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Abstract 

A new theoretical method which is based on the Liouville 

representation was established to describe the evolution of 

the quadrupolar spin system under the influence of strong rf 

field, which has been termed ・ nutation'. The Liouville 

formalism ωas introduced to handle time development of the 

spin system and to construct the theoretical expression for 

the complex interactions between the rf field and the 

mul tilevel spin system. Al though the dimension of the 

matrix to be determined becomes far larger than that based 

on standard densi ty matrix or ficti tious spin methods, the 

formalism with the Liouvillian can easily be coded for 

computation and therefore is much suitable for the calculaｭ

tion by big computers. Also the Liouville representation 

has a form which can incorporate effects other than spin 

interaction in a straightforward manner. This property 

makes it possible to apply the nutation method to chemically 

exchanging system. 

The ne以] method was coded by FORTRAN to prepare the 

general simulation program which :is necessary for analyzing 

the experimental 2D nutation spectra. The program can be 

applied to quadrupolar nuclei with spin numbers 3/2 'v 9/2 

and to systems with and without chemical exchange. 

The 2D nutation NMR experiments were conducted for 23Na 

in several compounds. The 23 Na resonance in NaN02 and in 

NaHgCb .2H2 0 was used to examine the optimal experimental 

conditions for the 2D nutation spectra and to evaluate the 

sensi ti vi ty of the spectra to the quadrupole coup ling 

constant, e2Qq/h, and the asymmetry parameter ， η ， of the 

electric field gradient at the site of the resonant nucleus. 
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The 23 Na 20 nuta ti on NMRωas applied to Na2 Se03 to distinｭ

guish the three crystallographicallY nonequi valent Na si tes 

in this compound. The quadrupole coupling constants at the 

indi vidual si tes could be determined and also ηwas estimatｭ

ed for two of the three sites in this material. 

Na 1 + x Zr2 Six P3 -x 01 2 has been known as a typical sodi um 

ion conductor. The 23Na 20 nutation NMR was used to obtain 

the direct information on the sodium transport in this 

material. The spectrum was remarkably temperature dependent 

and indicated unambiguously that the sodium ions are exｭ

changing between the two nonequi valent si tes. The spectrum 

was analyzed by the new theoretical method developed here 

and the rate of the Na ion excha:nge was estimated at each 

temperature. It was found that the acti vation energy 

deduced from the nutation spectra differs significantly from 

that determined by a previous conductivity measurement. The 

large discrepancy between the t",O values was interpreted 

qualitatively by the following model. In the 20 nutation 

NMR, the spectra are governed by the local exchange of the 

Na ion between two si tes, whereas the net ionic conduction 

must accompany the long-range ion transport through the 

formation of vacancy in addition to the fluctuat�nal 

exchange. 
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1. Introduction 

Sol� state nuclear magnetic resonance (NMR) can provide 

the information on the local static structure of the solid 

phase and molecular or ionic motions in the solid. The line 

splitting in single crystal and the line shape in powdered 

or polycrystalline material can now be routinely analyzed to 

determine the local structure of solid. Very often the line 

shape varies wi th temperature reflecting the onset of some 

molecular or ionic motion in solid. The measurements of 

line characteristics as well as the relaxation behavior of 

the spin system as a function of temperature (or pressure in 

some cases) give fruitful information on the molecular 

motion excited in the solid. 

In the (solid) powdered samples, the spectra are broadｭ

ened by several interactions such as dipole-dipole interacｭ

tion, chemical shifts, and so 010. For the quadrupolar 

nuclei which have the spins 1 greater than 1/2, the 

structure of the spectrum is often determined by strong 

quadrupole interaction that is caused by the coupling 

between the nuclear electric quadrupole moment and the 

electric field gradient (EFG). The quadrupole interaction 

can be used to examine the local si te symmetry of the 

resonant nucleus and the electronic structure of molecular 

and ionic species in the crystalline solid. The quadrupolar 

nuclei are also used as a powerful probe for the "slow" 

molecular motion in solid. ln the case where the quadrupole 

interaction is sufficiently large, the usual pure nuclear 

quadrupole resonance can apply to determine the quadrupole 

coupling constant (e2Qq/h) and the asymmetry parameter of 

the electric field gradient (η). lf the e2 Qq/h is consider-

qu 
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ably small , one observes the quadrupole interaction as a 

perturbation to the NMR. Sometimes the strength of the 

quadrupole interaction is comparable wi th those of other 

interactions. In such case the usual NMR on powdered 

specimen cannot separate the individual interactions. 

