< —logT in the
high temperature region and p(T = 0) =constant of the unitarity limit [4].
The same result was obtained simultaneously by Y. Nagaoka by the decoupled
equations of motion for double-time Green’s functions, and introduce the char-
acteristic temperature “T.” that was called the Kondo temperature Tk later
[5]. However, these two theories turned out not to describe behaviors correctly
in the low temperature region at 0 < T < Tx.

On the other hand, A. A. Abrikosov focused on the contributions from
higher order perturbative corrections. He summed the most dominant term
(the most divergent term) from each order perturbation expansion, and ob-
tained the result that the resistivity diverges at Tk [6]. In the same way,
the magnetic susceptibility was also shown to exhibit negative divergence at
T < Tx. Thus, the perturbation theory cannot correctly describe the low
temperature region T < Tk in the Kondo model.

It was K. Yosida who gave a clue to understanding what happens in a low
temperature region, T' < Tk. He discussed the nature of the ground state in
the Kondo model and concluded that the ground state is the spin singlet state
composed of the localized moment screened by the induced spin polarization
due to the change of spin density of state of conduction electrons, i.e., the
Kondo-Yosida singlet state [7]. After the work by K. Yosida, the way in which
the ground state property in interpolated to that in a high temperature region
T > Tk was discussed.

P. W. Anderson and his coworkers introduced the idea of scaling for this
question [8, 9, 10, 11, 12]. They eliminated intermediate states near the band
edge of conduction electrons appearing in the perturbation expansion for the
T-matrix, and derived the change of coupling constants between the localized
moment and conduction electrons due to this step by setp elimination. This is
a fundamental idea of the method of the scaling theory, or the renormalization
ground approach. With this scaling procedure, the original model is renor-
malized into an effective model through the renormalization of the coupling
constants, and these coupling constants increase infinitely as the band width of
conduction electrons is reduced, if the initial coupling constants locate in the
“antiferromagnetic region”. Although coupling constants show unphysical di-
vergence at the renormalized band width E, = kgTxk in the scaling procedure,
this result indicates that the system goes to the strong coupling limit in the
low energy limit, suggesting that the ground state is the spin singlet state due
to the strong antiferromagnetic coupling between the localized moment and
conduction electrons. This is consistent with the result obtained by K. Yosida.
With this result, they succeeded in discussing the effect of the reduction of the
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1. Introduction

band width of conduction electrons in the Kondo model, which gives a clue
to describe the Kondo model from high temperature region T > Tk to low
temperature region 7' < Tk.

The first calculation of the physical quantities that are valid at all tem-
peratures in the Kondo model was carried out by K. G. Wilson. He created
a powerful tool, the numerical renormalization group (NRG) method [13] by
taking the renormalization group idea from the field theory in quantum elec-
trodynamics and the idea of scaling from critical phenomena associated with
the phase transition of the second order. The idea of scaling corresponds to
deriving the effective Hamiltonian in a low energy region by the combination
of the coarse graining of the degrees of freedom and the scale transformation.
One of the most famous problems discussed by this method is the block spin
renormalization group discussed by L. P. Kadanoff [14]. However, as it is non-
perturbative about all parameters, the NRG method is different from most
renormalization group methods. With this method, K. G. Wilson investigated
the Kondo model and obtained thermodynamic quantities such as the suscep-
tibility, the Sommerfeld coefficient, and the specific heat continuously from
the high temperature region to the low temperature region. Moreover, it was
shown that the low-energy excitations of the Kondo model in a low tempera-
ture region, T' < T¥, is represented by the effective Hamiltonian which has only
two parameters and does not include the spin operator corresponding to the
localized moment. This fact indicates that the localized moment is screened
out by conduction electrons, i.e., the singlet state is constructed in the ground
state. P. Noziere focused on this result and considered that the low energy
states in the Kondo model could be described by the phase shift of conduc-
tion electrons on the basis of the local Fermi liquid theory [15]. In this way,
he reproduced the relations obtained by Wilson and derived the temperature
dependence of the resistivity at low temperature T < Tk [13].

Thus, the Kondo effect had been investigated on the basis of the s-d model
at first. However, the s-d model can be derived from the Anderson model
by treating the hybridization between the localized electron and conduction
electrons with the second order perturbation theory. On the basis of the Fermi
liquid theory, the ground state and the low energy spectrum in non-interacting
systems adiabatically connect with that in interacting systems if there is no
phase transition between the Anderson model with U = 0 and that with
finite U. There should be no phase transition in the “impurity” Anderson
model. Thus, owing to this adiabatic continuity, when we take U into account
perturbatively, the character of the ground state of the Anderson model should
be the same as that in the case of U = 0, i.e., the nonmagnetic state in which
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1.2 Discussion of Heavy Fermion Systems by Numerical Renormalization
Group Method

the number of localized electrons with up spin is the same as that of localized
electrons with down spin. From this viewpoint, K. Yamada and K. Yosida
carried out the perturbative expansion of U for the Anderson model to the
infinite order, and proved that the specific heat, the susceptibility and the
resistivity are expressed as a function of two parameters [16, 17, 18, 19], which
is consistent with the result by K. G. Wilson and P. Noziere in the limit
U — oo ’

Thus, owing to a lot of theoretical work, the Kondo effect proved to be
the phenomenon in which the localized electron behaving as the magnetic
moment in the high temperature region (T > Tx) starts to be screened by the
conduction electrons at T < Tk, and crosses over to the non-magnetic ground
state described by the local Fermi liquid system by forming the resonant state
with conduction electrons in the low temperature region (T < Tk). After the
work by K. Yamada and K. Yosida, the exact solution of the Kondo model was
obtained by N. Andrei [20, 21, 22] and P. B. Wiegmann [23, 24], and that of
the Anderson model was obtained by N. Kawakami and A. Okiji [25, 26], and
P. B. Wiegmann [27]. These results verified the physical picture of the Kondo
effect attained up to that time.

1.2 Discussion of Heavy Fermion Systems by Numerical
Renormalization Group Method

As noted above, the NRG method was developed by K. G. Wilson for the
purpose of describing the Kondo model from high to low temperature regions
[13]. Since this first application, the NRG method has been extended to a
much wider range of the quantum impurity problems, such as the Anderson
model which extends the Kondo model so as to include the charge degrees of
the freedom of the localized state at the impurity site [28, 29], the two channel
Kondo model in which the impurity spin couples to two conduction bands [30],
and so on.

For quantum impurity problems, the NRG method is one of the most pow-
erful method available because it allows us to calculate the temperature de-
pendence of the thermodynamic quantities at a wide temperature range, in
particular at low temperature with good accuracy. As noted in the previous
section, one of the fundamental origins of the anomalous behaviors observed
in heavy fermion systems is the Kondo effect. Therefore, in order to describe
the properties of heavy fermion systems, we should examine a wide temper-
ature range, at least from the high temperature region (T' > Tx) to the low
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1. Introduction

temperature region (T < Tx). If there is competition such as the one between
the Kondo effect and the RKKY interaction, the characteristic energy scale of
the system can become smaller than Tx. Of course, it is difficult to investi-
gate the properties of heavy fermion systems, i.e., the lattice problem, from
the beginning. Therefore, as a first step, we discuss the properties in heavy
fermion systems in the range of the impurity model which has one or two f-
electrons hybridizing with the conduction electrons. In such a situation, the
NRG method works most effectively in discussing the physical behaviors as it
can describe a wide temperature range continuously, in particular at low tem-
perature T' < Tx. Moreover, we can definitely determine the ground state of
the system and establish an effective model for the low energy spectrum of the
impurity system by the NRG method. Thus, the NRG method is one of the
most suitable methods for the discussion of the impurity system, which often
gives helpful remarks to elucidate the properties in heavy fermion systems. In
terms of such a viewpoint, the NRG method is extended as follows.

The two-impurity Anderson model, in which two localized electrons inter-
act with each other and each localized electron hybridizes with conduction
electrons, is the first example to discuss the competition effects between the
Kondo effect and the other correlation effects on the basis of the NRG method.
If the interaction between localized electrons is antiferromagnetic, there exist
two stable fixed points in this model [30, 31, 32, 33, 34]. One is the Kondo-
Yosida singlet fixed point where two localized electrons are screened out inde-
pendently and form the Kondo-Yosida singlet states. The other is an inter-site
spin singlet fixed point where the singlet state of two localized electrons is
formed and the correlation between conduction electrons and localized elec-
trons is lost. At the boundary of these two stable fixed points, there exists
an unstable fixed point where the non-Fermi liquid behavior arises in various
physical quantities such as the log T-dependence in the Sommerfeld coefficient,
the spin susceptibility, and so on.

This model simulates some anomalous aspects of Ce-based heavy fermion
compounds in which trivalent Ce-ion with 4 fl-configuration has the Kramers
doublet ground state of a crystalline-electric-field (CEF) effect in the low tem-
perature region, and the f-electrons at adjacent sites interact with each other
through the RKKY interaction. The RKKY interaction stabilizes the anti-
ferromagnetic long-range order, while the Kondo effect causes the screening
of the magnetic moment due to the f-electron and suppresses the magnetic
long-range orders. Because of these two conflicting effects, some Ce-based
compounds exhibits various anomalous phenomena. The investigation of the
two-impurity Anderson model on the basis of the NRG method gives a reason-
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1.2 Discussion of Heavy Fermion Systems by Numerical Renormalization
Group Method

able explanation for these anomalous properties observed in Ce-based heavy
fermion compounds.

The NRG method is also applied to the two-orbital impurity Anderson
model that describes the properties of heavy fermion systems with f2-configuration.
This model has two orbitals interacting with each other at the impurity site
and each orbital hybridizes with conduction electrons which have the same
symmetry as the localized orbital: i.e., this model has the orbital degrees of
the freedom at the impurity site and two conduction bands. With this model,
we could discuss not only the Kondo effect of each localized electron but also
the effects of the inter-orbital interactions such as the Hund’s rule coupling
and the CEF effect. In the tetragonal symmetry, we can reproduce the energy
level scheme of the f2-CEF effect by introducing the antiferromagnetic Hund’s
rule coupling [29]. As shown explicitly in the case of the tetragonal symmetry,
this model also has two stable fixed points: one is the Kondo-Yosida singlet
fixed point, and the other is an inter-orbital spin singlet fixed point where
two localized electrons form the singlet state due to the CEF effect. The non-
Fermi liquid behaviors arise at the boundary of these two stable fixed points,
and the competition between these two singlet states gives rise to a variety of
anomalous properties in various physical quantities.

This model offers us the first step to consider the f2-configuration based
heavy fermion systems which correspond to the U-based compounds with a
tetravalent U-ion state or the Pr-based compounds with a trivalent Pr-ion
state. Most of these materials have the singlet ground state due to the CEF
effect. In particular, U-based compounds often have f-electrons with a rela-
tively well extended wave-function strongly hybridizing with conduction elec-
trons. In other words, it is expected that the U-based compounds exhibit
the QCP due to the competition between these two singlet states. Actually,
Ri_,UzRu,Siz (R=Th, Y, and La, x< 0.07) is one of the candidates which
shows the QCP due to the competition between the Kondo-Yosida singlet and
the f2-CEF singlet states [35, 36].

As noted above, the NRG method expands its field from the standard
Kondo effect to the competition between Kondo effect and other correlation
effect. In particular, such competitions are often observed in heavy fermion
systems at low temperature. The NRG method works most effectively in dis-
cussing the low temperature physics, and is one of the most suitable methods
for the discussion of the properties in heavy fermion systems.

7



1. Introduction

1.3 Purpose of the Thesis

The purpose of this thesis is to elucidate the properties of the impurity systems
which show competition effects between the Kondo effect and other correlation
effects in order to give a clue to understanding the anomalous phenomena
observed in heavy fermion systems. For this purpose, we investigate three
types of extended Anderson models on the basis of the Wilson NRG method.
Organization of this thesis is as follows.

First, in chapter 2, we investigate the charge transfer susceptibility x . be-
tween the f-electron and conduction electrons in the two-impurity Anderson
model. Although it has been already shown that the f-site charge (valence)
susceptibility x, is enhanced at the unstable fixed point due to the competi-
tion between the Kondo-Yosida singlet and the inter-site spin-singlet states,
we show that xj. is larger than x, by about 10? times and diverges loga-
rithmically at the same point if the conduction bands hold the particle-hole
symmetry. Such an enhanced . contributes to the Hall conductivity, giv-
ing a possible scenario for an enhancement in the Hall coefficient observed in
CeRu,(Si;-,Ge,) at z ~ 0.1, which is located inside an antiferromagnetic state
where Ty coincides with Tx.

Second, in chapter 3, we investigate the two-orbital Anderson model with
an antiferromagnetic Hund’s rule coupling which reproduces the f2-CEF effect
in tetragonal symmetry. In this model, there exists the QCP due to the com-
petition between the CEF singlet state and the Kondo-Yosida singlet state.
Around this QCP, the characteristic temperature T3 at which the entropy
starts to decrease toward zero is suppressed by the effect of the competition,
compared to both energy scales characterizing each singlet state, the lower
Kondo temperature (Tk2), and the CEF splitting (A) between the ground
state and the first excited state. We show that in the case of tetragonal sym-
metry, Ty is not affected by the magnetic field up to H}, which is determined
by the distance from the QCP or characteristic energy scales of each singlet
state, and is far larger than 77 and less than min(Tke, A). As a result, in
the vicinity of QCP, there are parameter regions where the non-Fermi liquid is
robust against the magnetic field, at an observable temperature range T > T,
up to H;. Our result suggests that such an anomalous non-Fermi liquid behav-
ior can also arise in systems with other CEF symmetries, which might provide
us with a basis to understand the anomalous behaviors of UBess.

Third, in chapter 4, we study the competition between the Kondo effect
and the f2-CEF effect in tetragonal symmetry, and show that the magnetic
field breaks the unstable fixed point due to this competition by two mech-
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1.3 Purpose of the Thesis

anisms: one causing the magnetic polarization of f-electrons and the other
giving the “channel” anisotropy. These two mechanisms make a difference in
the magnetic field (H) dependence of the characteristic temperature T3 (H),
the crossover temperature from the non-Fermi liquid to Fermi-liquid behavior.
While the magnetic polarization of f-electrons gives Tp(H) o< H® (z =~ 2.0),
the “channel” anisotropy gives the H-independent T3(H). These two mecha-
nisms cross over continuously at around the crossover maguetic field He, where
an anomalous H-dependence of Ty(H) appears. Such Tg(H) well reproduces
the H-dependence of T3 observed in Thy_;U RusSi;. We also find that the
H-dependence of the resistivity and the magnetic susceptibility are in good
agreement with the experimental results of this material. These results sug-
gest that the non-Fermi liquid behaviors observed in Th;_,U,Ru,Si; can be
understood if this material is located in the f2-CEF singlet region near the
critical phase boundary between the two singlet states.

Finally, in chapter 5, we investigate the fixed point of the f?-configuration
system with the I'; singlet ground state and the I'y first excited triplet state in
the cubic symmetry. There are two possible ground states: the singlet ground
state and the triplet ground state because the I's first excited triplet state is
stabilized due to the hybridization. The feature of the singlet state crosses
over between the CEF singlet and the K-Y singlet states smoothly, although
it has been shown in chapters 3 and 4 that, in the tetragonal symmetry of
the crystal, these two singlet state compete and give rises to an unstable fixed
point. In the present model with the cubic symmetry, the unstable fixed point
is caused by the competition between the singlet fixed point and triplet fixed
point, giving rises to non-Fermi liquid behaviors in various physical quantities
such as resistivity, the Sommerfeld coefficient, and the magnetic susceptibility.
Moreover, when the system comes near by the unstable fixed point from the
K-Y singlet ground state region and goes into the CEF singlet ground state
region, the experimental result that the lattice constant of UBe;s gives the
maximum Sommerfeld coefficient among the series of a system of solid solution
U,_,T.Beis can be reproduced. This result possibly provides us with a basis
to understand the anomalous behaviors of UBe;s.
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Chapter 2

Effect of Competition between
Inter-Site and Kondo-Yosida
Singlet States on Charge
Transfer Susceptibility in Heavy
Fermion Systems

2.1 Introduction

In the last two decades or so, quantum phase transitions in heavy fermion
systems have been one of main issues studied extensively. In particular, the
quantum critical point (QCP) related to antiferromagnetic (AF) fluctuations
in Ce-based compounds has attracted much attention. This spin fluctuations
related to AF-QCP arises from competition between the AF long-range order
and the Kondo effect, giving rise to many anomalous phenomena like non-
Fermi liquid (NFL) temperature dependences in the resistivity, susceptibility
and specific heat. Moreover, an unconventional superconductivity is also a
signature of the AF-QCP. .

It also turned out that there exist a series of materials, like CeAly[l],
YbNiyGe,[2], CeCusAu[3] and CeRua(Sii_yGe,)2 with z >~ 0.1[4], which show
an enhancement in the residual resistivity po not at the AF-QCP but where
the Néel temperature Ty coincides with the Kondo temperature Tx. Re-
cently, enhancement in the Hall coefficient Ry has also been observed in
CeRuy(Siy_Ge;)2 at z ~ 0.1 [4], where the same situation as above is re-
alized. This anomalous property is not yet understood theoretically.
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Recently, it was shown that such an enhancement in py is caused by the
fluctuations of the charge sector in f-electrons [5, 6]. In particular, it was
demonstrated that the two-impurity Anderson model (TIAM) exhibits an en-
hancement in the f-electron charge susceptibility x; = —(dns/de;) where the
Kondo-Yosida (KY) singlet state competes with the singlet state composed
by an inter-site spin singlet state by an inter-site interaction, the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [6]. This competition is expected
to appear also in the lattice case, where Tx ~ Tx when the pressure or the
chemical doping is tuned, because such a competition arises when two singlet
states have equal characteristic energy scales.

In this chapter, we examine how the competition between the RKKY sin-
glet and the KY singlet states affects the Hall effect in a system described
by the TIAM, which gives us a clue to understand the physical origin of the
phenomenon of the enhanced Ry at the point where Tx ~ Ty. As a first
step, we investigate the TIAM on the basis of the Wilson numerical renor-
malization group (NRG) method [7], and show that those fluctuations of the
charge transfer (CT) between f- and conduction electrons are enhanced when
the characteristic energy scale of the RKKY singlet state is comparable to Tk,
that of the KY singlet state. On this basis, we investigate how these enhanced
CT fluctuations give a singular contribution to Ry, giving an explanation for
the enhanced Ry observed in CeRuy(Si;—,Ge, )2 at around z ~ 0.1 [4].

2.2 Model Hamiltonian

The model Hamiltonian of the TIAM is given as follows:
H=2) cpckciotery Sl +U Y fhfaflfu
ko io g

+VN Z (eiE'fchEafw + h.c.) + 10y o, (2.1)

iko

where fio(f]) and CEU(CL‘U) are annihilation (creation) operators of the f-
electron on the site i(= 1,2) with the energy ¢; and the conduction electrons
with the kinetic energy e; which hybridize with f-electrons with strength V.
U and J; are the Coulomb repulsion and the pseudospin operators of each f-
electron, and N is the number of sites. I is the inter-site exchange interaction
between two f-electrons simulating the RKKY interaction, which is assumed
to be antiferromagnetic, i.e., I > 0.
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2.3 Charge Transfer Susceptibility

The TIAM has two conduction bands which hybridize with even(+) and
odd(-) parity combinations of local orbitals f,-+, = (f1o £ f2o)/ V2. This
model has been investigated thoroughly and shown to exhibit two stable fixed
points [8, 9, 10, 11]. One is the KY singlet fixed point where two f-electrons
are screened out independently by corresponding conduction electrons, and
the total phase shift of conduction electrons is equal to 7(= 7/2 + 7/2). The
other is the RKKY singlet fixed point where two f-electrons form the spin
singlet state, and the total phase shift of conduction electrons is equal to 0.
At the boundary between them, there exists the unstable fixed point (UFP)
where NFL behaviors appear in various physical quantities when the conduc-
tion bands hold the particle-hole (PH) symmetry.

To analyze properties of the Hamiltonian (2.1) by the Wilson NRG method
(7], we transform these conduction bands with the logarithmic discretization
paramcter A = 2.5, We control the degree of the competition through variation
of I, and the other parameter set of the Hamiltonian (2.1) is fixed as £y =
~04,U = 1.0,V = 0.26 in the unit of D (D being half the bandwidth of
conduction electrons), and kgri2 = 7 where rp = |T) — @y is the distance
between two impurities and kg is the Fermi momentum. We keep states up to
4000 states in each iteration step in all the calculations below.

In order to investigate how the valence fluctuations in the f-electron site
is affected by the competition. we define the following quantities:

TZ = Z(f;(rfp(f - p’j)pocopff)‘ (22}
po

To = (floCopo + o fro). (2.3)
po

where cg,, is the annihilation operator of conduction electrons with parity p
and spin o localized with an extent from the impurity being kp TAY2. The
o1

susceptibilities of each direction, “z” and “z”, are defined as y, = —0(T,)/90V
and x, = —0(T.)/0ey, respectively.

2.3 Charge Transfer Susceptibility

First, we show the results with the PH symmetric conduction bands. In the
case of I = 0, we obtain the same Kondo temperatures for both parities as
Tis = 2.08 x 1072 by using Wilson’s definition 4Tk ximp(7T = 0) = 0.413. With
increasing I, the ground state changes at [ = I, = 0.01282 from the KY
singlet state to the RKKY singlet state.
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Figure 2.1: I dependence of (a) y, and (b)x for nine different temperatures.

Figure 2.1 shows the [ = (I — 1)/I. dependence of the static suscepti-
bilities, x. and x, for various temperatures T, and Fig. 2.2 show the same
figure but on the logarithmic scale of /. Both susceptibilities diverge at the
critical point I = 0 as T decreases, although x, is larger than y. by more
than ten times even away from the criticality. As seen in Fig. 2.2(a) and
(b), both x. and x, take the logarithmic singularities of I, i.e., — log 1], in
the low temperature limit. Except for this singularity at around I ~ 0, %
monotonously decreases with increasing I as in the case of X discussed in ref.
6], although x, does not show such a monotonous change. Such a monotonic
decrease occurs even in the single impurity Anderson model with increasing V'
which stabilizes the KY singlet states. However, there exists no logarithmic di-
vergence of Y,(.) in the single impurity Anderson model: i.e., such a divergence
In X,(z) is caused by the competition between the two singlet states.

As a more realistic situation, we also show the result without the PH asym-
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Figure 2.2: The same figure with Fig. 2.1 but on the logarithmic scale of 1.

metric conduction bands. In the numerical calculation, we use linear dispersion
e vp(k — kp) and vpkp = Dm where v is the Fermi velocity. In the case
of I = 0, two KY singlet states are formed below each Kondo temperature,
Tias = 2.39 x 1073 for even parity channel and Tk, = 1.74x 107? for odd par-
ity channel, which are close to Tks. In this case, the UFP disappears and the
total phase shift continuously varies between d = 0 and 7 [10]. However, the
crossover from & = 0 and & = 7 occurs very sharply, causing the pronounced
enhancement in y; [6]. Here, according to ref. [6], we call the “hidden” UFP,
which corresponds to I = I, = 0.01302.

Figure 2.2 shows the I dependence of x, and Y, for various temperatures
for the PH asymmetric case. Here, we cannot see a striking difference between
PH symmetric and PH asymmetric cases in static susceptibilities, while this
difference can be seen in the dynamical susceptibility as discussed shortly.
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Figure 2.3: I dependence of (a) x. and (b)y, for nine different temperatures
for the model without PH symmetry.

Figure 2.5 shows the imaginary part of the dynamical susceptibilities of
both x,(w) and x,(w) for (a) the PH symmetric and (b) the PH asymmetric
cases. In both cases, Imy, and Imy, tend to take nonzero values even when
w < Tks(ax) as the system approaches the UFP. However, in the PH asymmetric
case (b), both susceptibilities decrease as Imy,(z) « w at w < 1077, even at
the “hidden” UFP. This is because the UFP disappears in the PH asymmetric
case, while they remain nonzero at w — 0 in the PH symmetric case. Such a
difference between the PH symmetric and the PH asymmetric cases is expected
to occur even in the static susceptibilities. However, it is difficult to calculate
these susceptibilities in low temperatures with an enough accuracy because
the parameter corresponding to the UFP is sensitive to tiny changes of V' and
ey for the differentiation of (T%.)).

