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Abstract

The purpose of this research is to achieve single channel noise suppression
based on speech and noise spectral models. This thesis consists of two main
parts. The first part describes stationary noise suppression and the second

part describes impulsive noise suppression.

First, a stationary noise suppression algorithm using Maximum a Posteri-
ori (MAP) estimation with a speech spectral amplitude probability density
function (speech PDF) is investigated. An estimated speech spectrum is
given as a MAP solution which is obtained from the speech PDF. The
speech PDF is hence the most important factor in this research. A useful
speech PDF has been established and is entirely characterized by two shape
parameters. As optimal shape parameters, certain fixed values have also
been derived. Speech can be efficiently extracted when these parameters
are properly applied so that the speech PDF fits to the real-speech PDF.
However, the speech property should be considered as a time-variant func-
tion. In this case, the fixed speech PDF can not track the property change.
In this researeh, ‘under the assumption that the speech PDF changes ac-
cording to signal to noise ratio (SNR), the author proposes adaptive shape
parameters which are derived from real-speech PDF's in various narrow SNR
intervals. The proposed adaptive shape parameters can track the change of
the speech property, and give an appropriate MAP solution which is iden-
tical to the estimated speech spectrum. The effectiveness of the proposed
method was examined and compared to conventional algorithms. The sim-
ulation results showed that the proposed method improved segmental SNR
around 6 and 9 dB when the input speech signal was corrupted by white

and tunnel noise signals at input SNR of 0 dB. respectively.



Second, an impulsive noise suppression method is investigated. This
method utilizes a zero phase (ZP) signal which is defined as the IDFT of a
spectral amplitude. In the impulsive noise suppression research. we assume
that a speech signal has periodicity in a short observation, i.e., its spectral
amplitude has values at equally spaced frequencies. In this case, the cor-
responding ZP signal becomes also periodic. This assumption is especially
appropriate for a voiced speech which is mainly arisen in speech signals. On
the other hand, we assume that a noise spectral amplitude is approximately
flat. In this case, its ZP signal takes nonzero values only around the origin.
Actually, many impulsive noise signals have such property. Under these
assumptions, the ZP signal of a speech signal embedded in impulsive noise
in an analysis frame becomes a periodic signal except around the origin.
Hence, replacing the ZP signal around the origin with the ZP signal in the
second or latter period, we get an estimated speech ZP signal. Taking DF'T
of it gives the estimated speech spectral amplitude. The IDFT of the esti-
mated speech spectral amplitude with the observed spectral phase provides
the estimated speech signal in time domain. The major advantage of this
method is that it can suppress impulsive noise without a prior estimation
of the noise spectral amplitude, while the a prior estimation of the noise is
indispensable in most stationary noise suppression methods. Moreover, it
is shown that the proposed impulsive noise suppressor can also be available
to suppress stationary wide-band noise. Simulation results showed that the
proposed noise suppressor improved the SNR more than 5dB for stationary

tunnel noise and 13dB for impulsive clap noise in a low SNR environment.
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Introduction

The continuous improvement of multimedia and communication systems has led to
the widespread use of speech recording and processing devices, e.g., mobile phones,
emergency telephones, and speech recognition tools. In practical situations, these de-
vices are being used in environments where undesirable background noise exists. For
example, mobile phone users have to communicate in the presence of undesirable back-
ground noise. As noise often degrades the quality of recorded speech, it is beneficial
to carry out noise suppression. Also speech with background noise can cause prob-
lems for both mobile communication and speech recognition systems. For example,
important conversation must be delivered correctly in emergency case. Fig.1.1 shows
the example of situation that the speech signal is contaminated by background noise
in mobile phone communication environments. Since general mobile phones employ a
single microphone, a single channel noise suppressor is an important tool to improve
the quality of speech communication. Hence, we will focus on single microphone noise
suppression systems, while powerful dual or multi channel noise suppression algorithms
exist [1]. Single channel noise suppression algorithms assume the existence of a single
sensor (e.g., microphone) that captures the noisy speech. This type of algorithm has
to estimate the background noise and enhance the speech from a single recording.

In this thesis, the author presents two efficient single channel noise suppression
algorithms, individually. They effectively suppress stationary noise and impulsive noise,
respectively.

First. single channel stationary noise suppression is investigated. A variety of sta-

tionary noise suppression methods have been proposed and extensively studied for
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Figure 1.1: Noise Suppression in mobile phone communication.

decades [2] - [11]. In the same manner as most stationary noise suppression methods,
an observed stationary noise is assumed to be Gaussian in this research. One of the
well-known stationary noise suppression methods is the spectral subtraction algorithm
proposed by Boll [2]. In this method, noise suppression is performed by simply sub-
tracting an estimated noise spectral amplitude from an observed noisy speech spectral
aniplitude‘ The spectral subtraction method does not require speech spectral infor-
. mation. Although this method can be easily implemented, it is well known that it
induces an artificial noise, called musical noise, in the enhanced speech. As another
method that can enhance noisy speech with less residual musical noise, Ephraim and
Malah have proposed the minimum mean square error short time spectral amplitude
(MMSE-STSA) method [11}, which utilizes a speech spectral amplitude probability
density function (speech PDF). In the literature [11], the speech PDF was modeled by
a Rayleigh density function. However, some researchers pointed out that the Rayleigh
density function does not fit to a real speech PDF. A more efficient method that em-
ploys a maximum a posteriori (MAP) estimator has been proposed by Lotter and Vary
[3]. In [3]. the speech PDF has been modeled by a parametric super Gaussian func-
tion. controlled by two parameters. The parametric super Gaussian function has been
developed from a histogram made from a large amount of real speech data in a single
narrow signal to noise ratio (SNR) interval. However. the residual noise is still per-

sistently perceived. Andrianakis and White |[4] were aware that the speech PDF may



change in some SNR intervals. They utilized three histograms made from speech signals
in three different narrow SNR intervals and approximate them with Gamma density
function. As reported in [4], changing these three speech PDFs according to the SNR
can improve the noise suppression capability. As a similar scheme to [4], an adaptive
PDF method has been proposed by Tsukamoto et al. [5]. Tt is based on the assump-
tion that the speech PDF continuously changes its shape according to the SNR. They
employed the parametric super Gaussian function used in [3] and adaptively changed
its shape parameters according to the SNR. Two histograms were used to make the
adaptive parameter function and implement it in a noise suppressor. It resulted in a
better noise suppression especially during non-speech segments. However, the shape of
the speech PDF in a speech segment may be incorrectly estimated, because the shape
parameters are determined from only two histograms which were made from speech
signals in high and low SNRs, respectively. Specifically, the adaptive shape parameters
simply connect such extreme speech PDFs without proper verification.

In this research, under the assumption that two speech histograms are not enough
for estimating the shape parameters of the speech PDF, the conventional approach in [5)
is sophisticated by evaluating many speech histograms, and a more efficient stationary
noise suppression algorithm is derived. Firstly, histograms are made from the real-
speech data in various narrow SNR intervals, and the fittings of the histograms are
performed with the parametric speech PDF used in [3], [5]. Secondly, shape parameter
functions are derived to mitigate fluctuations of experimental results. Finally, a noise
suppression algorithm with the shape parameter functions are derived. Simulation
results show that the proposed noise suppression algorithm can improve the enhanced
speech quality, in both speech and non-speech segments.

As the second part of this thesis, a single channel impulsive noise suppressor is
investigated. Examples of stationary and impulsive noise signals depicted in Fig. 1.2,
where Fig. 1.2(a) shows a fem_ale speech signal corrupted with stationary white noise,
and Fig. 1.2(b) shows one corrupted with non-stationary impulsive noise. They were
sampled at 8kHz. All the above mentioned noise suppressors can effectively suppress
the white noise, but cannot suppress the impulsive noise, because a prior information
of impulsive noise can not be utilized. Hence, to suppress the impulsive noise, it
must be established a noise suppressor which does not require ¢ prior information

of noise. Kamamori et al. proposed an impulsive noise suppressor based on a zero
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Figure 1.2: Examples of speech signal mixed with wide-band noise: (a) speech corrupted

with white noise, {b) speech corrupted with impulsive noise.

phase (ZP) signal which is defined as the IDFT of a spectral amplitude [18]. The
ZP signal becomes an impulse signal when the spectral amplitude is flat, and the ZP
signal becomes a periodic signal when the spectral amplitude has values only at equally
spaced frequencies. They assumed that a speech signal is periodic, i.e., its spectral
' amplitude has values only at equally spaced frequencies. As shown in [18], white noise
and impulsive noise can be reduced by processing the ZP signal only at the origin.
However, this method is not applicable for other impulsive noises.

To suppress real impulsive-type noise which has a duration that is normally more
than one sample long, the author extends the concept of method in [18]. Assuming that
a noise spectral amplitude is approximately flat, and a speech signal is periodic in a
short observation, we can suppress the noise by replacing the noisy ZP signal around the
origin with the ZP signal in the second or latter period. After this replacement, taking
the DFT of the ZP signal gives the estimated speech spectral amplitude. The IDFT of
the estimated speech spectral amplitude with the observed spectral phase provides the
estimated speech signal in time domain. Unlike the method in [18], in the 1‘eplécement
technique, it has to be investigated about appropriate samples of the ZP signal used

for replacement. In addition, a scaling function is introduced in this technique for



compensating a decay of ZP signal, where the decay is caused by segmenting and
windowing an observed signal. Simulation results show that the proposed method is
effective to suppress such impulsive noise signals.

The outline of this thesis is as follows: in Chapter 2, a common single channel noise
suppression system is described and conventional stationary and impulsive noise sup-
pression methods are reviewed. In Chapter 3, the proposed stationary noise suppressor
is explained in detail. Additionally, some simulation results are carried out to confirm
the effectiveness of the proposced method. In Chapter 4, the proposed nnpulsive noise
suppressor is described and its noise suppression capability is evaluated. Chapter 5

concludes this thesis.

