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Abstract

In clinical evaluation processes, meta-analysis is a statistical methodology to synthesise

results of several trials for the purpose of quantitatively summarising the evidence expressed

as a treatment effect (e.g, mean treatment difference for continuous outcomes). Especially in

clinical perspectives, there is a growing interest in extending meta-analysis beyond estimat-

ing an overall treatment effect, and. to produce results tailored to the individual patient or

clinically relevant subgroups. Meta-regression (MR) is a technique for modeling relationships

between the treatment effect and trial-level covariates, and also can be used for assessing how

the patient characteristics affect the clinical efiectiveness in the context of meta-analysis.

However, most meta-analysis methods build models on,aggregate data (AD) obtained by

summarising individual patient data (IPD) which should have beerr measured originally in

each trial, and thus a pooled treatment effect is estimated with ignoring scheme of sampling

IPD. For this reason, the MR model have often been criticised. The MR model incorporates

covariates as summary statistics on background factors of patients, such as a mean age and

a proportion of male patients in each trial. This means that the patient characteristics are

evaluated expediently with trial-level covariates in place of patient-level covariates. It causes

a technical issue that is referred to as ecological bias, and leads to a Iimitation in interpre-

tation. In pa,rticular, it is well known that, for a treatment-covariate interaction between

a clinical treatment and a patient bharacteristic, a test using the MR model has seriously

lower statistical power than that using the IPD-based model. Note that, for the inference

of the treatment-covariate interaction, the MR model yields a result of just an 'across-trial

interaction efiect' between the treatment efiect estimates and mean covariate values, not a

'within-trial interaction efiect' between individual outcomes and individual covariate values.

As alternative solutions to this problems, some meta-analysis methods using IPD have

been suggested. In these methods, once the original IPD including patient-level covariates

are collected from all trials involved, any flexible statistical approaches, such as multilevel

models and hierarchical random effect models, are applied to the IPD. Meta-analyses based

on IPD allow one to achieve much more meaningful evaluation on the treatment-covariate

interaction by separating it into the across-trial and the within-trial efiect; in particular, the

IPD meta-analysis is an only way to assess the within-trial interaction efiect. However, use of

the IPD may have a disadvantage related to their resources, such as substantial time and costs



to obtain and pr6cess the IPDo And also,practitioners cannot alwars collect the IPD ttom

all trials because the IPD Inight have beOn lost Or destroyed.For this reason,it has becolne

ivreasingly important to consider situations where some trials pЮ 宙de IPD(IPD trials)and

the others provide only AD(AD triab)。 Somё researchers have abё ady illvestigated how to

combine IPD and AD in meta―analySis,especially when tお at品nt_cOvariate interaction is of

interest.

■om these backgrounds,we prOpose a meta― analysis method for estimating b6th the

across‐ trial and the within‐ trial interaction.For the caSe that all trialS prOvide only AD,

we■rst assume an IPD metttanalysis model including parameters of the across― t五4 and

the within― trial interaction elbct,and then llllarginalise the density of IPD with respect to

imiSSing IPD.This proce,s produces a like五 hood for the AD available,and allowS one to get

information on the within― trialinteraction by meta―analysing several AD t五 als.we en3phasise

that the wtthin― trial intё raction can be approximately estittated by using this likehhood even

ifonly the Ap are available ttom eadh trialo Actu嵐 崎,SOme simulatiott studies suggested that

the proposed IIlethod has potential benellts to the inference of the within‐ trial interaction in

comparison with the existing MR approacho When S6me trials pЮ vide IPD and the others

provide only AD,the proposed method is sil■ ■ply extendOd to combillle IPD and ADo There,the

likelihood for parameters to be estimtted is given by product of a hkehhood for the IPD trials

and the marginを山sed likelihood for the AD trials.This again allows one to get information

on the within― tiialinteraction ibm the AD trials.ThЮ ugh simulation studieS,the pЮ posed

nlethod provided sma■er biases and smaller lnean― square errors ibr estillnator of the within‐

trial interaction in comparison with some e対 Sting lllleta― analysis IIIlethods,especially wh〕n

the proportiOn of available IPD was sman.And 4sO,Simulation studies investigated hOw the

proportion of available IPE)arects the biases and the mean… squtte errors for estilnator of

the within― triaHnteraction obtailled ttom the pFopOSed methol・ These resuns could。● ra

llseful guidance ifone considers how many IPD t五 a卜 shOuld be conected to presewe a deshed

level of statistical power.Note that the prOposed method is applicable when parameters tO

be estiIIlated can be asslllned as fⅨ ed elbcts;so that the treatllllent efFect and the treatment‐

covariate inteFattion efFects are assllmed to be common across trials.

As a breakthrough of the e対 sting meta― analysis methё ds,we pЮ pose a meta― alalysis

method based on simulated IPD(SIPD),whiCh recOistructS the missing IPD for each trial

and the,applies a standard IPD meta― analySiS ttOdelto each SIPDo We here discuss two types

of samphng procedllres for generating the SIPD:frequentist and Bayesian prOcedllres.Since



the proposed method based on SIPD also uses the scheme of marginalising the missing IPD,

any advantages mentioned above are held in this framework. When some trials provide IPD

and the others provide only AD, the proposed method reconstructs the missing IPD from

the AD trials and then meta-analyses each set of SIPD combined with the collected IPD.

Through an illustration with 5 IPD trials in hypertension, which investigate to what extent

Iowering of systolic blood pressure and diastolic blood pressure contributed to cardiovascular

prevention, we demonstrated that the proposed method was much sirperior to the existing

meta-analysis methods in terms of the biases and the mean-square errors for estimator of the

within-trial interaction. Using the SIPD enables orre to apply any approaches for the IPD

meta-analysis, and could have a huge possibility,to produce novel findings (e.g. a flexible

trial design) which is never provided by the existing meta-analysis methods.
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1 Introduction

1.1 Backgrounds

In clinical evaluation processes, meta-analysis is a statistical methodology to synthesise results

of several trials for the purpose of quantitatively summa,rising the evidence expressed. as a

treatment efiect (e.g. mean treatment difierence for continuous outcomes). The fundamental

objectives of meta-analysis are to accumulate evidence from smaller trials and to increase

statistical po-u/er to detect an efiectiveness of a clinical treatment (Borenstein et at.,2009). For

example, when an investigator is looking for beneficial effects in specffic subgroups of patients,

a single trial may contain too few patients in the subgroup of interest to be informative. In

drug development, meta-analysis is recognised as a useful tool to summarise the overall

efficacy results of a drug application and to analyse less friquent outcomes in the overall

safety evaluation (Jones, 2008). Sutton and Higgins (2008) reviewed highlights of recent

developments in meta-analysis in medical research, and outlined how emphasis has been

placed on: heterogeneity and random-effects analyses, special consideration in difierent areas

of application, agsessing.bias within and across trials, extension of ideas to complex evidence

synthesis.

In clinical perspectives, there is a growing interest in extending meta-analysis beyond es-

timating an overall tieatment efiect, and to produce results tailored to the individual patient

or clinically relevant subgroups (Thompson and Higgins, 2005). Rubin (1990) has criticised

conventional meta-analysis techniques just averaging the treatment effects from each trial;

and has suggested a need to estimate the efiect of treatment versus control as a function of a

set of scientific factors that influence efficacy (e.g. age, race and gender). This requires meta:

analysis models that assess the association (or interaction) between iatient-Ievel covariates

and the statistical measure of interest. Meta-regression (MR) is a technique for modelling

relationships between the treatment effect and trial-level covariates, and also can be used

for assessing how the patient characteristics a.ffect the clinical efiectiveness in the context



of meta-analysis. The MR approach has been successfully applied with trial-level variables.

Berkey et aI. (L995) showed that the efficacy of BCG vaccine for tuberculosis increased with

distance of the trial site from the equator. Thompson (1993) demonstrated that cholesterol-

lowering drugs were more eflective in reducing ischemic heart disease in trials in which the

treatment groups achieved greater average reductions in serum cholesterol levels lelative.to

their respective control groups. However, most meta-analysis methods build models on ag-

gregate data (AD) obtained by summarising individual patient data (IPD) which should have

been measured originally in each trial, and thus a pooled treatment effect is estimated with

ignoring scheme of sampling IPD. For this reason, the MR model have often been criticised

(Thompson and Higgins ,2002; Riley et aL, 2010). The MR model incorporates covariates as

summary statistics on background factors of patients, such as a mean age and a proportion

of male patients in each trial. This foeans that the patient characteristics are evaluated ex-

pediently with trial-Igvel covariates in place of patient-level covariates. It causes a technical

issue that is referred to as ecological bias (Morgenstern, 1982), and leads to a limitation in

interpretation (Thompson and Higgins, 2002). In pa,rticula,r, it is well known that, for a

treatment-covariate interaction between a clinical treatment and a patient characteristic, a

test using the MR model has seriously lower statistical power than that using the lPD-based

model (Lambert et a1.,2002; Simmonds and Higgins,2007). Berlin et at. (2002) conducted

two types of meta-analyses by using individual patient-level data and trial-level data from 5

trials in their clinical research, and showed that the meta-analysis based on the trial-level data

failed to detect the treatment-covariate interaction. Thompson and Higgins (2002) advocated

that the relationship described by the MR model is an observational association, so this sufiers

from the bias by confounding. Note that the MR model assumes the (across-trial interaction'

between the treatment effect estimates and mean covariate values reflects the more pertinent

'within-trial interaction' between individual outcomes and individual cova^riate values. This

may not be true in practice, as across-trial associations are pron€ to trial-level confounding,

and may truly not reflect within-trial associations (Riley and Steyerberg, 2010).

As alternative solutions to this problems, some meta-analysis methods using IPD have

been suggested (Riley, Lambert and Abo-Zaid, 2010; Simmonds et a1.,2005). In these meth-

od.s, once the original IPD including patient-level outcome and covariate values are collected

from all trials involved, any flexible statistical approaches, such as multilevel models (Gold-

stein_ ef aI., 2000) and hierarchical random effect models (T\uner et a1.,2000; Whitehead

et a1.,2001; Higgins ef at., 200L; Riley ef al., 2007), are applied to the IPD. This brings



many opportullities over the AD approaches in the sense of der市 ing¨Si"d Summary re―

suLs directtt cheCking mOdelling assumptions,and TSessing non-linear trends(RibL 2010).

Meta― analysёs based on IPD a1low one to achieve much more meaningful evaluation on the

treatment― covttiate intOraCtion by separating lt into the across― trial and the within_trial e■

fect;in particularぅ the IPD met}analysis is an only way to assbss the within― trial interaction

e■ct.However,the use of full IPD is not always without its difncuLie,。 In pⅢticular,this

apprOach is resollrte inte■ siVe, because substantial tilne and costs are required to contact

trial authors,to obtain theiI IPD,to input and clean the provided IPD,to reso市 e any data

issues through dialog with the data providers,and to generate a consistent data fbrmat across

trials(Riley cι αl,2010).And also,practitioners cannot always colleCt the IPD from an trials

because the IPD Inight'have been lost or damaged,or trial authOrs may nOt be contactable

or willing to collaboratё .Riley cサ al(2010)pOint,d Out that the possibility Of Collecting

the IPD frOm all trialS iS not so high.If the conectability of IPD is Tsociated with the

resuLs in each trial,a meta― analysis based oコけ On the collected IPD may be biased(St9W―

art and Tiernё y・ 2002). For this reasOn,it has become increasingly important tO cOnsider

situations where some trials prOvide IPD and the others provide Only AD.Some researcheリ

have already investigated lЮw to combine IPD and AD in meta― analysis,especially when

treatment― covariate interactbn is of interest(Riley cサ αl,2008;Sutton,不endrick and Cou―

pland,2008;Riby and Steyerberg,2010).Such apploaches have嵐 lso been developed in the

cottext of ecological study(Jackson,Best and Richardson,2008;Halleuse and Wake■ eld,

2007;HaneuSe and ttrご b■ёld,2008;lVake■ eld,2004;Wakefleld θι al,2011).Wake■ eld ct

al(2011)adVOCated that the only reli¨ b apprOachお r rellloving eco16gicJ bias b to sup―

plement the eco10gical data with individual― le“l informationo Jackson,Best and RichardsoIL

(2008)suggeSted Bayesian hierarchical Felated regression which uses Markov chain Monte

Carb method to simultaneOusly estimate IPD trials and AD t五 als models hnked by common

parameters, where the IPE)supplelnent the aggregate information across diferent groups

such as geographical arё as,

n『。m these backgrounds,we propose a meta― analysis mOthod fOr eptimating both the

across― trial and the赫 ithin_trial interaction e■ bct.For the case that all trials provide only

AD,we■rst assume an IPD meta― analysis model intluding pttameters of t¨ acr6ss‐ trial

and the within― trial interactionb■ ct,and then marginalise the denstty of IPD with respect

to missing IPD,which reqlllres an integration over a regon reStri,tё d by obSerrd AD.This

process produces a likelihood for the AD available, and allows one to get information on



the within-trial interaction by meta-analysing several AD trials. The idea of marginalising

the IPD meta-analysis model is inspired from ecological inference, in which the relationships

between individual specific quantities are evaluated by using population-level data. In partic-

ular, Wakefield and Salway (2001) presented a statistical framework for ecological inference,

describing parametric models for binary response data that include within-aggregation vari-

ability of covariates, which is intended to reduce the ecological bias. We emphasise that the

within-trial interaction can be. approximately estimated by using this likelihpod even if only

the AD are available from each trial When some trials provide IPD and the others provide

only AD, the proposed method is simply extended to combine IPD and AD. There, the like-

lihood for parameters to be estimated is given by product of a likelihood for the IPD trials

and the marginal likelihood for the AD trials. This again allows one to get information on

the within-trial interaction from the AD trials. Note that the proposed method is applicable

when parameters to be estimated can be assumed as fixed effects; so that the treatment effect

and the treatment-covariate interaction effects are assumed to be common across trials.

As a breakthrough of the existing meta-analyses, we propose a meta-analysis method

based on simulated IPD (SIPD), which reconstructs the missing IPD for each trial and then

applies a standard IPD meta.analysis model to each SIPD. When some trials provide IPD and

the others provide only AD, the proposed method reconstructs the missing IPD for the AD

trials and then meta-analyse each set of SIPD combined with the collected IPD. We show,

once the SIPD are generated, how existing IPD meta-analysis apprqaches can be applied,

and we demonstrate the benefits of incorporating the SIPD. We here consider two types of

sampling procedures for generating the SIPD: frequentist and Bayesian procedures, which

are inspirgd by multiple imputation applied in the analysis of incomplete data with missing

outcomes and covariates (Rubin, 1937). In fhe frequentist procedure, each set of SIPD is

generated from a conditional distribution of the missing IPD given the AD (and the collected

IPD) and a known parameter, and then resulting estimates from each SIPD (combined with

the collected IPD) axe summarised by using Poor Man's Data Augmentation 2 proposed by

Wei and Tanner (1990). In the Bayesian proced.ure, each set of SIPD is generated from a

posterior predictive distribution of the missing IPD given the AD (and the collected IPD), and

then resulting estimates from each SIPD (combined with the collected IPD) a,re summarised

by using Rubin's (1932) rule. Both procedures ultimately produce a posterior distribution

of parameters of interest, and thus a posterior mean and variance for frequentist inference.

Since these approaches also use the scheme of marginalising the missing IPD, any advantages



Table I. Summary of the 5 trials in hypertension, included in the meta-analysis of Wang et

a/. (2005).

Number of patients
SBP

(fO110W‐μp― baseline)

Control Theatment Control Tfeatment Estimate of
mean mean meafl mean mean difrerence
(s.d.) ('.d.) (..d.) (r.d.) (s.e.)

雌 s)

Thiaf
name* Control Tteatment

HEP

EWPHE

MRC-2

SHEP

Sy‐Eur

1337

2371

2297

69.57

(5。 39)

74.11

(8.69)

70.43

(2.75)

71.54

(6.68)

(6.68)

69.71

(5.18)

72.64

(7.99)

70.39

(2,77)

71.64

(6.72)

70.25

(6.75)

-13.23
(2.39)

-12.68
(3.27)

-10.65
(0.85)

-11.51
(0.56)

-10.18
(0.46)

・５

９０

・３． ４

２３６５

２３９８

・９９

　

　

８２

-11.65    -24.88
(23.30) (21.11)
-7.78     =20.46
(22.76) (19.80)
-17.55    -28.20
(21.95) (21.78)
-13.88    -25.39
(19,90) (1842)
-8.70     -18.89
(15.04) (16.15)

SBP: systolic blood pressure, s.d.: standa,rd deviation, s.e.: standa,rd error
*l}ial names are consistent with Wang et al. (2005), where further details and trial publications
can be found.

provided above are held in these frameworks. F\rrthermore, using the SIPD enables one

to apply any approaches for the IPD meta-analysis, and could have a huge possibility to

produce novel findings (e.g. a flexible trial design) which is never provided by the existing

meta-analysis methods. Note that the proposed method is again applicable when parameters

to be estimated can be assumed as fixed effects.

1,.2 Motivating examples

L.2.1 Hypertension data

Wang et al. (2005) performed a quantitative overview of trials in hypertension to investigate

to what extent lowering of systolic blood pressure (SBP) and diastolic blood pressure con-

tributed to cardiovascular prevention. They selected randomised controlled trials that tested

active antihypertensive drugs against placebo or no treatment. For their analyses, IPD was

sought from trials in the Individual Data Analysis of Antihypertensive intervention trials

data set (Gueyffier et a1.,1995) or at the Studies Cooidinating Centre in Leuven (Lfu et al.,

1.998; Staessen ef al., L997; Amery et al., L985). 10 trials were ultimately included, and these

provided IPD for a total of 28,592 patients. To illustrate mdta-analysis methods introduced

in Chapter 2 and Chapter 3, we will ca"rry out a meta-analysis of 5 (12,603 patients) of these

L0 trials, which are sufficiently homogeneous across trials with respect to a treatment effect



and a trial-level cova,riate. These.5 trials were chosen as they were conducted in populations

with a similar mean age around 70. The mean change in SBP (follow-up minus baseline)

for each treatment group in each trial are shown in Table I, with negative values indicating

a beneficial effect. The treatment efiect is shown in the rightmost column in Table I, with

negative values indicating that the treatment is effective. Table I also shows the mean age,

and the groups appeax to be well balanced in each trial at baseline.

One of the usual way for displaying meta-analysis data is known as forest plot. Figure

1 shows the forest plot of the 5 trials in hypertension. The position of the black squares

represents the findings (an estimate of the mean outcome difference between groups, and

its standard error) from each individual trial. The size of the square is proportional to the

precision of the trial (roughly speaking, the sample,size). A horizontal line drawn on both

sides of the squa,res for each trial denotes the 95 per cent confidence interval of the treatment

effect estimate. A pooled treatment effect estimate obtained by combining all 5 trials is

displayed as a diamond in the lowest part of the forest plot. We here assume that all 5

trials share a common true value of the mean difierence (i.e. the fixed treatment efiect), and

we estimate the pooled treatment effect. Now let MDt, ffi; and Z(ffi;) be a true value

of the mean difference from the iih trial (i, : L,...,5), an estimate of MD; and a va.riance

mean MD; and

MD=l罐 Dl=・ … =1肛D5・

Then,the pooled mean diference is estimated by

ｈＷｄｅ■わ
ｔｒｄけａｍｒ∞而ШＡ呻　ａｎｄ．

ｅｃｔ

れ
呻
（叩

一”
　
ｙ

倉品MD= =-10.77

を続
and the 95 per cent confidence interval for MD is given by

ffi + 1.e6 x (r **) 
-"' 

: [-11.40, -10.14].\;i v(MDi) /
These results (seen in Figure 1) indicate that the treatment is significantly effective in reducing

SBP by, on average, L0.77 mmHg more than placebo.

We also examine the extent of heterogeneity in the treatment effect across the 5 trials. It
is generally accepted that meta-analyses should assess heterogeneity, which may be defined



as the presence Of variation in true efect sizes underけ ing the diferent studies(Higgins,

2008)。 Cochran's c testお 0乱en applied in meta― 狙alysis for letermining whether there is

heterogeneity i■ treatment efFects(COChran,1954).For the 5 triab in hypertension,the 9

test evahates a llull hypothesis HO:MD=vDl=・ … =MD5 by uSing the followitt Q

statistic which has a chlsquare distribution with(the llumber of trials minus l)degrees of

■eedom:

°=と
,1平テ需語F半 =4.849 γ χZ.

which provides a p-value of 0.303, and thus there is no strong evidence of heterogeneity.

F\rrthermore, .[2 index is the proportion of total variation in the estimates of treatment effect

that is due to heterogeneity across trials, and can easily be interpreted as a percentage of

heterogeneity (Higgins and Thompson, 2002). For the 5 trials in hypertension, 12 is given by

12=0・
4×
100=17.50 per cent.