Two- or mul ti-dimensional NMR methods evol ve different 

interactions along different coordinate axes and examine the 

different interactions independently. 20 nutation NMR reｭ

cently proposed is one of such methods. It separates the 

quadrupole interaction from chemical shift interaction and 

others by evol ving these different interactions onto two 

directions. In this method one measures the central compoｭ

nent of the spectrum which is perturbed by the second order 

quadrupole interaction for the half-integer spin system but, 

by evol ving the spectrum onto different directions under a 

specific condi tion, one can pick up the quadruPole interacｭ
tion in the form free from other interactions. An important 

character of the nutation NMR lie:s in that crystallographiｭ

cally nonequivalent sites can be distinguished and the 

quadrupole interaction parameters as well as the magnitude 

of the chemical shift at each si te can be determined. 

It seems promising to utilize the nutation NMR by making 

use of the most of i ts specific characters to examine the 

dynamic process, in other words, chemical exchange process 

between nonequivalent sites. Although the quadrupole interｭ

action of deuterium has been widely used to trace the 

chemical exchange in solid state, there has not been 

developed any direct method to study the motion of the 

quadrupolar nuclei with half-integer spins in the solid 

state. Since in solid electrolytes and fast ionic conduc-

-4-



tors various ions play the main role and as many of these 

ions have half -integer spins, number of valuable informaｭ

tion about the ionic motion can be obtained if the nutation 

NMR can be used to examine the motional process in solid. 

1n the present work, a theoretical formulation of the 20 

nutation NMR method using a new technique based on the 

Liouville representation is given. Next a method to incorｭ

porate the chemical exchange into the theory of the nutation 

NMR will be developed. Then NaN02 and NaHgC13 .2H2 0 will be 

used to test the efficiency of this method for determination 

of the quadrupole interaction parameters. Na2Se03 is chosen 

to demonstrate how to separate and distinguish any crystalｭ

lographically nonequivalent sites in crystal. Finally a 

model ionic conductor, Na 1 + x Zr2 Six P3 -x 01 2, is chosen to 
examine the effect of the chemical exchange on 20 nutation 

NMR spectrum, and the data were a.nalyzed by the simulation 

method. The applicability of the 20 nutation NIv1R for 

chemically exchanging system 'ilJill be discussed. 
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2. Theory 

2.1. Liouville Representation in NMF~ 

General treatment of pulsed NMR spectroscopy has been 

done us�g time dependent densi ty matr� formalism. 

Throughout the text � this thes Jl s, however, the Liouville 

(superoperator) formalism [1] w�l be used to describe the 

time evolution of the spin system. Since the Liouville 

representat�n is not familiar to the most of chemists, it 

seems to be the due course to gi ve brief introduction of 

this special formalism. The Liouville representation is 

su�able for handling complicated time development of the 

density matrix and � well adopted to computer implemenｭ

tation, because it has a transparent presentation of the 

commutator which is by a11 means needed in the ca1culation 

of the evo1ut�n of density ma.trix. Hereafter, several 

important properties of the Liouvi11e formalism are summaｭ

rized in comparison wi th the usua1 Schr�inger representaｭ

tion. 

a) 1n the Schr�inger representation, the density matrix 

p obeys the von Neumann equation of motion [2J 

dp/dt = -i[H , p] (2.1.1) 

いJhere H is the total Hamil tonian of the system in the 

frequency units. 1n the Liouvi11e forma1isrn, the e1ements 

of the density matrix form densi.ty super、kets Cbas� sets) 

and the time dependence of the density superkets is deterｭ

mined by the Lìouvillian し

dp/dt = -iLp , (2.1.2) 

where p is the density superkets in the column form, i.e. , 

nb 



p = t (Pl 1 Pl 2 Pl 3 ・・・ Pl n P21 ・・・ . .. pn n) , 

(2.1.3) 

where n = 21+1 and 1 is the spin. L is defined through the 

relation 

L = H ( E -E ( t H , (2.1.4) 

where E is the unit operator which has the same dimension as 

H, and tH represents the transposed matrix of H and ( stands 

for the direct product [3J of two matrices. CSee appendix.) 

