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Abstract

In clinical evaluation processes, meta-analysis is a statistical methodology to synthesise
results of several trials for the purpose of quantitatively summarising the evidence expressed
as a treatment effect (e.g. mean treatment difference for continuous outcomes). Especially in ~.

- clinical perspectives, there is a growing interest in extending meta-analysis beyond estimat-
ing an overall treatment effect, and, to produce: results tailor'ed'to the.individual patient or
clinically relevant subgroups. Meta_—regression (MR) is a technique for modeling relationships
between the treatment effect and trial-level covariates, and also can be used for assessing how

the patient characteristics affect the clirrical effectiveness in the context of meta-analysis.

However, most meta-analysis methods build models on aggreg‘ate 'data (AD) obtained by

bsummansmg individual patient data (IPD) which should have been measured or1g1nally in
each trial, and thus a pooled treatment effect is estimated with i ignoring scheme of sampling

| IPD. For this reason, the MR model have often been criticised. The MR model incorporates
covariates as summary statistics on background factors of patients, such as a mean age and
a proportlon of male patients in each trial. This means that the patient charactenstlcs are -

.evaluated expedlently with trial-level covariates in place of patient-level covarlates It causes
a technical issue that is referred to as ecological bias, and leads to a limitation in interpre-

~ tation. In particular, it is well known that, for a treatment-covariate interaction between

a clinical treatment and a patient characteristic, a test using the MR model has seriously )

lower statistical power than that using the IPD-based model. Note fhat, for the inference
of the treatment-covariate interaction, the MR model yields a result of just an ‘across-trial '

interaction effect’ between the treatment effect estimates and mean covariate values, not a

‘within-trial interaction effect’ between individual outcomes and individual covariate values.

As alternative solutions to this problems, some meta-analysis methods using IPD have
been suggested. In these methods, once the original IPD 1nc1ud1ng patlent level covariates
are collected from all trials involved, any flexible statistical approaches, such as multllevel
models and hierarchical random effect models, are applied to the IPD. Meta—analyses based
on IPD allow one to achieve much more meaningful evaluation on the treatment-covariate
interaction by separatirig it into the across-trial and the within-trial effect; in particular, the

IPD meta—analysis is an only way to assess the within-trial interaction effect. However, use of

the IPD may have a disadvantage related to their resources, such as substantial time and costs



to obtain and process the IPD. And also, practitioners cannot always collect the IPD from
all trials because the _IPD might have been lost or destroyed. For this reason, it has become
i_ncreasingljr important to consider situations where sorhe trials provide IPD (IPD trials) and
the others provide only AD (AD trials): Some researchers have already investigated how to
combine IPD and AD in meta-analysis, especially when treatment-covariate interaction is of

interest.

From these backgrounds, we propose a meta—analysis method for estimatingb both the
* across-trial and the within-trial 1nteract10n For the case that all trlals prov1de only AD,

we first assume an IPD meta-analysm model including parameters of the across—tnal and
the Wlthm-trlal interaction effect, and then margmahse the density of IPD with respect to
‘missing IPD. This process produces a likelihood for the AD available, and allows one to get
information on the within-trial interaction by meta-analysing several AD trials. We emphasise
that the within-trial interaction can be approxirnately estimated by using this likelihood even
if only the AD are available from each trial. Actually, some simulation studies suggested that
the proposed method has potential benefits to the mference of the within-trial interaction in
comparison with the existing MR approach When some trials provide IPD and the others
provide only AD, the proposed method is simply extended to combine IPD and AD. There, the
likelihood for parameters to be estimated is given by product of a likelihood for the IPD trials
and the marginalised likelihood for the AD trials. This again allows one to get information
on the within-trial interaction from the AD trials. Through simulation studies, the ‘propos_ed
method provided smaller biases and smaller mean-square errors for estimator of the Within-
trial interaction in comparison with some existing meta-analysis methods, especially ‘when
the proportion of available IPD was small. And also, simulatiorr studies investigated how the
proportion of available IPD affects the biases and the mean-square errors for estimator of
the within-trial interaction obtained from the proposed method. These results could offer a
useful guidance if one considers how many IPD trials should be colleeted to preserve a desired
level of statistical power. Note that the proposed method is applicable when parameters to
be estimated can be assumed as ﬁxed effects; so that the treatment effect_ and the treatment-

covariate interaction effects are assumed to be common across trials.

As a breakthrough of the existing metaranalysis methods, we propose a meta-analysis
method based on simulated IPD (SIPD), which reconstructs the missing IPD for each trial
and then applies a standard IPD meta-analysis model to each SIPD. We here discuss two types

of sarhpling procedures for generating the SI_PD: frequentist and Bayesian procedures. Since
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the proposed method based on SIPD also uses the scheme of marginalising the missing IPD,
any advantagés mentioned above are Held' in this framework. When some trials provide IPD
and the others provide only AD, the proposed method feconstructs the missing IPD ﬁom
the AD trials aﬁd then meta-analyses each set of SIPD combined with ‘the collected IPD.’
Through an illustration with 5 IPD trials in hyperfension, which investigate to what extent
lowering of systolic blood pressure and diéstolic blood pressure contributed to cardiovascular
prevention, we demonstrated that the pfoposed method was much superior to the existing
A meta-analysis methods in t‘erms of the biases and the mean-square errors for estimator of the
within-trial interactiion. Using the SIPD enables one to épply any approaches for the IPD
meta;arialysis,- and could have a huge possibiliﬁy ‘to produce novel findings (e.g. a flexible

‘trial design) which is never provided by the existing meta-analysis methods.
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1 Introduction

1.1 Backgrdund's_

In clinical evaluation processes, meta—a,ndlysis is a statistical fnethodology to synthesise results
of several trials for the purpose of quantitatively summarising _the evidence éxpressed as a
treatment effect (e.g. mean tvrea;tment diﬁ’ereﬁce for continuous outcomes). The fundamental
objectives of meta-analysis are to accumulate evidence from smaller trials and to increase -
statistical power to detect an effectiveness ofd clinical treatment (Borenstein et al., 2'009). For
“example, when an investigator is looking for beneficial effects in specific sul-)grobups of patients,
. a single trial may contain too few patients in the subgroup of interest to be informative. In
drug devélopment, meta—_a’,n&lysis is reqbgnised as 5 useful tool to summarise b'the overall
efficacy results of a drug application and to analyse less frequent outcomes in the overall
safety evaluatioﬂ (Jones, 2008). Sutton and H-iggins_ (2008) reviewed highlights of recent
developments in_meta,-analysis-i in medical research, and outlined how emphasis has been
placed on: heterogeneity and random-effects analyses, special consideration in different areas
of application, assessing bias within and across trials, extension of ideas to complex evidence
synthesis. | o
In clinical perspectives, there is a growing interest in extending _meta-aﬁalysis beyond es-
timating an overall treatment effect, and to produce results tailored to the indiVidual patient
or clinically relevant subgroups (Thoﬁpson and Higgins, 2005). Rubin (1990) has criﬁicised
conventionai meta—analysis fechniques just averaging the treatment effects from each trial,
and has sugges’.ced. a need to estimate the effect of treatment versus control as a function of a
set of scientific factors that influence efficacy (e. g; agé, race and gend_er). This requires meta- ‘
analysis models that assess the association (or interaction) between batient-lev_ei covariates
and the stafistical measure of interest. Meta-regression (MR) is a technique for modelling
relationships between the treatment effect and trial-level covariatés, and also can be used

for asseséiqg how the pa,tient‘ characteristics affect the clinical effectiveness in the context
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of meta-analysis. 'The MR approach has been successfully applied with trial-level variables'
* Berkey et al. (1995) showed that the efficacy of BCG vaccine for tuberculosis increased w1th '
- distance of the trlal site from the equator Thompson (1993) demonstrated that cholesterol— |
lowering drugs were more effective in reducmg ischemic heart disease in trials in which the
tréatment groups achieved greater average reductions in .serum cholesterol levels relative to
their respective control groups. However, most meta-analysis methods build models on ag-
gregate data (AD) obtamed by summarising individual pat1ent data (IPD) which should have
" been measured originally in each trial, and thus a pooled treatment effect is estimated with
ignoring scheme of sampling IPD. For this reason, the MR model have often been criticised
(Thompson and Higgins, 2002; Riley et al., 2010). The MR model incorporates covariates as
summary statistics on background factbrs of patients, sﬁch‘as a mean age and a proportion
of male patients in each trial. This means that the patient characteristics are evaluated ex-
pediently with trial-level covariatés in place of patient-level covariates. It causes a technical
issue that is referred to as ecological bias (Morgenstern, 1982), and leaﬂs to a limitation in
interpretation (Thompson and Higgins, 2002). In particular, it is well known that, for a
treatment-covariate interaction between .a clinical treatment and a patient characteristic, a
test using the MR model has seriously l_owér statistical power than that ﬁsing_‘phe 'IPD-ba'sed_
mddel__(Lambert et al., 2002; Simmonds and Higgins, 2007). Berlin et al. (2002) conducted
two types of meta-analyses by using individual patient-level data and trial-leve1 data from 5
trials in their clinical research, and showed that the meta-analysis 'bajsed on the trial-level data
failed to detect the treatment-covariate interaction. Thompson and Higgins (2002) advocated
that the relationship described by the MR model is an observational association, so this suffers
from the bias by confounding. Note thét the MR model assumes the ‘across-trial interaction’
between the treatment effect estimates and mean éoVaria_te values reflects the more pertinent:
‘within-trial interaction’ between indiVidual outcomes and individual'cbva,riate val_ués. This
may not be true in practice, as écross-trial asSociatiéns -are prone to trial-level confounding,

and may truly not reflect within-trial associations ‘(Rilley' and Steyerberg, 2010).

As alternative solutions to this problemé, some meta-analysis methods using IPD have
'béen suggested (Riley, Lambert and Abo-Zaid, 2010; Simmonds et al., 2005). In these meth-
ods, once the original IPD including patient-level outcome and covariate values are éollected
from all trials involx}ed, any flexible statistical approaches, such as multilevel models (Gold-
' stein__‘ et al., 2000) and hi_erarchi_cal random effect models (Turner et al., 2000; Whitehead
et al., 2001; Higgins et al., 2001; Riley et al., 2007), é_re applied to the IPD. This bbrings
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many opportunities over the AD approaches in the sense of deriving desired summary re- -
sults directly, checking modelling assumptions, and assessing non-linear trends (Riley, 2010). |
Meta-analyses based on IPD allow one to achieve much more meaningful evaluation on the
treatment-covariate interaction by separating it into the across-trial and the within-trial ef-
fect; in particular, the IPD meta-analysis is an only way to assess the within—trial interaction
effect.. However, the use of full IPD is not always W1thout its difﬁculties In particular, this
approach is resource intensive, because substantlal t1me and costs are required to contact
trial authors, to obtain the1r IPD, to 1nput and clean the prov1ded IPD, to resolve any data
issues through dialog w1th the data providers, and to generate a consistent data format across
trials (Riley et al., 2010). And also, practitioners cannot always collect the IPD from all trials
because the IPD might have been lost or damaged, or trial authors may not be contactable
or Wiiling to collaborate. Riley et al. (2010) pointed out that the possibility- of collecting
the IPD from all trials is not so high. If the collectability of IPD is associated with the
results in each trial, a meta-analysis based only on the collected IPD may be biased (Stew-
‘art and Tierney, 2002) For this reason, it has become 1ncreasmgly important to consider
situations where some trials pr0v1de IPD and the others provide only AD. Some researchers
have already investigated how to combine iPD and AD in meta-analysis, especially when
treatment-covariate interaction is of interest (Riley et al., 2(_)08§ Sutton, Kendrick and Cou-
pland, 2008; Riley and Steyerberg, 2010). Such approaches have also been developed in the -
-context of ecological study (Jackson, Best and Richardson, 2008; Haneuse and Wakefield,
2007; Haneuse and Wakefield, 2008; Wakefield, 2004; Wakefield et al., 2011). Wakefield et
al. (2011) ad\rocated that the only reliable approach for removing ecoiogical bias is to sup-
plement the ecological data with individual-level information. Jackson, Best and Richardson
v‘ (2008) suggested Bayesian hierarchical related regression which uses Markov chain Monte
~ Carlo method to simultaneously estimate IPD trials an(i AD trials models linked by common
parameters, where the IPD supplement the aggregate information across different gro_nps

such as geographical areas.

From these backgrounds, we propose a meta-analysis method for estimating both the
across-trial and the within-trial interaction effect. For the case that all trials provide only
AD, we first assume an IPD n1eta§ana1ysis model int:luding parameters of the 'acr0ss;tria_l'
and tlie within-trial interaction effect, and then marginalise the density of IPD with respect
to missing IPD, which requires an integration over a region restricted by observed‘ AD. This |

process produces a likelihood for the AD available, and allows one to get information on



the within-trial interaction by meta-analysing several AD trials. The idea of marginalising
the IPD meta-analysis model is inspired from ecological inference, in which the relationships
-between individual specific quantities are evaluated by using population-level data. In partic-
- ular, Wakefield and Salway (2001) presented a statistical framework for ecological inference,.
describing parametric models for blnary response data that include w1th1n-aggregat10n vari-
ability of covariates, which is 1ntended to reduce the ecologlca_l bias. We emphasise that the
" within-trial interaction can be approximately estimated by using thislikelihood even if only
the AD are available from eacil trial. When some trials provide IPD and the others provide
only AD, the proposed method is simply extended to combine IPD and AD. There, the like- '
lihood for parameters to be estimated is given by product of a likelihood for the IPD trials
and the marginal likelihood for the AD trials. This again allows one to get information on.
- the within-trial interaction from the AD trials. Note that the proposed method is appli_cable
when_ parameters to be estimated can be assurned as fixed effects; so that the treatment effect

and the treatment-covariate interaction effects are assumed to be common across trials.

As a breakthrough of the existing meta-analyses, we propose-a meta-analysis method
based on simulated IPD (SIPD), which reconstructs the missing IPD for each trial and then
applies a standard IPD meta-analysis model to each SIPD. When some trials provide IPD and
the others prov1de only AD the proposed method reconstructs the missing IPD for the AD
trials and then meta-analyse each set of SIPD combined w1th the collected IPD. We show,
once the SIPD are generated, how existing IPD meta-analys1s approaches can be applied,
and we demonstrate the benefits of 1ncorporat1ng the SIPD. We here consider two types of
sampling procedures for generating tlie SIPD: frequentist and Bayesian procedures, .which
are inspir__ed by multiple imputation applied in the analysis of incomplete data with rnissing
outcomes and covariates (Rubin, 1987). In the frequentist procedure,‘ each set of SIPD is
generated '_from a conditional distribution of the missing IPD given the AD (and the collected
IPD) and a known parameter, and then resulting estimates from each SIPD .(combined with
the collected IPD) are summarised by using Poor Man’s Data Augmentation 2 proposed by _
Wei and Tanner (1990). In the Bayesian procedure, each set of SIPD is generated from a
posterior predictive distribution of the missing IPD given the AD (and the collected IPD), and

‘then resulting estimates from each SIPD ‘(combined with tlie collected IPD) are summarised
by using Rubinfs (1987) rule. Both procedures ultimately produce a posterior distribution
of parameters of interest, and thus a posterior mean and variance for frequentist inference.

Since these approaches also use the scheme of marginalising the missing IPD, any advantages
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Table L. Summary of the 5 trials in»hypeftension, included in the me‘ta—analysis'of Wang et

al. (2005).
- _ Age ~ SBP
Number of patients (years) ‘ " (follow-up — baseline)

) : . Control Treatment .Control Treatment Estimate of
Trial mean mean mean mean mean difference
name® Control Treatment (s.d) (s.d.) . (sd) (s.d.)- (s.e)
HEP 199 150 © 69.57 "69.71 - —11.65 —24.88 —13.23

7 (5.39) (5.18) (23.30)  (21.11) (2.39)
EWPHE = 82 90 74.11 72.64 ' —~7.78 —20.46 ’ —12.68

_ (8.69)  (7.99) (22.76)  (19.80) (3.27)
MRC-2, 1337 1314 70.43 70.39 —17.55 —28.20 ) —10.65

o (2.75) (2.77) (21.95)  (21.78)  (0.85)
SHEP 2371 2365 71.54 . 71.64 —13.88 —25.39 - —11.51

_ (6.68) (6.72) (19.90)  (18:42) 1(0.56)
Sy-Eur 2297 2398 70.20 - 70.25 —8.70 —18.89 —10.18

: (6.68) (6.75) (15.04) (16.15) (0.46)

SBP: systolic blood pressure, s.d.: standard deviation, s.e.: standard error
*Trial names are consistent with Wang et al. (2005), where further details and trial publications
can be found.

pfoyided above afe held in these frameworks. Furthermore, using the SIPD enables one
to apply any approaches for the IPD meta—analysis, and could have a huge possibility to
" produce novel findings (é.g. a flexible trial design) which is never provided by the existing
meta-analysis methbds. Note that the proposed method is again applicable when parameters

to be estimated can be assumed as fixed effects.

1.2 Motivating examples

1.2.1 - Hypertension data

Wang et al. (2005) performéd a quantitative ox-ferview of trials in hypertension to investigaté
to what extent lowering of systolic blood pressure (SBP) and diastolic blood pressure con-
tributed to cardiovascular prevention. They selected randomised co_ntrblled trials that tested
active antihypertensive drugs agdinst placebo or no treatmenf. For their analyses, IPD was
~sought from trials in the Individual Data Analysis of Aﬁtihypertensive intervention trials
data set (Gueyflier et aZ., 1995) or at the Studies' Coordinating Centre in Leuven (Liu et al,
1998; Sta,essen‘ et. al., 1997; Améry et al., 1985). :10 trials were ultimately included, and these
provided IPD for a total of 28,592 patients. To illustfate me‘ta—analysis methods introduced
in Chépter 2 émd Chapter 3, we will carry out a meta-analysis of 5 (12,603 patients) of these

10 trials, which are sufficiently homogeheous across trials with respect to a treatment effect
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and a trial-level cevariete. These 5 trials vwere. chosen as they were conducted in populations
with a similar mean age around 70. The mean change in SBP (follow-up minus baseline)
for each treatment group in each trial are shown in Table I, with negafive values indicating
a Beneﬁcial effect. The treatment ‘effect is. shown in the rightmost column in Table I, with
negative values 'indicating that. the treatment is effective. Table I also shows the mean age,
and the groups appear to be well balanced in each trial at baseline. | _

One of the usual way for displaying meta-analysis data is known as forest plot. Figure
‘1 shows the forest plot of the 5 trials in hypertensmn The pos1t10n of the black squares
represents the findings (an est1mate of the mean outcome difference between groups, and
its standard error) from each 1nd1v1dual trial. The size of the square is proportlonal to the
precmon of the trial (roughly speaking, the sample size). A horizontal line drawn on both
sides of the squares for each trial denotes the 95 per cent confidence interval of the treatment
effect estimate. A pooled treatment effect estimate obtained by combining _all 5 trials is
displayed as a diamond in the 1owest part of the forest plot. We here assume that all 5
: tria,ls.sha,re a common true value of the mean difference (i.e. the fixed treatment effect), and -
we es't'ima,te.the pooled treatment effect. Now let MD;, 1\7I\D1 and V(l\//I\D,-) be a trué value
of the mean difference from the ith trial (i = 1,...,5), an estimate of MD; and a variance
estimate of 1\7I\Di, respectively. Assume 1\//15z is normally distributed with mean MD; and

known variance V(@i), and .
MD = MD; = :-- = MDs.

_Then, the pooled mean difference is estimated by

and the 95 per cent confidence interval for MD is given by
5

-1/2
Dy — =[-11.40, —10.14].
i=1 V(MD;)

MD + 1.96 x (

These results (seen in Figure 1) indicate that the treatment is significantly effective in reducing
SBP by, on average, 10.77 mmHg more than placebo.
We also examine the extent of heterogeneity in the treatment effect across the 5 trials. It

is generally accepted that meta—analyses should assess heterogeneity, which may be defined-
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as the presence of variation in true effect sizes underlying the different studies (Higgins,
2008). Cochran’s @ test is often applied in meta~-analysis for determining whether there is
heterogeneity in tieatment effects (Coéhran, 1954). For the 5 trials in hypertension, the @
test evaluates a null hypothes1s Ho MD = MD1 = ... = MDjs by using the followmg Q
statistic which has a chi-square d1str1but10n with (the number of trials minus 1) degrees of

freedom:
5

Q=

D 2
(MD; — MD) =4.849 ~ x3.
- .

| = V(MDi)
which provides a p-value of 0.303, and thus there is no strong evidence of heterogeneity.
. Furthermore, I? index is the proport1on of total variation in the estimates of treatment eﬁ'ect
that is-due to heterogeneity across trials, and can easily be 1nterpreted as a percentage of
heterogeneity (Higgins and Thompson, 2002). For the 5 trials in hypertension, 12 is given by
Q-4
Q

Here, according to a tentative classification of I values with the purpose of helping to in-

I’ = x 100 = 17.50 per cent. - (1.1)

terp_ret its magnitude by Higgins and Thompson (2002), the percentages of around 25 per
cent (I2 = 25), 50 per cent (I? = 50), and 75 per cent (I? = 75) would mean low, medium,

Trial name - ‘ Mean Difference [ 95 per cent CI ]
' .
] . .
HEP —. -13.23 [-17.91, -8.55]
1 . .
o . !
EWPHE — S -12.68 [-19.08, -6.27]
[} o
t
MRC-2  —— -10.65 [-12.31, -8.98]
]
I .
SHEP —- -11.51 [-12.60, -10.42 ]
Bl , .
. )
Sy-Eur Pl --10.18 [-11.07, 9.29]
_
] . B
Summary > -10.77 [-11.40, -10.14]
I T T 1
20 -15 0.5

Mean Difference

Figure 1. Forest plot of 5 trials in hypertension.