(1]
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Conventional Single Channel

Noise Suppressors

2.1 General Noise Suppression System

In this section, we present an overview of a general noise suppression system. As we will
see in Sections 3 and 4, this system is a foundation of the proposed noise suppression
methods.

The general noise suppression system is shown in Fig. 2.1, where z(n) is an observed
noisy signal at time n, and it consists of a clean speech s(n) and an additional noise

d(n) given as
xr(n) = s(n) +d(n). (2.1)

The noisy signal x(n) is transformed into frequency domain by segmentation and win-
dowing with a window function h(n), c.g., Hanning window. The DFT coefficient of

the noisy signal at frame [ and frequency bin k is calculated with

N-1
Xi(k) =Y 2(IQ + n)h(n)e 2 kN, (2.2)

n=0
where N denotes the DFT frame size. The window is shifted by ) samples for the
computation of the next DFT. The DFT coefficient X;(%) also consists of speech and

noise parts. as given by

Xi(k) = Sitk) + Di(k), ' (2.3)
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Observed signal Estimated speech

z(n) X (k) S(k) s(n)
—>{ DET IDFT —

G(k)

Spectral Gain
Estimator

Figure 2.1: General spectral noise suppression system.

where S;(k) and D;(k) represent the DFT coefficients obtained from s(n) and d(n), re-
spectively. As shown in Fig. 2.1, the noise suppressor calculates a speech spectral gain
G(k). Various definitions of G;(k) have been proposed for suppressing stationary noise
“[11]-[17), e.g.. the spectral subtraction’s spectral gain is Gy(k) = 1 — |D(k)|/|X;(k)|,
where [D(k)| and | X;(k}| denotes a priori estimated noise spectral amplitude and noisy
) speech spectral amplitude, respectively. On the other hand, to achieve impulsive noise
suppression, we have to estimate the speech spectral gain G;(k) without a priori esti-
mation of noise spectral amplitude. One of the solutions is obtained by mapping the
observed signal into the ZP dom‘ain as we will see in the latter section. After calculating

G(k). the enhanced speech spectrum Sl(k) is given by
Sitk) = Gik)X(k). (2.4)

Finally, we obtain the enhanced speech $(n) in time domain by taking the IDFT of

Si(k) and overlap-add.
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2.2 Stationary Noise Suppression Based on MAP Estima-

tion

In stationary noise suppression, most conventional systems require to estimate a noise
variance A (k) = E[|D;(k)|?], where | - | denotes the spectral amplitude, and E[] is an
expectation operator. In addition to Ai(k), a priori SNR (k) and a posteriori SNR
(k) for each DFT bin k are also required, where they are defined as

_ ElSik)R)

_ Xkl
(k) '

Si(k) (k)

vi(k) (2.5)

By using these two SNRs, most speech spectral gains can be represented, e.g., [11]-
[17]. For example, the MMSE-STSA method, its solution is completely characterized
by Ai(k), &(k) and v (k) (Appendix A.1). Whereas the a posteriori SNR (k) defined
in Eq.(2.5) can directly be computed, the a priori SNR £(k) have to be estimated,
because & (k) is given as an expected value. The a priori SNR estimator & (k) of &(k)
has been proposed by Ephraim and Malah [11]. This estimation method is called as

“decision-directed method”, and it is represented as

(k) = asnrbo1(k) + (1 — aonr) Flu(k) - 1], (2.6)

where agpr 18 a forgetting factor and

_Jy y>0
Flyl = { 0: else.

The a priori SNR has a high impact on the amount of noise suppression. It is useful
to adjust a lower limit.&hr the a priori SNR according to

a0 = {5 S =
A general single channel stationary noise suppressor is shown in Fig. 2.2. where it
includes some detail parts to be required for calculating the speech spectral gain. Here,
we explain how to obtain the speech spectral gain G;(k) by using the MAP estimation
[15]. We here omit the subscripts, the frame index [ and the frequency index k. for
simplicity. Let p(|S]) and p(£S) denote the probability density functions (PDFs) of
the speech spectral amplitude and the phase, respectively. Here, Z{-} denotes the

spectral phase, p(X) denotes the PDF of the input DFT coefficient, and p(|S]|, £5]X)
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Figure 2.2: Overview of single channel stationary noise suppression system.

is the conditional speech PDF. To obtain a MAP estimate, we maximize the conditional

speech PDF given by
p(S], £81X) o p(X] [S], £5)p(15], £5). (2.8)

The MAP estimator gives the speech spectral amplitude | S| that maximizes p(]S], £S|X)

-represented as

S

S| = arg max p(X| |S]. 28)p(IS|. £9). (2.9)

Note that we need to maximize only p(X] |S|, £5)p(]S|, £5), since p(X) is independent,
of |S|. Here, it is assumed that p(X| [S|. /S) is Gaussian given as [3]

_ 5P
p(X]|5].48) = —exp{—L‘s—}. (2.10)

TA A

and that p(|S|) and p(£S) are statistically independent. Moreover, p(|S|) and p(£S)

are assumed to be

‘uu+] |S|u ¥ )

= 5Ty eXp | —p— |, 11

p(S)) Fo s 1) o0 exp { = ) (2.11)
1

pl2S)y = —, (2.12)
2m

10
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where I'(-) denotes Gamma function and, a% is the variance of the speech spectrum.
The PDF p(|S]) shown in Eq. (2.11) has been proposed by Lotter and Vary (Appendix
A.2), and is completely characterized by positive parameters p and v [3]. Substituting

Egs.(2.11) and (2.12) into Eq.(2.9), and solving it for |S|. we have (see Appendix A.3)

S| =G - |X] (2.13)

G=u+ uQJri, (2.14)
V 2y

r_ 2.15
VTS 219

Note that another MAP solution has also been derived under the same speech and noise

with

1
U= -
2

models in [3] (Appendix A.4). The parameter values are recommended by Lotter and
Vary as fixed at p = 1.74 and v = 0.126 [3]. When using the MAP method, we have to
properly determine the parameters p and v in Eq.(2.11). The recommended parameters
are derived by using a large amount of signals in speech segments as reported in [3].
However, the derived speech PDF is also used for noise suppression in non-speech
segments. When the estimated speech PDF does not agree with the actual one, it
results in low quality of the enhanced speech. It can be expected that the speech PDF
in non-speech scgments is different from the one in speech segments.
Tsukamoto et al. [5] have developed a method of adjusting the parameters p and
v in the parametric speech PDF according to whether the input signal is in a speech
segment or in a non-speech segment. Fig.2.3 shows the parametric speech PDF with
i = 3.2 and o, = 1 for different values of v = 0, 1, 2. This figure shows that the peak of
p(S) gets close to 0 as v approaches to 0. When v = 0, p(.S) is equal to an exponential
distribution defined as
p(S) = ;—: exp (—u%) : (2.16)
On the other hand, as v gets larger. the peak goes apart from 0. When v = 2, it is

very close to Rayleigh distribution which is defined as

28 52 ,
p(S) = — exp <—2> . (2.17)

11
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<—Exponent|al distribution
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Figure 2.3: Curves of the parametric PDF.

" As reported in [5], the actual speech PDF in speech segments can be approximated by
Rayleigh distribution as shown in Fig. 2.4, i.e., the parametric PDF with 4 = 3.2 and
v = 2. While in non-speech segments, the actual PDF is explicitly expressed as a Delta
function, because it does not indude speech component. Tsukamoto approximated the
Delta function with the exponential distribution. i.e., the parametric speech PDF with
p=32and v =10. A simple adaptive method to change v has been derived in [5]. It
just smoothly changes v value from 0 to 2 according to SNR. For adaptively changing

v, Tsukamoto utilized the input power to the noise power ratio given as

N-1
k=0 |Xi(k)]|

ki) = —LN_TT

(2.18)

where it becomes large in a speech segment and small in a non-speech segment. The

12
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p(S) 1
09

Figure 2.4: Actual speech PDF.

adaptive parameter v; is given as

7 =0.1-10log,q R(1), (2.19)
23 v > 2’

=<9y, 0<p<2, (2.20)
0, 7 <0,

where Eq. (2.19) ilas been derived in an empirical manner and the parameter v; is
restricted to the range [0,2]. In non-speech segments, v; approaches to 0, i.e., the
speech PDF approaches to the Delta function. In speech segments, vy gets close to 2,
i.e., the speech PDF approaches to Rayleigh distribution. It results in a better noise
suppression especially during non-speech segments as reported in [5]. However, the
shape of the speech PDF in a speech segment may be incorrectly estimated, because the
shape parameters are determined from only two histograms which are made from speech
signals in high and low SNRs, respectively. Specifically, the adaptive shape parameters
simply connect such extreme speech PDFs without proper verification. In Chapter 3,

the approach in [5] will be sophisticated by evaluating many speech histograms, under

13



2. CONVENTIONAL SINGLE CHANNEL NOISE SUPPRESSORS

the assumption that two speech histograms are not enough for estimating the shape

parameters of the speech PDF.

H, (k)
11

» 7/(]()

O 62 72

Figure 2.5: Weighting function

We should note that noise estimation also plays an important role in stationary noise
suppression systems. Asshown in Fig. 2.2, the SNR estimation blocks calculate a priori
SNR & (k) and a posteriori SNR ~;(k) for each DFT bin k. The SNR calculation needs
. an estimation of the noise variance A;(k). A useful noise estimator can significantly
improve the noise suppression capability. One of the most useful noise estimators is
the weighted noise estimator [6] which exhibits better performance than the methods
based on minimum statistics [8], [7]. Since the stationary noise suppressor proposed
in Chapter 3 also requires a beneficial noise estimator, the weighted noise estimator is
employed for obtaining the noise variance A\;/(k). A brief procedure of it is as follows.

