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Abstract

DEA, which was originally suggested by Charnes, Cooper and Rhodes
, is a 

method to calculate measuring a relative efficiency of decision making unit (DMU) 

performing similar tasks in a production system that consumes multiple inputs to 

produce multiple outputs. So far, many DEA models have been developed: The 

CCR model (1978), the BCC model (1984) and the FDH model (1993) are well 

known as basic DEA models. These models based on the domination stracture 

in primal form are characterized by how to determine the production possibility 

set in a viewpoint of dual form; a convex cone , a convex hull and a free disposable 

hull for the observed data, respectively. 

    In this thesis, we suggest.a model called GDEA (generalized DEA) model, 
which can treat the above stated DEA models in a unified way . In addition, by 

establishing the theoretical properties on relationships among the GDEA model 

and those DEA models, we prove that the GDEA model makes it possible to 

calculate the efficiency of decision making unit incorporating various preference 

structures of decision makers. Furthermore , we propose a dual approach to 

GDEA, GDEAD and also show that GDEAD can reveal domination relations 

among all DMUs. 

   On the other hand, in many practical problems such as engineering de -
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sign problems, criteria functions can not be given explicitly in terms of design 

variables. Under this circumstance, values of criteria functions for given value 

of design variables are usually obtained by some analyses such as structural 

analysis, thermodynamical analysis or fluid mechanical analysis, These analyses 

require considerably much computation time. Therefore, it is not unrealistic to 

apply existing interactive optimization methods to those problems. Recently , 

multi-objective optimization methods using genetic algorithms (GA) have been 

studied actively by many authors. 

    We suggest, in this thesis, the method employing GDEA as the fitness in 

GA in order to generate Pareto optimal solutions in multi-objective optimization 

problems. Consequently, we prove that the method using GDEA can remove 

dominated individuals faster than methods based on only GA , and can overcome 

the shortcomings of existing methods. Furthermore, through several numerical 

examples, we show that the method using GDEA can yield desirable efficient 

frontiers even in non-convex problems as well as convex problems . 

   Through the study on GDEA in the thesis, it will be expected that GDEA 

makes it helpful to evaluate an efficiency of complex management systems such as 

banks, chain stores, communications enterprise, hospitals , etc. Moreover, GDEA 

is promising to be very useful method to construct decision support systems 

such as administrative reforms of (local) goverments, engineering design, schools, 

courts, And so on.
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Chapter 1 

Introduction

There are two fundamental approaches used for estimating efficient frontiers 

in economics. They are called the parametric and nonparametric approaches . 

The parametric approach requires the imposition of 'a specific functional form 

(for example, a regression equation, a production function, and so on) for the 

technology [3, 211. The selected functional form also requires specific assumptions 

about the distribution of the inefficiency terms and many other restrictions . In 

contrast to the parametric approach, the non-parametric approach initiated as 

data envelopment analysis (DEA) by Charnes, Cooper and Rhodes does not 

require any assumption about the functional form. DEA calculates the relative 

efficiency for each decision making unit (DMU) to all other DMUs with the only 

requirement that all DMUs lie on or 'below' the so-called efficient frontier based 

on the observed data. 

    We use an example to explain those approaches. The example consists of 

eight DMUs with consuming one input to produce one output . (See Figure 1. 1.) 

As shown in Figure 1.1, the parametric approach is to estimate the degree how far 

the performance of each DMU is on the above or below from the single regression

I
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             Figure 1.1: Comparison of DEA and Regression . 

plane through the observed data. In contrast, DEA optimizes the performance 

of each DMU with respect to a solid line, which represents the efficient frontier 

derived by DEA from the observed data. It is distinguished from the parametric 

approach by the fact that DEA calculations produce the only relative efficiency 

because they are obtained from actual observed data for each DMU . 

    The initial DEA model was presented by Charnes , Cooper and Rhodes 

(CCR), and built on the idea of Farrell [131 which is concerned with the es-

timation of technical efficiency and efficient frontiers. The CCR model [8, 9] 

generalized the single output/single input ratio efficiency measure for each DMU 

to multiple outputs/multiple inputs situations by forming the ratio of a weighted 

sum of outputs to a weighted sum of inputs . DEA is a method for measuring the 

relative efficiency of DMUs performing similar tasks in a production system that 

consumes multiple inputs to produce multiple outputs . The main characteristics
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of DEA are that (i) it can be applied to analyze multiple outputs and multiple 

inputs without preassigned weights, (ii) it can be used for measuring a relative 

efficiency based on the observed data without knowing information on the pro-

duction function and (iii) decision makers' preferences can be incorporated in 

DEA models. Later, Banker, Charnes and Cooper (BCC) suggested a model for 

estimating technical efficiency and scale inefficiency in DEA. The BCC model [6] 

relaxed the constant returns to scale assumption of the CCR model and made it 

possible to investigate whether the performance of each DMU was conducted in 

region of increasing, constant or decreasing returns to scale in multiple outputs 

and multiple inputs situations. In addition, Tulkens [29] introduced a relative 

efficiency to non-convex free disposable hull (FDH) of the observed data defined 

by Deprins et al. [12], and formulated a mixed integer programming to calculate 

the relative efficiency for each DMU. Besides basic models as mentioned in the 

above, a number of extended models have been studied, for example, cone ratio 

model [11], polyhedral cone ratio model [10], Seiford and Thrall's model [25], 

Wei and Yu's model [32], and so on. 

    On the other hand, relationships between DEA and multiple criteria decision 

analysis (MCDA) have been studied from several viewpoints by many authors. 

Belton [4], and Belton and Vickers [5] measured an efficiency as a weighted sum of 

input and output. Stewart [26] showed the equivalence between the CCR model 

and some linear value function model for multiple outputs and multiple inputs . 

Joro et al. [18] proved structural correspondences between DEA models and 

multiple objective linear programming (MOLP) using an achievement scalarizing 

function proposed by Wierzbicki [31]. Especially, various ways of introducing
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preference information into DEA formulations have been developed. Golany [15] 

suggested a so-called target setting model, which allows decision makers to select 

the preferred set of output levels given the input levels of a DMU. Thanassoulis 

and Dyson [28] introduced models that can be used to estimate alternative output 

and input levels, in order to render relatively inefficient DMUs efficient . Zhu 

[38] proposed a model that calculates efficiency scores incorporating the decision 

makers' preference informations, whereas Korhonen (20] applied an interactive 

technique to progressively reveal preferences. Hamel et al. [17] evaluated an 

efficiency of DMU in terms of pseudo-concave value function, by considering 

a tangent cone of the feasible set at the most preferred solution of decision 

maker. Agrell and Tind [1] showed correspondences among the CCR model [8], 

the BCC model [6] and the FDH model [291 and MCDA model according to the 

property of a partial Lagrangean relaxation. Yun, Nakayama and Tanino [33, 34] 

suggested a concept of "value free efficiency" in the observed data and proposed 

a new model called GDEA (generalized DEA) model which can treat basic DEA 

models, specifically, the CCR model, the BCC model and the FDH model in 

a unified way. They showed theoretical properties on relationships among the 

GDEA model and those DEA models and, GDEA model made it possible to 

calculate the efficiency of DMUs incorporating various preference structures of 

decision makers. Furthermore, they [35] proposed a dual approach GDEAD to 

GDEA and showed also that GDEAD can reveal domination relations among 

all DMUs. In addition, as an application of GDEA, they [36, 37] suggested a 

method combining GDEA and genetic algorithms for generating efficient frontiers 

in multi-objective optimization problems.
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    The rest of this thesis is organized as follows. Chapter 2 introduces notations 

used in this thesis and presents brief explanations on basic DEA models. In 

Chapter 3, we propose the GDEA model based on a parametric domination. 

Chapter 4 presents a dual approach to GDEA, that is, the GDEAD model based 

on a production possibility set. In Chapter 5, we compare the efficiency of GDEA 

and several DEAs for each DMU through illustrative examples. As an application 

of GDEA, Chapter 6 explains a method combining GDEA and genetic algorithms 

(GA) for generating efficient frontiers in multi-objective optimization problems. 

Finally, Chapter 7 concludes this thesis.



Chapter 2 

Basic DEA Models

In the following discussion, we assume that there exist n DMUs to be evalu-

ated. Each DMU consumes varying amounts of m different inputs to produce p 

different outputs. Specifically, DMUj consumes amounts xj := (xij) of inputs 

(i = 1, - - - , m) and produces amounts yj : = (ykj) of outputs (k = 1, - - - , p). 