Table II. Summary of the 5 trials in home safety education, included in the meta-analysis of
Sutton, Kendnck and Coupland (2008) '

. Intervention group . Control group _ .
. No. of Number of participants- Number of participants Log odds ratio Proportion of
trial* - with a stair gate / total with a stair gate / total (s.e.) male participants
Trial 1 28 / 49 ) 25 [ 47 : . 0.16 . 0.51
: (0.41) _
Trial 2 76 / 85 70 /89 0.83 ’ 0.48
. (0.44) :
. Trial 3 25 / 57 o 18/85 . 064 0.48
_ : (0.40) : :
Trial 4 408 / 742 : 328 /718 0:37 . 0.52 -
_ . (0.11)
Trial 5 250 / 363 v 239 / 360 0.11 . © 0.52
: _ _ _ . (0.16)

s.e.: standard error.
*Each trial is arbitrarily numbered, dlﬁ"erently from Sutton, Kendrick and Coupla.nd (2008)

and high heterogeneity, respectively. Thus, the I 2 vaine (1.1) again indicates potential lovs:r
heterogeneity across the 5 trials. Therefore, we conciuded thét any models with fixed treat-
men'f effects, which are introdhced in Chapter 2 and Chapter 3, conld be appropriate for the
5 trials in hypertension. | R

It is also clinically 1mportant to assess how the age adJusts the treatment effect. The
_hypertensmn data will be used in this paper to demonstrate and critically assess the methods
developed; those interested in more clinical conclusions are referred elsewhere (Wang et al.,

2005).

1.2.2 Home safety education data

Sutton, Kendrick and_ Coupland (2008) performed a systematic review to invéstigate the
effectiveness of home safety education on the pfovision of a safety equipment. in particular,
they meta-analysed 8 trials (Clamp. and Kendrick, 1998; Nansel et al., 2002; McDonald et al.,
2005; Watson et al., 2005; Kendrick et al., 2005; Kendrick et al., 1999; Sznajder et al.,~2003;
Gielen et ol., 2002), which have inspected whether an educational intervention increases the .
ownership of stair gates installed for the prevention of falls in children. As a pafticipant-level
socioeconomic characteristic affecting the intervention effectiveness, they were interested in
whether the family is a single or two-parent household; so that they assessed how the number
of families with a fitted stair gate in the 1ntervent10n group is different between these two

part1c1pant subgroups. The review involved 6 trials (3,447 participants) with IPD and 2 other



trials (193 participants) with AD. And also, participants in 3 trials were allocéted to sbme
 clusters nested witl}in the trials. To illustrate meta-analysis methods introduced in Chapter
2 and Chapter 3, we here carry out a metaianalyéis for 5 (2,565 partiéipants) of 8 tfials,
which are sﬁfﬁciently homogerneous across trials with respect to a treatment effect and a
trial-level covariaté. Although pa,rti(_:ipants in one trial are allocated to 37 clustérs, we ignore
this participant-clustering to avoid' further complexity. We focus on gender of children a;s a
participant-level covariate, and mainly assess how geﬁder affects the intervention effectiveness.
~ The number of participants in each group, and the number of participants with a stair gate
in each group are shown in Table II. The intervention effects (log odds ratio between two |
_ treatinent groups) from each trial are shown in Table I, with positive values in_d'icavting a
beneficial effect. Table II also shows the p@portion of male participants in each trial. There

is small variation in the proportion of male participants across trials.

'Figure 2 shows the forest plot of thé_ 5 trials in home safety education. The position of
~ the black squares represents the findings of the log odds ratios from each individual trial.
Now let log OR;, log6§,; and V(log 6§4) be a true value of the log odds ratio from the |
ith trial (¢ = 1,...,5), an estimate of log OR; observed and a variance estimate of log 6Ri,

-respectively. Assume that 10g6§4 is normally distributed with mean log OR; and known

" No. of trial ' " Odds Ratio [ 95 per cent CI]

]
. ]
Trial 1 ——e———t 1.17 [0.52, 2.62]
1 . .
1 . .
Trial 2 — i 2.29 [0.97, 540]
1]
. . . I
Trial 3 e e | 1.90 [0.87, 4.16 ]
] . :
1
Trial 4 HEH 145 [1.18, 1.78]
; .
1
Trial 5 r—aiy 1.12 [0.82, 1.53]
! .
1
i
' .
1
Summary - 138 [1.17, 1.62]
r T r =
03 . 10 30 90

Odds Ratio (log scale)

Figure 2. Forest plot‘.of the 5 trials in home safety education.



variance V (log 6@), and
OR=OR;=:--=ORs.

AThen, the pooled odds ratio is estimated by

25: log6§,i
OR = exp "5'1 ‘ ( (.)g_. Ri) =138 A
1 .
; V (log OR;)

. and the 95 per cent confidence interval for 6I\{ is given by

. s -1/2
— ) 1 :
exp { log OR £ 1.96 x ( : ———,—-\—) = [1.17, 1.62].
& Vioeomy)
These results (seen in Figure 2) indicates that the the intervention significantly increases the
probability of ownership of the stair gate more than control on average.

We also examine the extent of heterogeneity in the treatment effect across the 5 trials.

The Q test gave a.Q statistic

Q= i (log OR; ~ log OR)” _ 4067 ~ 3.
=1 Vlog ORa)

and its p-value of 0.397, and thus there is no strong evidence of heterogenelty Further, I?
index computed in the same way for (1.1) was 1.65 per cent. This agam indicates potentlal
low heterogene1ty across the 5 trials. Therefore, we concluded that fixed treatment effect
models mtroduced in Chapter 2 and Cha,pter_ 3 could be a.pproprlate for the 5 trials in home
safety education. |

~ Itisalso clinieally important to assess how gender of children adjusts the treatment effect.
The home safety education data will be used in this paper to de'mo_nstrate and critically assess
the methods develo'ped; those interested in more clinical cohclusions are referred elsewhere

(Sutton, Kendrick and ‘Cou;')land, 2008).

1.3 Cemponents of this paper

In Chapter 2, we introduce IPD and AD in two situations where: (i) a single continuous
outcome and a single continuous covariate are observed from each patient, (ii) a single binary .

outcome and a single binary covariate are observed from each patient, and describe IPD
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meta-analysis models and the MR models for each situation, respectivelﬁr. We also dis_cuss
the differences between the within-trial and the across-trial interaction. Throﬁgh applications
to the ‘hypertension data and t,helhome_ safety education data, the methods are illustrated.
Furthermore, for the.caslé .that some trials provide IPD and the others provide onlyfAD,
we describe existing models for combining IPD and AD. In Chapter 3, we describe our
new meta-analysis method with marginaliéing the missing IPD for the situation (i). The -
method is extended to combine IPD and AD. We also describe meta-analysis methods based -
on simulated IPD. The methods are ,expla,inec‘il by frequentist and ‘Bayesian perSpectives,
and applied to both situations (i) ‘é,nd_. (). In Chapter 4, we conduct simulation studies
to examine the performance of the proposed method with marginalising the missing IPD in
~ comparison to exi.sting methods. Furthermore, anbthér simulation study and an applicatidn
to the hypertension data are conducted to assess the benefit of using simulated IPD. Finally,

in Chapter 5, we conclude this paper with some discussion.
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-2 Existing ‘methods

Consider a meta-analysis of N trials in which patients are assignéd to either a treatment group’
(T) or a control group (C). Let n; be the number of patients in the ith trial (¢ = 1,...,N),

. myt and n;c be the numbers of patients for the treatment and the control group, respectively.
Here, let y“ and z;; be a patient-level outcome and covariate observed from the jth patient
(j = 1,...,n;) in the 4th trial, and let z;; be coded 0/1 to denote control/treatment group.
We here describé some existing meta,-analysisl methods,for two data situations (continuous
lkoutcome and cova,ria.te,'and binary outcome and covariate). We also consider the caée'fdr

mixture IPD and AD.

2.1 Continuous outcome and covariate

Let yi; and z;; denote a continuous outcome and a continuous covariate value from the jth -
patient in the ith trial. If just meta-analysing the IPD; i.e. (v, iij, zzj) fori=1,... ,N and
j=1,...,mn4 Riiey et al. '(2008) proposed the following one-stagé-modél that accounts for the
clustering of patients within trials by a trial-specific intercept (¢;), and estimates a‘pooled
treatment-covariate interaction (yw) based on within-trial information separated from the =

across-trial interaction (ya):

Yij = @i +Oxij + paij + YaziiZ + ywij (2 - z) + €ij, ‘ (2.1)
éij ~ N(O, 0’;),

j=1,...,n5;4=1,...,N.

Here, ¢; is the fixed intercept for the ith trial (which essentially accounts for clustering of
patients within trials), 6 is a fixed hypothetical ffeatment effect in a triél with 2; = 0, u is
a mean change in control group outcome for a one-unit increase in Zij, YA and yw are the
across;tfial and the within-trial effect of treaﬁment-covaria;te interaction, respectively, and

Z = Z;‘;l #ij/ni denotes a mean covariate in the ith tria]. Note that, 0, pu, ya and Tw
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are treated as fixed effects here, and 05 is assumed to be common across trials. In contrast
to Riley et al. (2008), model (2.1) includes a common g and o2 across trials rather than
a trial-specific p; and agi for the ith trial. These assumptions are necessary to build the
proposed method (see Chapter 3). According to a recommehdation by Riley et al. (2008),
the _treatmént-covariate interaction is separated into the across-trial énd the within-trial
effect. - This separation is clinically important to avoid making a wrong conclusion a.Bout the
treatment-covariate interaction, WhiCh‘ might occur if wrongly amélga,mating the across-trial
and the within-trial effects (Riley and Steyerberg, 2010). One should pay atteﬁtibn to the '
fact that the across-trial relationships can be very different from the within-trial relationships
due to ecological Bias and/or trial-level confounding (Riley, Lambert and Abo-Zaid, 2010).
This modelling framework is also discussed in the context of regression analysis of clustered
data (Neuhails and Kalbﬂeisch, 1998;. Begg and Parides, 2003).

In general meta-analytic situations, we observe only the AD from each trial, rather. than
the IPD from each patient. Here, the AD consist of sample means and sample variances for
individual observations in each group and trial; i.e. (%, SziT’ zZT, sziT, Tic» 532”'0’ Eic,‘sgi'c) for

t=1,...,N, where

o Zje'r-yij 2 _.EjeT(yij - Qz‘T)2 . ZjeT Zij 9 ZjeT(zij — gz.T)z
Vit = — niT P SyiT - ;T — 1 s T = ner y SuT =  ngp — 1 "y
. (1 . 0} N 73 .

Jic = M 2 = Y jecis — Fic)? . = > jec %ij 2 Y jec(zi — Fic)?
’ R mic—1. 9T Tpg 0 HOTT oot

~ Then, an MR model can be applied to the AD as follows:

di=a+pB%+e, | | (2.2)
€~ N(07 0'31')7
i=1,...,N.

Heré, di = it — ¥ic denotes a mean outcome differehce between groups from the ¢th trial,

and the error variance is assumed to be known as

2 T + 10 o
o =V(di) = ——sy;

v TG :
where

v T + NG = 2 '
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If we assume z;; = Z; in model (2.1) with trial-specific error variances, we have

Yij = i + O%ij + pZi + YATiZ + €ijy (2.3)
65 ~N(O,02),

j=1,....,n5 i=1,...,N.

When first taking an average of both sides in model (2.3) for each group and trial, and
subtracting the average of the control group from that of the treatment group for each trial,

a model for the mean outcome differences between groups can be derived as follows:

T — Gic = 0 + A% + &;

o n;T + Nic
(oMt )
;TN C

i=1,...,N

‘where 02 is estimated by 6 o z-. This model has the same form as the représentation of

yi
the MR model (2.2); so that, under an asSumption of z; =%, 0 and ~a in model (2.1) are
~ equivalent to o and’ ,8 in the MR model (2.2), respectlvely This means that the MR ‘model
(2. 2) gives a restrlctlve result about the across-trial relationships under a cond1t10n that
variation of the covariate is equal to zero. However, we have more interest in the paramete_r
of yw, which represents an increase in the treatment effect according to one-unit increase in
the patient-level covariate z;;. Thus, if we intend to estimate ~vyw by using the estimate of -
B, this might lead to an incorrect conclusion for the treatment-covariate interaction. When

the number of trials and variation of 3; across trlals are small, due to the ecologlcal bias, the

statistical power of 3 becomes much lower than those of W (Simmons and Higgins, 2007)

Apphcatlon to hypertensmn data

Con51der the hypertension data, and we now demonstrate how age modify the treatmentvv
effect on change in SBP (follow-up minus baseline). Fitting model (2 1) to the IPD from the
© 5 trials, estimates of each parameter in model (21) were 0 = 35.95 (s.e. = 32.83 and p-value
= 0.273), it = 0.035 (s.e. = 0.039 and p-value = 0.370), 9o = —0.662 (s.e. = 0.464 and‘
p-value = 0.154) and 4w = 0.087 (s.e. = 0.055 and p-value = 0.114), respectively. Fitting
the MR model (2.2) to the‘AD from the 5 trials, estimates of each parameter in model (2.2)
were & = 43.13 (se. = 32.94 and p-value = 0.188) and 3 = —0.766 (s.e. = 0.466 and p-value
= 0.100), respectively. The across-trial relationships (9 and 44) obtained by fitting model
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(2.1) were similar to those (& and §) obtained by fitting the MR model (2.2). A slight
difference between § and & (or 4a and 3) is due to model assumptions; so that the MR model
(2.2) assumes known error varian'cee (0%) for each trial while medel (2.1)-assumes a common
error variance (02) across trials, a,nd.é and ﬁA.are affected by ﬂ and ’yw 'The across-trial
-'relatlonshlps had much larger standard errors in companson with those of the w1th1n—tr1al,
relatlonshlps (& and fyw) As for the treatment-covariate interaction, the across-trial effect
was substantially different from the within-trial eﬂ'ect on the point estimates. This shows

the importance of separating the within-trial interaction from the across-trial interaction,

2
2
&5
g o
&= ,
e - P
.-
! | | | | |
69 70 71 72 73 74
Mean Age

Figure 3. Scatter plot for the 5 trials in hypertension with across-trial and within-trial
" interaction effect estimates, in which: .

¢ A solid line represents the across-trial interaction ('yA) between mean age (%) and treatment
effect estimated by fitting model (2.2). :

e Dashed lines represents the .within-trial interaction (§w) between age and treatment effect
estimated separately within each trial using IPD and model (2:1) without .

o The gradient of each dashed line indicates the change in treatment effect for a one year increase
in age within each trial.

¢ The width of the dashed line about the centre of each 01rcle is defined by 1 times the standard
deviation of age in each trial.

o Each circle represents a trial and is centered at Z; in each trla,l the circle size is proportional to

the sample size in each trlal
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as chance, confounding.a,nd/ or ecological bias is causing the across-trial effect to act in the .
opposite direction of the within-trial effect here. If we used a model without separation of the

across-trial and the within-trial interaction, we would get a,:potentially wrongly amalgamated

result on the interaction betwéen_treatment and agé. The standard error of 44 was also much =

larger than that of 4w, becaiuse the number of t.rials was small and the mean ages were fairly
homogeneous across the 5 trials. There wés no observed between-trial heterogeneity in the
within-trial interaction (12 = 0%), and thus the fixed effect assumption is also plausible for.
this parameter. Figure 3 also shbws this difference between 4o and Aw; the within-trial
interaction (dashed lines) have almost flat gradients, especially in the larger trialé, while the
across-trial interaction (solid line) has a steep negative' gradient. It highlights pitfall of using

4 to make inferences about 4w, that is, ecological bias and confounding,.

2.1.1 The case for mixture of IPD and AD

Consider a meta,-analyéis of N’ trials which consist 6f N trials providing AD (AD trials)
and N’ — N trials providing IPD (IPD trials). The IPD trials provide the patient-specific
observations; i.e. (yij,%ij,2;) for i = N +1, .'..Y,N’ and j = 1,...,n; When a mixture of
IPD and AD trials are available, model (2.1) must be modified to combined IPD and AD. The
simplest solution iS to reduce the collected IPD to AD and treat all the data as AD, so fhat
any .information on the individual-level associations from the IPD trials is lost. Alternately,
one could use 6n1y the collected IPD, so that available information .from_ the AD trials is
thrown éway. In contrast, Riléy et al. (2008) proposéd a model for combing IPD and AD,
which simultaneously estimates the within-trial relationships (using just the IPD trials) and
the across-trial relationships (using both IPD and AD trials). All these approaches are .now
described. o | ' :

Meta-regression model that uses only AD from all trials

Once the IPD for trials i = N.4-1,..., N are summarised to the AD, the MR model (2.2)
can be applied to the AD for all trials ¢ = 1,...,N'". a

Model that uses only IPD trials available

If one uses only the collected IPD, model (2.1) can be applied to the IPD from trials 7 =
N +1,...,N'. When the number of IPD trials is one (ie. N’ = N + 1), model (2.1) is
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modified as follows:

i = i+ Omig + g + Ywaig (2 — &) + €y - (29
615_7' ~ N(O,Uf,), _

j=1,...,n3 i=N.

This is because one céynnot estimate the aéross-trial interaction yao with a single trial.

Model that uses both IPD and AD trials

The model for combining IPD and AD prbposed by Riley et al. (2008) is as follows:

Yij = Dids + 0zij + Dipz; + ya%iiZi + Divwsj (25 — Z) + €55, (2.5)
E;j ~ N(Oa V;*)

where D; is a dummy variable to distinguish IPD trials from AD trials. For the ¢th IPD
trial (i = N+ 1,...,N'), D;. =1, y;"j = Yij, VZ* = 05 and z;‘] = 2;;.- For the ith AD trial
(i =1,...,N), there is only one outcome (j = 1) and D; =0,z =1, yj; = d, Vi =V(d)
assumed known, and zj; = Z. Model (2.5). ensures that the AD from trials § = 1; .., N
help to estimate only the across-trial relationships (0 and 7,), whéfeas the IPD from trials -
i = N+1,...,N’ help to estimate all the parametei‘s. That is, bonly the collected IPD
contributes to the estimation of the within-trial relationships (n and ’yw) As in model (2.1),

‘we again assume that 8, u, yao and yw- are fixed effects, and'ag is common across trials.

Applicati-on' to hypertension data

Consider again the hypertension data, and we now demonstrate how age modify the treatment
effect ‘on change in SBP (follow-up minus baseline) ih the case that some trials provide IPD
and the others provide only AD. To imitate situations invoiving IPD for sorﬁe trials and only
AD for others, we generated scenarios where only a limit'éd number of trials (from 1 to 4 of
the 5 trials) providéd IPD, and the other trials just provided AD as presented in Table I,
‘ which is typical of the AD é,vailable to 'metva-analysts in practice. 1n each scenario, we carried
| out analyses by: (i) fitting the MR model (2.2) to AD from all 5 trials, (ii) fitting model (2.1)
or (2.4) to IPD from only IPD trials available, (iii) fitting model (2.5) to the mixture of IPD
and AD from all 5 trials. In both parts (ii) and (iii), the analyses were run for each .possible
combination of IPD and AD. triais. For example, in the scenario that 2 trials provide IPD

(i.e. 2 IPD trials and 3 AD trials); we performed 10 analyses, one for each combination of °

18



which 2 trials provide IPD and 3 provide AD. In each scenario, we compéred the results with

‘those from a meta-analysis of IPD from all 5 trials (i.e. full IPD analysis), allowing us to
empirically assess the vperformance of each method and identify the value‘_of; combining IPD
and AD in practice. , , . , |

The results by each method are shown in Table I Fitting the MR model (2.2) to the
AD for all 5 triais naturally provided results only of the across-trial relé,tionships (e and
B), whose estlmates and standard errors were close to those of 8 and -ys from the full IPD
analys1s Fitting model (2.1) or (2 4) to only avallable IPD provided both of the results for |
- the within-trial and across-trial relatlonshlps. Estimates of yw and their standard errors got
close to those from the full IPD analysis rapidly as the proportion‘of trials providing IPD
- increased; however, estimates of ya differed seriously from those from the full IPD éﬁalysis
with huge standard errors, especially in the case of small proportlon of IPD trials.

The strategy of combining IPD and AD by ﬁttmg model (2.5) allowed us to not only get
more accurate results for the across-trlal relationships but also evaluate on the within-trial -
relationships with a certain degree of precision. Including AD trials remarkably improved
the precision of e_stixhates for the across-trial relationships in combafison with analyses by =
using only the collected IPD. It was also conﬁrmed that model (2.5) 'coriectly allowed only
~ the IPD trials to estimate g and yw. This explams why the standard errors of yw increase
. .as the proportlon of IPD trials decreases and emphasises why it is better to obtain IPD from

all trials.