菫ere,according to a tentatir Classi■ Oation of」
2 values with the pllrpose of helping to in―

terpret its magnitude by Higgills and Thompson(2002),the percentages of around 25 per

cent(」 2=25),50 per cent(12=50),and 75 per cent(12=75)would mean bwi medium,

Trial name Mean Difference [ 95 per cent CI ]

(1・
1)

HEP

EWPHE

MRC・2

SHEP

Sy―Eur

-
叫

智

-13.23 [‐ 17.91, ‐8.55]

…12.68[-19.08, ‐6.27]

‐10.65 [-12.31, ‐8.98]

‐11.51[-12.60, ‐10.42]

‐10.18 1-11.07: ‐9.29]

Sulmary

‥

‥

‥

◆ -t0.t7 l-il.40, -10.14l

:

-20

:

-15

:

-10

‥

　

・
５

Mean Difference

Figure L. Forest plot of 5 trials in hypertension.



Th,ble II. Summary of the 5 trials in home safety education, included in the meta-analysis of

Sutton, Kendrick and Coupland (2008).

Intervention group Control group

No.of
trial* 飢辞:‰話馨龍躙 柵:‰熱留:ツ晰

Logtttrttb m靭鰍路鶏s
Tria1 1

■ ia1 2

Tria1 3

■ ia1 4

■ ia1 5

28/49

76/85

25/57

408/742

250/363

25/47

70/89

16/55

328/718

239/360

0.16

(0.41)

0.83

(0.44)

0.64

(0.40)

0:37

(0・ 11)

0.11

(0.16)
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８

　
　
　
８

　
　
　
２

　
　
　
２

５

４

４

５

５

０

０

０

０

０

s.e.: standard error.
*Ё
ach t五al is aalbitrarily numbered,diferehly■ Om sutton,Kendrick and Couplarld(2008)

and high heterogeneity, respectively. Thus , the 12 value (1.1) again indicates poterrtial low

heterogeneity across the 5 trials. Therefore, we concluded that any models with fixed treat-

ment efiects, which are introduced in Chapter 2 and Chapter 3, could be appropriate for the

5 trials in hypertension.

It is also clinically important to assess how the age. adjusts the treatment efiect. The

hypertension data will be used in this paper to demonstrate and critically assess the methods

developed; those interested in more clinical conclusions axe referred elsewhere (W*tg et a!.,

2005).

1.2;2 ffome safety education data

Sutton, Kendrick and Coupland (2008) performed a systematic review to investigate the

efiectiveness of home safety education on the provision of a safety equipment. In pa,rticula,r,

they meta-analysed 8 trials (Clamp and Kendrick, 1998; Nansel et a1.,2002; McDonald ef a/.,

2005; Watson et a1.,2005; Kendrick et at.,2005; Kendrick et a1.,1999; Sznajder ef a1.,2003;

Gielen et a1.,2002), which have inspected whether an educational intervention increases the

ownership of stair gates installed for the prevention of falls in children. As a participant-level

socioeconomic characteristic a,ffecting the intervention effectiveness, they were interested in

whether the family is a single or two-pa,rent household; so that they assessed how the number

of families with a fitted stair gate in the intervention group is different between these two

participant subgroups. The review involved 6 trials (3,447 participants) with IPD and 2 other



trials (193 participants) with AD. And also, participants in 3 trials were allocated to some

clusters nepted within the trials. To illustrate meta-analysis methods introduced in Chapter

2 and Chapter 3, we here carry out a meta-analysis for 5 (2,565 participants) of 8 trials,

which are sufficiently homogeneous across trials with respect to a treatment efiect and a

trial-level covariate. Although pa"rticipants in one trial are allocated to 37 clusters, we ignore

this pa.rticipant-clustering to avoid further complexity. We focus 6n, gender of children as a

participant-level covariate, and mainly assess how gender afiects the intervention efiectiveness.

The number of participants in each group, and the number of participants with a stair gate

in each group are shown in Table II. The intervention efiects (log odds ratio between two

treatinent groups) from each trial are shown in Table II, with positive values indicating a

beneficial efiect. Table II also shows the proportion of male participants in each trial. There

is small variation in the proportion of male pa'rticipants across trials.

Figure 2 shows the forest plot of the 5 trials in home safety education. The position of

the black squares represents the findings of the log odds ratios from each individual trial.

Now let logORa, logG,j and V(log@; U" a true value of the log odds ratio from the

ith trial (i, : 1,. . . ,5), an estimate of log O& observed and a va,riance estimate of log@,

respectively. Assume that log@ is normally distributed with mean logOft and known

No.oftrial Odds Ratio [ 95 per cent CI ]

Tria1 1

Tria1 2

Tria1 3

Tria1 4

Tria1 5

申
:

―

1.17 [0.52, 2.62]

2.29 [0,97, 5.40]

1.90 [0.87, 4.16]

1.45 [1.18, 1.78]

1.12 [0.82, 1.53]

Sll― ary

‐

‐

‥

◆

1.38[1.17,1.62]

0.3        1.0        3.0        9.0

0dds Ratio(10g scale)

Figure 2.ForeSt plol of the 5 trials in holne safety education.



variance y(10g OR),and

OR=ORl=… ・=OR5・

Then,the pooled odds iatiO is estilnated by

５
Ｆ
ん
Ｈ

ヽ

１

ｌ

ｔ

ｒ

ｉ

ｌ

ノ

二 1.38

倉耗轟奇
轟d the 95 per c6nt cOddence intervalぉ r ott is giVen by

■ふ卸瞥愴鳥 )η邦̈
Th9Se results(seen in Figwe 2)i■ diCates that the the intervention signincantly incFeases the

probabi“y Of OWnership Of the stair gate五〇re than 9ontrol on average.

We also examine the extent of hetё rogeneity in the treatment efbct across the 5 trials.

The C testきave a c statistic

O=丞 豊量
霧詮羨暴手
菫工=4.067～ χZ.

and its p― value of o.397,and thus there is no strong evidence of heterogeneity. Further,12

index computё d in the same way for(1・ 1)WaS l.65 per cent.This again indicateS potential

low heterogellleity across the 5 trials. Therefore, we co■ cluded that ixed treatment e■bct

models introduced in Chapter 2 and Chapter 3 could be appropriate ibr the 5 trials in home

safety educ¨ ion.

It is abo chnically il■■portant to assess how gender ofchildren attustS the treatnlent efect:

The home safety education data will be used in this paper to domonStrate and critically assess

the met“ os deVe10ped;those interested in more clinical∞ nclllsiolls ar6 referred elsewhere

(SuttOn,Kendrick and Coupland,2008).

1.3 Components of this paper

In Chapter 2, we introduce IPD and AD in two situations where: (i) a single continuous

outcome and a single continuous covariate are observed from each patient, (ii) a single bina,ry

outcome and a single binary covariate are observed from each patient, and describe IPD

10



meta-analysis models and the MR models for each situation, respectively. We also discuss

the difierences between the within-trial and the across-trial interaction. Through applications

to the hypertension data and the home safety education data, the methods are illustrated.

F\rrthermore, for the case that some trials provi.de IPD and the others provide only AD,

we describe existing models for combining IPD and AD. In Chapter 3, re describe our

new rneta-analysis method with marginalising the missing IPD for the situation (i). The

method is extended to combine IPD and AD. We also describe meta-analysis methods based

on simulated IPD. The methods a,re explained by frequentist and Bayesian perspectives,

and applied to both situations (i) and (ii). In Chapter 4, we conduct simulation studies

to examine the performance of the proposed method with marginalising the missing IPD in

comparison to existing methods. F\rrthermore, another simulation study and an application

to the hypertension data are conducted to assess the benefit of using simulated IPD. Finally,

in Chapter 5, we conclude this paper with some discussion.





2 Ii',xisting methods

Consider a meta-analysis of If trials in which patients are assigned to either a treatment group

(T) or a control group (C). Let r4 be the number of patients in the ith trial (f : 1, . . . , N),

n41 and nigbe the numberp of patients for the treatment and the control group, respectively.

Here, let U6 and z,ii be a patient-level outcome and covariate observed from the jth patient

(i : L, . . . ,n.i) in the ith trial, and let r,ii be coded 0/1 to denote control/treatment group.

We here describe some existing meta-analysis methods for two data situations (continuous

outcome and covariate, and binary outcome and covariate). We also consider the case for

mixture IPD and AD.

2.L Continuous outcome and covariate

Let yii and. z6i denote a continuous outcome and a continuous covariate value from the jth

patient in the ith trial. If just meta-analysing the IPD; i.e. (Ati, *ti , z';) for i : L,. . . , If and

j : L,. ..trli,tRiley et a/. (2008) proposed the following one-stage model that accounts for the

clustering of patients within trials by a trial-specific intercept (d,;,), and estimates a pooled

treatment-covariate interaction (.yry) based on within-trial information separated from the

across-trial interaction (7a) :

ν″=φづ+θ″″+μz″ +γA″″為+η″ηバZリ ーぅ)十 C″ ,

妨～N(0,弓 ),

ノ=1,・・・,πづ;に 1,・ ..;Ⅳ。 :

(2.1)

Here, Q6 is the fixed intercept for the ith trial (which essentially accounts for clustering of

patients within trials), d is a fixed hypothetical treatment efiect in a trial with 2i: 0, l.r is

a mealr change incontrol group outcome for a one-unit increase in z;i,7a and 7ry are the

across-trial and the within-trial effect of treatment-covariate interaction, respectively, and

h:D?Lrzejlu denotes a mean covariate in the ith triat. Note that, g, p,'YA and 1y

13



are tFeated as tted e■ cts here, and σtt is aSSulned to be collnllnon across trials. In contrast
to Riby ct al oooO,II10de1 0・ ⇒ⅢhdeS a comllnon μ and弓

“
losS trttb rather than

at五alspedicルをand弓ル r the jth t五J,These assumptbnp are necesstty,o bJd the

proposed method(See chapter 3)。 According to a recommendation by Riley θサαl(2008),

the treatment― covariate interaction is separated into the across― trial and the within… trial

efFect.This separation is clinically important to avoid making a wlong conclusion about the

treatlnent‐ covariate intёraction,■hich might occw if wrOngly amalgamating the across― trial

and the within― trial e■cts(Riley and Steyerberg,2010)。 One should pay attentiOn to the

fact that the across‐trial relatioIIships can be very diferent from the within― trial relations■ ps

due to ecological bia7s and/or tria■ level confounding(RileL Lambert and Abo― Zaid,201o)。

This modelling framework is also discussed in the context of regression analysls of clustered

data(Neuhaus and Kalb■ eisch,1998;Begg and Parides,2003)。           1

1n general meta― analytic sttuations,we observe only the AD iom each trial,rather than

the IPD■ollll each patient.Here,the AD consist of sample means and sample variances for

ind市idual obs∝ vatbns in each group and t五 aL i.e。 し T,β
:づT,aT,SZづT,動し,s;じc,らc,S%c)bF

づ=1,… 。,Ⅳ,where

"=¥,

伽 =¥,

島ぼ=  ,勿 圭¥ぅ
もc=  ,羅 雫 ,

嗚〒
y(硫)=慨島肝

:;づ

多二    :

-2 -Di.r?ni - 
zt)2

D zi.T niT _ 1, ,.

^2 -Ei."Qoi - 
2rc)2

DziC - n;(,. _'I

Then, an MR model can be applied to the AD as follows:

αづ=α +βλ+6づ ,

6づ ～N(0,σ務),

づ=1,… 。,Ⅳ .

Here,α″千働T― ac denotes a mean outcome diference

alld the error variance is assumed to be klllown as

between groups from the ath trial,

(2.助

where

14



If we assumu zi,i : Ze in model (2.1) with trial-specific error variances, we have

νり=φづ十θ″″十μλ+γA″″乾十(″ ,

c″～N(0,イづ),

ブ=1,・・・,ηづ;づ =1,… .,Ⅳ .

(2.3)

When first taking an average of both sides in model (2.3) for each group and trial, and

subtracting the average of the control group from that of the treatment group for each trial,

a model for the mean outcome differences between groups can be derived as follows:

Q～ N←鑽 →
ι=1,… .,Ⅳ

where弓じis eStimateo by t=SL・ ThiS model has the same form as the representation of

the MR model(2.2);so that,under an assumptiOn of物 =れ ,θ and tt in model(2・ 1)are

equivalent to α and β in the MR model(2.2),respectivett ThiS means that the MR hodel

(2.2)giveS a restrictive result abOut the across― trial relationships under a condition that

variation of the covariate is equal to zeroo IIowever,we have more interest in the parametOr

of 7、、「,which represents an increase in the treatment efFect according to One-1lnit incre■ e in

the patient― lerl COVariate zか Thus,if We intend tO estimateっ、v by llsing the estimate of‐

β,thiS might lead to an incorrect conchsion for the treatment― covariate interactiono When

the number of trials and variation ofぇ acFoss tri41s are sma11,due to the ecological bias,the

statistical power of β beCOllllles much lower thall those of ttv(Simmons and Higgins,2007).

Application to hypertensi6n dath

C6nsider the hyperteTion data,and we now demollStrate how age moditt the treatllnent

efFect on change in SBP(blbW― up minus baseline)。 Fitting model(2.1)to the IPD ttom the

5 trials,estimateS Of each parameter in model(2.1)were θ=31.95(s.e.=32.83 and p¨ value

=0.273),ル =0・ 035(s`e.=0・ 039 and p―value=0.370),今A=~0・662(soe.=0・464 and

p―vahё =0。 154)attdれv=0・ 087(soe.=0・ 055血dp―value=0.114),respectivett F“ ting

the MR Inodel(2.2)to the本 D ttom the 5 trials,estimates Of each pttametё r in model(2.2)

were a=43.13(s.e.=32.94 and p「 value=0。 188)and β=― a766(s.e.=0。466 and p― value

=0.100),reSpectivev The across‐ trial relationships(θ andメ江)Obtaillled by■tting model



(2.1)were similar to thoseい and β)Obtained by itting the MR model(2.2).A slig“

diference between θ and a(orttA and β)iS due to model assumptiolls;SO that the MR model

(2.2)assumes knowtt error vttiante。 (σ務)fOreach trial while model(2.1)・ aSSimes a tommon

error variante(弓 )acroSS triab,and θ and tt are arected byル and ttw・ The across― trial

rёlationships had much larger standard errors in comparison with those of the witttll― trial

relationships(ル andれ v)・ As for the treathent― cOvariate interaction,the across― trial efect

was substantially diferent from the within― trial e■ ct on the point estimates.ThiS ShOWS

the importance of separating the within― trial interaction from the acrOss=trial interaction,

MeanAge

Figure 3. Scatter plot for the 5 trials in hypertension with across-trial and within-trial
interaction effect estimates, in which:

o A solid line represents the across-trial interaction (7a) between mean age (z;) and treatment
efiect estimated by fitting model (2.2).

o Dashed lines represents the within-trial interaction (7ry) between age and treatment effect

estimated separately within each trial using IPD and model (2.1) without 7a.
o The gradient ofeach dashed line indicates the change in treatment effect for a one year increase

in age within each trial.
o The width of the dashed line about the centre of each circle is defined bv 1 times the standard

deviation of age in each trial.
o Each circle represents a trial and is centered at Zrineach trial; the circle size is proportional to

the sample size in each trial.
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as chance, confounding and/or ecological bias is causing the across-trial effect to act in the

opposite direction of the within-trial effect here. If we used a model without separation of the

across-trial and the within-trial interaction, we'would get a potentially wrongly amalgamated

result on the interaction between treatment and age. The standard error of fa was also much

la,rger than that of iw, because the number of trials was small and the mean ages were fairly

homogeneous across the 5 trials. There was no observed between-trial heterogeneity in the

within-trial interactio n (12 :0%), and thus the fixed efiect assumption is also plausible for

this parameter. Figure 3 also shows this difierence between 'ya and 'yyy; the within-trial

interaction (dashed lines) have aknost flat gradients, especially in the larger trials, while the

across-trial interaction (solid line) has a steep negative gradient. It highlights pitfall of using

ie to make inferences about iry, that is, ecological bias and confounding.

2.1,.1 The case for mixture of IPD and AD

Consider a meta-analysis of .lf' trials which consist of lf trials providing AD (AD trials)

and -l['- N trials providing IPD (IPD trials). The IPD trials provide the patient-specific

observation s; i.e. (y,;irfiij, zij) fori, : N + L, . . . , ff' and j - 1, . . . , n';. When a mixture of

IPD and AD trials are available, model (2.1) must be modified to combined IPD and AD. The

simplest solution is to reduce the collected IPD to AD and treat all the data as AD, so that

any information on the individual-level associations from the IPD trials is lost. Alternately,

one could use only the collected IPD, so that available information from the AD trials is

thrown away. In contrast, Riley ef a/. (2008) proposed a model for combing IPD and AD,

which simultaneously estimates the within-trial relationships (using just the IPD trials) and

the across-trial relationships (using both IPD and AD trials). All these approaches are now
.:

described.

Meta-regression model that uses only AD frorn all trials

Once the IPD for trials i : .l/* 1,...,-ly''are summarised to the AD, the MR model (2.2)

canbeappliedtotheADfor.alltrialsi:1,...,N,.

Model that uses only IPD trials available

If one uses only the collected IPD, model (2.1) can be applied to the IPD from trials 'i :

-nf + 1,...,N'. When the number of IPD trials is o4e (i.e. -lf' : lf + 1), model (2.1) is

17



Inodifled as follows:

.    
νヴ=φづ+θ″″十μZ″ +γw■″1句 ―る)+ι″,       (2.4)

cあ～N(0,イ ),

ノ=1,・ ..,ηづ;づ =Ⅳ・

This is becallse one cannot estilnate the across― trial interactionっ

`A With a single trial.

Modelthat uses both IPD and AD trials

The model for combining IPD and AD proposed by Riley θι αl(2008)is as fO110ws:

Uii : D6Qa * 0r6i -f D6pzii * Jari726 * D,;7ysr5i(zit - z6) + eii, ●・→

cぁ ～N(0,Ll)

where D`is a dummy variable to distinguish IPD trials■ om AD trials. For the dth IPD

tri」
(づ
基 Ⅳ +1,… ,Ⅳ′),Dづ =1,場 =吻 ,L*≡ b;and場 =物・ For the dth Aう trial

(づ =1,…・,Ⅳ),there is only one outcomё (J〒 1)and Dぅ =0,″を1=1,υ左 =硫 ,レT=y(銑 )

aSSu■9dkWn,and場 =島。 MOdel(2.5)ensures thtt the AD士 om trials j=1,… ,Ⅳ

help to estimate only the across― trial relttiollships(θ and γA),Whereas the IPD ttom trials

づ=Ⅳ +1,… 。,Ⅳ′help to estimate an the parameters.That is,only the collected IPD

contributes to the estimation of the within― trial relationships(μ  and ttv)。 As in hodel(2。 1),

we again assume thtt θ,μ tt and γw are&ed efFeё ts,狙d tt iS COmmon across tria卜 .

Application to hypertension data

Co“ ider agai■ the hypertension data,and tt now demollstrate how age modify the treatnlent

erect on change in SBP(f0110W― up minus basehne)in the Case that some trials pro宙 de IPD

alld the others provide only ADo To imitate situttiott invo市 ing IPD for some trials a■ d only

ADおr other、 we genertted scenarios where only a limttё4血mber of triaゃ (,Om lt0 4 of
the 5 triab)prOvided lPD,and the other trials jllst provided AD as presented in Ъbb I,

which is typical of the AD available to meta― analysts in practice.In each scenario:We carried

out analyses by:(i)■ tting the MR model(2.2)to AD iom a■ 5 trials,(ii)■ tting model(2.1)

or(2.4)to IPD ttom only IPD tiials available,(ili)■ tting IIlodel(2.5)to the m破tllre ofIPD

and AD ttom a11 5 trialso ln both parts(ii)and(iii),the analyses weFe run for each possible

combination of IPD and AD trials. For example,in the scenario that 2 trials provide IPD

(1.e.2 1PD trials and 3 AD trials),we performed 10 analyses,olle for each combination of
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which 2 trials provide IPD and 3 provide AD. In each scenario, we compared the results with

those from,a meta-analysis of IPD from all 5 trials (i.e. full IPD analysis), allowing us to

empirically assess the performance of each method and identify the value.of combining IPD

and AD in practice

The results by each method are shown in Table III. Fitting the MR model (2.2) to the

AD for all 5 trials naturally provided results only of the across-trial relationships (o and

B), whose estimates and standard errors were close to those of 0 and 74 from the full IPD

analysis. Fitting model (2.1) or Q.Q to only available IPD provided both of the results for

the within-trial and across-trial relationships. Estimates of 'yyy and their standard errors got

close to those from the full IPD analysis rapidly as the proportion of trials providing IPD

increasedl however, estimates of 74 differed seriously from those from the full IPD analysis

with huge standard errors, especially in the case of small proportion of IPD trials.