For these constants, which generally take the form of observed data , we assume 

xij > 0 for each i = 1, m and ykj > 0 for each k 1, p. Further , we 

assume that there are no duplicated units in the observed data. The p x n output 

matrix for the n DMUs is denoted by Y, and the m x n input matrix for the 

n DMUs is denoted by X. x. := (xl,,, , * , xm,,,) and y., := (yl,,, - - - , yp,) are 

amounts of inputs and outputs of DMUo, which is evaluated. In addition, E is a 

small positive number ("non-Archimedeanl") and I = (1, - - - , 1) is a unit vector. 

    For convenience, the following notations for vectors in Rk~-' will be used: 

           Z' > zj 4==*. zj~ > zjj, i P + M, 

          Z' ~! zj 4==~ Zi, zjj, i P + M, 

           'Z
O > zi zi,, zij, i =1,-.. p+m but z,,=~ zj. 

  'Archimedean property : If x E R
, y E R and x > 0, then there exists a positive integer n 

such that nx > y. E is a small positive number not satisfying Archimedean property . 

6
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    So far, a number of DEA models have been developed. Among them, the 

CCR model [8, 9], the BCC model [6] and the FDH model [29] are well known 

as basic DEA models. These models are based on the domination structure in 

primal form and moreover, these are characterized by how to determine the pro-

duction possibility set in a viewpoint of dual form; a convex cone, a convex hull 

and a free disposable hull 2 for the observed data, respectively. The development 

of the models in this chapter is as follows. Section I starts with the CCR model. 

Sections 2 and 3 discuss the BCC model and the FDH model, respectively.

2.1 The CCR Model

The CCR model, which was suggested by Charnes et al. [8], is a fractional linear 

programming problem and can be solved by being transformed into an equivalent 

linear programming one. Therefore, the primal problem (CCR) with an input 

oriented model 3 can be formulated as the following: 

P (CCR) maximize ILkYko                       Ak, L'i E 
                              k=1 

M 

           subject to Vixi. 17 

                          P M 

                   E PkYkj Evixij < 0, j 1, n, 
                                  k=1 i=1 

                     Ak ~! E, vi ~! e, k p; i 1, 

  'The free disposable hull (FDH) by Deprins et al. [12] is a non-convex hull consisting of any 
points that perform less output with the same amount of input as the observed data, and/or 
those that perform more input with the same amount of output. 

  'The CCR model, the BCC model and the FDH model are dependent on the orientation. 
For instance, in an input orientation, one focuses on maximal movement toward the efficient 
frontier through proportional reduction of inputs, whereas in an output orientation one focuses 
on maximal movement via proportional augmentation of outputs. In this thesis, to condense 
the text, we deal with only the input oriented model for simplicity.
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   The dual problem (CCRD) to the problem (CCR) is given by 

(CCRD) minimize 0 _ E(ITS_ + 1TS Y) 
                            0, A, 8" By 

                 subject to XA - Ox,, + sx = 0, 

                           YA - Y" - sy = 0) 

                          A ~! 01 8x ~! 0, SY ~! 0, 

n 

                             Oc-R, AeR , sx E R"17 sy E RP. 

    Well, we introduce the 'efficiency' in the CCR model. 

Definition 2.1.1. (CCR-efficiency) A DMUo is CCR-efficient if and only if the 

optimal value E'.1 /-t*yk,, to the problem (CCR) equals one. Otherwise, the                k k 

DMUo is said to be CCR-inefficient. 

Definition 2.1.2. (CCRD-efficiency) A DMUo is CCRD-fffiCzent if and only if 

for the optimal solution (0*, A% s*, s*) to the problem (CCRD), the following                                      x Y 

two conditions are satisfied: 

     (i) 0* is equal to one; 

     (ii) the slack variables s* and s* are all zero.                                      x Y 

Otherwise, the DMUo is CCRD -inefficient. 

    Note that evidently, the above two definitions are equivalent . 

   It is worthy of notice the optimal solution (0*, A% s*, s*) to the dual                                                                  x Y 

problem (CCRD). A DMUo is CCRD-inefficient if 0* is less than one, which rep-

resents the efficiency degree for a DMUo in the CCR model. A CCRD -inefficient 

DMUo can be made more CCRD-efficient by projection onto the CCR efficient
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 generated by the CCR model from the observed data.

4 frontier , i.e. one improves the efficiency degree in the CCR model through the 

proportional reduction of all inputs. The projection of x,, and Y,, yields O*x,, and 

y, respectively, and we obtain

(2.1) O*x,, = XA* + s* and y,, = YA* - s*                                       X V, 

As seen in the above expression (2.1), s* represents surplus of input and s* does 
                                            X Y 

slack of output. O*x,, and y,, can be expressed by a linear combination of the 

other x, and y .,, and thus, DMUo in terms of the CCR model is dominated by 

DMU3, when a ith-component of A* is positive. 

   Consequently, the production possibility set P, in the CCR model is the 

  'We call the CCR efficient frontier generated by the CCR model in order to avoid confusing 
with an efficient frontier, i.e. the set of Pareto optimal values in usual multi-objective pro-

gramming problems. As the same, the BCC efficient frontier and the FDH efficient frontier 
are obtained by the BCC model and the FDH model, respectively.
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convex cone (or conical hull) generated by the observed data, since one takes a 

viewpoint of the fact that the scale efficiency of a DMU is constant, that is to 

say, constant returns to scale. Therefore, P, can be denoted by 

            P, (Y' X) I YA Y, XA:5 X, A ~! 0 

and the definition of CCR-efficiency (or CCRD-efficiency) can be transformed 

into the following: 

Definition 2.1.3. DMUo is said to be Pareto efficient in P, if and only if there 

does not exist (y, x) e P, such that (y, -x) ~! (y,,, -x,,). 

2.2 The BCC Model 

The BCC model of Banker et al. [6] is formulated simil arly to that for the 

CCR model. The dual problem for the BCC model is obtained by adding the 

convexity constraint 1TA = 1 to the dual problem (CCRD) and thus, the variable 

u,, appears in the primal problem. The efficiency degree of a DMUo with respect 

to the BCC model can be measured by solving the problem 

P (BCC) maximize               Ak' Vi) Uo E PkYko Uo 
                              k=1 

M 

          subject to Vixio 11 

                                P 7n 

                      E ILkYki E vxij - uo 0, j 1, - - n, 
                                 k=1 i=1 

                       Pk 'P;



2.2. THE BCC MODEL 

   The dual problem (BCCD) to the problem (BCC) is formulated as follows: 

(BCCD) minimize E(1TS~, + ITS,) 
                             0, A, a., SU 

                subject to XA - Ox. + sx = 0) 

                             YA -'Yo - Sy = 0, 

                            IT,\ = 1, 

                           A ~! 0, Sx ~! 0, Sy > 0, 

n 

                            OcR, AER , sxcRm,sYERP. 

    The definition of 'efficiency' in the BCC model is given as follows, and the 

two definitions are equivalent. 

Definition 2.2.1. (BCC-efficiency) A DMUo is BCC-efficient if and only if the 

optimal value (Epk.1 Pk*Yk, - UO*) to the problem (BCC) equals one. Otherwise, 

the DMUo is said to be BCC-inefficient. 

Definition 2.2.2. (BCCD-efficiency) A DMUo is BCCD-efficient if and only if 

for an optimal solution (0*, A*, s*, s*) to the problem (BCCD), the following                                        x Y 

two conditions are satisfied: 

     (i) 0* is equal to one; 

     (ii) the slack variables s* and s* are all zero.                                x Y 

Otherwise, the DMUo is said to be BCCD -inefficient. 

    The meanings of an optimal solution (0*, A*, s*, s*) to the problem 
                                                               x Y 

(BCCD) are similar to those in the CCR model. In particular, we see that 

the presence of the constraint 1TA = I in the dual problem (BCCD) yields that
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             generated by the BCC model from the observed data. 

the production possibility set P2 in the BCC model is the convex hull generated 

by the observed data. In addition, the constraint ITA = 1 makes it possible to 

consider the scale efficiency (i.e. decreasing, constant and increasing returns to 

scale) under multiple outputs/multiple inputs situations. The one of a DMUo 

is judged by the optimal solution u* to the problem (13CC). Here, u* means an                                                 0 0 

intercept of output-axis. For example, as seen in Figure 2 .2, u* for DMU A is 

0 negative, u* for DMU B is equal to zero, and u* for DMU C is positive . Then               0 0 

the following can be established: 

      (i) increasing returns to scale <=> u* < 0, 

0 

     (ii) constant returns to scale <=> u* = 07 

0 

    (iii) decreasing returns to scale -~* u* > 0. 