When the Hamil tonian can be diagonalized by a Unitary 

matrix U through the similarity transformation : 

Hd = U-1HU , (2.1.5) 

CHd means diagonalized Hamil tonian,) then the Liouvillian 

can be diaヲonalized by the use of the same Unitary matrix : 

Ld = U-1 LU 

= (U-1 ( U- 1 ) (H ( E -E ~ tH)(U ~I U) 

= Hd ( E -E ( Hd , (2. 1 .6) 

1t should be noted that while the Hamil tonian plays the role 

of the operator characterizing the time evolution as well as 

that of operator specifying the energy of the system, the 

Liouvillian plays the former role only. This can be seen by 

the fact that, according to (2. 1.6) , the eigenv3.1ues of 

Liouvillian consist of the differences of eigenvalues of the 

corresponding Hamil tonian. 

b) When the Hamil tonian can be separated into a large 

time-independent interaction H� and a much smaller term Hl , 

one often writes the equation of motion of the spin system 

-7-



in the interaction representation vJhich removes unnecessary 

term H� from the Hamil tonian. In this case, the Liouvillian 

can be written 

where 

L =匂+ Ll 

1必= Hø ( E -E ( t H� 

Ll = Hl ( E -E ~， t Hl 

(2.1.7) 

(2.1.8a) 

(2.1.8b) 

Then the Liouville description of the interaction represenｭ

tation is expressed by 

p. = exp ( + i Le t ) p (2.1.9) 

L • = exp ( + i Le t ) L 1 exp (ー iυt) (2.1.10) 

where p. and L. are density superkets and Liouvillian in the 

interaction representation, respectivelY. Accordingly the 

equation of motion of the density superkets becomes 

dp./dt = -iL・ P ・ (2.1.11) 

If the Liouvillian L. is explici t1y time-independent, Eq. 

(2.1.11) can be sol ved forma11y 

p. (t) = exp ( -i L. t ) p ( 0 ) (2.1.12) 

c) Another feature of the Liouvi11e forma1ism is in its 

convenience in ca1cu1ating the observab1es. For examp1e, 

the magnetization a10ng the x-axis is described in the 

SChrodinger representation as 

Mx = Tr ( 1 x p) (2.1.13) 

whi1e in the Liouvi1le forma1ism, 
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Mx = Ix p , (2.1.14) 

where Ix is the operator in the row form. 

Thus one can write physical quantities simply as a 

product of matrices and vectors. 

Appendix 

The properties of direct product are summarized as 

follows. Direct product of two matrices A and B of n 

dimensions is defined by 

A x B = [ a1 1B a12B ... a1nB 

a2 1 B a2 2 B ... a2 n B 

an 1 B an 2 B ... an n B 

Thus the resultant matrix has n2 dimension. And 

(A + B) ( C = A 名 C + B ( C 

(A ( B)(C ( D) = AC ( BD , 

where + has usual meaning of matrix sum. 
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2.2. 2D Nutat卲n NMR 

1n the high magnetic field , the NMR spectra of quadruｭ

polar nuclei that have the spins 1 と 1 consist generally of 

21 + 1 1 ines due to quadrupole interaction. 1n the powdered 

or polycrystalline samples the angrles between the external 

magnetic field and the pr匤cipal axes of the electric field 

gradient CEFG) are distributed at random 匤 each microcrysｭ

tal and therefore the spectra show characteristic powder 

patterns as exemplified in Fig. 2.1. The powder patterns 

shown in Fi g. 2.1 are ideal ones and if such spectral 

patterns are observed one can analyze the spectra to 

determine the quadrupole interaction parameters. In many 

cases, hoいJever ， powder spectrum gi ves 匤distinct structure 

owing to strong quadrupole interaction and/or dipolar 匤terｭ

action; sometimes the former makes the spectrum spread over 

several hundred kHz and as a result causes the signal to be 

buried under the noise. 

