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Abstract

Faithful distribution of photonic entangled states among distantly located parties is one of the
important issues in the field of quantum communication. Embedding the quantum states into
decoherence-free subspace (DFS) consisting of a number of photons is considered to be one of the
promising schemes to achieve this task. So far several schemes have been proposed and experimen-
tally demonstrated for quantum communication. The photon loss in the quantum channel, however,
seriously degrades the transmission rate of quantum states. For example, when the transmittance
of one photon through the channel is T and the number of photons to build the DFS is two, the
transmission rate of a signal quantum state is proportional to T2,

Recently, in order to boost up the efficiency of the DF'S, a new entanglement sharing protocol has
proposed and experimentally demonstrated. The success probability of this scheme is proportional
to T, in spite of a two-photon DFS. The key idea of this scheme is the use of an ancillary photon
from a weak coherent light pulse counter-propagating through the channels to build the two photon
DFS. This scheme is, however, robust against only a phase noise channel.

In this thesis, we propose an entanglement distribution scheme which is robust against not only
a phase noise but also a general type of the channel noise and the transmission rate is proportional

to T..
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Chapter 1

Introduction

Quantum mechanical world offers strange behavior, which is not easy to understand from the classical
viewpoint. The cat which is in the superposition state of the living and death was introduced by
Schrédinger to show the strangeness of the quantum mechanics [1]. The strange nature of quantum
world even bothered a famous physical scientist A. Einstein and his colleagues and they criticized
the quantum mechanics using an example of the specific quantum state, which is called EPR state
or entangled state [2]. About 30 years later from the EPR paper, an interesting inequality which
shows the borderline between the classical world and the quantum world was proposed by J. S.
Bell [3]. This inequality, which is called Bell’s inequality, is a simple one which makes classically
plausible assumptions - locality and reality. A generalized inequality of Bell’s inequality, which is
called CHSH inequality, was also proposed by J. F. Clauser, M. A. Horne, A. Shimony, and R. A.
Holt [4]. The violation of Bell’s inequality is presented using entangled state which is used to show
the contradiction of the quantum mechanics. Ironically, in fact, the violation of Bell’s inequality
was confirmed experimentally by A. Aspect et al {5]. This means that, whether we like it or not, all
the things that happens in the real world are not explained by classical language only.

Quantum mechanics has brought out many facts what happen in the world. One of the example
of the curious but incomprehensible phenomenon which was explained by the quantum mechanics
is the double-slit experiment. In this experiment, in spite of the emission of the single particle, the
interference pattern appears if the trials are repeated. To understand the result of this experiment,
we have to accept the fact that such a particle cannot be treated just as a usual classical particle. We
have to accept the dual nature - wave nature and particulate behavior. Other than that, for example,
the discrete energy levels of the hydrogen atom is explained by using the quantum mechanics. As
seen above, quantum mechanics has successfully explained the phenomena of nature.

Quantum mechanics has mainly developed in the field of elementary particle physics, cosmology,



and condensed matter physics. Recently, a new attempt to understand the information science by
physics has been done. This area is, in a broad sense, called quantum information [6]. A basic idea
of the quantum computing machine (quantum Turing machine), which is one of the biggest topic of
quantum information, was first proposed by D. Deutsch [7]. In his idea, the bits is not treated as a
classical bits which have the fixed values, but as the superposition of the bits. This quantum version
of bit is called qubit. The basic idea of the quantum Turing machine is that during the calculation,
the parallel computation by use of the superposition states of the bits is performed. He showed that
arbitrary quantum circuits are simulated by this quantum Turing machine. At that time, however,
quantum Turing machine was just a toy gedanken.

In 1994, P. W. Shor proposed a sensational quantum algorithm which can factor a big number in
a polynomial time [8]. This implies that if the quantum computing machine is realized, the public
key cryptosystem, which is now used all over the world, would break down. Since then, quantum
information has got a lot of attention. Other than that, a useful quantum data search algorithm
was proposed by Grover [9]. They showed the potentiality of quantum computing machine.

Nowadays, quantum information became an established area of physics and has a wide variety
of research topics. Among them, quantum communication is one of the important topic. A big
challenge of the quantum communication is to diffuse the use of quantum networks around the
world as well as the present networks [10]. The first step of quantum networks is to distribute
entangled qubits between two users and then expand to the multi-party entangled system such as
W states [11, 12, 13, 14] or GHZ [15, 16] states. A short-range to a long-range entangled system
is also an important element. This can be realized using well known quantum repeater protocol
[17, 18, 19, 20, 21], which repeats the entanglement generation and entanglement swapping [22]
using repeaters with quantum memories. In order to implement quantum information processing
such as quantum teleportation [23], entanglement based quantum key distribution (QKD) [24, 25, 26]
and quantum computation [27, 28] between two-parity Alice (sender of the signal state) and Bob
(receiver of the signal state), they have to share entangled pair in advance. Since they cannot share
entangled pair by using only local operations and classical communications (LOCC), Alice has to
prepare it and send a half of entangled pair. In the entanglement sharing, the photons are best
suited candidate of the qubits.

The signal photon is sent from Alice to Bob through an optical fiber, however, there are annoying
obstacles during the transmission of the photon. The quantum state is naive and fragile, and it is
vulnerable to the channel noise. This cause the breaking of the initial entangled state which Alice
prepared, and this makes quantum information processing hard to implement. The typical kind of
the channel noises are the phase noise and the polarization rotation which come from the birefringent
effect of the channel. The difference of the refractive indices depending on the crystal axes cause the

birefringence. Protecting the quantum state from the channel noise is important issues. Roughly



speaking, there are two effective ways to circumvent the degradation of the quantum states. One
possible way is quantum error correction (QEC) and the other is to use the decoherence-free subspace
(DFS).

The first candidate, QEC, is to encode the qubits into error correcting codes, which are well
designed error correctable codes, e.g., CSS code employing 7 qubits. Alice encodes qubits into this
code and sends all of them. After receiving these qubits, Bob implements the error correction and
decodes back to the initial state. In this case, however, the distribution efficiency is O(T7), since
seven qubits are required to construct CSS code, and all the qubits has to be delivered. Here T
represents the transmittance of the channel. This idea is unsuited to distribution of the quantum
state.

The second promising candidate is the use of the noiseless subspace, called decoherence-free
subspace (DFS) [29, 30]. The DFS is a part of the Hilbert space and qubits are encoded within
the space spanned by this subspace. Compared to the former scheme, less qubits are needed and
the distribution efficiency is high. Another advantage of this scheme is the unnecessity of the active
controls. Alice just sends the signal photon with the signal photon. The ancillary photon helps to
construct the such a noiseless subspace by expanding Hilbert space. After receiving the photons, all
Bob has to do is to decode back to the initial state. DFS is a powerful tool and this idea is used
not only in the quantum communication but also in many situations [31, 32, 33, 34, 35].

This thesis is mainly focused on entanglement distribution schemes based on DFS. Until now,
in quantum communication, many efforts have been made theoretically and experimentally [36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46]. With respect to the single qubit distribution and entanglement
distribution, the comparison of the robustness and the efficiency of the protocols are shown in Table
1. As shown, our protocol shows the best performance.

The organization of this thesis is as follows:
Chapter 2: Polarization state transformation in an optical fiber

In this chapter, we examine the polarization-state transformation in birefringent media using
Jones method. The birefringent media are the model of the optical fiber that is widely used as
the communication channel. More importantly, we give a useful relation of the birefringent media
for the forward-propagating and backward-propagating photon. This relation is used in our newly

proposed entanglement distribution protocol.
Chapter 3: Quantum communication based on the DFS

We review faithful single qubit distribution among the distantly separated parties. This is a
significant task for the quantum communication and still central theme in this area. In this chapter,

we use the DFS which is useful noise-suppressing scheme against the fluctuations of the transmission



Scheme Phase noise General noise Efficiency

M. Bourennane et. al. o o T4
T. Yamamoto et. al. o o T2
R. Ikuta et. al. o x T
This thesis ° o T

Table 1.1: Comparison of the robustness and the efficiency between previous schemes and our

scheme,

channel. We show that the signal photon with an ancillary photon enables us to distribute an
arbitrary single qubit state under the collective phase noise. Then we show that by using additional
transmission lines, it becomes possible to overcome a general type of the channel noise. This scheme

is easily generalize to entanglement distribution scheme.

Chapter 4: Entanglement distribution protocol with counter-propagating
photons

In the conventional protocols, all the photons forming DFS, i.e., the signal and the ancillary
photons have to delivered to the receiver’s side. This restriction fatally decreases the transmission
rate of the scheme. The success probability of the DFS schemes which are introduced in chapter 3
is proportional to 72. This means that when T = 0.01, the success probability becomes 10~4.

In this chapter, we introduce an efficient entanglement distribution protocol which can achieve
the success probability to be proportional to T. An essential idea is to use a weak coherent light
pulse as an ancillary photon from the receiver of the signal photon to the sender. This idea shed

light on a new entanglement distribution scheme and is taken in the scheme proposed in chapter 5.

Chapter 5: Entanglement distribution protocol over general collective
noise with counter-propagating photons

We have introduced an efficient entanglement distribution scheme in chapter 4. The robustness

in this scheme is assumed only the phase noise. In general, however, the polarization rotations exist



during the transmission.

In this chapter, we propose a new entanglement distribution protocol which is robust against not
only a phase noise but also a general noise. This scheme is also efficient one that can achieve the
success probability to be proportional to T. At the end of this chapter, we discuss the application
range of the counter-propagating DFS protocols. Is it possible to apply the counter-propagating

DFS schemes to all kind of the transmission channel? We answer this question.



Chapter 2

Polarization-state transformation

in an optical fiber

2.1 Polarization-state transformation in the lossless media

2.1.1 Definitions

In order to analyze the polarization-state transformation in an optical fiber, we use Jones calculation
method, which enables us to calculate the output state of the photon if the input state and the
transformation matrix of the optical fiber are given. The first thing which we have to do is to clarify
the definition of the polarization of the photons for which avoid the unwanted confusion of the
polarization state during the transmission of the fiber. First we introduce the coordinate systems
used in this paper to describe the polarization states for forward-propagation (Alice to Bob) and
backward-propagating (Bob to Alice) photons. Our definitions of the polarization-state used in this

paper are as follows:

o We assign two right-handed coordinate systems xyz and z'y'z’, which are used for forward-

and backward-propagating photons, respectively as shown in Fig. 2.1.

e The forward-propagating photons travel along z axis and the backward-propagating photons
travel along 2’ axis. We choose y and 3’ axes to be in the same direction, while = and z’ axes

to be in the opposite directions.

o A linearly polarized state of a photon with electric field vector along z axis and y axis is
represented by |z) and |y), respectively as shown in Fig. 2.2. The relative phase between |z)

and |y) is chosen such that cos ¢|z) + sin|y) represents the state linearly polarized in the



Bob

Figure 2.1: Coordinate systems for the forward propagation (zyz) and the backward propagation
(x'y'z"). Photons propagate along z (2') axis. A birefringent element is located with its surface

perpendicular to the z (2') axis.

direction with angle ¢ from x axis. When ¢ = 7/4 and —n /4, the states are represented by

|D) and | D), respectively.

e Using the matrix form, the polarizations are defied as follows.

1 0
|$>= 0 3 |y>= 1

1 - 1 i
D)= 1] D)=, (2.1)
=", sty [

V2 \i V2 \ -
Also the matrices of the polarizers are shown in Fig. 2.3, which is used later.