0
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Therefore, P2 can be obtained as 

p            2 (Y' X) I yA Y, X'X:!~ X, 1TA = 1, 0 

and the definition of BCC-efficiency (or BCCD-efficiency) can be transformed 

into the following: 

Definition 2.2.3. DMUo is said to be Pareto efficient in P2 if and only if there 

does not exist (y, x) E P2 such that (Y' -X) (Y"' -X.). 

2.3 The FDH Model 

The FDH model by Tulkens [29] is formulated as follows: 

(FDHD) minimize 0 - EWSX + 1'SY) 
                      0, A) SX ~ Sy 

            subject to XA - Ox, +sx = 0) 

                      YA - Yo - Sy = 0, 

                     1TA = 1; Aj E 10, 11 for each 1, - n, 

                       A _? 0, $X > 01 SY ~! 0, 

n 

                       0 E R, A E R , sx E Rm7 Sy C RP. 

However, here, it is seen that the problem (FDHD) is a mixed integer program-

ming problem and hence, the traditional linear optimization methods cannot 

apply to it. An optimal solution is obtained by means of a simple vector com-

parision procedure, to the end. 

   For a DMUo, the optimal solution 0* to the problem (FDHD) is equal to 

the value R* defined by 

0 

                                            Xij 
(2.2) Ro = min max - 7                       iED(o) i: f Xio I
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              j I x., <x,, and y., ~!!y,,, j=l,.-- ni-

             ituted for 0* as the efficiency degree for DMUo in the FDH 

             4 efficiency' in the FDH model is given in the following
. 

            1. (FDH-efficiency) A DMUo is FDH-efflcient if and only if R,*, 

            R* < 1 the DMUo is said to be FDH-inefficient.                         0 7 

           2. (FDHD-efficiency) A DMUo is FDHD-efficient if and only if 

            olution (0*, \*, s*, s*) to the problem (FDHD), the following                                         x Y 

two conditions are satisfied: 

     (i) 0* is equal to one; 

     (ii) the slack variables s* and s* are all zero.                                    x Y 

Otherwise, the DMUo is said to be FD&-mefficient.
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   The above two definitions are equivalent forms, and the production possi-

bility set P3, which is a free disposable hull, is given by 

(2.3) P3 (Y' X) I y,\ y' XA X, IT,\ = 1, Aj E 10, 1}, 1, n 

   Besides, the definition of FDH-efficiency (or FDHD-efficiency) can be trans-

formed into the following: 

Definition 2.3.3. DMUo is said to be Pareto efficient in P3 if and only if there 

does not exist (y, x) E P3 such that (y, -x) ~! (y, -x,,).



Chapter 3 

GDEA Based on Paramet 

Domination Structure

ric

In this chapter, we formulate a GDEA model based on a domination structure 

and define a new 'efficiency' in the GDEA model. Next, we establish relationships 

between the GDEA model and basic DEA models mentioned in chapter 2. 

3.1 The GDEA Model 

We formulate a generalized DEA model by employing the augemented Tcheby-

shev scalarizing function [23]. The GDEA model, which can evaluate the effi-

ciency in several basic models as special cases, is the following: 

(GDEA) maximize A
  411, A/. I Vi 

subject to
              P M 

A :~ d3 + a E Ilk (Yk. - Ykj) + 1/i (- Xi. + Xii)     (k=1 
            1'... , n, 

 P M 

EPk + E 1/i 
k=1 i=1 

Pk7 vi 67 k =17- )p; i= 

         16
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where ji = max IM(M., - Ykj), vi(-xi, + xij) I and a is a positive number. 

    Note that when j = o, the right-hand side of the inequality constraint in 

the problem (GDEA) is zero, and hence its optimal value is not greater than 

zero. We define 'efficiency' in the GDEA model as follows . 

Definition 3.1.1. (a-efficiency) For a given positive number, a, DMUo is de-

fined to be a-efficient if and ony if the optimal value to the problem (GDEA) is 

equal to zero. Otherwise, DMUo is said to be a-inefficient. 

3.2 Relationships between GDEA and DEA 

In this section, we establish theoretical properties on relationships among effi-

ciency in the basic DEA models and that in the GDEA model. 

Theorem 3.2.1. DMUo is FDH-efficient if and only if DMUo is a-efficient for 

some sufficiently small positive number a. 

Proof. (only if part) Let A*, (y*, - - - , pp*) and (v*, - v;~) be the optimal so-
lution for the DMUo. Negate that DMUo is a-efficient for some sufficiently small 

positive oz. Then for any sufficiently small positive a, A* < 0, that is, 

                 P M 

(3.1) dj +a E A*k (Yko - Ykj) + Vj* (- Xio + Xij) < 0 for some j -7~ o.      (k=1 
   The necessary and suffi cient condition so that the above inequality (3.1) 

holds for any sufficiently small positive a is that 

(3.2) dj = MaX JAk*(Yk. - Ykj), Vi*(-Xi,, + Xij) I < 0
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and since (tt*, pp*) and (v*, v,*,,) are strictly positive, the inequality (3.2) 

implies that (yj, -xj) > (y., -x,,) for some j =A o. Thus, J c D(o) and 

 max fxijlxi,,l < 1, which means that R* = min max fxijlxi,,l < 1. This 
i=l,...m 0 jGD(o) i=1,---m 

contradicts the assumption that DMUo is FDH-efficient and therefore, DMUo is 

ce-efficient for some sufficiently small positive a. 

    (if part) Suppose that DMUo is FDH-inefficient. Then R* < 1, which yields 

0 that there exists some j E D (o) j xj < x,, and yj ~! y, j = 1, n I such 

that max 1Xij/Xi0j < 1. Thus, y, y,, and xj < x0 for such a j. For any 
         i=l,.-.m 

positive (IL1, p,) and (vl,, 1/m)) we have 

(3-3) Pk(Yk. Ykj) :!~ 0, k = 1),, * p and ii(-Xio + Xij) < 0, 1 = 1'... M. 

From inequalities of the above (3.3), the following inequalities hold: 

(3.4) ji = Max Ifik(Wo - Ykj), Vi(-Xio + Xij)} !-S 0 

and 

                   P M 

(3.5) E Ak (Yk., - Ykj) + E Vi (- Xi. + Xij) < 0.          (k=1 i=1 
Multiplying (3.5) by any positive a and adding to (3.4) yields that 

                   P M 

       jj+a EPk(Yk.-Ykj)+EVi(-Xi.+Xij) < 0 for some j,          (k=1 i=1 
which is a contradiction to the a-efficiency for some sufficiently small positive a. 

Hence, it has been shown that the DMUo is FDH-efficient. 0 

Theorem 3.2.2. DMUo is BCC-efficient if and only if DMUo is a-efficient for 

some sufficiently large positive number a.
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Proof. (only if part) Let A*, (/,z*l) ' '' 7 AP*) and (v*, - - - , v,*,,) be the optimal so-

lution for the DMUo. Negate that DMUo is a-efficient for some sufficiently large 

positive a. Then for any sufficiently large positive a, A* < 0, that is, we have 

                 P M (3-6) dj + a *(Yko Ykj) + E vi*(-Xio + Xij)) < 0 for some j :A o.         E Ilk         (k=1 i=1 
    The necessary and sufficient condition so that the above inequality (3.6) 

holds for any sufficiently large positive a is that 

                    P M 

(3.7) EPk*(Yk.-Ykj)+EVi*(-Xi0+Xij) <0.          (k=1 i=1 
The inequality (3.7) is rewritten as 

                      P 7a P m 

                 *Yko Vi 
                                 *X

io < IL*Yki *Xii           Ok 1: E k Vi 
                      k=1 i=1 k=1 i=1 

and hence 

            P m P M 

(3.8) I.Z*Yko *Xio 0 k E Vj*Xjj - U* 0.       E k 1: "'i U* < EP*Yki 0 
            k=1 i=1 k=1 i=1 

                    m M rn 

    Let [1k := Mk*1 E vi*xi., j% := vi*1 E vi*xio and fio := u*/ E vi*xi,,. Then, 
0 M 

  flixi,, = I and from the expression (3.8), 

            P M P M 

       1: AkYk,, J~iXio fi. < E AkYkj - 1: PiXii - flo = 0-
            k=1 k=1 i=1 

Therefore, (A,, Pp) and i~m) is a feasible solution of the problem 

P (BCC), E PkYk, fto = Max IE'k=l PkYk, - Uj < 1. This contradicts the 
          k=1 Ak Vi, U. 