2.2 Binary outcome and covariate

>We now suppose that a single binary outcome variable Y and a single binary covariate Z are
observed for each patient in each trial. Let yij and z; be a binary outcome and a binary
covariate value for the jth patient (j = 1,...,n;) in the sth trial.

If just meta-analysing the I_PD;bi.e. (yij, %sjs 2i5) for i.=1,... ;N and j = 1,...,n;, one
can use the following one-stage model that accounts for the cluétering of patients by a trial-
specific eﬁecﬁ (¢5), and estimatesia pooled treatment-covariate interaction (WV) ba,sed on

within-trial information 'sépara,ted from the across-trial int_eractioh (va):

Yij ~ Bernoillli(qij) ’ ' : . (2.6)

log = ¢0 + ¢1, + 9271,] + ,uzm + 'YAx'LJz'L + YWZij (Z’LJ - zi),

1
' ]=1,...,ni; i=1,..,N.
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Table 1L Average of estimates and their standard errors for each parameter when analysing
change in SBP (follow-up minus baseline) from the hypertension data, where estimates are

averaged across all combinations of IPD trials.

Average of Average of
estimate . standard error
- Number of trials  Only-  Model Only- Model
providing IPD*  IPD (2.5) IPD (25) -
5/ 5 ' 35.95 v 32.83
~ 4/5 2940  43.39 4177  33.10
Hypothetical 3/5 329  43.34 65.05 3275
treatment . .
effect § - 2/5 —-31.55 43.56 129.2  32.89.
o 1/5 ~11.86  44.45 1.480 . 32.85
0/5t - 43.41 - 32.94
5/5" 0.035 0.039
v 4/5 - 0027  0.027 0.045  0.045
Covariate S
effect 3/5 -0.017 —0.018 0.059  0.059
2/5 . —0117 —0.117 0.091  0.091
1/5 - —0.311 - —0:303 0.176  0.175
5 /5" —0.662 : 0.464
, B 4/5 ~0.569 —0.766 = 0.590  0.468
- Across-trial 3/5 —0.199 —0.766 0.920  0.463
interaction .
effect ya - 2/5 0.293 —0.768  1.831  0.464
' 1/5 NA - -0.781  NA  0.464
0 /5! - —0.766 - 0.466
A _ 5/5* . 0.087 : 0.055..
Within-trial 4/5 0.092  0.091  0.063 0.063
interaction 3/5 0.116  0.117 0.084  0.084
effect yw '
R - 2/5 . 0165 0166 0131 0.130
1/5 0252  0.244 0.259  0.258

Only-IPD: Fit model (2.1) or (2.4) to only the collected IPD.

Model (2.5): Fit model (2.5) to the mixture of IPD and AD.

*Results by fitting model (2.1) to the full IPD from all 5 trials.

Results by fitting the MR model (2.2) to the AD from all 5 trials.

!The numbers of combinations of trials providing IPD are 5, 10, 10.and 5
_in the scenarios of 1, 2, 3 and 4 IPD trials, respectively.

NA: Not available
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Here, Berﬂoulli(qij) represents a random variable following Bernoulli distribution with proba- '
bility g;5, ¢o is a fixed intercept, ¢; is the fixed effect for the ith trial, @ is a fixed hypothetical
* treatment effect in a trial with Z; = 0, u is a log odds ratio befween covariate subgroups in
control groﬁp, ~va and ~yw are the across—trial and the &itMn—trial interaction effect respec-'
tlvely This modelling framework were proposed by Riley and Steyerberg (2010) in the case
of bmary outcomes w1th a single group. Note that, as in model (2.1), 6, p, YA and 'yw are
treated as fixed effects here

In general meta-analytic situations, we observe only the' AD from each trial, rather thaﬁ
the IPD from each patient. Here, the AD consist of the grouped forms of out.come and
_ covariate; i.e. (niT, miT,Nic, Mic, %) where ngt (or n;c) is the number of patients assigned |
to treatment (or control) group in the ith trial, m;r (or myc) is the number of patients with
Y=1 in n;T (or nic) patients, and z; = ZJ 21 %j /nz is the proportlon of patients with Z =1
in the ith trial. Then, an MR model which has the same form as model (2.2) can be applied
to the AD, where
myt(nic — Mic)

di =1 _
1708 mic(niT — miT). >

and-

=V = b — L L 1

S MyT T — YT TG MGG — YT
As another approach for meta-analysing the AD, we here consider to partially recreate a
binary data form of IPD from the grouped form of AD, where patients with Y =1 er Y=0
in each group‘are represented by a series of ones or zeros (Riley, Simmonds and Look, 2007).
In particular, (nik,rﬁik) for i =1,...,N and k € {T,C}, where k is a group indicator that
| takes a value of T for treatment or C for control, are rewritten as (Ysjys5) for i =1,.. LN
and j = 1., e ,'n,z Since it is impossible to recreate the patient-level covariates directly from’

the AD, the information of covariate is limited to Z; for each trial. Then, one can use the

following model:

Yig ~ Bernoulli(qij,)' : ' ' : (2.7)

. IOg 1 = ¢ + ¢z + oxlj + ')’sz]zza
i= 1,.. .,N.

Thompson, Turner and Warn (2001) suggested that this direct modelling would be appropri-

ate in comparison to using the ordinary MR model where the log odds ratio estimated from
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each trial are assumed to be normally distributed with known vafiances, especially when the
‘observed évent. probabilities in a particular trial are close to 0 or 1, ‘and where the sample

size in each trial is small.

Application to home safety education data

Consider the home safety education data, and we now demonstrete how gender of children
modifies the intervention effect on the pfovisien of a stair gate. Fitting model (2.6) to the IPD
from the 5 trials, estimates of each parametef in model (2.6) were 6 =17.184 _(s.e.v =4.300 and
p-value = 0.095), i = 0.071 (s.e. = 0.116 and ﬁ-value = 0.541), 44 = —13.31 (s.e.v =8343and
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AProportion of Male Patients

Figure 4. Scatter plot for the 5 trials in home safety education with across-trial and
within-trial interaction effect estimates, in which:

o A solid line represents the across-trial interaction (44 ) between the proportion of male patients
(2:) and intervention effect estimated by model (2.7).

e Dashed lines represents the within-trial interaction (jw) between gender of children and inter-
vention effect estimated separately within each trial using IPD and model (2:6) without ~ya.

¢ The gradient of each dashed line indicates the change in intervention effect from females to
males within each trial;-the length of the dashed lines is unlmportant and is kept the same for
each simply. to aid clarlty .

e Each circle represents a trial and is centered at Z; in each trial; the circle size is proportlonal to
the sample size m each trial.
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p-value = 0.111) and 4w = —0.212 (s.e. = 0.165 and p-value = 0.199), respectively. Fitting
model (2.7) to the AD from the 5 trials, estimates of each parameter in model (2.7) were
6 =1176 (s.e. = 4.299 and p—yé.lue = 0.095) and 4a = —13.3d (s.e. = 8.341 and p-value =
: 0:.111), respectively. The across-trial interaction was substantially different from the within-
trial intéréction on the point estimates. As suggested in the application to the hypertension
data, this shows the impoitdncé of séparating the treatment-covariate interaction. If we used
a model without separatioh_ of the across-trial and the within-trial interaction, we would get a .
potentially wrongly'a,ma_lgamated result on the interacvtion.betweeﬁ intervention and gender.
The standard error of 44 was also much lax_'gef than that of 4w, because the number of triais :
was small and the proportion of male participants were fairly homogeneous across the 5 trials.
Figure 4 also shows this diﬁerence between 45 and 4w; the within-trial interaction (da,shed'
lines) héve almost flat gradients, where the‘ac_ross-trial interaction (solid line) has a steep
negative gradient. It hig_hlighté the pitfall of using 44 to make inferences a,boutv. 4w, that is,

ecological bias and confounding.

2.2.1 The case for mixture of IPD and AD

Consider the same case sup'pos'.ed in Chapter 2.1..1; i.e. a meta-analysis of fhe mixtﬁre of N
AD trials.‘and N’ — N IPD trials. When a mixture of IPD and AD trials are available, model
(2.6) must be rﬁodiﬁed to combine IPD and AD. As mentioned in Chapter 2.1.1, simple
solutions are to deal all the data as AD, or to use only the collected IPD. In contrast, Riley
and Steyerberg (2010) proposed a model for combing IPD and AD. All these approaches are

now described.

Model that uses only AD trials

Once the IPD for trials i = N + 1,...,N' are summarised to the AD, model (2.7) can be
applied to the AD for all trials ¢ =1,..., N’ A

- Model that uses only IPD trials available

If one uses only the collected IPD, model (2.6) can be applied to the IPD from trials § =
N +1,...,N". When the ‘number of IPD trials is one (ie. N' = N + 1), model (2.6) is
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modiﬁed as follow:
?}z‘j ~ Bernoulli(qz'j), . : B (28)
g _ ¢0 + ¢1, + 0.’17;] + iu'zij + me (ZU )

1’_‘%1 ]
j=1,...,n4 ¢ =N.

Model that uses both IPD and AD trials

The model for cdmbining IPD and AD proposed by Riley and Steyerberg (2010) is as follows:
Yij ~ Bernoulli(qij) _ ' | (2.9)

where D; is a dummy variable to distinguish IPD trials (Di = 1) from AD trials (D; = 0),
~and (y;j, ;) for the AD trials ¢ = 1,..., N are recreated from (n, m) for k € {T, C} by
' the‘same way deséribed above. As_ in'model (2.5), Model (2.9) ensures that the AD from
trials ¢ = 1,..., N help to estimate only the across-ti'ial'relationshjps (@ and YA), whereas
the IPD from trials i = N +1,..., N’ help to estimate all the parameters. We again assume
that 6, u, yao and YW are fixed effects.

Application to home education data

Con.sider' again the home -safefy edu’cétion data, and we now demonstrate how gender of
children modifies the intervention effect ‘on the provision of the stair gdte .in the case that
some trials provide IPD and the others lprovide only AD. To iixiitate situations involving IPD
for some trials and only AD for others, we generated scenarios in the same manner as‘the
application to the hypertension data; i.e.. we assumed that only a limited number of trials
(fr_om 1 to 4 of the 5 trials) provided IPD and the other trials just provided AD as presented
in Table II. In each scenario, we carried out anal}ises by: (i) fitting model (2.7) to AD from
all 5 trials, (ii) fitting model (2 6) or (2.8) to IPD from only IPD trials available, (111) fitting
model (2. 9) to the mixture of IPD and AD from all 5 trials. In both parts (ii) to (iii), the
analyses were run for each possible combination of IPD and AD trials. In each scenario, we
compared the results with those from a meta-analysis of IPD from all 5 trials.

The results by each method are shown in Table IV. Fitting model (2.7) to the AD for all
5 trials naturally prov1ded results only. of the across-trial relationships. Fitting model (2.6)

or (2.8) to only available IPD prov1ded both of the results for the w1thm-tr1al and across-trial
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: relationships. By the similar trend shown Table III, estimates of yw and their standard errors
got close to those from the full IPD analysis rapidly as the prop'oit-ion of trials providing IPD
increased; however, the estimates of W'A diﬁered seriously from those from the full iPD 'analysis
with huge standard errors eépecially in the case of small proportion of IPD trials.

As in the application to the hypertension data, the stra,tegy of combining IPD and AD
b); fitting model (2.9) improved the precision of estirﬁdteé for the across-trial relationships in
compafison with analyses by using orﬂy the collected IPD. It was also confirmed that model

(2.9) correctly allowed only the IPD trials to estimate p and yw.
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‘ Té,ble V. Average of estimates and their standard errors for each parameter when analysing

the home safety education data, where estimates are averaged across all combinations of

IPD trials.
Average of ' Average of
v estimate *  standard error
Number of trials  Only- Model Only- Model
providing IPD¥  IPD (2.9) " IPD (2.9)
5/5 1184 4.300
4/5 7321 7179 5.010  4.300
Hﬁ;gﬁﬁf:‘ 3/5 a3 77 o 7am 430
effect § 2/5 -7.953  T.155 58.90  4.302
' 1/5 0420  7.223 0.307 4315
0/5t - 7.176 - 4.299
5/ 5" 0.071 0.116
. 4/5 0.082  0.081 0.135 0.135
%‘;fv:crtlife 3/5 0076 0075 0.170  0.169
: 2/5 0.045 0041 ° 0.239 0.239
1/5 . -0.042 —0.056  0.424 0.424
5/ 5* - -13.31 8343
: . 4/5 ~13.60 —13.30 9.726 8344
Across-trial . 3/5 . 1546 —13.29 13.99 8345
interaction -
effect ya - 2/5 17.96  —13.26 120.5  8.347
1/5 NA  —13.39 NA 8371
0 /5t - -13.31 . 8.343
4 5/ 5 -0.212 ~0.165
Within-trial 4/5  —0.225 -0.22 0192 0.192
interaction 3/ 5 —-0.218 -0.218 0.242  0.242
effect yw . .
' 2/5 . -0.178 —0.176 . 0.343 0.344
1/5  —0.048 —0041  0.615 0.614

Only-IPD: Fit model (2.6) or (2.8) to only the collected IPD.
Model (2.9): Fit model (2.9) to the mixture of IPD and AD.
*Results by fitting model (2.6) to the full IPD from all 5 trials.
* TResults by fitting model (2.7) to the AD from all 5 trials.
*The numbers of combinations of trials providing IPD are 5, 10, 10 and 5
in the scenarios of 1, 2, 3 and 4 IPD trials, respectively.
NA: Not available : :
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3  Proposed methbds

| 3.1 Meta-analysis with marginalising the missing IPD

A structural limitation of the MR model (2.2) and model (2.7) is fh_at their inferential objec-
tives are restricted to the across-trial relationships (the hypothetical treatment effect and the
across—tﬂal interaction effect). As illustrated in Chapter -2, the across-trial relationships are
prone to trial-level confounding and ofteﬁ suffer from large standard error, in comparison with
the within-trial relationships (the covariate effect and. the within-trial interaction effect). We
now introduce a meta-analysis method for estimating not only the aéross—trial relationships
but also the within-trial relationships when" all trials provide only AD..The proposed method
is simply extended to the cﬁse that some trials provide IPD and the others provide only AD
(i;e. to combine IPD and AD). We here suppose the situation where a single continuous

outcome and a single continuous covariate are observed from each patient in each trial.

3.1.1 The case for only AD

Consider a meta-analysis of N trials which provide 6nly AD. Original IPD which have been
observed in each trial can be regarded as missing data. We first assume the following IPD

metaréna,lysis model to the missing IPD:
Yij = ¢ + 0xij + pzij + YaTiiZ + Ywij (25 — Zi) + €ij o (3.1)
€ij ;\',N(O,GZ),
J=L..5n5 0= 1,...,N

where (giT,sziT,EiT,sgiT,yic, 82,0, %ic, 8%c) are available for the ith trial, in place of the

patient-specific observations (yij, zij, 2i5) for j = 1,...,n;. Then, we cannot obtain maximum

likelihood estimates (MLEs)‘ of parameters of interest directly from (3.1) for the reason that
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each trial provides only AD. Indeed, sufficient st_atistiés for model (3.1) are given by

S N Y & Yuin,

jET JET j€T JET JET

2 2 "
Z Yij» Z Yij» Z 2ig Z_Zij’ : Z Yij2ij .
jec jec Jj€eC jec jec

fori=1,...,N; while } cm 4352 a_nd. >_jec Yij#ij are not available.

~ To estimate the paraméters included in model (3.1) by using only AD, the covariates
of patients assigned to the treatment (or control) group in the ith trial are assumed to be
independent and identically distributed normal random variables with mean My (Or mzig)

and variance o2 (or 02,.); ie.
"‘N(mr, 02, jeT
Zij ~ ( Ztdy zzT)’ J ) ‘. (32)
N(mzic, 02c), j€C : S
J
distribution (3.2) are estimated by

‘Here, z; = Z’il 25 /m; is considered to be constant, and parameters included in the covariate

- = ~2 2 N S - a2 2

MAUT = ZTy  OrT = SuTy  MaiC = ZC, O3 = Szic (3.3)
fori =1,...,N. If we also assume that zj and €;; are independent of each other, we have
the following conditional distribution of y;; given z;;:-

N(¢i + 0+ (4 + vw)zi; + (4 — YW)Zi,02), jET

o (3.4)
N(¢z + M4, GZ)a _ .7 eC

Yijlzij ~
And then, marginalising the joint distribution of (y;-,-, z;;) with respect to z;, we have the
following marginal distribution of y;;: '

. N(myiTQ aziT)a JjeT . :
[ . ’ N(min’ ain), J € C
where
 Myit = @i + 6 + v + YaZ + ’Yw(ﬁiziT - Z), ' (3.6)

T 242 2
oyir = (B +YwW)°051 + 0f

Myic = ¢ + PMzic, - ‘ (37)

2 252 2
Oyic = W 0hic + 0y
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_Therefore, a log-likelihood function for the parameters (¢>1, o ON, 0, 11y YA, YW, UZ) included
in model (3.1) is glven by -

Z T {(sz $i — 0 — privsir % = yw izt — %))2 + Sf,iT}
2 (b +yw)?62p + 02

nic {(yic — ¢i — piinzic)? + szic} 58
_ ' » 3.
o p262,. + 05 -

—nar log((1 + Yw)?621 + 03) — nic 10g(# ¢hc +02)] .

A remarkable aspect of using the log-likelihood (3.8) is that the correlatidn between y;; and
Z;j are replaced with the correlation between §;T and M, OF Pic and M. Sincé we cannot
compute MLEsS of the parameters from the log-likelihood (3.8) in a closed-form, it is necessary

to use an 1terat1ve numerical computmg algonthm such as Newton—Raphson method.

3.1.2 The casé for nﬁixture of IPD and AD

Consider the meta-analysis of N’ trials which consist of N AD trials and N’ — N IPD trials.
As in Chapter 3.1.1, we first assume the IPD meta-analysis model to the collected IPD and
the missing IPD; i.e. ' '

Yij. = ¢i + 0zij + peij + VAT %+ Yywrii (%5 — %) + €y - (3.9)

eij ~ N(0,07),

j=1,...,n5 i=1,...,N'
where (ﬂiT,.SZiT,ZiT,Sgi'ra??icaszic,iicaégic) fori=1,...,N and (Yij> ®ij, 2i5) for i = N +
1,...,N'and j = 1,...,n; are available. Because all trials are independent of each other, a
log-likelihood for the parameters included in model (3.9) can be derived as summation of the

‘log-likelihood for the AD trials and that for the IPD trials. The former is élready given by

(3.8), and the latter is simply given by using the normal densities as follows:

lipp =
5 Z Z {- loga — a5 2 (yij — bi — Omij — paij — YAz Z — Ywaii (2 — %))} -
z_N+1 j=1 o
Then, we can estimate the parameters (@15 DN, 05 1y YA, YW 05) included in model (3.9)

. by maximising the log-likelihood
lap + lipp
with respect to the parameters.
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3.2 Meta—analysis based on simulated IPD -

Subsequently, we introduce meta-analysis methods based on simulated IPD (SIPD), in which
the missing IPD are reconstructed by using the scheme of marginalising the missing IPD. For
the case that all trials provide only AD, the proposed method takes the following procedures

for inference of parameters.

For the case that all trials provide only AD:
(1) Generate multiple sets of SIPD for each trial.
(2) Fit an IPD meta-analysis model to each set of SIPD.

(3). Suitably summarise resulting estimates from the set of meta-analyses from Step (2).

We refer to these whole estimating processes as SIPD method.. Figure 5 shows a flow diagram
~ of the SIPD method. Furthermore, for the case that some trials provide IPD and the others
provide only AD, the proposed method is extended to combine IPD and AD.

For the case that some trlals prov1de IPD and the others prov1de only AD:
(1) Generate multiple sets of SIPD for each trial providing only AD.
(2) Fit an IPD meta-analysis model to each set of SIPD combined with the collected IPD.

(3) Suitably summarise resulting estimates from the set of meta-analyses from Step (2).

- STEP(1) STEP (2) STEP (3)
Modeling and simulation Analysing Summarising

mEN

- Figure 5. Flow diagram of SIPD method.
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STEP (1)
Modeling and simulation

g / SIPD

/ trials

~®@

STEP (2) '_ ~ . STEP-(3)
Analysing - Summarising

_+-

. ) Combined
, result

> Game

Figure 6. Flow diagram of SIPD method with combined the collected IPD.
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Figure 6 shows a flow diagram of the SIPD method with combined the collected IPD. In
this chapter, each step in the SIPD method is deseribed in detail for two situations of meta-

analysis data (continuous outcome and covariate, and binary outcome and covariate).