We note again that Imy, is larger than Imy, by more than ten times in
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Figure 2.4: The same figure with Fig. 2.3 but on the logarithmic scale of 1

both cases, which means that the fluctuations of the charge sector in the “z”-
direction are much larger than that in the “z”-direction. From this viewpoint,
the original fluctuations in the charge sector may arise in the “z”-direction,
and the fluctuations in the “z”-direction are induced by the fluctuations in the
“r”_direction through the hybridization between the f- and the conduction
electrons, i.e., xo < V?x,. The origin of such anomalous behaviors is a critical
valence fluctuations of f-electrons induced by the difference in the occupation
number of f-electrons between the two fixed points [6]. This is because f-
electrons have an itinerant character in the KY singlet fixed point while they
have localized character in the RKKY singlet fixed point. There remains a
residual entropy of log /2 related to the quasi-degeneracy of these two fixed
points [12], which gives the strong fluctuations in the charge sector.
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Figure 2.5: Imaginary part of the dynamical susceptibilities y, and y, for (a)
the PH symmetric and (b) the PH asymmetric cases.

2.4 Discussion of Hall Coefficient

Next, let us discuss how these fluctuations contribute to the Hall coefficient
Ry at the level of the impurity model. Since x, ~ 80y., we only consider the
correction by x, up to the first order for the diagonal and the Hall conduc-
tivities, o4, and oy, extending the formalism given in ref. [13]. The formal
expressions for these correction terms are

2¢e?
AGpy = —Nimp—V32T? N " F,.(k,ié,, iE7), 2.1
o n S Z (K 1Eqs 1E, (2.1)
ken
i - 5 R
Ay = Nimp—; —V*T Z Foy(k, i€, i€5), (2.2)
ken
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Figure 2.6: Diagrammatic representation of corrections for (a) the diagonal and
(b) the off-diagonal conductivities. The solid lines with arrows are impurity-
averaged Green’s function, crosses indicates partial differentiation with respect

to the z-component of wave vector, and wavy lines are the fluctuations prop-
agators.

where £, = €,(14+1/27|e,]), €7 = €n—wa, €n = (2n+1)7T, 771 = 27nimpu? Ny
with nimp, being the number density of impurities and v the Fourier component
of the nonmagnetic impurity potential which is assumed to have only an s-
wave component. We take the electronic charge as e(< 0), and diagrammatic
representations of Fy,(k,&,, &) and Fuy(k, &, ;) are illustrated in Fig. 2.6(a)
and (b), respectively. It is noted that the Aslamazov-Larkin type process
[14] gives no contribution, unlike the case of superconducting fluctuations [15]
because collective modes of the particle-hole process do not couple with current
or velocity [16].

We perform summation in egs. (2.1) and (2.2) by a procedure similar to
that of ref. [13]. We adopt high temperature approximation by taking the

only contribution, €,, = 0, as dominant in Fig. 2.6. Using GR(A)(E, x) =
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[z — &+ (—)i/27] ™', the right-hand sides of egs. (2.1) and (2.2) are given as

tan_l(qu'r)

AO’xm = —2nimp0'0TV2’T Z X(B((T) O)Tq, (23)
q
4tan~(vpgr) T
AGzy = Nimpo 2, TV? 7,0 2.4
Oy ’fllmpO'wy Tzq;xw(q ) [ vrq 1+ (qu'r)2 3 ( )
where agy = —w,T0y, With w, = |e|H/mc and oy = ne?r/m, with n being the

carrier density. Using the fact that x, has no ¢“dependence, x.(q,0) = x, in
the impurity case, g-integration is easily carried out leading to

TV?
Aazw = =T Nimp00—— T Xz, (25)
qcUr
TV?
AGsy = 200 X, 2.6
Oay TNimp Oy o TXz (2.6)

where ¢, is the cut-off of the g-integration, vpq. being of the order of the
Fermi energy of conduction electrons er. In deriving egs. (2.5) and (2.6) from
egs. (2.3) and (2.4), we have assumed that the impurity scattering rate of
conduction electrons is smaller than e, i.e., ep7 > 1. It has been shown in ref.
13 that, in the limit T = 0, A Ry comes from the momentum-dependence of the
real part of self-energy function. In the present paper, we also take into account
such a momentum-dependence of the self-energy function by considering the
correction due to x, up to the first order as shown in Fig. 2.6, which gives rise
to ARy being proportional to x,. It is noted that the self-energy of conduction
electrons acquires the momentum dependence even though the charge transfer
susceptibility x, has no its dependence.

Expanding o, and 04y up to the linear term of Ao, and Aoy, we obtain
the correction to Ry = 04y/02,H due to ¥, as follows:

Acy,00 — 2A000 0% V2T
ARy ~ —% % = 4N, —=2 . 2.7
! Hoy TR0 g @7)

This result remains valid even if we take the hole bands, in which agy = WT0p
[13].

At around UFP, we can approximate x, o< — log n+const, where 1 depends
both on temperature T and deviation from the UFP . Thus, 71 is expressed
as n(T, I) = 7(T) + z, with = = 5(0,I). Using this, the correction to Ry is
given as

ARy x —log [7(T) + z] + const. (2.8)
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2.5 Discussion in Two-Orbital Anderson Model

This result implies that Ry has a peak structure at the UFP. Experimentally,
z is changed by the chemical or real pressures, and 7(T") decreases toward zero
as T decreases.

This result can explain the enhanced Ry observed in CeRu, (Si;—Ge,)2 at
x ~ 0.1 [4]. As demonstrated above in the case of the TIAM, Ry is expected
to be enhanced also in the lattice system if valence fluctuations are developed.
Indeed, such valence fluctuations are expected to occur at around x =~ 0.1
where Tk is comparable with Ty [5, 6]. Although our discussions are carried
out in the impurity level, it is expected that the same phenomenon occurs in
lattice systems. Further theoretical extensions to lattice systems are necessary
to elucidate the relation between the enhancement in Ry and the valence
fluctuations. It is interesting to note that the enhancement in Ry was observed
in CeCusSiy under the pressure [17, 18] at which sharp crossover of the valence
of the Ce ion is observed [19], suggesting that strong valence fluctuations are
developed. Such an enhancement of Ry can be explained qualitatively by an
effect of critical valence fluctuation [20].

2.5 Discussion in Two-Orbital Anderson Model

We have also obtained the same result in the two-orbital Anderson model which
exhibits similar UFP due to the competition between the Kondo-Yosida singlet
and the crystalline-electric-field singlet states [21, 22]. In the Hamiltonian to
discuss this issue, the f-states are also restricted to the four low-lying CEF
states in the J = 4 manifold of tetragonal symmetry as shown in Fig. 2.7: ie.,
we assume the [y singlet ground state and K and A represent the excitation
energies. The f2-states can be rewritten in the j-j coupling scheme using
fl-states in the j = 5/2 manifold whose Hilbert space is restricted to two
low lying Kramers pairs. Using the following pseudospin states alloted to the
fl-states,

@y = 215 /5% 240, (21)
\/ﬁ 2 14 2

T =l - 3+ \/§| +2) =110, (2.2
Toe) =1+3) =10,1), 23)

To)=1-5) =104, (24
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Figure 2.7: CEF level scheme of low-lying f2 states and their eigenstates.

f?-states are written as follows [11,13]:

1 1
ITy) = 7 ((+2)-]-2) = 7 (4.1 =114, (2.5)

1 1
Ta) = (1 +2+ (= 2) = Z= (1.4 + [L.1), (2.6)
L&) =Bl +3) —a| — 1) = |1, 1), 2.7)
IPP) =Bl - 3) —a +1) = |4, 4). (2.8)

With the use of the pseudospin states (2.1)-(2.4), the f2level scheme is re-
produced by the “antiferromagnetic” Hund’s-rule coupling [11, 13],

J
Hiwna = - [STS7 + 5755 + 15785, (29)

where coupling constants are defined as J, = K and J, = 2A— K, respectively.
Sm, is a pseudospin operator of the f-electron in the Hilbert space of f!-state
spanned by the orbitals m =1 (r?)) or 2 (I'g), and is defined as

S

N —

f'rtw&o,o-' fma" (210)

where fr,, is an annihilation operator of the f-electron in orbital m.
Thus the two-orbital Anderson model in tetragonal symmetry is given by
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2.5 Discussion in Two-Orbital Anderson Model

the following form [11, 13):

H= Hc + thb + He + HHunda (211)

Ho= 3 ZEECT,;WCEW (2.12)
m=12 g,

Hiyb = Z Z (VmcEmafma + h.c.) , (2.13)
m=12 E,

He = Epmfhofmo+ Y Unfis St oy It (2.14)

where ¢,z is an annihilation operator of a conduction electron with the wave

vector k and the spin ¢ hybridizing with the f-electron in orbital m with
a strength V,,. Eg, and U, are the energy level of the f-electron and an
intra-orbital Coulomb repulsion in orbital m, and the other Coulomb repulsion
terms, like an inter-orbital interaction, are implicitly included in the “antifer-
romagnetic” Hund’s-rule coupling (4.10).

The Hamiltonian (2.11) has two stable fixed points. One is the K-Y singlet
fixed point where the spin degree of freedom of each f-electron is screened by
the conduction electrons with the same symmetry as the f-electron, leading
to the phase shift in the unitarity limit as ,, = 7/2 (m = 1,2). The other is
the CEF singlet fixed point where two f-electrons form the singlet state due
to the CEF effect, characterized by 4,, = 0 (m = 1,2). Along the boundary of
these two stable-fixed-point regions, there exists a locus of the unstable fixed
points across which the ground state is interchanged. Around this line, NFL
behaviors appear at Tp < T < T, = min(Tke, K), where Tk, is the lower
Kondo temperature of two f-orbitals.

We control the degree of the competition by varying the CEF level splitting
A, and the other parameters of the Hamiltonian (2.11) are fixed as E¢; = —0.4,
E¢ = —03,Uy = Uy = 1.0,V; = 045, V; = 0.30 and K = 0.20 in the unit
of D throughout this section. In the case of K = A = 0, the Hamiltonian
(4.11) reduces to two independent impurity Anderson models, where the Kondo
temperatures determined by the Wilson’s definition, 4Tk Ximp(T = 0) = 0.413,
are Tx1 = 6.48 x 1072 and Tks = 9.28 x 1073, respectively. With increasing
A, the ground state changes at A = A, = 0.1263 from the K-Y singlet state
to the f2-CEF singlet state.

In order to see the valence fluctuations susceptibility in the f-electron site,
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we again define the following quantities:

Tz = Z(f:;w-fma - cg)mUCOmcr)a (215)
T"/’ = Z(f:nacomd + cgmafmo')a (216)

where come is the annihilation operator of conduction electrons in orbital m
and spin o localized with an extent from the impurity being kz'A/2. The

[{P%}]

susceptibilities of each direction, “z” and “z2”, are defined as follow:

AT 9T O(T)

R T S T (2.17)
_ AT aT) AT
= S T (2.18)

Figure 2.8 shows the A = (A —Ag) /A dependence of the static suscepti-
bilities, x, and , for various temperatures T on the logarithmic scale of A. As
in the case of the two-impurity Anderson model, both susceptibilities diverge
in the form —log |[&| at the critical point A = 0 as T decreases, and Yy, is
larger than x, by about ten times even away from the criticality. Although it
is not shown, the same result as the case of the two-impurity Anderson model
is obtained about the dynamical susceptibilities.

This result is natural because both the two-orbital and the two-impurity
Anderson model have similar type of UFP. Therefore, we expect that there
exist materials which show an enhancement in the Hall coefficient in heavy
fermion systems with f2-configuration.

2.6 Summary

In summary, we have investigated the charge transfer susceptibilities x,(,) be-
tween f-electrons and conduction bands in the two-impurity Anderson model.
In both cases of the PH symmetric and asymmetric conduction bands, we
have shown that X, diverges where the KY singlet and the RKKY singlet
states mostly compete. In particular, x, gives a dominant contribution to the
enhancement in the Hall coefficient through that to the diagonal and the off-
diagonal conductivities. This result gives a possible scenario for understanding
the enhancement in the Hall coefficient observed in some heavy fermion mate-
rials, like CeRuz(Si;—»Ge, )z at  ~ 0.1 [4], where Ty coincides with Tx.

26



2.6 Summary

30

~e-T=1.13x1077 <+ T=4.64x10°
g5 |+ T=453x10" Ly, > T=117x107)
4 T=114x103 oL Ll e T=470x10°8
20 T=4.59X10_4 ": — poroeer e T=1,18x10
P T=1.16><10‘ P e S e i 1
>Z< (a) v . St 0 —rere—a ¢
15} i b I b
*!‘ A A A A A A A A N ‘
4 ° tee 0 0 e ]
10+ ::: R L T T e o UL L '“”
. !
124
4 '. ‘. : :
(b) it
3t ;:: Py :::
! 2
>—>- 4 4t 4
><N i / s ::‘ —t T R R
5
A SN
’:‘A NP SRV e P L
' PO O . 4 —p-tae- 0 900 é
o gyt e B L '1': i \‘\.\‘

1 -1 -2 I-'2 =1 ~
-1 -0 10 o ke

Figure 2.8: I dependence of (a) x. and (b)x, for nine different temperatures.

27






Bibliography of Chapter 2

[1] B. Barbara, J. Beille, B. Cheaito, J. M. Laurant, M. F. Rossignol, A.
Waintal, and S. Zemirli: J. Phys. (Paris) 48 (1987) 635.

[2] G. Knebel, D. Braithwaite, G. Lapertot, P. C. Canfield, and J. Flouquet:
J. Phys: Condens. Matter 13 (2001) 10935.

[3] H. Wilhelm, S. Raymond, D. Jaccard, O. Stockert, H. v. Lohneysen, and
A. Rosch: J. Phys: Condens. Matter 13 (2001) L329.

[4] Y. Matsumoto, M. Sugi, K. Aoki, Y. Shimizu, N. Kimura, T. Komatsub-
ara, H. Aoki, M. Kimata, T. Terashima, and S. Uji: J. Phys. Soc. Jpn.
80 (2011) 074715.

[5] K. Miyake and H. Maebashi: J. Phys. Soc. Jpn. 71 (2002) 1007.
[6] K. Hattori and K. Miyake: J. Phys. Soc. Jpn. 79 (2010) 073702.
[7] K. G. Wilson: Rev. Mod. Phys. 47 (1975) 773.

[8] B. A. Jones, C. M. Varma, and J. W. Wilkins: Phys. Rev. Lett. 61
(1988) 125.

[9] O. Sakai, Y. Shimizu, and T. Kasuya: Solid State Commun. 75 (1990)
81-87.

[10] O. Sakai and Y. Shimizu: J. Phys. Soc. Jpn. 61 (1992) 2333.
[11] D. L. Cox and A. Zawadowski: Adv. Phys. 47 (1998) 599.

[12] 1. Affleck, A. W. W. Ludwig, and B. A. Jones: Phys. Rev. B 52 (1995)
9528.

[13] H. Fukuyama, H. Ebisawa, and Y. Wada: Prog. Theor. Phys. 42 (1969)
494.

29



2. Effect of Competition between Inter-Site and Kondo-Yosida Singlet
States on Charge Transfer Susceptibility in Heavy Fermion Systems

[14] L. G. Asmalazov and A. I. Larkin: Sov.-Phys. Solid State 10 (1968) 875;
Phys. Lett. 26A (1968) 238.

(15] H. Fukuyama, H. Ebisawa, and T. Tsuzuki: Prog. Theor. Phys. 46
(1971) 1028.

[16] O. Narikiyo: private communication.

[17] G. Seyfarth, A. -S. Riietschi, K. Sengupta, A. Georges, D. Jaccard, S.
Watanabe, and K. Miyake: Phys. Rev. B 85 (2012) 205105.

[18] S. Araki, Y. Shiroyama, Y. Ikeda, T. C. Kobayashi, S. Seiro, C. Geibel,
and F. Steglich: J. Phys. Soc. Jpn. Supple. A 80 (2011) SA061.

(19] K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shi-
maoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich: J.
Phys. Soc. Jpn. 77 (2008) 123711; private communication.

[20] K. Miyake and S. Watanabe: unpublished.

[21] S. Yotsuhashi, K. Miyake, and H. Kusunose: J. Phys. Soc. Jpn. 71
(2002) 389.

[22] S. Nishiyama and K. Miyake: J. Phys. Soc. Jpn. 80 (2011) 124706.

30



Chapter 3

Magnetically Robust Non-Fermi
Liquid Behavior in Heavy
Fermion Systems with
f2-Configuration:

Competition between
Crystalline-Electric-Field and
Kondo-Yosida Singlet States

3.1 Introduction

In the last decade or so, non-Fermi liquid (NFL) behaviors around quantum
critical point (QCP) have been one of main issues in physics, not only in heavy
fermion systems [1], but also in those exhibiting the Mott transition [2]. Of
these NFL behaviors, those of heavy fermion systems with f2-configuration
form a kind of subclass in which the QCP is triggered by local criticalities:
such as the two-channel Kondo effect (TCKE) due to the non-Kramers doublet
state [3, 4], and that caused by the competition between the crystalline-electric
field (CEF) singlet and the Kondo-Yosida (K-Y) singlet states [5, 6]. The
former TCKE was reported to be observed in La;_,Pr,Pbs that has a I's non-
Kramers doublet ground state in the cubic symmetry {7]. The NFL behaviors
in Th;_,U,RusSi; were understood in a unified way by assuming that the
system is located near the phase boundary between the CEF singlet and the
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K-Y singlet states [5]. However, a detailed study about the magnetic field
dependence on NFL behaviors has not been performed so far.

In the present chapter, we investigate the magnetic field dependence of
NFL behaviors in the specific heat Cinp(T) and the entropy Sim,(T) due to
f-electrons with the two-orbital impurity Anderson model in a tetragonal sym-
metry with the CEF singlet ground state on the basis of the numerical renor-
malization group (NRG) method [8, 9]. We discuss how the magnetic field,
H,, changes the characteristic temperature, T3, which is defined as the tem-
perature at which the temperature derivative of entropy, 8Simp(T")/0(log T),
takes the maximum value as Simp(T") approaching 0 as T — 0. In the vicinity
of the QCP, T% is suppressed by the effect of the competition between the CEF
singlet and the K-Y singlet states for H, = 0, and the NFL behaviors occur
at Tp < T < Tkg, where Tk, is the lower Kondo temperature of two orbitals,
as in the case of TCKE. The magnetic field is shown not to affect T up to a
certain value H* which is determined approximately by the condition that the
effect of the magnetic field, destroying a criticality of the TCKE type, becomes
comparable to the effect of the deviation from the criticality at H, = 0. H} so
determined is far larger than T3 (H, = 0) for a reasonable set of parameters.
As a result, the NFL behaviors become robust against the magnetic field up
to H; ~ Txo which is about hundred times larger than T3 (H, = 0).

This chapter is organized as follows. In §3.2, the model Hamiltonian is
introduced and transformed into a form suitable for the NRG calculation. In
§3.3, we discuss how the characteristic temperature Ty is affected by the effect
of the competition between the CEF singlet and the K-Y singlet states in the
case of H, = 0. In §3.4, we demonstrate the magnetic field dependence of Ty
and Yimp(T') = Cimp/T. In the vicinity of the QCP, there are parameter re-
gions where —log T behavior of Yimp, at temperature T3 < T < min(Tk, A), is
robust against the magnetic field. In §3.5, we investigate how such an anoma-
lous NFL is affected by the change of the characteristic energy scale of two
singlet states. In §3.6, we summarize our results and discuss their applicability
for understanding the magnetically robust NFL behaviors observed in UBe;3
because such an NFL being robust against the magnetic field can arise in sys-
tems with other symmetry if the K-Y singlet state and the CEF singlet state
compete for the ground state.

3.2 Model Hamiltonian

In this section, we recapitulate discussions of ref. 5 about how to derive the
model Hamiltonian for discussing the competition between the K-Y singlet
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3.2 Model Hamiltonian

and the CEF singlet states in f2-configuration on the basis of the j-j coupling
scheme in the tetragonal symmetry. We restrict the f! state within two low-
lying doublet states out of three doublets of j = 5/2 orbitals, and allot the
pseudospin representation for these states as follows:

re) = \/%H-Z»—J%—;smox (31)
) = —%|—§>+J§|+§>z|¢,o>, (32)

Tou) = 1+3)=10,1), (33)
Toc) = 1-5) =104 (3.4)

Here, for example, [1,0) represents the state where orbital 1 (Fg)) with up
pseudospin is occupied and orbital 2 (I'¢) is empty. We also restrict the f?
state within four low-lying states out of states allowed in J = 4 manifold, and
construct these four states with the direct product of f* states. Here, we have
discarded states where two f-electrons occupy the same orbital, |1, 0), {0, 11},
because the intra-orbital Coulomb repulsion is larger than the inter-orbital one.
Then, low-lying four f? states are expressed as

1 1

F) = Z50+2=1-2)=Z (LD =14, (3.5)
1 1

Ts) = Z5(+2+1=2)= Z(H O+ L), (3.6)

T&) = Bl+3)—of - 1) =11, (3.7)

Ty = Bl—3)—a|+1)=|,4). (3.8)

It is noted that we cannot determined coefficients, « and 3, because we have
discarded one of the doublet in f!-configuration. Therefore, in this chapter, we
take its j-j coupling representation as f2 states with I‘?) symmetry as shown
in Appendix including the derivation of eqgs.(3.1)-(3.8).

We assume that the CEF ground state is the singlet (I'y), the first excited
CEF states are magnetic doublet (T's) with the excitation energy A, and the
second excited CEF state is the singlet (I'3) with the excitation energy K, as
shown in Fig.3.1. Such a CEF level scheme can be reproduced by introducing
the “antiferromagnetic Hund’s-rule coupling” for the pseudospin as

J
Huwna = 5 [STS7 + Sy SF] + LSS5, (3.9)
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Figure 3.1: CEF level scheme of low-lying f? states and their eigenstates.

where coupling constants are defined as J, = K and J, = 2A— K, respectively,
and S; is a pseudospin operator of the localized electron in the orbital 7 defined

as
7' QZ o900 w' (310)

Furthermore, assuming that f-electrons constructing the f? state hybridize
with conduction electrons which have the same symmetry as each f! state.
Thus the system can be described by the two-orbital impurity Anderson model
with the “antiferromagnetic Hund’s-rule coupling” as follows:

H = Hc+ Huypp + He + Hutund, (3.11)
HC Z Z Ekckzackw’ (312)
=12 g,
Higp = Y Z( ek fw+hc) (3.13)
=12 £,
He = Z Z Egif} fio + Z Z 51 fios (3.14)
=12 o =12 o

where f,(f]) and ckw(a ,) are annihilation (creation) operators of the f-
electron on the orbital 7 w1th the energy Ey; and the conduction electron
with wave vector k& hybridizing with the f-electron with the symmetry of the
orbital ¢ with strength V... Here, the on-site intra-orbital Coulomb repulsion
U; is explicitly taken into account, while other Coulomb repulsion terms like
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3.2 Model Hamiltonian

the inter-orbital or the exchange interaction, are implicitly included in the
“antiferromagnetic Hund’s-rule coupling” of (3.9).