assumption that DMUo is BCC-efficient, and hence DMUo is a-efficient for some 

sufficiently large positive a.
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    (if part) Assume that DMUo is a-efficient for some sufficiently large posi-

tive a. Then, there exist (IL*, /-tp*) and (v*, - - i/~,) such that 

                  P M (3.9) ij + a * (Vk. - Ykj) + E Vi* (-Xio + Xij)) n.           E Pk ~! 0         (k=1 i=1 
In the inequality (3.9), the equality holds only when j = o. Since a is a 

sufficiently large positive, we obtain from the inequality (3.9) that for each 

         n, Epk=l Pk*(Yk. - Ykj) + Ei"=% Vi*(-Xi,, + Xij) ~! 0, that is, 

                P 7n P M 

(3.10) A* Yk. Vi 1: /1* yk., - E vi            E k *Xi. k *xij, j n. 
                k=1 k=1 i=1 

m 

   Let Ak Pk*1 E Vi Vi* k                    *Xi-91 Pi E vi*xi. and fi. := (Ep =, AkYk.-Ei'=l ilixio) 

Then from the inequality (3.10), we get Em, j%xi,, = 1 and 

                 P m P M 

        fl. AkYk. PiXio =i' 1: iLkYkj Pixii, i = 1, n. 
                   k=1 i=1 k=1 i=1 

This implies that (Al, ... 7 Ap) and (Pi, - - - , j~m) is a feasible solution of the prob-

lem (13CC) and Epk=l AkYk, - fio = 1naXJEP=1 AkYk. - U.1 = 1- Consequently, 
                                                        A',/~Uo k 

we established that the DMUo is BCC-efficient. 

P 

   Consider the problem (GDEA') in which the constraint Ek =1 AkYko = Ei=1 Vixio 

is added to the problem (GDEA): 

(GDEA') maximize A 
                     A7Ak7vi 

           subject to A < ij + a P M                               E Ak (Yko - Ykj) + E Vi Xio + Xij))                          (k=1 i=1 
                            P m 

                     E PkYko E Vixio 0, 
                                 k=1 i=1 

                            P m 

                   E Pk + V" 
                               k=1 

                       Ak, vi k p; i = 1,
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where MaX fltk(Yk. - Ykj), ili(-xi, + xij)} and a is a given positive num-
                      k="..-,p 

ber. 

Theore'm 3.2.3. DMU6 is CCR-efficient if and only if DMUo is a-efficient for 

some sufficiently large positive a when regarding the problem (GDEA) as the 

problem (GDEA'). 

Proof. (only if part) Assume that DMUo is CCR-efficient. Then, from the 

definition of CCR-efficiency and constraints of the problem (CCR), it follows 

       P= k zli*xio and E'=, p* ykj E' 1 i/i* xij, n, that Ek I A*Yko Ei=1 k k i-

where (IL*, pp*) and (v*, v,*,,) is an optimal solution to the problem (CCR). 

That is, 

               P M 

             #* (Yk, - Ykj) + E Vj* (-Xio + Xij) 0, n, 

k 

                 k=1 i=1 

which implies that at least one of Izk* (yk- - ykj), k 1, - - p and vi* (-Xio + 

xij) , i = 1, - - - , m is non-negative. 

    Let fik := p*/(EP=j p* + E' 1 vi*) and i% := vj*1(EP=j ji* + E' 1 j/j*), then                 k k k i= k k i= 

E P= i= 'i = 1- k jAk+Emj~ 

Furthermore, dj = MaX f Ak (Yk. - Ykj), J% (- Xio + Xij) n are non-
                                      k=l,..-,p 

                       i=11"M 
negative and for some sufficiently large positive a, we have 

                   P M 

(3-11) jj + a 1: Ak (Yko Ykj) + 1: 1/i (-Xio + xij) 0, j 1, n.          (k=1 i=1 
Hence, (fil, Ap) and b~,j are feasible in the problem (GDEA') and an 

optimal value A* is equal to zero, from the inequality (3.11). Thus, we showed 

that the DMUo is a-efficient for some sufficiently large positive a in the problem 

(GDEA').
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    (if part) Assume that DMUo is a-efficient for some sufficiently large posi-

tive a when regarding the problem (GDEA) as the problem (GDEA'). Then, by 

a-efficiency of the DMUo, we obtain 

                             P M 

         0 = A* :5 ji + a k xio + xij)                    1: A* (Yk. - Ykj) + Vi           (k=1 
                                   P 7n 

(3.12) jj - a P * Ykj *Xij j n,          E k           (k=1 
where A*, (/t*, - - - , ILP*) and (v*, v,*n) is an optimal solution to the problem 

(GDEA'). 

   From the fact that the above inequality (3.12) holds for sufficiently large 

positive a, the following inequality is obtained. 

                     P M 

(3-13) E Pk* Ykj 1: Vi* Xij _:!~ 0, j = I,. n. 
                        k=1 i=1 

M 

    Let Ak := Pk*1 E vi*xio and t~j := vj*1 E vi*xi,,. Then, in this equality (3.13), 
                     i=1 i=1 

  p 
j=1 bixij < 0, for all 1, - - - , n and by the second constraint   k=1 AkYki - Em 

of the problem GDEA', Ep. Ern, Pixio = 1 holds.                       k I AkYko i= 

   Therefore, ~p) and (j~j, - - - , [/m) is a feasible solution of the problem 

(CCR) and an optimal value Ek=l AkYko is equal to zero. Thus, we showed that 

the DMUo is CCR-efficient. 0

   From the stated theorems, it is seen that the CCR-efficiency, BCC-efficiency 

and FDH-efficiency for each DMU can be evaluated by varying the parameter a 

in the problem (GDEA).
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3.3 An Illustrative Example 

In this section, we explain the a-efficiency in the GDEA model with a simple 

illustrative example and reveal domination relations among all DMUs by GDEA . 

   Assume that there are six DMUs which consume one input to produce one 

output, as seen in Table 3.1. 

            Table 3.1: An Example of 1-input and 1-output.

DMU A B D E F

input 2 3 4.5 4 6 5.5

output 1 3 3.5 2 5 4

    Table 3.2 shows the results of efficiency in the basic DEA models and ce-

efficiency in the GDEA model. In the upper half part of Table 3.2, we see that 

a DMU is efficient if the optimal value is equal to one in the CCR model, the 

BCC model and the FDH models, respectively. The lower half part of Table 

3.2 shows the a-efficiency by changing a parameter a. It can be seen that if 

a = 0.1, the a-efficiency of each DMU is the same as the FDH-efficiency . If 

a = 10, the a-efficiency of each DMU is the same as the BCC-efficiency, and 

moreover if a = 10 in the problem (GDEA), then the a-efficiency is equivalent 

to the CCR-efficiency. Furthermore, Figure 3.1-Figure 3.3 represent the efficient 

frontier generated by varying a in the GDEA model. 

   Through this example, it was shown that by varying the value of parameter 

a, various efficiency of the basic DEA models can be measured in a unified way 

on the basis of this GDEA model, and furthermore the relationships among 

efficiency for these models become transparent.
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  Table 3.2: The Optimal values in basic DEA models and GDEA model .

DMU A B c D E F

CCR model 0.50 1.00 0.78 0.50 0.83 0.73

BCC model 1.00 1.00 0.83 0.63 1.00 0.75

FDH model 1.00 1.00 1.00 0.75 1.00 1.00

(i) a = 10

(GDEA')

-9.33 0.00 -3 .25 -11.33 -0 .73 -3 .74

10 0.00 0.00 -2 .10 -11.00 0.00 -3.35

3 0.00 0.00 0.00 -4 .00 0.00 -0 .55

(iv) a = I 0.00 0.00 0.00 -2 .00 0.00 0.00

(v) a = 0.1 0.00 0.00 0.00 -1 .10 0.00 0.00

output 
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4 

3 

2 

1 

0

I

I

              0,-,;--.,--,1.3' F

                    2 3 4 5 6 

                                         input 

Figure 3.1: Efficient frontier generated by GDEA model with a *--. 0.
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                                          input 

Figure 3.2: Efficient frontier generated by GDEA model with a 10. 

     output 
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         3 C 
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          0 2 3 4 5 6 

                                          input 

Figure 3.3: Efficient frontier generated by GDEA' model with a = 10.
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Chapter 4 

GDEA Based on Production 

Possibility

In this chapter, we consider a dual approach to GDEA introduced in chapter 3 . 