In quantum communication, informations are encoded into polarization of the photons and they
are transmitted using communication channels, usually optical fibers. However, the polarizations
are changed during the transmission and initial informations are lost at the receiver’s side. Thus,
analyzing the changes during the fibers are important. The powerful tool for analyzing the behavior

of the polarization is systematically studied by Jones [47, 48]. Using his calculation method, the
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Figure 2.2: Illustration of the polarization states. The propagation direction of the photon is set to
+z. The polarization is determined by the observer who faces to —z. (a) The electric field vector of
H polarized state is parallel to z axis and V polarize state is parallel to y axis. (b) D polarized state
is just between z and y axes and D polarized photon is just between —z and y axes. (c) The electric
field of the right-circular polarization is rotated clockwise direction and left-circular polarization is

rotated counterclockwise direction.

polarization-state transformations are analyzed.
The media which compose the optical fiber are assumed to have two different crystal axes. These
axes are called the slow axis and the fast axis, corresponding to the difference of the refraction indices.

Because of this, photons experience the different phases during the traveling the media.



Polarizers Jones Matrices

cos’@  cos@siné
cos@sind  sin*@

Figure 2.3: The matrices of the polarizers.



2.1.2 Polarization-state transformation in a lossless birefringent element

The aim of this subsection is to analyze the polarization-state transformation in an optical fiber.
At first, for simplicity, we analyze the case of one birefringent element. Here we assume a lossless
birefringent element. Later we treat a more general case.

A single photon polarization state can be written as

) = Valz) + Vyly)

= (2.2)

where V, and V,, are complex numbers satisfying |V;|2 + |Vy|> = 1. The second line shows the
corresponding vector representation of the state, which is known as Jones vector {47, 48]. The slow
and fast axis of a birefringent element is represented by s and f, respectively, as shown in Fig. 2.1.
The angle between y axis and f axis is 6, where the positive rotation direction is defined to be from
positive x (z') axis to positive y (y') axis. The polarization state along s and f axis is represented
as |s) and |f), respectively. We first describe the transformation of the polarization state of the
forward propagating photon. In this case, we use zyz coordinate system to describe the polarization

states. As usual, the transformation of the basis from {|z),|y)} to {|s),|f)} is described as

V, cosf siné Ve
= (2.3)

b

Vi —sinf cosé Vy

where V; and V; are the coefficients of the |s) and |f), respectively and satisfy [V|? + [V|? = 1.

Here, we define
0 in @
R(O) = cos sin . (2.4)
—sinf cosf

After passing through the birefringent element, the state is altered by |s) — e7*®|s) and |f) — €'?|f)

and described as

Vi e 0 Vs
= _ . (2.5)
|4 0 ) \Vs
V; and V] are the components of |x) and |y), and we define the phase shift matrix
e 0
W(¢) = ] (2.6)
0 e

Performing the basis transformation from {[s),|f}} to {|z), |y)} by the rotation matrix R(—6), we

obtain

) |7 cos® —sinf\ [V
Vy’ sinf cos@ V;

10



Thus the state after passing through the birefringent element is described as
') = Vilz) + Vyly). (2.8)

The overall transformation from initial to final state is described by

U =U(9,¢)
—R(-O)W($)R(6)
_ [e7cos? 0 + ¢ sin? 0 —isin ¢sin(26) (2.9)
—isin ¢sin(26) e~ sin? 6 + ¥ cos? 6 ) .

where U is a unitary matrix which satisfies UTU =1 [48].

2.1.3 Examples of the polarization-state transformation 1

We have considered the polarization-state transformation in the birefringent element using Jones

calculation method. Here we apply this method to the half-wave plate and the quarter-wave plate.

A half-wave plate

The illustration of the polarization transformation in a half-wave plate is shown in Fig. 2.4. The
relative phase retardation of the half-wave plate is m, that is ¢ = m/2. We calculate the output state
of the half-wave plate by Jones calculation method. The azimuth angle of the wave plate is taken

as /4. The matrix of the half-wave plate is written as

Usja = R(=n/4)W(r/2)R(n [4)

0 —i
= ‘1. (2.10)
- 0
. . . 1 . .
When we consider the horizontally polarized state jz) = as an input state, the output state is
0
described as
U,\/zlib) =—1

= —i|y). (2.11)

The state after passing through the half-wave plate becomes the vertically polarized state. Next

1
we consider right-circular polarized state |{R) = % | as an input state. The output state is
1

11



Figure 2.4: Schematic illustration of the polarization transformation in a A\/2 wave plate (upper)

and a A/4 wave plate (lower). The angle between the fast axis and y axis is 7 /4.

described as

= |L). (2.12)
The output state becomes left-circular polarized state. Note that in case of the circularly polarized
state, |R) is transformed into |L) and vice versa, regardless of the azimuth angle.
A quarter-wave plate

In the similar way, we consider the polarization-state transformation in the quarter-wave plate as
shown in Fig. 2.4 (lower). The relative phase retardation of the quarter-wave plate is 7/2, that is
¢ = w/4. The azimuth angle of the wave plate is taken as m/4. The matrix of the quarter-wave

plate is written as
Us/a = R(=m/4)W (7 /4)R(m/4)

(' 7). (2.13)

12



1
We consider the horizontally polarized state |z) = as an input state. Using this expression,
0

the output state is described as

=|L). | (2.14)

The state after passing through the quarter-wave plate is left-circular polarized state. Next we

1
consider right-circular polarized state |R) = % | as an input state. In this case, the output

i
state is described as

Ux/alR) = % (1)
= |a). (2.15)

The output state becomes horizontally polarized state. We can easily derive the polarization of the

output state after passing through the birefringent element using Jones calculation method.

2.2 Polarization-state transformation in a lossless birefrin-

gent elements for the backward-propagating photon

2.2.1 The matrix of the birefringent element for the backward-propagating
photon

Let ué consider the birefringent effect for the backward propagating photon [49, 50]. In this case, we

use 2y’z" coordinate system. Note that the angle between y’ and f axis is —, as shown Fig. 2.5,

while the phase shift matrix is the same. Thus the overall transformation of the photon transmitting

from Bob to Alice is described as
U =00,9)
— R(O)W(9)R(~0)

_ [ecos? @+ e sin® 6 isin ¢ sin(26) (2.16)
isin ¢ sin(26) e"*sin? 6 + e cos?6 | '

In this thesis ﬁ denotes the transformation matrix of the lossless birefringent element for the

backward propagating photon described by z'y’2’ coordinate system. Using R(#) = ZR(6)TZ and

13



Figure 2.5: The inclination of the f axis in zyz and z'y’z’ coordinate systems. The angle between

the f axis and the y axis is 6 in zyz coordinate system, and —0 in z’y’z’ coordinate system.

W(¢) = ZW(¢)TZ, an important relation of the transformations between the forward and the

backward propagating photon is found as

U =207z, (2.17)

0
where Z is a Pauli matrix written as Z = . Note that, the selection of the Pauli matrix
0 -1

in (2.17) is changed by the selection of the coordinate system, which is discussed in the Appendix.

2.2.2 Examples of the polarization-state transformation 2

Let us consider some cases of the photon which is propagating toward the backward direction in
a birefringent element using z'y’z’ coordinate system. In the previous section, we considered the
polarization-state transformation in the half-wave plate and the quarter-wave plate for forward
propagating photon. In turn, we consider the case where the photon propagates the backward

direction, that is to say, the photon enters the birefringent element from the opposite direction.

A half-wave plate

When the |z) state enter the half-wave plate to the forward (+2z) direction, the output state become
—i|y), up to the global phase. Here we consider the case where —i|y) state enter the half-wave plate
from the opposite side as shown in Fig. 2.6(a). The matrix of the half-wave plate for the backward

propagation is written as

Uy /2 = R(x/4)W (r/2)R(~m/4)

=l © 21, (2.18)

14



(b)

Figure 2.6: Schematic illustration of the polarization transformation in (a) a A/2 wave plate and
(b) a A/4 wave plate. The angle between the fast axis and y axis is 7/4. The photon propagates

toward z/(—z) direction.
The polarization state after passing through the element is described as
T al=ily)) =

= |a): (2.19)

The state after passing through the half-wave plate is the horizontally polarized state!. Next we

consider left-circular polarized state |L) as an input state. The output state is described as

ﬁx/2|L) = % j
— |R). (2.20)

The output state becomes right-circular polarized state.

A quarter-wave plate

In the similar way, we consider the polarization-state transformation in the quarter-wave plate for

the backward-propagating photon as shown in Fig. 2.6(b). The matrix of the quarter-wave plate for

1The expression of Eq. (2.19) is the time-reversed version of expression Eq. (2.11). See the next section.

15



the backward propagation is written as
U4 = R(x/OW (x/4)R(~7/4)
= . (2.21)

We consider the left-circular polarized state |L) as an input state. The output state is described as

U)\/4IL>

|z). (2.22)

The state after passing through the quarter-wave plate from the opposite side become horizontally
polarized state. Next we consider right-circular polarized state |z) as an input state. In this case,

the output state is described as

ﬁ,\/4|iﬂ) = % 1
— |R). (2.23)

The output state becomes right-circular polarized state |R).

Optical isolator based on a birefringent element

The optical devise which prevents the backscattered light is called the optical isolator. The schematic
picture of the optical isolator based on a birefringent element is shown in Fig. 2.7 (a). The input
light is converted into horizontally-polarized light by the linear polarizer, and passes through the
quarter-wave plate. After passing the quarter-wave plate, the light is reflected by the mirror. Then
the light enters from the opposite side of the quarter-wave plate. At this time, a new coordinate
system is introduced so as to the traveling direction of the light is set to +2’. The matrix of the

isolator is calculated as follows:

Uisolator = ﬁpv/\/4UMU)\/4Up
=0. (2.24)
The light coming back is blocked completely by the polarizer. Thus the whole system described in
Fig. 2.7(a) works as the optical isolator. U, (‘(7,,) represents the matrix of the polarizer which passes

the horizontally-polarized light for forward (backward) propagation, and U 4 (ﬁ,\ /4) represents

the matrix of the quarter-wave plate which is rotated by /4 from the horizontal axis for forward

16



Figure 2.7: Polarization transformation by a A/4 wave plate and the reflection by (a) a mirror (b)
two mirrors. (a) The light beam coming back after one or odd numbers of reflections are blocked
by the linear polarizer, which acts as an isolator. (b) The light beam is not blocked by the linear
polarizer and the scheme is not able to isolate the source from the reflected light. Note that the

effect of even numbers of mirror reflections equals to the identity operation.

(backward) propagation. The matrix of the polarizer along x axis is represented as U, = ﬁp =
10

0 0
as

. We have used the relation (2.17) and the matrix of the mirror Uy, 2, which is represented

=-2Z (2.25)

Next we consider the case where the light is reflected by two mirrors as shown in Fig. 2.7(b). In

this case, the matrix representing the whole system is written as

0= Full s nlluBulsnls

=4 9 (2.26)

0 0

2The representation of the mirror is related to the two coordinate systems chosen. This is explained in Appendix.
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Figure 2.8: A series of birefringent elements as a model of the optical fiber. he angle between f axis

and y axis of the jth element is represented by ;.

Here the reflected light appears in the input port. These two systems show different behavior by
changing the number of the mirrors®. As discussed above, Jones calculation method help us to find
out the output state after passing through the optical media and optical devices. When the photon
propagates two opposite direction, the state transformation is easily calculated using zyz and 2'Y’a’

coordinate systems.