To analyze properties of the system described by the Hamiltonian (3.11) by
the Wilson NRG method [8, 9], we transform the conduction electron part as
usual. For simplicity, we take conduction bands to be isotropic in momentum
space, i.e. the hybridization depends only on the orbital i, V.z = V;, and
symmetric in the energy space (with an extent from —D to D) about the Fermi
level. We discretize conduction bands logarithmically with the discretization
parameter, A, and perform the unitary transformation assuming the density
of state in conduction bands as constant. Thus, egs. (3.12) and (3.13) can be
rewritten as

Hc = Z Z A_”l/2tn (fznafi,n+1a- + fitn+lafi,n0) , (315)

i,0 n=0

thb - Z ‘/7, (fzj;Oin,—la + f';{,—lgfi,Oa) y (316)

where fin ( fi‘: ,,) is the annihilation (creation) operator of the conduction elec-
tron in the shell orbital whose extent is kpA™? and fi—10 = fisc- The hopping
integral between n-th and (n + 1)-th shell states, ¢,, is expressed as
DA+ AH(I-ATY
"2/ (I = A (1 — A2e3)
Then, we define H which approaches H/(D(1+ A™')/2) in the limit N — oo
as follows:

(3.17)

HN — A(N—l)/2

He+ Vi (floo oo + 11 Fioo)

1,0

N-1

+ Z Z A—n/2tn (finafi’n-}-la + on+1afi,na)] ) (318)
i,0 n=0

where the tilde indicates that energies are measured in a unit of D(1+A"1)/2.
The Hamiltonian (3.18) satisfies the recursion relation

Havr = APHy + 3o (Fno fivsto + flwisofine) (3.19)

We solve the whole sequence of Hamiltonian (Hy) by using the recursive form
(3.19) with keeping states up to 1500 states in each iteration step, and use
A = 3.0 in all the calculations below unless explicitly stated.
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3.3 Non-Fermi Liquid Behavior due to Competition be-
tween Crystalline-Electric-Field and Kondo-Yosida
Singlets

In this section, we discuss the effect of the competition between the CEF sin-
glet and the K-Y singlet states, which can give rise to a NFL state. It is already
known that the system described by the Hamiltonian (3.11) has the compe-
tition between the K-Y singlet and the f2-CEF singlet states [5]. In general,
the energy level and the strength of hybridization with conduction electron in
each f-orbital are different. In the present chapter, we take parameters so that
the Kondo temperature of orbital 2 is always lower than that of orbital 1: i.e.,
we set parameters of the two-orbital impurity Anderson model, eq (3.11), as
E¢ = Epp = —-04,U; = Uy = 1.0,V; =045, and V, = 0.3. Hereafter, the unit
of energy is taken as D unless stated explicitly. In the case of K = A = 0,
the model Hamiltonian, eq. (3.11), reduces to two independent impurity An-
derson models. The Kondo temperature of each orbital can be determined by
the Wilson's definition, 4Tk Ximp(7 = 0) = 0.413, for conventional Anderson
model as Tk = 6.10 x 1072 and Tko = 6.01 x 1073, respectively.

For the finite value of CEF parameters, (K, A), there are two stable Fermi
Liquid (FL) fixed points corresponding to two singlet ground states as shown in
Fig.3.2: the K-Y singlet (filled circles) and the CEF singlet (open circles) fixed
points. ‘At the boundary of these two regions of FL fixed points, there exists a
curve of critical points, across which energy spectra for even and odd iteration
interchange, and NFL behaviors appear in the vicinity of the boundary. To
analyze further, we fix one of the CEF parameters as K = 0.16, and calculate
the physical properties for a series of values of the CEF splitting parameter
A. Analyzing near the critical point in more detail, the critical value of A is
determined as A* ~0.112 for K = 0.16.

Fig.3.3 shows the result of the temperature dependence of Sin,(7T'), the
entropy due to f-electrons, near the critical point. As mentioned above, the
characteristic temperature 7} is defined as the temperature at which the tem-
perature derivative of entropy, 0.Simp(T")/9(log T'), takes the maximum value
just before Simy(T) approaching 0 as ' — 0. As seen in Fig.3.3, Tj is drasti-
cally suppressed by the effect of the competition near the critical value of CEF
splitting A = 0.112 ~ A*.

Fig.3.4 shows the A dependence of Tj which is obtained by numerical cal-
culations of Simp(T'). In the case of A < A*, the K-Y singlet state is the ground
state, and two localized moments S; and S, are screened out independently by
corresponding conduction electrons, where each Kondo temperature is affected
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Figure 3.2: Phase diagram of the ground state in K — A plane. Filled circles
represent the K-Y singlet fixed point and open circles represent the f2-CEF
singlet fixed point. Parameter set is Ef; = Ep = —04,U; = U, = 1.0,V =
0.45, and V5 = 0.3.

by the interaction between f-electrons. In this case, the total phase shift of con-
duction electrons characterizing this fixed point is § = = (6, = 7/2, 8, = 7/2),
and T} is given by a value slightly lower than the Kondo temperature Tk,
if A is much smaller than A*. On the other hand, in the case of A > A¥*,
the CEF splitting (antiferromagnetic interaction between f-electrons in the
model Hamiltonian, (3.11)) is so large compared to the energy gain related to
the formation of K-Y singlet states that the CEF singlet becomes the ground
state. In this case, the remaining conduction electrons are not scattered by
f-electrons, and as a result the total phase shift is § = 0 (6 = 0,6, = 0).
When A > A*, Ty becomes close to the excitation energy K between two
singlet states.

Such an interchange of the ground state can be understood by considering
that the increase of A causes the stabilization of the level of the CEF singlet
state as shown in Fig.3.5. In the case of A ~ A* T3 is determined not by
characteristic energies of the K-Y singlet and the CEF singlet states, but by the
energy splitting between two singlet states, AE: ie., Tp ~ AE. Particularly,
at the critical point, the degeneracy of the K-Y singlet and the CEF singlet
states is not lifted even at T = 0, making T3 = 0 and limp_,¢ Simp = 0.5l0g 2.
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Figure 3.3: Temperature dependence of the entropy due to f-electrons in sys-
tems near the critical point. Parameter set is the same as that used in Fig.3.2.
In order to obtain the result with a higher accuracy, 3000 states are kept in
each step of NRG. Ground states of each system are indicated by open symbols
for the K-Y singlet, and filled symbols for the CEF singlet. The characteristic
temperature Ty is given by that making 0Simp(T)/9(log T) maximum at the
lower temperature side.

In other words, at low enough temperatures, the localized moment S; of orbital
1 has already been screened out by conduction electrons in orbital 1 below
Tk1, while S, of orbital 2 still has the degree of freedom as localized moment.
Therefore, the effective Hamiltonian of (3.11) near the fixed point behaves as
the two-channel Kondo model (TCKM) [10, 11] because S, interacts with two
“conduction” electron channels, one is the conduction electrons on orbital 2
and the other is a complex of conduction electrons on orbital 1 and screened
§1 as discussed in ref. 10.

Fig.3.6 shows the A dependence of the Sommerfeld coefficient, Yimp(T) =
Cimp(T)/T, due to f-electrons for various temperatures. For all A shown in
Fig.3.6, imp(T) increases monotonically down to T' = 7.0 x 107 as decreasing
T. At A = A* ~ 0.112, the increase of imp(7T") does not stop and exhibits
divergence in the limit 7" — 0 because the structure of the fixed point is the
same as that of TCKM as discussed above. For A off the critical value A*, the
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Figure 3.4: A dependence of T%. The effect of the competition between two
singlet states suppresses Ty, and in particular T3 = 0 at the critical point
A =0.112 ~ A*.

increase of Yimp(T') stops at around the characteristic temperature Tz leading
to the Fermi liquid behavior at T < T3. Yimp(T) takes a dip structure around
A ~ A* at higher temperature region. This is because Simp(T) has only a
weak T dependence in a wide temperature range 0 ~ T < T < Tk or A
around A ~ A* as can be seen in Fig.3.3.

It is remarked that the enhanced part of Jimp(T') near A ~ A* in the low
temperature limit from the background part at |A — A*| > A* arises from the
effect of the competition between the K-Y singlet and the CEF singlet states.
The part of the background is essentially given by an inverse of Tz or A, and
is overwhelmed by the enhanced part near A ~ A*. Note that the ordinate of
Fig.3.6 is represented in a logarithmic scale.

Although we take A as a control parameter here, we can expect a similar
behavior of 4im, through other parameters, such as the hybridizations V1 and
Vs, which can also control the competition between levels of two singlet states.
It is also remarked that such an anomalous behavior of ~imp can be realized in
systems with other symmetry: e.g., in UBe;3 with cubic symmetry [12, 13, 14].
Fig. 3.7 shows the Sommerfeld coefficient due to the f-electron, v, and the
lattice constant ag for system of solid solution, U;_,M;Beis. Here, the lattice
constant, ag is controlled by replacing the U atom partly with other elements
M, and v shows the similar behavior as shown in Fig. 3.6. It is remarkable
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Figure 3.5: Schematic energy levels of two singlet ground states. The CEF
singlet state is stabilized relative to the K-Y singlet state as A increases.

that v takes a maximum value at ay = aj}, which is approximately the same
as the lattice constant of UBe;3 [15]. Experimentally, as shown in Fig. 3.8,
in a series of materials with ag < af such as Uy;Yo9Beis and Ug1ScooBess,
the Kondo like upturn is observed in the resistivity in the low temperature
region. On the other hand, in those with ay > af such as Uy Lag¢Be;s and
Uo.1Tho9Bes, the temperature dependence of the resistivity can be explained
by the effect of the CEF with the singlet ground state. Then, we expect that
UBey3 is located near the critical point in this series of materials.

3.4 Magnetic Field Dependence of Non-Fermi Liquid
Behaviors

In this section, we discuss the magnetic field dependence of the NFL behav-
ior of Yimp(T). The effect of the magnetic field on f! states is taken into
account through the Zeeman term for total angular moment, Hzeeman(f*) =
—gspBj-H,, with j = 5/2 and g; = 6/7. That on f? states arises from the diag-
onal (for I‘?) doublet) and the off-diagonal (for I's and T4 singlets) matrix ele-
ments of two-electron Zeeman term Hzeeman (f2); €.8., (Fé2i)|7'lzeema.n( ?) |F§2) =
:F]-lgj,U'BHz/'Ya and <P3IHZeeman(f2)|P4> = "‘2gj,uBHz- Here, ,HZeeman(fz) con-
sists of two Hzeeman(f*).

In Fig.3.9, we show the magnetic field dependence of the characteristic tem-
perature 7§ near the critical point; i.e., A = 0.108,0.110,0.112(~ A*),0.114,0.116
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Figure 3.6: A dependence of the Sommerfeld coefficient Yimp(T") = Cimp(T)/T
due to the f-electrons for various temperature. The ground state switch at
A = A* ~ 0.112 from the K-Y singlet ground state for A < A* to the CEF
singlet for A > A*.

o

3

0.06

and 0.118. It is noted that T3(H,) remains constant for H, less than the char-
acteristic magnetic field H which is defined approximately as that from which
Tx(H,) starts to increase as increasing H, (as shown by circles in Fig.3.9). Ex-
plicitly, the characteristic magnetic field H}’s are given as H} ~ 3 x 107 for
A =0.106 and 0.118, H ~ 2 x 107 for A = 0.108 and 0.116, H} ~ 3 x 107°
for A = 0.110 and 0.114, and H} ~ 1 x 107° for A = 0.112. H} has a tendency
of approaching zero as the critical fixed point is approached, i.e., A — A*. For
CEF parameter A shown in Fig.3.9, H} is much smaller than the lower Kondo
temperature Tks =~ 6.01 x 1073, so that the magnetic field H, < H} has little
influence on the K-Y singlet state. Then, H} is considered to be determined by
a competition of two effects which destroy the TCKM-type NFL fixed point:
one is a distance of A from A* and the other is the magnetic field which breaks
the degeneracy corresponding to Simp(T" = 0) = 0.5log 2 due to the TCKE, the
origin of the TCKM-type NFL fixed point. Namely, H} is given by the energy
scale characterizing a crossover from the TCKM-type NFL behavior to the po-
larized Fermi liquid behavior beyond the effect of the distance of A from the
critical value A*. Since 4imp(7T") exhibits the divergent increase around A ~ A*
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Figure 3.7: Lattice constant ag and the Sommerfeld coefficient v of 18
Ui M;Beis at T ~ 0.5[K] [15]. The ~y value takes peak structure at ap = af}
where af is the lattice constant of UBes.

in the temperature region T' > T3 (H,) as decreasing T', Yimp(T') exhibits a NFL
behavior in the same temperature region T > T3 (H,). Since T3 (H,) remains
almost unchanged up to H, = H, the NFL behaviors are expected to remain
robustly even under the magnetic field H, > Tg(H,) so long as H, < Tke.
This behavior is reproduced by explicit calculations of Yimp(7") under various
magnetic fields as shown below.

In Fig.3.10, we show the temperature dependence of Yimp(T") for A = 0.112
(~ A*) and A = 0.118 under various magnetic fields of up to H, = 1.2 x 1073,
Extremely close to the criticality at A = 0.112 ~ A*, 4,,,(T) is enhanced by
the magnetic field as shown in Fig.3.10(a). This is because T (H,) increases
appreciably from 10~7 to 1075 corresponding to the increase of the magnetic
field H, from 10™* to 1073, resulting in an increase of Sy, (T)/8(log T) =
Cimp(T), 80 Yimp(T), at T > 107°. On the other hand, at A = 0.118 slightly off
the criticality, vimp(T) is robust against the magnetic field up to H, = 1.2x1073
for the temperature region T > 3 x 10~° as shown in Fig.3.10(b). This is
because Tp(H,) remains almost unchanged up to H, = H: ~ 1072 so that
¥imp(T') remains the same as that at H, = 0 for T' > T ~ 107°.
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Figure 3.8: Temperature dependence of the resistivity for Uy Mg ¢Be;s where
M=Th, La, Sc and Y [15]. Material with M=Y and Sc, which has smaller
lattice constant than UBe;3 show the Kondo like upturn in the low temperature
region, while materials with M=La and Th, which has larger lattice constant
than UBe;3 shows the resistivity which can be explained by the effect of the
CEF with the singlet ground state.

These kinds of NFL behaviors arise also in the region of the K-Y singlet
state, i.e., A < A*, although we do not show the results explicitly.

3.5 Kondo-Temperature Dependence of Non-Fermi Lig-
uid Behavior under Magnetic Field

In this section, we investigate the properties of the NFL behavior of ~im(7T)
under magnetic field of systems with other Tks by changing V5 as V5 = 0.25
and 0.20 for various sets of the CEF parameter, (K,A). Other parameters
are set to be the same as those in the previous section: ie., Ey = Fp =
—04,U; = Uy = 1.0, and V; = 0.45. In the case of K = A = 0, each
lower Kondo temperature can also be determined by the Wilson’s definition
as Txo = 1.27 x 1073 for Vo = 0.25 and Tk = 8.92 x 10~° for V5 = 0.20,
respectively. To analyze further, we also fix one of the CEF parameters as
K = 0.16 and calculate 7imp(7') for a series of A under various magnetic
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Figure 3.9: Magnetic field dependence of T} near the critical point. The
parameters related to f-electrons are the same as Fig.3.2. Circles indicate
characteristic magnetic fields Hz*’s.

fields. It is natural that A* (corresponding to the critical point) becomes
small with decreasing Tk, because the energy gain due to the formation of
the K-Y singlet state decreases with a smaller V5. The critical value of A
is determined as A* ~ 0.054 for V5 = 0.25 and A* ~ 0.024 for V, = 0.20,
respectively. Fig.3.11 shows the temperature dependence of ~iy,(T) of the
system with the CEF ground state: (a) A = 0.062 > A* ~ 0.054 for V5, = 0.25
and (b) A = 0.032 > A* =~ 0.024 for Vo = 0.20. The NFL behavior being
robust against the magnetic field occurs in a temperature region of 7' > T3 up
to H, ~ H} in the former case (a), while in the latter case (b) the magnetic
field has considerable influence on the NFL behavior.

For H, = 0, T} is also suppressed as in the case of V5 = 0.30 in the vicinity
of the critical point A ~ A*. It is noted that the decrease of Tks and A does
not appreciably affect T, i.e. T ~ 1077 for both cases of (a) and (b), which
is determined from calculations corresponding to Fig.3.3. This is because Ty
is determined by the energy splitting between the K-Y singlet and the CEF
singlet states, and does not depend on the characteristic energy scale of each
singlet state. Under the magnetic field, the effect on the NFL behavior is
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Figure 3.10: Temperature dependence of v for (a) A = 0.112 (~ A*) and
(b) A = 0.118 under various magnetic fields. In the case of (b), the NFL
behavior of 7 is robust against a magnetic field of up to H, = 1.2 X =
for T > 3.0 x 107° in spite of Ty ~ 1.69 x 107°. The parameters related to
f-electrons are the same as those used in Fig.3.2.

markedly different in two cases (a) and (b). In the case of (a) with V5 = 0.25,
the NFL behavior of 4imp(T) is rather robust against the magnetic field (up
to H;) in a wide temperature range (7' > T%) as in the case of Vo = 0.30,
while in the case of (b) with Vi = 0.20, 4imp(T) is sensitive to the magnetic
field because the characteristic magnetic field H is comparable to the lower
Kondo temperature, Txs. Namely, in the case of V5 = 0.20, the magnetic field
H, > Tks ~ 8.92x107° suppresses Yimp(7') by breaking the K-Y singlet ground
state. It is noted that in the case Tks > A, the suppression of Yimp(7T) as in
the case of Fig.3.10(b) is expected for H, > A by breaking the CEF singlet
states. Thus, the magnetic field dependence of the NFL behavior of Yimp(T') is
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Figure 3.11: Temperature dependence of i, (7) for a series of magnetic fields
in the system for the hybridization (a)V, = 0.25 and (b)V, = 0.20.

determined not by the characteristic temperature 73, but by the characteristic
magnetic field H; which is determined by the characteristic energy scale of
each singlet state, Txs and A, or the distance from the critical point.

3.6 Conclusion and Discussion

We have investigated the effect of the magnetic field on the NFL behaviors
due to the competition between the K-Y singlet and the CEF singlet states
in f?-based heavy fermion systems with tetragonal symmetry. The effect of
the competition suppresses the characteristic temperature T}, corresponding
to a peak of the specific heat, Ciy,(T"), to a much smaller value than the
characteristic energy scale of each singlet states: i.e., Tks, the lower Kondo
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temperature, and A, the cnergy splitting between the CEF singlet ground
state and the first excited doublet states. Ty is determined approximately
by AFE, the cnergy difference between two singlet states, and there exists the
two-channel Kondo model (TCKM) type NFL behaviors at T3 < T < Txka.
Namely, near the critical point, A ~ A*, the Sommerfeld coefficient Yimp(7')
exhibits a NFL behavior (vimp(T) «x —log T') at T > Tg.

In the vicinity of the critical point, Tj was shown not to be affected by the
magnetic field up to a certain value H, while T is increased for H} < H, <
min(Tk2, A). As a result, the NFL behavior of yimp at T > Ty is robust against
the magnetic field H < H?. Then, for reasonable sets of parameters, the NFL
behaviors being robust against a magnetic field of up to H} can occur at an
observable temperature range. Thus, the magnetic field dependence of this
NFL is characterized by H} which is determined by the characteristic energy
scales of two singlet states and the distance from the critical point.

In the present chapter, we have discussed physical properties in the tetrag-
onal symmetry. However, also in the case of other crystal symmetries, it is
expected that there remains the effect of the competition between the K-Y
singlet and the CEF singlet states, leading to the NFL behaviors similar to the
present case. One example would be the case of the cubic system UBe;3 which
seems to be located near the phase boundary between the K-Y singlet and
the CEF singlet states, according to a series of experiments of limr.o C(T") /T
for systems of solid solution, U;_,T,Be;s shown in Fig. 3.7, where the lattice
constant qg is changed in a wide range covering both the K-Y singlet and the
CEF singlet ground states [15]. Moreover, pure UBe;3 exhibits the NFL be-
havior, C(T)/T ~ —log T up to H, = 12 Tesla as shown in Fig. 3.12 [14].
Of course, precisely speaking, results of the present chapter are for the system
of f2-impurity so that we should be careful in deriving a solid conclusion. In-
deed, an approach based on the dynamical mean field concept is indispensable
for deriving a solid conclusion for lattice systems, in which the present results
would be inherited to the solver of impurity problem. Nevertheless, we expect
that the effect of the competition plays an important role for UBeys to exhibit
such a NFL behavior rather robust against the magnetic field larger than the
effective Fermi energy inferred from the value of limp.o C(T)/T. Namely, the
lower Kondo temperature would be larger than 12K from the fact that the
NFL behavior limgp.o C(T)/T ~ —log T in UBey3 is robust against the mag-
netic field up to 12 Tesla at least [14]. Were it not for the superconducting
state at T < T, ~ 1K, there would exist the peak with specific heat near at
T = Tg. Predictions of the present chapter may be checked by experiments
in some U-diluted system of UBe;3 near the phase boundary between the K-Y
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Figure 3.12: Temperature dependence of the Sommerfeld coefficient of UBe;s
after subtraction from raw data the nuclear contribution due to Zeeman split-
ting of %Be states [14] at some magnetic field, B =0, 6, 8, 10, 12 Tesla. The
sharp peak at 7' ~ 0.9 at B = 0Tesla is due to the superconducting transition.
Inset shows 0 and 12 Tesla’s data on a logarithmic temperature scale. The
Sommerfeld coefficient of UBey3 shows -log T behavior at B = 0 Tesla, and
that is not affected by magnetic field up to 12 Tesla.

singlet and the CEF singlet states under pressures and/or magnetic fields.

Appendix: f? States in Tetragonal Symmetry

In the tetragonal symmetry, wave functions for each CEF level are given
within f! states of j = 5/2 orbitals as follows:

Eely = Clian!?;), (3.1)
[ = in\igﬁd?g), (3.2)
Tosd = 23), (3.3)

where ¢ and 7 are the coefficients determined by the effect of the CEF. In this
appendix, we determine these coefficients on the basis of the condition that
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the energy level of low-lying f2 states with J = 4 manifold can be reproduced
by Hamiltonian (3.9). First, we construct states with J = 4 manifold from the
direct product of states with j = 5/2 manifold.

|£3) — £+ >|i1> (3.4)

|+£2) = + \/_ = —):I:[I:i: (3.5)

1) = i\f;|i§>|¢5>i\@|i5>w§>. (3.6)

By using the inversion relation of eqs.(3.1)-(3.3) representing | +5/2), | +
3/2), and |+ 1/2) in terms of T'M, TP, and T, we obtain the f2 states in the
tetragonal symmetry as follows:

ITs) = (3¢ +/3n) (IP¥)ITe-) + 1) Tex))

)= 1-2) = 5= |
+ (\/5C —377) (II‘$2_))|F6+) IT$?) [T ))] . (3.7)

Tah = 5 12+ 1= 2)) = 5= [ (3¢ = vBn) (ITE10s-) — 12)10s,)

+(Va¢+3n) (KD ) + PN, (39)

T$%) = B13) —al = 1) = (ﬂc + ﬁan) T2} + \/galr?lnr%
¥ (ﬂn - \ﬁ ) TF2)Tss), (39)
[T5) = 81— 3) - aft) = - (ﬂc + \[ > [P{2)1rs-) \[ il
+ (Bn - \/gac) IT2)ITs-), (3.10)

are the same as those expressed in eqgs. (3.5)-(3.8).