The noise variance is recursively updated by

AAL (k) +(1 - BH(k)X (k)2 Hk)>0
Ailk) = ; (2.21)

Ay (k). H{k)=0
where H;(k) is the weight function as shown in Fig. 2.5, and a forgetting facfor 3 1s
restricted to 0 < 3 < 1. The weight coefficient is assigned so that it is almost inversely

proportional to the estimated SNR as follows:

14



2.3 Impulsive Noise Suppression Based on Zero Phase Signal

W) ., (2.22)

%/I(k‘) = 1010310 </\I ](k)

where v, is a constant to decide a slope of graph and 6, is a threshold to eliminate an

unreliable (k). We adjust 6, = 7 and v, = 10 as shown in [5], [6].

2.3 Impulsive Noise Suppression Based on Zero Phase

Signal

In a practical environment, there is impulsive noise which is generated from thunder,
clap, other bangs, and so on. Here, we will briefly discuss about an impulsive noise
suppression algorithm proposed by Kamamori et al. [18]. For simplicity, we omit the

frame index [. The DFT coefficient of an observed signal x(n) can be expressed as
X (k) = |X(k)|e/“X®), (2.23)

The ZP signal of x(n), x¢(n), is defined as

-'21rnk

N-1
. 1
zo(n) = 5 D |X (k)¢ N (2.24)
k=0
where p is a certain constant. OQbviously, | X (k)|? can be reproduced from the DFT of

the ZP signal z¢(n) as
N-1

XN = 3 zo(n)e 7, (2.25)
n=0

Since p = 1 is appropriated for noise suppression as shown in [18]. the same value is also
applied through this thesis. In addition, we assume that x(n) is a real valued signal.

In this case, the ZP signal xy(n) come to real even signals.

15



2. CONVENTIONAL SINGLE CHANNEL NOISE SUPPRESSORS

Here, we show a few examples of the ZP signal. Let the spectral amplitude | X (k)]
be a constant ag (> 0). Substituting | X (k)] = ap into Eq. (2.24) with p = 1, we have

zo(n) = apd(n), (2.26)
where d(n) denotes the Kronecker’s delta function. Eq.(2.26) shows that the ZP signal
of any flat spectral amplitude is expressed as the delta function. Next, let | X (k)| be
equally-spaced line-spectral pairs (i.e., z(n) is periodic), where each frequency interval
is ko (0 < ke < N/2). That is

t%J x
Xl= Y S

m=1

{6(k — mke) + 6(k + mke — N)}, (2.27)

where || denotes a floor function, and ., is an amplitude of the m'™ frequency.

Substituting Eq. (2.27) into Eq. (2.24) with p = 1, we have

]
o 2nmk,
33()(77,) = W CcO8 T

m=1

(2.28)

Hence, the ZP signal of a periodic signal becomes also a periodic signal whose period
is N/kc. The ZP signal becomes an impulse signal when the spectral amplitude is flat,
. and the ZP signal becomes a periodic signal when the spectral amplitude has values
only at equally spaced frequencies.

These properties of the ZP signal are shown in Fig. 2.6 that a speech signal s(n) is
periodic and an additional impulsive noise d(n) has a flat spectral amplitude. The ZP

signal of x(n) = s(n) + ’d(n‘)'is approximately represented as

r(,(n) . { So(n) -+ do('ﬁ), n=>0 (229)

T se(n ), otherwise
where sg(n) and dg(n) are the ZP signal of s(n) and d(n). respectively. Since sg(n)
is periodic signal. we have s5(0) = max{sg(n)} = 1112(%{{170(77‘)}7 where max{ } denotes

T
the operator to extract the maximum value. Kamamori et al. [18] have proposed the

following impulsive noise suppression role in ZP domain as

soln) = { nagtrolm)}. n =0 (2.30)

To(n), otherwise
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2.3 Impulsive Noise Suppression Based on Zero Phase Signal

where m =0, 1, ..., N — 1. The signal 53(n) denotes the estimated speech ZP signal.

Then, the estimated speech spectral amplitude is obtained as

25k

N-1
|S(k) =) Sa(n)e /¥ (2.31)
n=0

Taking the IDFT of |5'(kf)| with the observed spectral phase gives the estimated speech

signal in time domain as

S(n) = % |S(k)|e? X Rl Tk, (2.32)
N &~

=~

As shown in [18], a white noise and an impulsive noise can be reduced by processing the
ZP signal only at the origin. However, this method is not applicable for other impulsive
noises. To suppress many kinds of impulsive noise, the concept of [18] is extended and

a new technique is proposed in Chapter 4.

| X (k) 2o(n)
Qg * <:>(100
‘ | . -
0 N/2 N L 0 N/2 NN

(a) constant spectral amplitude

X ro(n)

period : N/k,,

(b) equally spaced line spectra

Figure 2.6: Examples of zero phase signal: (a) constant, (b) equally spaced line spectra.
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Stationary Noise Suppression
Using Real-Speech PDF in

Various Narrow SNR Intervals

As discussed in Section 2.2, the shape parameters of the speech spectral amplitude
PDF, 1 and v, had been derived from a large amount of speech data in a single narrow
SNR interval. However, in a practical situation, a speech signal includes both of ac-
tivity segments and pause segments. Since the value of the speech spectral amplitude
is always zero in the pause segments, its PDF can be modeled as an expected delta
function. On the other hand, in the activity speech segments, the PDF of the speech
spectral amplitude obeys other functions. As shown in Section 2.2, Tsukamoto et al.
[5] have noticed the fact and investigated an adaptive method to change the PDF of
the speech spectral amplitude, according to the SNR. They have chosen Lotter’s PDF
defined in Eq. (2.11) as the adaptive PDF, because its shape is easily controlled by v
and p. Here, the examples of Lotter's PDF with different shape parameters are shown
in Fig. 3.1. Tt is noticed from this figure that the PDF can fit the exponential distri-
bution and the Rayleigh distribution by adjusting the shape parameters. Utilizing real
speech histograms, Tsukamoto et al. derived adaptive shape parameters and showed
its effectiveness through the computer simulations. This basic idea is-useful for speech
enhancement in a practical situation. Unfortunately, a reliability of the derived adap-
tive shape parameter is comparatively low, because it derived from only two speech

histograms. To sophisticate Tsukamoto’s adaptive shape parameter, this research has
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Figure 3.1: Speech PDF function with different shape parameters.

_made and evaluated many real speech histograms in various narrow SNR intervals. One
of the objective of this research is to fit the speech histograms with Eq. (2.11), and
revealed an interesting curve of the shape parameters for narrow SNR intervals.

3.1 Derivation of Shape Parameter Function

The speech PDF with shape parameters g and v has been introduced in [3] which is

given as

pISi(k)|) =

P 1S k)Y exp (_ﬂlsl(k”) ; (3.1)

T(v+1) o (k) os(k)

where T(), and o%(k) denote the Gamma function, and the variance of the speech
spectrum, respectively. The speech PDF shown in Eq. (3.1) can represent many shapes
of PDF. e.g., Super Gaussian which is employed in [3], Ganuna in [4], also Rayleigh in

|5] by changing its shape parameters. The objective is to find the optimal values for



3.1 Derivation of Shape Parameter Function

both parameters that give the best fit of the speech PDF to the speech histogram in
each SNR interval. The fitting can be performed by minimizing the distance between
the histograms and the speech PDF. To find optimal fitting, the Kullback-Leibler (KL)
divergence [31] is employed which is theoretically considered the optimal method for

distance measurement. The KL divergence is defined as:

Nb'nl

KL = Z(ph(i) - ps(i))In (ph(l)> ; (3.2)

i1 ps(1)

where pj (i) denotes the value of the speech histogram at interval 7, and p,{(i) is one
of the speech PDFs. Ny, is the number of histogram bins. The clean speech signals
sampled at 8 kHz from the LDC database [32] are used to make histograms. The speech
signals are spoken by 10 male speakers and 10 female speakers with total length around
11 minutes. Firstly, the spectral amplitude data of speech signals are normalized over
frequency bins. Then, the a priori SNR as a ratio of the speech signal to a stationary
microphone noise is calculated which is generally occurred from the microphone and
recorded with the speech signals. The normalized spectral amplitude data will be
categorized into the a priori SNR. After categorizing the spectral amplitude data, SNR-
specified histograms are created. Lastly, the author find the optimal shape parameters
that minimize the KL divergence between the histogram and the speech PDF in Eq.
(3.1). The summary of the procedure of getting the optimal shape parameters is as

follows:

1. Obtaining normalized speech spectral amplitude S;(k)

Sik) = 1Si(k)|/os(k). (3.3)
1 Al —1
of(k) = 57 D _{ISik) - Sk’
[=0
1 M1
Stk) = ﬁglfi(k)i

where A is the number of frames.

2. Calculating a priori SNR Py(k) |dB].

Pik) = 10logy&(k), (3.4)
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) & 2
(k) = asnr% + (1= asnr )F[vi(k) - 1],

(3.5)

where él(k) is an estimation of &(k), agnyr is a forgetting factor, and F[] is the
half-wave rectifier given as

_Jy. y>0
Flyl = { 0, otherwise.

Eq. (3.5) is “decision-directed method” which is also explained in Section 2.2.
Here, we set agnr = 0.98 according to [11]. Since the observed signal is a speech
signal from the corpus, it used G;(k) = 1 in Eq. (2.4} to obtain S'I(k)k The noise

variance (k) was estimated as the averaged value of |Y;(k)] in the first 6 frames.

3. Categorizing S;(k) into each SNR interval.

The author defined a narrow interval of P(k) as any interval from 0 to 80 dB,
having a 1 dB gap which is sufficiently narrow interval [3], [4], i.e., 0-1, 1-2, ..,
79-80 dB.