' 3.2.1 Continuous outcome and covariate
Now, let
Yhiss-IPD = {(yij,:z:ij, Zij) i=1,... izt =1,.. ) N},
Yap = {(g’iT’ 332/,'.Ta 2T, sziTa giCa 332/1-0;2’1307 35,-0) : 7"‘_" 17 R ) N}
where Ynissipp is the uncollected IPD for trials ¢ = 1,...,N and Yap is the AD sum-
marised from them. Suppose that Yap can be written by a function A(Ymissipp); i.e.
Yap = h(Yniss-1PD). Now, the function h transforms the patient-specific observations into the
sample mean and the sample variance for each group in each trial. Then, we again consider
the IPD meta-analysis model (3.1) to Ymiss-ipD, and assume that the covariates of patients -
for each group in the ith trial follow the normal distribution (3.2). If we again assume that
zij and ¢;; are independent of each other, we have the conditional distribution of Yij given
z;j as (3.4). Here, parameters in the covariate distributions can be estimated as'(3.3), and
now let '
é=.{(’fhz.,;T,6§i-i\,mzic,&§ic)-: i=1,...;N} . (3.10).
And also, let:
oon= (¢1a""¢Na0a“a7A,7W’a§_) _ ' (311)
be parameter to be estimated.
Combining IPD and AD For the case that some trials provide IPD and the others |
provide only AD trials, let -
Yiep = {(vij, @ij, 2i5) : 5 =1;...,m35 =N +1,...,N'}

be the collected IPD for trials i = N +1,...,N'. As in the case that all trials provide only
AD, we consider the IPD meta-analysis model (3.9) to Ymiss.1pp and Yipp, and assume that
the covariates of patients for each group in the ith trial follow the normal distribution (3.2).

Here, parameters in the covariate distributions can be estimated as (3.3), and let
§ = {(thair, 6%, Maic, 62ic) 16 =1,...,N'}. _ - (312)
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And also, let

n= (1, N 0, 11, YA, YW, 02) | 1 (3.13)

be parameter to be estimated. For both cases, each step in the SIPD method is now described

from frequentist and Bayesian perspeéti'ves.

SIPD method via frequentist procedure

Step (1): Generating SIPD
Let f (Ymiss_lpp;f, n) be a density function of the missing IPD with parameter 7 in (3.11),.

which is equivalent to product of bivariate normal densities from

S _ 4 e , : L
My T o +
o Ny Ay.% 1, yiT (”“ :YzW) 2T . JET
Yij R MaT 1. (lJ’ + ’YW) 04T 04T '
I el ] L. (3.14)
#g MyiC Toic Nézic ) '
o N2 . ) 9 ;2 ’ Je C
\ | MziC | | MO%ic  9zc
fori=1,...,N and j = 1,...,n;. Here, myr, 02,1, myic and oy, are given as (3.6) and

(3.7). Then, we draw the SIPD (say isspp) from the condltlonal distribution of less_lpD

given Yap and a known parameter value 7j; i.e

Yitiss-1pD ~ f (Vaniss-12D|YaD3 &, 77) - | (3.15)
where 7] is computed;by maximising the following likelihood under an assumption known as
CAR (Coarsening at Random) by Heitjan and Rubin (1991):

Lap(n) = f(Yap; &,m) = / £ (Yamiss1pD3 €, U)dYniiss-IPﬁ- - (3.16)

YAD=P(Ymiss-1PD)

This means that

i} = arg max Lap(n).
n : ' .
Once obtaining the parameter estimate, 7, we can get R sets of SIPD by repeated drawing

.of (3.15); say
mlss-I'PD {(y“ ) 1,J ) zj]) J=lL...,n5i=1,... ,N} . (317) '

forr=1,...,R. To use (3.15) for generating the SIPD, it is necessary to calculate (3.16)
in an explicit form and then draw from f(¥miss1pD|YAD; f, 7). Below, we describe how to

calculate L Ap(n) and draw from f (Yniss-1PD| YAD; f , 7).
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_Calcillating Lap (n) The calculation of the likelihood (3.16) réquires the integration =
with respéct t0 Yiss-1pD Over the region that satisfies Yiss1pp = h(YAD).‘ In particular, by

the derivation in Appendix A, this is giv'én by

T /.
292 (@it = myiT)2 + SZiT)}
yi'T '

LAD ("7) K X H I:(ayz n-iT/2 €Xp {_

=1

X (Uzic)_n""/ 2 exp { 79 2CC (Fic — min)2 + s2%ic) H (3.18)

where K is a constant term unrelated to 1. Taking the logarithm of (3 18), we can derive a

log-hkehhood which has the same form as (3.8).

Drawing from f (YHﬁSS_IIPDIYADA; f ,%):  We can easily derive f (Ymiss.‘IpD;f ,7) from (3.14)
with the known parameter 7, while f (Y;niss_lpDIYAD;f, ﬁ) is difficult to derive exactly be-
- cause its s'ample space is defined on the region that satisfies YAp = A(Ymiss-1pp). This

means that sample means and sample variances of outcome and covariate for each group in

each trial, which is computed by using individual outcome and covariate values drawn from

f (Ymiss-IPDIYAD;é:, 7), must be equivalent to the corresponding sample means and sample
variances in Yap. We here describe how to achieve the drawing from f (Y,,',iss_lpD|YAb; £,7)
by using a sampling _technique proposed by Lindqvist and Taraldsen (2005).

Now, we represent the observation vectors for each group in the zth trial as follows:

Yir={yi :J €T}, zivr={2;:7€T}, yic={y:5€C}, 2zc={z:jeC}L
Recall that Ymiss-1PD denotes the uncollected IPD; ie. (yij,Zij,2i5) for i = 1,...,N and "
j=1,...,n;. Because of between-trial and between—grdup independence, we have the density
functions of Ymiss_IpD_ given Yap and 7 as follows: '

F (Yimiss-1pp[YaD; €, 7) =
N : _
1 7 @irlzir, sZirs Pair, 6%i7) £ (VerlGir, s2irs 2ims 1)
i=1 ‘
xf(zzclz,c, $2iCs mzzC, zzC)f(YzCIyzCa yzCazzCa 77) o oL (3'19).

Then, the rth set of SIPD for the ith trial (say sz, zETI]., yz[(% and z[ ]) are generated as random

samples drawn from the corresponding conditional distribution in (3.19), that indicateus the

following sequential sampling procedﬁre:

, z% ~ f(ziTIZiTasgiT;mziT,agiT):
Y?’il | z[r] ~ f (YiTlgiTasziT,zgr'%;ﬁ)
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and

9 . .
E] ~  f(zic|Zic, Szics Mzic, 0%ic)
(7]
'L

(]

yio 12~ f(yiolfios o, 7 7).

This means that we first draw zgl], and then y%l by using ZET.I]‘, which are a_ppliéd for drawing

[] Ir]

iC

and y;c
Here, z; Ir] represents samples from the conditional normal distribution given sample mean
z;T ‘and sample variance s2,;. A result by Lindqvist and Taraldsen (2005) described in -

| Appendix B allows one to achieve this drawing as follows:

2 = {Z’T +

_'ai SurT:J € T} | | (3.20)
ut ‘ .
where {u;; : j € T} denotes n;T randorn' samples from the standard normal distribntion,
#; and s2; are a sample mean and a sample variance summarised from them respectively.
Furthermore, lettlng I and Aw be the correspondmg components in 7}, we can draw y£,11 in a

similar way to (3.20) as follows:
¥ = {Gm + (5 + Fw) (4] — i) + 8ilvig =) : 5 € T} (321)

where {vi; : j € T} denotes n;v random samples from the standard normal distribution, ¥;
and s2; are a sample mean and a sample variance summarised.from them respectively. And

also

6 —(+ ’YW)szz vi + \/(P’ + 7W)23z1, vi sm'szzT + Sm yz'i‘
i = X 5 y )

S’UZ

Sziwi = Z( —ZT ('Uz] - 'Uz)

"nzT—‘l

For j € C, (3:20) and (3.21) can be used in a similar manner, except that (f +4w) in (3.21)

is replaced by ji.

Combining IPD and AD Fer the case that some trials provide IPD and the others provide
only AD, the collected IPD are essentla.lly utilised for supplementmg to the computation of
1. Because all trials are 1ndependent of each other, we compute 7 by max1mlslng product of
the likelihood for the IPD trials and that for the AD trlals, ie.

ij = arg max Lipp(n) X Lap(n) ' - (322)
n
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where Lap(n) is already given by’ (3.18), and Lipp(n) is given by

Lipp (77) f (YiPD, £, ) _
K x H H gl P{ 553 Wii — $i — 02ij — pzij — VAT % — Yweig(2i5 — fi))2} (3.23)
i=N+1j=1 7Y % : , o _
where K is a constant term unrelated to 7. Once obtammg n from (3.22); we can get R sets
of SIPD in the same way as (3.20) and (3.21). '
The fact that we can use the, IPD from a part of trials offers another solution to kcompute

7). The IPD trials partly provide information of Zje'r Yij2ij and Zjec Yij2ij, indicating that
EM (Expectation Maxmisation) algorithm -by Derhpster, Laird and Rubin (1977) can be
applied for the computation of 4. '

EM algorithm: Because of between-trial and between-group indepe.n'denc'y,' we have
the density funetipn of Yniss-1pp and Yipp as follows:
. ,
f (Vmiss1pp, Yirp; 1) = [ | £(vir, ziw, ¥ic, Zics Mz, 62, Msic, 62i,m).
: i=1
" The -EM algorithm repeate' two steps of calculation referred to as E—step and M- step In
E-step, given (YAD, Yipp) and a current parameter value n[t] we calculate the following con-

ditional expectation:

B -
~[t . .
Q(ﬂ; "7[ ]) = Eﬁ[t] Z log f(y:T, 2iT) Yics zzCa MiTy O zzTa M2iCy O zzC) n) YAD7 YVIPD_A
L i=1 . .
r N :
— 2
= Ef,[t] Z log f(y'LT7 Z‘LT) Yic,z;c, mzzTa 2T mzzC, zzC’ "7) YADJ
zl
N :
et o A2 A A2
+ Y log f(yir, i, ¥ic, %ic; T, 62, zic, 62, )
i=N+1

where the second term can be derived as the blvarlate normal den51t1es from (3.14). In the '

ﬁrst term, we need to calculate the condltlonal expectations for the suﬁic1ent statistics of

Z yZJa Z yzj’ Z zlja Z Zz]’ Z yt] 22_7’

- JET JeT JET - jeT - JET -
DV D D mh DA Y vt

j€C  jeC j€C jEC jec
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for i = 1,..., N. Among them, we have

T
n(f) Zyzj yir| = %mTYiT, Eﬁ(t) Zyﬂ YiT, S yq,T —nzTsz‘}' ————1 3211T’
jeT . ) ]ET

N s | = s 52 T
E«,",(t) Z Zij| 4T | = TWTZT, Eﬁ(t) Z i| ZiTy s z1,T =127 + SE,-T
LseT ' JET it — 1

and the same calculatlons are apphed to those for j € C. For the conditional expectatlons of
> jeT Yijzij and > jec Yij Zma we here use Monte Carlo approx1mat10n An algorithm i in which
the mtegranon calculation in E-step is replaced by Monte Carlo approximation is known as
Monte Carlo EM (MCEM) algorlthm by Wei and Tanner (1990) The MCEM algorlthm first
draws B sets of Ynnss-IPD (Say []SS pp for b= 1 B) from the conditional distributions
7 (Yomiss-1pD|YaD; €, 7itl), where the sampling ,technlque by Lindqvist and Taraldsen (2005) can
be used in the same way as (3.20) and (3.21). Then, we have .‘

: . _ 2 =2
Eﬁ[t] E YijZij| YiTs SyiT»> ZiT» SziT |
JET '

2 2
// Z YijZij f(YzT, zzTIsza 84iTs 2T 8% Ts Mz, O zT> 7 [])deszzT
jeT

| ~3 Z Soullel

{ b=1 \JjeT

-and

’ 2 2
Ejta Zyijzij TiC» Syic %iCy 8ziC
j€c

// Zyl]zlj f(y207 zzClyzC, yzC)zzc, zzC)mzzCs zzCan[ ])deCdzzC

jecC
5 b] [b
Yi;

“In M-step, the-current parameter value 7l is updated by
it+) = arg max Q(n, 7).

These iterative of E-step and M-step are repeatedly implemented until a convergence condi-

~ tion holds, and the final parametef value is regarded as 7j.
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Step (2) Fitting IPD meta-analysis model .
- Step (1 ) produces R sets of SIPD for trials i = 1,...,N; ie. Yn[m]ss IPD for r=1,...,Rin
(3.17). We can now fit the IPD meta-analysis model (2.1) to each of SIPD (or each of SIPD
combined with the collected 1PD). Thié produces R sets of MLEs for parameters of interest

and their variance estimates; for instance, the within-trial treatment-covariate interaction

eﬂ'ect ('y\[;,],V( [T])) forr = 1,;..,R.

Step (3): S_'ummarz'sing estimates
In Step (3), resulting estimates for each set of SIPD are suité,bly summarised. For example,
" suppose that there is an interest in the posterior distribution of yw; say 7(yw|Yap), which -

is written by

7T(’)’W|YAD) / W(WIYmss-IPD)f (less-IPD|YAD)delss-IPD (3.24)

" 'We here consider’an approximation known as Poor Man’s Data Augmentatlon (PMDA) 2 by
Wei and Tanner (1990). Given Fw, (74, V(3i])) and Y1 for r = 1,..., R, the PMDA

2 approximates the posterior distribution of yw as follows:

m(yw|Yap) = Yot wmQWIY‘E‘T‘]SS'IPb) (3.25)
. D e Wr
where
wr = V(5270 ‘B‘fs""”) - )
, ' (YWY piss 1PD) o
The weights w, for r = 1,..., R are importance sampling weights designed to correct for

the fact that one is not sampling from f(Ymiss-1PD|YAD), and PMDA 2 provides an unbiésed
estimate of the observed data posterior (Steele, Wang and Raftery, 2010). Thé derivations
of (3.25) and (3.26) are detailed in Wei and Tanner (1990): To obtain point estimate (via
the median of the posterior density) and 95 per cent confidence limit, one rhus_t obtain the
required percentiles of the mixture distributioh of (3.25). Obtaining the desired mixture-
percentile values (say c) requires solving v

Z wT”WWerE;]ss-IPD) =c

r=1
with respect to yw (Steele., Wang and Raftery, 2010). If considering 4w = 2,,_1 'y\[,rV] /R as an
estimator of "yw, the variance estimate for 4w can be derived exactly, under an unrealistic
assumption, by using an idea known as type B estimator by Wang and Robins (1998); this
is beyond the scope of this paper |
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Combining IPD and AD For the case that some trials provide IPD and the others
provide only AD, the posterior distribution of yw; say w('ywlYAD‘, Yipp) is written by

m(yw|YaD, YipD) = / 7 (YW |Yimiss-1PD, YiPD) f (Yimiss-1PD|YAD, YiPD)d¥misspD.  (3.27)

In the similar way as (3.25), the PMDA 2 approximates the posterior distribution of yw as

follows:

ZT“]. w"'ﬂ.('yw |leSS-IPD’ YiPD)
25_1 Wy

7(yw|Yap, Yirp) =

where

V( )1/27T(’7W| 1ss—IPD’ YIPD)
m(Yw] less-IPD ) YIPD)

SIPD method via Bayesian procedure

Step (1): Generating SIPD _
Let f (Ymis;.,IPD|£ ,n) be a Bayesian den‘sity. function of the missing IPD given pa.,rameter 7,
which has the same form as f (Yimiss1pD; €, ). Then, we draw the SIPD (say Yy 1pp) from

the. posterior predictive distribution of YViniss 1D given Yap; ie.
Ym,ss-IP]; ~ f( mlss—IPD|YAD,§) o (3.28)
where
f (Ymiss-IPp I‘Y.A;D.aé) = / f (Ymiss-1PD [YAD,E, ﬂ)f (U|YAD,£)dn_ , (3.29)

»and f(Ynﬁss-ileYAD,é, n) is the density of Ymiss1pp given Yap and 7, f (nlYAD,é) is the
posterior distribution of gi{ren YAD Because of the integration in (3.29), f(Ymiss.1ep|YAD, 3 )
cannot be expressed in a closed form. And also, it is difficult to draw samples from this .
dlstrlbutlon d1rectly, however once obtammg samples of the parameter n, we can achieve the
drawing (3.28) approx1mately If R sets of the parameter values (say nl"l for r = 1,..., R) are
drawn from the posterior distribution f (n |YAD, é), then the ‘posterior predictive distribution

(3.29) can be apprdxima,ted as follows:

f(mess-IPDIYADag) ~ 5 Z f less—IPDIYAD, 5,77[T]) o » (3'30)
r—l _ a
_ This indicates that one random sample from f(Ymiss-1pp|YAD, é , n[T]) corresponds to one _ran-‘

dom sample from f (Ymiss_IPD-|YAD,£), and the repetition of this drawing yields R sets of
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SIPD (say Y. ]ss pp for m=1,..., R). The SIPD consist of the patient-specific observations
given as (3. 17) The approximation (3.30) requires one to draw from f (nIIYAD,E) and then
draw from f( mlss_IpDIYAD,E,n[’]) The latter. can be implemented by the same procedure

for f(Ymiss1PD|YAD] § ,7). We now describe how to draw from f (77|YAD, ¢ )

Drawing from f (nIYAﬁ, €): Drawing samples of n from f(n|Yap, £) is straightforward
to achieve by Markov chain Monte Carlo (MCMC) method; in. particular-we use Metropolis-

Hastings algorithm. The posterior distribution of n can be written as

FnlYa, ) o« F(Vavlé,mitn)

where f (n) is the density function for a prior distribution of 7 and we use a vague prior for this;
ie. f(n) o< oy, Then, f(Yap|é,n) has the same form as f(Yap;€,m) in (3. 16). Therefore,

for the purpose of drawing nl"] from f (n|Yap, £), the Metropolis-Hastings algorithm takes the
following procedures (Gelman et dl., 1995): | ' -

1. Set a starting va,h-le'n[o], and iterate Step 2-4 forr =1,..., R.

2. Draw a sample 7* from a proposal distribution with density function p(17|17[’"_1] ); Le.

n* ~ p(n|ptr—1).

‘We here assume p(n|5l"=1) is a normal density centered at 5i"—1l.

3. Compute

a=min{l., f(U*IYAD,é:)f(U*) }
f(nlr=1 [Yap, &) f (nlr—4) |-

4. Set nlrl = n* with probability a, otherWise set n[’] = plr=1],
For rapid convergence, we integrate out the parameter of trial-specific effects (¢1,...,dn)
from f(n|Yap, £), and then consider to draw (6,,vs,yw) from their marginal posterior

distribution. This is because we need only the values of parameter associated with the

within-trial relationships (u and yw) to generate the SIPD. -

: Cembining IPD and AD For the case that some trials provide IPD and the others
provide only AD, we draw the SIPD (say less 1pp) from the posterior predlctlve distribution

of less-IPD glven Yap and Yipp; ie.:
o o )
Yiss 1PD ~ f (Ymiss-1pD|YAD, YiPD, €)
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where
f (Ymiss-1PD|YaD, YipD, €) = / f (Yumisspp|YaD, &,1) f (nYap, Yiep,€)dn -~ (3.31)

and f (n|YAD,Y1pD,£)' is the posterior distribiltion of n given Yap. By the same reason de-
scribed above, it is necessary to first sample the parameter values of n from f(n|Yap, Yirp, 8,
and then draw Yiniss-1pD from f(¥miss1pD|YaD, f , n[’]). If R sets of the parameter values (n[T]
forr = 1,...,R) are drawn from the posterior distribution f _(n|YAD,FY1pD,§A),. the posterior

predictive distribution (3.31) can be approximated as follows:
. | .
| {) s L - 2 i)
f (Ymiss e |YaD, Yipp, €) = & > f(Ymisspp|YaD, €, 7™) : (3.32)
a r=1 ' :
This indicates that one random sample from f (Yoniss-1pD|YaD, &, nl1) corresponds to one ran-

| dom sample from f(Yiiss-1pD|YAD, YiPD, §A ), and the repetition of this draWing yields R sets of

SIPD (Y[Ti]ss_lpb:for r = 1,...,R). The approximation (3.32) requires one to draw from

m

- f (UIYAD,YIPD;é) and then draw from f (Ymiss,lpD|YAD,§A, n[’]v). The latter can be imple-

~ mented by the same procedure for f (Ymiss-IPD|YAD;£ ,7). We now describe how to draw

from f(n[Yap, Yiep, é)-

Drawing from f(7|Yap, Yipp,€): As in drawing from f(n|Yap, §), drawing samples of
from f(n|Yap, YiPD, ¢ ) is straightforward to achieve by MCMC method (Metropolis-Hastings

algqrithm). The posterior distribution of 7 can be written as
f (nfYap, Yiew, €) o f(Yap, Yien|é,7)f (n)

whére f(n)is .the vague prior of f(n) oc oy L. Because of between-trial independence, we have
(¥ip: Yenlé,m) = S (anlémFhonléom).

where f(Yap|é,n) has the same form as f(Yap; €,n) in (3.16), and f (YIPD|E, n) is derived by
. the same form as f(Yipp; €,m) in (3.23). From these results, for the purpose of drawing nlr]
from f(n|Yap, ¥iPD, £), the Metropolis-Hastings algorithm takes the following procedﬁres:

1. Set a starting value n[o], and iterate Step 2-4 for r = 1,...,R.

2. Draw a sample n* from a proposal distribution with density function p(nln[’—ll) ; ie.
n* ~ p(nln? =),
We here assume p(n|nI"~Y) is a normal density centered at pir=1, -
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| 3. Compute -

_— { 1" [Vap, Yiep, £ (1) }
" f(nlr=2|Yap, Yiep, &) (nlr=)

4. Set nl"l = p* with probability a, otherwise set n[’"] = pl-1],

For the same reason described above, we _integfate out the parameter of trial-specific effects
(¢1,--.,0n) from F(n|Yap,Yipp,€), and then consider to draw (6,p,7va,yw) from their
mérginal posterior distfibution. ‘ .