The strategy of combining IPD and AD by fitting model (2.5) allowed us to not only get

more accurate results for the across-trial relationships but also evaluate on the within-trial

relationships with a certain degree of precision. Including AD trials remarkably improved

the precision of estimates for the across-trial relationships in comparison with analyses by

using only the collected IPD. It was also confirmed that model (2.5) correctly allowed only

the IPD trials to estimate p and 7qr. This explains why the standa,rd errors of '6ry increase

as the proportion of IPD trials decreases and emphasises why it is better to obtain IPD from

all trials.

2.2 Binary outcome and covariate

We now suppose that a single binary outcome variable Y and a single binary covariate Z arc

observed for each patient in each trial. Let Ati and zii be a binary outcome and a bina,ry

covariate value for the jth patient (i : L,. . . ,ni) in the ith trial.

If just meta-analysing the lPD; i.e. (Ati,*ti,zii) foyi:1,...,-ltr and i - 1,.. .)n'i) orre

can use the following one-stage model that accounts for the clustering of patients by a trial-

specif,c efiect ({;), and estimates a pooled treatment-covariate interaction (7tltr) based on

within-trial information separated from the across-trial interaction (7a):

ν″～ Bernotlli(g″ ),

bg丁皇篭赫
=φOす 仇十θ″弯+μz″ 十,AZ″屁

十γw物 1句 =島ゝ

ノ=1,… ,ηづ;t=1,ハ。,IV.
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Table II[. Average of estimates and their standard errors for each parameter when analysing

change in SBP (follow-up minus baseline) from the hypertension data, where estimates are

averaged across all combinations of IPD trials.

Average of
estimate

Number of trials  Only―   Model
pro宙ding IPDキ   IPD  (2.5)

Average of
standard error

Only‐  MOdel
IPD   (2.5)

Hypothetical
treatment

effect 0

5/5*
4/5
3/5
2/5
1/5
0/5+

35.95

29.40    43.39

3.29    43.34

-31.55   43.56

-11.86   44.45

‐      43.41

32.83

41.77   33.10

65.05   32.75

129.2   32.89

1.480   32.85

‐     32.94

Covariate
efiect pt,

5/5*
4/5
3/5
2/5
1/5

0.035

0.027    0.027

-0.017 -0.018

-0.117 -0.117

-0.311  -0:303

0.039

0.045   0.045

0.059   0.059

0.091   0.091

0.176   0.175

Across-trial
interaction
effect .ye

5/5・

4/5
3/5
2/5
1/5
0/5†

-0.662

-0.569 -0.766

-0.199  =0.766

0.293   -0.768

NA  -0,781
‐   -0.766

0.464

0.590   0.468

0.920   0.463

1=831   0.464

NA    O.464

-     0.466

Within-trial
interaction
efiect ,yp

5/5*
4/5
3/5
2/1
1/5

0.087

0.092    0.091

0.116    0.117

0.165    0.166

0.252    0.244

0.055

0.063   0.063

0.084   0.084

0.131   0.130

0.259   0.258

Only― IPD:Fit model(2.1)or(2.4)to only the collected IPD.

Model(2.5):Fit model(2.5)to the mixture ofIPD and AD.
・Results by ttting modё l(211)to the full lPD iom a11 5 trials.

†Results by ntting the MR mOdel(2.2)to the AD ttom a11 5 trials,

‡The numbers of combinatio■ s of trials providing IPD are 5,10,10 and 5
in the scenarios of l,2,3血 d41PD trials,respectively.
NA:Not available
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Ilere, Bernoulli(qar') represents a random variable following Bernoulli distribution with proba-

bility q;7, /s is a fixed interc ept, dt is the fixed effect for the ith trial, 0 is a fixed hypothetical

treatment effect in a trial with'Za:0, lr is a log odds ratio between cova,riate subgroups in

control group, 7a and Tw are the across-trial and the within-trial interaction efiect respec-

tively. This modelling framework were proposed by Riley and Steyerberg (2010) in the case

of binary outcomes with a single group. Note that, as in model (2.1), 0, p,'yA and'yy,' are

In general meta-analytic situations, we observe only the AD from each trial, rather than

the IPD from each patient. Here, the AD consist of the grouped forms of outcome and

covariatel i.e. (n6ar'tTriTtrlictmrcr*t) where ?iT (or rz;6) is the number of patients assigned

to treatment (or control) group in the ith trial, m6a (or rn;6) is the number of patients with

Y : L innla (or n16) patients, and 2i: Di\ zU lnn is the proportion of patients with Z : I

in the fth trial. Then, an MR model which has the same form as model (2.2) canbe applied

to the AD, where

銑 =10g
mn(nrc - rnic)
mec(nt - mar)

and

弓づ=yl)〒 赤
+:慕
現 T十 栽

+万
蔦戸≡扇扇「

As another approach for nletttanalysing the AD,we here consider to partially recreate a

bi■ary data form ofIPD from the groupe4 fOrm ofAD,where patients with y=l or y=0

in each group are represeⅢed by a series of ones or zeros(RIゃ y・ SimmOnds and Look,2007).

h partitular,(πじた,mづん)forづ =1,… 。,Ⅳ andん c{T,C),Whereた is a group indicator that

takes a value of T for tttatment 6r C for contr61,証 e rewritten as(物ル″)おrづ =1,… ,″

and′ =1,…。,η
`。

Since tt is impossible to recreate the patient‐ level covariates dhectly ttom

the:ADi the infOrmation 6f covariate is limited to tt for each trial.The■ ,one catt use the

following modeL

ν″～ Bernoulli(g″ ), I

log Tモ争t7==φO+φづ+:″″+γA"″″ら,
づ=1,… 。,Ⅳ .

0。つ

Thompson, T\rrner and Warn (2001) suggested that this direct modelling would be appropri-

ate in comparison to using the ordinary MR model where the log odds ratio estimated from
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each trial are assumed to be normally distributed with known variances, especially when the

observed event probabilities in a particular trial are close to 0 or L, and where the sample

size in each trial is small.

Application to home safety education data

Consider the home safety education data, and we now demonstrate how gender of children

modifies the intervention effect on the provision of a stair gate. Fitting model (2.6) to the IPD

from the 5 trials, estimates of each parameter in model (2.6) were A :7.184 (s.e. : 4.300 and

pvalue : 0.095), lr:0.07L (r.". - 0.1-L6 and p-value: 0.541), ia : -13.3L (s.e. : 8.343 and

---G--

0.49      0.50      0.51

Proportion ofMale Patients

Figure 4. Scatter plot for the 5 trials in home safety education with across-trial and

within-trial interaction effect estimates. in which:

o A solid line represents the across-trial interaction (7a) between the proportion ofmale patients

(z;) and. intervention effect estimated by model (2.7).

o Dashed lines represents the within-trial interaction (1p) between gender of children and inter-

vention efiect estimated separately within each trial using IPD and model (2.6) without 7a.
o The gradient of each dashed line indicates the change in intervention effect from females to

males within each trial; the length of the dashed lines is unimportant and is kept the sa,rne for
each simply to aid clarity.

o Eaclr circle represents a trial and is centered at 2t i;n each trial; the circle size is proportional to
the sample size in each trial.
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p-value : 0.111) and 'yry : -0.212 (..". - 0.165 and p-value : 0.199), respectively. Fitting

model (2.7) to the AD from the 5 trials, estimates of each parameter in model (2.7) were

0:7.L76 (r.". - 4.299 and p-value:0.095) and'ya : -13.30 (s.e. : 8.341 and p-value:

O.ttf;, respectively. The across-trial interaction was substantially different from the within-

trial interaction on the point estimates. As suggested in the application to the hypertension

data, this shows the importance of separating the treatment-covariate interaction. If we used

a model without separation of the across-trial and the within-trial interaction, we would get a

potentially wrongly amalgamated result on the interaction between intervention and gender.

The stanilard error of 7a was also much lalger than that of iw, because the number of trials

was small and the proportion of male participants were fairly homogeneous across the 5 trials.

Figure 4 also shows this difference between f6 and "1y,'; the within-trial interaction (dashed

lines) have almost flat gradients, where the across-trial interaction (solid line) has a steep

negative gradient. It highlights the pitfall of using la to make inferences about fry, that is,

ecological bias and confounding

2:2.1 The case for mixture of IPD and AD

Consider the same case supposed in Chapter 2.1.1"; i.e. a meta-analysis of the mixture of I/
AD trials and N' - N IPD trials. When a mixture of IPD and AD trials are available, model

(2.6) must be modified to combine IPD and AD. As mentioned in Chapter 2.1.1, simple

solutions are to deal all the data as AD, or to use only the collected IPD. In contrast, Riley

and Steyerberg (2010) proposed a model for combing IPD and AD. All these approaches are

now described.

Model that uses only AD trials

Once the IPD for trials i : -lf * 1, . . . ,.ly'' are summarised to the AD, model (2.7) can be

applied to the AD for all trials 'i = I,. . . , N'.

Model that uses only IPD trials available

If one uses only the collected IPD, model (2.6) can be applied to the IPD from trials i

.nf +1,...,ff'. When the number of IPD trials is one (i.e. N' : lf +1), model (2.6)
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Hlodifled as fonow:

物 ～BernOulli(物 ),

10g T皇
篭万1lo+仇

+θ″″すμZ″ +ηⅣIバ

`笏

-2)

プ=1,… 。,πづ;づ =Ⅳ・

Model that uses both IPE)and AD trials

00

The model for combining IPD and AD proposed by Riley and Steyerberg (2010) is as follows:

anj - Berno,rlli(q,ri), (2.鋤

bg #qrJ = do * dt * Lrii * Dit"r,zi5 t 16r6iz6 * D,nsr.iQni - zr)

where Di is adummy variable to distinguish IPD trials (D; : 1) from AD trials (Dt: O),

and (Atitra) for the AD trials z : 1,.;., N are recreated from (n61r,m.yr) for /c e {T, C} by

the same way described above. As in model (2.5), Model (2.9) ensures that the AD from

trials i - 1,,...,N help to estimate only the across-triai relationships (d and ?R), whereas

the IPD from trials i,: N * 1,..., N' help to estimate all the parameters. We again assume

that 0, pt,1s and.7W are fixed effects.

Application to home education data

Consider again the home safety education data, and we now demonstrate how gender of

children modifies the intervention efiect on the provision of the stair gate in the case that

some trials provide IPD and the others provide only AD. To imitate situations involving IPD

for some trials and only AD for others, we generated scenarios in the same manner as. the

application to the hypertension data; i.e. we assumed that only a limited number of trials

(from L to 4 of the 5 trials) provided IPD and the other trials just provided AD as presented

in Table II. In each scenario, we carried out analyses by: (i) fitting model (2.7) to AD from

all 5 trials, (ii) fitting model (2.6) or (2.S) to IPD from only IPD trials available, (iii) fitting

model (2.9) to the mixture of IPD and AD from all 5 trials. In both parts (ii) to (iii), the

analyses \rvere run for each possible combination of IPD and AD trials. I4 each scenario, we

compared the results with those from a meta-analysis of IPD from all 5 trials.

The results by each method are shown in Table IV. Fitting model (2.7) tothe AD for all

5 trials naturally provided results only of the across-trial relationships. Fitting model (2.6)

or (2.8) to only available IPD provided both of the results for the within-trial and across-trial
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relationships. By the similar trend shown Table III, estimates of "yq,' and'their standard errors

got close to those from the full IPD analysis rapidly as the proportion of trials providing IPD

increased; hciwever, the estimates of 7s difiered seriously from those from the full IPD analysis

with huge standard errors especially in the case of small proportion of IPD trials.

As in the application to the hypertension data, the strategy of combining IPD and AD

by fitting model (2.9) improved the precision of estimates for the across-trial relationships in

comparison with analyses by using only the collected IPD. It was also confirmed that model

(2.9) correctly allowed only the IPD trials to estimate p and 1ar.
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Th,ble IV. Average of estimates and their standard errors-for each parameter when analysing

the home safety education data, where estimates are averaged across all combinations of

IPD trials.

Average of
estimate

Average of
standard error

Number of trials  Only―   Mode1   0nly―  Model
pro宙ding IPD‡   IPD   (2.9)    IPD  (2.9)

Hypothetical
treatment

efrect 0

5/5.
415
3/5
2/5
t/5
o/st

7.184

7.321    7.179

8.253    7.171

-7.953   7.155

0.420    7.223

-      7.176

4.300

5.010   4.300

7.179   4.301

58.90   4.302

0.307   4.315

-     4.299

Covariate
eftect p,

5/5Ⅲ

4/5
3/5
2/5
1/5

0.071

0,082    0:081

0,076    0.075

0.045    0.041

-0.042  -0.056

0.116

0.135   0.135

0.170   0:169

0.239   0.239

0.424   0.424

Across-trial
interaction
effect 7e

5/5.
4/5
3/5
2/5
t/5
o/st

-13.31

-13.60  -13.30

-15.46  -13.29

17.96   -13.26

NA  -13.39
 ̈     ―-13.31

8.343

9,726   8.344

13.99   8.345

120.5   8.347

NA    8.371

‐     8.343

Withill― trial

interaction
e,Ct神

5/51
4/5
3/5
2/5
1/5

-0.212

-0.225  -0.225

-0.218 -0.218

-0.178  -0.176

-0.048  -0.041

0.165

0.192   0.192

0.242   0.242

0.343   0.344

0.615   0,614

Only‐ IPD:Fit model(2.6)or(2.8)to only the collected IPD.      .

Mo¨1(2.9):Fit model(2.9)tO the mixtuFe ofIPD and AD.
ホ
Results by ntting model(2.6)to the full IPD ttom a11 5 trials.

十Results by 6にting mOdel(2.7)to the AD ttё m al1 5 trials.
‡The numbeFS Of COmbinations of trials pro宙 ding IPI)atre 5,10,10 and 5
in the scenarios of l,2,3 alld 4 1PD trialS,respective与

NA:Not avallable

ａ
υ
Ｏ
Ｚ



3 Proposed methods

3.1- Meta-analysis with marginalising the missing IPD

A structural Iimitation of the MR model (2.2) and,model (2.7) is that their inferential objec-

tives are restricted to the across-trial relationships (the hypothetical treatment effect and the

across-trial interaction effect). As illustrated in Chapter 2, the across-trial relationships are

prone to trial-level confounding and often sufier from large standard error, in compa,rison with

the within-trial relationships (the covariate effect and the within-trial interaction effect). We

now introduce a meta-analysis method for estimating not only the across-trial relationships

but also the within-trial relationships when all trials provide only AD..The proposed method

is simply extended to the case that som,e trials provide IPD and the others provide only AD

(i.". to combine IPD and AD). We here suppose the situation where a single continuous

outcome and a single continuous covariate are observed from each patient in each trial.

3.1.1 Thd case for only AD

Consider a meta-analysis of .l[ trials which provide only AD. Original IPD which have been

observed in each trial can be regarded as missing data. We first assume the following IPD

meta-analysis model to the missing IPD:

νを=φづ+θ″″十μZ″ +γA″″λ+つ、v“″(Z″ ―乙)十 C″ ,

c″
～
N(o,イ ),

J=1,・・1,ηを;に 1,・ .`,Ⅳ

0・⇒

where(aT,SLT,2T,S'づ T,動c,SLc,乃 c,S'ぅc)are aVailable for theづ th trial,in place of thё

patient― speciflc observatiolls(物 ,″″,物 )fOr J=1,… 。,21・ Then,we cannot obtain maXimum

likehhood estimateS(MLEs)of parameters of interest d± 9ctly ttom(3.1)for the reason that
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each trial provides only AD. Indeed, sufficient statistics for model (3.1) a,re given by

Σめ,Σ蝙,Σ物,Σ場,Σ物物,
′∈T     ′こT     ′∈T ′∈T    J∈ T

Σ物,Σ4,Σ物,Σる,Σ物物
′CC     ′∈C     ′∈C     プCC     ′∈C

おrづ =1,… .,Ⅳ;whib ΣたT物物 and ΣJとc物物 are llot available.  :

To estimate the parameters included in model(3.1)by llSing only AD,the covariates

of patients assigned to the treatment(or COntrol)grOup in theづ th trial are assumed to be

independent and identically distributed normal random va五 ables with hean πzづT(Or πz`c)

alld variance ttT(Or ttc);i・ e・

(3.2)

Here, Z; : \\ zU /ne is considered to be constant, and pa,rameters included in the covariate

distribution (3.2) are estimated by

焼 zづT=為 T, ∂銑T=s,`T, 力 zoc=屁 c; ∂:づc=s:づ c (3。 3)

for i : 1, . . . ,.1f. If we also assume that zii and eii are independent of each other, we have

the following conditional distribution of yli given z1i:

(

arilz,i ru { 
*tt' + e + Qt + rw)zu+ (r'q - 1v7)z';'ol)' i eT

IN(d,+t'zti,o)), j,-c (3'4)

And then, marginalising the joint distribution of (Atj,z;) withrespect to z;i,we have the

following marginal distribution of y6i:

Z″  ―
 {‖|11:::ILt:|| :[i: 
・

響～
{‖III;::|::::|| ;[:

where

πνうT=φう+θ +μttzづT+γ 島ヽ+っ
～
v(仇 zづT― 為),

弓づT=し■柿)資考″T+弓

鶴νac〒 α+μπzづc,

弓づc=μ
2場
c+弓。

(3.5)

(3.6)

and
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Therebr%a loま hbtthood hnctbn br the paralneters OL.… ,φⅣ,θ,μ ,ぃ,御 ,弓)hCluded

in lnodel(3.1)is g市en by

編=増ト
鶴c{ac_にあ滋の2年 sac}
μ?ひZic+σ多

0劫

―%づT bg((μ +7w)2∂:づT+1分 一πac bg(μ 2∂易c十弓)].

A remarkable aslect Of using the log― likelihood(3.8)is that the correlatitt between tt and

窃 are replaced with the correlation betwee五 働T and ttzづT,or ttc and ttzづco Since we canllot

tOmpute MLEs ofthe parameters iom ttt log_likelihood(3.8)in a c10Sed― form,it is llecessary

to llse an iter■ive nl17neriCalこoll■puting algorithm such as Newton― Raphson method.

3.1.2 The case ibr lnixture of IPI)and AD

Consider the meta―analysis of Ⅳ
′
tiials which consist of Ⅳ AD trials and Ⅳ

′―Ⅳ IPD trials.

As in Chapter 3。 1.1,we■rst assume the IPD meta― analysis model to the collected IPD and

the missing IPD;i:e.

uu,: dt * |rai * pztj * 1sr6i26 * yvsr,iiQii - 2,i) * eii, 0・0

c″～N(0,イ ),

J=1,・・・,ηじ;に 1,・ ..,Ⅳ
′

whereしT,sLT,2T,S:`T,働 c,S;づ c,効 c,SZづc)brづ =1,…・,Ⅳ and(物 ,″″,物 )fOrづ =Ⅳ +

1,… .,Ⅳ
′andノ =1,…・,売

`are available.Becttse all trials tte independent of each other,a
bg― likelihood for the parameteis inchded in model(3.9)can be d“ ived.as suttmation 9fthe

log¨五kelihood for the AD trials and that for the IPD trials.The forllller is already given by

(3.8),and the latter is simpけ given by using the normal dellsitbs as bllowぶ

JIPD=

:づ
圭 1を
← 魔
づ
―身
2摯 二九Tθ″″~均 ~筆場あ―御″″

摯
―劾島・

Then,we can estimtte the pttattterS OL… っφNち θ,μ ぃ ,御 ,弓 )hdu4ёd h IIl10dd oo

by maximising the log― ■kehhood

ho * lpn

with respect to the parameters.
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3.2 Meta-analysis based on simulated IPD

Subsequentlg we introduce meta-analysis methods based on simulated IPD (SIPD), in which

the missing IPD are reconstructed by using the scheme of marginalising the missing IPD. For

the case that all trials provide only AD, the proposed method takes the following procedures

for inference of parameters.

For the case that all trials provide only AD:

(1) Generate multiple sets of SIPD for each trial.

(2) Fit an IPD meta-analysis model to each set of SIPD.

(3) Suitably summarise resulting estimates from the set of meta-analyses from Step (2).

We refer to these whole estimating processes as SIPD method. Figure 5 shows a flow diagram

of the SIPD method. Furthermore, for the case that some trials provide IPD and the others

provide only AD, the proposed method is extended to combine IPD and AD.

For the case that some trials provide IPD and the others provide only AD:

(1) Generate multiple sets of SIPD for each trial providing only AD.

(2) Fit an IPD meta-analysis model to each set of SIPD combined with the collected IPD.

(3) Suitably summarise resulting estimates from the set of meta-analyses from Step (2).