We formulate a GDEAD model based on the production possibility set and define 

Cefficiency' in the GDEA
D model. Next, we establish relationships between the 

GDEAD model and dual models to basic DEA models introduced in chapter 2 .

4.1 The GDEADModel 

To begin with, an output-input vector zj of a DMUj, i = 1, n and output-

input matrix Z of all DMUs respectively, denoted by 

               zj Yj j=l,-..,n and Z:=                                          _X       X) ( Y 

In addition, we denote a (p + m) x n matrix Z,, by Z,, := (ZO, ZO), where o 

is the index of DMU to be evaluated. 

   The production possibility sets in the CCR model, the BCC model and the 

                        26
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FDH model in chapter 2 are reformulated as follws: 

          PI, = Iz I ZA ~! Z, A ~! 0 1 

          p1=1ZIZA~!Z, TA=l, A~!o 

2 

          p, = {Z I ZA Z, 1T,\              3 = 1, Aj E 10, 11, j = 1'... n} 

and the 'efficiency' in these models are redefined. 

Definition 4.1.1. DMUo is said to be Pareto efficient in Pl' if and only if there 

does not exist (y, X) E P,' such that (y, -x) ~! (y,,, -x,). 

Definition 4.1.2. DMUo is said to be Pareto efficient in P2' if and only if there 

does not exist (y, x) cz P2' such that (y ~ -X) ~! (Y", - X.) -

Definition 4.1.3. DMUo is said to be Pareto efficient in P3' if and only if there 

does not exist (y, x) c P3' such that (V, -X) ~! (Y", -X.). 

    The definitions 4.1.1-4.1.3 are corresponding to the CCR-efficiency (or CCRD-

efficiency), BCC-efficiency (or BCCD-efficiency) and the FDH-efficiency (or FDHD-

efficiency), respectively. 

   The dual problem to the problem (GDEA') introduced in chapter 3 is for-

mulated as follows: 

(GDEAD) MiniMiZe W _ ElTS;~ 
                              W, r., X, 8, 

              subject to Ja(Z,, - Z) + D,,J A - w + s,~ + 0 

                       1TA = 1 ) 

                       A ~! 0, s ., ~! 0,
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where w = (w, - - - , w) and a is a given positive number. A (p + m) x n matrix 

D~, := (dj, - - , d,,) is a matrix (Z - Z,,) is replaced by 0, except for the maximal 

component (if there exist plural maximal components, only one is chosen from 

among them) in each row. 

    Especially, it is seen that when K is fixed at 0, a problern (GDEAD) becomes 

the dual problem to the problem (GDEA), Since K is dual variable to the second 

constraint in the problem (GDEA). 

    We define an 'efficiency' for a DMUo in the GDEAD model. 

Definition 4.1.4. (aD-efficiency) For a given positive a, DM,Uo is said to be 

aD-efflcient if and ony if the optimal solution (W*, K*, A*7 s*) to the problem 

Z (GDEAD) satisfies the following two conditions: 

     (i) w* is equal to zero; 

     (ii) the slack variable s* is zero. 

Z Otherwise, DMUo is said to be aD-inefficient. 

    We, particularly, note that for an optimal solution (w *, r,*, X% s* ) to the 

Z problem GDEAD, w* is not greater than zero because of the strong duality of 

(GDEA) and (GDEAD) (in linear programming problem), and'non-Archimedean' 

property of E. 

4.2 Relationships between GDEAD and DEA 

In this section, we establish theoretical properties on relationships among effi-

ciencies in basic DEA models and the GDEAD model.
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Theorem 4.2. 1. Let r, be fixed at 0 in the problem (GDEAD). DMUo is Pareto 

efficient in P3' if and only if DMUo is aD-efficient for sorne sufficiently small 

positive number a. 

Proof. (only if part) Assume that DMUo is Pareto efficient in P3. Then, there 

does not exist A such that 

(4.1) zj = ZA > Z"A = Z~. 

where A E JA I 1T A=1, AjEJ0,11, j=l,---,nj-

    Negate that DMUo is OeD-efficient for some sufficiently small positive Ce. 

Then, for an optimal solution (w*, s*, A*) to the problem (GDEAD), W* < 0 

z or s* > 0. In other words, for any sufficiently small positive a, the following 
     z -

inequality holds. 

(4.2) Ja(Z.-Z)+DzjA =W -s*<O.                                                               Z-

The necessary condition that the inequality (4.2) holds for any sufficiently small 

positive a is that D,,A* < 0, This implies dj < 0, for some j, since X* > 0. 

Besides, from the definition of dj, we have z,, - zj :5 0. This is a contradiction 

to the inequality (4.1). 

   (if part) If DMUo is aD-efficient for some sufficiently small positive a, 

then from the first constraint of the problem (GDEAD), the following equality 

is obtained. 

(4.3) fa(Z,, - Z) + D,,j A* = w* - s* = 0, 

z where (w*, s*, A*) is an optimal solution to the problem (GDEA         z D) -
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Suppose that DMUo is not Pareto efficient in P3. Then there exists z C P3' such 

that z > z,. this means that 

(4.4) Zj = Z~ > Z"~ = Z" IIT~ ~~EfO,11, j=l,-.-,nl. 

From the expression (4.4), dj < 0 for j 1 and D,,:X < 0. Multiplying the 

inequality of (4.4) by an arbitrary positive a and adding it to D,i yields 

                  fa(Z~ - Z) + D.~),~ = Co - ~;~ < 0 

and thus, (c.~, is a feasible solution of the problem (GDEAD). However, 

this contradicts the fact that the expression (4.3) holds for (W*, S*, X*). 

z Theorem 4.2.2. Let K be fixed at 0 in the problem (GDEAD). DMUo is Pareto 

efficient in P2' if and only if DMUo is CeD-efficient for some sufficiently large 

positive number a. 

Proof. (only if part) Assume that DMUo is Pareto efficient in P2. Then, there 

does not exist A such that 

(4.5) z=ZA>Z,,A=z,,, AEfAj IT A = 1, A ~! 01. 

   Negate that DMUo is aD-efficient for some sufficiently large positive a. 

Then, from the aD-efficiency od DMUo, it is seen that w* < 0 or s* > 0 for an 
                                                                                     z -

optimal solution (w*, s*, A*) to the problem (GDEAD). This means that for any 

z sufficiently large positive a, 

(4.6) ja(Z,, - Z) + Dzj A* = w* - s* < 0.                                                            z -
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The necessary condition that the inequality (4.6) holds for any sufficiently large 

positive a is that 

           (Z, - Z)A' < 0, A' E JA I 1TA = 1, A 01. 

This is a contradiction to the expression (4.5). 

   (if part) If DMUo is aD-efficient for some sufficiently large positive a, 

then from the first constraint of the problem (GDEAD), the following equality 

is obtained. 

(4.7) ja(Z,, - Z) + D,,j A* = w* - s* = 0, 

z where (w*, s*, A*) is an optimal solution to the problem (GDEAD)-

z Suppose that DMUo is not Pareto efficient in P2. Then there exists z P2' such 

that z > z.. This means that 

(4.8) zj = Z,~ > Z,,i = z,,, ~ E JIT'\ = 1, 01. 

Hence, for a sufficiently large positive a, 

                  ja(Z,, - Z) + D,,j Co - ~.r < 0 

and thus, (Co, is a feasible solution of the problem (GDEAD). However, 

this contradicts the fact that the expression (4.7) holds for (W*, s*, A*). 

z Theorem 4.2.3. DMUo is Pareto efficient in Pl' if and only if DMU6 is aD-

efficient for some sufficiently large positive number a. 

Proof. (only if part) Assume that DMUo is Pareto efficient in P3. Then, there 

does not exist A > 0 such that 

(4.9) z = Z,\ > Z"A = Z".
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Negate that DMUo is aD-efficient for some sufficiently large positive a. Then, 

from the aD-efficiency, it is seen that w* < 0 or s* > 0 for an optimal solution 

z 

   K sz) A*) to the problem (GDEAD). This means that for any sufficiently 

large positive a, 

(4.10) ja(Z, - Z) + Dv z -                                 A* + K*Z~ = W* - 8* < 0. 

The necessary condition that the inequality (4.10) holds for any sufficiently large 

positive a is that 

           (Z, - Z)A* < 0, A* E J'\ I IT A = 1, A ~! 01. 

This is a contradiction to the expression (4.9). 

   (if part) If DMUo is aD-efficient for some sufficiently large positive a, 

then from the first constraint of the problem (GDEAD), the following equality 

is obtained. 