Here, terms where states with Fg) symmetry are occupied in egs.(3.7)-
(3.10) can be negligible because their energy levels are assumed to be higher
than the other states so that the hybridization between F ) and the f2-states
(3.7)-(3.10) may be neglected for forming a heavy fermion state as discussed in

1
7 (2
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refs. 16 and 17. The coeflicients, ¢ and 7, can be determined by the condition
that the coefficients of the remaining terms in eqgs.(3.7)-(3.8) are equal to those
in egs.(3.5)-(3.6). The result is

5 3
¢= \/g, "= g (3.11)

A relation between a and 3 is also derived by comparing eqgs.(3.9)-(3.10) with

eqs.(3.7)-(3.8) as follows:
3 5 [

It is noted that the coefficient of the first term in (3.7), including F;li), becomes
larger than that of the second term in (3.7), including F%), if we use the values
of (3.11). However, it is allowable to discard the first term because the I' %ﬂ
state is assumed to play a negligible role in forming the heavy fermion state as
discussed above. The normalization condition for the right part of egs.(3.9)-
(3.10) requires z = 1. Nevertheless, by combining the normalization condition
for T® symmetry in f2 states, i.e., |a|? + |B]* = 1, there are no solutions for
these coefficients as far as 2v/11/7 < z < 1 (2V/11/7 =~ 0.947---). This is

because we have discarded the states relating to 1“?) as discussed above, and
increased the weight of the remaining terms in egs.(3.9)-(3.10). In view of such
a situation, for simplicity, we use the pseudospin representations, | 1,1) and
| 1,{), written in egs.(3.7)-(3.8), respectively, as ng) states instead of using o
and 8.
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Chapter 4

Effect of Competition between

Kondo-Yosida and
Crystalline-Electric-Field
Singlet States in
f2-Configuration System with
Tetragonal Symmetry

4.1 Introduction

In recent decades, non-Fermi-liquid (NFL) behaviors observed in some heavy
fermion compounds and high-T, cuprates have created interest in the issues
around the quantum-critical point (QCP). Of these NFL behaviors, those
based on a single correlated impurity in systems with f2-configuration are clas-
sified into two subclasses in which the QCP is triggered by the local criticality:
one is caused by the two-channel Kondo (TCK) effect due to the non-Kramers
doublet state [1, 2, 3, 4, 5, 6, 7, 8, 9], and the other is caused by the competi-
tion between the crystalline-electric field (CEF) singlet and the Kondo-Yosida
(K-Y) singlet states [10, 11, 12, 13]. Each of these mechanisms shows NFL
behaviors below its characteristic energy scale T, because the systems flow
toward the unstable fixed point. However, in real systems, small but relevant
perturbations, leading the systems away from the unstable fixed point, give
rise to a finite characteristic temperature T3, the crossover temperature from
NFL behavior to Fermi-liquid behavior. Namely, these two NFL behaviors are
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observed in the temperature (T') region T < T < T, when Ty < T,.

The NFL behaviors due to these two mechanisms are, in general, difficult
to distinguish experimentally, especially in the case of U-impurity compounds,
because there exists some ambiguity in determining the CEF level scheme of
U-ions. Th;_;U RusSi; (x<0.07) is one such complicated heavy fermion im-
purity system. The NFL behaviors of this material are well scaled by impurity
concentrations, so that many theoretical and experimental works have been
carried out based on these two mechanisms treating U-ion as an impurity [5,
10, 11, 14, 15, 16]. Actually, in Th;_,U,RuySiy, —InT divergences are ob-
served in both the magnetic susceptibility Ximp and the Sommerfeld coefficient
Yiap = Cimp/T as shown in Fig. 4.1 (a) and (b), Cimp being the specific heat
due to the impurity. Moreover, the resistivity pimp shows the anomalous tem-
perature dependence as shown in Fig. 4.2. These NFL behaviors are consistent
with those predicted by theories based on these two mechanisms. In the case
of Ri_,U,RusSi; (R=Y and La), degrees of NFL behaviors are less prominent.
Namely, Fermi liquid behaviors recover in the low temperature regions where
Th;_,U;RusSi; exhibits prominent NFL behaviors [16, 17]. These differences
can be understood from a viewpoint that distances from the QCP are different
from compounds to compounds. In other words, Th;_,U,RusSi, is assumed
to be accidentally located near the QCP.

With the application of a magnetic field, however, there exist some aspects
inconsistent with the NFL behaviors based on the TCK effect even in the
case of Thy_,U;RuySis. First, if the NFL behaviors originated from the TCK
effect, the magnetic field would induce the increase of iy, due to the release of
the residual entropy by lifting the degeneracy due to the doublet ng) ground
state of J = 4 orbitals in tetragonal symmetry. However, the suppression of
the —logT divergence of %, is observed in Th; ,U,Ru,Siy by applying a
magnetic field as shown in Fig. 4.2 [16]. Next, it was reported that Tp(H)
of Th;_,U,Ru,Si; shows an anomalous magnetic field (H) dependence. Fig.
4.4 (a) shows the temperature dependence of the resistivity (ps;) under the
magnetic field, and Fig. 4.4 (b) shows the magnetic field dependence of the
characteristic temperature (defined by Tx(H) in this figure) determined by the
temperature at which the resistivity starts to shows the Fermi-liquid behavior,
i.e., pss x T2. Clearly seen from Fig 4.4 (c), which shows the H2-dependence
of Tx(H), the magnetic field dependence of Tr(H) does not written in the
form a quadratic dependence of H expected in the TCK model [2, 4, 7, 8].
Considering these inconsistencies, it is troublesome to argue that the NFL
behaviors in Th;_,U,RusSi; can be understood by the theory based on the
TCK effect [11].
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Figure 4.1: Temperature (T) dependence of (a) magnetic susceptibility (x/)
and (b) Sommerfeld coefficient (C°//T") due to f-electrons[16]. In the case of
Th;_,U,RusSis, both shows logarithmic divergence as T' decreases.
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Figure 4.2: Temperature (7') dependence of the f-electron contribution to the
resistivity (Ap) [16].
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Figure 4.4: (a) Temperature (7") dependence of the characteristic temperature
(Tr(H)) under the magnetic field H. (b) H dependence and (c) H* dependence

In this chapter, we study the magnetic field dependence of the NFL behav-
iors due to the competition between the K-Y singlet and the CEF singlet states
in tetragonal symmetry, and discuss its applicability to the magnetic proper-
ties in Thy_,U,RusSis. Yotsuhashi et al have already discussed this problem
on the basis of the two-orbital Anderson model with the “antiferromagnetic”
Hund’s-rule coupling [11], the same as in the present chapter. They have shown
that the logarithmic enhancement of iy, due to the competition between the
two singlet states is suppressed by applying the magnetic field in a wide set
of parameters near the unstable fixed point, which is consistent with the ex-
perimental results of Th;_,U,RusSi, in a wide-temperature region. Here, we
also take the same CEF scheme as [11], and investigate the H-dependence of
the magnetic susceptibility Ximp, the resistivity pimp, and, in particular, the
characteristic temperature T3 (1) obtained from these physical quantities. On
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Figure 4.5: CEF level scheme of low-lying f? states and their eigenstates.

the basis of the Wilson numerical renormalization group (NRG) method [19],
we show that the H-dependence of T3 (H) changes at around the crossover
magnetic field H,,, and that T3:(H) at H ~ H, reproduces the anomalous
behavior observed in Th;_,U,RusSi;. Namely, the anomalous properties in
Th;_,U,RuySiy can be fully explained by the present model. Moreover, the
anomalous properties in Ry_,U,RusSis (R=Y and La) are also consistent with
our results.

This chapter is organized as follows. In §4.2, we introduce the model Hamil-
tonian to discuss the competition between the two singlet states. In §4.3, the
numerical result by the NRG calculation of the magnetic field effect on T3 (H),
the resistivity pimp, and the magnetic susceptibility ximp, are given in the case
of both singlet ground states. In §4.5, the H-dependence of T3(H) is given in
the case of the another f?-CEF level scheme. In §4.4, we discuss a scaling prop-
erty of the HH-dependence of T} (H) and its origin on the basis of the similarity
of the unstable fixed point with the case of TCK effect. In §4.6, we discuss
the applicability of this scenario to the experimental result of Th;_,U,RusSis,
and we summarize our results in §4.7.

4.2 Model Hamiltonian

To discuss the competition between the two singlet states, we rewrite f?-states
in the j-j coupling scheme using f!-states in the j = 5/2 manifold. Here, we
restrict the Hilbert space of f!-states to two low lying Kramers pairs and allot
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them the pseudospin states as follows [11, 13]:

) = i+ 5) - ¢h]———w¢m (4.

M) ===l = D+ gl 5 = 140, (42)
Posh =1+ 3) = 10.1), (4.3)
Tosy=1-5)=10.4) (1.4)

The f2-states are also restricted to the four low-lying CEF states in the J =4
manifold of tetragonal symmetry, which are written in the j-j coupling scheme
within a manifold of j = 5/2 in fl-coufiguration as follows [11, 13]:

1 _ 1 .
\Ly) = N (+2)-1-2) = 7 q4m —=11.4). (4.5)
wg::%u+m+wm> ;gHL%Hiﬂ) (4.6)

(4.7)
(4.8)

3

TP =8l +3) —al — 1) = 1,1
T8 = 8] =3) —a| + 1) = L. 4

vv

Here, we assume the [’y singlet ground state as shown in Fig. 4.5, where
K and A represent the excitation energies. With the use of the pseudospin
states (4.1)-(4.4), the f%-level scheme is reproduced by the “antiferromagnetic”
Hund’s-rule coupling [11, 13],

J L
Hitund = 5 [STSy + 5755 + J.S783, (4.9)

where coupling constants are defined as J, = K and J, = 2A— K, respectively.
S, isa pseudospin operator of the j electron in the Hilbert space of f!-state
spanned by the orbitals m =1 (F( Jor 2 (I'g), and is defined as

1

—
t — T — j

— ’
b’m - () 7:10000 mo’

(4.10)

where f,,, is an annihilation operator of the f-electron in orbital m [11. 13].
The use of the j-j coupling scheme for f?-states is not necessary in principle
for solving the present problem. However, it makes the problem more tractable
in calculations on the basis of the Wilson NRG method.
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Thus, the Hamiltonian is given by the two-orbital impurity Anderson model
with the “antiferromagnetic” Hund’s-rule coupling as follows [11, 13]:

H= Hc + thb + Hp + HHIH!(I; (411)
HC - Z Z glzc;;rn,v/("’:”“’. (412>
m=12 [,
/thb - Z Z (Mncj%maf"m + h‘C.) ’ (413>
m=1,2 [ ’
Hf = Z E./mf:n,afm(r + Z Umf;mfmT/TLJ,fmi7 (414)

where ¢, - is an annihilation operator of a conduction electron with the wave
vector k and the spin ¢ hybridizing with the f-electron in orbital m with
a strength V,,. FEy, and U, are the energy level of the f-electron and an
intra-orbital Coulomb repulsion in orbital rn, and the other Coulomb repulsion
terms, like an inter-orbital interaction, are implicitly included in the “antifer-
romagnetic” Hund’s-rule coupling (4.10).

We consider the case when the maguetic field is applied in the z-direction,
the c-axis of Th;_,U,Ru,Si;. The effect of the magnetic field for fl-states is
taken into account through the Zeeman terms defined by

HZ(‘,mnan<f1) - - Z g'rw'xlrl/BS;;I H (415>

where g-factors of orbital 1 and 2 are g; = 90/49 and g, = 6/7. respectively.
The effects of the magnetic field for f"-states (n = 2,3,4) are calculated by
Hzeeman (), which is the sum of the Zeeman term (4.15) for each f-electron.
For example, (Fé?i}%z@eman(fz)|I‘§fi> = (g1 + g)usH /2 for [*-state [T,
(4.7) and (4.8), and (14,1 [Hzeeman (f*)] T4 1) = gops H/2 for [3-state | 11,7+
) = f;r? A f f;HO), where |0) is the vacuum state, and so on. In the same manner,
the Van Vleck contribution arising from the off-diagonal term between T'; and
I3 in the f%singlet manifold is estimated as (P3| Hzeeman (F2)|T4) = —(g1 —
g2)pie /2. However, this value is much smaller than that estimated in the
LS-coupling scheme in the J = 4 manifold, (I'y| — gyupJ. H|T's) = —2¢; 1 H.
with ¢g; = 4/5, because the higher F;l) doublet state in the j = 5/2 manifold
in f!-configuration has been discarded in constructing our model Hamiltonian
(4.11)-(4.14). In fact, if we construct the T'y and I'y singlet states in the j = 5/2
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manifold as
1 /5 3 1 1 3
=1+ = — — ) - = 4.1

PRI+ p-1-3-). @

the off-diagonal term is estimated as (I's|Hzeeman(f2)|T4) = 2g;upH with g; =
6/7, which almost coincides with the value estimated in the [.S-coupling
scheme in the J = 4 manifold. Thus, in order to take into account the Van
Vleck contribution properly, we adopt the off-diagonal matrix element in the
J = 4 manifold other than the contribution from the f!-based Zeeman term.

We transform the conduction-band part of the Hamiltonian (4.12), with a
logarithmic discretization parameter, A = 2.5, into the one-dimensional semi-
infinite chain model and carry out the Wilson NRG method [19]. For simplicity,
we take conduction bands to be symmetric in the energy space (with an extent
from —D to D) around the Fermi level. We keep the low lying 4000 states in
each iteration step.

4.3 Characteristic Temperature 73 (H)

The Hamiltonian (4.11) has two stable fixed points. One is the K-Y singlet
fixed point (KY SFP) where the spin degree of freedom of each f-electron
is screened by the conduction electrons with the same symmetry as the [-
electron, leading to the phase shift in the unitarity limit as é,, = 7/2 (m =
1,2). The other is the CEF singlet fixed point (CEF SFP) where two f-
electrons form the singlet state due to the CEF effect, characterized by 4, =0
(m =1,2). Along the boundary of these two stable-fixed-point regions, there
exists a locus of the unstable fixed points across which the ground state is
interchanged. Around this line, NFL behaviors appear at Ty < T < T, =
min(7Tko. K'), where Tk is the lower Kondo temperature of two f-orbitals.

In general, Ey,, and U, the energy level and the Coulomb interaction of
each f-orbital, are different. However, for simplicity, we take the same values
for each orbital. and the difference in characters of each orbital is introduced
only through V,,. The Kondo temperature of orbital 2 is postulated to always
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Figure 4.6: Temperature dependence of the specific heat Ciy, for a series of
magnetic fields H (0 < H < 3x1073) for (a) K = 0.0440 with T} = 1.44x10°°
in the KY SFP, and (b) K = 0.0488 with 73 = 1.33 x 1075 in the CEF SFP.

be lower than that of orbital 1, Tkx; > Tko, and the parameters of the Hamil-
tonian (4.11) are fixed as Ey = Epp = —04,U; = Uy = 1.5,V; = 0.45 and
Vo = 0.30 in the unit of D throughout this section. In addition, the mag-
netic field H is measured in the unit of D/ug. In the case of K = A = 0,
the Hamiltonian (4.11) reduces to two independent impurity Anderson mod-
els, where the Kondo temperatures determined by the Wilson’s definition,
4Tk Ximp(T = 0) = 0.413, are Tx; = 4.52 x 1072 and Tky = 3.43 x 1073, re-
spectively. In this chapter, we set the CEF level splittings as K > A which
reproduces the anisotropy of the magnetic susceptibility, y. > y. as pointed
out in ref. 11. Moreover, we fix A = 0.12 and control the degree of the com-
petition by varying the CEF level splitting K. For the parameter set above,
K™ ~ 0.0464 gives the unstable fixed point, i.e., the ground state is the K-Y
singlet for K < K* and the CEF singlet for K > K*.

Figure 4.6 shows the temperature dependence of the specific heat for two
cases: K = 0.0440 in the KY SFP region and for K = 0.0488 in the CEF SFP
region, respectively. The characteristic temperature T} is defined by the lowest
temperature at which the specific heat Cipp(H) = 0Simp(H)/0In T, Siyp being
the entropy due to the impurity, has a peak corresponding to the release of
log v/2 entropy which characterizes the unstable fixed point [11, 13]. For these
parameters, the characteristic temperatures are obtained as Ty ~ 1.44 x 10°°
in the K-Y SFP region, and at T3 ~ 1.33 x 107% in the CEF SFP region.
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Figure 4.7: Characteristic temperature T3 vs K = (K — K*)/K* for a series
of magnetic field H. Data points in the KY SFP are represented by closed
symbols, while those in the CEF SFP are represented by open symbols. Arrows
indicate the positions of the dip of T3 (H).

In the case of the K-Y SFP region, Ty slightly decreases for a magnetic field
H = 1.0 x 107, while the other values of the magnetic field increase 7Ti. On
the other hand, in the case of the CEF SFP region, all values of the magnetic
field increases Ty.

Figure 4.7 shows K = (K — K*)/K* dependence of Tii(H). The character-
istic temperature T} is decreased by the competition. One can see in Fig. 4.7
that the K-dependence of T3 at H = 0 is given by Ty o K2 around the QCP,
indicating that T} gives a degree of deviation from the QCP. When the mag-
netic field is applied, 7} increases, and the energy spectrum no longer suddenly
interchanges at K = K* because the ground state is the mixed state between
the CEF singlet and the K-Y singlet states. In the KY SFP region, there
appears a dip (indicated by arrow in Fig. 4.7) at which Ty takes a minimum
but remains non-zero. The energy spectrum obtained by the NRG calculation
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Figure 4.8: Frequency dependence of the total scattering rate 1/7(w) for a
series of magnetic fields H (0 < H < 3 x 107?%) for (a) K = 0.0440 with
Tg = 1.44 x 107 in the KY SFP, and (b) K = 0.0488 with T3 = 1.33 x 10~°
in the CEF SFP.

“gradually” crosses over between the types of the CEF and the K-Y singlet
states around this dip. Namely, it is the point where the dominant singlet state
of the two singlet states interchanges. As the magnetic field increases, this dip
moves from K = K* to the low K region, which indicates that the magnetic
field increases the weight of the CEF singlet state compared to that of the K-Y
singlet state. This increase in the weight of the CEF singlet state originates
in the off-diagonal term between 'z and I'y f?-CEF singlet states because it
stabilizes the energy level of the I'y CEF singlet ground state. Hereafter, we
investigate the H-dependence of physical quantities in two cases being close
to the QCP: K = 0.0440 with 73 = 1.44 x 107% in the KY SFP region and for
K = 0.0488 with T3 = 1.33 x 107% in the CEF SFP region, respectively.

Figure 4.8 shows the frequency dependence of the total scattering rate
1/7(w) at T = 0 for two cases, K = 0.0440 and K = 0.0488, where 1/7(w) is
the sum of contributions from each orbital, and spin component 1/7,,,(w) =
27| Vin|? Ao (W), Apo(w) being the single-particle spectral function. Data points
in the KY SFP region are represented by closed symbols, while those in the
CEF SFP region are represented by open symbols unless stated explicitly. The
T-dependence of the resistivity can be inferred from 1/7(w) because w and T
are of the same order in the Fermi-liquid theory [20], e.g., in the case of the sin-
gle orbital Anderson model, 1/7(w,T) ~ [1/7(0,0)] [1 — (w? + 72T?)/3T2 + - - -]
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[21]. Although it is not shown as figures in the present chapter, 1 /7(w) in-
creases logarithmically in the region of w > Ti, due to the screening of the
[-electron by conduction electrons in orbital 1 in both cases. With decreasing
w toward Tp(< Tk < Tx1), 1/7(w) shows a logarithmic increase in the K-Y
SFP region, but it shows a logarithmic decrease in the CEF SFP region. Fi-
nally, the Fermi-liquid behavior is restored in both regions, i.e., 1/7(w) o w?,
at w < T{H(H =0).

When the magnetic field is applied. the residual scattering rate 1/7 =
1/7(w)| 0 decreases in the K-Y SFP region as seen in Fig. 4.8(a). There are
two origing which induce such an increase of 1/7: one is the mixing between
the K-Y singlet and CEF singlet state in the ground state, and the other is
the mixing between I’y and I'y singlet states through the off-diagonal term. As
a result, the magnetic field leads the polarization of each f-electron. These
magnetic moments make a singlet state, leading to the reduction of the phase
shift. On the other hand, in the CEF SFP region, 1/7y increases because the
CEF-type ground state is polarized, and its magnetic moment scatters off the
conduction electrons, leading to an increase of the phase shift and 1/7(w) at
w < Ti(H = 0). Because the weight of the CEF singlet state in the ground
state drastically increases compared to that of the K-Y singlet state around
the QCP, 1/7(w) in the K-Y SFP region shows the same T-dependence as in
the CEF SFP region under high magnetic ficld. After all, the T-dependence of
the resistivity pimp due to the impurity scattering is essentially given by that
of 1/7(w=T).

The magnetic susceptibilities, i, = OM/OH, are shown in Fig. 4.9 for
these two cases. The magnetization M consists of M; (arising from the Zeeman
term Hzeeman (")) and Mo (arising from the Van Vleck termin f 2 configuration,
egs. (4.5) and (4.6)). M is given as the thermal average of the magnetic
moment m which is calculated as m = +(g; + g2)up/2 for [*-state I()Q:) (4.7)
and (4.8), and m = ppge/2 for f3-state | T1.1), and so on. On the other
hand, A/, is given by an effect of the off-diagonal clement of the magunetization
between the f2-CEF singlet states I's, eq. (4.6), and I'y, eq. (4.5). In both
cases, Yimp(T) shows the logarithmic T-dependence at around T ~ Tk and
Ty < T < min(Tke, K). The magnetic field reduces the coefficient of the
—log T term at T3 < T < min(Tk2, K) and the Van Vleck contribution. In
particular, these reductions in the KY SFP region are smaller than those in
the CEF SFP region. The origin of this phenomenon is the interchange of the
weight of the two singlet states in the ground state. At higher magnetic fields.
in both cases, the broad peak appears at T ~ Ti(H), where Tf is obtained
from Ciyp as mentioned above.
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Figure 4.9: Temperature dependence of the susceptibility Xim, for a series of
magnetic fields 17 (0 < 11 < 3x107?) for (a) K = 0.0440 with T3 = 1.44x 106
in the KY SFP, and (b) K = 0.0488 with 7% = 1.33 x 107 in the CEF SFP.

The Sommerfeld coefficients, Yimp(7T') = Cimp(T) /T, are shown in Fig. 4.10
for two cases. As it is same with the case of Yimp Yimp(T') shows the logarithmic
T-dependence at around T' ~ Tx; and T < T < min(Tke, K) in both cases.
When applying the magnetic field H = 1.0 x 107, 7;,,,(T) is increased at
1= 1075 in both cases. Such an increase of Yimp(T") can be seen for all mag-
netic field although the temperature regions depends on the value of magnetic
field. At T < T, 7imp(T) takes the constant value. This constant value is
decreased by magnetic field, which means that the magnetic field relaxes the
competition between two singlet states.

4.4 Scaling Behavior of Characteristic Temperature 77 (H )

From the data of the 7" or w dependence of Ciy, Ximp and 1/7 under the
magnetic field H, we obtain the H-dependence of Tji(H), as shown in Fig.
4.11(a), where the Tp(H) of 1/7 and Ximp are defined as the temperature at
which the logarithmic 7T-dependence stops with decreasing w and 7" toward 0.
We define the crossover magnetic field H,, as the intersection point of linear
fits (dotted lines) on the log-log plot for high and low magnetic field regions in
the CEF SFP region (K = 0.0488 and K = 0.05172) as shown in Fig. 4.11(a).
It is remarkable that so determined H,,’s for three different physical quantities,
Cimp, Ximp, and 1/7, almost coincide with each other as shown by arrows in
Fig.4.11(a), giving a solid basis for defining the crossover magnetic field H,,. In
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Figure 4.10: Temperature dependence of the Sommerfeld coefficient Cimp T
for a series of magnetic fields H (0 < H < 3 x 107?) for (a) K = 0.0440 with
Ty = 1.44 x 107% in the KY SFP, and (b) K = 0.0488 with Ty = 1.33 x e
in the CEF SFP.

the KY SFP region (K = 0.0440 and K = —0.05172), the H,’s are similarly
defined, although T3 obtained from X, exhibits a tiny dip near H = H..
Linear fits are not shown for the clarity of the presentation. The crossover
magnetic field H, so determined for Ciyp, 1/7, and Yimp almost coincide again.
These H.’s in the two singlet-fixed-point regions almost coincide with each
other because the absolute values of K for these two parameters are almost
the same, while H,, depends crucially on K = (K — K*)/K*, the deviation
from the QCP. Normalized characteristic temperatures, T (H)/Ta(H = 0),
are shown in Figs. 4.11(b) and 4.11(c) as a function of a normalized magnetic
field H/H., from the three physical quantities as above. Figure 4.11(b) is for
the KY SFP with parameters K = 0.0440 giving T3(H = 0) = 1.44 x 1075
and K = 0.0460 giving T(H = 0) = 2.80 x 107%, and Fig. 4.11(c) is for the
CEF SFP with parameters K = 0.0488 giving T(H = 0) = 1.33 x 107° and
K = 0.0468 giving Ty:(H = 0) = 3.79 x 10~®. These four lines exhibit a good
scaling property in both cases, which indicates the following two important
facts.