STEP(1)
Modeling and sillllllation

STEP(2)
Anaけsing

STEP(3)
Sllmmarising

Figure 5. Flow diagram of SIPD method.
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STEP (1)

Modeling and simulation

srEP (2)
Analysing

srEP (3)
Summarising

Figure 6. Flow diagram of sIPD method with combined the collected IPD.
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Figure 6 shows a flow diagraln Of the SIPD metlЮ d with co血bined the collected IPD.In

this chapter,each step in the SIPD lllletlЮ d is described in detail for two situations of meta―

anaけSiS data(continuous outcome and covari¨ %and binary outcome and covariate)。

3.2.l  Continuous Outcome and covariate

Now,let

ymis_IPD={(物
,″″,物 ):′ =1,.・ :,π

`;|=1,…
,Ⅳ },

yAD={協 T,S::D ttT,SttDら c,SLc,あc,S'tc):ら =1,… ,Ⅳ}

whereン Ъiss_IPD iS the uncollectld IPD for trialsづ =1,… .,Ⅳ and yAD iS the AD sum―

Ⅲ iSed from them.Suppose that yAD Can be written by a functionん (1色iss_IPD);i・ 6.

yAb〒 ん(ymぉ,IPD)。 Now,the functionん transforms the patient― speci■ c observations into the

sample mean and the sample variance fOr each grOup in each trial.Then,we again consider

the IPD meta― analysis model(3.1)to ymiss_IPD,and assume that the covarittes of patientS

for each group in theづ th trial follow the IЮ rmal distribution(3.2)。 If we again assutte that

z″ and c″ are independent of eaCh Other,we have the conditional distribution of ν″given

物 aS(3.4).Here,parameters in the cOvariate distributions call le eStimtted as.(3.3),and

now let

ξ={いzЪ場1,金蒻c,場cl:に 1,.::;Ⅳ }. (3.10)

And also. let

η=01,…
"φ
N,θ,μ,笹,御 ,弓 )

be parameter lo be eStillllated.  ヽ

(3.11)

Combining IPD and AD For the case that some trials provide IPD and the others

provide only AD trials, let

Yrpo : {(au, ni.j, zij) : j : L,.. ., n;i i, : N * 1, . . ., lf'}

be the collected IPD for trials a : .AI * 1, . . . ,.0/'. As in the case that all trials provide only

AD, we consider the IPD meta-analysis model (3.g) to YmissJpD and Y1pp, and assume that

the covariates of patients for each group in the ath trial follow the normal distribution (8.2).

Here, pa,rameters in the covariate distributions can be estimated as (3.8), and let

ξ={(九″
`T,∂
銑T,あ zづc,∂夕c):づ 二1,…。,Ⅳ

`)。
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And also, let

η〒0ぃっφⅣ,θ ,μ篠,割 :弓 ) 0。 10

be parameter to be estimated. For both cases, each step in the SIPD method is now described

from frequentist and Bayesian perspectives.

SIPD method via'frequentist.procedure

Step (1): Generating SIPD

Let /(Ymbs-rpD;€,4) be a density function of the missing IPD with parameter 4 in (3.11),

which is equivalent to product of bivariate normal densities from

ヽ

ｌ

‐

′

ノ
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Ｎ ′∈T
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14)

プCC恥
(1期:1,|み 懺1),

fOr l〒 1,…・,Ⅳ andブ =1,…。,πづ。Here,ηυをT,σLT,mνをc and弓づc are giVen as(3.6)and

(3。 7)。 Then,We draw the SIPD(say ttsttIPD)士 °m the cOnditional distributbn of ymiss_IPD

giVen yAD and a known parallneter 01ue脅 ;i・ e

ン宝 iss_IPD～ ∫(】亀iss_IPDlyAD;ξ ,ク) (3.15)

where f is computed by maximising the following likelihood under an assumption known as

CAR (Coarsdning at R^andom) by Heitjan and Rubin (1991);

^fL1p(ril: 
"f 

(Yao; €,q) : I t (YmissrpDif, ?)dYmiss-tpo. (3.16)
JY4p-lr1Y-tuu-r"o1

This means that

rl- arg max ,Lap(4).
tl

Once obtaining the parameter estimate, fi, we can get -R sets of SIPD by repeated drawing

of (3.15); say

4s‐静D={(場 ],″り,場]):ブ豊1,:・・,a;`=1,.:。 ,Ⅳ } (3.17)

for r=1,.:.,R.To use(3.15)for genertting the SIPD,it is necessary to calculaje(3.16)

in an explicit form and then draw from∫ lymiss_IPЬ lyAD;ξ ,う )。 Below,we describe how to

cabultte LAD(η )and draw ttom∫ (ymisttPDlyAD;ξ ,巧 )。



Calculating LAD(η ): The cabulation of the hkelihooo(3.16)requlres the integration

with respect toン鶴 よ IPD OVer the region that satisiesン Ъぉ針IPづ =ん (yAD)・ In particular,by

the derivation in Appenditt A,this is given by

五
¨
=″ ×
ニ レ

リ

¬
ηザ%η

{二靴 、
あT二 鶴タリ

2+sLJ}

<毛∂切ぽeマ
{_轟
〔働C―π
ra2+sれ
ゎ‖ こわ

離lmiw磁種Ⅲw賎3V蛇岬
満hmご°いCm面斡a

Drawing from∫ (ン缶 ss_●DlyAD;ξ ,う): We can easily derive∫ (ンЪぉs_lPD;ξ ,う)士Om(3.14)

wth the known pttameter脅 ,薔hb∫ (ymiss_PDlyAD;ξ ,わ is ttmcμL tb dertt exactけ bё‥

cause its sampb space is de■ lled on the region that satisfles yAD=ん (4iss_IPD)・ ThiS

IIneans that sample nlealls and sample variances of outcome and covariate for each group in

each triaL whiCh is computed by llsing indi宙 dual outco血ё and covariate values drawn iom

∫(ymiss_PDlyAD;ξ ,う),lllluSt be equivabtt to the correspondhg san■ pb■leans and sall■pb

vaHances in yADo We here desc五 be how to achわ ve the drawhg i6平 ∫(塩ぉHPDlyAb;ど ,0

by using a samoling technique proposed by Lindqvist and Taraldsen(2005).

Now,we represent the observation vectors ibr each group in theづ th trial as follows:

yjT■ {物 :ブ ∈T}, Zづ T={物 :JCT}, 洸c〒 {物 :ブ ∈C}, Zづ c={物 :J∈ C}.

Recall that ymiss=IPD dё l10tes the ullcollected IPD;ioe。 (物 ,″″,物)fOrづ 豊 1,… .,Ⅳ and

ブ=1,.… ,ηづ.BeCallse ofbetween・・trial and between…group independence,we have the density

functiolls of ymぉ s_IPD given yAD andう aS f011ows:

∫(鴫sHPDlyAb;ξ,巧)=
Ⅳ

Π ノ麟 TlλЪ  S'じT;九 z赤 ,磁 1)∫け 州 レ Ъ sLDZ州 ;0
づ=1

×∫(Zづ clれc,S'づc;命z`c,∂多,c)ノ (yづcl働c,S:ac,Zづ C;う )。 (3.lo

The五,the rth set ofSIPD forthe ttitFial(say y脚 ,7界,yttandz髪)are gellerated as random

samples drawn■om the corresponding conditional dist■ bution in(3.19),that indicates the

following sequential sampung procedllre:

z界 ～∫しぼlλT,SZが為zぼ ,場T),
y鼎 lz鼎 ～ ∫(yづTI働T,S3赤,Z界 ;巧 )
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and

z肥 ～ ∫(zづclac,s,`c;仇 zづ c,∂ ,づc),

.    
｀
       y肥 lz肥 ～ ∫(ytcl働 c,Sれc,Z肥 :り。

Thお means that Wettst draw ztt attdthenytt byllsing Z‖ ,which tte applid br drawing

z肥 攣dy肥。
Hera z‖ repre“飢s sallapbs ttOm the cOndtbnal mrmtt dお tributbn given sampb mem

乃T■ndきample variance sZをT.A resuh by LindqviSt and Taraldsen(2005)described in

Append破 B allows 9hO tO achieve this drawing as follows:         _

Z界 ={乙T tt γ″~υづszづT:′∈T} (3.20)

where{υ″:ブ ∈T}denOtes ηづT random samples from the standard normal distribution,

こぅand sιづare a santpb mean and a sttaple variance sulnmarbed iom them respective撃

hthermor%letthg μ and tt be the 9oHeSponding con■ ponёttS in脅,we Can 4raW y‖五a

similar way t6(3.20)as f0110W∬

H: {gu, + Gt,+ td@*l - Znr) * 6';(u;i - a) 'r e T} o.21)

where {rti , j € T} denot es n1a random samples fro- lhe standard normal distribution, o6

and βればe a sal■■ple mean and a sampb variance summarised.■o五 them respectivev And

also          i

& =

S蒻

ザ=&T-lΣしあ
]―乙→0″
TQ)

Forブ cC,(3:20)and(3.21)can be used in a similar manner,except that(ル +～w)in(3.21)

is replaced byル .

Combining IPD and AD For the case that some trials provide IPD and the others provide

only AD, the collected IPD are essentially utilised for supplementing to the computation of

f. Because all trials are independent of each other, we compute fi by maximising product of

the likelihood for the IPD trials and that for the AD trials; i.e.

fi: arg max Zlpp(d x Leo(q)
n

―(μ +争″)Szを ,υづ十
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Where LAD(η )iS already given by｀ (3.18),and ttIPD(η )iS giVen by

五IPD(η)=∫ (yIPD;ξ,η)=
′
K×
:虫1二 券

exp{―
ダ号
鱗 ―
|―
ら

'″

Tμ
ttT筆″弯れ―御 ″″物 ―プ }02鋤

where F is a constant term unrelated to η.Once obtainingぅ 士om(3.22),we can get R sets

of SIPD in the same way as(3.20)and(3.21).

The fact that we can usё  the IPD froln a part oftrials ofFers a■ Other s01ution to compute

う。The IPD triab partけ prOvide inbrmation ofら cT物物 and Σ′cc物物 ,indiCating that

EM(Expectation Maxmis,tiOn)algOrithm、 by Dempster,Lard and Rubin(19771 can be

applied for the computation ofぅ .

EM algorithm: Because of between-trial and between-group independency, we have

the density function of Ydss-1pp and Yrpo as fodo*st

ノCК
=ぉ

針IPD,MPD;ξ ,η)皇 Π ∫幌 T,Zば ,洸C,%C;九 zぼ ,場Ъ 仇 ぁc,場 c,η )。
こ=1

The EM algorithm repeats two steps of calculatiOn referred to as E¨ step and M―step.In

3step,given(yAD,yIP5)and a Current parameter ttlue巧 同,we Calculate the following con…

ditional expectation:

+Σ  bg∫ (洸Ъ Z犯 ,丸c,zκ ;金zぼ,磁D九 ″c,場 c,づ
｀            づ=Ⅳ+1

where the secOnd term can be derived as the bivariate normal denStties ttom(3.14).In the

flrst ternl,we need to calculate the conditional expectations ibr the sufncient statistics of

Σ物,Σ4,Σ場,Σる,Σ物為,

Σ物,Σ場,Σ場,Σ場,Σ物物
JCC     JCC     ′cC     ′こC     J∈C
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for j=1,...,N.Among theIIl,we have                              
｀

ぃ
臨 羽

動蟻lE"臨
牛
も
1動
T守 +材 協よ ■

蹴臨‖司|¨礁臨わルを1=橘+ホtT
allld the same calculatiollls are applied to those for J c C.For the COnditiona1 0xpectations of

乃 ∈iν″物
and Σ′cc物物 ,We here use Monte Carb approximation.An algortthm in which

the integratiOn cJculatiOn in E¨ step iS replaced by Mo“ e Carlo approximation is known as

Monte Carlo EM(MCEM)algOrithm by Wei and Tanner(1990)。 The MCEM algorithm■ lst

draws 3 sets of ymisttPD(S赤 理 も.PDおrb二 1,… ,3)士Om the dondtbnal distrわ麒 iolls

∫(塩iss_IPDlyAD;ξ ,うM),where the samphng′ teёhnique by Lindqvist型 I Tarddsen(2005)can

be used in the same way as(3.20)and(3.21).Then,平 haVe

llM卜J赫利
==″ 憾 ■ )ん

1%Tし1,SLDttls銑づ為″Ъ場 ⅢI同 )彎Td“T

γ去こは
ガイ)

and

罐吻レ蝙島,」    :
=∬
憾

れ

)tl蒟
CPCSれ

ず
。 S銑コ 蒻GttOttMゅκttc

γ去こはν夢増)。
hM―Stepp the ttrent ptta甲

lili[1!li硫ぅili       :
η

¶hese iterative of E― step and M―step are repeatedly implemented until a convergence condト

tion holds,and the flnal parameter valte is regarded asぅ 。                 `



Step (2): Fitting IPD meta-analysis model

Step (1) produces.R sets of SIPD for trials i: L,.:.,ly'i i.e. Y$l.r-r"o for r - 1,...,R in
(3.17). We can now fit the IPD meta-analysis model (2.L) to each of SIPD (or each of SIPD

combined with the collected IPD). This produces .R sets of MLEs for parameters of interest

and their variance estimates; for instance. the within-trial treatment-covariate interaction

efiect, ti#, rrti{il)) for r : 1,...,ft.

Slep (3) : Summari,sing esti,mate.s

In Step (3), resulting estimates for each set of SIPD are suitably summarised. For example,

suppose that there is an interest in the posterior distribution of Tw; say zr(TyylYap), which

is written by

f
" 

(fw 
I 
Yeo ) : J " 6* lY*is,-rpo ) "f 

(Ymiss-rpo 
I 
Yao ) df*r.ot"o. (3.24)

We here consider an approximation known as Poor Man's Data Augmentation (PMDA) 2 by

Wei and Tan“ I(1990.GiК ュ竹 ,(棚,7(州))and颯 ,IPDおrr=1,… "R,thQ PMDA
2 approximates the posterior distribution of ?W as follows:

7「 (7、vlyAD)π (3.25)

where

-'"$lr*1,-,"o)w,:v(i{il 1/2-.\ ry--" tT(id r*1,-,"o)
(3.26)

The weights tr.r, for r : !r...rR are importance sampling weights designed to correct for

the fact that one is not sampling from /(Y^1ss-reolYap), and PMDA 2 provides an unbiased

estimate of the observed data posterior (Steele, Wang and Raftery, 2010). The derivations

of (3.25) and (3.26) are detailed in Wei and,Tanner (1990). To obtain point estimate (via

the median of the posterior density)'and g5 per cent confidence limit, one must obtain the

required percentiles of the mixture distribution of .(3.25). Obtaining the desired mixture

percentile values (say c) requires solving

n

|w,"("wvly"H,-,ro) : "r:L

宙th rspect to御 6ted%Wang and Raftery 201oo lfCOndde五 ng缶 =Σた1棚/R as押
estimator of ?w, the variance estimate for fry can be derived exactly, under an unrealistic

assumption, by using an idea known as type B estimator by Wang and Robins (1998); this

is beyond the scope of this paper.
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Combining IPD and.AD For the case that some trials provide IPD and the others

provide only AD, the posterior distribution of "p,'; say zr("yrylYao, Yrpo) is written by

zr(fwlyao, Yrpo) : I n(Wllzmiss-IpDr ylpo)/(y"riss-IenlYap, YIpp)dY-irr-rpo. (3.27)
J

In the similar way as (3.25), the PMDA 2 approximates the posterior distribution of 7\)l,' as

follows:

π(術 lyAttyIPJ%塾
υrπ (柿昭 電JPD xPJ

Σたl υr

where

wr:v(i?)r/2π(棚 14籠HPD'XP→
π(仙 14s.PD'XPJ

SIPD method via Bayesian procedure

Step (1): Generati,ng SIPD

Let /(Y*lserpDl{,4) be a Bayesian density function of the missing IPD given pa,rameter 4,

which has the same form ffi .f (Y-iss-rpn;€, rl). Then, we draw the SIPD (say Yisr-r"o) from

the posterior predictive distribution of V*;sr-1pp given Yap; i.e.

Fks‐IPD～ ∫(ymis,IPDlyAD,ξ )

where

∫(端 轟.PPlyADiO=/∫ (ymiまIPDlyAD,ξ ,づ∫側
yALO“    ●・2の

and∫ (塩 siPDlyAD,ξ,η )is the density of γhsdPD given yAD and η,√ 171yAD,O iS the

posterior distribution ofη given yADo BeCause ofthe integration in(3.29),∫ (ymiζIPblyAD,ξ )

can■Ot be expressed in a closed form. 」And also,it is difllcult to draw sal■ ples± olllll this

distribution directly;l however once obtaining samples ofthe parameter",We can achieサ e the

drawing(3.28)app10Ximatett lf R Sets ofthe pttallneter values(say ηtt br l=1,… .,R)are

drawn from the posterior distribution∫ (η lyAD,ξ),then the posterior predictive distribution

(3.29)can be approximated as bllow馴

∫lymttPblyAD,0ん
島 元

∫(ymi∬IPDlyAD,ξ ,η哨
r=1

(3.30)

This indicates that one random sampb ttom∫ (ListtIPDlyAD,ξ ,η
回 )correSpOnds to one ran―

do血 sample hm∫ (ymiss PDlyAD,ξ ),and the r6petitbn Of thお drawing yね lds R sets of

(3.28)
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SIPD(say司鳳鮮IPD f°rr=1,… 。,R).The SIPD collsiSt Of the patient― specinc observatiolls

given as(3.17)。 The approximttbn(3.30)requhes onё  to draw iOm∫ (η lyAD,ξ)and then

む aw hm∫ (ymぉHPDlyAD,ξ ,η日).The htte.can be impblnetted by the“ me prOCedure

fOr∫ (ンЪiss_I,DlyAD;ξ ,う )。 We.。 w describe how to draw iomノ (ηlyAD,ξ )。

Drawing fromノ (η lyAD,ξ ): Drawing samples of η■om∫ (η lyAD,ξ )iS Straightforward

tO attieve by MaF卜9V Chain Monte cttlo(MCMC)methOd;in particular"use MetrOpOIS―

Hastings algorith. The p6sterior distribution of η can be written as

∫171yAD,ξ )∝∫(yADば ,η )∫ (η )

Whereノ (η)iS the density function for a prior distribution ofη  and we use a vague prior for this;

ioe・ ∫(η)∝ σ」
ユ′ TheLノ (yADば,η)has the dameお rm器 ∫(yAD;ξ ,η)in(3.16)。 Theieお r●

br the purpose ofdrawing η国±o興∫(引 yA5,ξ),the Metropols― Hおtings dgorithm takes the

お1lowing procedllres(Gelman cサ al,1995):

1. Set a starting value η101,and iterate Step 2-4 for r=1,.1.,R.

2.Draw a sample ηl from a prOposal distributiOtt With density function ρ(η lηレ
~1);i.e.

η
*ん
ρ(η lηレ
~11).                    ・

We here assllme ρ(η lη町
~」
)is a nOrmal density centered at ηレー可.

3.Comptte

α=mln{1 ノ(η*lyAD,ξ )∫ (η*)
'∫
(η
レ~lllyAD,ξ

)∫ (η
レll)∫・

4. Set nl') :4* with probability o, otherwise set 4hJ : rlb-rl.

For rapid convergence, we integrate out the parameter of trial-specific effects (6t,...,6x)
frgm f(r7lY6p,f), and then consider to draw (0,F,.yg,7ry) from their marginal posterior

distribution. This is because we need only the values of parameter associated with the

within-trial relationships (p and fW) to generate the SIPD.

Combining IPD and AD For the case that some trials provide IPD and the others

provide only AD, we draw the SIPD (say Yfr,rr-r"p) from the posterior predictive distribution

of Ylnisg-1pp given Yap and Ylpp; i.e.

礁 iss_IPD～ ∫(ン缶 ζ:_IPDlyAp,yIPD,ξ )
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wheた

(3.31)

and∫ (η lyAD,単Pp,ξ )お the pOSterbr distribⅢ lon 6f η given yAD・ By the same reason de―

scribed above,■ iS necessary to■rst sample the parameter oヽs of η frOm∫ (η lyAD,yIPD,ξ ),

and then draw ymぉ針IPD ttOm∫ (ymis,IPDlyAD,ξ ,η‖ ).IR setS Ofthe paialneter vaⅢ s(η回

for r=1,… 。,R)are drawn from the pOstγ iOr distribution∫ (η lyAD,yIID,ξ ),the pOSterior

predictive distribution(3.31)can be approximated as fonow∬     ,

島 ■ Jn.ttN島
言
飾 赫 Jn∴η崎 (3.32)

This indicates that one random sampb iom∫ (ン缶iss I「 DlyAD,ξ ,"回 )correSpOnds to olle ran―

dom sampb iom∫ (ymiss_IPDlyAD,yIPD,ξ),and the repet比 10n Ofthis drawing yields R sets of

SIPD(γ胤鮮I二もおrr=1,… ・lR).The approximttion(3.32)requhes one to draw缶o■

∫(η lyAD,XPD,ξ)and th“ draw iOm∫ (ymぉ・
IPDlyAD,ξ ,η回 )。 The latter can be imple―

mented by the same procedllre for∫ (ymぉ鮮IPDlyAD;ξ ,脅 )。 We now describe how to draw

iOm∫ (η lyAD,yIPD,ξ )。

Drawing fro]m∫ (η lyAD,yIPD,ξ ): Asin drawing iom∫ (η lyAb,ξ),drawing samples Ofη

■Om∫ (ηlyAD,yIP5,ξ )iS StraightゎIWard to achieve by MCMC method(MetЮ p01iS― Hastings

algorithm)。 The posterior distribution of η can be written as

∫171yAD,Mお ,ξ)∝ ∫(yAD,XPDば ,η )∫ o)    ‐

where∫ (η)iS the vague prior of∫ (η)∝ qFl・ Because of between―trial independence,we have

∫(yAD,MPDば ,あ)=∫ (yADlξ,づ∫(4,Dば ,η )・       1

where∫ (yADで ,η)has the sanleお Im as∫ (yAD;ξ,η)h(3。 16),and∫ (MPDlξ ,η)お deri“ d by

the same form asノ (yIPD;ξ ,η)● (3.2,).■om these resu■ S,for the purpose of dravringあ
H

■9m∫ (η lyAD,yIID,ξ ),the MetropouttHastings algorithm takes the following pЮ cedllre年

1. Set a starting value η101,and iterate Step 2-4 1br r=1,.¨ ,」R.

.2.Draw a sample 
η
*from a proposal distribution with density function 

ρ(η lηレ
~J);ie.