(4.11) ja(Z. - Z) + D.~j V + K*z,, = w* - s* = 0. 

z where (w*, r,*, s*, A*) is an optimal solution to the problem (GDEAD)-

z 

    Suppose that DMUo is not Pareto efficient in Pj'. Then there exists z E Pl' 

such that z > z,,. This implies that there exists such that 

(4.12) Z" - Z'~ < 07 0. 

   Let X:= ~/En 1 Aj. Then we have I TX I and -A > 0. (If A = 0, then 
             j= 

from the inequality (4.12), z, < 0 and this contradicts to the positiveness of
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inputs and outputs.) The inequality (4.12) becomes 

                   I - -      0 
> z,-ZA=z,-ZA+ --1 

                 j JT            fn=- En Aj 

z 

            (ZO - Z)X + En I ZO.              ( j=1 ~j 
and by multiplying the inequality (4.13) by a sufficiently large positive a, which 

renders the inequality sign of it to remain though adding D,,X to the right hand 

side of it, we have 

           0 > Ja(Z,,-Z)+D,~jX+a fn-- -1 
                                                    j=IT                        j )'Zo 

Define 9 by R:= a (1/En 1), thus, (0, K, X) is a feasible solution of 
                   j= 

the problem (GDEAD). However, this contradicts the fact that the expression 

(4. 11) holds for (w*, r,*, S* , X*). r-1 

z 4.3 Optimal Solutions to (GDEAD) 

In this section, we explain the meaning of optimal solutions w*, A% s* to the 

z problem (GDEAD)-

    w* gives a measurement of relative efficiency for DMUo. In other words, it 

represents the degree how inefficient DMUo is, that is, how far DMUo is from 

the efficient frontier generated with the given a. A* := (A*J) A*) represents a 

n domination relation between DMUo and another DMUs. That is, it means that 

the DMUo is dominated by DMUj if Aj for some j =,4 0 is positive. 5* represents 

X the slack of inputs and s* does the surplus of outputs for performance of the 

DMUo.
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    Consider an illustrative example as shown in Table 4.1. Table 4.2 shows the 

results of the CCR-efficiency, BCC-efficiency and FDH-efficiency, respectively, in 

the example. 

            Table 4.1: An Example of 1-input and 1-output.

DMU A B c E F G

input 3 8 6 5 10 7

output 1 6 2 4 6 4

Table 4.2 : Optimal value in the problems (CCR), (BCC) and (FDH).

DMU CCR model BCC model FDH model

A 0.5 I I

B I I 1

c 0.75 1 1

D 0.333 0.417 0.5

E 0.8 0.933 1

F 0.6 -2 x 10-6 0.8

G 0.571 0.667 0.714

   Table 4.3 shows the optimal solution (w*, n*, A*, s*) to the problem (GDEAD) 

z (6 = 10-') when a is given as 10' and K is fixed at 0. Table 4.4 shows the op-

                       z - = 10-') when a is timal solution GO r.*,,\*Is*) to the problem (GDEAD) 

given by 10 and K is fixed at 0. Finally, Table 4.5 shows the optimal solution 

P% r,*, A*, s*) to the problem (GDEAD) 10-') when a is given as 10. 

z 

   Here, we can see that the FDH-efficiency, BCC-efficiency and CCR-efficiency 

are equivalent to the a-efficiency, respectively, from the result of Tables 4.3-
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Tables 4.5 and Figure 4.1-Figure 4.3. In other words, the FDH-efficiency, BCC-

efficiency and CCR-efficiency can be obtained by changing the paremter a in the 

GDEAD model. 

    Now, we interpret a meaning of optimal solutions (W*, K A* I s*) to the 

Z problem (GDEAD). Note that w* gives a measurement of relative efficiency for 

DMUo. In other words, it represents the degree how inefficient DMUo is, that 

is, how far DMUo is from the efficient frontier generated with the given a. 

    A* := (A*, A*) represents a domination relation between DMUo and               I n 

another DMUs. That is, it means that the DMUo is dominated by DMUj if Aj 

for some j =A o is positive. For example, as seen in Table 4.3, the optimal solution 

for the DMU D is A* = 0.5 and A* = 0.5, and hence DMU D is dominated by                   B E 

DMU B and DMU E. (See Figure 4.1.) In addition, in Table 4.4, the optimal 

solution for the DMU E is A* = 0.631 and A* = 0.369, and hence DMU E is                          B C 

dominated by linear combination of DMU B and DMU C. (See Figure 4.2.) As 

seen in Table 4.5, the optimal solution for the DMU C is A* = 1, and hence 

B DMU D is dominated by a point on line through DMU B and original point. 

(See Figure 4.3.) 

    S. represents the slack of inputs and s* does the surplus of outputs for 

Y performance of the DMUo. For instance, DMU G has the optimal solution 

W* = 0) A* = 1 and s* = 0, and it is a-inefficient because s* is not equal to zero          E 0 X 

although w* = 0. It implies that DMU G has the suplus amount of input than 

DMU E with the same output.

I
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  Table 4.3: Optimal solution to (GDEAD) with a = 10-' and fixed r, = 0.

DMU w * A*

A A* =1A (0, 0)

B A* =113 (0, 0)

c A* =1c (0, 0)

D -0 .5 A* = A* = 0.5B E (0, 0)

E A*E (0, 0)

(2, 0)

A* = 1 (2, 0)

output 
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Figure 4. 1: 

fixed.K = 0.

          1 2 3 4 5 6 7 8 9 10 
                                               input 

Efficient frontier generated by GDEAD model with a = 10-6 and
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   Table 4.4: Optimal solution to (GDEAD) with a = 10 and fixed n = 0.

DMU Lv* A * (s*, 8 yz x

A 0 A*

A

(0,0)

B A*

B

(0, 0)

c 0 A* = 1

c

(0,0)

D -7 .803 A* = 0.765, A* = 0.235B c (0,0)

E -0 .441 A* = 0.631~ A* = 0.369B c (0,0)

F 0 A* = 1c (20, 0)

G -8 .281 A* = 0.378,A* = 0.622B c (0, 0)

output 

6 

5 

4 

3 

2 

1 

0

F

                U 1 2 3 4 5 6 7 

Figure 4.2: Efficient frontier generated by GDEAD 

r, = 0.

B 9 10 
        input 

model with a = 10 and fixed
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   Table 4.5: Optimal solution to (GDEAD) with a = 10 and non-fixed r..

DMU W* A* S* = (s*, s y
z x

K *

A -11 .333 A* =Ic (0,0) 38.667

B 0 A*

B

(0, 0) 0

c -2 .571 A*

B

(0, 0) -5 .929

D -24 .500 A* =1c (0, 0) 7.750

E -2 .778 A* = 1 (0, 0) -3 .444

F -7 .500 A* =1

c

(0, 0) -1 .250

G -8 .727 A* =1c (0, 0) 2.818

output 

6 

5 

4 

3 

2

s
C

a
F

0
E

a
G

B

4
D

9

A

Figure 4.3: 

non-fixed K.

          1 2 3 4 5 6 7 8 9 10 
                                       input 

Efficient frontier generated by GDEAD model with a = 10 and



Chapter 5 

Comparision between GDEA 

DEA Models with Real Data

and

In this chapter, we compare the efficiency in basic DEA models and GDEA model 

with a real data. 

    The data for thirteen Mexican commercial banks in two years (1990-1991) 

is from Taylor et al. [30]. As shown in Table 5.1, each bank has total income 

as the single output. Total income is the sum of a bank's interest and non-

interest income. Total deposits and total non-interest expense are the two inputs 

used to generate the output. Interest income includes interest earned from loan 

activities. Total non-interest income includes dividends, fees, and other non-

interest revenue. The total deposits input variable includes the bank's interest 

paying deposit liabilities. Total non-interest expense includes personnel and 

administrative costs, commissions paid, banking support fund contributions and 

other non-interest operating costs. 

   Thus, we evaluate the efficiency for each bank with the annual data, that 

is, consider a-efficiency corresponding to several values a = 0.1, 0.5, 1, 10, 15 

(only 1991) and 10'. Therefore, Table 5.2 and Table 5.3 represent the results of 

                         39
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analyses by the basic DEA models and the GDEA model. (In this example, FDH-

efficiency is not mentioned, since it can be evaluated by vector comparision.) 