First, Ti(H)’s of the three quantities, Cimp, 1/7, and Ximp, exhibit quali-
tatively the same behaviors while they are qualitatively different. Second, the
scaling property holds both in the CEF SFP and the KY SFP regions even if a
degree of the deviation from the QCP is different. It is noted that the shapes
of the normalized plots for the two stable fixed points are different from each
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Figure 4.11: (a) Characteristic temperature T3(H) vs magnetic field H for
the two cases with CEF (for K = 0.0488 and K = 0.05172 shown by open
symbols) and K-Y (for K = 0.0440 and K = —0.05172 shown by closed
symbols) singlet fixed points. The crossover magnetic field H,’s are shown
by down arrows in the case of the CEF singlet fixed point. (b) and (c) are
scaling plots of T#(H)/Ti(H = 0) vs H/H,, for the KY SFP and the CEF

SFP, respectively.
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other. In the region H < H.(K), Tg(H) is independent of H, and Tg(H) is
robust against the low magnetic field in particular, so that the three physical
quantities discussed above are not affected appreciably. We have previously
found this robustness of Ty (H) against H, as seen in ref. 13. On the other
hand, all the T(H)’s show the H-dependent form as T3(H) o< H* in the re-
gion Hcr(l(’) < H < min(Txs, K). The exponent z is estimated to be z ~ 2.0
both in the CEF and the K-Y SFP regions. These two regions continuously
cross over at around H ~ H(K). Of course, it is possible that T3(H) can
be fitted as Ty(H) < H in a very narrow region of the magnetic field near
H = H.,, especially in the CEF SFP region as seen in Fig. 4.11(c). However,
such a scaling behavior should be regarded as that of a cross over, but not an
asymptotic anomalous behavior.

Such a H-dependence of Tj;(H) can be understood by considering the sim-
ilarity of the unstable fixed point with that of the TCK effect. In the case of
the TCK model, there are two origins which break the unstable fixed point, the
magnetic field which polarizes the local spin leading to the “unusual” Fermi-
liquid fixed point characterized by the encrgy scale T oc H 2/Tx (8], and the
channel anisotropy of the exchange interaction which leads to the Fermi-liquid
fixed point [3, 4, 9]. Indeed, the Hamiltonian (4.11) can be regarded as the
TCK model below Tk, because the f-electron in orbital 2 interacts with two
“conduction” electron channels: one is the conduction electrons in orbital 2,
and the other is a complex of conduction electrons and screened the f-electron
in orbital 1 [11, 13]. In the present model, these two types of “conduction”
clectron play the role of the channels. The change of the encrgy difference
between two singlet states, which is induced by the magnetic field as men-
tioned above, affects the coupling constants between [-electron in orbital 2
and these “conduction” electrons. Namely, these two coupling constants have
the magnetic field dependences. Thus, the “channel” anisotropy for two types
of “conduction”™ electrons is induced by the magnetic field, and system goes to
the Fermi-liquid fixed point, even though the ground state is the mixed state
of the two singlet states. In other words, in the present model, the magnetic
field breaks the unstable fixed point by two mechanisms, the polarization of
f-electrons and the “channel” anisotropy.

In the region H < H,, the system flows into the Fermi-liquid fixed point
induced by the “channel” anisotropy. In the CEF SFP region, Ty shows little
change against low H. However, in the K-Y SFP region, Ty slightly decreases
as H increases, which corresponds to the dip in Fig. 4.7. Namely, the weight
of the CEF singlet state in the ground state increases compared to that of
the K-Y singlet state, and the dominant singlet state of the two singlet states
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interchanges at H = H.. On the other hand, in the region H. < H. the
magnetic ficld induces the Fermi-liquid fixed point by the polarization of f-
electrons as in the case of the TCK effect because Tj(H) is characterized by
H? as in the case of the TCK effect under the magnetic field. These two effects
compete with each other at around H ~ H.(K) giving the crossover between
the two regions.

The exponent of H in T(H) asymptotically approaches 2.0 in the high
magnetic field region H > H,, in both SFP regions, as shown in Figs. 4.11(b)
and (c). However, the magnetic field necessary for reaching the Ty o« H?
behavior in the CEF SFP region is higher than that in the K-Y SFP region.
This difference stems from the existence of the 'y excited CEF singlet state
which gives additional magnetic field dependence for the T'y CEF singlet ground
state through the off-diagonal term between these two CEF singlet states. This
1s verified by a NRG calculation that the exponent of H in the CEF SFP region
readily comes close to 2.0 at H > H.,, as in the K-Y SFP region, if we discard
the off-diagonal term between f?-CEF singlet states by the magnetic field,
although an explicit result is not shown here.

4.5 Result for Another Crystalline-Electric-Field Scheme

Although we shows the results when we take the low-lying CEF scheme as Ty —
I's—T gQ), we obtain similar NFL behaviors and the magnetic field dependence
of Ti(H) even if the low-lying CEF scheme is 'y — Ff) —I'3,ie., K < A. Here,
we shows the results for another parameter set of the Hamiltonian (4.11) as
By = Epp = —04,U; = Uy = 1.5,V = 0.36 and Vi, = 0.30. which gives

k1 = 1.10 x 1072 and Tk = 2.31 x 103 by the Wilson’s definition in the
case of K = A = 0. In this section, we fix K = 0.10 and control the degree
of the competition by varying the CEF level splitting A. For the parameter
set above, A* 2~ 0.00858 gives the unstable fixed point, i.e., the ground state
is the K-Y singlet for A < A* and the CEF singlet for A > A*.

With the same procedure as the previous section, we obtain the H-dependence

of Tg(H) as shown in Fig. 4.12(a). We define the crossover magnetic field H.,
as the same way as shown in Fig. 4.12(a). It is noted again that so determined
H's for three different physical quantities, Cimps Ximp. and 1/7, almost coin-
cide with each other as shown by arrows in Fig.4.12(a). Here, in the K-Y SFP
region (A = 0.0081 and A = —0.0559). the H,,’s are defined by where T b takes
aminimum. As in the case of the previous section, the crossover magnetic field
He's for Cinp, 1/7, and Ximp almost coincide again. Normalized characteristic
temperatures, T (/1) /T3(11 = 0), are shown in Figs. 4.12(b) for the K-Y SFP
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Figure 4.12: (a) Characteristic temperature Ty (H) vs magnetic field H for the
two cases with CEF (for A = 0.0090 and A = 0.0490 shown by open symbols)
and K-Y (for A = 0.0081 and A = —0.0559 shown by closed symbols) singlet
fixed points. The crossover magnetic field H.’s are shown by down arrows
in the case of the CEF singlet fixed point. (b) and (c) are scaling plots of
Ti(H)/TE(H = 0) vs H/H,, for the K-Y singlet fixed point and the CEF
singlet fixed point, respectively.
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and 4.12(c) for the CEF SFP as a function of a normalized magnetic field
H/H from the three physical quantities as above. It is noted that, in the
K-Y SFP region, T decreases as H increases in the region H <« H.,, which
does not occur in another CEF level scheme, ie., Fig. 4.11(a). As mentioned
above, the magnetic field increases the weight of the CEF singlet state. Fur-
thermore. the magnetic field could decrease the weight of the K-Y singlet state
because the magnetic field lifts the degeneracy of I'®-doublet and increases
the energy level of state written in eq. 3.8 which stabilize the K-Y singlet state
through the “spin”-flip process. (Here. “spin” means the quasispin.) On the
other hand, the H-dependence of T¢(H)’s in Fig. 4.12(b) and Fig. 4.12(c)
are almost coincide with that in Fig. 4.11(b) and Fig. 4.11(c) in the region
Ucr(A) < H < min(Tke, A). This fact indicates that the similar NFL be-
haviors would be obtained if there exist the CEF singlet ground state and
the strong hybridization between conduction electrons and f-electron, namely
details of the CEF scheme would not be essential matters.

4.6 Comparison with Experiment of Th;_,U,Ru;Si, with
x>~ 0.03

In the CEF SFP region near the QCP, 1/7(w) shows behavior consistent with
the results of iy (7) in Thy_, U, RusSiy. Namely, 1/7(w) exhibits a log w-like
decrease toward Ty and increases as H increases corresponding to the posi-
tive magnetic resistance. It is noted that the Ty, is considered to be much
higher than the Tk, because the logT-like increase of the resistivity around
T =~ Tk is not observed in this material [14, 16]. This result is consistent
with that obtained by Yotsuhashi et al, who showed that 1/7(w), Yimp(7T)
and the H-dependence of 7, reproduces these physical quantities observed
in Th;_,U,RuySis. A more remarkable finding is that the H-dependence of
Ti(H) at around H ~ He(K) for K = 0.0488 in the CEF SFP region re-
produces the H-dependence of TE(H) observed in Thy ,U,Ru,Si, analyzed
from the resistivity [22]. As shown in Figs. 4.13 and 4.14, the agreement
between our theoretical result and experimental one is nearly perfect concern-
ing the normalized magnetic field, H/H,, dependence of TE(H ) normalized by
Ti(11h), where 11y = 3.0 x 107*D/ug (D being half the bandwidth of conduc-
tion electrons) for our theoretical result and H, = 1[T] for experimental result.
Namely, our scaling plot is in good agreement with that of the experimental
one of Th,_,U,Ru,Si, [22].

It is also emphasized that our theoretical analysis strongly suggests that
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Thy_, U,RusSi, is located in the CEF singlet side near the critical phase bound-
ary between the KY SFP and the CEF SFP regions. On the other hand, it was
emphasized that T;:(H) is proportional to the magnetic field /1 [22], especially
in the analysis of the T-dependence of im,. However, it is apparent that the
linear fit fails to reproduce the experimental results for the T3(H) obtained
from the resistivity pimp. Their statement stemmed from the analysis of Ximp
assuming that the coefficient of the —logT term in Y, were independent of
H. Experimentally, however, magnetic fields up to 5 Tesla seem to change this
coefficient and drastically decrease the Van Vleck contribution to Ximp [22].

In the case of R, _,U,Ru,Siy (R= La and Y), the experimental results show
that T;’s of these material are higher than that in the case of R=Th [16, 17].
It indicates that parameter sets of these materials may be located more distant
from the QCP than that of Th;_,U,RusSia. Our theoretical result predicts
that pressure may induce the transition from the CEF SFP region to the K-Y
SFP region, giving rise to the drastic increase of 1/7.

In the present chapter, we take the same CEF level scheme as that discussed
in ref. 11, because their level scheme can reproduce the experimental results
in Ry_,U,Ru,Sis (R=Th, Y and La). However, even if the low-lying CEF
scheme is 'y~ 22)—F;57 we have verified that the similar NFL behaviors and the
magnetic field dependence of TE(H ) oceur as shown in section 4.5.1t indicates
that the similar NFL behaviors would be obtained if there exist the CEF singlet
ground state and the strong hybridization between conduction electrons and
f-electron, namely details of the CEF scheme would not be essential matters.
It is remarked that CEF states with I'» singlet ground state, proposed as
a plausible candidate for “Hidden Order” state of URu,Siy [23, 24], would
exhibit the local non-Fermi liquid behaviors discussed in the present chapter.
The actual calculation in those CEF level schemes is left for the future study.

Quite recently, it is argued that the //-dependence of NFL behaviors ob-
served in Thy_,U,RusSis can be understood within the TCK model if some
conditions would be satisfied in the CEF level scheme [22, 23] A crucial differ-
ence between ref. 24 and our present result is the magnetic-field dependence
of T in the high magnetic field region I1 > 5 Tesla. Namely, there exists a
region of a magnetic field where T3 o< H? in the high magnetic field region
in our result as shown in Fig. 4.13, while there exists no such a region of a
magnetic field in the scenario of ref. 24. Because our theoretical result almost
completely reproduces Ti(H) observed experimentally in the magnetic field
H < 57T, which corresponds to the crossover region of the H-dependence of
Tz(H) from Ty « H° to Ty o H?. Therefore, we expect that our theory
can also be applied to the high magnetic ficld region beyvond /1 = 5T, where
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Figure 4.13: Comparison between theoretical and experimental results of
Ty (H). The red o symbols are for the F/-dependence of Ty(H) (the upper
and the right scales) obtained theoretically from Ci,, for K = 0.0488. The
blue [0 symbols are for the //-dependence Ty(H) (the lower and the left scales)
observed in Th; ,U,Ru,Si; for the resistivity pimp, which was scaled linearly
by Téth et al[22].
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Figure 4.14: H/H, vs T(H)/T(H,), the normalized characteristic tempera-
ture, for theoretical and experimental results. Those obtained from Cimp and
pimp are normalized by the value at H; = 3.0 x 10~*, while the experimental
result is normalized by the value at H; ~ 1[T].
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4.7 Conclusion

Ty o H? is expected theoretically.

4.7 Conclusion

We have investigated the magnetic field (77) dependence of the NFL behaviors
arising from the competition between the CEF singlet and the K-Y singlet
states in tetragonal symmetry. We have found that the characteristic tem-
perature Ty (H), below which the Fermi liquid behavior recovers, changes its
H-dependence at around the critical magnetic field H,,. While Ty is not af-
fected by H in the region H < H,,, it is expressed as T oc " (2 ~ 2.0) in
the region H > H,. For both high and low magnetic field regions, such a
behavior of T3(H) follows the scaling form even if the degree of the deviation
from the QCP is different. We have also found that Ti (/) shows the anoma-
lous H-dependence around H ~ H,., which is in good agreement with that
observed in Th;_,U,RusSis.
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Chapter 5

Analysis in 12
Crystalline-Electric-Field
Singlet-Triplet Configuration
with Cubic Symmetry

5.1 Introduction

In most Pr- and U-based compounds with two localized f-electrons, the crystalline-
electric-field (CEF) ground state can be the singlet state. Some of these ma-
terials show a resistance minimum phenomenon, the Kondo effect, in which
each f-electron forms the Kondo-Yosida (K-Y) singlet state with conduction
electrons in the ground state due to the hybridization between an f-electron
and conduction electrons. In the tetragonal symmetry, it is already known
that competition between the f2-CEF singlet state and the K-Y singlet state
in the ground state gives rise to an unstable fixed point which causes non-
Fermi liquid behavior in various physical quantities, such as the resistivity, the
Sommerfeld coefficient and the magnetic susceptibility. In order to clarify the
rich properties caused by competition in the tetragonal symmetry, many the-
oretical works concerning a model for the level of impurity have been carried
out [1, 2, 3, 4, 5]. Some theoretical works in cubic symmetry have also been
carried out [1, 6, 7, 8, 9]. However, a more detail discussion is desirable.

In this chapter, we investigate how a system with the f 2.CEF singlet ground
state in the cubic symmetry is affected by hybridizations with conduction elec-
trons with an impurity model. Recently, some studies using conduction elec-
trons of either I'; or ['s symmetry have been carried out in the cubic symmetry
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[6, 7, 9]. Such a treatment may be sufficient to discuss properties of some ma-
terials with the f2-configuration, e.g., the conduction electrons in PrRu,Sb,
mainly come from the pnictogen molecular orbital with A;,, (i.e., I'7) symme-
try [11]. However, it is natural to suspect that hybridizations with conduction
electrons of various symmetries determine the properties and the fixed point of
the systems in most materials. Theoretically, when the hybridization with the
I's conduction band is considered, there exist two fixed points: one is the f2-
CEF singlet fixed point, and the other is the triplet fixed point [8]. However,
there certainly exists the K-Y singlet fixed point when hybridizations with T,
and I's conduction bands are considered [1]. Thus, it is necessary to clarify
the properties of the model in which hybridizations with conduction electrons
of both I'; and I's symmetries are considered as a first step prior to discussing
the anomalous properties in f2-configuration heavy fermion systems.

The purpose of this chapter is to elucidate the properties of the f2 configu-
ration system with cubic symmetry in an impurity model. Hattori and Miyake
have already discussed this issue on an extended impurity Anderson model
with the f2-CEF level scheme of I';-Ty symmetry hybridizing with I'; and
I's conduction bands [8] on the basis of the numerical renormalization group
(NRG) method [10]. They have shown that there are two stable fixed points:
one is the CEF singlet fixed point, the other is the triplet fixed point caused
by the stabilization of the I'y first excited triplet state due to the hybridiza-
tion with conduction electrons of I's symmetry, and there exists an unstable
fixed point at the boundary between these two stable fixed points. Here, we
also investigate the same model as that in ref. 8 on the basis of the NRQ
method [10], and show that the CEF singlet state smoothly crosses over to the
K-Y singlet state as hybridizations with I'; and I's conduction bands increase
in cubic symmetry, although it has been shown that these two singlet states
interchange sharply, giving rise to an unstable fixed point between them in
tetragonal symmetry [3, 4, 5].

This chapter is organized as follows. In §5.2, we recapitulate the model
Hamiltonian by taking into account hybridizations with conduction electrons
of I'7 and I's symmetries, to discuss the properties in cubic symmetry. In §5.3,
we show there exist two fixed points, the singlet fixed point and the triplet
fixed point, and the CEF singlet state and the K-Y singlet state smoothly
cross over within the singlet fixed point. Moreover, we find that the charac-
teristic temperature is suppressed at the boundary between these two fixed
points, which indicates that there exists the unstable fixed point. In §5.4, we
show the physical behaviors such as the entropy, the Sommerfeld coefficient,
and the resistivity, and discuss how these physical behaviors are affected at
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the boundary between two fixed points and the crossover between two singlet
states. In §5.5, we discuss the applicability of the present result for under-
standing the experimental result of UBeys, i.e., the Sommerfeld coefficient has
the peak structure at the lattice constant of UBe;3 when the lattice constant
is controlled by replacing U atoms partly with other nonmagnetic elements, as
shown in Fig. 3.10 in §3.3, and summarize this chapter in §5.6.

5.2 Model Hamiltonian

Here, we recapitulate discussions of ref. 8 about how to dérive the model
Hamiltonian for discussing the properties in cubic symmetry on the basis of
the j-j coupling scheme. As for fl-states, we only consider the low-lying
j = 5/2 multiplet, which splits into the I'; doublet state and the I’y quartet
state due to the CEF effect in cubic symmetry. For convenience, we call the
two sets of Kramers doublets in I's symmetry as ['g;- and I'gp-orbitals, and
allot these fl-states the pseudospin states as follow:

1T = 1% - a1 - =100, (1)
T == D=+ ) =14L0,0,  (52)
T =2+ 2+ 1= =000, (53)
T = fE- 2+ i+ d =040, (54
/') = 1= 5) =001, (69
|f'Ts2-) = | + %) =10,0,). (5.6)

For example, | 1,0, 0) represents the state in which the up-pseudospin occupies
the I'; orbital and the others are empty. It might be natural to define the
pseudospin state in Iy as |I'sgs) = |0/2). However, the definitions in egs.
(5.5) and (5.6) are suitable for the NRG method because the z-component of
the total pseudospin becomes a conserved quantity, as discussed later.

As for f2-states, we also restrict f>-states within four low-lying states, T'y
singlet and I’y triplet states in J = 4 multiplet. In order to discuss the Kondo
effect of each f-electron in f2-states, we rewrite the f>-CEF states by using
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the j-j coupling scheme.

|f21“1>=\/—(l4 Y+ —4) )+\/7|0

1
-7 (2| 14,0,0) +10,14,0) — 10,0, 1)),

(5.7)
|f2r>—\f|—3 \fu =-§—|¢,¢,o>—§mo,¢>, (5.8)
|f2F2>—— (14) - | - 4) =%(| 11,004+ 1,1,0), (5.9)

|f°TY) = \/7l3)+\/‘|—1 =%|T,T,0>—§|L0,T)- (5.10)

We assume that the I'; singlet state is the ground state and the T’y triplet
state is the first excited state with an excitation energy splitting n in the f2-
level scheme, and that the energy level of the I'; doublet is always lower than
that of the I's quartet in the fl-level scheme. Figure 5.1 shows the schematic
energy level scheme in each f-electron configuration.

Thus, the Hamiltonian is given by the three-orbital impurity extended An-
derson model as

H=H.+ Hf + thb; (5.11)

He= Z Zakc oo Cufior (5.12)

p=I'7ls1,Ts2 | o

Hf = Z Z 5§”|flrua> (leucrl

p=I7,ls1,T's2 o

+ B | fPT)(fTal + D (Br, +0)lfFTH(TY,  (5.13)

a=0,+
Hin = D D |Vaelg, {1FO0/ T
#=I'7,T'81,ls2 Ko
+/'T,) <<f21“1| + > (f21‘§f|) } +h.c.J , (5.14)
a=0,+

where ¢z (CLEG) is the annihilation (creation) operator of the conduction

electron with wave vector k hybridizing with the f-electron in the I',-orbital
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Figure 5.1: Energy level scheme of f-electron configurations due to the cubic
CEF effect.

with strength V. The Coulomb repulsion terms, such as the inter-orbital and
the intra-orbital interactions, are implicitly included in the f?-CEF energy
levels, Er, and 7.

To analyze properties of the system described by the Hamiltonian (5.11)
on the basis of the Wilson NRG method [10], it is helpful for us that f- and
f?-states, egs. (5.1)-(5.10), are expressed as the eigenstates of three conserved
quantities: the total charge Q' relative to the half filling, the z-component of
the total pseudospin S%°t, and the total helicity h*°t. Here, h** is a quantity
similar to the angular momentum in Cs,, Cy, symmetry [8, 12] and defined as

Rh*°* = mod { Z Z (\ FITua) (' T + chwc,w> ,2} : (5.15)

u=Ig1,I's2 o k

In order to use S¥* as a conserved quantity, it is necessary to define the pseu-
dospin states in T'sp-orbital as |T'ga,) = |1/25), and allot them fictitious S
as +3/2. Table 5.1 shows the j-j coupling representation and conserved quan-
tities of f!- and f2-states. We transform the conduction electron parts with a
logarithmic discretization parameter, A = 2.5, into the one-dimensional semi-
infinite chain model, and carry out the Wilson NRG method [10] by retaining
up to 2500 states, confirming that there is no difference when retaining 3500
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State j-j coupling representation Q™ htot 28t
iy, | 1,0,0) -2 0 -1
£ 1,0,0) 2 0 1
f1F81¢ |0,{,0) -2 1 -1
flrng |0 T, ) -2 1 1
F1Tg0, 10,0, 1) 2 1 3
F'Ts2 10,0,1) 2 1 3
f2F1 % (2l T\L;Oa()) + |07 /Nfa 0) - [070? T\L)) -1 0 0
2Ty ~514,4,0) + 2 1,0,4) 11 2
f2r¢ F (110 14.1.0) 110
ry 3 11,0) = 211,0.1) 11 2

Table 5.1: The j-j coupling representation and conserved quantities of f!- and
f?-states.

states. For simplicity, we set the density of state of conduction electrons of
I'; and I's symmetries to be constant with an extent from —D to D measured
from the Fermi level.

5.3 Ground State Phase Diagram

The ground state of the Hamiltonian (5.11) has already been analyzed by
Hattori and Miyake [8], in particular for V2 = 0. They concluded that there
are two possible stable fixed points. One is the CEF singlet fixed point where
the CEF singlet state is the ground state of the system, and the other is the
triplet fixed point where the ground state is the triplet state. At the boundary
between these two stable fixed points, there exists an unstable fixed point.
However, it is natural to think that there exists a parameter region where the
K-Y singlet state is the ground state of the system as hybridizations increase.
To ascertain whether this idea is true, we investigate the ground state of the
Hamiltonian (5.11) by varying V; and Vg as control parameters with other
parameters fixed as Er, = —1.00, n = 0.02, EF7 = —0.50, and 6?8 = —0.40 in
the unit of D. Throughout this chapter, we ﬁx these parameters and measure
all parameters in the unit of D.