_As is the case for the frequentist procedure, the fact tha;t we can use the IPD from a
part of trials oﬁ'ers another solution to draw from f(Ymiss-1pp|YAD, YiPD, f ), which is known

as data aligmenta,tion by Tanner and Wong (1987).

Data augmentation The data augmentation is implemented by the fdllowing iterative

steps in terms of r = 1,...,R

1. Choose a moderate positive integer B, and create draws as follows:
fr) Yap, Yiep,£), Y Yoisotrp|Yan &™), (3.33)
n"* ~ fr(n|Yap, PD:¢)s - Yiss1pp ~ f (Ymiss 1P |YaD, &, 7). (3.33)

forb=1,...,B. Here, f (n|Yap, YirD, £) denotes an apprbximate posterior distribution
 of 7 at iteration r, which is co'mputed.at iteration r — 1.

2. Update the approximate posterior distribution of n as follows: ‘

B
: A 1 -
fr1(1lYan, Yien, ) = % 3 f (1Y 1, Yiep, ).
. b=1 ! .

The sequence of draws for Ymiss-1pp and 7 from this iterative procedure is known to converge v
to a draw from f(Yaiss 12, 7 YAD, ¥irD, €) (Little and Rubin, 2002). This is motivated by the
fact that the approximate posterior distribu’tioh of n in (3.33), f+(n|Yap, Yipp, £), is easier
.. to draw from than f(n|Yap, Yipp,é). Indeed, each 'elément composing f,(n|Yap, Yipp, £); i.e.
| I (nIYIEEﬁ_IPD, YII?D,E) for b= 1,..., B, can be derived exactly (Gelman et al. 1995).

More specifically, we rewrite the IPD meta-analysis model (3.9) by using a matrix fofm

of

y =Xno + lea
€ ~ N(0, 051).

Letting n = Zgl n; be the total number of patients, y is an n-dimensional vector of y;; for

i=1,...,N' and .j =1,...,n; X is an n x (N’ + 4) design matrix, 0 is an n-dimensional
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zero vector, I is an n x n identity matrix and 0 = (¢1,- -+, N1, 0, pyva, Yw)- If we again
assume the vague prior of f(no,02) o o2, then we have the posterior distribution of (o, y),

given Yiss1pp and Yipp, £(70, 02| Ymiss-1pD, YiPD, £), as follows:
y _

2 v s 2
M0l0y, Ymiss-1PD, YipD  ~  N(7o, 0y),

05| Yiniss-1pD, YipD  ~ Inv-x*(n — N' - 4,5%)

where Inv-x2(n — N’ — 4,s?) denotes a random variable from a scaled inverse chi-sque.re .

distribution with scale parameter s2 and degrees of freedom n — N’ — 4, and each parameter

is given by
fo = (XTX) "Xy | o (3.39)
"and
1
2 __ ~ \T oy
S = TN -4 1~ Xio) (v - Xdo). (3.35)

In the actual iterative procedures, the ‘current value of YmiSS_IPD is substituted into (y,X) in

(3.34) and (3.35).

Step (2): Fz'ttz;ng IPD meta-analysis model : _

Step (1) produces R sets of SIPD for trials i ='1,.. N je. YU ]ss pp forr=1,...,Rin
(3.17). We can now fit the IPD meta-analysis model (2.1) to each of SIPD (or each of SIPD :
combined with the collected IPD). This produces R sets of MLEs forvpa,'rarneters of interest
and their variance .estimates; for instance, the within-trial treatment-covariate interaction

effect, ('y&,], ( [r])) forr=1,...,R.

Step (3): Summarising estimates
As is the case for the frequentist procedure, we here consider the posterior distribution of
yw written by (3.24). From the Bayesiani perspective, the posterior distribution of "yw can
be simulated by first drawing Y[l]SS pp from f (Yiiss-1pD|YAD), and then drawing ~yw from
7r('7'W| 1ss -IPD /> Le.
1§ IR
ﬂ-(’YW'YAD) ~ _ﬁ Z W(WIYIISSS;IPD)' - (3.36)
r=1 : .

We apply a Rubin’s (1987) combining rule in order to obtam a posterior mean and variance

for 'yw, Whlch is often used in mult1ple imputation. The rule approx1mates them as follows
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~(Little and Rubin, 2002):
E(w|Yap) = E [E(’YWIless-IPD)lYAD]
. —Z 54 | (337
apd ' | . |
a'r(’N./lYAD)‘_ = E[Va'r(’YWIless-IPD)IYAD] +Var [E(’YWIYnuss-IPD |Yap]

RZV( ) + 1;R1 Z(%v—vw)"’ : N -.(3.38)
r=1 )

Q

where 4w is given by (3.37).. For frequentist inferences, we use (3.37) as an overall estimate

~

Aw, and (3.38) as its variance estimate V(jw). If considering 4w = 3 'y{{,] /R as an
estimator of yw, the variance estimate for 4w can be derived exactly by using an idea known '

as type A estimator by Wang and Robins (1998).

Combining IPD and AD For the case that some trials provide IPD and the others provide
only AD, the posterlor distribution of yw is written by (3. 27) and can be approx1mated by
using YIEH]SS wpp forr=1,...,R:

. R
1 » .
ﬁ(’)’WlY}\D,YiPD) o) ) w(vwl¥L, pp, YieD)- (3.39)

r=1

. Then, as in (3.37) and (3.38), the Rubin’s (1987) rule approx1mates a posterlor mean and

variance for yw as follows:
E('w|Yap, Yiep) = E[E(7w|Yimiss1pD, YipD)|YaD, YipD]
R -
S A _ . . _
= Sk o (3.40)
r=1
and-

Var(yw|Yap, Yipp) = E[Var(yw|Ymiss1pD, YipD)|YAD, YirD)]
+Var [E(yw|Yiniss1PD, YIPD) |Yap, Yiep]

RZV [7‘])+ 1+R1 Z( 2[7] ,.?W)Z (3.41)

Q

where 4w is given by (3.40). For frequentist inferences, we use (3.40) as an overall estimate

4w, and (3.41) as its variance estimate V(Aw).
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| Table V; The grouped form of data from group % in the ith study.

Z Y=0 Y=1

0 . , Mosk  Noik -

1 T My Mk

Nik — Mk, miy, Nik

3.2.2 Binary outcome and covariate

We here consider the SIPD method only from the Bayesian perspective, for the case that
some trials provide IPD and the others provide,onlyAAD. '

SIPD rﬁethod for combining IPD and AD via Bayesian procedure

Step (1): Generating SIPD ‘ |
Assume that each AD trial is completely balanced at the patient-level covariate; so that the
proportion of patients with Z = 1 for the treatment group is assumed to be eqﬁiv.alent to
that for the control group. Letting Nk = [nixzi + 0.5] ([4] is the largest integer not greater
than A)‘ and nOikb= nk — N1, be the number of patients respeétively with Z=1and Z =0
for group k in the ith AD trial (¢ = 1,...,N), then the AD‘ given by (mik, Ngik, M1ik) Can be
written as marginal totals of a 2x2 contingency table in Table IIl, where the internal cells
moix and my;, representing the number of patients respectively with (Y = 1,Z = 0) and
(Y = 1, Z = 1) are not available. Now, for all trials i = 1,...,N', we assume that mog aﬁd '
mh-k follow a pair of independent binomial distributions respectively with probabiiities ;bogk =
Pr(Y = 1|Z = 0,4,k) and prix = Pr(Y = 1|Z = 1,4,k); i.e. moix ~ Binominal(nmk,pgik) and
Mk ~ Binominal(nlik,‘plik). Then, we draw the SIPD for group k in the ith AD trial; i.e.

moik (and mygx = Mk — Moix), from the following posterior‘predictive distribution:
Pr(moik|mik, noik, n1ik)
= / Pr(moik|Mik» Noik, Miks Poik, P1ik) f (Doiks P1ik|Mik, noik, M1k )dPoikdprae.  (3.42)

fori=1,...,N and k € {T,C}. Here, f(Poik,P1ik|Mik, noik, M1ik) is the density function for -

the posterior distribution of (pyk, p1ik) given mi, and is written as follows:
£ (Poik, PrakImik, noiks naik) o Pr(mik|noik, n_uk,POik,plik)f (Poik> P1ik)- (3.43)
‘where f(poix;p1ik) is a prior distribution of (poix,P1ik)- Pr(mikanikanlik,POik,plik) is the
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probability of a marginal total mg, = Mgk + my;x in Table V with unknown internal cells,

which can be derived as convolution of the binomial distributions for Mok and Mik:

Pr(msg|noik, n1ik, Poik, P1ik)

Uik ’
Noik ; ;
= Z ( % ) g:gk(]_ Do k)nOtk Moik

m
moie=liz Ok

. Mg Mk —Mog; ' \ 714k —~ ik +Mo;
x( ik — Mo )plz‘k'c (1 — prig) kTR0 (3.44)
Mik — Mok . v )

where .
N

lig = max(0, mx — nig),  wix = min(nog, M) o (3.45)

represent the range of admissible values of mg;r so that mg = moir + Mk and ng — My =
ik — moik + M1ik —mysk, are satisfied. And also, Pr (moik|mik, noik, Mik; Poik, P1ik) in (3.42) is
the probability of an internal cell given all the marginal totals in Table V. If the single internal
cell mo;. are_drawn, the other‘in_tlernal cells can be identified uniquely as my;x = mip — mOik,

noik — Moix and 7y — M1k Letting
Aoik = Poik /(1 — poix),  Arik = prix/(1 — Prik) | | (3.46)

be odds of pg;x and p1;x fespectively, Pr(moik|mik, noik, nh;k, Doiks pli}c) can be derived as the -
probablhty mass functlon of Fisher’s non-central hypergeometric distribution (or extended

hypergeometnc distribution) Wlth parameter of odds ratio ik = Agik/ Akt

(nOZk) ( nl‘Lk ’ ) )\mo,k .

Lo . . . ik

Moik) \Mik — Moik) *

Pr(moik|mui, noik, niik, Aik) = —5 (3.47)

3 (nOik) ( Niik ) \mo |
o ik
- \Myo mip — My

mo=l;x

where l;;, and u;; are defined as. (3.45).

Because of the ilitegration in (3.42), the pbsterior predictive distribution of mq;;, canﬁot be
expressed in a closed form. Also, it is difficult to draw samples from this distribution directly;
however once obtaining samples of parametér (Poik, P1ik), We can draw mox approximately
from (3.42). If R sets of parameter values (say (pg;]k, p[l’;]k) forr=1,.. , R) are drawn from
the posterior distribution (3.43), then the posterior predlctive. distribution (3.42) can be
. approximated as |

R -

1 |
Pr(mOzklmzkanOzk,nlzk) NS ZPY (moi|mix, N0k, ik Pighs Pk (3.48)
r 1
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where the rth component in summation is the éonditional probability of mo;; given Mix
~ and a known parameter of (p([)’;]k,p[lrz]k) This indicates that a single random sampie from
g Pr(mOik|mik,nOik,niik,vpgi]k,plik) corresponds to a single random sample from the posterior
piedictive distribution (3.42), and the repetition of this drawing yields R sets of SIPD (say
.(mgz]k,mhk) for r = 1,...,R). Therefore, we generate the simulated IPD for the AD frials _
by using the approximatlon (3.48); that requires us to draw from f @dik,pllik|mik, Toiks Mik)

and then draw from Pr(mgiklmik,ngik,nlik,p([;]k, phk) ‘We now describe how to draw from

these distributions in more detail.

Drawing from f(poik, Prik|mik, Roik, N1ik)
Now, let
YAD = {(mik7n0ik,n1ik) = 1’ oo aNak € {Ta C}}a
Yiep = {(moik, maik, noik, Maik) * = N+1,...,N' ke {T,C}}
where Yap is the AD summarised from the uncollected IPD for trials ¢ =1,..., N, and Yirp

is the collected IPD for trials i = N+1,...,N". Here, we assume the following model for the

logits of poix and pyix; i.e. the logarithm of (3.46): -
log doic = o, |
logA\iic = a0 | o _ (3.49)
logdoir = cor+ Bz,
log it = oar+B% -

We now consider to draw parameters in model (3.49), and then produce the values of po;x

and py; by using model (3.49). Letting
n = (a0c, @10, CoT; 21T B)
~ be a parameter vector to be drawn, we have

f@|Yap, Yipp) f(‘ )f(YAD|?7 (YIPDI"7)

= f("] H H PI‘ mzkanzk,nlzk, )

i=1 kE{T C}
NI
X H H Pr 'I"I’Loq,k;, mlzkan'Lka N1k, 7))
i=N+1 ke{T,C}
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where f(n) is the density function for a prior distribution of 7 and we use a vague prior for
this; i.e. f(n) o< 1. Pr(mix|noix, n1ik,n) is given as (3.44), and Pr(mogk, m1sk|noir, N1k, 1) can
be derived by usihg probability mass functions of Binomial distribution for mg;; and mw;_;

ie.

) Pr(mog, mask|moik, N1iks 1)

— [ ™ok \ [ Mk 0ik (] _ Mok ~Moik gy mhk Pk =Mk
= 0ik (1 Puik) (3.50)
(mmk) <m1ik)p°”° (1= Poi) . _ ' o

where the corresponding components in 7 are suitably substituted into py;x, Prik, Aok and
Aoik ‘

Drawing from f(n|Yap, Yipp) is straightforward t(_)'achieve by MCMC method; in par-
ticular Métropolis-Hastings algorithm. By using (3.44) and (3.50), the Metropolis-Hastings" |
algorithm allows one to draw R sets of n from f(n|Yap, Yipp); i.e. 7"} for » = 1,..., R, which
ktakes the the similar implementing proceduré described above. The rth set of parameter
value, 7l is transformed into ()\([;]k, A[r i) and then (p([h]k, pgz]k) uniquely. |

.Drawin.g from Pr(mmk[mﬂ;,nmk,nhk,pgl]k, p[h]k) This drawing is equivaleht to the
drawmg from the Fisher’s non-central hypergeometric dlstrlbutlon with a known parame-
ter (p([;]k, p[lrz]k) We can draw R sets of SIPD from this conditional distribution directly. Fog
(2008) supposed a fast algorlthm to draw from Fisher’s non-central hypergeometric distribu-
- tion. We get R sets of SIPD (say (mOzk’mlzk) for r = 1,..., R), which are transformed to
the bmary data form of SIPD (yij,xij,zz[j]) forj=1,...,n;and r =A1, ., R

_Step (2): Fitting IPD meta-analysis model _
Step (1) produces R sets of SIPD for AD trials; i.e. (i, xij,vz[r.]) fori =1, N, =1,...,n
and r = 1 ., R. We can now fit the IPD meta—analy51s model (2.6) to each of SIPD with
the collected IPD. This produces R sets of MLEs for parameters of interest and thelr variance
estimates; for instance, the within-trial treatment-covariate interaction effect, ('y\[;,], V(4 3] w))

forr=1,...,R.

Step (3) Summarzszng estimates
When there is an interest in the postenor dlStI‘lbuthIl of vw, we can use the Rubin’s (1987) |

rule as described above. The rule approximates a posterior mean and variance for yw as
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follows:

o e ,

1 & |
E(yw|Yap, Yirp) ~ 3 > (3.51)

. r=1 )
and
' R . . R ’
_ : 1 . 1+ R N

Vai(vw|¥ap, Yiep) = = Y V) + —5— > (4 = 4w)*- (3.52)

) _ ' r=1 . r=1 '

where 4w is given by (3.51). For frequentist inferences, we use (3.51) as an overall estimate

1 Aw, and (3.52) as its variance estimate V (w).
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4 Application and simulation studies

4.1 Introduction

In this chapter, it is shown that the proposed‘methods.describ'ed in Chapter 3 (méthod with
marginalising the missing IPD, and method based on simulated IPD) has many benefits for
_inference of the treatment-covariate interaction. Especially for the withih_—trial relatiorishipsb
between individual observations, the proposed methods work substantially better than thé
existing approaches described in Chapter 2. Moreover; it is suggested that the proposed
_rriethods could have a huge possibility to produce novel ﬁndings.. We now .outline objectives

~ and results of each experiment.

Simulationv. 1 In Chapter 4.2, we verify the performaric‘e of the proposed inethod with
marginalising the missing IPD in the case for only' AD. We suppose the case where all triais
provide only AD, and compare estimates of the across-trial and the within-trial interaction -
from the proposed method with those from a full IPD analysis using the orlgmal IPD from all
trials. When variation in within-trial covariate distributions is small, the proposed method
proirides accurate within-trial interaction effect estimates. This indicates that the proposed .
method has a potential advantage to inference of the within-trial interaction, that is never

achieved by the existing approach.

Simulation 2 In Chapter 4.3, we verify the performance of ' the proposed method with
marginalising the missirig IPD in the case for mixture of IPD ari(i AD. We suppose the case
where some trials provide IPD and the others provide only AD, and compare estimates of _'
the across-trial and the within-trial interaction from the proposed method (and model (2.5))
with those from a full IPD analysis usiﬁg the original IPD from -all trials. When the number
of trials’ prov1d1ng IPD is small (e.g. 1 or 2 of 20 trials), the proposed method provides more.

accurate Wlthm-trlal interaction effect estlmates than model (2.5). If meta-analysts consider
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- how many IPD trials should be collected to preserve a desired level of statistical power, the

proposed method requires them to collect smaller number of IPD trials than the existing

model (2.5).

Application to hypertension data = In Chapter 4.4, we illustrate the SIPD method via
Bayesian procedure through an application to the hypertension data. Wé are again interested
in how age modifies the treatment effect on change in SBP (follow-up minus baseljne), and .
demonstrate how the SIPD method produces the across-trial and the Withih-trial interaction
.veﬂ'ect estimates in the case for mixtﬁre of IPD and AD. The main gain from the SIPD method
is to improve the standard error of the within-trial interaction effect éstiniate in comparison
with the exi‘s-ting. model (2.5), especially when the nﬁmber of trials providing IPD is small. A
f)'otentia,l benefit of using SIPD is also discussed in the context of a subgrodp meta-analysis

- which is never conducted by using model (2.5).

Simulation 3 and Simulation 4 In Chapter 4 5 and Chapter 4. 6, we verify the ob-
“served performance of the SIPD method via Bayesian procedure in two situations: one is the
situation where a single continuous outcome and covariate are observed from each patient
. (Simulation 3), and the other is the situation where a single bina;ry outcome and covariate ére ‘
observed frc-im each patient (Sifnuleition 4). In particular, it is ensured that the SIPD method
provides mbre accurate within—trial intera_(_:tioh effect estimates than the existing model (2.5)

or model (2.9).

3,

4.2 Simulation 1: Performance of the proposed method with ,

marglnallslng the mlssmg IPD in the case for only AD

We here suppoéed that all trials provide only AD, and focused on the treatment-—covar_iéte
ihteraction estimated by fitting the MR model (2.2) and the method with marginalising the
missing IPD described in Chapter 3.1. The MR model (2.2) can be used only for the inference
of the across-trial interaction (5); whereas the proposed method allowé 6ne to estimate both -
the across-trial and the within-trial interaction (7a and yw). Some practical differences
between a4 and yw are as illustrated in Chaptef 2, that highlighting the pitfall of using
’?A_ to.ma,ke infererice about 4w. In particular, we were interested in how the log-likelihooci
- (3.8) computed by using only the AD available recovered the information on the within-trial

relationships.
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4.2.1 Design of Simulation 1

We considered that the true models for generating individual outcome and covariate values

from patients in each trial were written as follows:

0, jeC
Tij = )
1, je€T
mz; ~ N(30, 10),
2| Mg ~ N(mz,,02) - 4.1y
Yij|Tijy Zijs B ~ N(20 + 5% + 0. 05zU + 0.05z;;; + 0. 1xz,(z,, Z),02),

j=1,...,800, i=1,...,10

where the numbers of patients for the treatment group in each trial were assumed to be
equivalent to those for the control group; i.e. n;T =n;c =400 fori =1,..., 10. In the.’ IPD
meta-analysis model (2.1), inference of the within-trial interaction is mainly affected by: the .
varience parameter in within-trial covariate distributions, o2, and. the variance parameter
in conditional distributions ef y” given z;;, G‘Z. The standard errors of the Within-tr_ial

interaction effect estimates are expected to become smaller as o2

increases and o decreases
(Simmons and Higgins, 2007 ). We here controlled these parameters by the followieg scenarios:
02 € {20,40,80} and o2 € {10,20, 40}. |

The implementing procedure was as follows. Firstly, we set pé’rametefs of 62 and o2
among 9 scenarios, and then according to the true model (4.1) with parameters set in the
previous step, we generated 10,000 sets of meta-analysis data More specifically, we generated
mean covariate for the ith trial, m;, from N(30, 10) and covariate values for patlents in the ith
trial from N(m,;,02) given m,; and o2, and then outcome values for patlents given covariate
'values. Secondly, we summarised the IPD from all 10 trials to the AD represented as saniple
means and sample variances of individual observations in each group and trial. Finally, we
meta-analysed the AD by (1) fitting the MR model (2.2), and (ii) applying the proposed
method. In each analysis, we computed estimates of B and their root mean squa,re errors
- (RMSEs) from the MR model (2.2), and those of yw and ya from the proposed method. The
RMSE fer B was computed by using ya = 0.05 as its true value. These results were compared -

with the results from the full IPD analysis.
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4.2.2 Results of Simula_tion 1

Table VI shows RMSEs and mean biases for the across-trial interaction in each scendrioy
Fitfing the M.R model (2.2) to the AD from all tria.ls. naturally provided estimates only of
the across-trial interaction, B, whose RMSEs and mean biases were equivalent to those for
Aa from the full IPD analysis. However, as mentioned ébove,' the eétimates of the a;cr;oss—trial
interaction must be interpreted différently from those of tﬁe within-trial interdction. For
.eXample, in a scenario of 62 =40 and 02 = 20, Figure 7 shows scatter plots of Z-values for 3
from the MR model (2.2) against Z-values for Aa (panel on the left side) and 4w (panel on
the right side) from the full IPD analysis. The vertical and horizontal lines represent Z-valﬁes
of 1.69 (i.e. the division befween statistical significance and non-significance of a one-side
hypbthesis test at 5 per cent level for Hg : 8 = 0or Hb tyw = 0). OBviously' from Figure 7,
estimates of B and their standard errors from the MR model (22) were equivalent to those
of o from the full IPD analysis. For 10,000 sets of meta-analysis data, 99.7 per cent of the
full IPD analyses pro_vided significant results for 4w, while only 26.3 per cent of analyses by
the MR model (2.2) were significant for 4. And also, for 73.4 per cent of analyses, 4w’s from
the full IPD #nalysis ‘were signiﬁcant and f’s from the MR model (2.2) were non-significant, .