2.2.3 The matrix of the optical fiber

We have considered the matrix of a birefringent element for the forward-propagating photon and the
backward-propagating photon and derived the relation Eq. (2.17). We now consider more general
case, i.e., N birefringent elements as shown Fig. 2.8. The overall matrix of N birefringent elements

for the forward propagating photon is described as

O = UigUpsy <=+ Uy =<+ Dl (2.27)

3The effect of the mirror with odd number reflection is —Z, while even number of reflection is (—Z)? = I.
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The subscripts represent jth birefringent element. The corresponding unitary transformation for

the backward-propagating photon is written as
T=0.0,-0, Un.Un (2.28)

Because of the relation (2.17), the following equation holds:

T=0,0, U, UniUy
= Z(UNUN_1---U; - U0 Z
=zUTz. (2.29)

This shows that the relation (2.17) is satisfied in N case. This relation is used in our entangle-
ment distribution protocol since counter-propagating two photons are used in the protocol, which

is discussed in Chap. 5.

2.3 Backward propagation and the time-reversal symmetry

In this subsection, we discuss the relation between backward-propagating photon and time-reversed

photon. First of all, we briefly review the time-reversal [51].

2.3.1 Antiunitary operator

We define the antiunitary operator 6.

( Definition. ~
The transformation

o) = |@) = bla), [B) — |B) = 6]B) (2.30)

is said to be antiunitary if equations

(Bla) = (Bla)T, (2.31a)
8(ci]a) + c2|B)) = cibla) + c30(8) (2.31b)

are satisfied, for any {|«), |8)} and {c1, c2}.
_/

The relation (2.31b) alone defines an antilinear operator. Let us consider the transformation G
satisfying
) S |&). (2.32)
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The transformations such as spacial inversion and translational operation are examples of them.

After the transformation, the absolute value of the inner product, i.e.,

[(Bla)| = |(Bley) (2.33)

should be preserved. Concerning this condition, the following theorem (Wigner’s theorem) is derived.

r Wigner’s theorem ~
Consider the transformation G as following:
o) S |a). (2.34)
The condition satisfying (2.33) is either unitarity that satisfies
(Bla) = (UB|IUa) = (Blor) (2.35)
and
Ulerla) + e2|8)) = erUle) + c2U|B), (2.36)
or antiunitarity that satisfies
(Bla) = (0816c) = (alB) = (Bla)" (2.37)
and
O(crle) + c218)) = cifla) + c3618). (2.38)
- J

We now claim that an antiunitary operator can be written as
8 =UK, (2.39)

where U/ is a unitary operator and K is the complex-conjugate operator that performs the complex
conjugate of any coefficients of states. Before checking (2.31), let us examine the property of the K

operator. Suppose we have a state multiplied by a complex number ¢. Then we have
Kcla) = " Kla). (2.40)

Let us consider the case where |a) is expanded in terms of base kets {|a’}}. Under the action K, we
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have
la) = 3" la'Y(ala) B @) = Y (a|e)*K]a')
= (a'|a)"|a). (2.41)

This shows that K is antilinear. Since the inner product of K|a) and K|3) satisfies (a|8)*, K is an
antiunitary operator. Therefore, we have '
O(cila) + c2|8)) = UK (c1]a) + c2|B))
UK |a) + UK|B)
= ci0la) + c3016)), (2.42)
@) =D la'Na'la) 5 (@) = D _(a'le)"UK]d')

= (d|a)"Uld’)

and

a’

1B) = > (@18yuUle’y E (B = Y (@'I8)(a'lu'. (243)
These properties clearly show

(Blay =YY (a"|B)a" U Ula'){ald')

a” a

= (ala')(d|8) = (alB)

= (Bla)*. (2.44)

Thus # = UK is an antiunitary operator.

2.3.2 Time-reversal operator

In many situations of physics, the time-reversal phenomena is discussed. The arrow of time is one
way, however, in many cases, we can not discriminate whether it is real-time event or time-reverse
version of it. Imagine the case where you are locking the film. In the film, the ball with parabolic
motion is taken*. Is it possible for you to distinguish whether you are looking the film with right
motion or reversed motion? The answer is no, since both of the motions in the film satisfies the
equation of motion, i.e, both of the motions are physically correct. More formally, if x(¢) is a solution
to

mx = -VV(x), (2.45)

4In this situation, the effect of the air resistance is neglected.
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(a)

(b)

-P lt=0

Reverse

Figure 2.9: Illustration of the trajectory of the classical particle. (a) The time-reversal operation is
applied at time ¢ = 0, (b) then the particle is reversed its direction. The particle which is applied

the operation traces the same trajectory in the opposite direction.

then x(—t) is also a possible solution in the same force field derivable from V. In general, if the
system has the time-reversal symmetry, we can not distinguish whether time flows toward the future
or the past. The time-reversal operator is such a operator that reverse the time toward the past.

Let us denote the time-reversal operator by 7, which is an antiunitary operator. Consider
la) = Tla), (2.46)

where |a) is the quantum state and 7T|«) is the time-reversed state of |a). If the |a) is a momentum
eigenstate |p), we expect T|p) to be —|p) up to a possible phase.

We now consider the property of the time-reversal operator by looking at the evolution of the
time-reversed state. Consider a physical system represented by |«a) at ¢ = 0. Then at a slightly later

time ¢t = §t, the system is found in
lo; t=4dt) = (1 - 1—7{11&)[(1), (2.47)

where H is the Hamiltonian that characterize the time evolution. Suppose we apply 7 at t = 0, and

then let the system evolves under the influence of the Hamiltonian H. We then have at 6t

(1- %615)7'[(1). (2.48)
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If the motion obeys symmetry under time reversal, we expect the preceding state to be the same as

Tla; t = —6t) (2.49)
that is, first consider a state at earlier time ¢ = —4t, and then reverse the motion; see Fig. 2.10.
Mathematically,
i H i H .
1- %&)T[a) =T(1- %(—&))m). (2.50)

If the relation is satisfied by any state, we must have
—iHT|) =TiH|"), (2.51)

where |-) means any state.
We now argue that 7 cannot be unitary if the motion of time reversal is to make sense. Suppose
T were unitary. It would then be legitimate to cancel the i’s in (2.51), and we would have the

operator equation

—~HT =TH. (2.52)

Consider an energy eigen state |n) with energy eigenvalue E,. The corresponding time-reversed

state would be T|n), and we would
HT|n) = —TH|n) = (—E,)T|n). (2.53)

This equation says that 7|n) is an eigen state of the Hamiltonian with energy eigenvalue —E,,
however this eigen value should be positive. Consider the free-particle Hamiltonian. We expect p

to change the sign but not p2, yet (2.52) would imply that

2 _p?
T_lp_,]___p

= . 2.54
2m 2m ( )

All these arguments suggest that if time reversal is to be sensitive, 7 should be antiunitary. In this

case the right-hand side of (2.51) becomes
TiH|-) = —iTH|") (2.55)
by anti-linear property. Now at last we can cancel #’s in (2.51) leading to
TH=HT. (2.56)

This relation expresses the fundamental property of the Hamiltonian under time reversal. With
this equation the difficulties mentioned earlier [(2.52) to (2.54)] are absent, and we obtain physically

sensible results. From now on we will always take 7 to be antiunitary.
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(a) Momentum Momentum
after reversal before reversal

{b)

Momentum
before reversal

Momentum
after reversal

Figure 2.10: Schematic drawing of the motion before and after time reversal at time ¢t = 0 and
t = +6t. (a) Time is reversed at ¢t = 0 and then the system evolves d¢. (b) Time evolves —dt then
time is reversed. If the time-reversal symmetry holds, the motion in (a) and (b) should correspond,
i.e., Eq. (2.50) holds.

2.3.3 Relation between backward propagation and the time-reversal sym-

metry

Here we suppose that @) is the input state and |¢) is the output state after passing through the

birefringent media. Then the relation

l¥) = Ulé) (2.57)

holds. U is a unitary matrix for the birefringent media. Next let us consider the situation when
the time is reversed®. The output photon will retrace the birefringent media. In this case, the
output state with the time-reversal operator becomes the input state which enters from the opposite

side of the birefringent media as shown in Fig. 2.11. Such a state is described by 7|vy), where T

5When the time-reversal is considered, we have to suppose a lossless channel. If not, we have to permit the leak

up of the photon.
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=Ulo)

T|me reversal

¥) = TIU’

Figure 2.11: Illustration of the input-output state (red line) and time-reversed version of it (blue

line). Eq. (2.29) is derived using the time-reversal symmetry.

represents the time-reversal operator. As discussed, the time reversal operator 7 is written by the
product of a unitary operator U4 and the conjugation operator K, i.e., T = UK. In this situation,
U corresponds to the matrix —Z, which transform the coordinate system for forward propagation

into that of backward propagation®. Hereafter we define the time-reversal operator as
T=-7K. (2.58)

Then the time-reversed state 7|+) enters the birefringent media from the opposite side (right side

in Fig. 2.11) and the state after passing through the media is described as

%) = U(T)), (2.59)

where U is the matrix of the birefringent media from the opposite side. If the time-reversal symmetry
holds, |+) should correspond to 77|¢), which is time-reversed state of the input state |4). That is to

say, the relation

%) = T14)
s T|¢)=UTU|¢) (2.60)

SWhen the time is reversed, the propagation direction of the photon is also reversed. In such a case, in our

definition, 'y’ 2z’ coordinate system is introduced.
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holds. This relation leads to

U=TU'T!
=707z, (2.61)

which corresponds to (2.17)7. Interestingly, if we assume the time-reversal symmetry, the relation
for forward-propagating and backward-propagating photon is derived &.

Using simple example, let us confirm that this relation holds. As an input state, we introduce

1 -

|¢) = |z), and we consider Uy 4 = as the transformation matrix of the media. The
- 1

output state after transmitting the media becomes

|) = Unsslz)
—|L). (2.62)

Let us consider the case when the time is reversed. Operating 7 on |¢) = |L) the state becomes
T|¥) = —ZK|L) = ~|L), which is the input state entering from the opposite side. After passing
through the media, the state is described as

[9) = Orjal(~12)
= o). (2:63)

On the other hand, operating 7 on the initial input state, the state become 7|z) = —|z), which
is the same as (2.63) up to the global phase. This means that the relation (2.61) derived from the

time-reversal symmetry corresponds to the matrix for the backward propagation, i.e., U= ‘(7

2.4 Polarization-state transformation in reciprocal media

In the previous subsections, we have considered the polarization-state transformation in multiple
birefringent elements. Here we consider more general case whose optical fiber is composed a sequence
of birefringent elements with polarization dependent photon losses. In order to analyze such media,
we extend the definition of the vector representation to the case where P(V,,V,) = |V,|2+|V, |2 < 1,
such that it represents the state whose density operator is p(V, V) = (1 — P(Vy, Vy,)}|0) (0] + |¥) (]
Here |0) is the vacuum and |¢) is given by Eq. (2.2). Then, the effect of any linear passive optical

7This relation is true for the case of N birefringent elements.
8In some references, the matrix for the backward propagation is written as U = UT. In their definition, no

coordinate transformation is performed. In other word, the direction of +2z is fixed despite of the change of the

propagation direction of the photon. In such case, U equals to I, and T = K.
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component is represented by a complex matrix M satisfying Mt A < 1, which transforms the input
state p(V,Vy) to the output state p(V;, V) as
V) |
l=M]| 7). (2.64)
vy Vy
We call M a transformation matrix here and henceforth. Note that, since p(e*?V,,e'V,) =
p(Va,Vy), M and e*M represents the same physical transformation. Using such media, the po-
larization state is altered by the following phase shifts and polarization dependent photon losses
as |s) — 7,7 *|s) and |f) — v7e*®|f), where 75 and ~f are non-negative real numbers satisfying
s < 1 and 45 < 1. Here the polarization state along s and f axis is represented by |s) and |f),

respectively, where

|s) = cos 0|z) + sin 0|y}, (2.65)
and

|f) = —sinf|x) + cosby). (2.66)
Thus the phase shift matrix (2.6) is modified to

yse ¥ 0

0 et (2.67)
f

W(’st Vs qb) =

In a similar way, as discussed before, the transformation matrix M is written in the {|z), |y)} basis
as
M = R(=60)W (7s,7s, $)R(0)

_ [ s % cos? 0+ ype?sin® 6 (yse7' — ypet?) sin b cos 6 (2.68)
(7s€7*® — 7€) sinfcosf  yse ‘¥ sin® 0 + yre® cos? 9 . )

The transformation matrix for backward propagation M is derived using z'y’2’ coordinate sys-

tem, in the same manner, since the phase shift matrix (2.67) stays unchanged. This leads to

M = R(O)W (+s,7¢, 6)R(-6)

| vse7®cos? 6 + ypett sin?0  —(y5e% — y7e*®) sinf cos § (2.69)
—(vse™* — ysei?)sinfcosd  yse~ P sin® 0 + ypet? cos? § ' .