4. Making the histograms.

The number of bins as is adjusted to 30 in an empirical manner to remove jitters
from the histograms (30 bins were also selected in [3] and [5] for making speech

histograms).

5. Finding the optimal shape parameters of Eq. (A.13) based on KL divergence

measurement.

To obtain the optimal ‘shape parameters. the full search method is applied. The
full search method scans ¢ and v parameters that give minimum KL divergence
in each SNR interval, in the range 0.0 < g < 20 and 0.0 < v < 3 with 0.1 gap.
Evaluation of the KL divergence 0.0 < gl(k) < 3.0 that covers the main part of

the histogram [3].

Fig. 3.2 (a) and (b) show the obtained optimal value of shape parameters. The fitting
results may include fluctuations due to the limited amount of the speech data. To
reduce the fluctuation, the author used the averaged values of fitting results. Since a

higher linearity could be found by dividing the region into several parts, e.g., 19-33 dB



3.2 Stationary Noise Suppression Algorithm

Table 3.1: Shape parameter functions R} (k) and RY (k).

SNR range R}'(k) = FlaoP,(k) + bo] | Ry (k) = FlcoPi(k) + do)
[dB] ag by o do
Pi(k) <20 -0.087 3.50 0.060 -1.04
20 < Pi{k) <33 | 0.045 0.84 0.060 -1.04
33 < P(k) < 49 | -0.079 .90 -0.035 2.11
49 < P(k) <65 | -0.011 1.60 0.039 -1.56
65 < P(k) | -0.074 5.60 0 1.00

and 33-50 dB, the linear least squares method [33] is used to obtain a linear curve in
each range. The results are also shown in Fig. 3.2 (a) and (b), where the solid lines
show the results of the linear least square fitting. Table 3.1 shows R;‘(k) and R (k) that
represent the derived linear curves. They are so called the shape parameter functions.
Here, some examples of the speech histogram and the speech PDFs are shown.
Fig. 3.3 depicts the histogram of speech amplitude, which is obtained from the 19-20
dB SNR intervals. Fig. 3.3 also shows the conventional speech PDFs [3]-[5] and the
proposed speech PDF with the derived shape parameter functions, respectively. The
conventional [3], [4], and the proposed speech PDFs give good fitting results, while the
speech PDF from [5] is different from other methods in this SNR interval. To observe
fitting result in another range, the speech histogram and the speech PDFs in 49-50 dB
SNR interval in Fig. 3.4 are shown. Here, it appears that the proposed parameters
set provides the best fit for speech histogramn. These results support the asswnption
that the speech histogram has various shapes, and the fixed values of shape parameters

from the other conventional methods are no longer appropriate.

3.2 Stationary Noise Suppression Algorithm

In this section, an adaptive stationary noise suppression algorithm is proposed. The
proposed algorithm is based on the derived shape parameter functions shown in Table
3.1. Usually, the speech PDF in the present frame cannot not be independent from one
in the previous frame. Although the instantaneous variables R!'(k) and RY (k) exist,

using these variable directly might not agree with real estimation, which are dependent
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Figure 3.2: Relation between shape parameters and SNR intervals (a) y for SNR (b) v

for SNR.

upon the present SNR only. For this reason, a forgetting factor to use an averaged value

of R;l(k) and Ry (k) is introduced. The proposed speech spectral gain is as follows:

w (k)

pi(k)
vi(k)

f k
wik) + [ ud(k) + 2”7’[((]3)\
1 (k)

2

4\/71(1?)51(’?)‘

a1 (k) + (1~ a) R (k),
avp_y(k) + (1 = a)RY(k).

(3.6)

(3.7)

(3.8)
(3.9)

where « is the forgetting factor. and u(k) and vy(k) are the adaptive shape paranie-

ters. In the proposed method, the additional computations are 5 multiplications and
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p(ST)
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Figure 3.3: Speech histogram in 19-20 dB SNR interval and speech PDFs which are
Lotter’s PDF [3] (dashed line), Andrianakis’s PDF [4] (dotted-dash line), Tsukamoto’s
PDF [5] (dotted line), and proposed PDF (solid line).

5 additions in comparison to Lotter’s method (2.14). In this research, the author puts

the initial values as (k) = 20 and (k) = 0 that implies Py(k) =

—190 dB, where it

is assumed that the a priori SNR in the first frame is extremely low. Here, sensitivity

of the forgetting factor is evaluated. For evaluation, the author uses SegSNR of the

enhanced speech. The SegSNR is defined as:

1 M-1
SegSNR = 10logyq f(1)
l:O
L—1
Z s2(1Q + n)
n=0
O = ,

> [s(Q + n) - 3(1Q + n))?

=0

(3.10)

(3.11)

where M is the total frame number of the input signal. The function f(l) is limited by

—10 dB for lower bound and 35 dB for upper bound. Input signals are noisy speech
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Figure 3.4: Speech histogram in 49-50 dB SNR interval and speech PDFs which are
Lotter’s PDF (3] (dashed line), Andrianakis’s PDF [4] (dotted-dash line), Tsukamoto’s
PDF [5] (dotted line), and proposed PDF (solid line).

spoken by 2 male speakers and 2 female speakers which are corrupted by tunnel noise
. with SegSNR = 0. The enhanced speech output SegSNR is shown in Fig. 3.5. From
this figure, it shows that the output SegSNR slowly increases as value of a gets higher,
and it rapidly increases once value of « is higher than 0.9. It can be obtained from
the result that «=0.98 gave the highest SegSNR. In summary, the adaptive shape
parameters with proper ’forgétting factor contribute to improve estimation accuracy of
the speech PDF in the current frame.
The characteristic of the proposed stationary noise suppressor is further examined
by focusing the quantity of the spectral gain with respect to the a posteriort SNR (k).

Firstly, roughly analyzing of the proposed spectral gain is proposed as follows:

1. When the a posteriori SNR v, (k) becomes very large, the following approximation

from Eq. (3.6) can be made,

Gn(k) = 2u(k). (3.12)
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Figure 3.5: Evaluation of sensitivity for forgetting factor a.

As we can see from Fig. 3.2, the value of y(k) approaches 0 when the SNR gets
higher. Then, w;(k) in Eq. (3.7} can be approximated by

u(k) =~ (3.13)

1
5
By considering Eq. (3.12) and Eq. (3.13), we can conclude that G,(k) = 1. This
result shows that the output signal is similar to the observed signal, and hence

the proposed algorithm can preserve the speech components in the high SNR

environment.

2. When ~,(k) is lower than or close to 0 dB, v;(k) is further reduced as shown in
Fig. 3.2. By applying (k) = 0, the approximation of Eq. (3.12) is obtained
again. From Eq. (3.7), we can say that, when the value of p;(k) increases, u;(k)
is decreased. This leads to a small Gi(k). In this case, the noise components in

the low SNR are strongly reduced.

From above analysis, it can be noticed that the effectiveness of the proposed spectral
gain in both high and low SNR, in other words, the proposed method is reasonable in

both speech and non-speech segments.
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Next, the property of the proposed spectral gain is analyzed by observing the theo-
retical gain curve. Fig. 3.6 (a), (b), (¢) and (d) show the gain curves of Lotter’s method
[3], Andrianakis’s method [4], Tsukamoto’s method [5] and the proposed method, re-
spectively. Here, the spectral gains are depicted for a priori SNR £ and the instan-
taneous value of £, v — 1. We first focus on the effect of the spectral gains in high a
posteriori SNR £ situation. As we can see from Fig. 3.6 (a) and (b) when SNR ¢ is
higher than zero and v — 1 is lower than zero, the value of gain reaches to 1 steadily. It
means that the gain curves of methods [3] and [4] have less capability to remove existed
background noise in high SNR £. While in case of method [5] and the proposed gain
curves, in high a priori SNR £ situation they show a good capability of noise removal
when low value of v — 1 persists. Then, we move on to the next observation. When
the a posteriori SNR £ is low and v — 1 is high, Fig. 3.6 (¢) and (d) becomes relatively
small. It means that Tsukamoto’s method [5] and the proposed spectral gain perform
better at suppressing the noise in low SNR situation and non-speech segments.

To confirm that the proposed method reduces background noise effectively, espe-
cially in a non-speech segment, we perform noise suppression simulations in next section.

In the simulation, the proposed method is compared with the conventional methods
13}, [4], and [5].

-3.3 Simulation

We carried out noise suppression simulations to confirm the effectiveness of the proposed
stationary noise suppressor. All speech signals used in this section were taken from
ATR-Promotion database [21] and sampled at 8 kHz. In the noise suppression system,
we used a 50% overlapping frame with 256 samples at 8 kHz sampling frequency (i.e.,
L=256, =128). We set the forgetting factor a=0.98.

Firstly, we cvaluate the efficiency of the proposed algoritlun when the signal contains
mainly noise (i.e., non-speech segments). We performed noise suppression for the speech
signal corrupted by a tunnel noise with 0 dB of SNR, where the noise is recorded in a
tunnel on an expressway in Japan. Fig. 3.7 shows the averaged amplitude frequencies
of the enhanced speech in the non-speech segments, i.e., it shows the residual noiée level.
The results obtained from Lotter’s method [3], Andrianakis’s method [4], Tsukamoto’s

method [5] and the proposed method are represented by the dash line, bold dotted
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Figure 3.6: Gain curves as a function of the a priori SNR ¢ and instantaneous SNR ~
-1. (a) Lotter’s method (3], (b) Andrianakis’s method [4], (¢) Tsukamoto’s method [5] and
(d) proposed method.

line, dotted line, and bold line, respectively. The thin solid line is the amplitude
of the observed signal. The result of the proposed algorithm exhibits further noise
suppression, as compared to the conventional methods. Result from Fig. 3.7 shows
that the proposed method can suppress background noise more than the conventional
methods, especially, 20 dB further reduced from the conventional method [4] in the
frequency range of 1.5 — 2.5 kHz.