η
*～
ρ(η lη
レ
=11)。

We here assume ρ(η lηレT」 )iS a nOrmal density centered tt η
レ~」。

∫(ymぉ鮮IPDlyA3,I15,0=/∫ (ymぉ」 PplyAD,ご,")√ 171■ D,XPD,ξ )蒟
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3. Compute

. t. f,t*lY,-,rrpo,€)/(r.) Ia:min{l. '.'='= }.
t 
-' 

/(ro-tl lroo, rrpo, €) f Qtt"-tl) J

4. Set nl'l :4* withprobability a, otherwise set 4['l :ql'-r].

For the same reason described above, we integrate out the parameter of trial-specific effects

(h,...,dN,) from /(alY-6n,Yrpo,{), and then consider to draw (0,F,.yA,yry) from their

marginal posterior distribution.

As is the case for the frequentist procedure, the fact that we can use the IPD from a

part of trials offers another solution to draw from /(Y-iss-rpnlY4p,yrpo,€), which is known

as data augmentation by Tanner and Wong (1987).

Data augmentation The data augmentation is implemented by the following iterative

steps in terms of r :1, . . . ,8.

L. Choose a moderate positive integer B, and create draws as follows:

η甲 ～ ル 側
yAD,XPD90,端

塑.PD～ ∫(niss_IPDlyAD,ξ ,η
レ'う。 (3.33)

for b=1,… .,3.Her%九
(η lyAD,yIPD,ξ )den6tes an apprOximate posterior distribution

of η at iteration r,which is c6mputed at iteration r― -1.

2. Update the approxilnate posterior distribution Of η as follows:

3

れ 191yAあ ふ 助 0■
:日 型 雌

P静 助
。
・

The pequence Of draws for ymiss_IPD and η缶om this iterat市 e procedllre is known to coIIlverge

to a drtt frOmノ (]輛 s.IPD,η lyAD,MPD,0(Lttth and RuЫ 乳 200幼 .Thお iS motivated by the

fact that the approximate posterior distribition of η in(3.33),ル (η lyAD,yIPD,ξ ),iS easier

10d・甲 鮨Om than∫ (η lyAD,yIPD,ξ )。 hdeed,eatt ebment composingル 171yAD,yIPD,ξ );ioe.

∫(η l凛IIPD'yIPD,ξ)fOr b二 1,… ,3,can be derived exactly(Gelman θ
`α

l 1995).

More specincaltt We rewiito the IPD meta―analysis model(3.9)by uSing a matr破 foim

Of

y=Xη O+c,

c～ N(0,弓 I)。

Letting n : D{-tna be the total number of patients, y is an rz-dimensional vecto r of y6i for

i: L,,...,N'and j - 1,.. .,tui,rX is an n x (lI'*4) design matrix, 0 is an n-dimensional
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zero vector,I is an π × η identtty matr破 and ηO=(φ l,… 。,φN′ ,θ ,μ ,γA,7｀V)・ If We again

お SllIIle the tue priOr Of∫ (ηO,弓 )∝ け ヽ then we have the posterior distributb1 9f 170,弓 )

gi“n ymぉ直 PD and MPD,∫ 00,σ:lymお鮮IPD,MPD,0,aSお llow馴

ηol弓 ,ymiss_IPD,yIPD～ N(oO,イ ),

弓 1塩お直 PD,XPD～ IIllv―χ
2(π _Ⅳ ′-4,s句

where lllv‐χ
2(η _Ⅳ′-4,s2)denOtes a ran4om Variable■ Om a scaled inverse ch卜 square

distributibn with scale parameter s2 and degrees of freedom π―ハ「
′-4,and each parameter

is given by           l

わ=(XTX)~lXTy o。 34)

and

s2 :;+t _ 4(v - xrro)r(v - x4o). (3.3り

In the actual iterative procedures, the current value of Ymiss-rpD is substituted into (y, X) in

(3.34) and (3.35).

Step (2): Fitti,ng IPD meta-analysis mod,el

Step (1) producesRsetsof SIPDfortrials'i:1,...,N; i.e. Y$l""-rro forr- 1,...'Rin

(3.17). We can now fit the IPD meta-analysis model (2.1) to each of SIPD (or each of SIPD

combined with the collected IPD). This produces R sets of MLEs for parameters of interest

and their variance estimates; for instance, the within-trial treatment-covariate interaction

efFect,(棚 ,7(棚D brr=1,… R.

駒η 6の1助mmarrisづηg estづπαιes

As is the case for the frequentist procedllre,we here consider the posterior distributiOn of

つヽV Wri“ёn by(&24)。 ■om t¨ BayeSial perspective,the posterior distribution ofっ 、v can

be siIIlulttedけ ■ISt drawi明 琳 塩.PD iOm∫ (路ぉJPDlyAJ,and tlei drawhg割 士om

π(制 1颯 :.PD);le.

輛降鉾豊垂7rlulⅢP」
We apply a Rubin's (1937) combining rule in order to obtain a posterior mean and variance

for ?W, which is often used in multiple imputation. The rule approximates them as follows

o.3o
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豊』岬十害却輛

estimator of ?w, the variance estimate for ]yy can be derived exactly by using an idea known

as type A estimator by Wang and Robins (1998).

Combining IPD and AD For the case that some trials provide IPD and the others provide

only AD, the posterior distribution of ?w is written by (3.27) and can be approximated by

.R
zr(?wlYan, Yrpo) = 

"t 
f "(r*lv,l11,-pp, 

Yreo). (8.89)

Then, as in (3.37) and (3.38), the Rubin'rlrrrn rule approximates a posterior mean and

variance for .64r as follows:

E(7、、ァlyAD,yIPD) E IE(■、
～
rlymぉ,IPD,yIPD)lyAD,yIPD]

(Little and Rubin,2002)'

E(っ、vlyAD) 一一
　

　

　

Ｎ

棚ＲΣ

ｒ〓．

１
一Ｒ

Ep(御 lymiss_PD)lyAJ

l庄棚 (3.37)

and

Var(御 lyAD) E IVar(′ンヽハ′llЪiss_IPD)lyAD]十 VarIE(1内ぃ√lymis,lPD)lyAD]

(3.3鋤

where iw is given by (3.37). For frequentist inferences, we use (3.37) as an overall estimate

一一　

　

”̈

]1,y, and (3.38) as its variance estimate y(.i,w). If considering ?w : DLr lHlR as an

o。40)

and

Var(7、vlyAD,yIPD)= E IVar(7、 vlXnぉs_IPD,yIPD)|】 亀 D,yIPD]

十Var[E(γwlxttss_IPD,yIPD)lyAD,yIPbl

～
士二
K爛十

1斉ゼ蔦l抑 ―湖 2 (3.41)

一一　

　

””

where ?w is given by (3.40). For frequentist inferences, we use (3.40) as an overall estimate

fry, and (3.41) as its rnriance estimate V(.yw).
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Table V. The grouped form of data from group k in the ath study.

y=O y=1

fflO;k fl1tk

rnUk nv.k

fl* - rrUh n;k

3.2.2 Binary outcorne and covariate

We here consider the SIPD method only from the Bayesian perspective, for the case that

some trials provide IPD and the others provide onti AD'

SIPD method for combining IPD and AD via Bayesian procedure

Step (1): Generating SIPD

Assume that each AD trial is completely balanced at the patient-Ievel cova,riate; so that the

proportion of patients witln Z : L for the treatrnent group is asstrmed to be equivalent to

that for the control group. Letting uitc : lnurZt +0.5] (tA] is the largest integer not greater

than A) andns,itr:TLtk-nyi,.be the number of patients respectively with Z: L and Z:O

for group k in the ?th AD trial (i - 1, . . . ,N), then the AD given by (**,no*,ntrr) can be

written as'marginal toials of.a2x2 contingency table in Table lTI, where the internal cells

msirr and rmr,ik reptesenting the number of patients respectively with (Y : L, Z : 0) and

(Y:IrZ:L) are not available. Now, for all trials i:.I,...,N', we assume that rnurc and

rn1676 follow a pair of independent binomial distributions respectively with probabilities ioex:

Pr(Y - LIZ :0,i,k) and p11i1r: Pr(Y : llZ : L,'i,k); i.e. moik - Binominal(ns.it*ps,ih) and

ruik - Binominal(nu.x,pr*). Then, we draw the SIPD for group k in the zth AD trial; i.e.

ms,itc (and, trLrik: Tnik - mo*), from the following posterior predictive distribution:

Pr(ms6plm6krno*rnr*)

f: I Pr(motnlmilr,n0iktnLiktPottc,,pun) f (PoiktPu*lmuc,ns,ih'n61)dp0tikdpuk. (3.42)
J

for i :1, . . . ,.lf and k e {T, C}. Here, f (po*,punlrrli,k,'Itoit*n1i1r) is the density function for

the posterior distribution of (po*,pun) given m6, and is written as follows:

∫⑫oづん:plりたlπじた,ηoれ ,,1づん)∝ Pr(m`λ lη oをた,η lづた,pOづた,plをた)∫ oOぅた,plをλ) (3.43)

prlorwhere f (ps;p',p16il is a distribution of (po*,pu*). Pt(m61xlns;k,nMk,poih,p1ap) is the



probability of a marginal total rmik : ntouc * m161, in Table V with unknown internal cells,

which can be derived as convolution of the binomial distributions for ms;re and, mutr:

P r (m 61xlnsik, n u,n, p o*, p uk)

鶴いン″
峙％
(脇 )pg:1ド
ん

`1-pOり

た)れ0`ん ~π°'ん

×仁づた世
づ焼iλ)p職
―πけに'ら1紛税うんTηん+m∝. o。っ

where

Itt : max(O rrrtritc - nux), ult : min(no*rrn*) (3.45)

represent the range of admissible values of msi.t so that rr4k : rmouc * rnyls and. T,,ip - mi4, :
noik-rns;p*n1ik-mt*are satisfied. And also, Pr(rns *lm;u,noiktnrihtpoikrprik) in (3.42) is

the probability of an internal cell given all the marginal totals in Table V. If the single internal

cellms1tc are drawn, the other internal cells can be identified uniquely as rmtik: rmik -,trloiikt
no* - rns6k and Uik - m161r. Letting

}or& : po*l(L - po*), \u,n = pu,x/(L - pun) (3.46)

be odds of po* and py;v respectivelg Pr(mo.i*lmehtTroiktnLikrpoih)p1i1r) can be derived as the

probability mass function of Fisher's non-central hypergeometric distribution (or extended

hypergeometricdistribution)withparameterofoddsratio\ak:\gil,f\1,'t,:

Pr(msiklmhh rloik t nuk, \*) : 惚)(二λTLiDλ》
ん

o.4つ

where l6p and uik are defined as (3.45).

Because of the integration in (3.42), the posterior predictive distribution of ms1t cannot be

expressed in a closed form. Also, it is difficult to draw samples from this distribution directly;

however once obtaining samples of pa.rameter (pg6tcrplet)r we can draw moik approximately

from (3.42). If .R sets of parameter values ("uv @[]u,p!1r01 r", r:t,...,R) are drawnfrom

the posterior distribution (3.43), then the posterior predictive distribution (3.42) can be

approximated as

二ぇ僻)(%∫螺?)λ雅
0

■姉われは島喜Щ鶴れ脚̈ 嚇昴
46
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where the rth component in summation is the conditional probability of ms6k given m;k

and a known parameter of @tlu,e}lo). This indicates that a single ranilom sample from

Pr(msaTlm,iktTloiktnt*,,p\ln,p$lo; .ottu.ponds to a single random sample from the posterior

predictive distribution (3.42), and the repetition of this drawing yields R sets of SIPD (say

@tlo,*l[1 n, r : 1,. . . , ft). Therefore, we generate the simulated IPD for the AD trials

by using the approximation (3.48), that requires us to draw from f (pot*,py,tlmi1r,nsi,tcrn1.ita)

and then draw from Pr(msir,lmiktTloiktny,n,p{}n,P$Ll. * now describe how to draw from

these distributions in more detail.

Drawing fr on f (potn,,Putclmilr,nott",nu,t)

Now. Iet

yAD ={(πづん,・oづた,η lをλ):づ =1,…。,Ⅳ,た c{T,C}},

yIPD ={(mO,た ,π lを1,電0`λ ,π lづλ):`=Ⅳ +1,‥。,Ⅳ
′
,た ∈{T,C}}

Where yAD iS the AD summarised from the llncollected IPD for trials t=1,… `,Ⅳ ,and yIPD

is the conected IPD for trialsづ =ハ「+1,。 ,。 ,r√
′
・HerO,we assllme the following model for the

logits of pOじλ and Plをた;i・ eo the logarithm of(3.46):

log,\sa6 : ao6r

log )1ag : dlct (3.49)

log )oet : aot * 02,i,

log,\i;a : a:: *gZt

We now consider to draw parameters in model (3.49), and then produce thc values of pou"

and. p161, by using model (3.49). Letting

n : (aOC, otIct o;1T t on, 0)

be a parameter vector to be drawn, wb have

∫(η lyAD,yIPD)∝  ∫(η )∫ (yADlη )∫ (yIPDlη )

N

=√ (→Π Π Pr(mづλレ∝た,η l焼 ,づ
づ=1た c{T,C}           .

N′

×Π Π Prい∝た,mLルcた ,π lた ,η )
を=N+1た c(T,C}
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where /(r?) is the density function for a prior distribution of 4 and we use a vague prior for

this; i.e. /(q) x 1,. Pr(milrlnsi.htflti.kt4) is given as (3.44), andPr(msilr,mttlno*,n161r,11) can

be derived by using probability mass functions of Binomial distribution for ms;tc and, m161r;

i.e.

' 
Pr(moih, rnLikln12b nt* t rl)

l-^., \ /-.., \: 
l#) l;;r)tr*;r 

(1 - Po';'k)no;*-*oihptrnLik (L - pun)'ik-mtib (3'50)

where the corresponding'components in 4 are suitably substituted into p6.irr, p1i13, ),s;tr and.

)o*.

Drawing from f (qlYao,Yrpo) is straightforward to achieve by MCMC method; in par-

ticular Metropolis-Hastings algorithm. By using (3.44) and (3.50), the Metropolis-Hastings

algorithm allows one to draw .R sets of.4 from /(alYao, Yrpo); i.e. 4['J for r - 1, . . . ,R, which

takes the the similar implementing procedure described above. The rth set of pa,rameter

value, ,hl, is transformed into f*1, r[Ll and then fot]u,olLl uniquely.

Drawing frorn Pr(ms6rclm6ktrloiht"rnu,,p{}u,pf}*)t This drawing is equivalent to the

drawing from the Fisher's non-central hypergeometric distribution with a known paxame-

ter (7t[]u,p{}u). Wu can draw R sets of SIPD from this conditional distribution directly. Fog

(2008) supposed a fast algorithm to draw from Fisher's non-central hypergeometric distribu-

tion. we get.R sets of SIPD (say (*I[]*,*l]*1 r, r:1,...,R),which are transformed to

the binary data forrn of SIPD (Ati,*ti,4\ n j:L,...tTti and r - 1,.. .,n.

ftep (2): Fitti;:ng IPD meta-analysis moilel

step(1)producesEsetsof sIPDforADtrials; i.t.(au,rui,r*\ fori:1,..., N, j:L,...,r;i,
and r - L, . . . , -R. We can now fit the IPD meta-analysis model (2.6) to each of SIPD with
the collected IPD. This produces -B sets of MLEs for parameters of interest and their variance

estimates; for instance, the within-trial treatment-covariate interaction efiect, ti{ill,yti{illll
for r=1,… 。,R.

島η

`〃

′珈mmorおづηクcstづπαιcs

When there is an intcest in the posterbr distribution of御 ,we can use t“ Rubiゴs(1987)

rule as described aboveo The rule approxinlates a poste五 or mean and variance fOrっ 、v as
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follows:

長ッ餞L玲→γ島二Ⅲ   い⇒
and

Va<γwlyAЬ ,XPJγ
ttΣly岬

)+≒
Iゼ≒IΣ]酬

二竹ア・  05鋤
r=

where iw is given by (3.51). For frequentist inferences, we use (3.51) as an o-verall estimate

]y,,, and (3.52) as its variance estimate y(Tw).
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4 Application and simulation studies

4.L Introduction

In this chapter, it is shown that the proposed methods described in Chapter 3 (method with

marginalising the missing IPD, and method based on simulated IPD) has many benefits for

inference of the treatment-covariate interaction. Especially for the within-trial relationships

between individual observations, the proposed methods work substantially better than the

existing approaches described in Chapter 2. Moreover, it is suggested that the proposed

methods could have a huge possibility to produce novel findings- We now outline objectives

and.regutts of each experiment

Simulation 1 In Chapter 4.2, weverify the performance of the proposed method with

marginalising the missing IPD in the case for only AD. We suppose the case where all trials

provide only AD, and compare estimates of the across-trial and the within-trial interaction

from the proposed method with those from a futl IPD analysis using the original IPD from all

trials. When variation in within-trial covariate distributions is small, the proposed method

provides accurate within-trial interaction effect estimates. This indicates that the proposed

method has a potential advantage to inference of the within-trial interaction, that is never

achieved by the existing approach.

Simulation 2 In Chapter 4.3, we verify the performance of the proposed method with

marginalising the missing IPD in the case for mixture of IPD and AD. We suppose the case

where some trials provide IPD and the others provide only AD, and compare estimates of

the across-trial and the within-trial interaction from the proposed method (and model (2.5))

with those from a full IPD analysis using the original IPD from all trials. When the number

of trials providing IPD is small (e.g. 1 or 2 of 20 trials), the proposed method provides more

acclrate within-trial interaction effect estimates than model (2.5). If meta-analysts consider
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how many IPD trials should be collected to preserve a desired level of statistical power, the

proposed method requires them to collect smaller number of IPD trials than the existing

model (2.5).

Application to hypertension data In Chapter 4.4, we illustrate the SIPD method via

Bayesian procedure through an application to the hypertension data. We are again interested

in how age modifies the treatment effect on change in SBP (follow-up mimrs baseline), and

demonstrate how the SIPD method produces the across-trial and the within-trial interaction

efiect estimates in the case for mixture of IPD and AD. The main gain from the SIPD method

is to improve the standard error of the within-trial interaction effect estimate in compa,rison

with the existing model (2.5), especially when the number of trials providing IPD is small. A

potential benefit of using SIPD is also discussed in the context of a subgroup meta-analysis

which is never conducted by using model (2.5).

Simulation 3 and Simulation 4 In Chapter 4.5 and Chapter 4.6, we verify the ob-

served performance of the SIPD method via Bayesian procedure in two situations: one is the

situation where a single continuous outcome and covariate are observed from each patient

(Simulation 3), and the other is the situation where a single binary outcome and covariate are

observed from each patient (Simulation 4). In particula,r, it is ensured that the SIPD method

provides more accurate within-trial interaction effect estimates than the emisting model (2.5)

or model (2.9).