    As shown there, GDEA model with a = 0.1 provides FDH efficiency . It 

means that there is no change in a-efficient DMUs for smaller a than 0 .1. In 

addition, GDEA model with a = 10 yields BCC efficiency in Table 5 .3, while 

a = 15 does in Table 5.4. Also, there is no change in a-efficiency of DMUs , even 

if taking greater a than 10 or 15. Moreover, CCR-efficiency can be conducted by 

taking a sufficiently large in the GDEA model adding the constraint XTV = yTy . 
                                                                                   0 0 

From this fact, we see that the number of efficient DMUs decreases as a parameter 

a increases in general. 

    Particularly, note the a-efficiency for a = 0.5 and a = 1: This represents 

an intermediate efficiency between FDH-efficiency and BCC-efficiency . Among 

decision making problems, there exist the cases that it is impossible to correspond 

to a special value judgement of decision makers such as "ratio value efficiency"' 

in the CCR model, "sum value efficiency"' in the BCC model , and so on. In 

contrast to the existing DEA models, GDEA model can incorporate his/her 

various value judgement by changing a parameter a, and then several kinds of 

efficiency of the basic DEA models can be measured in a unified way on the basis 

of the GDEA model. Furthermore, the relationships among efficiency for these 

models become transparent by considering GDEA.

  'We named the CCR-efficiency ratio value efficiency, because the ratio of the weighted sum 
of outputs to the weighted sum of inputs is maximized by the CCR model. See [33].   'We named the BCC-efficiency sum value efficiency, because the difference of the weighted 
sum of outputs and the weighted sum of inputs is maximized by the BCC model. See [33].
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Chapter 6 

Application of GDEA to 

Multi-objective Optimization

In multi-objective optimization problems, there does not necessarily exist the 

solution that optimizes all objective functions simultaneously, and then the con-

cept which is called Pareto optimal solution (or efficient solution) is introduced 

[23]. Usually, there exist a number of Pareto optimal solutions, which are con-

sidered as candidates of final decision making solution [19]. It is an issue how 

decision makers decide one from the set of Pareto optimal solutions as the final 

solution. Consequently, interactive multi-objective optimization methods have 

been developed to this end. In many practical problems such as engineering de-

sign problems, however, criteria functions can not be given explicitly in terms of 

design variables. Under this circumstance, values of criteria functions for given 

value of design variables are usually obtained by some analyses such as structural 

analysis, thermodynamical analysis or fluid mechanical analysis. These analyses 

require considerably much computation time. Therefore, it is not unrealistic to 

apply existing interactive optimization methods to those problems. 

   Recently, multi-objective optimization methods using genetic algorithm (GA)

44
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have been studied actively by many authors [2, 7, 14, 16, 26, 27]. GAs are useful 

for generating efficient frontiers with two or three objective functions. Deci-

sion making can be easily performed on the basis of visualized efficient frontiers. 

However, these methods have the following shortcomings; there is a tendency 

for VEGA (Vector Evaluated Genetic Algorithms) [24] to generate such solu-

tions that one of the objective functions is extremely good. It is difficult to 

generate smooth efficient frontier by ranking methods [14, 16]. Moreover, many 

non-dominated individuals generated at intermediate generation in these meth-

ods are inot necessarily exact Pareto optimal solutions. By the method using 

DEA, which was proposed by Arakawa et al. [2], almost of all non-dominated in-

dividuals obtained at intermediate generations become Paxeto optimal solutions. 

However, the DEA method cannot , produce the sunken part of efficient frointier, 

because CCR model [8] or BCC model [61 is used of DEA there. 

   In this chapter, we employ GDEA as the fitness of GA [36, 37] in order 

to generate Pareto optimal solutions in multi-objective optimization problems. 

Consequently, we prove that GDEA can remove dominated individuals faster 

than methods based on only GA, and overcomes the shortcomings of existing 

methods. The proposed method can yield desirable efficient frontiers even in 

non-convex problems as well as convex problems. Finally, the effectiveness of 

the proposed method will be shown through several numerical examples. 

6.1 Multi-Objective Optimization Methods 
    Using GAs 

Consider a multi-objective optimization problem (MOP):
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(MOP) minimize f (X) = (f, f"' (X))T 

X 

          subject to x E S x E Rn gj(X):!~ 0, j I 

where x (= (XI, Xn )T) is a design variable and S is the set of all feasible 

solutions. 

   In general, unlike traditional optimization problems with a single objective 

function, an optimal solution which minimizes all objective functions fi (X) (i == 

1, - - - , m) simultaneously does not necessarily exist in the problem (MOP). Hence, 

the concept of Pareto optimal solution is introduced as follows [23]: 

Definition 6.1.1. (Pareto optimal solution) A point b E S is said to be a 

Pareto optimal solution to the problem (MOP) if there exists no x G S such that 

f _< f (-+) -

   A final decision making solution to the problem (MOP) may be found from 

the set of Pareto optimal solutions by existing methods, for example, aspiration 

level techniques [23], if the value of objective function can be obtained easily. In 

cases in which it takes much computation time to evaluate objective functions, 

however, interactive methods become unsuitable due to the time limitation in 

decision making. In the problem (MOP) with two or three objective functions, 

under this circumstance, figuring out efficient frontiers helps decision makers 

decide the final solution. 

   In order to generate efficient frontiers, Schaffer [26] proposed the vector 

evaluated genetic algorithms (VEGA), in which sub-populations of the next gen-

eration are reproduced from the current population according to each of the
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                    Figure 6.1: Ranking method 

objective functions, separately. Since then, several approaches have been stud-

ied by many authors [2, 14, 16, 29]. To begin with, we give a brief explanation 

on the ranking method given by Fonseca et al. [14]. Consider an individual x1 

at a generation which is dominated by n individuals in the current population. 

Then its rank is given by (I + n): From this, we can see that all non-dominated 

individuals are assigned rank 1. In Figure 6.1, each number in parentheses rep-

resents the rank of each individual and the curve represents the exact efficient 

frontier. The ranking method based on the Pareto domination among individuals 

has a merit to be computationally simple. However, the ranking method has a 

shortcoming to need to repeat GA process until a large number of generations, 

since non-dominated individuals in the current generation such as C and G in 

Figure 6.1 are often kept alive long, even though they are not Pareto optimal 

solutions in the final generation.
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                 Figure 6.2: GA with DEA method 

    Arakawa et al. [2] suggested a method using DEA in order to overcome 

the shortcomings of the methods stated above. In the method using DEA, the 

efficiency 0 of an individual x' (o = 1, p) is given by solving the following 

linear programming problem: 

            minimize 0 
                        0 'x 

          subject to [f (X'), f (xP)j A - Of (xo) :5 0, 

                   A ~! 0) A E RP. 

The degree of efficiency 0 represents how far f (xO) is from the DEA-efficient 

frontier. And only when 0 is equal to one, f (xo) is located on the DEA-efficient 

frontier. Selection in GA is performed by taking the degree of efficiency 0 for 

fitness. In other words, this method investigates the relation of domination 

among individuals with respect to the shaded region in Figure 6.2. In this figure,
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the solid curve represents the exact efficient frontier and the dotted line represents 

DEA-efficient frontier at a generation. As shown in there, individuals C and G 

are removed fast, and then a good approximation of the exact efficient frontier 

1 can be obtained efficiently. Therefore, when the efficient frontier is convex , 

non-Pareto solutions can be removed at a young generation. However, when the 

efficient frontier is non-convex, the sunken part of it can not be generated by the 

method using DEA. 

6.2 Multi-Objective Optimization Combining 
    GDEA and GA 

In this section, we propose a method combining GDEA and GA to overcome the 

shortcomings of the ranking methods and the method using DEA. In applying 

GA to problems with constraints, we introduce an augmented objective function 

using penalty functions imposed on constraints. Here, an augmented objective 

function of fi (i = 1, m) in the problem (MOP) is given by 

           Fi (x) = fi (x) + pj x I [gj (x)] + 
                                        j=1 

where pj is a penalty coefficient, a is a penalty exponent and [y]+ = max ly, 01. 

   Thus, the initial problem (MOP) can be converted into a problem to min-

imize the augmented objective function (Fi (x), F. (x)). Here, we need to 

prepare the data set in order to evaluate the a-efficiency of an individual xO in 

the current population. Let inputs and outputs in GDEA model be substituted 

  'Let E be an efficient frontier set in RI and let R' be the non-negative orthant in the 
objective space. Then we say the efficient frontier to be convex if (E + RI) is a convex set. 
Otherwise, the efficient frontier is non-convex.
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by a value Fi(x') and the unit, respectively. Then the problem (GDEA) reduces 

to the following problem (P). 