Therefore the same relation
M=2zM"Z (2.70)
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is obtained. In general, M is not a unitary matrix. The equation ZMTZ = XM1tX is satisfied
when v, = 7 = 1. It is noticed that the relation (2.70) (also (2.17)) can be represented by
M = URMTU}; (‘(7 = URUTUIE) with unitary matrix Ug, where Ur = R(a)Z and a depends on
the coordinate systems chosen [49, 50].

The above relation of the single-element transformation between forward and backward propa-
gation is easily extended to N elements in a similar way discussed before. Suppose that the overall
transformation matrix of the sequence of N birefringent elements for a forward-propagating photon
is given by

M =MyMy_y-- M- MMy, (2.71)
where M; stands for the transformation matrix of the jth birefringent element. The corresponding

transformation matrix for a backward-propagating photon is written as ,
M=MM, M. My My (2.72)

Because of the relation (2.70), the following equation holds:

M=M1M2“-Mj‘“ﬁN—1M’N
=Z(MNMn_1---M; - MaM;)TZ
=zZMTz. (2.73)

This clearly shows that the relation (2.70) is satisfied by a composite system of the birefringent
elements with polarization dependent photon losses. The relation 2.73 is used in our entanglement

distribution protocol in Chap. 5.

2.5 The universal compensator

In the previous section, we summarize the polarization state transformation by a composite birefrin-
gent element and present the relation of its transformation between forward and backward propaga-
tion through a reciprocal media. In order to see the usefulness of the relatioh (2.17), we apply it to
an explanation of the universal compensator proposed by Martinelli [52]. The universal compensator
is used for a cancellation of polarization state transformation by fluctuations in a reciprocal media,
which is the essence of Plug and Play QKD protocol [26, 53]. However widely known explanation
of the wofking principle of the protocol is done using the right-handed coordinate system for the
forward propagation and the left handed coordinate system for the backward propagation, which
leads to a confusion when we consider a manipulation of a part of composite quantum systems. On
the other hand, in the previous chapter, the coordinate systems are fixed to be right-handed for
both propagation direction. In this chapter, we reconstruct the working principle of the universal

compensator using our definition, which make the understanding easily.
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2.5.1 The universal compensator

The apparatus which is used in the universal compensator is composed of only magnetic media
which induce the Faraday rotation and a plane mirror. Before describing the Martinelli’s universal

compensator, we first review the state transformation by the Faraday rotator [48].

The Faraday mirror

The natural propagating mode in the magnetic media is circular polarization state, i.e., right-
circular |R) = %ﬂz) + ily)) and left-circular |L) = —1\/—§—(|z) — i|y)) polarized state. These circular
polarization state propagate with different phase velocity in the media In other word, the phase shift
during such media is diagonalized in the {|R),|L)} basis. This cause the Faraday rotation. The
state transformation by the Faraday rotator is described as follows: During a photon propagates
magnetic media, right-circular polarized photon and left-circular polarized photon experience the

phase shift |R) — €*F|R) and |L) — e~%#|L). Output state after transmitting the magnetic media

become
Vi) [eifr 0 V)
RI|€ _ R, (2.74)
Vi 0 e ]\

where Vg, V, V4 and V] are the components of |R) and |L). We define the phase shift matrix of

et0rF 0

the magnetic media Wr(6r) = N The basis transformation {|z), |y)} to {|R),|L)} is
e vr

written as

1 |
Vi 2\1 -i \v,

Ve
=T , (2.75)
Vy
while the reverse transformation is described as
V, V
=71 R, (2.76)
Vi Vi
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Thus the output state is written as

V/
) =T 'Wr(6r)T | *
Vy Vy
_ cosfp —sinfg Ve
sinfr cosfr Vy
Va
= R(—6F) . (2.77)
Vy

When the linearly polarized photons enter the Faraday rotator, the output photons are linearly
polarized and rotated by #z°. In the same way, we consider the Faraday rotation for backward
propagating photon. In this case, the photon is rotated by —fr on z'y’z’ coordinate system since
the direction of magnetic field is contrary to that of the backward propagating photon. The rotation
matrix for the photon is described as

cosOp sinfp

T 'Wr(-0r)T = .
—sinfp cosfp

= R(6F). (2.78)

Note that the polarization is always rotated by the same direction regardless of it’s propagation
direction. ‘
The Faraday mirror is composed of the Faraday rotator with #r = m/4 and a plain mirror.

After passing through the Faraday rotator, a photon is reflected by the mirror. The matrix of a

0
plain mirror is expressed by —Z = . After the reflection, the photon passes through the
0 1

Faraday rotator again. Eventually, the photon is rotated by —n/4. The overall transformation of

the Faraday mirror is described as

Urm = R(m/4)(-=Z)R(-7/4)

01
= = X. (2.79)
1 0

Universal compensator

We describe Martinelli’s universal compensator of a polarization state over the reciprocal media. The

universal compensator is achieved by an additional Faraday mirror at the end of the reciprocal media

91t is noticed that in our notation, R(#) means the rotation of the coordinate system counterclockwise direction.

This means that the polarization state (vector) is rotated —8 (clockwise direction).
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by using relation (2.17). A photon passing through the reciprocal media is reflected by the Faraday
mirror, and goes back to the sender through the reciprocal media. The overall transformation is

written as

Usorar = U UpmU
= (XU'X)XU
=X. (2.80)

In the second line, we have used ﬁ = ZUTZ = XUt X. The result shows that any transformation
acting on the polarization states caused by the slowly fluctuating reciprocal media is eliminated,
except for the transmittance of the photon and the effect of Faraday rotator.

At last, we consider the universal compensator against an optical fiber with polarization depen-

dent photon losses. In this case, the overall transformation is written as

Miotal = MUFMM
=(ZMTZ) XM
= (det M)X. (2.81)

The extra coefficient det M is added compared to (2.80). Using the relation (2.70) (also (2.17))
reproduce the same result shown by Martinelli and is applied to Plug and Play QKD proposed by
Muller et al. [53, 26].

Other application of the Faraday mirror - an optical isolator -

As discussed in 2.2.2; the isolator play a role of blocking the backward scattering light. In this
subsection we refocus on the isolator, which includes the magnetic media this. The structure of
the isolator is shown as follows: The input light (forward-propagating) beam passes through the
linear polarizer which get through horizontally polarized beam, then the polarization (vector) of
the light beam is rotated 7 /4 by Faraday rotator, which is made of the magnetic media as shown
in Fig. 2.12. Looking the light from the observer who faces the coming light, the light is rotated
counterclockwise direction, which is represented by R(—/4) using zyz coordinate system!®. The
45-degree light polarizer is set after the magnetic media, which passes all the beam. Next we consider
the backward-propagating light which progress the same route toward the reverse direction. This
situation can be realized by reflecting the input light using a mirror. We call this light backscattering
light. Then the back scattering light is rotated —x /4. Looking the light from another observer who

faces the mirror, the polarization (vector) of the backscattering light is rotated clockwise direction,

10Be careful of the difference between the rotation of the coordinate system and the rotation of the polarization

(vector).
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Faraday rotator

Mirror

Figure 2.12: Illustration of the optical isolator with Faraday rotation. The reflected light is absorbed
by the polarizer.

which is represented R(m/4) using x'y’z' coordinate system!!. The light after passing through the

magnetic media becomes vertically polarized light beam. The total effect of the isolator is described

as
Uisolator = (ﬁpR(ﬂ/4)UMR(—7r/4)UP
=10, (2.82)
S e 10
which means that the backscattering light is blocked completely. We have used U, = g g Uy =

and the relation ﬁp = ZUTZ.

2.6 discussion

In our definition, +2z axis is always set to the propagation direction of the photon. Thus in case
of treating photons which are counter-propagating each other, we have introduced two coordinate
systems depending on the propagation directions of the photons. However, this is not the only way
to deal such photons with. One of the idea is to use just one coordinate system regardless of the
propagation directions of the photons. In this case, we do not care the propagation direction of the
photon and zyz coordinate system is always fixed. The definition of polarization-state used here is

as follows:

LLTf the same observer sees this, the light is rotated the same direction regardless of the propagation direction.
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o Unlike our style, only one coordinate system xyz is used. The forward-propagating photon

propagates along the +z axis and the backward-propagating photon propagates toward —z.
e The polarization of the photon is defined by the observer who looks the photon coming.

e A linearly polarized state of a photon with electric field vector along x axis and y axis is
represented by |z) and |y), respectively as shown in Fig. 2.2(a). Regardless of the propagation
direction, an electric field vector just between z and y axis and just between —z and y axis

are represented by |D) and | D), respectively.

e Cautions are required for the definition of circular-polarized photon state. The electric vector
of |R) and |L) circular-polarized photon is alway rotating the same direction. Regardless of
the propagation direction, the electric vector of |R) circular-polarized state is rotating toward
+y to +x axis, while the electric vector of |L) circular-polarized state is rotating toward +y

to —z axis.

We now consider the polarization transformation in a birefringent element for forward-propagating
photon and backward propagating photon as shown in Fig. 2.13. For simplicity, we neglect the
polarization dependent photon loss. As shown, the matrix of the birefringent element for forward-

propagating photon is described as
U’ =R(-0)W(¢)R(6)

e~ cos? 0 + e'% sin® § —isin ¢sin(26)
—i sin ¢ sin(26) e*sin® 0 + ¢*® cos? @

Il

(2.83)

which is same as Eq. (2.9). Next we evaluate the matrix for backward-propagating photon. In this
notation, as shown Fig. 2.14, the angle between y and f axis is still §, since  and y axes are fixed'2.

Thus the matrix is described as

U’ =R(-0)W(¢)R(6)

e~ cos? 0 + e'? sin% 4 —isin ¢sin(26)
- _ , . (2.84)
—isin ¢ sin(26) e~ sin” § + €' cos? 6
The relation of these matrices are derived as
U’ = R(-0)W(9)R(6)

= R(6)"W(¢)" R(-6)"
= (R(-9)W(¢)R(0)"
=UT, (2.85)

12positive rotation direction is defied +z to +y.
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which is different representation from (2.17). T represents the transposition of the matrix. This
relation is easily generalized to N birefringent elements case using the same way as discussed.

The cause of the difference between (2.17) and (2.83) is connected to the choice of the coordinate
systems. In the former case, two coordinate systems are introduced and y and vy’ axes are chosen
to be the same direction. On the other hand, in the latter case, only one coordinate system is
introduced. The choice of the coordinate systems leads the different relation between forward- and

backward-propagating photon.