4.2 Simulation 1-: Performance of the proposed method with
marginalising the missing IPD in the case for only AD

We here supposed that all trials provide only AD, and focused on the treatment'covariate

interaction estimated by fitting the MR model (2.2) and,the method with marginalising the

missing IPD described i'' Chapter 3.1. The MR model (2.2) canbe used only for the inference

of the across-trial interaction (B); whereas the proposed method allows one to estimate both

the across-trial and the within-trial interaction (7a and 7y,'). Some practical differences

between 7A and Tw are as illustrated in Chapter 2, lhat highlighting the pitfall of using

?e to make inference about iyy. In particular, we were interested in how the log-likelihood

(3.8) computed by using only the AD available recovered the information on the within-trial

relationships.
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4.2.I Design of Simulation 1

We considered that the true models for generating individual outcome and covariate values

from patients in each trial were written as follows:

″″了{
鶴zぅ ～N

物1鶴 zづ ～N(π zづ ,ιZ),

物 lα″,物 ,あ ～N(20+5″″+0.05物 +0.05″″乙+0。 1″″(物 ―易),弓 ),

J=1,… 。,800,づ =1,… .,10

０

　

　

１

J∈ C

プCT

(30,1の ,

(4。 1)

where the numbeis of patients for the treatment group in each trial were assumed to be

equivalent to those for the control group;ioe.η づT=η
`C=400 forづ

=1,。 .。 ,10.In the IPD

meta― analysis model(2.1),inferellce of the within― trial interaction is mainly arected by:the

varittce parameter in within― trial covariate distributblls,σ

',and,the variance pallameterin cond“bnal diStributiollls of tt given物 ,弓 .The standard errors of the withi■ tlial

i武eractbn efFect estimttes tte expected to becoIIle smaller郎 鵬increases and tt decreas,s

(SimmOllS and Higgins,2007)。 We here controlbd these parameters by the following sce■ ario殷

σZ∈ {20,40,80)and b:∈ {10,20,40}.

The il■opblnenting pЮ cedure was as bllows.Firsttt We set pttameters of tt and弓

among 9 scenariOs,and then according to the true model(4。 1)With pttalllleters set in the

previOus step,we generated 10,000 sets of meta‐ analysis data.vOre speciflcaltt We generated

mean covaritte for the dth trial,mzじ ,■om N(30,10)and cOvariatO values for patients in the tth

trial iom N←ηzり ,σ

')giVen mzを

and σZ,and thett outcome values for patients given c6variate

valueso SeCOndtt We sumttarised'the IPD from争 ■ 10 triab to the AD repFesented as sample

■eans and sample variances of ind市 idua1 0bServations in each group and trial.Fina転 we

lllletttmalysed the ADけ :(i)ittillg the MR五odel(2.2),and(li)applying the proposed

IIlethod.In each analysis,we computed estimates of β and their root mean square ёrrors

(RMSEs)缶om the MR model(2.2),and thOSe of7w an4 γA from the proposed method.The

RMSE for β waS C6ntputed by using γA=0・05 as Ls true value.These results were compared

with the resuLs from the fun IPD analysis.
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4.2.2 Results of Silnulation l

Table Ⅵ shows RMSEs and mean biases for the acr6ss¨ trial interaction in each scenttiO.

Fitting the MR面odel(2.2)to the AD ioh all trials natllra■ y provided estimateS O五 ly of

the across―trial interaction,β ,whOSe RMSEs ttd mean biases were equivalent to those for

仏 ■Om the fun IPD analysis.However,as mentioned abovei the estimates of the acFOSS― trial

interaё tion must be interpreted difFer9ntly■ om those of the wtthin_trial interaction.For

&ampb,in a scenario 9f弓 =40 and σ

'=20,Figure 7 shws scatler pbtS of Z―

,lues for β
■Om the MR model(2.2)against z,values for仏 (palle1 0n the lei side)and ttv(pane1 0n

the right side)frOm the fun IPD analysis.The vertical and hori2ontal lillles represent Z_values

of l.69(ioe.the d市 ision between statistical,ignincance and llon― signttcance 6f a One― side

hypothesis test at 5 per cent level for HO:β =0 0r HO:っ、v=0)・ ObViOllsly ttom Figllre 7,

estimates of β and theL standard errors■ om the MR model(2.2)were equlvabnt to those

Of γA frOm the full IPD analysis.For 10,000 Sets of meta― analysis data,99.7 per cent ofthe

fun IPD analyses provided signincant results for ttv,While only 26.3 per cent Of analyses by

t“ MR modё l(2・ 2)were Signincant for β.And also,for 73.4 per cent of ttalyses,缶 'S■・Om

the full IPD analysis were signicant and β'SfrOm the MR model(2.2)were nOn_signfcant,
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Table M. Root rnean square errors and mean biases for estimator of across-trial

treatment-covariate interaction effect.

Root IIIlean squaale error of

β Or ttA

Mean bias of

β Or ttA

σ:σ子 MR Proposed (Full-IPD). MR Proposed (Full‐ IPD)■

20

40  40

80

20

20  40

80

20

10  40

80

(0.053)

(0.054)

(0.054)

(0.038)

(0.038)

(0.038)

(0.000)

(0・ 000)

(0・000

(0・ 000)

(0・ 000)

(0・ 000)

(0・ 000)

(0・ 000)

(0000)

0,054    0.054

0.054    0.054

0.054    0.054

0.038    0.038

0,038    0.039

0.038    0.038

0.001    0.001

0.000    0.001

0.000    0.000

0.000    0.000

0.001    0.000

0.000    0.000

0.000    0.000

0.000    0.000

0.000    0.000

７

　

７

　

７

２

　

２

　

２

０

　

０

　

０

０

　

０

　

０

８

　

７

　

８

０

　

０

　

０

０

　

０

　

０

0.028

0.027

0.027

MR: Fit the MR model (2.2)to the AD from all 10 trials.
Proposed: Apply the proposed method to the AD from all 10 trials.
rResults by fitting model (2.1) to the'full IPD from all 10 trials.

o!: Yafiance parameter in within-trial corrariate distributions.

oj: Variance para,rneter in conditional distributions of outcodes.

Table VII. Root mean square eriors and mean biases for estimator of within-trial

treatment-covaxiate interaction effect.

Root mean square error of
tw

Mean bias of
"fw

σ;  σ: Proposed (Ful卜IPD)中 Proposed (Fbll-IPD)-

20

40  40

80

20

20  40

80

20

10   40

80

0.220

0.206

0.202

0.201

0.197

0.116

0.195

0.171

0.061

(0.032)

(0.023)

(0.016)

(0.023)

(0.016)

(0・ 011)

(0.016)

(0・ 011)

(0.008)

-0:091

-0.083

-0.082

-0.090

-0.081

-0.017

-01090

-0.068

0.005

(0・000)

(0・000)

(0・000)

(0.000)

(0.000)

(0・000)

(10")

(0・000)

(0・00p)

PToposё d:Apply the proposed lrlethod to the AD■ oIIrl a11 10 trials.
すResults by ntting model(2:1)to the full IPD from a11 10 trials.

σ::Variance parametり in宙 thill― trial covariate distributions.

σ::Variance paFamet∝ in conditional astributions of outconles.

55



indictting thtt meta― analysёs llsing the MR model(2.2)welle prone to fail in detecting the

treat甲Ⅲ―coVariate intettctiOtt in cOmpariSon with meta― allalyses 9f the original IPD from

a11 10 trials.

In principle,the proposed method can be llsed for estimⅢ ing nOt Only the acЮ ss―trial

interaction efbct but also the within― trialinteraction efFecto The R〕 √SEs and the lnean biases

fOrね 士Om the proposed method were equivabnt to those iom the MR model(2.2)血 d the

■■IPD ttmlysis(Tabb Ⅵ ),indicating the bttlikelihood(&8)preserved information on the

across― trialinteraction prё cisett Table ⅥI shows RMSEs and mean biases for the within― trial

interactionっ、v ln each scenario.Note that,ln the full IPD analysis,we used the IPD from

an lo triab,while in the proposed method,we used only the AD■ om an lo triald When弓

was large(eog.弓 =40)and σ

'Was smal(e・

go α=2o,柿 ■om the propbsed method had
a large RMSE with a negative bias.On the other hand,astt b6caIIle sm争Ⅱёr and tt b9calne

lttger,the RMSEs and the lnenn biases iom the proposed method decreased imllllediⅢ e撃

Especia町 おr the scenarios of弓 =10 and σ,=80,the proposed hethod ofered the smallest
RMSコ forれv with approxihately zero bias.T“ se reSuLs suggested that the proposed

methOd required a relatively_large variallce in within― trial covariate distributionも to estimate

the within― trial interaction precisett and in su9h situatiollls the use Qfthe log― likelihood(3.8)

could recover information on the within― trial relationships iom the AD trials.

4。3  Silnulation 2: Performance of the proposed llllethod with

marginalising the missing IPD in the case for mixture of

IPD and AD

We here supposed that some trials provide IPD and the others provide only AD, and focused

on the across-trial and the within-trial interaction effect estimated by fitting the existing

model (2.5) and the proposed rnethod described in Chapter 3.1. Some practical benefits

of combining IPD and AD are as illustrated in Chapter 2, highlighting that using only

the collected IPD or reducing available IPD to AD had some disadvantages due to loss

of information. We were now interested in how estimates of the within-trial interaction from

the proposed method became close.to those from the full IPD analysis according to the

proportion of trials providing IPD: The standard errors of iw from the proposed method are

expected to become smaller as the ploportion of trials providing IPD. We also assessed the

gains from the proposed method beyond the existing method by Riley et at. (2!008).
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4.3.L Design of Simulation 2

We considered that the true models for generating individual outcome and covariate values

from patients in each trial were written as follows:

Ｃ

　

Ｔ

∈

　

∈

．

′

　

．

′

０

　

１

ｒ

ｉ

く

―

ヽ

〓η̈
π

π″Jん N(30,10),

物lmzづ ～N(れ方ぅ,σZ), (4。2)

協′|″り,Z″ ,乃 ～N(20+5″″+0.05z″ +0.05″″乃+0・ 1"″ (Z″ ―乃),40),

ブ=1,… 。,400,t=1,… 。,20

where the numbers of patients fol the treatment group in each trial were a,sumed tO be

equlvalent to those for the control grOup; i.e. ηづT=πOC=200 forづ ==1,。 ,。 ,20。 We gave

the total number of trials by 20,and controlled the number of trials providing IPD by 5

scenarios of l,2,4,亀 16 of 20 trials(corespOnding軌 the numbers of trials providing AD

were givett by Ⅳ∈{19,18,lQ 12,4})。 As br the variance paralllleter in within― trial covariate

distributiolls,We COnsidered σZ=80 foF the AD triab,and contr01bd that for the IPD triab

by?SCenarios of罐 ∈{40,80}.
‐
 The impleIIllenting procedllre was as follows.Firsttt We set the n― ber of IPD trlalS

and tt in the IPD trials aIIlong 10 scenarios,and then according to the true II10del(4。 2)

with parameters set in the previous step,we generated 10,000 sets of meta― analysis data.

Secondtt acCOrding to t“ scenari0 0f the number of IPD trials,鴫 summarised the IPD

■om trialsづ =1,… 。,Ⅳ to the AD.Finaltt We met″attalysed a m破 tllre ofIPD and AD by:

(i)fltting model(2.1)or mOdel(2.4)to the COlbcted IPD ttom trials t=Ⅳ +1,… ,20,(ii)

sllmmarising the collected IPD ttom trialsづ =FV+1,.… ,20 to the AD and then itting the

MR Illlodel(2.2)to the AD■ om al1 20 triab,(iii)■ tting model(2.5)to the mixtllre pf IPD

and AD,(iv)applying the propo6ed method to the mixture ofIPD and ADoln each analysis,

we comput,4 eStimates and their RMSEs for β frOm lnethod(ii),and those for 7w and γA

■om method(1),(lii)and(市 ):These r,SultS Were compared with those obtained by fltting

model(2.1)to the IPD■ 6m a11 20 trials(full IPD analysis).We also col■ ■puted sample mean

of absohte diferences between estimates of 7、 v ttom model(2・ 5)or the proposed method and

thOSe iOm the full IPD arnalysis,which was i“ ended to evaluate hOW far the p9int edtim乱 9

obtained by ntting model(2.5)ё r the SIPD method is apart iom that obtained ttom the full

IPD analysis on average.
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4.3.2 Results of Simulation 2

Table MII shows RNISEs and mean biases for the across-trial interaction in each scenario.

The MR model (2.2) again provided estimates only of the across-trial interaction, B, whose

RMSEs and mean biases were eqirivalent to those for fa from the.full IPD analysis. Fitting

model (2.1) or Q.a) honly the collected IPD had seriously large RMSEs for fa when the

proportion of trials providing IPD wd,s small (e.g. 2 IPD trials and 18 AD trials). This is

because the precision of the across-trial interaction efiect estimate depends. on the number

of trials involved and between-trial heterogeneity. Table D( shows RMSEs and mean biases

for the within-trial interaction in each scenario, The RMSEs and the mean biases for f1a,,

obtained by fitting model (2.1) or (2.4) to only the collected IPD got close to those from the

full IPD analysis as the proportion oJ trials providing IPD increased.

The strategy of combining IPD and AD by fitting.model (2.5) or the proposed method

yielded accurate results for the across-trial interaction, as well as estimates of the within-trial

interaction which got close to those from the full IPD analysis according to the proportion

of trials providing IPD. Including AD trials remarkably improved the RMSEs for ia in
compa.rison with analyses using only the collected IPD. Fitting model (2.5) and the proposed

method provided similar RMSEs and mean biases for la of each other, which were eqrrivalent

to those from the fuU IPD analysis. The results for the within-trial interaction from model

(2.5) were equivalent to those from analyses using only the collected IPD, indicating model

(2.5) correctly allowed only the IPD trials to estimate .y1a,,.

The main gain from the proposed method was to improve RMSEs for i1ar. In most

scena,rios, the proposed method provided muph smaller RMSEs than model (2.5),especially

when the proportion of trials providing IPD was small (e.g. 1 IPD trials and 19 AD trials, or

2 IPD trials'and 18 AD trials). The absolute differences also confirmed that |1ry's from the

proposed method were, on average, located closer to those from the full IPD analysis than

model (2.5).
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Table Mtr. Root mean square errors and mean biases for estimator of across-trial treatment-covariate interaction effect.

Root llllean square erro■ of

β Or ttA

Mean bias of
P ot 'Y^

い
0

Number of trials            Obs‐  Mode1                           0bs‐   Model
provlding IPD  σ

'    MR  IPD  (2.5) PropOSed (ndl―

IPD)*    MR   IPD   (2.5) PropOSed (Full― IPD)*

り" ‖ 器 Nl l椋 朧 格囲 ・淵l Nl滞 滞 (淵 )
″" 翻 :脚 lI:W躙  81瑠 棚1瑞 淵1淵1(酬l
″η 』躙 }場 肥 :器 8剛  :胤 滞 胤 :胤 ‖爛3
8/20       ::     :::1:  :::::   :::::    ::::;      |::::]        三:|:::   ::::I   三:i:::   三:i::|     |三 :::::|

“″
0 認 :耀 艦 :耀 朧: 器旧 端1瑞 端1端1(ⅧI)

MR:FL the MR model(2.2)to the AD from a11 20 trials.

Obs¨ IPD:Ftt model(2.1)to the c。 llected IPD.

Model(2.5):Ftt n2odel(2.5)to the mixture of IPD allld AD.

Proposed:Apply the proposed method to the ni就 ure ofIPD and AD.
*R■ultS by ttting modd(2.1)to the full IPD■ om a11 20 trials.

σ,:Varittce paranleter in within,trial covariate distributions for patients in the IPD trial.

NA:Not avallable.



Tbbtre DL Root mea.n square errors a,u,il mean bias€s f()r estima,tor of within-trial trestmeni-covaxibte iid€ractioD effect, a,nd sa.mple mears of
abcolute differences betwe€n estiEates froe nodel (2.5) or the propoeed method and thos€ ftom the firll lpD.ala,lysis.

Root mean squaxe error of
tw

Meall bias of

,W

Mean of
absolute

difrerence
Number of trialS

pro宙ding IPD  σ: Proposed (FulHPD)* Proposed (Fun‐IPD)中
NIodё l

(2.5)  PropOSed
鏃
・ＰＤ

Model

(2.5)

Obs‐

IPD
Model

(2.5)

0
〇

1/20

2/20

4/20

8/20

16/20

0.082

0.057

0.059

0.044

0.045

0.033

0.034

0.024

0.025

0_018

(0.01o)

(0.016)

(0.016)

(0.016)

(0.016)

(0.016)

(0.018)

(0.016)

(0.020)

(0.016)

0.002

0.002

0.001

0.000

0.002

0.000

0.001

0.000

0.000

0.000

(0.000)

(0・ 000)

(0・ 000)

(0.000)

(0.000)

(0.000)

(0.000)

(0・ 000)

(0・000)

(0・ 000)

0.011

0.006

0.011

0.006

４０

８０

４。

８０

４０

８０

４０

８０

４０

８。

0.101   o.lol

O.069   0.069

0.072   0.o72

0.050   0.050

0.050   0.o50

0.035   0.035

0.036   0.036

0.025   0.025

0.025   0.025

0.018   0.018

0.001    0.Ool

O.000    o.ooo

-0.002  -0.002

-0.001  -o.o01

0.001    0.001

0.000   -0.ool

O.000    o.ooo

O.000    0.000

0.000    o.ooo

O.000    0.ooo

0.079     0.060

0.054     o.o44

0.056     0.044

0.038     0.032

0.038     0.033

0.025     0.023

0.025     0.023

0.016     0.015

Obs― IPD:Fit model(2.1)tO the c。 1lected IPD.
Model(2.5):Ftt model(2.5)to the mixture ofIPD and Ap,Proposed:Apply the propOsed method to the mixture ofIPD and AD。
中
Resulte by ntting model(2.1)tO the full IPD缶 o五 au 20 trials.

σ::Varianct paranleter in wthiitrial cO― iate distributiolls for patients in the IPD trial.



4.4 Application to hypertension data: Illustration of the pro-

posed method based on simulated IPD

Consider the hypertension data, and we illustrate the SIPD method via Bayesian procedure

described in Chapter 3.2. To imitate situations involving IPD for some trials and only AD

for others, we considered scenarios as in Chapter 2.1; where only a tidited number of trials

(from L ta 4of the 5 trials) provided IPD and the other trials just provided AD. In each

scenario, we carried out analyses by: (i) fitting the MR model (2.2) to AD from all 5 trials,

{ii) fitting model (2.5) to the mixture of IPD and AD, and (iii) applying the SIPD method

to the mixture of IPD and AD. In both parts (ii) and (iii), the analyses were run for each

possible combination of IPD and AD trials. In each scenario, we cou.pared the results with

those from a meta-analysis of IPD from all 5 trials (full IPD analysis).

In the SIPD method, for the iterative process of the Metropolis-Hastings algorithm to

draw I : 500 values of parameter, we discarded the first 5,000 samples in order to prevent

dependence on the starting values. Moreover, we took a sample at only every 1,000th iteration

in order to avoid autocorrelation between the samples taken. The sdme iterative process wiII

be taken in Simulation 3 and Simulation 4.

The gains from the SIPD method

The results of estimates and their standard errors for the across-trial and the within-trial

interaction, averaged across all possible combinations of IPD and AD trials in each scenario

are shown in Table X. As for the across-trial interaction, the SIPD method produced estimates

closer to the full IPD analysis compa,red to model (2.5) regardless of the number of IPD trials.

The estimates of 74 from model (2.5) were also close to those from the MR model (2.2). For

each scenario in Table X, we also found an important difference between results for the

within-trial'interaction effect from model (2.5) and the SIPD method. When compa.ring

fy,,'s from model (2.5) with those from the full IPD analysis, model (2.5) provided point

estimates located in a positive direction on average, with large standard errors. This is

because model (2.5) allorws only the IPD trials to estimate the within-triil interaction, and

thus the estimates and their standard.error for tw by fitting model (2.5) got close to those

from the full IPD analysis as the available number of IPD trials increases. The SIPD method

improved both the estimates of Tw and their standard errors to be 'closer to the correct (full

IPD) estimates, especially when the number of IPD trials was small. The most benefit came

虔
υ



Table X. Average of estimates and their standard errors for treatment-covariate interaction

effect when analysing change in SBP (follow-up minus baseline) from hypertension data,

where estimates are averaged across all combinations of IPD trials.

Average of
estimate

Average of
standard error

Number of trials  Model

providing IPD‡   (2.5)

Model

(2.5)  SIPD

Across-trial
interaction
effect 7a

5/5・

4/5
3/5
2/5
1/5
0/5+

-0.662     ‐

-0:766 -0.662

-0,766 -0.663

-0,768  -0.665

-0.781  -0.667

_01766     -

0.464     ‐

0.468    0.464

0.463    0.464

0.464    0.464

0.464    0.463

0.466      -

Within-trial
interaction
effect ?w

5/5*
4/5
3/5
2/5
1/5

0.087

0.091

0.117

0.166

0.244

0.090

0.096

0.103

0.105

0.055      -

0.063    0.063

0.084    0.076

0.130    0.097

0.258    0.131

Model(2●):F■ model(2.5)to the mixture ofIPD and AD.
SIPD:Apply the SIPD metlЮ d to the mixture ofIPD and AD.
*Results by ttting model(2.1)to the full IPD iom al1 5 trials.