(P) maximize A 

M 

      subjectto A:~jj-aE11j(Fj(x')-Fj(xj)), j=1'W..1P7 

          Evi 
                      Vi )M) 

wheredj= max Jvj (-Fi(x") +Fj(xj))j and a is the value of amonotonically 

decreasing function with respect to the number of generations. 

   Practically, a is given by 

                a(t) := w - exp(-0 - t), t = 0, 1, N) 

where w, 3 and N are positive fixed numbers. w a(O)) is determined to 

be sufficiently large as 10, 10' and 101. N (the number of generations until the 

termination of computation) is given by the time limitation for decision making. 

For given w and N, 0 is decided by solving the equation a (N) = w - exp (-,3. N) 

0. 

   The degree of a-efficiency of an individual x1 in the current population 

is given by the optimal value A* to the problem (P), and is considered as the 

fitness in GA. Therefore, the selection of an individual is determined by the 

degree of a-efficiency, i.e. if A* equals to zero, the individual remains at the next 

generation. With making the best use of the properties of GDEA, it is possible 

to keep merits of ranking methods and the method using DEA, and at the same
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        Figure 6.3: When a is a sufficiently large positive number 

time, to overcome the shortcomings of existing methods. Namely, taking a large 

a can remove individuals which are located far from the efficient frontier, and 

taking a small a can generate non-convex efficient frontiers. (See Figure 6.3 and 

6.4.) 

   Finally, the proposed method is summarized as follows: 

Step 1. (Initialization) 

    Generate p-individuals randomly. Here, the number of p is given a prior. 

Step 2. (Crossover - Mutation) 

    Make p/2-pairs randomly among the population. Making crossover each 

    pair generates a new population. Mutate them according to the given
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        Figure 6.4: When a is a sufficiently small positive number 

    probability of mutation, if necessary. 

Step 3. (Evaluation of Fitness by GDEA) 

    Evaluate the GDEA-efficiency by solving the problem (P) 

Step 4. (Selection) 

    Select p-individuals from current population on the basis of the fitness given 

    by GDEA-efficiency. 

   The process Step 2-Step 4 is continued until the number of generations 

attains a given number.
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6.3 Illustrative Examples 

We consider the following examples with two objective functions. 

Example 1 

             minimize (fl(X), f2(X)) = (X1, X2) 

0 

              subject to (xi - 2)2 + (X2 - 2)2 - 4 < 01 

                             X1 >_ 0, X2 0-

Example 2 

            minimize (f, (x), f2 (x)) (2xi - X2, - X1) 

0 

            subject to (XI 1)3 + X2 0, 

                      X1 0, X2 ~! 0. 

Example 3 

              minimize (A(X), f2(X)) = (X1, X2) 

                   subject to x 3 - 3x, - X2 < 0, 

1 

                           X1 1, X2 < 2. 

   The efficient frontier in Example 1 is convex, and non-convex in both Ex-

ample 2 and Example 3. In order to show the effectiveness of GDEA method, 

we compare the results by (a) ranking method, (b) DEA method and (c) GDEA 

method. Parameters in GA and the problem (P) are set as follows: 

 (i) the number of generations : 10, 20, 30 (examples 1-3) 

 (ii) the size of population : 80, 

(iii) the representation of chromosome : 10 bits 

(iv) the probability of crossover : 1,
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 (v) the probability of mutation 0.05 

(vi) a(t) = 

       10 x exp(-0.6 x t), t 0, - - - , 10 

                      (when the maximal number of generation is 10) 
       10 x exp(-0.3 x 0, t = 0, - - 120 

                      (when the maximal number of generation is 20) 
      10 x exp(-0.2 x t), t = 0, .. 30 

                       (when the maximal number of generation is 30) 

(Vii) e 10-6. 

   The elitist preserving selection [161 is adopted. The results are shown in 

Figure 6.5-6.7. The horizontal axis and the vertical axis indicate the values 

of objective functions f, and f2, respectively. The symbol 0 represents a Pareto 

optimal solution among the whole generations, and o does a non-dominated indi-

viduals at some generation but not Pareto optimal among the whole generations. 

Note here that non-dominated individual depends on the domination structure 

of each method: For example, individuals with rank 1 are non-dominated in 

ranking method, the ones with 0* = I are non-dominated in DEA method. In 

GDEA method, non-dominated individuals are identical with a-efficient ones. 

    (a) Ranking method 

        We obtained relatively many Pareto optimal solutions. How-

         ever, there are also many non-Pareto optimal solutions among 

        non-dominated individuals at each generation. Moreover, it is 

        usually difficult to generate smooth efficient frontiers as shown 

       in (a) of Figure 6.5-6.7.
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    (b) DEA method 

         Many non-dominated individuals at each generation become fi-

        nally Pareto optimal among the whole generation in (a) of Fig-

         ure 6.5, nevertheless the obtained Pareto optimal solutions are 

        fewer than by the ranking methods. On the other hand, for non-

        convex efficient frontiers in (b) of Figure 6.6 and Figure 6.7, the 

        sunken part of it can not be generated by this method. There-

        fore, DEA method cannot be applied to multi-objective opti-

         mization problems with non-convex functions. 

    (c) GDEA method 

        In (c) of Figure 6.5-6.7, the largest number of Pareto optimal 

        solutions are obtained among the stated methods. Moreover, 

        efficient frontiers generated by the proposed method are smooth, 

         even if they are non-convex. In addition, it is seen that almost 

        all of non-dominated individuals at each generation become the 

        final Pareto optimal solutions. 

    In particular, it should be noted in the ranking method that non-dominated 

individuals obtained at intermediate generations are often not Pareto optimal 

solutions. In practical problems, we do not know when to stop the computation in 

advance. Usually, the computation is terminated at a relatively early generation 

due to the time limitation. It is an important requirement, therefore, that non-

dominated individuals at intermediate generations are finally Pareto optimal 

solutions. GDEA method has a desirable performance from this point of view.
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     Figure 6.5: Results to the Example 1. 

(from left to right, 10, 20, 30 generations, respectively)
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     Figure 6.6: Results to the Example 2. 

(from left to right, 10, 20, 30 generations, respectively)
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Chapter 7

Conclusions

This thesis has presented several results related to the generalization of DEA 

model and its applications. The following results have been obtained. 

    First, the GDEA model based on parametric domination structure and the 

concept of a-efficiency in the GDEA model have been suggested. In addition, the 

relationships between the GDEA model and existing DEA models, specifically, 

the CCR model, the BCC model and the FDH model have been investigated. 

It has been proved that the GDEA model can evaluate the efficiency in several 

DEA models, and moreover the efficiency of decision making unit incorporating 

various preference structures of decision makers. Through a numerical example 

with real data, it has been shown that the mutual relations among all decision 

making units corresponding to a parametric domination structure by varying a 

in the GDEA can be grasped. 

   Secondly, the GDEAD model based on production possibility as a dual 

approach to GDEA and the concept of aD-efficiency in the GDEAD model have 

been proposed. The relations between the GDEAD model and existing DEA 

dual models have been established, and the meaning of an optimal value to the
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problem (GDEAD) has been interpreted. Therefore, it is possible to evaluate the 

efficiency for each decision making unit by considering surplus of inputs/slack 

of outputs as well as the technical efficiency. Moreover, through an illustrative 

example, it has been shown that GDEAD can reveal domination relations among 

all decision making units. 

   Thirdly, the method combining GDEA and GA for generating efficient fron-

tiers in multi-objective optimization problems has been proposed. The method 

using GDEA can overcome the shortcomings of existing methods: it provides 

a lot of Pareto optimal solutions in a relatively small number of generations, 

and can be applied to multi-objective optimization problems with non-convex 

functions as well as convex functions. It requires a certain amount of time to 

solve the problem (P) in order to evaluate the a-efficiency. However, since the 

time required for analyses such as structural analysis, thermodynamical analysis 

and fluid mechanical analysis in engineering design problems is extremely large, 

the computational time for solving the problem (P) is not so serious. It can 

be considered that the method using GDEA is effective especially to the prob-

lems requiring analysis such as engineering design problems from a view point 

of obtaining a good approximation of efficient frontiers in a small number of 

generations. 

   Finally, through the study on GDEA in the thesis, it will be expected that 

GDEA makes it helpful to evaluate an efficiency of complex management systems 

such as banks, chain stores, communications enterprise, hospitals, etc. Moreover, 

GDEA is promising to be very useful method to construct decision support sys-

tems such as administrative reforms of (local) goverments, engineering design, 

schools, courts, and so on.
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