2.7 Summary

In conclusion, we have considered the polarization-state transformation in a birefringent element
using Jones calculation method, and moreover, it is generalized to an optical fiber which is composed
of N birefringent elements. This calculation method enables us to analyze the output state from an
optical fiber easily when the input state is given. More importantly, the relation of the birefringent
media between forward- and backward-propagating photons (2.73) is derived. With respect to the
derivation of this relation, we have used two coordinate systems depending on the propagation
direction of the photon. In order to see the usefulness of this relation, we have applied it to an
explanation of the universal compensator and its application Plug and Play QKD. The merit of
using our system is that the polarization-state is defined by the right-handed coordinate systems
despite of the propagation direction of the photons. This enables us to easily understand the
polarization transformation of photons which propagate the opposite direction and used in newly

proposed entanglement distribution scheme in Chapter 5.
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Alice

Bob

Figure 2.13: Polarization transformation of the forward- and backward-propagating photon by single

coordinate system.

(b)

Figure 2.14: Illustration of the angle between f axis and y axis. The same coordinate system is

used. The positive direction of the rotation is defined +z axis to +y axis.
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Chapter 3

Quantum communication based on

the DF'S

Faithful qubit distribution among distantly located Alice (sender) and Bob (receiver) is an important
issue in the quantum communication. However, because of the coupling with the environmental
systems, which are the causes of the channel noises, initial state is destroyed during the transmission.
One of the promising noise suppressing method to overcome such a problem is encoding qubits into
noiseless subspace, called DFS [29, 30]. The DFS is a part of the Hilbert space and qubits are
encode within the states spanned by this subspace. In this chapter, we introduce some photonic

qubit distribution protocols based on the DFS.

3.1 Introduction to the DFS based quantum communication

Logical qubits embedded in a DFS formed by multiple physical qubits is immune to a class of the
noises, which is referred to as a collective noise. We first introduce a DFS formed by two physical
qubits for a collective phase noise channel. Following the convention, hereafter we use the notation
of the basis {|H),|V)} instead of {|z), |y)}, where |H) and |V) represent the horizontally and the
vertically polarized single photon state, respectively. A phase-shift channel transforms the states as
|H) — e~ *|H) and |V} — ¢**|V). The corresponding transformation matrix is given by W(1,1, ¢).
A photon in the state a| H) + 8|V) is transformed into e~**(a|H) + ¢**¢3|V)) by the phase shift. If
the phase shift ¢ varies with time and is unknown, the state is distorted. On the other hand, when
the state is encoded into two-photon state a|HV) + S|V H) and each photon is considered to be
altered by the same phase shift represented by W (1, 1, ¢), the state is unchanged as | HV) + 8|V H).
Thus the logical qubit is protected in the two-qubit DFS spanned by the basis {| HV), |V H)} against
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Hilbert space

Figure 3.1: Schematic illustration of inclusion relation of Hilbert space and decoherece-free subspace

the collective phase noise. It is well known that the noise in the optical fiber is mainly caused by
the fluctuation of the birefringence, which varies slowly with time. Thus the DFS scheme is useful
for quantum communication over optical fibers.

In this section, we deal with two types of channels; one is a collective phase noise channel and the
other is a general collective noise channel. The transformation matrix for each photon through the
collective phase noise channel is written as W (s, vf, ¢), which includes phase shift and polarization
dependent losses. In the case of the general collective noise channel, the transformation matrix is
expressed by M. We assume the relation (2.73) for transformation matrices of those channels. Since
the optical fibers are known to be reciprocal media, such an assumption is valid in optical fiber
communications.

In the following subsections, we introduce a protocol that employs one collective phase noise
channel and one that employs two general collective noise channels [38, 44]. In all schemes described
in this section, we assume that the fluctuations in the channels are so slow that the transformation

matrices do not vary with time.

3.2 Single-qubit distribution protocol over collective phase
noise

A simple realization of the single-qubit distribution over collective phase noise based on linear optical
elements has been proposed in [38]. The procedure of the scheme is as follows: the sender Alice
is given a signal photon S in «|Hg) + B|Vs) and prepares a reference photon R in a fixed state
|Dgr) = %(UI r) + |Vr)), where the subscripts inside |-) represent signal and reference. The time

difference between the reference photon and the signal photon are separated in time by At as shown
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00
}

Parity checking

Figure 3.2: Schematic diagram of a single qubit distribution using DFS against (a) a collective
phase noise channel and (b) two general collective noise channels. Alice is given the signal photon
S and the reference photon R in the fixed state | D). The time difference between the signal and the
reference photon is At. In the diagram (b), two photons are split into channel T and channel 2 by a
PBS. The events where two photons appear together in either port 1 or port 2 are selected for the

extraction of the state protected by DFS.

in Fig. 3.2(a). After the transmission of the two photons through the channel, the state is described

as

7y (ol VRHs) + BlHRVS))

7 VsVf Rilg RVS

+onZe | HrHg) + Bv3¢**?|VRVs)]. (3.1)

The state «|VrHg) + 8| HrVs) is in the two-qubit DFS and is invariant under the collective phase
noise. The projection of the state (3.1) onto a|VgHg) + B|HrVs) and the decoding of the state to
the initial signal state are performed by linear optical party checking described in Fig. 3.3.
Parity checking measurement
As shown in Fig. 3.3, the linear optical circuits for parity checking aims at the extraction of the state

a|VrHg) + B|HrVs) followed by decoding to a|Hg) + B|Vs), which works as follows [54, 55, 56]:
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Dx
HWP: [ M o.
® —f H é" Do
5 PR ‘Hwp,  PBS:2
Output port

Figure 3.3: Linear optical implementation of the parity checking and decoding. Half wave plates
HWP; and HWP; are rotated by 7/4 and 7 /8 from the horizontal axis, respectively. The apparatus
Dx surrounded by the dotted box, which includes the photon detector D; and Do, is used for the
projection measurement on the basis {|D),|D)}. The time difference At between the signal and

reference photons is compensated in advance by using an optical delay line not shown in the figure.

First one transforms the polarization of the reference photon R as |Hg) — |Vg) and |Vg) — |HR)
by HWP;, and followed by sending the photon R to one port of PBS; and the photon S to the other
port. The apparatus Dx, which consists of HWP rotated by 7/8, PBS,, and photon detectors D;
and Ds, measures the incoming photons. The photon detection at D; and Dy correspond to the
projection onto the state |D) and |D), respectively, when Dx receives a single photon. In the case
where the input state is «|VgrHg) + B|HrVs), the state just after the PBS; is a|HH) + S|VV).
When the photon detection at D; and D5 occur, the state in the output port becomes a|H) + S|V')
and a|H) — B|V), respectively. Performing the phase shift 7 only in the case of the photon detection
at Dy, we obtain state a|H) + S|V, identical to the initial state. On the other hand, when the
input state is in the subspace spanned by {|HrHs), |VaVs)}, two photons leave PBS; together from
one of the ports, which leads to two- or zero- photon detection in Dy. Thus we can perform the
parity checking by linear optics and photon detection. While the photon loss and inefficiency of
the detectors leads to the unexpected vacuum in output port, such events can be eliminated by the
postselection of the events where the output port is not in the vacuum.

We should also mention that if one or both of the input modes include two or more photons,
the scheme in Fig. 3.3 results in errors that are not eliminated by the postselection. In such cases,

a single photon detection by the apparatus Dx may leave a single photon in the output port, but
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its polarization state will be different from the one intended in the parity checking scheme. In
chapters 4 and 5, we discuss protocols using a weak coherent light pulse as the reference, in which

case consideration on the rate of such erroneous events is necessary.

Robustness against path-length mismatches between two channels

Here we discuss the robustness of the scheme against path-length mismatches [44]. We neglect the
polarization dependent photon losses, since the discussion is focused on the robustness against the

path-length difference of two channels. The initial state is described as

|IDr) ® (a|Hs)ats + BlVs)ata): (3.2)

where At 4 represent the time delay of the signal photon. We assume At 4 is much smaller than the
correlation time of the fluctuation. The time delay of V-polarized photon for H-polarized photon is

represented as 7, and the state of the photons arriving at Bob’s side is written as

1. ,
5[046 2P| Hp)|Hs) ata + B |VR) < V) Atasr

+(a|VR)-|Hs)ats + BIHR)Vs) At a+7)) (3.3)

The extraction of the signal state from (3.3) can be performed in the following way. Two photons
are split into long path (L) and short path (S) by BSg, then mixed by PBS, again. The remaining
procedures are the same as discussed in the previous section. Here we only consider the successful
case where the signal photon passes through S and the ancillary photon passes through L. This
happens with the probability 1/4 when two photons arrive at the PBS, at the same time. In this

case, the state just before the PBSp can be written as

—2i L § i L S
ae 21¢|V>AtB|H)SAtA +/Be21¢lH>£+AtB|V>AtA+T

+(a|H)£+AtBIH>itA +5|V>IAtB|V>SAtA+T)7 (34)

where subscripts represent the spacial modes. If one photon is found in each output mode of X and
Y, the state just after the PBSp is a| H)Y, A, |H)%,, +BIV)X;, V) Aasr'- Let us consider the case
where Aty = Atg = Af. When the detector Dx finds one photon, the state in mode Y is projected
onto the state a[H)LAE + ,BIV)Zt-_'_T. The important point is that the time delay 7 affects only
the arrival time but not the fidelity of the output state. This shows the robustness of this scheme

against the path-length mismatches.

1 This expression can be also written alH))A(tA|H)Z+AtB + 5|V)§tB |V>XtA+r'
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.Dx’

Figure 3.4: Schematic diagram of the single qubit distribution. In spite of the path-length mis-

matches of two transmission lines, this scheme works well. The detail is discussed in the text.

3.3 Single-qubit distribution protocol over general collective
noise

The scheme in the previous subsection protects a qubit against a collective phase noise channel, but
a small modification achieves the protection of the signal state against the general collective noise
channels, if we are allowed to use two of such channels as in Fig. 3.2(b) [38]. The two channels
are combined by a PBS at the sender and by another PBS at the receiver. Let the transformation

matrices of the channels T and 2 be

m i 1
M=|" " andr={" 7}, (3.5)

m3z MMy 'l3 l4
respectively. The signal (reference) photon in state |Hg(g)) and |Vg(g)) is transformed as |Hg(g)) —
mlle(R)>+m3|VS(R)> and |VS(R)> - l2|HS(R))+l4|VS(R)>‘ After the photons S and R pass through

the channels 1 and 2, the state is written as

1
“\/—i[a(mﬂHRHs)u + mimg|HrVs)12 + mam1|VrHg)a1 + m3|VeVs)a2)
+B(malp| HrRHs)12 + mila| HRVs)11 + msla|VR Hs)22 + m3la|VRVs)21)
+a(lomy|HrHg)21 + lams|HrVs)22 + lami|VrHg)11 + lams|VRVs)12)

+B(3|HrHg)22 + lola| HRVs)21 + lal2|VRHs)12 + 5| VRVs)11))- (3.6)

The subscripts outside of |-) represent the output port numbers. When two photons appear in

port 1, the state is written as %[m%a\HRHs)ll + mila(B|HrVs)11 + ¢|VRHs)11) + li,@lVRVshl].

The state —}—§m1l4(,8 |HrVs)11 + alVrHs)11) is invariant under the collective noise. Similarly to the

41



previous scheme, the parity checking shown in Fig. 3.3 achieves the extraction of the signal state
a|H)+B|V). When the photons R and S appear at port 2, the state is written as % [m2a|VeVs)az+
malz(B|VRHs)a2+0|HrVs)22) +138|Hr Hs)2s]. The state %m;;lz(mVRH5)22+a|HRVS)22) is again
invariant under the general collective noise and is decoded into the signal state. As shown in the
above discussion, two channels together with PBSs enable us to reject the polarization rotation
errors and to extract the signal state.