十Results by ntting the MR model(2.2)to the AD■om』1 5 trids,
lThe numbers of combinatiolls of trials proⅥ ding IPD are 5,10,10 and 5
in the scenarios of l,2,3 and 4 1PD trials,respectively.

in the scenario of I IPD trial, in which estimates of Tw were iqr :0.244 (s.e. - 0.258) from

model (2.5) and iw : 0.105 (s.e. : 0.131) from the SIPD method; the latter is much closer to

the full IPD analysis result of iw :0.087 (s.e. - 0.055). This shows that the SIPD method

allows both using the AD trials and IPD trials to estimate the within-trial interaction, and

- this adjustment based on the AD trials is usefuI especially when the number of IPD trials is

small.

Table X also shows that the difference between the estimates of nar (and its standard

errors) from model (2.5) and those from the SIPD method became smaller when increasing

the number of IPD trials. The results in the scenario of 3 IPD trials and 2 AD trials were

similar to those using the full IPD, and the.results in the scenario of 4 IPD trials and L

AD trial were alrnost equivalent to those using the full IPD. These results suggested that

model (2.5) could provide s,rfficiently accurate estimates of the within-trial interaction if a
high proportion of IPD trials are available.

For each scenario, Figure 8 shows estimates of ?w and their standard errors obtained by
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Figure 8 (continued)..
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fitting model (2.5) and the SIPD method for each combination, where the horizontal axis

represents the name of each IPD trial with sample size in parentheses. For example, in the

scenarios of 2 IPD trials and 3 AD trials, names of 2 IPD trials and sum of sample sizes from

2 IPD trials are shown, and also in the scenarios of 4 IPD trials and L AD trial, names of L

AD trial and sum of sample sizes from 4IPD trials are shown. The heavy'solid line represents

the results from the full IPD analysis, and thus the closer results to this line are regarded as

superior ones in the sense of matching the full IPD analysis. For almost all combinations of 1

IPD trial, the SIPD method provided estimates of ?w and their standard errors which were

located closer to those from the full IPD analysis than model (2.5). These were particularly

considerable when the number of patients included in the IPD trial was small (e.g. HEP,

EWPHE and MRC-2). Similar findiilgs were seen for the scenario of 2 IPD trials, although

the results by the 2 methods were closer, and almost equivalent in the scenario of 4 IPD trials

and 1 AD trial.

The difference between the results from modet (2.5) and the SIPD method is clearly

dependent on the proportion of available IPD in all patients, not just the number of IPD

trials, because the difference between methods decreased in the case of large sample size of

IPD trials in Figure 8 (".S. SHEP and Sy-Eur). For this viewpoint, we computed the number

of patients involved in the IPD trials for all the 30 combinations from Table X. Figure 9 shows

一
Full‐ IPD
o Modclo.5)
+ SIPD
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＋
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Figure 9. Estimates and their standard errors for within-trial treatment-covariate

interaction effect sorted by the proportion of available IPD in all patients when analysing

change in SBP (follow-up rhinus baseline) from hypertension data.
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estimates of ?w and their standard errors from model (2.5) and the SIPD method for all the

scena,rios, which includes 30 results sorted by the proportion of patients involved in the IPD

trials. As before, the difference between the results from model (2.5) and the SIPD method

became larger when the proportion of patients involved in the IPD trials became smallerl in

addition, the differences rapidly diminished when IPD for over 40 per cent of patients was

available. Thus, the StrPD method had most notable benefits when the proportion of patients

involved in the IPD trials was low.

The SIPD method could bring meta-analysts some other potential advantages, rather

than just provides fry and its standard errors which are closer to those from the full IPD

analysis in comparison with model (2.5). Once obtaining the SIPD, one can apply any IPD

meta.analysis approaches to each set of SIPD combined with the collected IPD. We here

Name of IPD Trial Patient
(Sample Size) Subgroup (Age) Mean Difference [ 95 per cent CI ]

Full IPD analvsis
>70
← 70 -

-

‐10.78 [-11.86, -9.69]

‐10.78 [… 11.77, ‐9,78]

Ｗ
ｍ
EWPHE
(172)

MRC‐2

2651)

SHEP

“

736)

Sy‐Eur

(4695)

>70

← 70

メ70

← 70

>70
← 70

>70
← 70

>70
<=70

-

-

-

-

‐10.25 [‐ 11.91, ‐8.58]

‐11.40 [‐ 13.35, -9.44]

‐9。 95[‐ H.64,‐826]

‐11.77 [113.75, 9̈.76]

‐10.47[‐ 12.04, ‐8.91]

‐11.11 [‐ 12.89, -9.33]

‐10,70 [‐ 11.82, ‐9.59]

‐10.85 [-12.01, ‐9.70]

‐10.78 [‐ 11.86, ‐9.69]

‐10.78卜 H.77,‐9.78]

:

‐14 ‐12       ‐10

Mcan DifFerence

Figure 10. Pooled estimates of mean difierence on change in SBP (follow-up minus baseline)

between groups and their 95 per cent confidence intervals for 2 patient subgroups of age.
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considered a situation of exploring beneficial efiects in specific patient subgroups, and meta-

analysed these subgroups within each trial in hypertension, which were identified by age of

patients. Obviously, model (2.5) for combining IPD and AD cannot provide any findings for

this. We allocated each patient in the IPD trials and each simulated patient in the AD trials

to 2 or 3 subgroups according to the following scenarios: (i) whether age of the patient is

more than 70, or not, (ii) whether age of the patient is more than 73, 67 or more to 73 less,

or not. Using covariate values generated for patients in the AD trials enables one to estimate

pooled treatment effects for each patient subgroup. We here considered onlf a situation

where 1- trial provides IPD and the other 4 trials provide AD. Figure L0 shows the pooled

Natllle ofIPD Trial      Paticnt

(Sample size)    SibgrOup tAge) Mean Difference [ 95 per cent CI ]

Full IPD analysis

>73
く=73,>67
く■67 -

-
-

=9.78 [‐ 11.03, …8.52]
‐11.57 [‐ 12.60, ‐10.54]
‐10.78 [‐ 11.69, ‐9.87]

Ｗ
の

>73
く=73,>67
<■ 67

>73
く=73,>67
く■67

>73
く=73,>67
← 67

>73
く=73,>67
← 67

>73
く=73,>67
← 67

‐10.03 [‐ 12.42, 7̈.65]
‐10.76 [‐ 12.03, ‐9.48]

,1lt76 [‐ 14.47, ‐9,06]

-9.48 [‐ 11.96, ‐7:01]
‐10.92 [‐ 12.19, ‐9.66]
‐12.18 [‐ 14.96, ‐9.40]

‐10.02 [‐ 12.24, =7.79]
‐11.08 [‐ 12.33, ‐9.83]

…11.25 [‐ 13.64, -8.86]

‐10.47 [-11.98, ‐8.96]
‐11.00 [‐ 12.18, ‐9.81]
-10.82 [‐ 12.31, -9.32]

‐10.43 [-11.97, ‐8.89]
‐11,11[-12.25, ‐9.98]
‐10.79 [‐ 12.02, .9.56]

EWPIIE

(172)

NIRC‐2

σ651)

SIIEP

“

73o

Sy‐Eur

“

695)

-

-

-

-

-
:

…14

:

‐12 ‐10

・
　

・
８

Mean Difference

Figure 11. Pooled estimates of mean difference on change in SBP (follow-up minus baseline)

between groups and their 95 per cent confidence intervals for 3 patient subgroups of age.
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treatment effect estimates and their g5 per cent confidence intervals for the scenario (i) of 2

patient subgrgup. The uppermost block represents results from the full IPD analysis. The

names of 1 IPD trial are depicted in the left hand side, squares and horizontal lines around

them denote the pooled treatment efiect estimates and their 95 per cent confidence intervals

respectively.' When the 1 IPD trial had large sample size (e.g. SHEP and Sy-Eur), results

for each patient subgroup from the SIPD method were similar to those from the full IPD

analysis. Figure l,L also shows the pooled treatment efiect estimates and their 95 per cent

confidence intervals for the scenario (ii) of 3 patient subgroup, and the same findings were

seen for the IPD trials with large sample size.

4,5 Simulation 3: Performance of the proposed method based

on simulated IPD in the situation of continuous outcome

and covariate'

Flom the results in the application to the hypertension data, it was shown that the SIPD

method via Bayesian procedure provided estimates of the within-trial interaction closer to

those from the full IPD analysis than model (2.5), when the number of IPD trials was small

and when the number of patients involved iU thc IPD trials was small. To check this finding,

we here focused on the within-trial interaction effect, and compared some statistical properties

of iw obtained by the SIPD method with those obtained by fitting model (2.5) under some

settings of controlled parameters and the number of patients involved in 1 IPD trial and g

AD trials.

4.5.1 Design of Simulation 3

We considered that the true models for generating individual outcome and covariate values

from patients in each trial were written as follows:

″」二
{|| :[:ヽ

,

πzを ～N(九z,∂λ),

物lπ″
`～
Nい z`,σ :),

物レγ,物 ,場 ～
Nψづ+θ″″+β物 +仏″″屍+割″″場 ―乃),弓 ),

ブ=1,… 。,ηづ;づ =1,… 1,10
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血 ere the true paramet∝s exceptおrw andtt weregivenas,stim¨ es by fltting IIlodel(2,1)

to IPD ttom 10 trials origina■ y reported in Wang cι  al(2005),with Change in SBP as an

outcome;e.go θ墨-4.958,ル =-0・042 and ttA=~9・ 079,The total llumber of patients was

given by Σ泄1あり=6,000,and each group had the same sttpb size as η州〒ac=ηづ′2.ゅ z

叩d tt are the mean covariat,value across all the 10 trids and its varianc%based on the fact

that the Wang's data gave ttz〒 Σ胆1花/10=62.69押d∂乳 〒Σ胆1修 一九z)2/(10_1)=

180.8:We supposed that only l trial provided IPD(the other 9 trialS provided AD),and

contro■ed the number of patients involved in the l IPD trial by s破 scenarios of 60,300,600,

1,200, 2,400 and 4,800; so that the proportions of patients with available IPD were given

by l,5,.10,20,40 and 80 per centi reSpectively.The 9 AD trials involved almost the same

n―ber of patients for eaCh sCenario.

We here considered σ,=100 fOi the 9 AD′ trials,and controlbd that for the l IPD trial

by 3 scenarios of σ,c(25,50,100}.TheSe scOnariOs of tt bad lls t9 a situttbn that.the l

IPD trial provides information on the within― trial interaction less than oi equal tO the other

AD trials,We also gale nへV==0・ 2 and弓 =200 so that the power to detect the within― trial

interaction estimated iom the fullIPD analysis becomeぎ high enough for each,cenario.

The in■plementing procedllre was as follows.FIsttt We set the llumber of patients in―

volved in the l IPD trial and σ,おr each of 18 scenarios,and then generated 5,000 sets of

雫 ta―叫alysis data according to the true model(4.3)with parameters set in t“ preViOlls step

for each scenarioo Second軌 for each set in each scenariO,we summarised IPD for 9 ofthe 10

trials to AD.Fina■y9we analysё d the m破ture ofIPD and AD by 2 methods:model(2.5)and

the SIPD method.In each attalysis,we computed mean‐ square error(MSE),mean bias and

menn standard error forれv.We alSO Col■■puted sample mёan 6f absolute difFerences between

estimntes of 7w obtained by fltting model(2.5)or the SIPD methOd att those obtained

iom the full IPD analysiso Morё over,we estiη ated the type l dror rate and the statistical

power with one― sided hypothesis test at 5 per ce■ leve1 0f Signincance for HO:鍋 v=O and

Hl:?、
～
「<0.     ・

4:5。 2 Results of Silnulation 3

The results of 1/1SE, mean bias and mean standard error for each scenario are shown in

Table測.In each ScenariO,the SIPD method provided substantially smaller MSEs and mean

standard errors in comparison with m6del(2.5),espeCially when the proportion of patients

with available IPD was low(e.310r5per cent)and tt VraS Small(ag・ 罐 =25).The

69



results of the absolute difFerences also show that the point estiinates 6f 7、 v±oln the SIPD

method were,on averagё,10cated closer to thosё
=om a full IPD analysis(of a11 10 trials)

than model(2.5).The difFerence between the results from model(2.5)and the sIPD method

WaS the largest for the scenario of l per cent ofpatients with available IPD andσ Z=25,and
becaIIlesmttbr as the proportionofpatients withavailabb IPD tts higherandσ z illcreased.

These indicate that the SIPD method could attuSt the estilllllate of 7w and its standttd

error from the IPD―only analysis closer to those from the full IPD analysis using additional

information fr6m the AD trials,especially when the sample size of the IPD trial was small

and the variation in patients cOvariatё  within the IPD trial was small. For example,in the

scenario of 5 per cent of patね nts in the IPD trid and罐 =25,the MSE was reouced by 50

per cent using the SIPD Inethod(MSE豊 o.o51)rather thall model(2.5)(MSコ =0。 111);

similttly the standard error was reduCed COnsiderably by using SIPD(mett S.e`=0.248)

rat¨r than llllodel(2.5)(Inett Soe.=0。 328)。

However,in the scenarios of sllllaller proportion of patients with available IPD,the esti―

mates of～、v from the SIPD method were more suttect tO a positive bias.For exanrlple,the

menm bias iom the SIPD method for the scenario of l per cent of pat“ nts with available

IP⊇ and∂

'=25 was O。

107,and thus ttw Was larger than the trlle value of御 =-0.2 on

average.This is due to the infltellce of the information on the withill― trial relationships ttom

the AE)trials. The SIPD method allows one to extraCt the information on the within―trial

relationships iom the AD trial by using(3。 18),and thus we gain substantially smaller MSES

and mean standard errors for ttw in cOn■ paFiSOn to model(2.5).On the other hand,this

information ttom the AD trials also pun the estillnates ofっ 、v in a positive dhection when

the pr6portionヴ patients with available lpD is extremely bwI Therefore,in scenarios of

leSS 10 per cent of patients with available IPD,there is a trade― ot the large gain in MSE

nnd ptandard error cOmes at the 9xpenSe of a bias.The bias is negligible in all■ letlЮ ds

for 10 per cent or over,and the SIPD method still has gain in MSE(up to abOut 40 pё r

Cent)ald standard error(up tO about 20 per cent)in Situations between 10 and 40 per cOnt

of patients with available IPD.Figure 12 also shows the estimates of 7、 v for the scenario

Of罐 〒100,which are aranged in asceiding order of estimates iom model(2.5)and then

Suit¨ly Sm。 Othel by taking an avertte ofeach 100 estimates.■ om Fttllre 12,the difFerence

between results obtdned■ Om mOdel(2.5)ano the sIPD method were seen dynamicalし In

partic■lar,fOr the l per cent of patients in l IPD trial in panel(a),it Was con■ rmed that

the estimateS froi the SIPD method were much cbser to tbose iom the full IPD analysis in
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comparison with model (2.5), and sufiered from a positive bias.

Figure L3 shows the type I error rates and the power for fyy estimated by the 3 methods

for each scenario. In the scenarios of 1 and 5 per cent of patients with available IPD, the

type I error rates from the SIPD method were highly conservative. F\rrther, when the true

within-study interaction v/as zero, the SIPD method did not produce biased estimates of Tw

unlike when "yry was -0.2 (results not shown in Table )il). Therefore, the conservative type

I error rates for the SIPD method are likely due to overestimated standard errors of ?w,

even though the standard errors were smaller than those from model (2.5). In the scenarios

of over 10 per cent of available IPD, the SIPD method had better type I error rates close

to 5 per cent- The powers of model (2.5) and the SIPD method to detect the true negative

interaction were very similar. The SIPD method was marginally better when 10 to 40 per

cent of patients were in the IPD trial.
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Table測。Mean_squtte errors,Illleall biases and mean standard errors for ёstimttor of within― trial treatment― covariate lnteraction erect,and
san■ph means Of absolute diferellces between esti血 ates hm model(2.|)or the sIPD method(for IPD ttom ollle trid and AD ttom nine

trial)and those hm the fullIPD analysis(br IPD iom al1 lo triab).

Mean-squa,re error of
tw

Mean bias of
')w

Mean standard error of
7W

Mean of
absolute

differencePer cent Of
total patients in

the IPD trial  σ多
Model

(2.5) SIP⊇ (Full¨IPD)中

Model

(2.5) SIPD (Full-lPD)*
Model

(2.5) SIPD

Model

(2.5)  SIPD  (Full―IPD)*

N
た0

L per cent

5 per cent

10 per cent

20 per cent

40 per cent

80 per cent

0.612   0.098

0.303   0.088

0.147   0.067

0.111   0.051

0.054   0.035

0.026   0.020

0.055   0.033

0.027   0.020

0.013   0.011

0.027   0.021

0.014   0.012

0.007   0.Oo6

01013   0.011

0.007   0.006

0.003   0.003

(0・ 001)

(0.001)

(0・ 001)

(0.001)

(0.001)

(0・ 001)

(0・ 001)

(0・ 001)

(0.001)

(0.002)

(0・ 001)

(0.001)

(0.002)

(0.002)

(0・ 001)

0.744   0.411

0.526   0.350

0.374   0.281

0.328   0.248

0.232   0.192

0.164   0.145

0.231   0.191

0.164   0.145

0。 116   0.108

0.163   0.145

0.116   0.109

0.082   0.080

0.116   0.110

0.082   0.080

0.058   0.057

0.622   0.252

0.434   0.235

0.303   0.200

0.264   0.176

0.184   0.143

0.127   0.108

0.184   0.141

0.128   0.109

0.087   0.080

0.125   0.109

0.088   0.080

0.059   0.055

0:086   0.079

0.055   0.053

0.035   0.034

25

50

100

25

50

100

25

50

100

25

50

100

25

50

100

25

50

100

-0.005 0.107  (0.000)

0.011  0.o82  (0.000)

0.002  0.050   (0.000)

_0.008 0.041  (o.o00)

-0.001 0.020  (0.000)

0.001  0.008   (0.000)

0.002  0.020   (0.o00)

-0.001 0.007  (0.001)

0.000  0.oo3   (0.000)

0.002   0.011

0.000   0.003

-0.001  0.001

(0・000)

(0・000)

(0・000)

(0.037)

(0.037)

(0.037)

(0.037)

(o.o37)

(0.037)

(0.038)

(0.038)

(0.037)

(0.040)

(0.039)

(0.037)

(0.044)

(0.041)

(0.037)

0.007 0.oo6 (9.oo3)

0.003 0.003 (0.Oo2)

0.002 0.002 (o.ool)

0.002 0.004 (0.000)

0.000 0.002 (0.091)

-0.001 0.000  (― o1001)

0.000  0.001   (o.ooO)

0.001  0.001   (o.ooO)

0.000  0.001   (o.ooO)

o.082 0.081 (0.058)
0.058 0.958 (0.047)

0.041 0.041 (0.037)

0.046

0.026

0.014

0.045

0.026

0.014

Model(2.5):Fit model(2.5)to the mixture ofIPD ttld AD,SIPD:Apply the SIPD IIlethod to the m破ture ofIPD ald AD.
σ::Varia.lce paraIIxleter in within‐ trial cowiate distributions for patients in one IPD trial.
ネ
ResuLs by ttting五 odel(2.1)to the hu IPD iom alltrials.
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Figure 13. Type f error rates (three panels on the left side) and powers (three panels on the

right side) for within-trial treatment-covariate interaction effect.
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4.6 Simulation 4: Performance of the proposed method based

on simulated IPD in the situation of binary outcome and

covariate

Through an application to the hypertension data and Simulation 3, in the situation of contin-

uous outcome and cova,riate, the SIPD method via Bayesian procedure improved the existing

method by Riley et al. (2008) in the sense of matching the full IPD analysis for inference of

the within-trial interaction. We here supposed a situation wheie a single binary outcome and

covariate are observed from each patient, and focused on the across-trial and the within-trial

interaqtion effect estimated by fitting the existing model (2.9) and the SIPD method via

Bayesian procedure described in Chapter 3.2. The methods were applied for the case that

some trials provide IPD and the others provide only AD. We were again interested in how

estimates of the within-trial interaction from the proposed method became close to those

from the full IPD analysis according to the proportion of trials providing IPD.

4.6.L Design of Simulation 4

We considered that the true models for generating individual-specific outcomes and covariates

from each study were written as follows:

[0, j€c.
nij: \ )

[ 1' 
'€T

zij - Bernoulli(m"i),

a4.lrii, zi.j, Zd - Bernoulli(q;7),

to| i9+ - -2 - 0.5rii * 0.5zii * 2r6iZi * nii(zii - 2t),
t_gij

j : L,...,400,'i, : L,..., 10

where the numbers of patients for the treatment group in each trial were assumed to be

equivalent to those for the control group; i.e. n41 : nic : 200 fori, :1,..., L0. We gave

the total number of trials by L0, and conlrolled the number of trials providing IPD by 4

scenarios of L,2,4, 8 trials (the numbers of AD trials were givenby N e {9,8,6,2}). We

also controlled the true proportion of patients with Z: 1 in each trial, m"; fori : L,. . . , 10,

by 3 scenarios of low-, moderate- and high-heterogeneity across trials. The true proportions

of patients witin Z: L for all 10 trials were given by {0.40, 0.40, 0.45, 0.45, 0.50, 0.50, 0.55,

(4.4)
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0.55, 0.60, 0.60), {0.30, 0.30, 0.40, 0.40, 0.50, 0.50, 0.60, 0.60, 0.70, 0.70} and {0.10, 0.10,

0.30, 0.30, 0.50, 0.50, 0.70, 0.70, 0.90, 0.90) respectivelyl one for each trial. The standard

errors of ?a are expected to become smaller in the scenario of high-hetelogeneity on the

mean cova,riate (Lamb efi et at., 2A02). Each patient in each trial was allocated to a patient

subgroup with Z - L or Z :0, using predefined proportions for the trial, which varied from

trial to trial.