Next, the output waveforms and spectrograms of the tunnel noise suppression results
are compared. Fig. 3.8 shows the results, where the left hand side shows the waveforms

and the right hand side shows the corresponding spectrograms. In Fig. 3.8, (a) shows
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the observed signal, (b)--(e) show the noise suppression results by Lotter’s methods
[3], Andrianakis’s method [4], Tsukamoto’s method [5], and the proposed method,
respectively. From the spectrogram of Fig. 3.8(b), we can observe many spurious
spectral peaks which are perceived as a musical noise (e.g. around 3.5 sec). Moreover,
we can confirm from the waveforms that the residual noise level of (b) is higher than
other results. This result agrees with the fact that Lotter’s method gives the smallest
zero gain area of the gain curve in comparison to the other method as shown in Fig 3.6.
On the other hand, we see from Fig. 3.8(c) that Andrianakis’s method tends to remove
speech spectral components especially in a low SNR, although the noise suppression
capability is superior to (b). This result also agrees with the fact that its spectral gain
cannot increase in a low £ when v — 1 becomes large (see Fig. 3.6(b)). Hence, we
can expect that the proposed method or Tsukamoto’s method is appropriate for noise
suppression in comparison to the other methods.

Then, the noise suppression capability of the the proposed method by the SegSNR is
evaluated. Since the difference between the proposed method and [5] (or [3]) is just the
speech PDF used for calculating the spectral gain, the change of the SegSNR 1is caused
by the speech PDF sophistication of the proposed method. Twenty sentences of clean
speech spoken by 5 male speakers and 5 female speakers were corrupted by white, babble
and tunnel noise. To avoid the misuse of experimental data, those twenty sentences
. from all speakers are totally different from the speech used for making histogram in
Section 3.1. The white and babble noise were taken from the NOISEX-92 database
[35] and added to the clean speech with different input SegSNRs, i.e., 0, 5, and 10
dB. Table 3.2 shows the results of the SegSNR for the proposed and conventional
algorithms, where the results by the traditional spectral subtraction method [2] is also
shown. We see from Table 3.2 that, for each condition, the proposed method gave the
best results in comparison to the other methods. For the white noise suppression with
Input SegSNR = 0 dB, noise suppression capabilities of the conventional methods [2]
and [3] were comparatively low, where they did not employ an adaptive speech PDF. On
the other hand, the adaptive speech PDF methods [4], [5], and the proposed method are
superior to |2] and 3], especially, the proposed method attained 6 dB of the SegSNR.
For the tunnel noise suppression with Input SegSNR = 0 dB, the proposed ‘method
has attained 9.2 dB of the SegSNR, while Tsukamoto’s method [5] has improved 7.4

dB. It implies that the proposed sophistication method improved the noise suppression
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Figure 3.7: Averaged amplitude frequencies in the non-speech segments. Thin solid line
represents noise signal, dash line represents output of Lotter’s method [3], bold dotted line
represents output of Andrianakis’s method [4], dotted line represents output of Tsukamoto’s
method [5], bold line represents output of the proposed algorithm.

capability of the approach in [5]. Although the babble noise suppression capabilities of
the adaptive speech PDF methods were comparatively low, the proposed method was
slightly superior to [4] and [5]. In this chapter, the variable speech PDF has been
derived from real-speech histograms in various narrow SNR intervals, and utilized it
in a MAP noise suppressor. The variable speech PDF adaptively changes according
to the a priori- SNR. From spectrograms of the simulation results, we were able to
confirm that the proposed method reduces noise effectively, especially in the non-speech
segments. Other evaluation results have shown that the proposed method improved
SegSNR around 6 and 9 dB when the input speech signal was corrupted by white and
tunnel noises at 0 dB, respectively.

In the next chapter, an impulsive noise suppressor will be described, while the
proposed and the conventional stationary noise suppressors are impractical for the

impulsive noise.
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Figure 3.8: Waveforms and spectrograms of tunnel noise suppression: (a) Observed
signal, (b) Output by Lotter’s method (3], (c) Output by Adrinakis’s method [4], (d)

Output by Tsukamoto’s method [5], (e) Output by proposed method
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Table 3.2: Evaluation results of SegSNR.

Output SegSNR. [dB]
Noise | Input Spectral Lotter’s Andrianakis’s Tsukamoto’s Proposed
SegSNR|subtraction [2] method [3] method [4] method [5] Method
White 0 14 2.5 4.3 4.9 6.0
) 9.5 6.2 6.5 8.0 8.6
10 9.1 9.9 9.0 11.0 11.1
Tunnel 0 0.8 3.4 9.1 7.4 9.2
5 4.7 7.2 10.5 10.8 12.0
10 8.4 10.6 12.5 13.3 14.0
Babble] 0 0.6 14 3.0 2.5 3.3
3 4.3 5.9 6.7 6.4 7.1
10 8.0 9.5 10.2 10.2 10.7
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3. STATIONARY NOISE SUPPRESSION USING REAL-SPEECH PDF
IN VARIOUS NARROW SNR INTERVALS
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4

Impulsive Noise Suppression
Using Zero Phase Signal

Replacement Technique

In this chapter, an impulsive noise suppression scheme is derived in a frame work of
spectral gain approaches. To obtain an appropriate spectral gain, the proposed method
utilizes a zero phase (ZP) signal which is defined as the IDFT of a spectral amplitude
[18]. The ZP signal becomes an impulse signal when the spectral amplitude is flat,
and the ZP signal becomes a periodic signal when the spectral amplitude has values
only at equally spaced frequencies. As shown in [18], a white noise and an impulsive
noise can be reduced. by processing the ZP signal only at the origin. However, this
method is not apﬁlicable for other noises. To suppress real impulsive-type noise which
has a duration that is normally more than one sample long, we extend the concept of
{18]. This research assume that a noise spectral amplitude is approximately flat, and
a speech signal is periodic in a short observation. Then, we can suppress the noise
by replacing the noisy ZP signal around the origin with the ZP signal in the second
or latter period. Unlike [18], in the replacement technique, it has to be investigated
about an appropriate ZP samples used for replacement. In addition, a scaling function
is introduced in this technique for compensating a decay of ZP signal, where the decay

is caused by segmenting and windowing an observed signal.
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4. IMPULSIVE NOISE SUPPRESSION USING ZERO PHASE SIGNAL
REPLACEMENT TECHNIQUE

4.1 Zero Phase Signal of Noise Signals

As the same manner of conventional noise suppression methods [11]-[17], it is also
assumed that the spectral phase of the estimated speech signal is equal to that of the

observed signal, i.e., Z5(k) = ZX (k). It means that
zo(n) = so(n) + do(n), (4.1)

where sg(n) and dg(n) are the ZP signals of s(n) and d(n), respectively. Under the
assumption, we derive a wide-band noise suppression system which can suppress both
of stationary and non-stationary wide-band noises, without a priori estimation of noise

spectral amplitudes.

Firstly, a speech signal s(n) in a short observation is modeled as a HNM (Harmonic

plus Noise Model) [19], [20] given by

kd

ke
s(n) = O cos(27r—]-v—mn + 0pm) + £(n), (4.2)
=1

o

3]

k

3

where k./N is the normalized fundamental frequency, and oy, and 0, are the amplitude
‘ and the phase of the m'" harmonic frequency, respectively. The signal ¢(n) is a noise
signal generated by passing a white noise through an all-pole filter {20]. Here, we assume
that the energy of e(n) in an observation frame is sufficiently small in comparison to one
of the harmonic part. This assumption is appropriate for a voiced speech, but it is not
appropriate for an unvoiced speech. Although this assumption may give a degradation
to an enhanced speech, the degradation is not fatal. Because, voiced speech energy is
usually much greater than unvoiced one.

Next, the properties of practical noise and speech signals in the ZP domain are
shown. The ZP signals of some practical wide-band noises and a female speech signal
are plotted in Fig. 4.1, where (a) shows a tunnel noise, (b) shows a motor noise, (c)
shows a babble noise, (d) shows a clap noise, (e) and (f) show voiced and unvoiced

speech signals, respectively. Here, all the signals were sampled at 8kHz and N = 256.
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4.1 Zero Phase Signal of Noise Signals
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Figure 4.1: Zero phase signals. (a) tunnel noise, (b) motor noise, (¢) babble noise, (d)

clap noise, (e) voiced speech signal, (f) unvoiced speech signal.
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We see from Figs. 4.1(a)—(d) that the energy of all wide-band noises is concentrated
around time 0 in the ZP domain. Hence, if we remove the ZP signal around the origin,
then the noise is greatly reduced. On the other hand, from Fig. 4.1(e), we see that the
voiced speech becomes a periodic signal with amplitude attenuation in the ZP domain.
This attenuation arises due to the window function. Since the window function is
known, we can compensate the attenuation. We also see from Fig. 4.1(e) that the
effect of £(n) is extremely low for the voiced speech. On the other hand, the ZP signal
of the unvoiced speech shown in Fig. 4.1(f) is similar to that of the noises. As shown in
Figs. 4.1(e) and (f), the energy of the unvoiced speech is less than the voiced one. In
this research, we concentrate on extracting the voiced speech rather than the unvoiced

one.

4.2 Impulsive Noise Suppression Algorithm

The noise ZP signal has nonzero values mainly around origin. Hence, we assume that

the noise ZP signal do(n) at (n > L) is sufficiently small for xo(n). Then we have

2o(n) { ESEZ;+ do(n), %iffg% (4.3)
zo(n) = zo(N —n), g <n<N. (4.4)

When the pitch period of the speech ZP signal, T' = N/k., is greater than L, we can
estimate T as the time index of the second peak of xzg(n) as shown in Fig. 4.2. Since
the observed ZP signal zo(n) in T < n < N + L does not include the noise components,

we obtain the estimated speech ZP signal 39(n) by the following replacement.

so(n) = { sc(n) - zg(T +n), 0<n<L s

zo(n), L<n< g’
where sc(n) is a scaling function to compensate the envelope attenuation of the speech
ZP signal. It is obtained as the reciprocal function of the window for signal segmen-
tation. When we use the hanning window, the scaling function sc(n) is given as (see
Appendix A.5)

2w
14 cos—n
sc(n) = N K (4.6)
2m
1+ cos 7V—(n +T)
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Figure 4.2: T obtained from second peak of ZP signal.