The success probability of the case where two photons emerge at port 1 is given by |m;|?|14|2/2,
but this value is sensitive to a small change in birefringence of the fiber. By inserting random unitary
operations at both ends of channel 1 and channel 2, we can make the success probability to be a
more stable quantity of Ty T, /4, where T} = Tr(MtM)/2 and T, = Tr(L'L)/2 are the polarization-
averaged transmission of the channels. The success probability for two photons leaving port 2 is
also given by T17T»/4, leading to the overall success probability 7175 /2. -

The schemes described in this chapter are able to protect arbitrary unknown states of a qubit,
and hence they are also able to protect any correlation that is initially formed between the input
qubit and other systems. Those schemes can thus be used for distributing a maximally entangled
state of a qubit pair through channels with collective noises. In the following chapters, we discuss
protocols solely intended for such a distribution of a maximally entangled state, with an added

benefit of an improved scaling of the efficiency over the channel transmission.

3.4 4-qubit DFS protocol

In previous sections, we have considered single-qubit distribution schemes with the help of an an-
cillary qubit. The ancillary qubit is used to fight against the channel noise by composing the
decoherence-free subspace with the signal qubit. These protocols which we have introduced are
based on a two-qubit DFS scheme.

In this section, we introduce faithful qubit distribution scheme which is base on a four-qubit
DFS. The idea which we introduce here is to send the logial qubit, which is immune to the channel
noise [40, 57]. First, we introduce the robustness of the singlet state [¢~) = ‘/LE(]OI) —[10)) against
the collective unitary as follows:

UeU)y)=e’lv7), (3.7)

where e? is a global phase. We define a logical zero qubit as |0);, and a logical one qubit as |1)1, so

that the inner product between |0), and [1). is orthogonal and written as follows (See also Fig. 3.5
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[0™ e = al0)r + 1)L)
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o*h= == (1000}, + |11 1)

Sl

Figure 3.5: (a) Illustration of the logical qubits. The connected qubits represent the singlet state.
(b) The distribution of the single state using logical qubit and (c) the entangled state. Robustness

against a general collective noise of the singlet state is used in these schemes.

(a).):
[0)r = [ )12(¥7 )aa
= %(|o1o1> — 0110) — [1001) + |1010)) (3.8)
and
Dz =¥ )13l¥ ™ )2a — [ 7 )1al¥ 7 )2s
= zlﬁ(zwon) — |0101) — |0110) — [1001) — [1010) + 2|1100)). (3.9)

Both logical qubits |0); and |1) are the superposition of the singlet states and robust against a

general type of the channel noise, i.e., the following relation holds:

U®0), = €¥)0);, (3.10)
and

U®4 1)L = e¥|1);. (3.11)
Using this property, Alice prepares an arbitrary state

[¥)L =cl0)r + Bl1)L (3.12)
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and sends it to Bob. The illustration of the scheme is shown in Fig. 3.5 (b). After receiving four

photons, the state is described as
[y = |9 =e(al0)r + BI1)L). (3.13)

After decoding, Bob successfully obtains a single qubit state |¢) = a|0) + 5|1).

This scheme is generalized to entanglement distribution scheme as shown in Fig. 3.5 (c¢). Alice
prepares a logical entangled state |¢) = %( [0}{0) 1, + [1)]1)1,). The qubits which are sent to Bob
is composed of the logical qubits. After receiving the logical qubits, Bob decodes back to the normal
entangled pair |¢*) = %(|0)|0) + |1)[1)).

This entanglement distribution scheme is robust and the idea is simple, however, distribution
rate is quite serious, since the signal qubit is composed of four photons. This means that if the
transmittance of the channel is T = 0.01, the success probability of this scheme is proportional to
108, The distribution protocol which realize both the immunity again the channel noise and high

performance whose success probability is proportional to T is introduced later in chapter 5.
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Chapter 4

Entanglement distribution protocol

with counter-propagating photons

A serious drawback of the photonic DFS schemes including the previously introduced schemes is
the inefficiency caused by the photon loss in optical fibers. When the transmittance of the channel
is T and a two-qubit DFS scheme is performed, the success probability for sending a qubit state
is proportional to T2. In order to overcome the inefficiency, a two-qubit DFS scheme based on
a backward-propagating weak coherent light pulse over the collective phase noise channel, whose
efficiency is proportional to T, has been proposed and demonstrated in Ref. [46]. In this chapter,
we introduce the working principle of the scheme in the case where the backward-propagating light
is initially a single photon, and then we show that the efficiency is improved by using a coherent

light pulse instead of the single photon.

4.1 Equivalent operation on entangled states

Before the explanation of the scheme, we first derive an important property of entangled state,
which is used within the scheme. We introduce d-dimensional bipartite maximally entangled state

[¢3)aB = Z:Ll |2)4]i)p. An important property of maximally entangled state is

(Ta ® Mp)|¢a)ap = (M4 ® Ip)|¢a) aB, (4.1)
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where M is an operator and M7 is the transpose of the operator M. This is because, for all j and

k,

(jlalk)s(Ia ® Mp)(¢alap = (k|zMslj)5/Vd
= (k|laM}|5)a/Vd
= (jlalk)p(MZ © Ip)(¢alan (4.2)

is satisfied. From Eq. (4.1), a bipartite two-qubit system satisfies
(Ia®Up)|¢¥)an = (U @ 1)) aB, (4.3)

where U is a unitary operator acting on a subsystem. Since the single state |[¢~) is expressed as

¥ Yap = (iYa ® Ig)|¢T) ap, then we obtain

(Ia®Up)Y )ap = (Ia®Up)(i¥Ya ® Ip)|¢*) aB
= (iYaU% ® Ip)|¢™) an
= (YaUZ(iYa)' ® Ip)|[¥ ") aB
= (U} ®Ip)[Y") aB. (4.4)
Eq. (4.4) means that a unitary operation Ug on the subsystem B is equivalent to a unitary operation

U; that of on A. In a similar manner, the properties of another Bell state is shown in the following

table:

Bell state equivalent operation on A
|9%)asB Ui
07y =(Ia® ZB)|¢p")anB ZaUYZ4
[¥*) = (Ja ® Xp)loH)an XaUS X4
lv™) = (la®1iYB)|¢T)an YaULYa

Table 4.1: The relationship between the local operation on B and its equivalent operation on A.

From Eq. (4.1), when a local unitary operation U is diagonal as U = u11|0){0| + u22[1)(1], we

obtain
(Ia®Up)|¢"Yap = (Ua R I)|¢7 ) 4B, (4.5)

which means that we can regard the operation U on B as that of on A.
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4.2 Counter-propagating protocol

A two-qubit DFS scheme which is discussed in Chapter 3, both the signal photon and the ancillary
photon are sent from Alice to Bob. We now suppose that Bob, instead of Alice, sends a reference
photon R in the state |Dg) = %(|HR) +|Vg)) to Alice as shown in Fig. 4.1. Alice prepares photons
A and S in an entangled state [¢}[g) = %QHAHS) +|VaVs)), and sends the signal photon S to Bob
through the channel. The transformation matrix W(~,, s, ¢) is used again for the collective phase
noise channel. The transformation matrix for the backward propagation is the same as W (s, 75, ¢)*.
After transmission, two photons A and R are at Alice’s side and the signal photon § is at Bob’s
side. The state of the three photons are described as

s (HRVS)Va) + Vi) Ha))

+ie | HRHg)| Ha) + 7€¥*|VRV3)(Va)]. (4.6)

Here we have used a property that when two qubits A and S are in the entangled state 6% s),
a phase shift on qubit § is equivalent to the same amount of phase shift on qubit A, which is
discussed in the Sec. 4.1. Thus the net effect is the same as if photons A and R had passed through
the collective phase noise channel as shown in Fig. 4.2. Thanks to this property, in spite of the
counter-propagation of the ancillary photon, it is possible to construct a two-qubit DFS. After
performing the parity checking on qubit A and R at Alice’s side, they obtain the entangled state

over the collective phase noise channel.

4.3 Boosting up the efficiency using WCP

The efficiency of the protocol using a single photon as the reference photon R is obviously O(7?). The
modification to improve the efficiency is done as follows: Bob sends a coherent light pulse, instead
of a single photon, to Alice. Let u be the average photon number of the coherent pulse received
by Alice, after passing through the channel with transmission 7. The probabilities of one photon
and two or more photons are contained in the coherent light pulse at Alice’s side are P, = O(p)
and P, = O(u?), respectively. In this protocol, the successful events accepted by the linear optical
parity checking consists of two cases; (i) one photon is in mode A and one photon is in the reference
mode R, and (ii) two or more photons are in the reference mode R. Since mode A always has a
single photon, the probability of the case (i) is O(i) and that of the case (i) is O(u?). As described
in the previous chapter, the case (ii) causes the degradation of the fidelity. Thus, O(u) > O(u?),
which leads to the condition p < 1, should be satisfied for high fidelity entanglement distribution.

10f course, this can be confirmed using the Eq. (2.73). If you do not use this equation, it can be understand from

the fact that W (ys, vy, ¢) is diagonal.
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Parity checking

Figure 4.1: Schematic diagram of entanglement distribution scheme using the backward-propagating
reference photon. Alice prepares the entangled photon pair |¢j g) and sends the photon S to Bob.
On the other hand, Bob prepares the reference photon R and sends it to Alice. After receiving the
photon R, Alice performs parity checking on photons A and R to extract the DFS and decodes back
to the entangled state |¢*). In order to boost up the efficiency, Bob uses a weak coherent light

pulse, in stead of a single photon, as the reference light.

Although the condition p < 1 must be satisfied, p can be chosen independent of the channel
transmittance 7. Thus the overall success probability, which is O(uT), is proportional to 7. Note
that there is a trade-off between the achievable efficiency and fidelity of this protocol with respect
to the value of p. The advantage of the scheme in the case of low T regime has been experimentally
demonstrated in Ref: [46].

4.4 Discussion

One might wonder why we cannot apply the same technique to the forward propagation protocols
in Chap. 3 to improve the efficiency. However, as long as we use the linear optical parity checking in
Fig. 3.3 at Bob’s side, we do not obtain the efficiency O(T) by using WCP as the reference photon.
Suppose that Bob receives a WCP with mean photon number u. The probability that either of
mode S and mode R has exactly one photon, corresponding to the case (i) above, is O(uT’) since
the signal photon $ must have survived the lossy channel. Therefore O(uT) > O(u?), which leads
to u < T, should be satisfied for a high fidelity. This limits the overall success probability to be
O(T?).

Intuitively, this can be considered as follows: Bob is not able to distinguish the expected event
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(a) (Ta@W)oT)ap = (Wa@Ip)ot)an
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Figure 4.2: (a) The equivalence of the channel noise on signal photon and Alice’s photon. (a) The
illustration shows that the noise on the signal photon, which forms an entangled photon pair with
Alice’s photon, is equal to that of on Alice’s photon. (b) Using the property of (a), we can regard
that both the ancillary photon and Alice’s photon are affected by the channel noise.

and the unexpected event. That is to say, when he receives the two photons from Alice, he can not
discriminate the event where one photo is the signal photon and the other is the ancillary photon
from both photons are the ancillary photons. This makes them no longer possible to share entangled
state with success probability to be proportional to T, so counter propagation of the ancillary photon

is indispensable in this scheme.