Figure 5.2 shows the phase diagram of the ground state in the V7-V3 plane,
which is determined by the low-energy spectrum obtained in the NRG calcula-
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' Kondo-Yosida
Singlet State

CEF Singlet State

.0 0.1 0.2 0.3 0.4 0.5
Vz

Figure 5.2: Schematic ground state phase diagram in Vz-V; plane for
B, o= ~—1.00,n =002, 51;7 = —0.50, and 5?8 = —0.40. The dotted
line shows that two singlet states cross over smoothly. The white
line shows the parameters along which we calculate the Sommerfeld
coefficient as shown in Fig. 5.15.

tion. For V7 = 0, the result is consistent with that in ref. 8, i.e., there are two
possible ground states. One is the I'; CEF singlet state where two f-electrons
form the singlet state due to the cubic CEF effect. The other is the triplet state
which is realized for Vg > 0.27 because the level crossing between I'; singlet
and I'y triplet states occurs due to the hybridization with conduction electrons
of I'y symmetry. At the boundary between these two stable fixed points, there
exists an unstable fixed point where the non-Fermi liquid behavior appears in
various physical quantities, which will be discussed later.

The level crossing between 'y singlet and 'y triplet states causes a re-
markable change in the phase shift. In the NRG calculation, the phase shifts
are underestimated because spectral functions do not reach the unitarity limit
of TTPms(0) = 1 where T' = 7|V|[*>pp with py = 1/2D, pms(w) being the
single-particle spectral function for the orbital m and the spin o component.
However, the qualitative behavior of phase shifts is useful for understanding
the properties of the system. Figure 5.3 shows the Vz-dependence of (a) the
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phase shift in I';-orbital for the up spin, d74, (b) that in I's-orbitals for the
up spin, dsr, and (c¢) the total phase shift for the up spin, §; = 74 + dgr, for
Vi = 0.2, 0.3, 0.4, and 0.5. It is noted that dgs is composed of a phase shift
in the I's;-orbital, dg14, and that in the go-orbital, dgor, i.€., ds+ = dg14+ + ds21,
and dg14 is equal to dgzy. The phase shifts for the down spin are equal to those
for the up spin because the system holds the time-reversal symmetry.

In the case of V7 = 0, dg sharply increases at V5 = 0.35 as V5 increases,
while d74 is almost equal to zero as shown in Fig. 5.3(a) and Fig. 5.3(b). This
fact indicates that the triplet ground state is stabilized by the hybridization
with the I's-channel, and the effect of the hybridization with the I';-channel
is negligibly small at the triplet fixed point. Thus, the effective model at the
triplet fixed point is given by the fact that the I'y triplet state hybridizes with
the conduction clectrons of 'y symmetry, which corresponds to the model in
which an impurity spin 1 hybridizes with the quasispin 3/2, i.e., the multi-
channel Kondo model with quadrupole interactions. In fact, the Hamiltonian.
eq. (5.11), can be transformed into the Kondo-like Hamiltonian [8], and the
non-Fermi liquid behavior occurs in various physical quantities in the low tem-
perature region at the triplet fixed point [2, 8].

On the other hand, the increase of 17 increases -+ for all values of V, as
shown in Fig. 5.3(a). For V7 > 0.3, the triplet state is not realized below
Vs = 0.5, and both 47y and dg; gradually increase as Vg increases, which causes
the gradual increase of d, as shown in Fig. 5.3(c). Such a gradual change of
phase shifts can be thought of as the signature of the ground state crossing
over from the CEF singlet-like singlet state to the K-Y singlet-like singlet state
as Vi increases. In other words, the singlet state is the linear combination of
the CEF singlet and the K-Y singlet states, and the weights of these singlet
states change smoothly, although these two singlet states interchanges abruptly
give rise to the nustable fixed point in tetragonal symunetry [3, 4, 5. We
can determine which singlet state gives a dominant contribution to the low-
energy spectrum obtained in the NRG calculation if the parameter is far from
the crossover region, and define two regions as shown in Fig. 5.2, i.e., the
CEF singlet ground state region where the CEF singlet state gives a dominant
contribution to the low energy spectrum, and the K-Y singlet ground state
region where the K-Y singlet state gives a dominant contribution to the low
energy spectrum. However. it is difficult to clearly distinguish the location of
the crossover line at which the singlet state giving a dominant contribution to
the low-energy spectrum interchanges between the CEF singlet state and the
K-Y singlet state. In this sense, the dotted line in Fig. 5.2 has some ambiguity.

In particular, in the case of V7 = 0.5, d74+ gradually increases and reaches
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Figure 5.3: The Vz-dependence of (a) phase shift in I'z-orbital for up
spin, d74, (b) that in I's-orbital for up spin, dst, (c¢) the total phase
shift for up spin, oy = d74 + Jsy, for V7 = 0.2,0.3,0.4, and 0.5. The
phase shifts are underestimated because spectral functions do not
reach the unitarity limit of 7T'p(0) = 1.
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the constant value ~ 7/4 as Vi increases, while dg+ is also gradually increasing.
This fact may indicate that the K-Y singlet state can be formed in I'; symmetry
because d7¢ is not changed by an increase of Vi, although the ideal phase shift
at the K-Y singlet fixed point § = 7/2 is not obtained. On the other hand,
the other K-Y singlet state may be about to form in I's symmetry because
0s+ increases as Vg increases. It is notable that the K-Y singlet state in 'y
symmetry is different from that in ['; symmetry, the so-called K-Y singlet
state, because both T's;- and [gp-orbitals contribute to this singlet state in
light of finite dg11 and dgoy. Although the detailed form of this singlet state is
unclear; we call this singlet state in I's symmetry as the K-Y singlet for the
moment. The ideal total phase shift o+ = 7 in the K-Y singlet ground state
region may be composed of d7+ = 7/2 and dgr = 7/2.

It is noted that for V7 # 0, there always exists the K-Y singlet ground state
region at the singlet fixed point near the boundary between the singlet fixed
point and the triplet fixed point even though Vz and Vi are not so large. The
reason why the K-Y singlet state is realized even for small V; and Vi can be
understood by considering the characteristic energy scales. The characteristic
energy scales of each ground state are given by n for the CEF singlet state,
the lower Kondo temperature Tky, for the K-Y singlet state, and the energy
gain Ty in the I'y triplet state relative to max(n, Txy) for the triplet state. It
is apparent that T} is increased by the increase of V4, while it is decreased by
the increase of V5 as seen in Fig. 5.2. The triplet fixed point is realized when
T, > max(7Tky,n), while the singlet fixed point is realized when max(Txy,,n) >
T,. At the singlet fixed point region. the dominant singlet state can also
be determined by the relation between characteristic energy scales, i.e., the
weight of the K-Y singlet state is larger than that of the CEF singlet state
in the case n < Tky, while the weight of the CEF singlet state is larger than
that of the K-Y singlet state in the case 7 > Tky. However, at the boundary
between the singlet fixed point and the triplet fixed point, I'y is stabilized by the
hybridization with conduction electrons of T'y symmetry, and the energy level
of Ty approaches that of I'y, i.e., n is renormalized by the hybridization with
conduction electron of I's symmetry, and becomes very small at the boundary.
In the case of V; = 0, the K-Y singlet ground state region does not occur
because the lower Kondo temperature (that of I'z-orbital) is exactly equal to
zero, i.e., 0 = Ty, < max(n, T). However, for V; # 0, Tky, becomes finite. and
there always exists the region satisfying the relation Tk, > max(n, Ty), where
the K-Y singlet ground state is realized because of the renormalization of 1 at
the boundary between two fixed points.

Thus, the Hamiltonian eq. (5.11) has two fixed points, the triplet fixed
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—1.00, n = 0.02, E? = —0.50, and 5?8 = —0.40. At the boundary
between the triplet fixed point and the K-Y singlet fixed point, T is
suppressed compared to the characteristic energy scale of each fixed
point ~ n = 0.02.
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point and the singlet fixed point, and the singlet state is a linear combination
of two singlet states, the CEF singlet state and the K-Y singlet state. We
estimate the characteristic temperature 7Ty as shown in Fig. 5.4, where Tf is
defined as the temperature at which the temperature derivative of an entropy,
OSimp(T)/0(log T), reaches a maximum value as Simp(T) approaches zero as
T — 0. At the boundary between the triplet fixed point and the singlet fixed
point, T} is drastically suppressed, which indicates that there exists an un-
stable fixed point giving the non-Fermi liquid behaviors in various physical
quantities, as will be discussed in the next section. On the other hand, around
the crossover region between the K-Y singlet state and the CEF singlet state,
Ty monotonically increases as Vg increases, although Ty is remarkably sup-
pressed at the boundary between the CEF singlet state and the K-Y singlet
state in the case of tetragonal symmetry [3, 4, 5]. This fact also indicates that
the K-Y singlet state and the CEF singlet state cross over smoothly in cubic
symmetry.
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5.4 Physical Behavior around Unstable Fixed Point and
Crossover Region between Singlet States

It is interesting to see how physical properties are affected around the boundary
between two fixed points and the crossover region between two singlet states.
First, we discuss the physical behaviors around the boundary between the
singlet and the triplet fixed points. For this purpose, we vary Vg as a control
parameter for fixed V; = 0.25. In this case, the critical value of V; is given
as Vg, = 0.385, i.c., the singlet fixed point is realized for Vi < Vi while the
triplet fixed point is realized for Vs > Vi.. Figure 5.5 shows the entropy due
to an impurity, Simp(7), for five values of Vi = 0.32, 0.36, 0.38, 0.40, and
0.50. The characteristic temperature for the present parameters are given as
Ty ~5.85x1072 for Vg = 0.32, Tp ~ 4.56 x 107 for Vi = 0.36, B~ 1.22%x1077
for Vs = 0.38, Ty ~ 2.05 x 1072 for Vg = 0.40, and T ~ 6.03 x 102 for
Vg = 0.50. At both fixed points, the closer Vi approaches Vg., the more Tj
is suppressed. At the triplet fixed point, Vi = 0.40 and 0.50, Sj,,(7T) takes
the value Si (T — 0) ~ 0.75kglog?2 as T decreases. When the number of
states remaining in the NRG calculation increases up to 3500, Sy, (7 — 0)
approaches a value of kglog?2, which is consistent with the value obtained in
ref. 8, although the meaning of this value is unclear. On the other hand, at the
singlet fixed point, Vs < Vi, Simp(T') merges into the same value of 0.75kg log 2
and approaches zero around Ty as T decreases near the unstable fixed point,
Vs = 0.38 and 0.36, while it immediately approaches zero for Vy = 0.32, away
from the unstable fixed point.

We estimate the Sommerfeld coctlicient Yy, (T) = Cinp(T) /(A3 T), as shown
in Fig. 5.6. At the singlet fixed point, as T decreases, it is a common feature
that vimp(7") shows a logarithmic increase, and approaches the saturated value,
i.e., recovers the Fermi liquid behavior, at T° < T%. It is apparent that the
saturated value of v, (T — 0) decreases as the deviation from Vi, increases at
the singlet fixed point. On the other hand, at the triplet fixed point, Yimp(T)
takes the saturated value in the temperature range, 1074 < T < 1072, and
increases logarithmically as T" decreases. This logarithmic increase in the low
temperature region is caused by the non-Fermi liquid fixed point due to the
quadrupole interactions [2, 8]. Figure 5.7 shows the Vs-dependence of iy (T)
for various temperatures. At the singlet fixed point, the increase of Yimp(T)
stops at each T > 0, while it stops increasing at T ~ 1072 and again starts to
increase at T~ 1075 at the triplet fixed point. At the unstable fixed point, the
increase of Yimp(T') does not stop down to T — 0. As a result, Yi,(T) takes a
peak structure at the unstable fixed point in the low temperature region.
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Figure 5.6: Temperature dependence of the Sommerfeld coefficient
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In Fig. 5.13, the frequency dependence of the total scattering rate 1/7(w)
at T = 0 is shown, where 1/7(w) is the sum of contributions from each orbital
m and spin o component 1/7,,,(w) = 27|V, |? prmo (W), pmo(w) being the single-
particle spectral function. The T-dependence of the resistivity can be inferred
from 1/7(w). It is a common feature that there is peak at w ~ 2 x 1072, At
both fixed points, these peaks are contributed to by the hybridization with
conduction electrons of 'y symmetry as shown in Fig. 5.9, which shows the
contribution from each channel u, 1/7,(w), to 1/7(w) for Vs = 0.32 (the singlet
fixed point), and Vg = 0.50 (the triplet fixed point). At the singlet fixed point,
1/7(w) increases logarithmically and takes the saturated value at w ~ Ty, As
seen in Fig. 5.9 for Vg = 0.5, such a behavior in low-w region comes from
1/77. On the other hand, at the triplet fixed point. after having the peak
at w ~ 107", 1/7(w) decreases as w decreases. Figure. 5.9 shows that 1/7
at the triplet fixed point is contributed to only from 1/75, and 1/7; does not
contribute. These results indicate that the triplet fixed point disturbs the
hybridization with conduction electrons of I'; symmetry.

Figure 5.10 shows the Vi-dependence of x§, = lim, oIm Y (w), which
infers the static susceptibility in the limit 7 — 0. At the triplet fixed point,
x4, takes values of the order of O(10%) because of the non-Fermi liquid fixed
point due to the quadrupole interactions in the low temperature region. On the
other hand, at the singlet fixed point, x4}, increases drastically as the system
approaches the unstable fixed point V3 — Vi.. It is noted that at an observable
temperature range, we expect x93, to take a maximum value at Vs = 0.38 ~ V4,
because the increase of static magnetic susceptibility start to show the non-
Fermi liquid behavior (logarithmically increase) at T~ 1074 as T decreases,
where 107*D) corresponds to 0.5 K in the case 2D = leV.

Next, we discuss how the physical properties behave around the crossover
region between the K-Y singlet ground state and the CEF singlet ground state
regions. We also vary Vi as a control parameter for fixed V» = 0.5. In this
case, we ensure that Vg = 0.30 belongs to the CEF singlet ground state region
while V3 = 0.35 belongs to the K-Y singlet ground state region, i.e., the ground
state region crosses over in the range of 0.30 < V5 < 0.35. Figure 5.11 shows
Simp(T') for Vs = 0.2, 0.3, 0.4, and 0.5. In tetragonal symmetry, there exists
the unstable fixed point between the K-Y singlet ground state and the CEF
singlet ground state regions, giving the residual entropy 0.5kg log2 [3, 4, 5].
However, in cubic symmetry, we do not obtain parameters which show such
a residual entropy between Vg = 0.30 and Vg = 0.40 in cubic symmetry. In
the K-Y singlet ground state region, Vg > 0.40, the temperature at which
Simp becomes to zero decreases with a decrease of Ty, This is because the
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boundary between the singlet fixed point and the triplet fixed point comes by
as Vg increases, as seen in Fig. 5.2.

Figure 5.12 shows the Sommerfeld coefficient i, (7). As a common fea-
ture, vimp(7T) shows the Schottky peak corresponding to the release of the
entropy of the I'y triplet state at 7' ~ 1072, and approaches a saturated value
as T decreases. As Vy increases, vimp(7 — 0) increases because Ty is sup-
pressed due to the effect of competition between the singlet fixed point and
the triplet fixed point.

In Fig. 5.13, the frequency dependence of the total scattering rate 1/7(w)
at T = 0 is shown, and Fig. 5.13 shows the contribution from each channel
w, 1/7,(w), to 1/7(w) for Vg = 0.20 (the CEF singlet ground state region)
and V3 = 0.50 (the K-Y singlet ground state region).  As in the previous
case, it is a common feature that 1/7(w) shows the logarithmic increase at
0.1 < w < 1 and takes a peak corresponding to the higher Kondo temperature
of 'y symmetry. It is clearly seen that contributions from both orbitals increase
for all w as Vi increases, although there are no fundamental changes in the
properties of the ground state, i.e., the singlet state is the linear combination
of the CEF singlet state and the K-Y singlet state, and the weights of these
single states are changed by the effect of hybridizations. This is why the
residual scattering rate 1/7 is not equal to zero even in the CEF singlet ground
state region, and 1/7y gradually increases as Vs increases.

5.5 Discussion of Experiment on U; ,T.Be;;s

It is interesting to note that Ty is affected by competition between the singlet
fixed point and the triplet fixed point. Thus, we obtain the suppression of 7§
if the system passes near the unstable fixed point in the singlet fixed point
region. In Fig. 5.15, we show viy,,(T") when we vary two parameters V7 and
Vi simultaneously on the line from V' = (V7, V) = (0.26.0.35) to (0.19,0.28)
for various temperatures, as shown in white line in Fig. 5.2. Here, the singlet
fixed point is realized for all the parameters along this line. For all V', 4imp(T)
increases monotonically as T decreases. At V* = (0.23,0.35), vimp continues
to increase down to Tx(V*) = 2.12 x 1077, while the increase of vimp(T") stops
around each T(V) > TE(V*) at V # V*. Thus, vimp(T) has the enhanced
part from the background part at |V — V*| > V* due to competition between
the singlet fixed point and the triplet fixed point, where the background part
is approximately given by the inverse of Tk, or 7.

Here, we take V = (V7,V5) as a control parameter. However, we can
expect similar behavior of Yimp(7) in the real system by the cffect of the pres-
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various temperatures.

sure or the chemical doping. One candidate exhibiting such a phenomenon
would be UBej3 because a series of systems of solid solution U;_,T,Be;s,
whose lattice constant aq is changed by doping, shows the peak structure in
limz_0Cimp(T)/T at the lattice constant of the pure UBe;s, aype,, [13] as
shown in Fig. 3.10 in §3.3. Materials with ap < aype,, show the Kondo-like
upturn in the resistivity, while those with ay > aype,, do not. We can qual-
itatively reproduce the behavior of 7i,,(7") when the system comes near the
boundary between the singlet fixed point and the triplet fixed point from the
K-Y singlet ground state region, and goes into the CEF singlet fixed point,
although we did not reproduce such an obvious change of the resistivity in
our calculation. Because our treatment is restricted to the level of the impu-
rity model, it is necessary to adopt the dynamical mean approach in order to
discuss the lattice heavy fermion systems. However, the effect of competition
between the singlet and the triplet fixed point possibly plays an important role
in initiating such an anomalous phenomena. We leave it for the future study
to determine whether the present model can reproduce a magnetically robust
non-Fermi liquid behavior, Ciyp(T)/T ~ —logT up to 12 Tesla observed in
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the pure UBe;3 [14], as shown in Fig. 3.12.

5.6 Conclusion

We have investigated the properties of the f2-configuration impurity system
with the f2-CEF level scheme of I';-I'y symmetry hybridizing with I'7 and I's
conduction bands on the basis of the numerical renormalization group (NRG)
method. When the strength of hybridizations between f-electrons and the I'7
and Ty conduction bands, V7 and Vg, are varied with a fixed CEF level scheme,
there are two possible fixed points: one is the singlet fixed point, the other
is the triplet fixed point because the T'y first excited triplet state is stabilized
due to the hybridization with conduction electrons with Vs symmetry. The
singlet state is the linear combination of the CEF singlet state and the K-Y
single state, and the CEF singlet ground state region where the CEF singlet is
the dominant component crosses smoothly over with the K-Y singlet ground
state region where the K-Y singlet is the dominant component, although it
has been shown that these two singlet state interchanges and their competi-
tion gives rise to an unstable fixed point in the case of tetragonal symmetry
[2, 4, 5]. Moreover, the unstable fixed point is caused by competition between
the singlet fixed point and the triplet fixed point, giving rise to the non-Fermi
liquid behavior in various physical quantities such as the Sommerfeld coeffi-
cient, the resistivity, and the magnetic susceptibility. From these results, we
have obtained a schematic phase diagram of the ground state, which has a pa-
rameter region reproducing the experimental result that the lattice constant
of UBe;3 gives the maximum Sommerfeld coefficient among a series of systems
of solid solution U;_,T,Beis. This result possibly provides us with the basis
to understand the anomalous behaviors of UBe;s.
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Appendix A

Numerical Renormalization
Group Method

We introduce Wilson’s Numerical Renormalization Group (NRG) method for
taking the single impurity Anderson model. At first, the NRG method was
developed by K. G. Wilson for the Kondo model. Considering that the Kondo
model is derived from the Anderson model by the second perturbation theory,
it is easily understood that the Kondo model corresponds to the model that we
restrict the charge degree of freedom of an impurity site to 1 (i.e., ngr+nq, = 1).
After the first application of the NRG method by K. G. Wilson, the NRG
method was also applied to the Anderson model.

In our researches, we extend this NRG method for the Anderson model to
multi-orbital cases with assuming that the density of state of the conduction
electron is constant in the energy range from —D to D. Here, for the single
impurity Anderson model, we introduce the NRG method which is extended
to the case where the density of state of conduction bands moderately changes
at around Fermi energy.

A.1 Transformation of Hamiltonian

In our researches, targets are heavy fermion systems. Heavy fermion systems
commonly have f-electrons which have the relatively well-localized character
compared to other electrons. This character allows us to treat the f-electron
as the localized electron in the Anderson model. Actually, the Anderson model
is often used to discuss the properties of dilute heavy fermion systems, and
gives an important insight for heavy fermion systems. Thus, in this section,
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A. Numerical Renormalization Group Method

we take the localized electron as the f-electron in the Anderson model.

H = He+ Hugpo +Hy, (A.1.1)

He = Z EECZ~UCEU, (A.1.2)
ko

Higy = Z [Vfc'f;cféa + h.C.:[ , (A.1.3)
ko

Hf = Zéff;fg+Unanf¢, (A.1.4)

where f,(f1) and c,—c'a(c;%o) are annihilation (creation) operators of the f-electron
with the energy ; and the conduction electrons with the kinetic energy e;
which hybridize with the f-electron with the strength V. Here, each annihi-
lation and creation operator obeys the following anti-commutation rules:

{hocwat = Fpdoo, (A.1.5)
{Gw st =0, (A.1.6)
LY = b0, (A.1.7)
{fo. fs} = 0. (A.1.8)

A.1.1 Mapping on Semi-Infinite Chain Form

First, we transform the Hamiltonian eq. (A.1.1) into a semi-infinite chain form
by rewriting the wave-functions written by the plane wave to one written by
the spherical wave. Here, we skip the subscript about spin for the simplicity.
The operator of conduction electrons can be written in the plane wave and the
spherical wave representations as follow.

o(F) = % zﬁ: R = > i(kr) Vi () it (A.1.9)

klm

Py(kr) = \/Zf:jz(kr), (A.1.10)

where Q = 47 R?/3 is the volume of the system, v;(kr) the radial wave function
normalized within the sphere with the radius R, ji(kr) the spherical Bessel
function of I-th kind, and Yi,,(27) the spherical surface harmonics. The plane
wave is represented by the spherical wave as following.

R _ Z47riljz(k7‘)yl;(9k‘)ylm(ﬂf)' (A.1.11)
im

104



A.1 Transformation of Hamiltonian

Substituting eq. (A.1.11) into eq. (A.1.9), and using the orthonormal condition
of the radial wave function and the spherical surface harmonics, we obtain the
relation between the plane wave and the spherical wave representations.

o= @ Z ’L'_lY;m(QE)Cklm, (A112)

Chim = \/_ dQ' Y (Qz)cz- (A.1.13)

The hybridization V; is also written both in the plane wave and the spher-
ical wave representations as

1 2
7—52@*% = > i(kr)Yim () Vi, (A.1.14)
E

klm

Substituting eq. (A.1.11) into eq. (A.1.14), we also obtain the following rela-
tions about the hybridization V;.

= Vir Zz Yirn (i) Viirn, (A.1.15)

Vitm = —== 7w / A Y, () Vs (A.1.16)

Using egs. (A.1.12), (A.1.13), (A.1.15) and (A.1.16), we derive the semi-
infinite chain form from the Hamiltonian eq. (A.1.1). Substituting egs. (A.1.12)
and (A.1.15) into eq. (A.1.3), the hybridization term is transformed as follow-

ing.
Q -
AU GO}
EE chg_ (271_)3/dk'[/kc]Z

Qk2 kr R
e ()
Im

(2m )3\/_/dqqchlmvklm, (A.1.17)

where ¢ = k/kr and o = kFRCT Here, cy . also obey the following
qlm klm* q
anti-commutation rule.