For half-integer spins , the central peak, that correｭ

sponds to the transition between the spin states 

1+1/2> •• 1-1/2>, can be almost always observed because it 

is not affected by quadrupole interaction in the first order 

perturbation. Therefore it is meaningful to search for a 

method or methods to determine the quadrupole interaction 

parameters from observed central transition only. One 

method widely used is the line shape analysis of the normal 

one dimensional (1 D) spectrum，以Ihich is governed by the 

second order quadrupole interaction. But one weak point of 

this method lies in the fact that the interactions other 

than the quadrupole interaction cause the line broadening 

and/or line shift and i t becomes difficul t to determine the 

-10-
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Figure 2.1 

Simulated a) the first order and b) the second order 

powder lineshapes for 1 = 3/2 (η= 0) 。
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parameters accurately. Especially when several crystalloｭ

graphically nonequivalent sites exi5t and the signals correｭ

sponding to the indi vidual si tes over lap wi th each other, i t 

is very difficul t to deri ve the quadrupole interaction 

parameters at each site from the 10 spectrum. 

The two-dimensional (20) nutation NMR is probably the 

most powerful tool in the situation when the direct analysis 

of the powder pattern cannot be applied. The 20 nutation 

NMR is applicable to the quadrupolar nuclei having halfｭ

integer spin [4J. The rate of the ・ nutation' ， which repreｭ

sents the motion of the magnetization in the frame rotating 

at the frequency of the rf field , varies wi th the strength 

of the rf field relative to the quadrupole interaction. In 

that rotating frame , the strong rf field makes all original 

spin eigenstates I mz > mix and the degree of the mixing 
depends on the strength of the quadrupole interaction and rf 

field. Since the mixing of the spin states produces shift 

in the individual eigenstates, the measurements of the shift 

in the spin eigenvalues under irradiation of strong rf field 

can be used to obtain information about the quadrupole 

interaction. The experiment is based on a pulsed NMR in 

which one observes the free induction decays (FIO's) by 

changing the rf pulse duration incrementally and one perｭ

forms double Fourier transform to obtain the 20 nutation 

spectrum which provides quantitative information on the 

quadrupole interaction parameters. 

The experiment can be di vided into three time-domains 

(see Fig. 2.2 ), a) Preparation period: thermal equilibriｭ

um magnetization is established, b) Evolution period : the 

magnetization nutates around the rf field under the influ-

-12-



Figure 2.2 
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Schematic representation of 20 nutation NMR experiment. 
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ence of an interaction Hamil tonian, Hl , during tl , and 

c) Detection period : the magnetization along x-y plane in 

the laboratory frame is detected under the influence of 

another interaction, H2, in the duration t2 ・

The Hamil tonians which work during the periods b) and c) 

consist of 

H 1 = Hz + HQ (n) + HD + Hc s + Hr r (t) , (2.2.1) 

H2 = Hz + HQ (n) + HD + Hc s (2.2.2) 

where Hz 1S the Zeeman interaction, HG the quadrupole 

interaction, Hn the dipole interaction, Hcs represents the 

chemical shift, and Hr f is the coupJling between the spin and 

the applied rf field. n represents the angle between the 

external static magnetic field and principal axes of EFG 

tensor. Their explicit forms are [2J 

Hz =ωø 1 z 

=γHø 1 z , 

HQ (n) = L Qm V -m 

Q(l = a [ 3 1 z 2 -1 ( I + 1 ) ] /2 , 

Q士 1 = )6a[lz 1:t + 1:t 1z ]/4 , 

Q:t2 = )6a1:t 2/4 , 

V� = Vz z /2 

V士 1 = (Vzx t.iVzY )/)6 , 

¥1:t2 = (Vxx-Vyyt.2iVxy)/2)6 , 
a = eQ/ [ 1 ( 21 -1 ) ] , 

HD =εL Dlj 

Hc s = Hσ1 , 

-14-
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and 

Hr f =ω1 [l x COS (ωot)+ihsin(ωø t)] , (2.2.7) 

where ωø is the nuclear Larmor frequenCy , 0 and σare the 

dipole interaction and the chemical shift tensors, respecｭ

tively, and ω1 is the strength of the rf field in the 

frequency units. Note that the Liouvillians in the absence 

of the chemical shift does not produce any net shift of the 

spectrum. (Al thOUgh the quadrupole interaction leads to an 

asymmetric powder pattern, the center of gravity of its 
spectrum does not change. Also, the dipolar interaction 

makes the spectrum split but the center of gravity of the 

spectrum does not move.) 