4
H

2
1

0-
|
Z-values of iy from the full IPD analysis

Z-values of 5 from the full IPD analysis

-2
]

I I I | | | ] - 1
2 0 2 4 2 0 2 4

Z-values of 3 from the MR model (2.2) . ~ Z-values of ﬂ’\ from the MR model (2.2)

Figure 7. Scatter plots of Z-values of f from the MR model (2.2) against Z-values of 4
. (panel on the left side) and 4w (panel on the right side) from meta-analyses of IPD from all
SEETE 10 trials. ' |
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Table VI. Root mean square errors and mean biases for estimator of across-trial

treatment-covariate interaction effect.

- Root mean square error of Mean bias of
_ B or 4a B or Aa
o2 o? MR Proposed . (Full-IPD)* MR . Proposed (Full-IPD)*
20 0.054  0.054  (0.053) 0.001 0.001 (0.000)
40 40 - 0.054 0.054 (0.054) 0.000 0.001 " (0.000)
80  0.054 ~ 0.054 (0.054) ~0.000 0.000 (0.000)
20 0.038 0.038 (0.038) 0.000 = 0.000 (0.000):
20 40 ©  0.038  0.039 (0.038) 0.001  0.000  (0.000)
80 0.038  0.038  (0.038) - 0000 0.000  (0.000).
20 0.028  0.028 (0.027) 0.000  0.000  (0.000)
10 40 ° 0.027  0.027 (0.027) 0.000  0.000 (0.000)
80 0.028  0.027 (0.027) 0.000  0.000 (0.000)

MR: Fit the MR model (2.2) to the AD from all 10 trials. .
Proposed: Apply the proposed method to the AD from all 10 trials.
*Results by fitting model (2.1) to the full IPD from all 10 trials. .

o2: Variance parameter in within-trial covariate distributions.
o2: Variance parameter in conditional distributions of outcomes.

- Table VII. Root mean square errors and mean biases for estimator of withi_n_-"crial

treatment-covariate interaction effect.

Root mean square error of Mean bias of
o2 o2 Proposed  (FullIPD)*  Proposed (Full-IPD)*

20 0.220 (0.032)  —0.091 (0.000)

40 40 0.206 (0.023) ~0.083.  (0.000).
80 0.202 (0.016) —0.082 (0.000)
2 0.201 (0.023) ©-0.090 (0.000)
20 40 0.197 - (0.016) —0.081 (0.000)
" 80 0.116 (0.011) - —0.017 (0.000)

20 0.195 (0.016) " —0.090 (0.000)

10 40 0171 (0.011) —0.068 (0.000)
80 0.061 (0.008) . 0005 ° (0.000)

Proposed: Apply the proposed method to the AD from all 10 trials.
*Results by fitting model (2:1) to the full IPD from all 10 trials.

o?: Variance parameter in within-trial covariate distributions.
03: Variance parameter in conditional distributions of outcomes.
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indicz_ztin‘g that meta-analyses usingrthe'MR model (2.2) were prone to fail in detecting the
treatmenf-covariate interaction in comparison with meta-analyses of the original IPD from
all 10 trials. | | | |
In principlé, the ﬁroposed method can be uséd vfor estimating not only the across-trial
interaction effect but also the Withjn-trial.interactioh effect. The RMSEs and the mean biases
for 45 from the proposed mefhod were equivalent to those frdm thé MR model (2.2) and the
~ full IPD analysis (Table VI), indicating the log-likelihood (3.8) preserved information on the
across-trial iﬁteraétion preéisely. Table VII shows RMSEs and mean biases for the within-trial
interaction Yw in each scenario. Note that, in the full IPD analysis, we used thé IPD from
all 10 trials, while in the proposed method, we used only the AD from all 10 trials. When 05
was large (e.g. 02 = 40) and o2 was small (e.g. 02 = 20), Aw from the proposed method had
a large RMSE with a négative bias. On the other hand, as O’Z became smaller and o2 became
larger, the RMSEs éﬁd the mean biases from the proposed method decreased immediately.
Especially for the scenarios of 05 :=_10 and o2 = 80, the proposed method offered the _smallést
RMSE for 4w with approximately zerd bias. These résults- sﬁggested that the proposed
method required a rélatively—large variance in within-trial cové,ri_ate distributions to estimate
the within-trial interaction precisely, and in such situations the use of the log-likelihood (3.8) -

could recover information on the within-trial relationships from the AD trials.

4.3 Simulation 2: Performance of the proposéd method with
- marginalising 'thé missing IPD in the case for mixture of
IPD and AD |

We here supposéd that some trials provide IPD and the others provide only AD, and focused
on the across-trial and the within-trial interaction effect estimated by fitting the existing
model (2.5) and the proposed method described in Chapter 3.1. Some practical benefits
of combining IPD and AD are as illustrated in Chapter 2, highlighting that usiﬁg only
‘the collected IPD or reducing available IPD to AD had some diéadvantagés due to loss .
of information. .We were noﬁz interested in how estimates of the within-trial interaction from
the proposed method became close to thoée from the full IPD analysis according to the
proportion of trials providing IPD.: Tiie standard errbré of 4w from the proposed method are
eﬁcpected to become smaller as the proportion of trials providing IPD. We also assessed the |

‘gains from the proposed method beyond the existing method by Riley ei al. (2008).
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" 4.3.1 Design of Simulation 2

We considered that the true models for genérating indiyidual oufcome and covariate values

from patients in each trial were written as follows:
0, jeC
: 1, jeT v B
m; ~ N(30,10),
Zijlmgi ~ N(my, 03), - | (4.2)
Yii |%ij 2ig, % ~ N(20 + 5145 + 0.0525 + 0.0545% + 0.145(2i5 — %), 40),
j=1,...,400, i =1,...,20 ‘

where the numbers of patienfs for the treafment group in each trial were assumed to be
- equivalent to those for t_he- control group; i.e. n;r = n;c = 200 for i=1,...,20. We gave
the total number of trials by 20, and controlled the number of trials providing IPD by 5
scenarios of 1, 2, 4, 8, 16 of 20 trials (correspondmgly, the numbers of trials prov1dmg AD
were given by N € {19 18,16,12,4}). As for the variance parameter in within-trial covariate
dlstrlbutlons, we considered o2 2= 80 for the AD trials, and controlled that for the IPD trials
by 2 scenarios of o2 € {40, 80}. :
| The 1mp1ement1ng procedure was as follows. Firstly, we set thé;, number of IPD trialsi
émd o2 in the IPD trials among 10 scenarios, and then according tb‘ the true model (42)
with paranieters set 1n the previousAstep, we generé,ted 10,000 sets of meta-analysis data.
. Secondly, according to the scenario of the numbgr of IPD trials, we sumfr;arised the IPD
from trials 7 = 1,...,N to the AD. Finally, we meta—analysed a mixture of IPD and AD by:
(i) ﬁttmg model (2 1) or model (2.4) to the collected IPD from trials ¢ = N +1,...,20, (ii)-
summarising the collected IPD from trials i = N +1,...,20 to the AD and then fitting the
MR model (2.2) to the AD from all 20 trials, (iii) fitting model (2. 5) to the mixture of IPD
and AD, (iv) applying the proposed method to the mixture of IPD and AD. In each analys1s,
‘we computed estimates and their RMSEs for 8 from method (ii), and those for yw and A
from method (i), (iii) and (iv). These results were compared with those obtained by fitting
mbdel,(z.l) to the IPD from all 20 trials (full IPD analysis). We also computed sample ‘mean
of absolufe differences between estimates of vy from model (2..5) or the proposed method and
those from the full IPD 'a,nalysis, which was intended to evaluate how far the point éstimate
obtained by fitting model (2.5) or the SIPD method is apart from that obtained from the full

IPD analysis on average.
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4.3.2 Results of Simulation 2

Table VI shows RMSEs and mean biases fqr the across-trial interaction in -each scenario. .
The MR model (2.2) again prbvided estimates only of the across-trial interaction, 3, whose
- RMSEs and mean biases were equivalent to those for 44 from the full IPD analysis. Fitting
model (2.1) or (2.4) to only the collected IPD had éeriously large RMSEs fof 4a when the
proportion of trials providing IPD was small (e.g. 2 IPD trials and 18 AD trials). This is
because the precision of the across-trial interaction effect estimate depends on the number
of trials involved and Betwe,en—trial heterogeneity. Table IX shows RMSEs and mean biases
for the within-trial interaction in each séénario. The RMSEs and the mean biases for Jw
obtained by ﬁttihg model (2.1) or (2.4) to only the collected IPD got close to those from the
full IPD analysis as the proportion of trials providing IPD increased. o

The. strategy of combining IPD and AD by fitting model (2.5) or the pfdposed-method
yielded accurate resulté for the across-trial interaction, as well as estimates df the within-trial
interaction which got close to those from the full IPD analysis according to the proportion‘
of trials providing IPD. Including AD trials remarkably improved the RMSEs for 4, in
compa,rison‘ with analyses using only the collected IPD. Fitting model (2.5) a,n(i the proposed
method provided 'similar RMSEs and mean biases for 44 of each othér, which were equivalent
‘to those from the full IPD analysis. The results for the within-trial interaction from model
(2.5) were equivalent to those from analyses using only the collected IPD, indicating model
(2.5) correctly allowed only the IPD tiials to estimate yiy.

" The main ga‘iﬁ from the proposed method was to improve RMSEs for 4w. In rﬁost
scenarios, the propdsed method prdvided much smaller RMSEs tﬁan model (2.5), especially
when the proportion of trials providing IPD was small (e.g. 1 IPD trials and 19 AD trials, or
2 IPD trials'and 18 AD trials). The absolute differences also conﬁrmed that %’s from the
proposed method were, on average, located closer to those frbm the full IPD analysis than

model (2.5).
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Table VII. Root mean square errors and mean biases for estimator of across-trial treatment-covariate interaction effect.

Root mean square error of : » Mean bias of
. B or 4a ‘ B or 4a
Number of trials Obs- Model _ : - Obs- Model

providing IPD - o2 MR IPD (2.5) Proposed. (Full-IPD)* MR IPD (2.5)  Proposed (Full-IPD)"
1 /20 40 0.049 NA 0049 0.048 (0.048) . —0.001 NA - —0.002  —0.002 (—0.002)

80 0048 NA 0048  0.048 (0.048) 0001 NA  0.001 0.001 (0.001)

2/ 20 40 0.050 36.07 0.050 © 0.049 (0.049) -0.001 _ 1.098  —0.001 —0.001: (—0.001)

_ 80 0.047 1341 0.047  0.046 (0.046) 0.001 —0.108 0.001 . 0.001 (0.001)

'4_ /20 40 0.050 0.187 0.050 0.050 (0.050) 0.001 —-0.003 0.001 - 0.001 _'(0.001)

) 80 0.047 0.222 0.047 0047  (0.047) . 0.000  0.001  0.000 0.000 (0.000)

8 /20 40 0.049 0.090 0.049  0.049 (0.048) —0.001 0000 —0.001 —0.001  (—0.001)

. 80 0.048 0.090 0.048 0.047 (0.047) —0.001 0.001 —0.001 —0.001 (-0.001)

1620 40 0.048 0.054 0.048  0.048" (0.047) . 0.001  0.000  0.001 0.001  (0.001)
80 0.049 0.055 0.049 0.048 (0.048) ~ —0.001 -0.001 —0.001 —0.001 (—0.001)

MR: Fit the MR model (2.2) to the AD from all 20 trials.

Obs-IPD: Fit model (2.1) to the collected IPD.

Model (2.5): Fit model (2.5) to the mixture of IPD and AD.
Proposed: Apply the proposed method to the mixture of IPD and AD.
*Results by fitting model (2.1) to the full IPD from all 20 trials.

o2: Variance parameter in within-trial covariate distributions for patients in the IPD trial.
NA: Not available. -
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Table IX. Root mean square errors and mean biases for estimator of within-trial treatment-covariate interaction effect, and sample means of

absolute differences between estimates from model (2.5) or the proposed method and those from the full IPD analysis.

: _ : Mean of
Root mean square error of ' X Mean bias of : absolute
Fw : - w difference
Number of trials ' Obs- Model o Obs- Model ’ Model
providing IPD g2 IPD  (2.5) Proposed (Full-IPD)* IPD (2.5)  Proposed (Full-IPD)* (2.5) Proposed
1/ 40 0.101 0.101 0.082 (0.016) 0.001 0.001 0.002 _ (0.000) 0.079 . 0.060
80  0.069 0069  0.057 (0.016) 0.000 . 0.000  0.002 (0.000) 0054  0.044
' 2/20 40 0.072 0.072 . -0.059 (0.016) —0.002 —0.002 0.001 (0.000) : 0.056 0.044
' 80 0050 0.050  0.044 (0.016) -0.001 —0.001  0.000 (0.000) 0.038 . 0.032
s/ % 40 0.050 0.050  0.045 (0.016) 0.001  0.001 0.002 (0.000) 0.038  0.033
80 0.035 0.035 - 0.033 (0.016) 0.000 —0.001 0.000 (0.000) 0.025 0.023
8/ 20 40 0036 0036 0034 (0.018) 0.000  0.000  0.001 (0.000) 0.025  0.023
80 0.025 0.025 0.024 (0.016) 0.000 0.000 0.000 - {0.000) 0.016 0.015
16/ 20 40 0025 0025 002  (0.020) 0.000  0.000  0.000 (0.000) 0.011 0011
80 ©0.018 0.018 0.018 (0.016) 0.000 0.000 0.000 (0.000) 0.006 0.006

Obs—IPD Fit model (2.1) to the collected IPD.

Model (2.5): Fit model (2.5) to the mixture of IPD and AD, Proposed: Apply the proposed method to the mixture of IPD and AD.
“Results by fitting model (2.1) to the full IPD from all 20 trials.

ol Variance parameter in within-trial covariate distributions for patients in the IPD trial.



4.4 Application to hypertension data: Illustration of tlhevpro-_-
posed method .based on simulated IPD

Consider the ‘hypertension data, and we illustrate the SIPD method via Bayesian procedure
descnbed in Chapter 3.2. To imitate situations involving IPD for some trials and only AD
for others, we cons1dered scenarios as in Chapter 2.1, Where only a hm1ted number of trials
(from 1 to 4 of the 5 tr1als) provided IPD and the other tr1a,ls just provided AD. In each
scenario, we carried out analyses by: (i) fitting the MR, model (2.2) to AD from all 5‘ trials,
(ii) fitting model (2;5) to the mixture of IPD and AD, and (iii) applying the SIPD method
to the mixture of IPD and AD. In both parts (i) and (iii), the analyses were run for each
possible combination of IPD and AD trials. In each scenario, we compared the results with
those from a, meta-analysis of IPD from all 5 trials (full IPD analysis). |

In the SIPD method, .for the iterative process of the Metropolis-Hastings algorithm to
~ draw R = 500 values of parameter, we discarded th_e ﬁr_st 5,000 samples in order to prevent
dependence on the'starting values. Moreover, we took a sample at only every 1,000th iteration
in order to avoid autocorrelation between the sarnples taken. The same iterative process will

be taken in Simulation 3 and Simulation 4.

The gains from the SIPD method

The results of estimates and their st-andardverrOrs for the across-trial and the within-trial
' mteractlon, averaged across all pOSSlble combinations of IPD and AD trials in each scenario
are shown in Table X. As for the across-trial interaction, the SIPD method produced estimates
clOser to the full IPD analysis compared to model (2.5) regardless of the number of IPD trials.
The_estimates of ’l’A from model (2.5) were ztlso_ close to those from the MR model (2.2). For
each scenario in Table X, we also found an irnportant difference between results for the
withjn-trial interaction effect from 'model (2.5) and the SIPD method. When comparing
Aw’s from model:(2 5) with those from the full IPD analysis; rnodel (2.5) provided point
estimates located in a positive direction on average, with large standard errors. This is
because model (2.5) allows only the IPD trials to estimate the within-trial 1ntera,ct10n and
thus the estimates and the1r standard error for yw by ﬁttmg model (2 5) got close to those
from the full IPD analys1s as the available number of IPD rials i increases.- The SIPD method
improved both the estimates of yw and their standard errors to be closer to the correct (full

IPD) estimates, especially when the number of IPD trials was small. The most benefit came
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' Table X. Average of estimates and their standard errors for treatment-covariate interaction
effect when analysing change in SBP (follow-up minus baseline) from hypertension data,

where estimates are averaged across all combinations of IPD trials.

Average of Average of
A . estimate standard error
Number of trials Model Model
providing IPD¥*  (2.5)  SIPD (2.5)  SIPD
5/5 . . —0.662 - 0.464 -

: 4/5 T —0.766 —0.662 0.468  0.464
Across-trial 3/5 —0.766 —0.663 . 0463  0.464
interaction )

effect ya 2/ —~0.768 —0.665 0.464  0.464

' 1/5 ~0.781 —0.667 0.464  0.463
0/5t —0.766 - 0.466 -
_ - 5 /5 - 0.087 - 0.055 -
" Within-trial 4/5 0.091 . 0.090 . 0.063 0.063 .
interaction 3/5 0.117  0.096 0.084  0.076
effect yw
_ 2/5 0.166  0.103 0.130  0.097
1/5 0.244  0.105 0.258  0.131

Model {2.5): Fit model (2.5) to the mixture of IPD and AD.
SIPD: Apply the SIPD method to the mixture of IPD and AD.
*Results by fitting model (2.1) to the full IPD from all 5 trials.

TResults by fitting the MR model (2 2) to the AD from all 5 trials.

*The numbers of combinations of trials providing IPD are 5, 10, 10 and 5
in the scenarios of 1, 2, 3 and 4 IPD tnals, respectlvely

in the scenario of 1 IPD trlal in Whlch estimates of yw were jw = 0.244 ( s.e. = 0. 258) from
model (2.5) and 4w = 0.105 (s.e. = 0.131) from the SIPD method; the latter is much closer to
the full IPD analysis result of 4w = 0.087 (s.e. = 0.055). This shows that the SIPD method
allows both using the AD ftrials and IPD tfials to estimate the within-trial interaction, and
- this adjustment based on the AD trials is useful especially when the number of IPD trials is

small.

Table X also shows that the difference between the estimates of yw (and its standard
errors) from model (2.5) and those from the SIPD method became smaller when increasing
the number of IPD trials.. The results in the scenario of 3 IPD trials and 2 AD trials were
similar to those using the full IPD, and the results iﬁ the scenario of 4 IPD trials and 1
AD trial were almost equivalent to those using the full IPD. These results suggested that
model (2.5) could provide suﬂiciéntly accurate estimates of the within-trial interaction if a

high proportion of IPD trials are available.