{chims Sy} =0, (A.1.18)
{chma Cotm' Y = Oqq 01 O’ - (A.1.19)
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A. Numerical Renormalization Group Method

In the same manner, the kinetic energy term of conduction electrons, eq.
(A.1.2) is transformed as following.

Z EECEUCEU = /dq Z E(]CFQ)C;lqulm. (A.1.20)
k Im

Here, we assume that the conduction band extends from —D to D in the
energy range. We measure these two terms in a unit of D.

H./D = / de, ( ) CatmCalm (A.1.21)
_ [amks dq [Vim
Huyp = Hugo/D = 7; E / ek ql ;lmf-i- h. c] (A.1.22)

In general, | and m-components of conduction electrons couple with the im-
purity site as seen in eq. (A.1.22). Here, we drop off the conduction electrons
with [, m # 0 component from egs. (A.1.21) and (A.1.22). Of course, this pro-
cedure is an approximation, although it is the exact transformation in the case
that Vi, is constant and the hybridization occurs only at the impurity site,
i.e., V(r) = Voo(F — Timp) Where 7inp is the positional vector of the f-electron.
There are two reasons to do such a procedure: (i) the direct hybridization
occurs at the most localized space around the impurity, (i.e., I/ = m = 0 com-
ponent), and (ii) the s-wave scattering mostly affects the lowest-lying energy
waves of the system.

Using the new integration variable € = ¢,/ D, egs. (A.1.21) and (A.1.22)
are rewritten as

He

/ deecle,, (A.1.23)
thb_/ de [\/ fr) cdf+he|, (A.1.24)
-1
where A(e) and ¢, are defined as follow.
A(E) . 47TQ]€3 dq 2 l‘/qOO|2 =1 (5) |‘/(100[ 2 (A 1 25)
(271')3 e’ D P D |- -

Voo /d

_ _’q00  [Q9
Ce = |‘/q00| dacqoo. (A126)
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A.1 Transformation of Hamiltonian

_|1 _/\._1 _/\—2...I N /\|_1 1
E /D

[ ] 1 T T T 1
Figure A.1: The logarithmic discretization of the conduction elec-
tron. The original point shows the Fermi energy.

v

It is noted that c. obeys the anti-commutation rules yet.

We also measure the impurity term, eq. (A.1.4) in a unit of D, and complete
the transformation. Here, we write the transformed semi-infinite chain model
by taking account of the spin.

1 .
H, = Z /_1 deect ceo, (A.1.27)

_ ! A(e
’thb=; /_ e [\/ —Tgr—zciafg+h.c. , (A.1.28)
’?'_lf =Hs/D = Za‘fflf,,—l-(jnﬁnﬁ, (A.1.29)

where £ =¢;/D and U = U/D.

A.1.2 Logarithmic Discretization

Nest, we rewrite the continuum conduction bands into the discrete form, which
is suitable for carrying out the numerical calculation. If we discretize conduc-
tion bands at regular intervals, it needs an immense amount of time to carry
out the calculation in a good accuracy. Therefore, we discretize the conduc-
tion bands logarithmically with the discretization parameter A as shown in
Fig. A.1, by taking into consideration that the dominant contribution comes
from the vicinity of the Fermi energy at the low temperature region.

Now, we introduce a complete set of the orthonormal function {yZ(e)} for
the intervals of conduction bands, [A=""!, A™"] and [-A~", —A™""!] as follows.

(e o]

co(€) = > [7(E)ano + 07 (€)bno] (A.1.30)

n=0
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A. Numerical Renormalization Group Method

where n is the index of interval. Here, ¢ (¢) is defined as that having the same
e-dependence with A(g) as following.

1, /A@E —n-1 -n

pro(e) = BV m for AT <e< AT (A3
0 for  othewise,
1, /AR —_ A" ~n—1

Pno(e) = (EVw for  —ATSe<ATTL (A139)
0 for  othewise,

where F'F is the normalization factor defined as follow with using the J =
A —n _ Al
Janaand [Th=T0 0

(F¥)? = % o deA(e). (A.1.33)

Substituting eq. (A.1.30) into egs. (A.1.28) and (A.1.29), we obtain following
expressions.

7-_[0 - Z Z [é.:b_aj;aanU + é-r:biwbna] ’ (A134)
c n=0
Hago =Y > [(Fral, + Fol,) fo+hec], (A.1.35)
) o n=0
+_ 1 /in ~ . [T deeA(e)
= TF£2 decA(e) = T aeAe) (A.1.36)

It is impossible to carry out the diagonalization of the conduction electron
term, eq. (A.1.34), because we need a lot of basis functions in order to represent
the conduction electron states. For this situation, K. G. Wilson suggested
rewriting the conduction electron term, eq. (A.1.34) into the one-dimensional
semi-infinite chain model with using the following orthogonal transformation.

Une = Zumnfnm (A137)
n=0

bncr = Z Umnfna; (A138)
n=0

fna = Z [unmama + Unmbma] . (A139)
m=0

108



A.1 Transformation of Hamiltonian

Using egs. (A.1.37) and (A.1.38), egs. (A.1.34) and (A.1.35) are written as

e =33 [enfiotno + talflatusto + Fliaatns)] (A.1.40)
o n=0
Figs = 30 [ffoo + floFs] | (A.141)
an = %Z [F»r-;!,,-a’ma + Fy—rzbma} 5 (A].42)
v? = i [Ef2+ F?] = L /1 deA(e) (A.1.43)
n=0 " " TJ-1 ‘ o

New operator f,, obeys the anti-commutation rule and upy,, Unm are normal-
ized as follow.

{faos 1} = 0t Ot (A.1.44)
{foo) fror} =0, (A.1.45)
i [t + V] = G (A.1.46)
m=0
i Unm Uy, = dmm': (A147)
n=0
i UnmUpg! = Oppm (A.1.48)
n=0

Here, we avoid deriving the process of this transformation. Instead of this
procedure, we derive the coefficient of the orthogonal transformation, i.e., upm
and U, in eq. (A.1.39) by assuming that we already know that the one-
dimensional semi-finite chain form can be mapped on the form represented by
egs. (A.1.40) and (A.1.41). It is easy to obtain ug, and v, by using egs.
(A.1.42) and (A.1.43).

+ .
v
F-

In order to obtain i, and vi.m,, we subtract the term multiplied by fo, from
eq. (A.1.40).

[eo o+t ffa] foo- (A.1.51)
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A. Numerical Renormalization Group Method

On the other hand, the original form, eq. (A.1.34), is rewritten by substituting
egs. (A.1.37) and (A.1.38).

oo}

Z [ uomat,, + Emvombl,] foo- (A.1.52)

m=

=]

Comparing the coefficient of fo, in eqs. (A.1.51) and (A.1.52), we obtain

oo}

tofie = Y [(&h — co)uomal, + (&, — €0)vombl,]  (A.1.53)
m=0
o U, = tl(g,; — e0)tom, (A154)
0
1
Vim = %(f'n_z — 80)Uom. (A155)

Adding two equations which are obtained by multiplying both side of each eq.
(A.1.54) by ugm, and eq. (A.1.55) by vom, and summing about m, we derive g

as
e8]

1
g0 = Z [EF e + &t = Wivz /_ 1 decA(e). (A.1.56)

m=0

On the other hand, #; can be derived by substituting egs. (A.1.54) and (A.1.55)
into (A.1.46), and taking n = n'.

Z é.m - 60)2u0m ( - 60)2U0m]
= % Z ':{F+ ém - 80)} + {F 80)} ] (A157)

v m=0

In the same way, we can derive ¢,, and ¢, for n > 1 sequentially.

en = D (Entiam + Entim), (A.1.58)
m=0
o= (gl + &M, - — e, (A.1.59)
m=0
1
Un+im = t_ [( - 571, Unm — tn—lun—lm] P (A160)
1
Untim = t_ [‘_(é‘m 'Unm tn—lvn—lm:| . (A161)
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A.1 Transformation of Hamiltonian

When we consider the e-dependent density of state of conduction electron
such as La,Sr;_,Cuy04 which does not have density of state at around Fermi
energy, we calculate Unm, Unm, tn, €, Numerically by using the recurrence for-
mula noted above. For large m, it is necessary to apply the Gram-Schmidt
orthogonalization for wu,, and v, because n,,, and v,, do not obey the or-
thogonal condition at n ~ 20 — 30 due to the numerical error.

Up to here, we carried out the transformation as we can apply for the
general problem. However, the formula become simple if we take the following
simplifications.

[1] The hybridization between the f-electron and conduction electrons is
independent on ¢ (i.e., V() = const).

[2] The conduction bands hold the particle-hole symmetry.

[3] The density of state of the conduction band is independent on ¢ (i.e.,
p(g) = const).

Using 1., we obtain £y = 0 because the integrated function in eq. (A.1.56) is
odd function about . With condition 2, A(¢) = A(—¢) because the hybridiza-
tion is symmetric about ¢, giving €, = 0 for all n. With using these assump-
tions, the Anderson model can be mapped onto the following one-dimensional
semi-infinite chain Hamiltonian. '

H =H,+ Huyo + Hy, (A.1.62)
7, = Ziotn(flafn+1a+fi+1afm), (A163)
Hyyb = ZU [filo‘fod + f(;raf—la] , (A.1.64)
He=> erfliofao+ Uy fofoa (A.1.65)

Moreover, within these assumption, the analytical expressions of t,, f,, are
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A. Numerical Renormalization Group Method

derived by K. G. Wilson.
1+ A 1— A"

= 2 /(1= A2D)(1 = A2n-9) AT, (A.1.66)

: +2A_1A_n/2 for n — oo, (A.1.67)

for = (1 - A—1)1/2 iA_m/z(am + by) (A168)
2 —~ o T 9ms ), 1.

fio = (1—_/\_3) 1/2 {2 A2 (0, — bro) (A.1.69)
i 2 2 mo = bma), 1.

Figure. A.2 shows the diagramatic representation of the Hamiltonian (A.1.62)

in which there are the impurity site written by f-electron state hybridizing

with the conduction electron site 0, and the conduction band is represented by

the one-dimensional chain having only the nearest-neighbor hopping ¢,. Here,
Sfl)a represents the creation operator of the f-electron.

The one-dimensional infinite-chain model can be mapped on the real space
as shown in Fig. A.3. The conduction site 0 is superposition of waves from var-
ious energy scale, then site 0 indicates the most localized conduction electron
with an extent kz' from the impurity site. As n increases, the energy range
taken into the conduction site becomes narrow, which corresponds to consider
the further conduction electron in the real space. Moreover, the hopping ¢,
decreases exponentially as n increases, which indicate that the contribution
of conduction electrons gradually decreases as the distance from the impurity
site increases.

A.2 Renormalization Group Method and Sequentially-
Diagonalization

The Renormalization group (RG) transformation R means the projection from
the Hamiltonian written by a certain set of parameters K to that written by
a different set of parameters K.

RH(K) = H(K). (A.2.1)

P. W. Anderson and his coworkers carried out this RG transformation for the
Kondo model, which is called as the poorman’s scaling theory. They eliminated
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Impurity site Conduction band
A

Figure A.2: The diagrammatic representation of the Hamiltonian
(A.1.62). The original point indicates the impurity site hybridizing
with the conduction site written as fp,. The conduction electron
sites line up one-dimensionally and there are only nearest neighbor

hopping.

Eo~ kg |

Impurity site

f o

Figure A.3: The mapping of the one-dimensional infinite-chain
model on the real space.
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A. Numerical Renormalization Group Method

the degree of the freedom of conduction electrons with high energy perturba-
tively, and derive the scaling equation for the coupling constants between the
localized moment and conduction electrons. With this procedure, the original
model is renormalized into an effective model through the renormalization of
the coupling constants as noted in the Introduction. This scaling equation
indicates that there are two fixed points: one is the weak coupling fixed point
where the coupling between the localized moment and conduction electron
is lost, the other is the strong coupling limit where the coupling constants
increases infinitely as the band width of the conduction electron is reduced.

The NRG method takes the idea of this RG transformation. Since the
NRG follows the change of the energy spectrum of the many-bode system by
the RG transformation, it can avoid breaking down of the RG transformation,
which occur in the poorman’s scaling theory due to the increase of coupling
constants.

In order to apply the NRG method, we transform the one-dimensional
infinite chain Hamiltonian into the form which is suitable for the RG trans-
formation. Here, we prepare the Hamiltonian Hy in which the summation
about n in the Hamiltonian (A.1.62) is stopped at N. In other words, the
Hamiltonian (A.1.62) corresponds to the limit of N — oo of Hy.

_ A ;
H = lim 2 Aoy (A.2.2)
N 2
Hy = AN A, 45 Z(fiwfoa + [ S 10)
N1
-+ Z Z Aﬁn/z/n(./:gg./‘n+la + .fj;.s_la_/k’nv) B (A23>
o n=0
Hy = —2 7 (A.2.4)
f - 1+‘,\ 1 f -
_ 2 o
vV = m?), (AZO)
- 2 ‘
Ly, = ——— A2 2.6
T A i (A.2.6)

In this definition. Hx obeys the following recurrence formula with using the
RG transformation R.

Hyey = R<HN)
= NPHy + 3 (vt + oo Svo). (A2.7)
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In the NRG method, we are interested in the lowest-lying energy spectrum at
each energy scale. For the purpose of comparing the energy spectrum at each
energy scale, we introduce the factors, AN=D/2 in eq. (A.2.3) and l“sz\ L in
eq. (A.2.2), in order to make ¢, converge with 1 in the limit of N — oco. In
order to consider flf and f_]hyb with the same recurrence formula, eq. (A.2.7),
we define the first term and the first hopping term of the recurrence formula
as follow.

Ho = A""Hy, (A.2.8)

tog=1.

Using the relation (A.2.7), the NRG method is carried out as following.
(This procedure is called the successive diagonalization.)

[1] Obtain the eigenvalue and eigenvector of Hy by means of the numerical
diagonalization.

[2] Calculate matrix elements of Hy.; with using the recurrence formula,
eq. (A.2.7) from the eigenvalue and eigenvector obtained from Hx.

[3] Obtain the eigenvalue and eigenvector of Hy..; by means of the numerical
diagonalization.

[4] Tterate the calculation from procedure 2.

Fig. A.4 is a view showing the successive diagonalization at N = 1 and
N = 2 steps. In the NRG calculation, we first obtain the exact solution of the
impurity site, and take in the effect of the conduction electrons perturbatively
from the most spatially localized conduction electrons. The energy scale of
the conduction term added in N-th step is smaller than that in (N + 1)-th
step by A~Y2. When the system reaches at the fixed point, we obtain the
same energy spectrum through the successive diagonalization if we take the
energy of the ground state as zero. (Strictly speaking, as shown in the next
section, we obtain the same energy spectrum by two times of the successive
diagonalization because the spectruin in the even step is different from that in
the odd step.)

Through the successive diagonalization, the number of state increases ex-
ponentially with N even when we consider symmetries of the model so that
the full matrix takes a block-diagonal form with smaller submatrices. In or-
der to avoid this problem, we keep the eigenstates from the ground state to
the Ntr-th excited state, and discard the other high energy eigenstates. Here,
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impurity site conduction electron

it QV—A%@TQ
N=2 @O A OO

Figure A.4: A view showing the successive diagonalization at N = 1
and N = 2 steps. The last hopping term is always of the order of 1.

we should not discard the eigenstates automatically in order not to break the
symmetry of the system. Therefore, we promise to keep (or discard) all states
which have the same energy with N;,-th state. Suitable value for the parameter
N, depends on the model: for the single impurity Anderson model, N, ~ 500
is sufficient to obtain the result with a good accuracy. This approximation,
called “truncation”, is valid because the discarded high energy states hardly
affect the lowest-lying energy spectrum.

As mentioned above, the NRG method is the numerical technique that we
investigate the low energy spectrum at zero temperature by taking the effect
of the conduction electrons perturbatively and discarding the negligible high
energy states. As shown in the following section, the NRG method allows
us to obtain the temperature dependence of various physical quantities when
we consider the result at a certain energy scale as that at the corresponding
temperature. The detail calculation of the physical quantities is mentioned
below.

A.3 Numerical Treatment
In this section, we introduce the key of the NRG calculation, how we calculate

the matrix elements of H . from the eigenvalue and eigenvector of Hy in eq.
(A.2.7).

116



A .3 Numerical Treatment

A
\ v
k=1 k=2 k=3 k=4

Figure A.5: Four possible spin state in each conduction shell and
their index k.

Here, we take the single impurity Anderson model as an example. In this
case, the total charge @ and the z-component of total spin S, are the conser-
vative quantities.

Q Z [ annT + fn¢fn¢] (N + 2), (A31)

n=-—1

_i[ o For = n¢fn¢] (A.3.2)

where () is represented by the deviation from the half-filling. It is noted that
we do not take the total spin S as the conservative quantity although K. G.
Wilson did so in the original NRG method. This is because we often discuss
the effect of the magnetic field which gives the matrix element between states
with different S.

With these quantities, we carry out the diagonalization of Hy1 with use
of the block-diagonalization, i.e., we split full matrix of x4, into small sub-
matrices in which all the states have the same () and S,.

We write the eigenvalue and eigenvector of the N-th step Hamiltonian Hy

as EN(Q7527TN) and {lQa SZaTN>N}’

HNIQ SZ’TN>N = EN(QNSYZ)TN)'Q)SZ»T‘N)N) (A33)
N<Q Sz,"'NlQ; Z’TN>N = 5Q,Q/55z,S;5TN,7';V’ (A34)

where ry is the index to distinguish the states with same @ and S,.

Now, we consider to add the (N +1)-th “conduction shell” (the conduction
electron site written by fy.y1,) to the well-known system Hy. For example,
f}:, +11 means that we add the up-spin conduction electron in (N + 1)-th con-
duction shell. Fig. A.5 shows the four possible states in each conduction shell
where we allot the index k for each state. We construct a basis for Hy,q,
|Q,2S,, ans1, kn+17a))N+1, DY the direct product between the eigenstate of
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A. Numerical Renormalization Group Method

index state at (N + 1)-th shell 6QF §S*

1 X,=]0) 10
2 Xp= fl,10) 0 -1
3 Xs= flnl0) 0 1
4 Xu= fz]:r+1Tf1]:r+1¢|0) 1 0

Table A.1: The amounts of change of conservative quantities when
the (N + 1)-th conduction shell is added to Hy. |0) indicates the
vacuum state.

Hy, {|Q,28.,rx)n}, and states for the added conduction shell, Xj.

X ®1Q,28,,rn)n = 1Q + 6Q*, 25, + 265, any1, kvt ™)) N1
=(Q, 2S5, ani1, knaiTn) )N+t (A.3.5)

where ky is the index for the spin state at the (N + 1)-th conduction shell.
We call such defined basis |@Q, 2S5,, an+1, kn+1,7N) ) n+1 of Hvyr as trial state.
The quantities 6Q* and 6.S¥ are amounts of changes of the total charge @ and
the z-component of the total spin .S, when the (N + 1)-th conduction shell is
added, which are given in table A.1.

For a eigenstate of Hy |Q,2S,,n(i))n, we make four trial states.

1|Q>2Sza7'N(i)>N = IQ - 1a2Sz;aN+17 1;7'N>>N+1 =
Flan| @28, madn = 1@, 28, — 1, ane1, 2 7n))
) )
) )

|

N1 = |2)
Fea111@,28., i) = 1Q, 25, + 1, aner, 37 |
!

We consider the matrix element for Hyy; from two basis, |kny1(2)))n+1 and

|kn+1(5))) N+1 which are are constructed of two of eigenstates of Hy, |@, S, rn(i)) N

and |Q, S, 7n(j)) n. For the case of ky1(7) = kn+1(j), we obtain the diagonal
term from the first term in eq. (A.2.7) as AY2E(Q,2S,,7x5)d;;. On the other
hand, the second term in eq. (A.2.7) give the off-diagonal term, and non-zero
term are obtained for the following cases.
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A .3 Numerical Treatment

[1] f}J{[,LfN+1¢

f]t/'¢fN+1L|2>>N+1

fztr¢fN+1,L|4>>N+1

2] florfrveat

f]tITfN+1T|3>>N+1

FHON S L P

8] floafm

N+1<<2|f1]:/'+1¢fN¢

N1 ({41l o

[4] fJ]:/+1TfNT

N+ (Bl S =

N+1<(4|f}:r+1TfNT

P N1 S0 Q) 282, )

£3.1Q,28,, rw)w

) v, (A.3.10)
vl i@, 282, v w
_th/¢fztr+1T|Q; 25, 7"N)N

— [l 13)) v, (A.3.11)

Flir vt e Q. 28z, ma) N

1@, 28, ra)N

Al ver, (A.3.12)
Forfnerf o freng|@, 282, mv)w
f]thfI]:l+1¢|Q7 2Sz,TN)N

fIT\IT|2>>N+1; (A.3.13)

n{(@,25;, 7’N|fN+1¢fJTv+1¢fN¢

(@, 28.rn|fny

N+1{(1] vy, (A.3.14)
~n(@, 25, TN|fN+1¢fN+1’I‘f]tI+1¢fN¢

— nv+1{Q, 257N | fn 11t fvy

— n+1{@l S (A.3.15)

~n{@,25;, erfN—i—le]t[.f.anT

(@, 28 | iy

N+1{(L]fwt, (A.3.16)
N{(Q, 25, ra| vy S Flr gy e
N{(Q,28.rn| vy fn

N+1{(3[ 1 (A.3.17)
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A. Numerical Renormalization Group Method

As a result, for |ky11()))nr1(kn4a(d) =1 ~ 4) and |kn+1(5))) w1 (kv (5) =
1 ~ 4), the 4 x 4 matrix elements are obtained as follow.

APENé;  inA tnB 0
ivA  AV2EnG;; 0 tnC
s = i B 0 NPEys, —ixp |0 (A3
0 inC —inD  AV2EpG;;
where

A= N+1<<1(7’)‘fN¢|1(-7)>>N+17 A= N+ { (L@ vy LG w1,

B= na{(M@ 1N,  B= N4 {(L@O 1)),

C= ve{QOIA2ONN+, €= naa (@O F]20)) ) w1,

D= n{BOILIBGNNe, D= vea (3| faal3())) -

Here, the eigenstate of Hy, {|rn)n}, is written by the linear combination
of the trial states of Hy.

|Q,2S;,7N)N = Z Uryan @525z, o, kns Tv—1) ) v (A.3.19)

anN

Using eq. (A.3.19), we calculate A ~ D and A ~ D, for example, A is
calculated as follows.
A= n{Q(1),28:(2), n (5)| /4, 1Q(), 28:(G)rw (1))

= Z Urw @,an ) Urn () san ()

an (&), (4)

X n+1{(Q(5),25:(4), an (8); kn (i) f,1Q(), 25:(5), e (5); kn (5))) vt
= Y Untpan®Urnant

an(@).an ()
X {5kw(i),25kw(j),1 w(Q(8) = 1,28,(8) + L,rwal fvy f,1Q(), 28:(5), rv—1.(5))
k@40 (), N (Q(D) — 2,25.(2), vl Fvy fn £l
x|Q(5) — 1,25:(j) — L,rnv—1(4))n}
= 80()-1,01)925.()+1.25.0) D D Ura(@.o(®Urn(ihans)

an (i) an(j)

X Oryy_1 (6)rxr—10G) 1Ok 6,20k (51 — Ok (,40k (7,3 } -
(A.3.20)
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A.4 Analysis by Numerical Renormalization Group Method

In the same way, the other terms can be calculated as follow.