Henceforth, we will always assume that the relative 

strength of the different interactions is Hz >> HQ ~ Hr f 

>>Hn , Hc s • This situation is realized in the case of nuclei 
with fairly large quadrupole interaction such as 23Na, 39K, 

59CO, 93Nb etc. The most importa.nt condition is that the 

pulse apparatus can provide very strong rf field. Under 

above conditions one can treat the quadrupole interaction as 

well as the chemical shift as a perturbation and can 

neglect weaker dipole interaction. Then quadrupole interacｭ

tion can be expanded up to the second order terms as 

where 

HQ ・= HQ ( 1) + HQ ( 2) , 

HQ (1) = e2qQ/81 (21-1) (3cos 2 e ・・ 1+ηsin 2 ecos2φ) 

x [31z2-ICI+1)] 

=ωQ [1 z 2 -1 ( 1 + 1 ) 13] 

-15-
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and 

HQ (2) = (3e2qQ/21 (21 -1)) 2 1z 132ωe 

x[{9(1-cOS 2 8)2_6η( 1-COS 4 8 ) cos 2φ 

+η2 ( 1 + COS 2 8 ) 2 COS 2φ+4η2 coS 28(1-cos 2 2φ) } 

x[21z 2-2:1 (1+1 )+1J 

ー {9(1-coS 2 8)COS 2 8+6η(1-cos 2 8)cos 2 8cos2φ

+η 2(1-cos 2 e)cos 2 ecos 2 2φ 

+η 2(1-cos 2 e)(1-cos 2 2φ) } 

x4[81z 2-'41(1+1)+lJJ , (2.2.10) 

where, (] and φare the polar and the azimuthal angles of the 

direction of the static magnetic field with respect to the 

principal axes of the EFG, respectivelY, and others have 

usual meanings. The chemical shift interaction is repreｭ

sented by 

Hcs ・ = 0' 1 z (2.2.11) 

Usually one can assume that the second order quadrupole 

interaction is negligible in the presence of a strong rf 

pulse, and the chemical shift term can be included in the 

Zeeman term, the Hamil tonians in Eqs. (2.2.1-2) can be redeｭ

fined to be 

Hl = HQ ( 1) + Hr f (2.2.12) 

and 

H2 = Ho ( 1) + HQ ( 2 ) (2.2.13) 

The density superkets (Eq. (2.1.10)) at a time tl +t2 

becomes in the frame rotating at ωø Cinteraction representa-

-16-



tion) , 

and 

いJhere

and 

p' (t 1 + t2 ) = exp ( -i L2・ t2 ) exp (ー i Ll ・ tl )p(O) , 

Ll ・= Hl ・!& E -E ( t Hl . 

L2・= H2. ( E -E ( t H2 . 

Hl ・= HQ ・+ Hr f • 
' 

H2 ・= HQ. 

HQ ・= HQ ・= HG ( 1) + HQ ( 2 ) , 

Hr f ・ =ω1 1 x , 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

(2.2.19) 

(2.2.20) 

In Eq. (2.2.14) p(Q) is the density superkets at therma1 

equilibrium. 

yie1ds 

In the high temperature approximation, it 

p( 0) = (1 -百ωø 1 z /}くT)/(21+1 ) (2.2.21) 

assuming that the Zeeman coup1ing dominates other interac-

tions. The unit ket in Eq. (2.2.21) can be a1以Jays

disregarded in the ca1cu1ation since it does not contribute 

to signal. 

Hereafter, Eq. (2.2.14) is sol ved for 1 = 3/2 as an 

examp1e with respect to each period, i.e. , evo1ution and 

detection periods. 

a) Evolution period 

Before examining the genera1 feature of the nutation 

-17-



NMR , two limiting cases will be studied as an illustration. 

1n the evolution period an rf pulse, Hl =ω1/γ ， is 

app lied on the spin System. If the rf strength is much 

stronger than the quadruPole interaction, the spin System 

can be treated as if the quadrupole interaction is absent 

while the rf field is applied. Then the Hamil tonian becomes 

。 J3ω 1 /2 。 。

j3ω1/2 。 ω1 。

。 ω1 。 J3ω 1 /2 

。 。 J3ω1/2 。 (2.2.22) 

This Hamil tonian can be diagonalized through a similarity 

transformation by the orthogonal matrix : 