For e'ach‘s_(:enario, F‘igure 8 shows estimates of yw and their standard errors obtained by
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Figure 8. Estimates and their standard errors for within-trial treatment-covariate -

interaction effect when analysing change in SBP (follow-up minus baseline) from

hypertension data in the scenarios that: (a) 1 trial provides IPD and 4 trials provide AD,

provide AD, (d) 4 trials provide IPD and 1 trial provides AD.
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" (b) 2 trials provide IPD and 3 trials provide AD, (c) 3 trials provide IPD and 2 trials




(c) For the scenario that 3 trials provide IPD and 2 trials provide AD
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~ fitting model (2.5) and the SIPD method for each coinbination, where the horizontal axis
rep’resent\s the name of each IPD trial with sample size in parenthéses. For exam’ple, in the
scenarios of 2 IPD trials and 3 AD trials, names of 2 IPD trials and sum of safnplé sizes from
2 IPD trials are shown, and alsb in the scenarios of 4 IPD trials and 1 AD _frial, names of 1
AD triél»and sum of sample sizes frofn 4 IPD trials are shown. The hea,vy" solid line represents
the results from the full IPD analysis,. ah_d thus the closer results to this line are regarded as
superior on,es.in the s_ensé of ma,tchihg the full IPD analysis. For almost all combinations of 1
lIPD trial, the SIPD rhethod provided estimates of yw and their standard errors whibh were
located cioser to those from the full IPD analysis than model (2.5). These weré particularly
: cbnsiderable when the number of patients included in the IPD trial was small (e.g. HEP, -
EWPHE and MRC-2). Similar ﬁndi}lgs were seen for the scenario of 2 IPD trials, although
the results by the 2 methods were closer, and almost equivalent in the scenario of 4 IPD trials

and 1 AD tr‘ial.‘

The diﬂ'éreﬁce between the_.results from model (2.5) and the SIPD m.ethod. is clearly
~ dependent on the proportidn of available IPD in all patiénts, not just the number of IPD
- trials, because the difference between methods decreased in_the case '(_)f large sample size .of
IPD trials in Figure 8 (e.g. SHEP and Sy—Eui'). For this viewpoint, we computed the number

of patients in_volved in the IPD trials for all the 30 combinations from Table X Figure 9 shows

w
wlo —— Full-IPD =1, . == FullIPD
< . 0 Model (2.5) B . o Model 2.5)
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<+ ] ° o )
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Figure 9. Estimates and their standard errors for.lwithin-trial treatment-covariate
interaction effect sorted by the proportion of available IPD in all patients when analysing

change in SBP (.fo'llow-'up minus baseline) from hypertension data.
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estimates of ~w and their standard errors from model (2.5) and the SIPD method for all the
scenarios, which. includes 30 results sorted by the proportlon of patients involved in the IPD
trials. As before, the difference between the results from model (2.5) and the SIPD method
became larger when the proportion of patients 1nvolved in the IPD trials became smaller, in
addition, the dlﬂ'erences rapldly diminished when IPD for over 40 per cent of patients was
' _avallable Thus the SIPD method had most notable benefits when the proportlon of patlents

‘involved in the IPD ftrials was low.

 The SIPD method could bring meta-analysts some ether potenfial advantages, rather
~ than just provides 4w and its standard errors which are closer to these ﬁom the full IPD
‘ -analysis in comparison with model (2.5). Once obtaining the SIPD, one cae apply any IPD
meta-analysis appreeches to each set of SIPD combined with the collected IPD. We here

Name of IPD Trial . Patient

(Sample Size) Subgrqu_p (Age) B Mean Difference [ 95 per cent CI]
Full IPD analysis 0 ' ' 10.78 [-11.86, -9.69]
_ <=70 —— _ -10.78 [ -11.77, -9.78]
HEP >70 I -— 1 . 1025 [-11.91, -8.58]
(349) <=70 [ —u . -11.40 [-13.35, -9.44]
EWPHE >70 o » — : 9.95 [-11.64, -8.26]
172) - <=T0 ¢ » 1 <1177 [-13.75, 9.76]
MRC-2 > T700 ' ' -—y ‘ -10.47 [-12.04, -8.91]
(2651) <=170 — -— i - -11.11 [-12.89,-9.33]
SHEP >70 o —— S - -10.70 [-11.82, -9.59 ]

. 4736) <=0 [ — _ -10.85 [-12.01, -9.70]
Sy-Eur > 70 : [ — -10.78 [-11.86, -9.69 ]
(4695) T <=70 ———y -10.78 [-11.77, -9.78]

I —T T ]
-14 .-12 -10 -8 .

Mean Difference

Figure 10. Pooled estimates of ‘mean difference on change in SBP (follow-up minus baseline)

between groups and their 95 per cent confidence intervals for 2 patient subgroups of age.
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considered a situation of exploriﬁg beneficial effects in specific patient subgroups, and meta-
analysed these subgroﬂps within each trial in hypertension, which were identified by age of
patients. Ob§iously, ‘model (2.5) for combiﬁing IPD and AD cannot provide any findings for
this. We allocated each patient in the IPD trials and each simulated patient in the AD trials
to 2 or 3 subgroﬁps according to the following scenarios: (i) whether age of the patient is
more than 70, or not, (i) whether age of the patient is more than 73, 67 or more té 73 less,
or not. Using covariate values generated for patients in the AD trials enables one to estimate
_ pooled treatment effects for each patient subgroup. We-heire cbnsidered only a situatibn

where 1 trial provides IPD and the other 4 trials provide AD. Figure 10 shows the pooled

Name of IPD Trial’ Patient

(Sample Size) Subgroup (Age) ’ ~ Mean Difference [ 95 per cent CI7°
.73 S | —_— -9.78 [-11.03, -8.52]
Full IPD analysis <=173, >67 ——— ' ‘ . - -11.57 [-1_2.60, -10.54 ]
- <61 . —— . -10.78 [-11.69, -9.87] -
LEP Cs73 : ) — — 10,03 [-12.42, -7.65]
349) <73, >67 L ———y 41076 [-12.03, -9.48]
: <67 — — ' _ -11.76 [ -14.47, -9.06 ]
>73 ) .- —— 948 [-1196, -7.01]
i <7, >67 —_— v -1092 [-12.19, -9.66]
an) =61 - ' -12.18 [-14.96, -9.40]
>73 ' : ' . -— 1 -10.02 [-12.24, -7.79] -
MRCl-2. w6 ——y -11.08 [-12.33, -9.83 ]
(2651) <67 b . ' -11.25 [-13.64, -8.86]
>73 —l———] -10.47 [ -11.98, -8.96]
il;f; <73, >67 — ' -11.00 [-12.18, -9.81 ]
( <67 —_—— -10.82 [-12.31, -9.32]
>73 S S — 11043 [-11.97, -8.89]
Sy-Eur ) .
— . . - -11, -la. ~7.
(469%) <73, >67 e ——— 1111 [-12.25, -9.98]

<= 67 el ; -10.79 [ -12.02, -9.56]

-14 -12 =10 -8

‘Mean Difference

Figure 11. Pooled estimates of mean difference on change in SBP (follow-up minus baseline) - -

between groups and their 95 per cent confidence intervals for 3 patient subgroups of age.
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treatment effect estimates and their 95 per cent confidence intervals for the scenario (i) of 2
patient subgrgup. The upperrﬁost block represents results from the full IPD analysis. Thg :
names of 1 IPD trial are depicted in the left hand side,. squares and horizontal lines around
them denote the pooled treatment effect estimates and their 95 per cent confidence intervals
respectively. When the 1 IPD trial had large sample s1ze (e g. SHEP and Sy-Eur), results
for each patient subgroup from the SIPD method were 31m11ar to those from the full IPD
: analys1s. Figure 11 also shows the pooled treatment effect estimates and their 95 per cent
confidence intervals for the scenario (ii) of 3 pat1ent subgroup, and the same ﬁndmgs were

seen for. the IPD trlals with' large sample size.

4.5 S_ifnulation 3: Performance of the proposed method based
on simulated IPD in the situation of continuous outcoine

and covariate

From the.results in the application to the hypertension data, if.Was-show.n that the SIPD
: meth(;d_via Bayesian procedure provided estimaﬁes of the within-trial interaction closer to
those from the full IPD analysis than model (2.5), when the number of IPD trials was small
and when the number of patients involved in the IPD trials was small. To check this finding,
we here focused on the within-trial interaction eﬂ'ect; and compared some statistical properties
of Aw obtained by the SIPD methdd with those obtained by fitting mddel (2.5) under some
settings of controlled parameters and the number of patients involVed in 1 IPD trial and 9

AD tria_ls.

4.5.1 Design of Simulation 3

We considered that the true models for generating individual outcome and covariate values

from patients in each trial were written as follows:

Mizi ~ N(iny, 62,),

Zijlma; ~ N(magi,02), (4.3)

Yij|Tij, 2ijy Z ~ N(tﬂ + 0z + iz + ’“)’Aw;'jfi + ywij(2i — Zi),02),
Cj=l..,mi=1,...,10 |
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where the true parameters except for yw and 05 were given as estimates by fitting model (2.1)
to IPD from 10 trials originally reported in Wang et al. (2005), with change in SBP as an -
outcomé; e.g. 6= —4.958, i = —0.042 and 45 = —0.079. The total numbef of patients was
given by Zgl n; = 6,000, and each group had the same sample size as n;T = n;o = N, / 2. M,
and 62, are thé mean covafiate value across all the 10 trials and its variance, based on the fact
that the Wang’s data gave 1, = Y10, %/10 = 62.69 and 62, = SI ( — ,)2/(10 - 1) =
180.8. We supposed that only 1 trial provided IPD (fhe other 9 trials provided AD), and
controlled the number of patients involved in the 1 IPD trial by six scenarios of 60, 300, 6.0'0,
1,200, 2,400 and 4,800; so that the proportions of patients with available IPD were givén
by 1,5, .10, 20, 40 and 80 per cent, respectively. The 9 AD trials irﬁ)olved almost the same
number of patients for each scenario. ' - |

We here considered o2 = 100 for the 9 AD trials, aﬁd controlled- that for the 1 IPD trial
by 3 scenarios of o2 € {25,50; 100}. ‘These 5ce_narios of 02 lead us to a situation th'at‘ the 1
fPD trial provides information on the within-trial interaction less than or equal to the other
AD trials. We also gave yw = —0.2 and 02 = 200 so that the power to detect the within-trial
interaction estimated from the full IPD analysis becomes high ehough for each scenario. '

The implgmenting procedure was as follows. Firstly, we set the number of patients in-
vc_)lved in the 1 IPD trial and o2 for eéch of.18 scenarios, and then generated 5,000 sets of
meta-analysis data according to the true model (4.3) with parametefssef in thé previous step
for each scenario. Secondly, for each set in each scenario, we summarised IPD fbr 9 Qf the 10
trials to AD. Finally, we analysed the mixture of IPD and AD by 2 methods: model (2.5) and
the SIPD method. In each analysis, we computed mean-square error (MSE), mean bias and
mean standard error for AW- We also computed sample mean of absolute differences between
estimates of yw obtained by fitting model (2.5) or the SIPD method and those obtained |
from the full IPD anaiysis. Moréovef, we estiinated the type I etror rate and the statistical
power with one-sided hypothesis test at 5 per cent level of significance for Ho : yw = 0 and

Hy:yvw<0.

4.5.2 - Results of Simulation 3

The results of MSE, mean bias and. mean standard error for each scenario are shown in
Table XI. In each scenario, the SIPD method provided substantially smaller MSEs and mean
standard errors invcomparison with model (2.5), especially when the proportion of patients

with available IPD was low (e.g. 1 or 5 per cent) and o2 was small (e.g. 62 = 25). The
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 results of the absolute differences also show that the point estimates of yw from the SIPD
- method were, on average,‘ located closer to those from a full IPD analysis (of all 10 trials)
than model (2.5). The difference between the 'resﬁits from model (2.5) and the SIPD method
was the largest for the scenario of 1 per cent of patients with available IPD and o2 = 25, and
became srﬁaller aé ,the proportion of patients with available IPD was higher and o2 increased.
These indicate that the SIPD method could adjust the est’ﬁnate of yw and its standard.
error from the IPD-oniy analysis closef to those from the full IPD analysis using additional
information frbm vthe -AD'trials, especially when the saniple size of the IPD trial was small
and the variation in patients covariate within the IPD trial was srhall. For example, in the
scenario of 5 per cent of patients in the IPD trial aﬁd 02 = 25, the MSE was rec_luced vby 50
per cent using the SIPD rhethod (MSE =v0.051) rather than model (2.5). (MSE = 0.111);
similarly the standard error ‘was reduced considel;ably by using SIPD (mean s:.e; = 0.248)

- rather than model (2.5) (mean s.e. = 0.328). '

: HoWever, in the scenarios of smallerv proportion of patients 'with.available.IPD, the esti-
mates of yw from the SIPD method were more subject to a positive bias. For exaﬁple, the
mean bias from the SIPD method for the scenario of I per cent of patients with available

IPD and o? = 25 was 0.107, and thus 4w was larger than the true value of yw = —0.2 on -
average. This is due to the influence of the information on the w1th1n-trlal relatlonshlps from
the AD trials. The SIPD method allows one to extract the 1nformat10n on the within-trial
relationships from the AD trial by using (3.18), and thus we gain substantially smaller MSEs
and mean sta,ndard errors for Ay in .comparison ‘to model (2.5). On the other hand, this
‘information from the AD trials also pull the estimates of fyw in a positive direction when
the proportlon of patients with available IPD is extremely low. Therefore, in scenarios of
less 10 per cent of patients w1th available IPD, there is a tra,de-oﬁ'; the large gain in MSE
and standard error éomes at the expense of a bias. The bias is negligible in all methods
for 10 per cent or over, and the SIPD method still has gain in MSE (up to about 40 pér
cent) and standard error (ﬁp' to about 20 per cent) in situations between 10 and 40 pef cent
of patients with available IPD. Figure 12 also shows the estimates of yw for the scenario
of o2 = 100, whiéh are arranged in ascending order of estimates from model (2.5) and then
suitably smoothed by taking an average of each 100 estimates. From Figure 12, the difference
between results obtained from model (2.5) and the SIPD method were seen dynamically. In
particular, for the 1 per cent of patients in 1 IPD trial in panel (a), it was confirmed that

the estimates from the SIPD method were much closer to those from the full IPD analysis in
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comparison with model (2.5), and suffered from a positive bias.

Figuré 13 showé the type I error rates and the power for 4w estimate_d by the 3 methods
- for each scenario. In the sce_nario's of 1 and 5 per cent of patients with available IPD, the
type I error tates from the SIPD method were highly conservative. Further, when the true E
within-study interaction was zero, the SIPD method did not produce biaSed estimafes of 'yw
unlike when yw was —0.2 (resulté not shown in Table XI). Therefore, the conservative type
I error rates for the SIPD methbd are likely due to overestimated standard errors of 4w,
even though the standard errors were smaller than those from model (2.5). In the scenarios -
of over 10 per cent of évailable IPD, the SIPD mefhod had better type I error rates close
to 5 per cent. The powers_ovfr model (2.5) and the SIPD method to detect the true negative
interaction wefe very similar. The SIPD method was marginally betterAWhen 10 to 40 per

cent of patients were in the IPD trial.
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Table XI. Mean-square errors, mean biases and mean standard errors for estimator of within-trial treatment-covariate interaction effect, and
sample means of absolute differences between estimates from model (2.5) or the SIPD method (for IPD from one trial and AD from nine

trial) and those from the full IPD analysis (for IPD from all 10 trials).

o Mean of
Mean-square error of . Mean bias of . Mean standard error of absolute
Per cent of S ‘ w . fw : . Awr - difference
total patients in Model ‘ ' Model I . Model , " Model

the IPD trial ;2 (25) SIPD (Full-IPD)* (2.5) SIPD (FullIPD)*  (2.5) SIPD. (Full-IPD)* (2.5) SIPD
25 0.612 0.098  (0.001) . —0.005 0.107°  (0.000) 0.744 0411  (0.037) 0.622 0.252

1 per cent 50 0.303 0.088  (0.001) 0.011 0082  (0.000) 0.526 0.350  (0.037) 10.434  0.235
100 0.147 0.067  (0.001) 0.002- 0.050  (0.000) 0.374 0281  (0.037) 0.303  0.200

25 0111 0051 - (0.001) —0.008 0.041  (0.000) - 0.328  0.248 (0.037) | 0.264 0.176

5 per cent 50 0.054 0.035  (0.001) —0.001 . 0.020  (0.000) 10.232 © 0.192 - (0.037) 0.184 0.143
100 0026 0020  (0.001) 0.001  0.008  (0.000) 0.164 0145 (0.037) 0127 0.108

25 0.055  0.033 - (0.001) 0.002  0.020 - (0.000) 0.231  0.191  (0.038) 0.184 0.141

10 per cent 50 0027 0.020  (0.001) -  —0.001 0.007  (0.001) 0.164 0.145 (0.038) 0128 0.109
100 0.013 0.011  (0.001) 0.000 0.003  (0.000) 0.116 0.108  (0.037) -  0.087 0.080

25 0.027 0.021  (0.002) 0.002 0.011 (0.000) 0.163 0.145  (0.040) 0.125  0.109

20 per cent 50 0.014 0.012  (0.001) 0.000 0.003  (0.000) 0116 0109  (0.039) 0.088 = 0.080
100 0.007 0.006 ° (0.001) ° —0.001 0.001 (0.000) 0.082 0.080  (0.037) 0.059  0.055

25 0013 0011  (0.002) 0.002 0.004  (0.000) - 0116 0110  (0.044) 0.086 0.079
40 per cent 50 0.007 0.006  (0.002) 0.000 0.002  (0.001) 0.082 0.080  (0.041) 0.055  0.053
100 0.003 0.003  (0.001) —0.001 0.000  (—0.001) 0.058  0.057  (0.037) 0.035 0.034

25 0.007 0.006 . (0.003) 0.000  0.001 (0.000) 0.082  0.081 (0.058) 0.046 0.045

80 per cent 50 0.003 0.003  (0.002) 0.001  0.001 (0.000) 0.058 0.058  (0.047) 0026 0.026
100 0.002 0.002  (0.001) 0.000  0.001 (0.000) 0.041  0.041 (0.037) 0.014 0.014

, Model (2.5): Fit model (2.5) to the mixture of IPD and AD, SIPD: Apply the SIPD.method to the mixture of IPD and AD.
oZ: Variance parameter in within-trial covariate distributions for patients in one IPD trial.
*Results by fitting model (2.1) to the full IPD from all trials.



(a) 1 per cent of patients in 1 IPD trial

No. of meta-analysis data arranged in ascending
order of estimates from model (2.5)

(b) 5 per cent of patients in 1 IPD trial
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Figure 12. Estimates of within-trial treatment-covariate interaction effect for the scenario of
' a2 = 100.
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right side) for within-trial treatment-covariate interaction effect.
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4.6 Simulation 4: Performance of the proposéd method based
on simulated IPD in the situation of binary outcome 'and

-covariate

Through an application to the hypertension data and Simulation 3, in the situation of contin-
uwous outcome and cdvariaﬁe, the SIPD method via Bayesian procedure impfoved the existing
method by Riley et al. (2008) in the .sense of 'rnatchjngthe full IPD analysis for inference of
the Withiﬁ-trial interaction. We here supp'osed a situation where a single binary oﬁtcome and
cqvariaté are observed from each patient, and fo_cuséd on the across-trial and the within-trial
interaction effect estimated by ﬁtting the existing model (2.9) and the SI_PD method via
Bayesian procedure described in Chapter 3.2. The methods ‘were apﬁlied for the case that:
some trials provide 'I'PDV and the others prov'ide only AD. We were again interested in how
estimates of the within-trial interacﬁon from the proposed method became close to those

‘from the full IPD analysis aécording to the proportion of trials providilig IPD.

4.6.1 Design of Simulation 4

We chsideied that the true models for generating individual-specific outcomes and covariates
from each study were written as follows: ' v
0, j€C.
Lij = " )
1, je€T
. 2zij ~ Bernoulli(m;),
yij|:z:ij, Zij, % ~ Bernoulli(g;;), ‘ ' : i (4.4)
log l_q”—(;— = —2— 0.5z;; + 0.52;; + 2$ij§i + zij (25 — %),
— gij : » : N
j=1,...,400, i=1,...,10

where the numbers of patients for the treatment group in each trial were assumed to be '
equivalent to those for the control group; i.e. n;T =-_hic = 200 for i = 1,...,10. We gave
the fotal number of trials by 10, and controiled the number of trials providing IPD by 4
scenarios of 1, 2, 4, 8 trials (the numbers of AD trials weré giVen by N € {9,8,6,2}). We |
also controlled the true proportion_ of patients with Z = 1 in each trial, m,; for.i =1,...,10,
by 3 scenarios of low-, moderate- and high-heterogeneity across trial_s. The true proportions

of patients with Z =1 for all 10 trials were given by {0.40, 0.40, 0.45, O..45, 0.50, 0.50, 0.55,
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0.55, 0;60, 0.60}, {0.30, 0;30, 0.40, 0.40, .0.50, 0.50_,' 0.60, 0.60, 0.70, 0.70} and {0.10, 0.10,
0.36, 0.30, 0.50, 0.50, 0.70,_.0.’%0, 0.90, 0.90} 'respe_ctively; one for ee,ch trial. The standard
errors.of YA are expected to become smaller in the scenario of ‘high-heterogeneity on the
mean covariate (Lambert et al., 2002). Each patient in each trial was allocated to a pe,tient :
subgroup with Z =1or Z = 0, using predefined proportions for the trial, whichvv:iried from
trial to trial. |

The implenienting procednre was as foliowé. Firstly, we set the number of IPD trials and
My for.z' =1,...,10 amon_g 12 scenarios,’ and then accoi‘ding.to the _tr’ue'modei (4.4), we
| generated ‘5,000 sets of meta-analysis data. Secondly, for each scenario, we summarised the
IPD from trials i = 1, .. ., IN_to the AD. Finally, we meta-analysed a mixture of IPD and AD
by: (i) fitting model (2. 9) to the mixture of IPD and AD, ( i) applymg the SIPD method via
Bayes1an procedure to the mixture of IPD and AD In each analySJS, we computed RMSE,
mean bias and mean standard error for 44 and w- We also computed sample mean of
absolute differences between estimates of YA (and Yw) obtained by fitting model (2.9) or the
SIPD method and those obtamed from the full IPD analysis. Moreover we estimated the
type I error rate and the statistical power for yw with two-sided hypothe31s test at 5 per cent
level of significance for Hy : YW = -0 and Hy : yw #0.