Observed signal Estimated speech
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Figure 4.3: Proposed wide-band noise suppression system using zero phase signal.

Comparing Eq. (2.30) and (4.5), we see that the novelty of the proposed method is to
extend the replacement samples from one to L, and to introduce the scaling function
sc(n).  After the replacement (4.5), the DFT of §(n) gives the estimated speech
spectral amplitude |§(k)| Finally, taking the IDFT of |S(k)|e/X(®), we have the
estimated speech signal §(n) in time domain.

Fig. 4.3 shows the block diagram of the proposed wide-band noise suppression
system, where the spectral gain is given as G(k) = |S(k)|/|X (k). Here, this system
requires the additional DFT and IDFT to achieve stationary and non—sfationary wide-
band noise suppression without a priori estimation of noise spectral amplitudes. The

most important parameters in the proposed method are the pitch period T' and the re-
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Output SNR [dB]

Figure 4.4: Practical wide-band noise suppression results for various L with Input SNR=
0dB.

placement size L shown in (4.5). In the next section, we investigate about an estimation
method of them.

We first describe about an estimation method of the pitch period T, and then derive
an appropriate replacement size L in an empirical manner.

From the definition (2.24), we see that any ZP signal takes the maximum value
at the origin. On the other hand, as shown in Fig. 4.2, a voiced speech provides a
periodic ZP signal with amplitude attenuation. Hence, as we stated in the previous
section, the index of the second peak in the speech ZP signal gives T. As reported
in [22], an averaged pitch peribd of male speakers is about 8ms, and that of female
speakers is about 4ms. Hence, an computationally efficient peak search method can be
established by restricting the search range. The pitch period T is given as

T = arg;Lmax {zo(n)}, (4.7)

<n<ty

where, {7 is the lowest index number of the search range, and ty is the highest one.
Next, we choose the replacement size L in an empirical manner. For various L.

we performed wide-band noise suppression simulations, and evaluated its capability by

using
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4.3 Simulation

M-1

> %)

InputSNR = 1010g10%———, (4.8)

> d*n)
=0

M-1
> s'(n)
=0

OutputSNR = 10logg 7 ) . (4.9)
2 {8(n) = s(m)y?
n=0

where M is the number of samples. The results for the four practical noises with Input
SNR of 0dB are shown in Fig. 4.4. We see from this figure that the proposed method
is effective for wide-band noise suppression, especially suppressing the non-stationary
clap noise. Although the respective maximum Output SNRs gave different values of L,
all they were less than 10. Hence, we employ L = 10 as an appropriate value.

In the next section, we perform other noise suppression simulations to confirm the

cffectiveness of the proposed method with L = 10.

4.3 Simulation

We evaluate the capability of the proposed method in further detail. The speech signals
used in the simuiatiohs were taken from ATR-promotion database [21]. All signals used
in simulations were sampled at 8kHz. We put N = 256 and L = 10, and used the
Hanning window for signal segmentation. We put ¢t; = 16 and ty = 64 that implies
the pitch search range from 2ms to 8ms. The proposed method was compared with

some conventional methods.

Firstly, we performed the noise suppression simulations for input SNR of 0dB,
where we used artificially generated white and impulsive noises. In the simulations, we
compared the proposed method with the most traditional spectral subtraction method

[2].
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Figure 4.5: Results of white noise suppression: (a) clean speech signal, (b) speech sig-
nal corrupted by white noise (SNR=0.0dB), (c) the estimated speech by the spectral
subtraction method (SNR=7.0dB), (d) the estimated speech by the proposed method
(SNR=6.8dB). '
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Figure 4.6: Results of impulsive noise suppression: (a) clean speech signal, (b) speech
signal corrupted by impulsive noise (SNR=0.0dB), (c) the estimated speech by the spectral
subtraction method (SNR=-0.1dB), (d) the estimated speech by the proposed method

(SNR=13.3dB).
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The waveforms of the white noise suppression results are shown in Figs. 4.5(a)-
(d), where (a) shows the clean speech signal, (b) shows the speech signal corrupted by
the white noise with the input SNR of 0.0dB, (c) shows the estimated speech signal
obtained by the spectral subtraction method, where the output SNR was 7.0dB, and (d)
shows the estimated speech signal obtained by the proposed method, where the output
SNR was 6.8dB. From these results, we see that the proposed method can suppress the
stationary wide-band noise, without a prior estimation of noise spectral amplitudes.
For the impulsive noise suppression simulation, we imposed the condition that amount
of impulse per block-segment is one or zero on this simulation.

The results are summarized in Figs. 4.6(a)—(d), where (a) shows the clean speech
signal, (b) shows the speech signal corrupted by the impulsive noise with the input SNR
of 0.0dB, (c) shows the estimated speech signal by the spectral subtraction method,
where the output SNR was —0.1dB, and (d) shows the estimated speech signal by the
proposed method, where the output SNR was 13.3dB. From these results, we see that
the proposed method can suppress the non-stationary impulsive noise with the same
procedure of stationary wide-band noise suppression. The spectral subtraction method
cannot suppress such non-stationary wide-band noise.

Next, we carried out noise suppression simulations for 8 kinds of wide-band noises
with different input SNRs. For the stationary wide-band noises, we used a white noise,
. tunnel noise, motor noise, and babble noise. On the other hand, impulsive noise, clap
noise, white mixed with impulsive noise, and train noise were used as non-stationary
wide-band noises. Here, the motor and babble noises were obtained from a SPIB
database [23], train noise was obtained from a noise database distributed from Sunrise
Music inc. [24], and clap and tﬁnnel noises were practically recorded by the authors.
The speech signals are spoken by 10 male and 10 female from ATR-promotion database
[21]. For evaluating noise suppression capability, we used the Output SNR as a time
domain criterion and Itakura-Saito Distance (ISD) [22] as a frequency domain criterion.
The ISD is defined as

1 ) k)
= — —_ 1 s _ ’ .
ISD J;::O N g( % ) + o) 1) | (4.10)

where J is the nunber of frames, and f(k, j) and g(k, j) are k" bin of spectral envelopes

in the j*" frame obtained by the maximum likelihood estimation. The spectral envelope
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flk, 7) is given as [22]

2

k) = = i 411
f( 7]) - N P ’ ( . )
142 A;cos(2rki/N)
i=1

P—lil
A = Y amby, (4.12)

m=0
where an, (m = 1, 2, ..., P) is the m'® linear predictor coefficient for the speech

signal s(n) in the j! frame. P denotes the order of the linear predictor, and (7)% is
the variance of the residual error. The same procedure for the estimated speech 3(n)
gives the other spectral envelope g(k,j). For all of the following simulation results,
we compared the proposed method with the spectral subtraction (SS) [2], a variable
Maximum a Posteriori estimation method (VMAP) [5], and the conventional ZP signal
method (CZPS) [18]. Here, VMAP is a recently proposed spectral gain method and
CZPS is a noise suppression method utilizing the ZP signal only at the origin.

Table 4.1 and Figs. 4.7(a)—(h) show the output SNR of the wide-band noise sup-
pression results. We see from the results for the stationary wide-band noise shown in
Figs. 4.7(a)-(d) that the noise suppression capability of the proposed method is almost
the same or slightly low in comparison to ones of SS and VMAP methods which require
the prior estimation of the noise spectral amplitude. On the other hand, CZPS and
the proposed method do not require any prior estimation of the noise spectral ampli-
tude. In the stationary practical noise cases (Figs. 4.7(b)—(d)), the proposed method
is superior to the CZPS. This improvement is caused by removing the noise ZP sig-
nal do(n)(1 < n < 'L) which cannot be reduced by the CZPS method. Note that the
capability of the proposed method exactly reaches to ones of SS or VMAP when we
utilize the prior estimation of the noise spectral amplitude. On the other hand, for
non-stationary wide-band noises (Figs. 4.7(e)—(h)), the noise suppression capability of
the proposed method and CZPS are superior to SS and VMAP. When the input SNR
was 0dB in clap noise situation, the proposed method improved the SNR to 13.5dB
which is 7dB higher than the result of the CZPS. Table 4.2 and Figs.- 4.8(a)-(h) show
the ISD of the simulation results, where it expresses speech spectral envelope distortion.
Note that the lower value of ISD is better than the higher one. We see from Fig. 4.8(a)
that SS, CZPS and the proposed method gave almost the same results for the white
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Figure 4.7: Output SNR of noise suppression results

" noise. We also notice from Figs. 4.8(b)-(d) that the proposed method can improve
noise suppression capability in comparison to the CZPS. On the other hand, the pro-
posed method significantly improve noise suppression capability for the non-stationary
wide-band noise. As shown in Figs. 4.8(e)-(f), ISD results from the proposed method
gave the lowest value among other ones. The proposed method also gave comparatively
low ISD results for the white and impulsive noise and the train noise as shown in Figs.
4.8(g)-(h).

After that, we evaluated speech quality by the formal listening test. The speech
quality was rated by a scale of 1 (bad) to 5 (excellent). We average those scores obtained
from 15 listeners as the mean opinion score (MOS). Table 4.3 and Fig. 4.9 show MOS
results for the four methods under the tunnel and clap noise conditions. In the tunnel
noise case, the proposed method gave a better result than ones from SS and CZPS.