R = f J3 J3 

J3 J3 

J3 -J3 / 2J2 , 
j3 1 -J3 (2.2.23) 

and the corresponding eigenvalues are -ω1/2 ， 3ω1/2 ， ω1/2 ， 

and 3ω 1 /2. Then one can immediately show that the magnetiｭ

zation nutates around the rf field at the characteristic 

frequency ω1 ・

1n the opposite case when the rf pulse strength is much 

smaller than the quadrupole interaction, the rf pulse can 

merely excites the central transition when the rf frequency 

satisfies nearly the resonance condition, and so no effecｭ

ti ve mixing of the ei genstates occurs. This is because the 

energy difference of the adjacent levels is quite different 

from each other. Hence one can pick up the components 

concerning wi th the central transi tion from the Hamil tonian 

-18-
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(2.2.24) 

and this has the eigenva1ues :t ω1 ・ Therefore the motion of 

the maヲnetization is represented by the rotation at frequenｭ

cy of 2ω1 ・ In ヲenera l， it can be shown that the magnetizaｭ

tion corresponding to the centra1 transition rotates at 

CI+1/2)ω1 [2]. 

In summary , when quadrupo1e interaction is weak enough 

compared with the strength of the rf fie1d , then the 

magnetization nutates at ω1 ， and in the opposi te case the 

magnetization nutates at Cl +1/2)ω1 ・

If the quadrupole interaction and the rf field are 

comparab1e in magnitude, the nutationa1 motion becomes 
comp1ex. The equation of motion of the spin system in such 

comp1ex cases has been solved using several different 

techniques [5]. In the present work a new technique based 

on the Liouville representation is introduced to sol ve the 

prob1em. 

The matrix representation of the Hamiltonian in the 

period tl can be written as 

Hl = [ωQ J3ω1/2 0 0 

J3ω1/2 -ωQω1 0 

0ω1 -ωQ J3ω1/2 

。 o J3ω1/2ωQ (2.2.25) 

where ωQ is defined in Eq. (2.2.9 ), This Hami1 tonian can be 

diagonalized through the similarity transformation by the 

orthogonal matrix [6] 
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Q = I cose- 引 ne - 引 ne+ cose+ 

5 i ne- COSe- COSe+ 5 i ne+ 

sine- COSe--COSe+ -sine+ 

COse- -sine- sine+ ー cose+

/ J2 , 
C2.2.26a) 

tan2ei = (J3/2) ω1 / (ωo :t ωI /2) C2.2.26b) 

and the corresponding eigenvalues are 

入 I = ω1/2 + Cω1 2+ωQ 2_ω1ωo )1 /2 

入2 = ω1/2 - Cω1 2+ω0 2 _ω1ωo ) I /2 

入 3 =ーω1/2 - (ω1 2 +ωo 2+ω1ωo ) 1 /2 

入 4 =ーω1/2 + (ωI 2 +ω0 2 +ω1ωo ) 1 /2 (2.2.27) 

The Liouvillian can be diagonalized by taking account of 

Eq. (2.1.6) and it leads to the density superkets at the end 

of the pulse as 

p' (t 1) = Rexp ( -i L d 1 t I ) R-I P ( 0) , (2.2.28a) 

or 

p' j (tJ) = ~ [Rj k Rk I PI (0) ] exp ( -i 入 1 tl ) C2.2.28b) 

いlhere 入 1 is the l-th eigenvalue of the Liouvillian. In the 

above Eq. (2.2.28b), Aj 1 =乞 [Rj k Rk 1 Pl (�)] is called the 

'transition amplitude' which represents the intensity of the 

component with the frequency 入 l ・

b) Detection period 

After the rf pulse field is sv¥li tched off, the Hamil tonｭ

ian (also the Liouvillian) is diagonal and the densi ty 

superkets at a time tl+t2 is given by 

p. (t 1 + t2) = exp ( -i L2 t2 ) p. (t 1 ) (2.2.29) 
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A lengthy manipulation yields the resul t that the signal 

corresponding to the central transi tion at a gi ven orientaｭ

tion of the principal axes of the EFG with respect to H� is 

proportional to 

S(tl +t2 )α 

{[3sin29 - sin29~ -Cl-cos29-) (1+cos29.. )]sin( 入 3 -入 1 ) tl 

-[3sin29-sin29.. +Cl-cos29-)(1-cos29.. )]sin( 入4 申入 1 ) tl 

-[3sin29-sin29..+C1+cos29-)Cl+cos29.. )Jsin( 入3 ー入2 ) tl 

+[3sin29-sin29+ ー( 1 + cos 29-) ( 1 -cos 29.. )] 5 i n (入4-入2 ) tl } 

x expC-iωQ ( 2 ) t2) , 

(2.2.30) 