4.5 Summary

In this chapter, we have considered the entanglement distribution scheme which can be realized
with success probability to be proportional to 7. In order to achieve this, a WCP is used as
ancillary photon instead of the single photon. Sending the ancillary photon from Bob to Alice is
also important. Sending the signal photon together with the ancillary photon was common-sense
approach, since it is easy to understand that these qubits experience the same collective noise. On
the other hand, it is not clear whether counter-propagating two-qubit DFS scheme works out or
not. Thanks to the important relation Eq. (4.5), the counter-propagating two-qubit DFS become
possible.
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This scheme is robust against phase noise of the channel, however, this scheme does not suppose
a general type of the channel noise. In fact, the polarization maintaining optical fiber is used to
demonstrate this scheme. Next chapter we propose a new entanglement distribution protocol which

is robust against a general type of the channel noise.
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Chapter 5

Entanglement distribution protocol
over general collective noise with

counter-propagating photons

In this chapter, we newly propose an extended scheme that applies the counter propagation protocol
to the two-channel scheme introduced in Sec. 3.3, in order to boost up the efficiency of the two-
qubit DFS scheme against the general collective noise channels. The key ingredient in the scheme
is the relation (2.73), which is believed to be satisfied in optical fibers. In the same manner as in
the previous chapter, we first introduce the working principle using a single photon as an ancillary

photon.

5.1 Working principle of the proposed protocol

As shown in Fig. 5.1, Alice prepares the entangled state |¢: sy and sends the signal photon S to Bob.
Bob prepares the reference photon R in the state | D) and sends it to Alice. The signal photon S is
split into two spacial modes by a PBS. The reference photon R is also split into two spacial modes

by a PBS. The state just before the signal and reference photons entering channel 1 and 2 is

1
§(|HRH5>HIHA) + |HrVs)13|Va)

+|VeHs)s1|Ha) + |VaVs)z3|Va)). (5.1)
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Parity checking

Channel 1

Figure 5.1: Schematic diagram of the proposed entanglement distribution protocol. Only when
photon R appears in port 1 and photon S appears in port 3, the state protected by DF'S is extracted.
Our protocol is robust against a general type of the channel noise and the distribution rate is

proportional to 7.

Suppose that the transformation matrices of channels 1 and 2 are

Lol
M=l laaz=1" 9], (5.2)
ms Mg ls U

which are the same as in Eq. (3.5). As discussed in Sec. 2.4, the corresponding transformation

&
matrices for the backward propagation are M =ZMTZ and L = ZLT Z, which is written as

- l -l
M= ( - mg) and T = | ™ 3) : (5.3)

—my My =l Uy

respectively. After the photons pass through the channel 1 and 2, signal photon is transformed as
|Hs) — m1|Hg) +m3|Vg) and |Vg) — lo| Hg) + 14| Vs), while the ancillary photon is transformed as
|Hg) — m1|Hg) — m2|Vg) and |Vr) — —I3|HR) + l4|VR), and the state is written as

1

5[(m1lHR)1 —ma|VR)1)(mu|Hs)1 + ms|Vs)1)| Ha)

+(m1|Hr)1 — m2|Vr)1)(l2| Hs)z + 14| Vs)3) | Va)

+(=ls|HR)3 + la|Vr)3) (m1|Hs)1 + m3|Vs)1)| Ha)

+(—ls|HR)z + la|VR)2) (l2| Hs)3 + la| Vs)3) [ Va)]. (54)
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After that, both photons pass through the PBSs. The state then becomes

1
5[(mf|HRHs)13 + mima|HrVs)14 — mom1|VaHs)as — mams|VaVs)as) | Ha)

+(mylo| HrHg)14 + mils|HRVs)13 — mala|VRHg)24 — mals|VRrVs)23)|Va)
+(=lamy|HrHs)23 — lams|HrVs)24 + lam1|VRHg)13 + lyms|VrVs)14)|Ha)
+(~lsla| HRHs)24 — l3ls| HRVs)a3 + lal2|VR Hs)14 + 13| VRVs)13)| Va)l- ' (5.5)

After post-selecting the event where the photons R and S appear at port 1 and 3, we obtain the
state

1

5[milHr Hs)13| Ha) + mals(| HRVs)1a|Va)

+|VRHs)13|Ha)) + 13|VRVs)13|Va)]. (5.6)

Fortunately, a part of the state %m1l4(| HRVs)13|Va)+|VrHs)13|Ha)) is invariant under the general
collective noise. In the same manner as in Chap. 4, Alice can extract the state by using linear optical
parity checking in Fig. 3.3. The final state shared between Alice and Bob is the maximally entangled
state [¢1). As shown Eq. (5.5), unlike the forward propagation protocol shown in Sec. 3.3, the state
of the photons appearing in the other ports, 2 and 4, is not protected over the general collective noise
channels. By inserting random unitary operations the overall success probability becomes T1T5/4,
which is half of that in Sec. 3.3 due to the fact that the cases for photons leaving ports 2 and 4
automatically fails. This success probability can then be boosted up by using WCP as the reference
light, from O(T?) to O(T).

In the forward-propagating protocol shown in Fig. 3.2 (b), when both photons appear at port 1,
there are two possible trajectories: H — H/1, implying that an H polarized photon enters channel
1 and leaves in H polarization, and V — V/2. If the signal photon has H polarization, it takes
the former and the reference photon takes the latter. If the signal photon has V polarization, they
just interchanges the trajectories and acquire the same phase shift together. The same argument
applies when both photons appear in port 2, with two trajectories H — V/1 and V — H/2. In
the backward-propagating protocol presented in this subsection, we have four trajectories instead.
When the photons appear at ports 1 and 3, those are H — H/1 and V — V/2 for photon S, and
H «+ H/1 and V + V/2 for photon R, where the trajectories for photon R are the time-reversed
versions of those for photon S. As a result, two possible choices of the trajectories of the two
photons, shown in Fig. 5.2 (a), acquire the same phase shift from the channels. On the other hand,
when the photons appear at ports 2 and 4, the relevant trajectories are H — V/1 and V — H/2 for
photon S, and H « V/2 and V « H/1 for photon R, among which no pair are in the time-reversal

relation. Hence no state is protected in this case.
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Figure 5.2: Sketch of the trajectories when two photons appear in (a) port 1 and 3 or (b) port 2
and 4. The solid arrows and the dotted arrows show the trajectories of the signal and the reference

photon, respectively.

Several remarks are in order for the experimental realization of the proposed scheme using
WCP. In practice, polarization independent optical circulator with high efliciency is hard to obtain.
However, such a device is not required when we use WCP as the reference. In that case, we may
replace the optical circulator by small reflectance mirrors, which transmit the signal photon with
transmittance close to unity and reflect the reference photons. The low reflectance can simply be
compensated by increasing the initial amplitude of the WCP. The optical path length mismatch
between the two channels needs to be adjusted within the coherence length of the photons, which is
typically far longer than the wavelength of the photons. Similarly to the experiment in Ref. [46], the
experimental demonstration can be done by using the entangled photon source based on parametric
down conversion, linear optical elements and photon detectors. The scheme is also robust against

the fluctuations in the optical circuits used for parity checking due to the two-photon interference.

5.2 Time-bin protocol

We now consider an alternative scheme which uses the time-bin encoding, which is used, for example,
time-bin encoding BB84 protocol [58, 59]. We apply this idea to entanglement distribution protocol

which is discussed in the previous section. The schematic diagram of this scheme is shown in Fig.
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Figure 5.3: Schematic diagram of the entanglement distribution scheme based on the time-bin
ending. Alice and Bob successfully share an entangled state by postselecting the event where both

the signal photon and the ancillary photon pass through £S or SL.

5.3. At Alice’s side the signal photon S is split into the short path S and the long path £ by PBSI.
H polarized photon passes through S and V polarized photon passes through £. The time difference
between H polarized photon and V polarized photon after passing through PBS2 is set to At. On
the other hand, at Bob’s side, the ancillary photon is also split into the short path S and the long
path £. In this time, H polarized photon passes through the long path and V polarized photon
passes through the short path. Likewise the time difference between H polarized photon and V
polarized photon is set to At. After passing through the PBS3 and PBS4 the state is written as

S(HR)e + Ve)s)(Hs)s|Ha) + V5)cIVa)) (67)

The channel noise is represented by M and L for forward propagation and ﬁ and (E for backward
propagation, which are used at (5.2) and (5.3). Through the noisy channel, the signal photon is
transformed as |Hg) — mi|Hg)s +ms|Vs)s and |Vs) — ma|Hg)z + m4|Vs) . In the same manner
the ancillary photon is transformed as |Hgr) — mi|Hg)z — ma|Vg)c and |Vg) — —mg|HRg)s +
m4|Vr)s. The signal photon enters PBS4 and H polarized photon goes into the long path and V
polarized photon goes into the short path. While the ancillary photon enters PBS2 and H polarized
photon goes into the short path and V polarized photon goes into the long path. After passing
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(a)

(b)

Figure 5.4: The schematic of the trajectory of the success event. The red (blue) line represents
the trajectories of the signal (ancillary) photon. (a) The trajectory of the signal photon which pass
through & — £ and the ancillary photon which pass through & — L. (b) The trajectory of the
signal photon which pass through £ — S and the ancillary photon which pass through £ — S.

through PBS1 and PBS3, we obtain

1
5[(mf|HR)Ls|Hs)SL + mima|HR) cs5|Vs)ss — mami|Vr) cc|Hs)sc — mama|VR)cc|Vs)ss) | H)

+(mimao|HR) cs|Hs) co + mima|Hr) zs|Vs)cs — m3|VR)ce|Hs) oo — mama|Ve) 22| Vs)es)|V)
+(—mgm1|Hg)ss|Hs)sc — m3|Hr)ss|Vs)ss + mami|Ve)sc|Hs)se + mams|Ve)sc|Vs)ss)| H)
+(=mgma|HR)ss|Hs)ce — mama|HRr)ss|Vs)cs + mama|Vr)sc|Hs) co + m3|Ve)sc|Vs)cs)|V)]-

(5.8)

We can not distinguish photons which pass through £S and S£. These photons are extracted and
other photons which pass through ££ and S§ are discarded, which can be distinguished by checking

the arrival time of the photons. Then we postselect
1
§[m%|HR>csle)SCIH> +mima(|Hr)zs|Vs)cs|V)
+|Ve)scl|Hs)sclH)) + mi|Ve)sc|Vs) cs|H)). (5.9)

As you can see, smim4(|HRr)cs|Vs)es|V) + |Vr)sc|Hs)sc|H)) is invariant under the collective
channel noise. Performing the parity checking and decoding, they can successfully share |[¢T).
We now discuss the success event. The trajectories of the photons of success event is shown in

Fig. 5.4. The red lines are the trajectories of the signal photon and the blue lines are that of the
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ancillary photon. |Hg) photon and |Hg) photon pass through the same route, while |Vs) photon and
|Vg) photon also pass through the same route. An important point is that, in this case, H polarized
photon and V polarized photon experience the same channel noise, respectively, regardless of the
different propagation direction, i.e., |[Hg) — m1|Hs), |Hr) = m1|Hg) and [Vs) — m4|Vs), {Vr) —
ma|VR), respectively. The specific feature of entangled state is that a disturbance on one half of the
photon pair is equivalent to a similar disturbance on the other half of the photon pair. Thus we can
regard m1|Hg) as mi|Ha) and mg4|Vs) as mq|Va), where A represents the possessor of the photon.
This property makes a two-qubit DFS scheme possible regardless of the counter propagafion of the

ancillary photon, which is essential to boost up the efficiency to be proportional to T'.

5.3 Discussions

5.3.1 Discussionl- Robustness against the unbalance of the transmission

efficiency

‘We have shown the robustness against the channel noise in a quantitative way. This includes the
unbalance of the transmission efficiency of the two channels. We here discuss the robustness against
the different transmission efficiency of the two channels in a qualitative way.

Suppose that the transmission efficiency of the channel 1 (2) is 71 (12). In order to understand
qualitatively, let us reconsider the trajectory of the two photons of the success event. In this case,
as shown in Fig. 5.5, H polarized photon experience 7;, while V' polarized photon experience 7.
In the success event, the state is a superposition state of |HgrVs) and |[VgHg). This means that if
the signal photon pass through the channel 1, the ancillary photon pass through the channel 2. On
the other hand, if the signal photon pass through the channel 2, the ancillary photon pass through
the channel 1. In both cases, one photon experience 7; and the other photon 7)2, and the net effect
is 71m2. Thus the unbalance of the transmission efficiency of the two channel dose not affect the

fidelity of the state.