While VMAP gave a high speech quality result in the tunnel noise case, it gave the
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lowest one in the clap noise case. We can see from Fig. 4.9 that the proposed method

gave the best speech quality result in the clap noise case. In Table 4.3, it also shows

standard deviation of the listening test results where the proposed method gave the
smallest deviation among the others.

Finally, we evaluated the pitch estimation accuracy since it is one of the important

factors for the proposed method. The pitch estimation performance is evaluated by
Gross Pitch Error (GPE) which is given as [25]

GPE

Nrog
Ny

(4.13)

where Ny is the number of total frames considered as voiced speech segment. The
value of Npgg is the number of frames that satisfies

F Oestimated
F Oreference

-1 > %,
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where v is a threshold which is set to 10 in this research. FOestimateq denotes the
estimated pitch frequency obtained by the proposed method, and F0;eference denotes
the true pitch frequency, where we obtained FOpeference Dy the discrete-time Fourier
transform (DTFT) with 1 Hz gap. In this GPE evaluation, we also used speech data
spoken by 10 male and 10 female from [21]. To evaluate GPE, we added 8 kinds of
noises at different input SNRs. The results are plotted in Fig. 4.10(a) and (b). We can
see from Fig. 4.10(a) and (b) that GPE decreases when SNR gets higher in all simulated
situations. As shown in Fig. 4.10(a), when speech is corrupted by the stationary noises
at 0dB, GPE varies between 0.15 to 0.35. On the other hand, when the speech is
corrupted by non-stationary clap noise, we can get GPE values less than 0.15 even if
SNR is extremely low. It means that the proposed method is effective especially for
stationary noises in high SNR situations, and for impulsive noises in any SNR situation.
In this chapter, we have proposed a wide-band noise suppression method based

on the ZP signal replacement. The noise suppression is achieved by replacing the
observed ZP signal around the origin with the ZP signal in the second period. The
proposed method does not require a prior estimation of noise spectral amplitudes,
and can suppress not only stationary wide-band noises but also non-stationary wide-
band noises. Many simulation results have shown the effectiveness of the proposed
‘noise suppression method. The stationary wide-band noise suppression capability of
the proposed method is almost the same or slightly low in comparison to the spectral

" subtraction method and the variable MAP method which require a priori estimation of
noise spectral amplitudes. The most advantage of the proposed method is that it can
provide a high noise suppression performance for non-stationary wide-band noises. In
the clap noise suppression, the proposed method attained the output SNR of 13.5dB
when the input SNR was 0dB. The effectiveness of the proposed method for the other
wide-band noises was also confirmed. Future works include to derive an extraction

method of unvoiced speech in the ZP domain.
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Figure 4.10: GPE results for various kinds of noise.
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Table 4.1: Output SNR of wide band noise suppression results [dB]

Noise -10.0 [dB] 0.0 [dB]
System W Tn M B W | Tn | M B
SS 2] -20 4 -18 ) -32 ) -42 69|65 | 56 | 4.7
VMAP [5] 0.4 -30 | -52 | -71 194 |71 | 60 48
CZPS [18] -20}| 63| 67| 83|72 |35131]16
Proposed method -24 | -39 | -45 | -49 | 63 | 5.1 | 45 | 4.1
Noise 10.0 [dB]
System \u% Tn M B
SS [2] 153 | 145 | 14.1 | 13.3
VMAP [5] 136 | 124 | 12.2 | 12.1
CZPS (18] 14.6 | 12.5 | 12.0 | 10.9
Proposed method 124 | 11.8 | 114 | 11.1 :
W : white noise  Tn : tunnel noise =~ M : motor noise B : babble noise
Noise -10.0 [dB] 0.0 [dB]
System I C WI Tr I C WI | Tr
SS (2] -99 1| -99 | -51 | -5.2 | 0.1 0.1 | 45 1 40
VMAP [5] -98 | -99 | -53 | -64 | 04 0.1 | 63 | 54
CZPS [18] 101 | -36 | —01 | -6.2 | 133 | 6.1 | 86 | 3.5
Proposed method 9.0 9.4 —05 | —42 | 11.7 | 135 | 7.6 | 4.7
Noise 10.0 [dB]
System 1 C WI Tr
SS 2] 10.2 | 10.1 | 13.7 | 13.0
VMAP [5] 119 | 104 | 139 | 124
CZPS [18] 16.8 | 144 | 152 | 124
Proposed method 14.0 | 14.7 | 129 | 115
I : impulsive noise ~ C : clap noise ~ WI : white and impulsive noise  Tr : train

noise
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Table 4.2: ISD of wide band noise suppression results (x 10%)

Noise -10.0 [dB] 0.0 [dB]
System W Tn M B W Tn M B
SS 2] 40.1 36.8 32.8 50.2 4.0 3.7 3.3 5.0
VMAP [5] 31.0 30.7 24.8 26.6 3.1 3.0 2.5 2.7
CZPS [18] 44.8 130.5 | 1076 | 1851 | 45 | 131 | 10.7 | 185
Proposed method 47.7 66.6 58.5 81.0 4.8 6.6 5.8 8.1
Noise 10.0 [dB]
System W [ Tn M B
SS [2] 04 | 04| 03 05
VMAP [5] 03 103 02] 03
CZPS [18] 04 | 1.3 | 11| 1.8
Proposed method 05 1| 07106 | 08
W : white noise ~ Tn : tunnel noise M : motor noise B : babble noise
Noise -10.0 [dB] 0.0 [dB]
System I C WI Tr I C WI Tr
SS 2] 247.2 | 297.2 | 81.7 59.4 24.7 | 29.7 | 82 5.9
VMAP [5] 247.1 | 297.0 | 50.5 39.2 24.8 | 29.7 | 54 4.4
CZPS [18] 0.0 68.7 26.8 | 104.7 0.0 6.9 2.7 | 105
Proposed method 0.0 1.7 29.1 57.6 0.0 0.2 2.9 5.7
Noise 10.0 [dB]
System I C WI | Tr
SS 2] 2.5 2.9 0.8 | 0.6
VMAP [5] 2.6 3.0 0.7 | 0.6
CZPS [18] 0.0 0.7 0.3 | 1.1
Proposed method 0.0 | 002 | 03 | 06
I : impulsive noise C : clap noise ~ WI : white and impulsive noise  Tr : train

noise

51




4. IMPULSIVE NOISE SUPPRESSION USING ZERO PHASE SIGNAL
REPLACEMENT TECHNIQUE

Table 4.3: Formal listening results of tunnel and clap noise suppression at 0dB.

Noise suppression Tunnel noise Clap noise
system Standard Standard
MOS deviation | MOS deviation
SS 3.20 0.86 2.60 0.91
VMAP 4.40 0.83 2.06 0.70
CZPS 3.00 1.13 3.47 0.83
Proposed method | 3.46 0.74 4.20 0.56
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Conclusion

This thesis has described about single channel noise suppression based on speech and
noise spectral models. This thesis consisted of two main parts. The first part has
described about stationary noise suppression and the second part has described about
impulsive noise suppression.

In Chapter 3, the author has proposed a stationary noise suppression algorithm
using Maximum a Posteriori (MAP) estimation with a speech spectral amplitude prob-
ability density function (speech PDF). The estimated speech spectrum is given as a
MAP solution which is obtained from the speech PDF. The speech PDF is hence the
most important factor in this research. Since, the speech property can be considered
as a time-variant function, the author assumed that the speech PDF changes according
to SNR. Under this assumption, the author proposed adaptive shape parameters which
were derived from real-speech PDFs in various narrow SNR intervals. The proposed
adaptive shapé parameters can pursue the change of the speech property, and give an
appropriate MAP solution which is identical to the estimated speech spectrum. The
effectiveness of the proposed method was examined and compared to the conventional
algorithms. The simulation results have shown that the proposed method improved
segmental SNR around 6 and 9 dB when the input speech signal was corrupted by
white and tunnel noise signals at input SNR of 0 dB, respectively.

In Chapter 4, an impulsive noise suppression method has been investigated. This
method utilizes a zero phase (ZP) signal which is defined as the IDFT of a spectral
amplitude. In the impulsive noise suppression research, it was assumed that a speech

signal has periodicity in a short observation, i.e., its spectral amplitude has values at
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5. CONCLUSION

equally spaced frequencies. In this case, the corresponding ZP signal becomes also
periodic. On the other hand, it was assumed that a noise spectral amplitude is approx-
imately flat. In this case, its ZP signal takes nonzero values only around the origin.
Actually, real impulsive-type noise has such property as shown in Section 4.1. Under
these assumptions, the ZP signal of a speech signal embedded in impulsive noise in
an analysis frame becomes a periodic signal except around the origin. The author has
proposed the ZP signal replacement method which replaces the ZP signal around the
origin with the ZP signal in the second or latter period. Then, speech ZP signal can
be estimated. Taking DFT of it gives the estimated speech spectral amplitude. The
IDFT of the estimated speech spectral amplitude with the observed spectral phase pro-
vides the estimated speech signal in time domain. The major advantage of this method
is that it can suppress impulsive noise without a prior estimation of the noise spec-
tral amplitude, while it is indispensable in most stationary noise suppression methods.
Moreover, it has been shown that the proposed impulsive noise suppressor can also
be available to suppress stationary wide-band noise. Simulation results showed that
the proposed noise suppressor improved the SNR more than 5dB for stationary tunnel
noise and 13dB for impulsive clap noise in a low SNR environment.