以JhereωQ (2) is the second order quadrupole shift of the 

central transi tion expressed by [7J 

ωQ (2) = (e 2 qQ/h)2/192ω8 

x{9Cl-coS 2 9)2-6η (1-cos 4 e)cos2φ 

+η2 C 1 + COS 2 9 ) 2 COS 2 2φ+4η2 COS 2 e ( 1 -COS 2 2φ) 
-72Cl-cos 2 e)cos 2 9-48ηCl-cos 2 e)cos 2 ecos2φ 

-8η2Cl-cos 2 e)cos 2 ecos 2 2φ 

-8η2(1-cos 2 9)(1-cos 2 2φ)} . C2.2.31) 

Eq. (2.2.30) indicates that four of six transitions between 

the four eigenvalues contribute to the spectrum and their 

transi tion frequencies can be determined by numerical analyｭ

sis of the spectrum. It should be noted that Eq. (2.2.30) 

consists of two parts; one is the nutation which is merely a 

superposition of sine functions of tl , and the other depends 

on t2 and is gover、ned by the second order quadrupole 

interaction. 
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2.3. Chemical Exchange Effect 

Chemical exchange means that the nucleus jumps between 

the ・ si tes' 以Jhose environments a.re different from each 

other, i.e. , crystallographically nonequivalent sites in 

solids. 

The basic assumption of the chemical exchange is that 

the principle of detailed balance between the sites is 

satisfied, i.e.. 

pj}く j i = Pi ki j (2.3.1) 

where pj stands for the thermal equilibrium population of 

the j-th si te and }く ji represents the exchange rate from the 

j-th to i -th si te. Then one can vJri te the exchange ma trix 

for m sites 

K = I kl 1 kl 2 ... kl m 

k21 k22 ••• k2 m 

km 1 km 2 kmm (2.3.2) 

where the diagonal component ki i 1s the rate of jump from 

i-th site to another, i.e. , the reciprocal of the average 

life time at the i-th site. The sign of ki i is taken to be 

negative (or zero). Each column must satisfy the following 

relation 

}く j 1 +}く j2 + ... +1く j m = 0 . (2.3.3) 

Another assumption adopted here is that the spin-spin 

interaction between the sites is extremely small and can be 

neglected. This assumption makes possible to describe the 

Liouvillian and the density superkets in a simple form. 
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In principle. in the case where the chemical exchangae 

occurs among the m si tes , the densi ty superkets p is defined 

by [8] 

p = p( 1) ( p( 2) ( . . . ( p (Hl i , (2.3.4) 

where p(j) represents the density superkets at the j-th site 

and x means the direct product of the kets. Eq. (2.3.4) 

tells that the cross terms between the density superkets at 

different sites should be calculated in order to describe 

the time evolution of the system. Since such cross terms 

appear mainly as a resul t of the interaction between spins 

at different sites, and fortunately , the spin-spin interacｭ

tion between quadrupolar nuclei is usually very weak , one 

can iヲnore this type of interaction. Then , the total 

density superkets can be reduced as follows 

p = p( 1 ) ( p ( 2) (.. .( p (m) , (2.3.5) 

where ( means the direct sum of the densi ty superkets. 

Similarly, the Liouvillian consists in principle of complex 

components if we take account of the interaction between the 

different si tes. Ho以lever ， if we disregard the spin-spin 

interaction as mentioned above , the Liouvillian can be 

written in a simple form as 

L = [ L( 1) 。 。 。

。 し( 2 ) 。 o 
。 。 し( 3 ) 。

。 。 。 L( m)  (2.3.6) 

いJhere L(j) 1S the Liouvillian corresponding to the j-th 
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site. 

When the chemical exchange occurs, under the assumption 

that the exchange between the si tes is instantaneous, the 

spin does not change i ts state during the jump. 1n other 

words no relaxation occurs in the course of the exchange 

process. Then 

dp/dt =ー (iL+K)p , (2.3.7) 

and 

K = r kl 1 kl 2 kl 3 kl m 

k21 k22 k23 k2 m 

' 

km 1 km 2 km 3 kmm (2.3.8) 

以Jhere EK is (21+1)2 dimensional unit matrix. 
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2.4. Chemical Exchange Effect on the Nutation Spectrum 

In this section, two-site exchange is examined for 

simp li ci ty but the extensi on to the general mul tisi te case 

is straightforward. 