5.3.2 Discussion2- Interpretation

As discussed in Chapter 3, a four-qubit DFS is robust under a general collective noise, however, in
general, a two-qubit DFS protocol is not robust against a general noise. We now consider why our
protocol is robust against a general type of the channel noise, in spite of a two-qubit DF'S scheme.

As discussed above, the signal photon is protected from the phase noise by DFS. An important
feature is that the proposed protocol is designed to eliminate the state which is affected by the

polarization rotation by splitting the communication channel into two transmission lines using PBSs.

57



Figure 5.5: The trajectory of the signal photon and the ancillary photon. The red (blue) line
represents the trajectory of the H (V) polarized photon. 7; and 7y represent the transmission

coefficient of the channel 1 and channel 2, respectively.

In other words, if the signal photon and the ancillary photon are affected by the polarization rotation
noise, photons appear at port 2 (ancillary photon) or port 4 (signal photon), and they are discarded
by the postselection. By extracting only unaffected state, at the cost of the success probability, they
can share entangled state against a general channel noise.

The alternative protocol that achieves both the robustness and hight efficiency is proposed. The
scheme is implemented using the polarization and the time-bin. In this case, the signal photon is
protected from the phase noise using DF'S, which is the same strategy as the above protocol. Instead
of using two transmission lines, the time-bin is used to postselect the state which is not affected by
the polarization rotation. Postselecting the event where both the signal photon and the ancillary
photon pass through LS or SL paths ensures that these photons have not affected by polarization
rotation. Arrival time of the photons tells Alice and Bob that the photons have passed the LL£ or
SS, which indicates that photons are affected by the polarization rotation. An important point is
that both schemes protect the signal photon by DFS and extract the state which is not subjected

to the polarization rotation. Thus proposed schemes achieve the same robustness.

5.3.3 Discussion3-Application range of our protocol

We have shown the robustness and the high efficiency of the proposed protocol. In this section, we
discuss the application range of the proposed protocol.

We have shown that the protocol is applicable to the channel such as optical fibers. We now
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1

consider the case where the channels are composed of non-reciprocal media‘. For such media, the

matrix for the forward propagation 2 is written as

’
M= T, (5.10)

!
ms My

and the matrix for backward propagation is written as
7] m
=" . (5.11)

Unlike the channel with only reciprocal media, the relation (2.17) does not hold. Let us evaluate
the total state after transmitting photons. As usual, Alice prepare the |¢*) as an initial state and

Bob prepares | D) polarization state. Let the transformation matrices of the channel 1 be

! ! =1/ =1
M= " " b= T 2 (5.12)
myg mi my My’
and of the channel 2 be
o r
r=[(1 7], o=\ iy (5.13)
I It ls I

respectively. After the photons pass through the channel 1 and 2, signal photon is transformed as
|Hs) — mi|Hg) + m5|Vs) and |Vs) — I5|Hg) + 1*|Vs), while the ancillary photon is transformed
as [Hg) — m{|Hg) + m§|Vg) and |Vg) — I5|Hg) + I1*|Vr). The state after photons pass through
the PBSs becomes

1
5[(m1m/1|HRHS)13 + mimy|HrVs)14 + mam| |VeHg)2s + mym5|VaRVs)24a) | Ha)

+(mily|HrHs)14 + M1 |HRVs)13 + Myl | VR Hs )24 + myl1*|VRVs)23)|Va)
+(lymi|HrHs)as + lymig| HRVs)2a + Iy m) [VR Hg) 13 + I7"m§|VRVs)14) | H a)
+(I5l4| HRHg)aq + Bl | HRVS)23 + 11| VR Hs)1a + 717 |VRVS)13) [ Va). (5.14)

As you can see, which state we postselect, we can not extract the state that is not affected by the
channel noise. Thus the proposed protocol is not applicable to the channels which is composed of
the nonreciprocal media.

This can be interpreted as follows: In Sec. 5.1, the matrices for the forward propagation are

described by (5.2) and the backward propagation by (5.3). Compared these matrices, we aware that

1The channel that the relation (2.73) does not hold.

mp mp\
?In general case, we should have M’ = , , | in stead of (5.10).
m3 My
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Reciprocal channel

Polarization dependent
photon loss channel

Unitary channel

Figure 5.6: The application range of the proposed protocol. Our protocol works against the all the

channels which are made of the reciprocal media.

the matrix elements of the forward propagation M;; and Ms, are the same as that of the backward
propagation Mu and M 22, respectively. Extracting only the success event, i.e., the signal photon
and the ancillary photon appear at port 1 and 3, the signal photon becomes |Hg) — mi|Hg) and
|Vs) — my|Hg), while the ancillary photon becomes |Hr) — m1|HRg) and |Vg) — m4|VRg). In other
words, in case of success, the signal photon and the ancillary photon experience the same noise-noises
for these photons are symmetric. On the other hand, comparing (5.10) and (5.11), we aware that the
matrix elements of the forward propagation Mj, is different from that of the backward propagation
M f1. Likewise M3, is different from M 59. That is to say that the signal photon and the ancillary
photon experience the different noise—noises for these photons are asymmetry. These are why we
can apply the proposed scheme to the reciprocal media but can not apply to non-reciprocal media.

Can’t we apply our protocol to all of non-reciprocal media? Let us consider a special case of
nonreciprocal media, where the media which causes only Faraday rotation. In this case, the matrix

for the forward propagation with respect to the channel 1 is described using rotation matrix as

0 sin0
R(6) = cos sin 7 (5.15)
—sinf cos@

while the backward propagation is described as

6 —sind
Ry =Y T (5.16)

sinf  cosf
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- = <
As same as the channel 1, the matrix for the channel 2 is written as R(¢') and R(¢'). Postselecting

the state where photons arrive at the port 1 and 3, we have
1
——-(COS@COSQ/|HRVS>13+ |VRHS>13). (517)
V2
In a similar way, postselecting the photons at the port 2 and 4, we obtain
1 . '
E(Sin051n0’|HRVs>24 + |VRH3)24). (518)

Thus, even if the channels are made of nonreciprocal media, there are case where we can share an

entangled state faithfully.

5.4 Summary

In conclusion, we have proposed an extended protocol based on DFS that achieves both the robust-
ness and the efficiency simultaneously. Our protocol is robust against not only phase noise of the
channel, but also a general (phase noise + polarization rotation) type of the channel noise. This
scheme is not only robust one but also efficient one that achieve the success probability to be pro-
portional to T. This can be realized by using counter-propagating weak coherent light pulse as an
ancillary photon instead of the single photon, whose idea is proposed by Ikuta et al. The robustness
of against such a noise is also realized using alternative method—the time-bin. The setup of the
two schemes are different, however, the fundamental idea of these schemes are the same, i.e., both
of the schemes, qubits are protected from phase noise using DFS, while polarization state which is
affected by the polarization rotation is eliminated by the postselections. At the end of this chapter,
we have discussed the application range of the proposed protocol. Our protocol is applicable to the
channels that satisfies the reciprocal relation (2.17). The inclusion relation is shown in Fig. 5.6.
Our schemes provide a efficient and faithful entanglement distribution which is strongly desired in

quantum information processing.
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Chapter 6

Conclusion

In this thesis, we have proposed an entanglement distribution protocol which realizes a robust and
efficient quantum communication. The efficiency of our protocol is proportional to the transmittance
T in spite of employing the multiple qubits. This is realized by using a weak coherent light pulse
with the intensity to be proportional to 7!, and sending it from the receiver’s side to the sender’s
side. Using the important property that the noise on the signal, which forms an entangled photon
pair with Alice’s photon, is treated as the noise on Alice’s photon, we see that both the ancillary
photon and Alice’s photon are experienced the channel noise. This makes possible to use DF'S in
spite of the counter propagation of the ancillary photon. In addition, for a better understanding
of the counter-propagating photons, we have introduced two coordinate systems depending on the
propagating directions of the photons. Owing to this we can easily calculate the polarization-state
transformation in the transmission channel.

Our protocol is a robust one which is immune to not only a collective phase noise but also a
general type of the channel noise. Our protocol is based on a DFS scheme that is robust against
the collective phase noise. It is known that a four-qubit scheme, which is serious with respect to
the efficiency, is immune to a general noise. Our scheme is based on a two-qubit DFS, however, this
protocol is immune to a general noise. This can be realized by preparing an additional transmission
line in the channel and the postselection. The states which are affected by the polarization rotations
are rejected by the postselection and we extract an only state which is not unaffected by the noise.
We showed that this scheme is also achieved using the time-bin. The fundamental idea for the
time-bin scheme is the same as that of the former scheme. Using the time-delay at sender’s and
receiver’s side, and postselecting the photon which arrives the correct time, they can extract the
state which is not influenced by the polarization rotation.

The proposed entanglement distribution protocol works under the channel with polarization
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dependent photon losses. The advantage of our scheme is that it can be realized using only linear
optical devises and photon detectors, which are feasible in the current technologies. In addition, the
treatment of the counter propagation had already established [46], so we believe that the proposed
scheme is possible to demonstrate. We expect the realization of this entanglement distribution
scheme. We hope that this work become the first step to construct of the quantum communication

networks that would realized in the future.
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Appendix A

Appendix for Chap. 2

A.1 Bell states

1 ~ 1
D) = 5(H) +1V)). 1D) = 5

1 : .
IR)=E(1H)+Z!V>) L) = ﬂ(IH)—zIV))

(lH) —1v))

—_

p
W) = 7(:HV> VH)) = f( |DD) +|DD)) = 7<|RL> |LR))
W) = 7(|HV>+|VH>) 7(|DD> |DD>>——%(|RR> ILL))
|¢->=7<|HH> V) = 7(|DD>+|DD>)=7<|RR>+|LL>)
) = 7<:HH>+|VV>) 7<|DD>+|DD>) E<|RL>+|LR>>
\__

A.2 The expression of Eq. (2.17) with arbitrary coordinate

systems

We have discussed the expression of the optical fiber for backward propagating photon with fixed

coordinate systems as shown Fig.2.1. Here we extend to more general case where the angle between

y and y’ is arbitrary.
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Consider the case where Alice’s y axis and Bob’s y axis make §'. To do this, we introduce a new
rotation matrix T. The y axis is fixed and the y’ axis is rotated by . The matrix for backward

propagation is changed to

U1 = T(6")R(OWo R(-0)T(~9)
=T(0)ZUT ZT(-86"). _ (A.2)

This is a general description of the birefringent element for backward propagation and this is easily

generalized to the model of the optical fiber, i.e., N birefringent elements. We can also reformulate

the universal compensator using this relation. The matrix of a mirror is changed ~Z to —-T(6")Z

and the expression of the Faraday mirror is written as
Urm = R(0F)(—-T(6')Z)R(—0F) = T(6')X. (A3)
Thus total effect is described as

Usotat = UUpnU
= (T(@"XUIXT(-¢))T(¢) XU
=T(0')X. (A4)

Here we have used the relation ZUTZ = XUt X. The fluctuation of the optical fiber is completely

canceled out and remains only the effect of a mirror.
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International conferences

1. Hidetoshi Kumagai, Takashi Yamamoto, Masato Koashi, Nobuyuki Imoto, “"On the robustness
of quantum communication based on decoherence-free subspace using counter-propagating
weak coherent laser light “(poster), International Conference on Quantum Foundation and

Technology, Dunhuang Hotel, Dunhuang, China, August 25 - 30, 2012.
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