Reverberation of signals often exists in practical situations, and it degrades speech
.qu'ality‘ However, suppression techniques of the reverberation have not been discussed
in this thesis. Hence, suppressing the reverberation should be the future work in this

‘. study. In addition, speech spectral models discussed in this thesis are comparatively
simple yet. In the future work, the author would like to more sophisticate these speech

spectral models to improve speech quality of extracted signals.
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Appendix A

Derivations

A.1 Derivation of MMSE-STSA

The MMSE-STSA method is derived by minimizing a conditional mean square value

of the short time spectral amplitude. The cost function to be minimized is given by

It

JMMSE E[IS~S|2‘X]

= /OO IS12p(S|X)ds + |S|? - é/oo S*p(S|X)ds

—-5* / - Sp(S|X)ds, (A.1)

where p(S|X ) denotes the conditional PDF of S. The estimated speech spectrum which

minimizes JyMsE IS given as
SMMsE = / Sp(S|X)ds = E[S|X]. (A.2)
— 00

As shown in [15], when we assume p(S) and p(D) as Gauss functions, (A.2) produces
the Wiener filter again. On the other hand, Ephraim and Malah considered the PDFs
of the speech spectral amplitude and phase, i.e., p(|S]) and p(£S). They assumed that
p(|S]) and p(£S) as the Rayleigh distribution and the uniform distribution, respectively

[36]. They assumed p(D) as the Gauss function, where the noise variance 03 is assumed
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A. DERIVATIONS

to split equally into real and imaginary parts. These PDFs are expressed as

2|8 S|2
pish = Al e {-EL1, (A3)
p(28) = -21; (A.4)
X — 2
p(X|S) = }z—gexp{—l—g—gﬁl——}, (A.5)

where P(X|S) is corresponding to p(D). Assuming p(S) = p{|S|)p(£S), we can calcu-
late (A.2) by using the relation p(S|X) = p(X|S)p(S)/p(X). After tedious and complex

computations, the spectral gain is given as [11]

mv 1/2 —v
GMMSE = () eXP(—2‘>

2y
v v
x [+ )k (5) + ol (5)] (A.6)
where I;(-) is the modified Bessel function of order i, and
£ 1X]?
- .y = . A7
YT T 57 7 o2 (A7)

Here, v is called as the a posteriori SNR. As shown in [11], the optimal spectral phase
in the sense of MMSE-STSA is identical to the observed one. Hence, Gumumsg is also a

real value.

"A.2 Derivation of Spectral Amplitude Model

In the following, a simple statistical model for the speech spectral amplitude will be
presented, which is closer to the real distribution than the commonly applied Gaus-
sian model. Consideriné noise, the Gaussian assumption holds due to comparably low
correlation in the analysis frame. Assuming statistical independence of real and imag-
inary parts, the PDF of the noise amplitude | D, (k)| can easily be found as Rayleigh
distributed by polar integration [30],
pio) = A2exp { 1L}, (A8
The real and imaginary part of the Fourier coefficients can be considered statistically

independent with high accuracy. Then, p(]S}) can in general be calculated by

2m
p(IS)) = /0 1] p(|S] cos &) - p(|S] sin 6)de, (A.9)
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A.3 Derivation of Speech Spectral Gain (2.14)

Considering Gaussian components, the rotational invariance greatly facilitates the polar
integration. Similar to Eq.(A.8) the amplitude is Rayleigh distributed:
2|S| S
S = —— —— A.10
s = Blexp {1 (A10)
Apparently, the slope of the Gamima amplitude PDF differs from that of the Laplace
amplitude PDF. Hence, a parameter p is introduced, which enables to approximate

both. After normalizing |S| by the standard deviation g, we thus assume

p(|S]) ~ exp {—u%} (A11)

At low values of |5}, the PDF of the Laplace and Gamma amplitude is much higher than
Rayleigh PDF. Considering the Rayleigh PDF according to Eq.(A.10), the behavior at
low values is mainly due to the linear term of |S|, whereas the exponential term plays
a minor role at small values.

Both the PDF of the Laplace amplitude and the PDF of the Gamma amplitude
can be approximated by abandoning a linear term in |S|. Instead, |S| is taken to
the power of a parameter v after normalization to the standard deviation of speech,
e, p(|S|) ~ (%)” in order to be able to approximate a large variety of PDFs. The
smaller the parameter v, the more amplitude PDF distributed at low values. The term
hardly influences the behavior of the function at high value due to the dominance of

the exponential decay

S|¥ S
o151 ~ L exp {uU} (A12)
gg gg
o0
After taking d|S| = 1 into account, the approximating function with parameters

0,
v, i is finally obtained

| Vs | g G 1
p(IS]) = F(VH)agﬂexp nos (A.13)

Here, I' denotes the Gamma function.

A.3 Derivation of Speech Spectral Gain (2.14)

For simplicity, the frame index n and frequency index k are omitted. Let p(-} denote

the PDF (Probably Density Function). A joint MAP solution is given as

S| = argrrllg}xp(XllSl,AS)p(ISI,ZS)-, (A.14)
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45 = arg max p(X||S], £8)p(}S], £5). (A.15)

As proposed in [3], we put p(X||S], ZS) and p(/S) as

~- 82
p(X||S], £5) = -Wl—A exp (Jﬁ/\—’-) , (A.16)
1
p£S) = 5. (A17)

Under the assumption that p(|S]) is statistically independent with p(£S), i.e., p(|S|, £S) =
p(]S)p(£LS), we have

p(X||S]. 25)p(1S5], £5)

LU (X Sy et gsy (s
T or2) P A T(u+l)a§+l P uas )

(A.18)

. Since the natural logarithm greatly facilitates the optimization of (A.14) or (A.15), we
take the logarithm of (A.18) as

In p(X1|SY, £5)p(|5], £5)

IXE ISP X1SES - X)5)e ¢S

= \ +I/In[5[*;tl;—g§l‘
v+1
I
+1 ) A.19
! <27r2/\0"§+ll“(1/+ 1)) ( )

Differentiating (A.19) with respect to £S5 and setting it to zero yield

QI L8=4X) _ LJLX=48) (A.20)
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A.4 Derivation of Another Speech Spectral Gain Based on MAP
Estimation

Therefore, the estimation of £S which maximizes (A4.19) is given by
8 = /X. (A.21)

This is the solution of (A.15). Then, differentiating (A.19) with respect to |S], setting
it to zero and replacing /S with ZX, we get

2|S 2| X
I R

A IS' A gs
1 n v
Sz—2<———)SX———X2 = 0,
ISP =2 (5= o= ) 1SIX1 = 5211

|S|2—2u|S||X|¢%|X|2 =0
(A.22)

where u is defined in (2.14). Since the solution of |S| is positive, the estimation of |S]|

which maximize (A.19) is given by

15 = (u+,/u2+%) IX|. (A.23)

This is the solution of (A.14). Since G = |S‘|ej4§/X, we have the spectral gain given
by (2.14).

A.4 Derivation of Another Speech Spectral Gain Based
on MAP Estimation

A computationally efficient MAP solution is given as

e p(XHISDp( SN

= arg rrllglxp(lslﬂXl) = ABIEETT(XD)

Now, the super-Gaussian function is used to model the PDF of the speech spectral

(A.24)

amplitude p(]S]). Then Gaussian assumption of noise allows to apply for p([X|[||S|). We
need to maximize only p(|X|||S)p(|S|), since p(|X|) is independent of |S]. A closed form
solution can be found if the modified Bessel function I is considered asymptotically,

with

Ip(s) ~ e’ (A.25)

[N]
§l
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A. DERIVATIONS

After insertion of Eq.(A.25) into Eq.(2.10), we get for p(|X||S|)p(]S]):

. 2 X
p(IX1ISDp(S]) ~ |S]"" 2 exp {_15_; — A - %)} . (A.26)
os

Instead of differentiating p(]X1||S|)p(|S]), the maximization can be performed better
after applying the natural logarithm, because the product of the polynomial and expo-
nential converts into a sum:

dlog [p(X|}|SDp(SD] _ 1N 1Sl p o 2X] L
S| - ( ‘5> YT

After multiplication with |S|, one reasonable solution |$‘ |=G - |X] to the quadratic
equation is found, because the second solution delivers spectral amplitudes |S| < 0 at
least for v > 0.5. The second derivative at [S' | is negative, thus a local maximum is

guaranteed. The speech enhancement algorithm based on MAP estimation is as follows:

S = G-X, (A.28)
y -1
G = p+/u2+ 2 (A.29)
2y
1 L
o= - - —. A.30
R (A.30)

.A.5 Derivation of scaling function (4.6)
The segmented speech signal is given by
8(n) = s(n)-h(n). (A.31)

Under the assumption that the power of |g(n)] is small enough to be neglected in
comparison to one of harmonic part in (4.2). Then, we can approximate a speech

signal s(n) as

2%

ke
s(n) = E 1 QO Cos(27rﬁmn+0m). (A.32)
e

We utilize the Hanning window function given as

h(n) = % {1 - cos (%{#) } . (A.33)
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A.5 Derivation of scaling function (4.6)

Then, the spectral amplitude of §(n) is given by

m |1
IS(k)] = 92— {55@ — mke + 1) + 8(k + mk)
m=1
+%6(k ke —1) + %5(1: +mk, — N +1)
+ 6(k+mkc~N)+%6(k+mkc~N~ 1)}. (A.34)

By substituting (A.34) into (2.24) with 8 = 1, we get

am [ 1 2m(mk, — 1)
SO(TL) = —2— §COS —T—’I’L
m=1
2m(mk.) 1 2w{(mk. + 1)
+ cos N n -+ 5 Cco N n
2 LZ—}Z:J 2rmk
T Oy Tmk,
= (1 + cos ]—V~n) ‘ mE=1 N STy (A.35)

The scaling function for so(n + T') is given as

se(n) = —om)
so(n+1T)
2 s J 2rmk
1+ cosEn) - _ S cos e
= ( ) Zm;lJ N N_ " (A.36)
{l+cos ZE+T)} 3529 Smeos 20k (r - T)
Using the folloWing' relation
ormk mmk,
cos 2T “(n+T) = cos W;L , (A.37)

we have (4.6).
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