The irnplementing procedure was as follows. Firstly we set the number of IPD trials and

m",; for'i,: L;...,10 among 12 scenarios, and then according to the true model (4.4), we

generated 5,000 sets of meta-analysis data. Secondly, for each scenario, we summarised the

IPDfromtrialsi-L,...,ny'totheAD.Finally,wemeta-analysedamixtureoflPDandAD

by: (i) fitting model (2.9) to the mixture of IPD and AD, (ii) applying the SIPD method via

Bayesian procedure to the mixture of IPD and AD. In each analysis, we computed RMSE,

mean bias and mean standard error for ia and iy,,, We also computed sample mean of

absolute difierences between estimates of 7a (and 1a,') obtained by fitting model (2.9) or the

SIPD method and those obtained from the full IPD analysis. Moreover, we estimated the

type I error rate and the statistical power for 171,, with two-sided hypothesis test at 5 per cent

level of significance for Hs : ?W : 0 and H1 : .yq,' I 0.

4.6.2 Results of Simulation 4

The results of MSE, mean bias and mean standard error for the across-trial interaction are

shown in Table XI. In each scenario, the SIPD method prolided similar results to the full

IPD analysis. By contrast, the estimates from model (2.9) had, a negative bias, especially

in the scenario of low-heterogeneity on the mean covariate. The results of MSE, mean bias

and mean standard error for the within trial interaction are shown in Table )Otr. In each

scenario, the SIPD method provided substantially smaller MSEs and mean standard errors

in comparison with model (2.9), especially when the number of trials providing IPD was small

(e.S. 1 or 2 IPD trials) and the heterogeneity on the mean covariate was high. The results

of the absoluie differences also show that the point estimates of ,yys from the SIPD method

were, on average, located closer to those from a full IPD analysis (of all 10 trials) than model

(2.9). The difference between the results from model (2.9) and the SIPD method was the

largest for the scenario of 1 IPD trial and high-heterogeneity on the mean covariate, and.

became smaller as the number of trials providing IPD was larger and heterogeneity on the

mean covariate was lower. Figure 14 also shows the estimates of the within-trial interaction
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for the scenario of high-heterogeneity on the mean covariate, which are arranged in ascending

order of estimates from model (2.9) and then suitably smoothed by taking an average of each

100 estimates. FYom Figure L4, the difierence between results obtained from model (2.9) and

the SIPD method were seen dynamically. In particular, for 1 IPD trial and g AD trials in

panel (a), it was confirmed that the estimates from the SIPD method were much closer to

those from the full IPD analysis in comparison with model (2.9). Figure 15 shows the type I

error rates and the power for |qr estimated by the 3 methods for each scenario. The powers

of the SIPD method to detect the true positive interaction were higher than those from model

(2.9), especially when the number of trials providing IPD was small (e.g: L or 2IPD trials)

and the heterogeneity on the mean covariate was high.
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Table畑。Mea正卜square errors,mean biases and meall sta五 did errors for ostimator of across‐ trid treatment― covariate interactiOn efFect,attd
sample mealls Of abs01ute diferences b"ween estimates from llllodel(2.9)Or the sIPD methOd and those from the full IPD analysis(fOr IPD

士om a11 lo trials)。              ヽ

Mean-square error of
i*

L〔ean bias of

γA
Mean standa,rd error of

it

Mean of
absolute

difference
Number of trids Covariate
providing IPD heterogeneity

Model

(2.9) SIPD (■lHPD)* SIPD (Full― IP⊇ )Ⅲ

Model

(2.9) SIPD (Full‐IPD)*
Model

(2.9) SIPD

Model

(2.9)

ヽ
∞

1/10

2/10

4/10

8/10

Low

Moderate

High

Low

Moderate

Hish

Low

Moderate

High

Low

Moderate

High

1.119

0.304

0.082

1.275

0.351

0.090

1.170

0.315

0.083

1.156

0.312

0.081

1.262

0.316

0.087

1.178

0.317

0.083

0.011

-0.004

0.012

-0.035

0.018

-0.003

0.019

0.003

0.019

0.020

0.019

0.006

1.088

0.561

0.288

1.081

0.559

0.288

1.085

0.560

0.288

1.085

0.560

0.288

1.123   1.243

0.299   0.331

0.079   0.086

1.226   1.310

0.308   0.331

0.085   0.089

1.177   1.200

0.316   0.322

0.083   0.084

-0.150  -0.002

-0.156  -0.018

-0.072   0.005

-0.182  -0.044

-0.118   0.010

-0.079  -0.009

-0.089   0.017

-0.096   0.002

-0.037   0.018

1.064   1.099

0.550   0.568

0.285   0.291

1.060   1.087

0.549   0.563

0.285   0.290

1.069   1.088

0.552   0.561

0.286   0.289

0.221   0.189

0.159   0.097

0.086   0.041

0.202   0.167

0。 146   0.086

0.077   0.036

0.169   0.144

0。 111   0.o73

0.058   0.029

-0.019

-0.015

-0.013

0.020

0.019

0.006

1.080

0.557

0.287

1.086

0.560

0.288

0.085

0.049

0.023

0.079

0.040

0.017

Model(2.9):Fit model(2.9)10 the mixture ofIPD and AD,SIPD:Apply the SIPD method to the m破 ture ofIPD and AD.*Results by ttting mOdel(2.6)to the full IPD alDm all trials.



Tbble Xtr. Mean-square errore, meaa biasee and mea,n statrdrxd emols 6r estieator of within-tdsl treatment-coi,axiate inieractiotr efiect,

and 8ailple mea,ns of absolute difierencee between estimates ftom model (2.9) ot the SIPD method ard tho6e froa the full IPD ana[ysis (frr
IPD ftom all 10 trials).

Mean-square error of
iw

NIeallL biaS Of

■ヽV

Mean standa,rd error of
Tw

Mean of
absolute

difference
Number of trials Covariate
providing IPD heterogeneity

Model

(2.9) SIPD  (Full― IPD)*

Ⅳlodel

(2.9)  SIPD (■lHPD)*
Model

(2.9) SIPD (Full―IPD)中

Model

(2.9) SIPD

N
0

1/10

2/10

4/1o

8/10

0.026

0.027

0.037

0.026

0.027

0.038

0.028

0.027

0.037

0.026

0.030

0.038

-0.003

0.008

0.006

0.010

0.006

-0.001

0.001

0.002

0.003

0.002

0.010

0.020

0.163

0.167

0.194

0.162

0.167

0.194

0.162

0.167

0.194

0.162

0.167

0.194

Low

Moderate

High

Low

Moderate

Hieh

Low

Moderate

High

Low

Moderate

High

0.259   0.254

0.281   0.208

0.827   0.231

0.128   0.130

0.132   0.115

0.192   0.115

0.065   0.065

0.073   0.067

0.092   0.066

0.032   0.032

0.036   0.036

0.049   0.045

0.023   0.030

0.022   0.032

0.007   0.040

0.015   0.018

-0.001  0.007

-0.003  0.006

0.001   0.004

0.005   0.009

0」001   0.009

0.004   0.005

0.010   0.011

0.021   0.020

0.513   0.490

0.531   0.454

0.714   0.473

0.361   0.338

0.373   0.331

0.445   0:344

0.256   0.231

0.264   0.234

0.309   0.257

0.181   0.168

0.187   0.173

0.216   0.200

0.388   0.388

0.398   0.348

0.579   0.380

0.266   0.267

0.257   0.245

0.311   0.259

0.156   0.156

0.170   0.164

0.186   0.165

0.068   0.067

0.066   0.065

0.078   0.075

Model(2.9):Fit model(29)to the m破 ture ofIPD and AD,SIPD:Apply the SIPD method to the mixture ofIPD a■ ld AD.
中
RestltS by ttting model(2.6)to the full IPD iom all trials.
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Figure 14. Estimates of within-trial treatment-covariate interaction effect for the scenario of
high-heterogeneity on mean covariate.
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right side) for within-trial treatment-covariate interaction effect.
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5 Discussion and further developrnents

Meta-analysis with marginalising the missing IPD

We proposed a new meta-analysis method for estimating the treatment-covariate interaction.

As pointed out by Riley et a/. (2008), separation of the treatment-covariate interaction into

the across-trial and the within-trial effect is a clinically meaningful operation because these

effects might be difierent of each other due to ecological bias and/or trial-level confounding.

Indeed, for the hypertension data, we cannot conclude a negative interaction between the

treatment effect on change in SBP and age, with the across-trial effect estimated by using

the mean age iri each trial. This is because the within-trial interaction, which was estimated

by using age ofindividual patients, acted in the opposite diiection ofthe across-trial interac-

tion. Similarly for the home safety education data, the across-trial interaction between the

intervention effect'on provision of the stair gate and the proportion of male participants was

very different from the within-trial interaction between the.treatment efiect and gender of

individual patients. We here advocate that the MR model (2.2) ot model (2.7) does not give

suficient evidence for the patient characteristics.

In the proposed method, we a,ssume the IPD meta-analysis model for the missing IPD and

then marginalise its density with respect to the missing IPD. These processes produce the

log-likelihood (3.8) for AD available, and the use of this log-likelihood is useful to estimate

the within-trial interaction even when all trials provide only AD. The simulation studies sug-

gested that the proposed method provided the within-trial interaction efiect estimates with

moderately small RMSEs, and worked better when the variance in within-trial covariate dis-

tribution was large. The proposed method assumes that all trials are similar (exchangeable)

to each other apart from having a separate baseline (intercept). This strong exchangeability

assumption means that, conditional on the AD available (means and standard deviations

of each group), the missing information (such as the within-trial interactiotr, ?w, and the

covariate effect, p) can be informed approxiinately by meta-analysing the AD.
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The proposed method is also simply extended to the case for mixture of IPD and AD.

IPD meta-analysis has been advocated by many researchers, while the methodological de-

velopment for combining IPD and AD becomes increasingly important because practitioners

cannot always collect the IPD for all trials involved (Riley, Simmonds and Look, 2007; Ahmed,

Sutton and Riley, 20L2). Reducing available IPD to AD and focusing on just the across-trial

relationship leads to a loss of information and potential bias, and it is important to focus on

the within-trial relationship as much as possible. Through simulation studies, the proposed

method provided smaller biases and smaller MSEs for estimator of the within-trial interac-

tion, fry, ill ssmFaxison with the existing method by Riley et at. (2008), especially when the

number of trials providing IPD was small. And also, simulation studies suggested how the

biases and the MSEs for fry from the proposed method changed according to the number of

trials providing IPD. These results could offer a useful guidance if one considers how many

IPD trials should be collected to preserve a desired level of statistical power.

However, we recognise that the proposed method makes strong exchangeability assump-

tions and, as it stands, is only applicable to a narrow range of situations. In particular it
assumes that the treatment efiect and within-trial interaction'are fixed across trials. It would

be useful to extend the method to rand.om effects models to-allow for heterogeneity if possible

(Higgins, ffoqmpson and Spiegelhalter, 2009), and also allow a trial-specific covariate effect

(p;) and a trial-specffic error variance (oln). Indeed, a meta-analysis of the full 10 trials in

the hypertension data originally reported by Wang et al. (2005) would potentially require

this kind of modelling (Riley et a1.,2008). Riley et al. (20L2) notes that when there is

baseline imbalance a meta-analysis of randomised trials with a continuous outcome should

use analysis of covariance, and. we welcome consideration to this situation. Moreover, in the

proposed method, we assume that the covariate is normally distributed.. It would be neces-

sary to discuss how sensible the results from the proposed method are with respect to this

assumption. Finally, we only consider models for estimating one interaction, but of course in

practice multiple interactions might be of interest. Nonetheless, where the assumed criteria

a,re considered plausible or worth consideration in a sensitivity analysis, the proposed method

is a promising method for meta-analysts faced with combining IPD and AD.

Meta-analysis based on simulated IPD

The SIPD method proposed ofiers a novel framework for meta-analysis, and is also flexible

enough to estimate the treatment-covariate interaction whilst sepa,rating across-trial and
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within-trial efiects because it involves the scheme of ma,rginalising the missing IPD. Through

the application to the hypertension data, we demonstrated that the SIPD method provided

fesults for the within-trial interaction closer to those from the full IPD analysis than the

existing method by Riley et al. (2008). The most beneficial results were given for the cases

when the number of trials providing IPD was small or the proportion of patients with available

IPD was low. In such situations, the collected IPD trials may offer very little information

on the within-trial relationships, calsing model (2.5) to yield estimates of the within-trial

interaction with large standard errors. By contrast, the SIPD method utilises additional

information from the AD trials and, in comparison to model (2.5), can provide estimates

and sta,ndard errors closer to those from a full IPD analysis. This is particularly true when

given over 10 per cent and under 40 per cent of patients in the IPD trials, as the adjusted

estimators from the SIPD method were unbiased and had smaller MSEs and standard errors

for these situations in our simulation.

However, the simulation study revealed some limitations of the SIPD method. In par-

ticular, the adjustment by using the AD trials gave a bias in estimator for the within-trial

interaction in the cases when the proportion of patients with available IPD was u.de1 1-0 per

cent. And also, in the same situations, the SIPD method suffered from the conservative type

I error rates ofthe within-trial interaction effect, because the standard. errors from the SIPD

method were overestimated. However, in situations with over L0 per cent of patients in the

IPD trials, the SIPD method performed well.

' Using the SIPD enables one to apply any IPD meta-analysis approaches, and could have

a huge possibility to produce novel findings which is never provided by the existing meta-

analysis methods. Through the application to the hypertension data, we used the SIPD

method to meta-analyse patient subgroups within each trial identified age of patients. The

estimates of the within-trial interaction and its standard errors for each patient subgroup

could be utilised for a flexible trial design. To seek and find the further potential benefits of

using the SIPD will be discussed as a future problem.
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Appendices

Appendix A

The difficulty of using (3.16) is to integrate the density over a restricted sample space. Tsiatis

(2006) gave a general calculation to solve such problems. We here brief the Tsiatis's (2006)

approach, and describe how to integrate the normal density over the sample space that a

sample mean and variance are fixed. This calculation follows a discussion by Pullin (1979)

which proposed a method for generating random samples from a normal distribution with

known sample mean and variance.

Let X: (Xr, ...,Xx) be I( random va,riables, and. assume there exists a dimensional-

reduction transformation h(X), that is a K'-dimensional variable (K' <,I(). Also, assume

there exists a (K -K')-dimensional variable 9(X) that

X <+ {h(X),g(X)}

is one-to-one for all h(x).Let /(x) and /(h(x),g(x)) be the density of X and (h(x),s(x))

respectively. Consider random samples of X, fr - (rb...,rK), and suppose that .K'-

dimensional summa,ry statistics, h(r), arc only available. Then, an integration of J(X) over

a sample space with fixed D(r) is equivalent to an integration of f (h(r),,g(X)) with respect

to s(X); i.e.

(A.1)

If we consider X as normal random variables, h(n) as a sample mean and variance of r, the

desired likelihood (3.16) can be derived by.usign the relationship (A.1).

Let n1r... tfrK be independent random samples from a normal distribution with mean p

and variance o2. The joint distribution of (r1, . . . ,rk) is given by

d,F(r,i' ..r *x) : #*"rl-#ior- r,'] d'rr, "',nK'

Ior,,r r"ro" : I y P14,sT))d's(x)'
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We flrst consider the ibllowing Helllnert's transformation:

鷹みき。た一Kふ

IT     を鶴「″+1-りηもι=ム…,κ、
The inverse of(A。2)is readily 9btained as

″1=芸レ勇二― 紗],
a=η_+ [κ +々→%―

“
→ψ統」,i=二…,κ

Using (A.3), a known result is led as

dF(au...''--\- 1 |- r 1^ 5 \1
,ax) : @Fn.p l-rp lr? 

* 
Dtrr)ldau...,dax 

(A.4)

and

d,: F+ +, ", 
: *irrr\/K F-

Then, Att. . ., 916 independently follow a normal distribution with mean zero and variance

o2. We now consider a transformation of yt,. . . ,AK which follow the normal distribution as

follows:

″し,…っ姦)∝
"り

に_ッ2■ [~嘉左滅|のいっ続・

(A.2)

(A.3)

(A.5)

The solution requires slightly difierent treatment by whether .fi( is odd or even. Now let

rt:(K-L)/2+€

where {:0 if K is odd and { :Ll2 if .fif is even, and introduce the set of transformations

Azm: J9* cosurz (A.6)

Uzm+t : \/e* sin u*, rn : Lr. . . ,rl - 2€

where 0 1u* 12tr for all m.If 1( is od.d, we use (4'.6) directly. If not, we must add

yx : Lt/e^ (A.7)

to (4.6) with equal probability L/2 for the * and -. Substituting (4.6) and (A.7) into (A.5),

we have

f r n ln-zt
d,F(ey...,an,t/Lt:.. ru,t-2t)o( exn | -' S - | I d,etd,vtle;r/zd"r1zt (A.8)

l, '"' #-* J ,'=,



βπ=Ksし続Π(1-物),m=1,… ,η -1,
J=1

^E: €q: Kso lle = 2il.
J=L 

.

where each of the zrn, rn : I,. .. ,rl - 1-, is located in an interval (0,1). The Jacobian of this

transformation is given by

while the sample variance is given by

' s2= 
1g

'fr k"*
Finally, we introduce a transformation of e1,...,e, into (s2rztr...rzrt-t) a's

|  |=鴫
憚Π。一わ"・
′=1

(σ
2)K/2eXpl_J::{(・ Tμ

)2_+s2,1.

(A.9)

(A.10)

(A.11)

Substituting(A.10)and(A.11)intO(A.8)and(A.9),IVe have

dF(s2,zl,…・,物-1,νl,・ …,%-2ξ )∝

ゆ F二
り
,Xp卜寡 ]“

め Π  
αtt Π に一づ

くれ十η+⇒d物.に ■幼
π =l   π =1                 .

Therefore,iom(A.4)and(A.12),the dellsity of(μ ,σ
2)is giVen as follows except for terms

ullrelated to(μ ,σ
2):

(A`13)

By using (A.13) in the context of the continuous meta-analysis data, we obtain (3.16):

Appendix B

In Step (2) of the SlPD-method, the uncollected IPD must be drawn from the conditional dis-

tribution given available AD; however, the density of this conditional distribution is difficult

to be expressed exactly. . This is associated with some issues on the conditional distribu-

tion given the sufficient statistics, discussed by Cheng (1984), Engen and Lillegard (1997),

Lindqvist and Taraldsen (2005). They gave general formula to calculate the conditional ex-

pectation based on the conditional distribution given the sfficient statistics. Especially, an

issue of sampling from the conditional distributions were considered. We here brief this ap-

proach, proposed by Lindqvist and Taraldsen (2005), for a simple case of univariate normal
'

distribution.
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No■,let X=(Xl,…・,Xκ )denOte randOm variables following a normal distribution wtth

IIlean μ and varianCe σ
2.Here,T=(X,Sx)iS the suttcient statistics for 

θ =(μ ,σ),Where

ヌ=η-lΣ鷹1及 and錢 =(K-1)~lΣ鷹1(為 ―X)2.Let y=lyl,… "妊)dellote
random variables following standard normal distribution,and two functions of χ and τ are

deined by

χ(磁 9)

7(鴫θ
)

(μ +σ碗 ,・ :・ ,μ tt σyKl,

い+σび,σ Sび ),

(B・ 1)

(B。 2)

(B。4)

where′ and tt stand br the mean and the variallce similarけ deined toア and銭 .The乳

there exists unique χ and 7 SO that the joint distribution of(χ (耽θ),7(耽θ))iS equivabnt

to those of(X,T)under the parameter θ.This mealls that,for given t=(曇 ,S″ )andび ,

θ≡θ(仏 t).in WhiCh τ(仏 θ)iS held is uniquely determilled as follows.

Thus, the random variable following the conditional distribution of X given ? : f is provided

as follows.

α耽の〒o(らの,∝軌→)=(″―島Sc,島 Sc)。

珈 曖動=←+7…う+7→・

鉤二←+望なテニSc・・・・9岳+7→・

(B。 3)

It is easily shown that the probability distribution of. Xl is actually equivalent to the con-

ditional distribution of X given T : t. Finally, sampling procedure from the conditional

distribution give the mean and the variance is as follows: (i) generate random numbers

u: (ut,.. . ,uK) of t/, (ii) substituting u and t to equation (A.3), we get
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