4.6.2 Results of Simulation 4

The resulté of MSE, mean bias and mean standard lerrlor for the acro'ss—tiia,l interaction are
shown in Table XII. In each scenario, the SIPD method provided similar results to the full
IPD analysis. By contrast, the estimates from model (2.9) had a negative bias, especiaily
in the scenario of low-heterogeneity on the mean covariate. The. results of MSE, mean bias
and mean standard error for the within-trial interaction are shown in Table XII In each
scenario, the SIPD method provided substantially smaller MSEs and mean standard errors
in comparison with rnodel'(2 9), especially when the number of trials providing IPD was small
(e.g. 1 or 2 IPD trials) and the heterogenelty on the mean covariate was high. The results
of the absolute differences also show that the point estimates of yw from the SIPD method
were, on average, located closer to those from a full IPD analysis (of all 10 trials) than model
(2.9). The difference between the results from model (2.9) and the SIPD method was the
largest for the scenario of 1 IPD trial and high-heterogeneity on the mean covariate, and
became smaller as the number of trials providing IPD was larger and heterogeneity on the

mean covariate was lower. Figure 14 also shows the estimates of the within-trial interaction
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for the scenario of high-heterogeneity on the mean covariate, which afe @rrangéd in ascending
order of estimates from model A(2.9),and then suitably vsmoothe_d by taking an average of each
- 100 estimates. From Figufel 14, the difference between results obtained from model (2.9) and
the SIPD method were seen dynamically. 111 particula.r, for 1 IPD trial é,nd 9 AD trials in
panel (a), it Waé confirmed that the estimates from the SIPD method were much closer to
those from the full IPD analysis in comparisbn with model (29) Figufe 15 shows the type I
error rates and the poWer for 4w estimated by the 3 methods for each scenario. The i)owers
“of the SIPD method to detect the true positive interaction were higher than thése from mociel
(2.9), especially when the number of trials providing IPD wa,é smail (e.g. 1 or 2 IPD trials)

and the heterogeneity on the mean covariate was high.

(i



8L

Table XII. Mean-square errors, mean biases and mean standard errors for estimator of across-trial treatment-covariate interaction effect, and
sample means of absolute differences between estimates from model (2.9) or the SIPD method and those from the full IPD analysis (for IPD
' ' | ' ~ from all 10 trials).

_ ' Mean of.

Mean-square error of -~ - - - Mean bias of Mean standard error of absolute

: . _ A . o YA 7N ' difference

Number of trials Covariate Model Model Model . : Model

providing IPD  heterogeneity (2.9) SIPD (Full-IPD)* (2.9 SIPD  (Full-IPD)* (2.9) SIPD (Full-IPD)* - (2.9) SIPD
' Low ' 1.119  1.275 1.170 - -0.150 -0.002  0.011 - 1064 1.099 1.088 - 0221 0.189
1./10 ‘Moderate 0.304 0.351 0.315 —0.156 —0.018 -0.004 0.550  0.568 0.561 0.159  0.097
High 0.082  0.090 0.083 —0.072  0.005 0.012 0.285 0.291 0.288 0.086 0.041
Low 1123  1.243 1.156 -0.182 —0.044  —0.035 - 1.060  1.087 1.081 0202 0.167
2/10 ‘Moderate 0.299 0.331 0312 —0.118 0.010 0.018 0.549  0.563 0.559 0.146 0.086
High 0.079  0.086 0.081 —0.079.  —0.009 —0.003 0.285  0.290 0.288 - . 0.077  0.036
Low - 1226  1.310 1.262 -0.089  0.017 0.019 © 1.069  1.088 1.085 - . 0169 0.144
~4/10 Moderate 0.308 0331 - 0316 —0.096 - 0.002 0.003 0.552  0.561 0.560 0.111  0.073
High 0.085 . 0.089 0.087 —0.037  0.018 0.019 , 0.286  0.289 0.288 0.058  0.029
Low - LI77T  1.200 1,178 —0.019  0.020 0.020 - -1.080 1.086 1.085 - . 0.085 0.079
8/10 Moderate 0.316  0.322 0317 —0.015 0.019 0.019 0.557  0.560 . 0.560 0.049  0.040
High 0.083 0.084 0.083 -0.013  0.006 0.006 0.287  0.288 0.288 0.023 0.017

. Model (2.9): Fit model (2.9) to the mixture of IPD and AD, SIPD: Apply the SIPD method to the mixture of IPD and AD.
*Results by fitting model (2.6) to the full IPD from all trials.
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Table XIIL. Mea,n;square errors, mean biases and mean standard errors for estimator of within-trial treatment-covariate interaction effect,
and sample means of absolute differences between estimates from model (2.9) or the SIPD method and those from the full IPD analysis (for
' " IPD from all 10 trials). o

. . Mean of
Mean-square error of - Mean bias of Mean standard error of absolute
‘ : . Aw w . Aw difference
" Number of trials Covariate Model ' Model . Model o Model
providing IPD  heterogeneity =~ (2.9) SIPD (Full-IPD)* (2.9) SIPD (Full-IPD)* (29) SIPD (Full-IPD)* (2.9) SIPD
} ~ Low 0.259 ~ 0.254 0.026 0.023. 0.030 —0.003 - 0.513  0.490 0.163 0.388 0.388
1/10 Moderate - 0.281 0208  0.027 0.022  0.032 0.008 0.531 0.454 0.167 . 0.398  0.348
High 0.827 0.231 0.037 ‘ 0.007  0.040 0.006 - 0.714 0473 0.194 0.579  0.380
Low 0.128 0.130 0.026 0.015 0.018 - 0.010 . 0361 0.338 - 0.162 - 0.266  0.267
2/10 Moderate 0.132 0.115  0.027 —0.001 0.007 0.006 0.373 0.331 0.167 0.257  0.245 -
: High 0.192  0.115 0.038 —0.003 0.006 —0.001 0445 0344  0.194 0.311  0.259
. Low ‘ 0.065 0.065 0.028 0.001 0.004 0.001 0.256 0.231 0.162 0.156  0.156
4/10 v " Moderate 0.073  0.067 0.027 0.005  0.009 0.002 0.264 0.234 0;167 o 0.170  0.164
o High 0.092 0.066 0.037 0001 0.009 0.003 0.309 0.257 - 0.194 0.186  0.165
Low 0.032 0.032 0.026 0.004 0.005 0.002 0.181  0.168 0.162 0.068  0.067
8/ 10 Moderate 0.036  0.036 0.030 0.010 0.011 - 0.010 0.187 0.173 0.167 0.066  0.065

High 0.049 0.045 - 0.038 0.021  0.020 . 0.020 0.216  0.200 - 0.194 0.078 0.075

Model (2.9): Fit model (2:9) to the mixture of IPD and AD, SIPD: Apply the SIPD method to the mixture of IPD and AD.
*Results by ﬁttlng model (2 6) to the full IPD from all trials.
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Figure 14. Estimates of within-trial treatment-covariate interaction effect for the scenario of

high-hetefogeneity on mean covariate.
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Figure 15. Type I error rates (three panels on the left side) and powers (three panels on the -

right side) for within-trial treatment-covariate interaction effect. '
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5 Discussion and further developments

Meta—analyéis with marginalising the missing IPD

We proposed a new meta-analysis method for estimating the treatment-covariate interaction.

As pointed out by Riley et al. (2008), vsepara,tion of the treatment-covariate interaction into '_

the é,cross-trial and the within-trial effect is a clinically meaningful operation because these
effects might be different of each other due to ecologiéa,l bias and/or trial-level confounding.
Indeed, for the hypertension data, we cannot conclude a negative interaction between the
utreatment‘ effect on change in SBP and age, with the across-trial effect estimated by using
the mean age in each trial. This is because the Withiﬁ-trial interaction, which was estiinated
by using age 6f individual patients, acted in the opposite direction of the acrosé—triél interac-
tion. Similarly for ‘t‘he home safety education data, the across-trial interaction betvs}een the
intervention effect on provision of the stair gate and the proportion of male participants was
very different from the within-trial interaction between the treatment effect and gender of
individual patients. We here advocate that the MR model (2.2) or model (2.7) does not give

sufficient evidence for the patient characteristics.

In the préposed method, we assume the IPD meta—analysié model for the missing IPD and
then marginalise ii;s density wit_h i‘espect fo the missing IPD. These processes produce the
log-likelihood (3.8) for AD available, and the use of this log-likelihood is useful to estimate
the within-trial interaction even when all trials provide only AD. The simuiation studies sug-
gested that the proposed method provided the within-trial interaction effect estimates with
- moderately small RMSEs, and worked better when the variance in within-trial covariate dis-
tribution was large. The proposed method assumes that all trials are similar (éxchangéable)
to each other apart from having a separate baseline (intercept).' This strong exchangeability

assumption means that, conditional on the. AD available _(méans‘ and sfandard.devia,tions

of each group), the missing information (such as the within-trial interaction, yw, and the

covariate effect, p) can be informed approximately by meta-analysing the AD.
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The proposed method. is also simply extended to the case for mixture of IPD and AD.
IPD meta-analysis has been advocated by many researchers, while the methodological de-
velopment for combining IPD and AD be_coﬁies iﬁcreasingly important because practitioners
cannot always collect_ thé IPD for all trials involved (Riley, Simmonds'and Look, 2007; Ahmed,
Sutton and Riley, 2012). Reducing available IPD to AD and focusing on just the across—tﬁal
felationship leads to a loss of information and potential bias, and it is irhportaﬁt to focus on
the within-trial relationship as much as possible-. Through si_mulation studies, the proposed
method provided smaller biases and smaller MSEs forl'est.ima,tor of the within-trial interac-
‘tion, 4w, in comparison with the existing fneth’od by Riley et ai. (2008), especially when the
" number of trials prbviding IPD was small. And also, simulation studies suggested howv- the
biases and the MSES for yw from thé proposed method changed according to the number of
trials providing IPD. These results could offer a ﬁseful guidance if one considers how many
IPD tﬁa]s should be collected to preserve a desired le{rel of statistical power.

However, we recognise that the proposed method makes strong exchan_geability assump-
tioné and, as it stands, is only applicable to a narrow range of situations. In particular it
assumes thé,t the treatment effect and within-trial interaction are fixed across trials. It would
be useful to extend the method to random effects models to allow for heterogeneity if possible
(Higgins, Thompson and Spiegelhalter, 2009), and also allow a trial-specific covariate effect
(#:) and a trial-speciﬁc error variance (ogi). Indeed, a meta-analysis of the full 10 trials in
the hypertension data originally reported by Wang et al. (2005) would potentially require
this kind of modelling (Riley ei al., 2008). Riley et al. (2012) notes that when there is
A baseline imbalance a meta-~analysis of raﬁdomised trials ﬁith a continuous outcome should
use analysié_ of covariance, and we welcome consideration to this situatibn. Moreover, in the
proposed method, we assumé_that the covariate is Iiorma,lly di_étributed-. Tt would be neces-
sary to discuss how sensible the results from the proposed method are with respect to this
assumption. Finally, we only consider models for estimafing one interaction, bﬁt of - course in
practice multiple intefaétions might be of interest. Nonetheless, where the assumed criteria
aig considered plausible or worth consideration in a 'sensitivity a,nalysis, the propbsed method

is a promising method for meta-analysts faced with combining IPD and AD.

Meta-analysis based on simulated IPD

The SIPD method proposed offers a novel framework for meta-analysis, and is also flexible

enough to estimate the treatment-covariate interaction whilst separating across-trial and
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within—trial effects because it involves the scheme of marginalising the missing IPD. Through
the application to the hyper’cension .data, we 'demoﬁstra‘t.ed that the SIPD method provided
results for the within-trial intefaction closer to those from the full IPD analysis than f_he '
existing method By Riley et al. (2008) ‘The most beneficial fesults were given for the caseé
. when the number of trials providing IPD was small or the proportion of pdtients with available
IPD was low. In such situations, the collected IPD trials may offer very little information
- on the within-trial relationships, causing model (2.5) to yield estimates of the wif,hin-trial
interaction wifh large standard errors. By contrast, the SIPD method utilises additional
information from the AD trials and, in comparison to model (2.5), can provide estimates
and st_."andard‘errors' closer to those from a full IPD analysis. This is particularly true when
given over 10 per cent and under 40 per cent of patients in the IPD trials, as the adjusted
estimators from the SIPD method were unbiased and had smaller MSEs and standard errors v
_ for these situations in our simulation. | ‘
However, th_e simulation study' revealed some limitations of the SIPD method. In par-
ticular, the adjustment by using the AD trials :Igave a bias in estimator for the within-trial -
interaction in the cases when the proportion of patients with available IPD was under 10 per
cent. And also, in the same situations, theASIPD method suffered from_fhe conservative type
I error rates of the within-trial interaction effect, because the standard errors from the SIPD
method were overestimated. Howeve;', in situétions with over lﬂ per cent of patients in the A
| IPD trials, the SIPD method performed. well. ' |

- Using the SIPD enables one to apply any IPD meta-analysis approaches, and éould ‘have
a huge possibility to produce novel findings which is never provided by the existing meta~ -
analysis methods. Through the application to the_hypert_ension data, we used the SIPD
method to meta,—analyse‘ patient subgroups within each trial identified age of patients. The
estimates of the within-trial interaction and its standard errors for each patient subgroup
could be utilised for a ﬂexiblé trial design. To seek and find the further potential benefits of

using the SIPD will be discussed as a future pr._oblem.
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A'Appendic'es

Appendix A
The difficulty of using (3‘.16) is to integrate the density over a restricted sample space. Tsiatis
(2006) gave a general calculation to solve such problems. We here brief the Tsiatis’s (2006)
approach; and describe how to .integrate tvhe normalv'density ovér the .samplAeA space that a
sample mean and variance are fixed. This calculation follows a discussion by Pullin (1979) |
which proposed a method for generating réndom samples from a normal distribution with
known sample mean and variance. - | ,

Let X = (Xy,...,Xk) be K random variables, and assume there exists a dimensional-
 reduction transformation A(X), that is a K'-dimensional variable (K’ <K ) Also, assume

there exists a (K K')- dlmensmnal variable 9(X) that
X & {h(X),g(X)}

is one-to-one for all h(X). Let f(X) and f(h(X), g(X)) be the density of X and (h(X), g(X))
‘respectively. Consider random samples of X, z = (z1,...,Zk), and suppose that K"—
- dimensional summary statistics, h(z), are only available. Then, an integration of f(X) .0ver
‘a Sample.space with ﬁ}ied_ h(z) is equivalent to an integration of. f(h{z), g(X)) with respect
_t‘o g(X); e |

/ f(X)dX JECE 1,0 (). @y
h{z) :

If we consider X as normal random variables, h(z) as a sample mean and variance of x, the

desired likelihood (3.16) can be derived by usign the relationship (A.1).

Let x1,...,zx be independent random samples from a normal distribution with mean u

and variance o2. The joint distribution of (z1,... ,Zx) is given by
| 1 | 1 K |
y - —_— — )2
dF(a:;,-. CHTK) = (@no?)KP2 exp [ 552 k§=1:(xk ©) ] dx?, vy TK
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We ﬁrst consider the following Helmert’s transformation:

: K ‘
1
= Kif2 Z(-’Bk — Kup), (A.2)

| | 1 | s
yl:['(K+1.-—l)(K+2—l)1/22:5"'c (K +1- Do, l—?""’K',

The i inverse of (A.2) is readlly obtamed as

x1=%[Kg—;_* KE D, N (A3)
o=z + (—K—+:—)175 (' +2- 02y - (K ) Voy], 1=2,..,K
Using(A.3), a known result is led as
1 1 us
AE@1 -2 9K) = i P [—m (y% +I;y%>] dyr,....,dyx (A4
and ’ |
_ y1 2_ 1=,
x=u+ﬁ, | §° = —K—gyk.
Then, yi,...,yx independently follow a normal distribution with mean zero and variance
a%. We now consider a transformation of y1,...,yKx which follow the normal distribution as
follows: |
dF(ys,...,ykx) « m/—zexp [ F};yﬁ] dyy,...,dyx. (A.5)

The vsolution requires slightly different treatment by whether K is pdd or even. Now let
=(K-1)/2+¢ | |
where §=0if K is odd and { =1/2 if K is even, and introdﬁce the set of transformations
| | Yom - \/e% €OS Vm, ’ (A.6)
Yom+l = \/€m sinvy, m=1,...,n0—2¢ | |

where 0 < vy, < 27 for all m. If K is odd, we use (A.6) directly. If not, we must add

Yn = Zt\/ €m . (A7)
* to (A.6) with equal probability 1/2 for the + and —. Substituting (A.6) and (A.7) into (A.5),
‘we have
| - | n-2¢
dF(e1,...,ep,v,.. o U 25) oY exp [ Z emJ H de;dvife, /zde ] (A.8)
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while the sample variance is given by
' , 1 n : ' _ ,
3=NZem. S N (A9)
m=1

Finally, we introduce a transformation of e, ..., ey into (52,215 .., Zp—1) a8

- m—1 .
em =K’z [[(1-2), m=1...,n-1, (A.10) -
- j=1 , ‘ '
Cpe1 |
en = Ks* H(l = 2j).

j=1
~ where each of the z,, m=1,...,n7— 1, is located in an interval (0,1). The Jacobian of this
transformation is given by i

d(e1s..-,en)
. a(fgz-, 21y ,zn—l)

S |
= k= [[a - 5" (a1
u | |

Substitut‘ing (A.lO) and (A.11) into (A.8) and (A.9), we have

dF(s2,_ Zlyee s Zn—1, V1, ... s Un—2¢) oc
: Ks2 n=2¢ . -1 : ,
(82)(K_3)/2 exp [_553] d(s_z) H dvim, H (1 _ zm)n—(m+7l+1)dzm' (A.12)

m=1 m=1
- Therefore, from (A.4) and (A.12), the density of (u,0?) is given as follows ekcept for terms
unrelated to (u, 0?): o
1 K 2, 2y : '
e [l w7 4] A1)

By using (A.13) in the context of the continuous meta-analysis data, we obtain (3.16):

Appendix B

- In Step (2) of the SIPD method, the uncollected IPD miist be drawn from the conditional dis-
.tribution given available AD; however, the density of this conditionai distribution is difficult
to be 'exbress.ed e)iactly. _This is associated with some issugs on thé conditional distribu-
tion given the sufficient statistics, discussed by Cheng (1984), Engen and Lillegard (1997),'
Lindqvist and Taraldsen (2005). They gave géneral formula to calculate the conditional ex-
péctation based on the conditional distribution given the sufficient statistiés. Especialiy, an
'issuev'of sampling frbm the conditibnal distributions were considered.- We here brief this ap-

proach, proposed by Lindqvist and Taraldsen (2005), for a simple case of univariate normal

distribution.
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Now, let X = (X3,...,Xk) deniote random variables folloi#ing a normal distribution with
mean 4 and variance 0% Here, T'= (X, Sx) is the sufficient statistics for § = (u,0), where
X =n'YE Xiand 8% = (K - 1)K (X4 — X)%. Let U = (U,. .., Ux) denote
random variables following standard normal distribution, and two functions of x zind T arv'e'

defined by

X(Uao) = (/J,-I-O'Ul,,/,t-l—O'UK), ' (Bl)
™(U,0) = (u+0U,08y),

where U and 8% stand for the mean and the variance similarly defined to X and S%. Then,
there exists unique x and -7 so that the joint distribution of (X(U, 0),7(U, 6)) is equivalent
to those of (X,T) under the parameter . This means that, for given t = (Z,sz) and U,

6 = 6(U,t) in which 7(U, 6) is held is uniquely determined as follows.
A ) . U1 o |
0(U,t) = (p(U,t),6(U, )= | T — =5z, =5z ] - . (B.2)
- ‘ Sv 7 Su _ _

Thus, the random variable following the conditional distribution of X giVeri T =tisprovided

as follows.

U, -0 o Uk - U%) ’ B3)

X = x(U,0(U,¢)) = (:'I:+ R
It is easily shown that the probability distribution of X; is actually equivalent to the cbn;
ditional distribution of vX given T' = ¢. Finally, satmpl_ing .procedure from the conditionai
distribution give the mean and the variance is as follows: (i) generate random numbers
u = (uy,...,ug) of U, (ii) substituting uandt to.equat_ion (A.3), we get

~ up — @ ug -\ "
wt=(a‘:+ L gy Bt ‘sz). ' (B.4)
Sy Su c '
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