Hytr =

(1 £ l9)

Ay

(il fveld)

(il fnylg)

AV2Ens;;  In(ilflli)  In(ilflh) 0

in(ilfvls)  AY2En6i; 0 —En (il fRe17)

tw (il S 1) 0 AV2ENS;  in (ilfztu,'j) ,
0 —tn (il farld) InGilfagls)  AY2EnGi;

(A.3.21)

0Q()-1,Q(5)028.(1)-1,25.(5) Z Z Urn),an @) Urn(),0n ()

an () an ()
XOry 1 (i) 1) (O (30kn (31 + Ok 31,40k (5),2) A-3.22)
Soi)-100)025.04125.G) D, D, Urw@an®Urn(an()
an(?) an(4)
X2 (i)irw-13) (O 20kn ()1 = Ok (3),40kn (5),3) {A-3.23)
(31 f 44 2)
Sqiyr1.00028.60)1125.G) O D Urnran®Urn()anG)
ap (%) an(4)
X(STN—I(i)a"'N—l(j) [5kN(i),15kN(j),3 + 5kN(i),25kN(j)a4] 7(A'3'24)
(G1F% 18
811! 025.60-125.G) D D Urwiiran®Urn(an()
an () an (i)

XGr 1 (@rn-1(G) Ok (10kn ()2 — Ok (i), 30k (7)) (A.3.25)

All the matrix elements of Hy, 1 are calculated by carrying out the way above
for all combination of (¢, j) and k() = 1 ~ 4. The eigenvectors and eigenvalues
of Hy41 are obtained by the numerical diagonalization.

A4 Ahalysis by Numerical Renormalization Group Method

In this section, we consider the result obtained from the NRG method and their
physical interpretation for the free electron model and the Anderson model.

A.4.1 Free Electron Model

The free electron model is given by the following Hamiltonian corresponding
to model that the Hamiltonian eq. (A.2.3) loses the impurity site indicated by
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A. Numerical Renormalization Group Method

A

Energy

Figure A.6: The energy level of the free electron model when the
conduction band holds the particle-hole symmetry for (a) odd N and
(b) even N step cases. The dotted line indicate the Fermi energy.

f—la~
N-1
HN = Z Z A—n/zfn(f;{ﬂfn‘ﬂﬂ + f'rt+lafn+la)- (A41)

o n=0
The Hamiltonian (A.4.1) corresponds to the one-dimensional Hubbard model

with hopping term fy because there are no interaction between particles.
Therefore, we can easily diagonalize the Hamiltonian (A.4.1) as

N+1

Hy =Y ndla, (A4.2)
e

[

by using the following unitary transformation:

9o =Y Unifuo- (A.4.3)

In this case, we obtain the energy spectrum 7; shown in Fig. A.6 for even and
odd N, which is symmetric about the Fermi energy. Such symmetric energy
spectrum originates at the fact that the Hamiltonian holds the particle-hole
symmetry because the Hamiltonian is invariant for the following transforma-
tion.

fnd - (_1)nf'r1‘w" f:w — (_1)nf7'w- (A44)
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A.4 Analysis by Numerical Renormalization Group Method

20 0 2.49320678938
21 -2 *-2 3.24006264766
3.24006264766

Figure A.7: The example of how
the electrons occupy the states
in the case of odd N for each
(@,2S,). The lines show the en-
ergy spectrum and the dotted line
shows the Fermi energy.

A A | number @ 25, Energy/D(N =49)

----- " o R M 1 0 0 0.00000000000
23 -1 41 0.74856304802
N I~ B 45 1 41 0.74856304802
(0.0) (1.1) (2.0) 67 -2 0 149371216384
v 89 0 +2 149371171781
— —4 10,11 2 0 149371171781
SRl Ry / Tl 12,13 -1 +1 224056802360
N i_ Al . 1415 1 +1  2.24056802360
! N Iy 16,17 -1 +1  2.49320678938
-1-1) @2 (-1 1810 1 +1  2.49320678938

0

2

2

22-24

1
)

2526 0 2 3.24006264766
2728 0 -2 3.24006264766
29-32 0 O 3.24006264766

In the ground state of the Hamiltonian (A.4.1), all the states with negative
energy are occupied with two spins.

For the negative g;,, by defining the creation operator of the hole state as
hie = i(0y) o g;'U,, we obtain the positive excitation energy for the hole state

because of the relation glt,gh7 =1- h};hll,. Using such a transformation for eq.
(A.4.2), we obtain more clear form for Fig. A.6.

N+1
Hy =D moLo0
o I=1

(N+1)/2 ; ; .
> lE Mo( 91,910 + P}y Pio) N : odd,
o =1

(A4.5)

N/2

PP (91,910 + hi,Pio) + MoeGlsgos N : even.
Here, we neglect the constant term because it gives only the energy shift to
the system. The eigenvalue for even and odd N can be approximated as
Me ~ AL/ 2 Mo ~ A1 for large . This fact originate at that we define g;

and h; in the similar forms with a; in eq. (A.1.49 and by in eq. (A.1.50).
Figures A.7 and A.8 show the lowest-lying energy spectrum obtained by
the NRG method for even and odd N. For example, in the case of odd N,
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1 -1 0 (0.00000000000
e A

1 0 0.00000000000

(-1,0) (0.1) (1,0) 3,4 0 +1  0.00000070524

- ___f ___f# ... number Q 2S, Energy/D(N =50)
44— 56 -2 &1 1.52048391659

A
N W i .78 -1 +2  1.52048321113
4| 9 1.0  1.52048391659
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(12)  (2-1) (1.0 12,13 1 +2  1.52048321113
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91 -3 0  3.04096712862
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26,2728 -1 0  3.04096712862

Figure A.8: The example of how
the electron occupy the states
in the case of even N for each
(@,2S,). The lines show the en-
ergy spectrum and the dotted line
shows the Fermi energy.

there are only one state for the ground state where electrons are occupied as
in the case of (Q,2S.) = (0,0) of Fig. A.7. In this case, the first excited
state has quartet degeneracy as seen in the cases of (1,1) and (—1,—1) which
corresponds to the excitation of a electron or a hole. On the other hand, in
the case of even N, the ground state has the quartet degeneracy because one
of the eigenvalue is the same with the Fermi energy. Therefore, there are 16
states in the first excited states. The higher excited states can be considered in
this way, which is consistent with the result obtained by the NRG calculation
for the Hamiltonian (A.4.1).

As a final topic in this section, we consider the inverse transformation of eq.
(A.4.3) in preparation for the discussion of the effective Hamiltonian around
the fixed point mentioned below. In the case of odd N, fo, and fi, are written
as

(N+1)/2
foo = A"EVANT gy (gza + 5h§,,) , (A.4.6)
=1
(N+1)/2
fro = ATTUA N gy, (gza - &h}a) : (A.4.7)
=1

For higher n > 2, fu.,(n > 2) is composed of a lot of term such as the term
being proportional to A~V-1/4 term depending on fo,, and so on. On the

124



A .4 Analysis by Numerical Renormalization Group Method

basis of the numerical calculation, we can calculate ag and «y;: for example,
in the casc of A = 2.5, we obtain as follow.

agp = 0.699, gy = 0.873. --- g = 0.5477(2.5)1 172, (A.4.8)
o = 0.652, qge = 2718, - ag = 0.3059(2.5)3¢~D/2, (A.4.9)

For the general A, the analytic formulas are derived as follow.

— A1
Qo = \/%AU—W?, (A.4.10)
I—A3 . ‘
oy = \/———Q——A‘“HW. (A.4.11)

A.4.2 Anderson Model

In this subsection, we show the result of the NRG calculation for the Anderson
model and the physical consideration for results. We again show the Ander-

son model in the transformed form into the one-dimensional chain model, eq.
(A4.1).

HN = A(N_l)/2 7‘2[ + v Z(ff_kyf()a + f(igf-l()‘)

N-1
ESOSTA T far 4 S fu) | (A412)

~ ) i o n=0
Hy= (A.4.13)
U= I—_;:)—Aj’z), (A4.14)
fn = -JTA"/%H. (A.4.15)

Figures. A.9 and A.10 show the N-dependence of the lowest-lying energy
spectrum of the Anderson model calculated by the NRG method. In both
even and odd N cases, the lowest-lying energy spectrum changes drastically
up to about N ~ 20, while those for N > 20 are almost independent on
N. This converged lowest-lying energy spectrum of odd N corresponds to
that of the free electron model of even N, and vice versa. This result means
that the impurity site f_; and the most localized conduction site [, form
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A. Numerical Renormalization Group Method

the singlet state as shown in Fig. A.11, and these site does not contribute
to the lowest-lying energy spectrum. In other words, the coupling constant
between f_; and f; sites are antiferromagnetic. For small N, the coupling
constant is small N (in a high temperature region). On the other hand, as N
increases, i.e., the energy scale of the system decreases, the coupling constant
increases and approaches to the strong coupling limit (strong coupling fixed
point) where the Kondo-Yosida singlet forms. When the system is near this
fixed point, the coupling constant is very large and large amount of the energy
is necessary to break the Kondo-Yosida singlet state. Therefore, these two
sites do not contribute to the lowest-lying energy spectrum at around this
fixed point, and there appears the lowest-lying energy spectrum due to the
remaining conduction sites, i.e., that of the free electron model with N — 1
sites. In such a reason, the lowest-lying energy spectrum is same with that of
the free electron model with NV — 1 site. Of course, the conservative quantities
and degeneracy is also same.

54
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Figure A.9: The change of the lowest-lying energy spectrum of the
Anderson model for A = 2.5,&; = —04,U = 0.8,7 = 0.2 for even
N. We keep 1000 states in each truncation process.
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A.5 Calculation of Thermodynamic Quantities

A.5 Calculation of Thermodynamic Quantities

The NRG method allows us to calculate various thermodynamic quantities
because we obtain the lowest-lying energy spectrum and their conservative
quantities. In this section, we introduce the way to calculate the entropy, the
susceptibility and the specific heat, and show results for the Anderson model.

In the NRG method, the hopping term ¢y decays in the form of A=(N—1/2
as NV increases, and high energy states are discarded by the truncation proce-
dure. Therefore, at each step in the NRG calculation, we obtain the energy
spectrum of the order of A=(W=1/2_ From this viewpoint, we define an inverse
temperature Oy = (kgTy) ! as

e %

5 A W-Nkg. =8 (A.5.1)

and we consider the thermodynamic quantities obtained from the energy spec-

trum at N-th step as that at this temperature. It is noted that 3 is the
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Figure A.10: The change of the lowest-lying energy spectrum of the
Anderson model for A = 2.5, = —0.4,U = 0.8,9 = 0.2 for odd N.
We keep 1000 states in each truncation process.
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impurity site conduction electron

@ (o1

Kondo-Yosida Singlet

Figure A.11: Diagram in the strong coupling limit. The most lo-
calized conduction electron and the impurity site form the Kondo-
Yosida singlet state.

quantity of the order of 1, and we often take it as 0.5 ~ 1, although the ade-
quate B depends on the discretization parameter A and the remaining state in
the truncation procedure Ny;.

The simple form of the entropy contributed from the impurity site, Simp
is the first derivative of the free energy, Simp = —0F““" We should avoid the
numerical calculation in the differential form in terms of the accuracy of the
numerical calculation, and we evaluate the derivative analytically. For the
Hamiltonian in the N-th step, Hy, we define the thermodynamic average as

following.

<. N Z(N ZZ —BEN(Q,25z,7N) <Q.Sz«7"1v| ..‘IQ',SZ-TN>N~ (A52)

QS: TN

Ti— Y. e acen), (A.5.3)

Q,S: TN

Using the distribution function, eq. (A.5.3), the entropy for N — th step, Sy,
is calculated as follows.

SN/kB = 5<HN>+IHZN. (A54)

However, the entropy defined by eq. (A.5.4) include the contribution from both
impurity site and conduction electrons. In order to see the entropy due to the
impurity site, we subtract the contribution from the conduction electrons.

SNimP(TN)/k’B = SN/kB == SNcb/kB; (A55)

N
Mo = 0, 3 el fpot HL B (A.5.6)

o n=0
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A.5 Calculation of Thermodynamic Quantities

On the other hand, the standard definition of the magnetic susceptibility
18

B
\(T) = / (S.[r)S.)dr — B(S.)2. (A5.7)

where 7 is the imaginary time (0 < 7 < f3), S, the z-component of the impurity
spin operator. Here, we focus on the static magnetic susceptibility. In this case,
S, does not depend on time, and S, is commute with the Hamiltonian, which
make the eq. (A.5.7) be simple form as

x(Tw) = B{S2) — (S.)°). (A5.8)

We also subtract the contribution due to the conduction electron from eq.
(A.5.8) as in the case of the entropy.
In the same manner with the entropy, the specific heat is written as follows.

CNilnp(TN)/kB = CN/]STB - CNC}J/ICB, (A59)
Cn/ks = 8% (Hy) — (Hn)?). (A.5.10)

Since we obtain the lowest-lying energy spectrum with good accuracy, we can
evaluate the specific heat with good accuracy by using eq. (A.5.10) assuming
that the distribution function and the thermodynamic average is calculated
properly. However, the amount such as (Hy) and (H%) do not take account
of the information of the higher energy state. The contribution from these
high energy state affects the average of the square of the energy compared to
the average of the energy, i.c., the numerical error appears in the specific heat
easily compared to the entropy. Therefore, the specific heat is obtained by the
differentiation of the entropy.

aSN‘ m

Crimp(Tw) =T =P ) A5.11
N rp( N ) ( oT ( )
As noted above, in the NRG method, the energy spectrum obtained in even

N step is different from that obtained in odd N step, which gives the wavy
lines for the temperature dependence of the physical quantities. This in turn
means that we should calculate the thermodynamic quantities for either even
or odd N only, and lose half of the temperature values. However, we can use
all information by averaging the thermodynamic quantities obtained at odd
and even steps.

1

O(Tw) = 5 (()(N) +O(N —1)+

O(N +1)—O(N — 1)

Ty —Tna

(T — TN—l)) ;
(A5.12)
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Figure A.12: The temperature dependence of various thermody-
namic quantities due to the impurity site in the unit of the Kondo
temperature Tk in the Anderson model for A = 2.5,&; = —04,U =
0.8,7 = 0.2. We keep up to 1000 state in each truncation procedure.

where O(Ty) means the any thermodynamic quantities for a given N. With
this averaging procedure, we obtain smooth line and use the all information
obtained in the NRG method.

Moreover, with use of these physical quantities mentioned above, we can
also calculate the Sommerfeld coefficient Yimp(T) = Cimp/T, Wilson ratio
Rw = 47*Ximp(T)/[3%imp(T)], and the Kondo temperature Tk by the defi-
nition of the Wilson, 47k Ximp(0) = 0.413.

Fig. A.12 shows the temperature dependence of the entropy Simp(T), the
magnetic susceptibility Ximp(7"), the Sommerfeld coefficient Yimp(T') = Cipnp/T
and the Wilson ratio Rw = 47 Ximp(T)/[3%mp(T)] in a unit of the Kondo
temperature Tk by the NRG method. Here, we take gug=1, and Kondo tem-
perature is determined by the definition of the Wilson. In the region 7' > Tk
(corresponding to smaller N-th steps), the impurity site is occupied with one
electron with up or down spin, which is behaves as the localized moment.
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A.6 Analysis around Strong Coupling Fixed Point

Hence, the entropy is equal to ~ kg log2 which represent the spin 1/2 degree
of freedom, and the magnetic susceptibility obeys the Curie-Weiss law,

_ Ngu%S(S+1)

o (A.5.13)

On the other hand, as the temperature decreases (as N increases) the Kondo-
Yosida singlet state start to form and the energy spectrum changes drastically
at T ~ Tkx. As the temperature decreases more i.e., in the region T" <« Tk
(strong coupling limit), the entropy and the magnetic susceptibility cross over
to zero, and Ryw approaches 2. This result indicates that the system can be
described on the basis of the local Fermi liquid. It is noted that ~imp(T") start
to increase at around Tk as T decreases, which indicates that the effective
mass of the electron increases because of the relation v oc m*.

A.6 Analysis around Strong Coupling Fixed Point

Now, we consider the situation that the system goes to a fixed point H*. Since
we obtain the different energy spectrum at even and odd steps in the NRG
calculation, the system Hy obeys the following relation at the fixed point,

Hyio = LHy = H* (A6.1)

where L is the renormalization group transformation. In the Anderson model
with V # 0, the system surely approaches to the strong coupling limit in the
limit of large N, i.e.,

H* = lim Hy. (A.6.2)

N—-oo

However, there certainly remains the deviation from the strong coupling limit
‘H* in the NRG calculation even if we take large enough N. We define this
deviation from H* in the N-th step in the NRG calculation as dH .

SHy = Hy—H, (A.6.3)
SHy = Y wnAN PO, (A.6.4)

where O,, are the eigenoperators determined by the kind of the fixed point,
and w,, the coefficients. We previously subtract the factor AN~1/2 which is
the contributions from the £ giving the multiplication by v/A in each step.
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For £, §Hy is transformed as
5HN+2 = HN+2 —H" =L [%* + 6HN] — H*
= LoHy = LY umA VD20, = 3 wn A0 (£0,,)

= > wnA® 2 (AN,0,), (A.6.5)

where A, is the eigenvalue of Om. X
For the increase of N, the amount of the contribution from each O,, is
classified into the following three cases according to the eigenvalue of £, AM,.

[1] AXp > 1: relevant operator
[2] AMn = 1: marginal operator
[3] A, < 1: irrelevant operator

If 6Hy include one relevant operator for the fixed point, that fixed point
is unstable because the deviation from {* increases by the renormalization
procedure. On the other hand, if 6H y include only irrelevant operator for the
fixed point, that fixed point is stable because the deviation from #* decreases
by renormalization procedure once the system approaches to that fixed point.
As for the marginal operator, it is necessary to analyze those operators for
each fixed point. It is noted that eigenoperators O,, should have the same
symmetry with each fixed point in order not to break the symmetry of each
fixed point.

With consideration above circumstance, we determine the effective Hamil-
tonian of the Anderson model at the strong coupling fixed point. The conser-
vative quantities require the operator which conserve the total charge @ and
z-component of the total spin S,. The terms composed of fo, and f;, decay in
the form less than A="/4 as seen in eqs. (A.4.6) and (A.4.7), while we neglect
the term composed of f,, with n > 2 because f,, decays in the form less than
~ A~"N/4 which decreases drastically for N > 1. Thus, we assume that O,, is
composed of f_1, fo, and obtain the following candidates for O,,.

O1 = f},fio + fi, foo, (A.6.6)
02 = (fi,foo — 1), (A.6.7)
O3 = (£1,6 1ot foo) (F11,5,0 F-10), (A.6.8)
Os = (flipfarn = V(oo = 1), (A.6.9)
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where subscripts of spin ¢ and p implicitly indicate that we take the summation
of spins. The eigenvalue for £ of Om are A~! for Ol and 02, and 1 for 03 and
O, Since the fluctuation of the f-electron is suppressed at around the strong
coupling limit, Oz is approximated as Oz o (fd,&,, fo,r) Which breaks the
particle-hole symmetry, and it can be negligible. Although Oy is the marginal
operator, it can be negligible because the localized spin is “frozen” by the
conduction electron by forming the Kondo-Yosida singlet state at around the
strong coupling limit, and O4 gives the constant term which is subtracted by
L. Thus, the effective Hamiltonian is composed of O; and Os.

HN = A(N_l)/2 (wlol + WQOQ) . (A610)

In order to verify the validity of the effective Hamiltonian, eq. (A.6.10),
we rewrite O; and O, with g and h. Here, we only discuss the case of even N
because the discussion for odd N is almost the same. By using egs. (A.4.6)
and (A.4.7), these two operators are written as

Ol = f(-)ro-flcr + f]To'an'

(N+1)/2 (N+1)/2
=AD" N [(Otmalj + Q1i00;) (ggagjf’ + hgahﬁ)
=1 =1

+ & (i1 — au15005) (giahja - ggah;f(-,)] + const.
(A.6.11)

O, = (fgo‘fOJ - 1)2

= A~V-D Z Qi o CLok ol [—ggagltpgjaglﬂ - h;fah;rcuhj"h’l“
ikl
— o (gjgg,tuh;(&hgﬁ + giagkuhﬁhlﬁ) + 2ggahzﬂgj”hlﬁ — 267 gg"h;agk” fug
+25 9, 9h0Gjuhic — 2Bhl geuhsohus + 289l gL, b, 955 — 25930@‘"’}’217’“”‘] '
(A.6.12)

Here, in the calculation of Oy, we use the relation A~(V-1/2%" a2 =1, which
is derived from the result that the transformation from f to g, h is the Unitary
transformation. The constant term appeared in eq. (A.6.11) can be negligible
because the renormalization group transformation £ subtract the constant
term.
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i state Q 28 E(HY (2|0H*|3)

1 gIa|O> 1 1 €1 2&010(11(:)1

2 g§a|0) 1 1 () 20[020[12(:)1

3 ghalpll) 1 1 3 B2 0r12001

4 gITgI¢IO> 2 0 262 40(020(12(:)1 + 2&31(:)2
) gL,gL—,|O) 2 0 €1+ &2 2 (0[010!11 + 002012) (:)1 + 40(810132@2
6 gIg'g;a|0> 2 2 e1+ee 2 (a01a11 + aozalg) w1
7 gl hl_10) 0 0 2 dag o @1 + 2080y
8 gIahJ{U|O) 0 2 281 40(010411(:)1 - 2(131(:)2
9 glal Rl RLJ0) 0 0 dg 81011601

10 gi_ni.|0) 0 0 e +e 2 (agr0on1 + agas) @

Table A.2: The corrections of energy by dHy for each state. o is spin, ¢; is
the eigenvalues at the strong coupling fixed point, and @; = A~ -1/2y,.

Using egs. (A.6.11) and (A.6.12), §Hy is represented as

2
SHy =Hy —H = A" D2 "0, ANDO,,. (A.6.13)

m=1

On the supposition that eq. (A.6.13) is the perturbation term for H*, and we
neglect contributions from the second order perturbations of O; and O, because
the second order perturbation (of the order of ~ A=(N=1) is well smaller than
the first order perturbation (of the order of ~ A~W=1/2) in the strong coupling
limit. The eigenvalue of H y of a state indicated by a quantum number ¢, Ey;,
is composed of only two terms: the energy at the strong coupling fixed point
and the correction by the first order perturbation of 6H y.

Eyi = B + (i|6Hn i), (A.6.14)

Table. A.2 shows corrections of energy by éHy for each state at around the
strong couling fixed point. Two coefficients, w; and w, are determined by using
two energies obtained by the numerical calculation. w;, and w, thus obtained
allow us to calculate the energy of the other states, and we discuss the validity
of the effective Hamiltonian by comparing the calculated energies and that
obtained in the NRG calculation. Here, we use the eigenvalue of the energy
for large enough N obtained by the NRG calculation as substitution for energy
spectrum at the strong coupling fixed point.
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i Q 28 E(H*) E(H*) — BE(Hy)  (i|6H*|i)  error(%)
11 1 0.7468558561068 3.04521E-6 input -

2 1 1 2.4932063321570 1.58616E-5 1.58616E-5  99.998
3 1 1 2.2405584325482 9.13577E-6 9.13563E-6  100.001
4 2 0 1.4937107577209 9.54493E-7 input -

5 2 0 3.2400593087319 2.87953E-6 2.87962E-6  99.997
6 2 2 3.2400432813117 1.89070E-5 1.89070E-5  99.999
7 0 O 1.4937107577210 9.54493E-7 9.54493E-7  100.000
8§ 0 2 1.4937004858712 1.12263E-5 1.12263E-5 100.000
9 0 0 2.9874112430055 1.21814E-5 1.21808E-5 100.005
10 0 O 3.2400432813116 1.89070E-5 1.89070E-5  99.999

@1 = 3.34332E — 6 x A~WV-1)/2
w

p = —1.07738E — 5 x A~N-1/2

Table A.3: The validity of the effective Hamiltonian, eq. (A.6.13) at N = 50
of the Anderson model for A = 2.5,y = —0.4,U = 04,7 = 0.8. We keep
states up to 1000 state in the truncation process, and the value at N = 100 as

substitutes of H*.

Table A.3 shows the result of the comparison between energies obtained in
the NRG calculation and that calculated by the effective Hamiltonian. Here,
we obtain @; = A~® Y2y and &y = A~ -D/2y, from states indicated as
i=“1" and “4”. The eigenvalue of the effective Hamiltonian are in an excellent
agreement with that obtain in the NRG calculation, which indicates that the
effective Hamiltonian describes the deviation from the strong coupling fixed

point well.
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