In usual treatment of the chemical exchange, the effect 

of chemical exchange on the spin system is neglected during 

the short rf pulse so as to simpl1.fy the problem. But in 

this work, the exchange of spins should be taken into 

account because it has severe effect on the nutation 

spectrum. 

The Liouvillians corresponding to the j-th site are 

L(j)l = LG(j) + Lcs(j) 

L ( j ) 2 = LG ( j) + Lc s ( j) + Lr f 
(2.4.1a) 

(2.4.1b) 

where LQ (j) and Lc s (j) stand for quadrupole interaction and 

chemical shift at the j-th site, res:pectively. The exchange 

matrix becomes 

1

K

 

L

K

-

=
 

vn 
-k2 

k2 v
h
 

pL] 
⑧
 

(2.4.2) 

Thus the density superkets at a time tl+t2 becomes 

p( tl +t2) = exp{ ー ( i L2 + K) t2 } exp{ ー ( i Ll + K) t 1 } P ( 0 ) 

(2.4.3) 

where Ll and L2 are the Liouvillians in the presence and 

absence of the rf pulse. respectively. 

Now two limi ting cases are examined. 

i) Slow motion regime : kl , k2 くく HQ" Hr f 

In this case the chemical exchange effect can be treated 

as a perturbation because the effect on the spectrum from 

R
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the chemical exchange is small compared with that from the 

quadrupole and rf couplings. Then one can diagonalize the 

Liouvillian alone by means of the orthogonal matrix Eq. 

(2.2.26) 

ν=ie1{1}OiiL{1)0 1 1Q{1}01 
o Q-I ( 2) J l 0 L ( 2 ) J l 0 Q( 2 ) 

=|Ld(1}O| 

o Ld (2) (2.4.4) 

And the exchange matrix becomes 

Ks = I k 1 EK -Q ( I )ー I k2 Q( 2) I 

l -Q( 2) ー I k 1 Q ( I ) k2 EK J (2.4.5) 

According to the perturbation theory, the diagonal terms of 

the exchange matrix should cause the change of the spectrum 

in the first order. Hence the line width of the peak 

corresponding to each si te is deterrnined by the exchange 

rate kl and }く2 ， respectively. 

ii) Fast Motion Regime : kl , k2 >> HQ , Hr f 

In the opposi te case, one must diagonalize the exchange 

matrix and treat the quadrupole and rf pulse as the 

perturbation. To diagonalize the exchange matrix, one must 

symmetrize the exchange matrix if it is not symmetric. This 

symmetrization can be done by the matrix p, 

Pi j = jPi ﾔi j (2.4.6) 

through the simi1arity transformation, where ﾔ i j stands for 

the Kronecker's de1 ta. The Liouvi1lian is not a1 tered and 

the exchange matrix becomes 
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l 巾 K2 1 lJP1 01 
kl -k2 o !P2 J ~I EK , 

= [引 kl
k' -k2 J ~I EK (2.4.7) 

This can be diagonalized by 

Kd = [ :叶Sln中) l-K1kl lcomlMl 
sin<゙ cosφ k ・ -k2 -sinφCOSφ ⑧ E~ , 

= [ -(k~ +k2 )日)
o 0 ( EK (2.4.8a) 

tan2φ= 2k ・/(kl -k2) , (2.4.8b) 

and so the Liouvillian is expressed as 
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(2.4.9) 

Here the diagonal blocks of the Liouvillian determine preｭ

dominantly the spectral appearance. However the components 

of the Liouvillian corresponding to -(kl +k2) decrease so 

fast that these can be neヲlected. Then the spectrum is 

characterized by : 

( l-cos2φ)L(l ) +(1+cos2<Þ)し(2 ) 

= Pl L ( 1 ) +P2 L ( 2 ) (2.4.10) 

Thus the spectrum is described by the use of the weightｭ

averaged Liouvillian. In the case of the two-site jump the 

time-averaged spectrum shows a characteristic pattern de-
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pending on the relative orientation of the principal axes of 

the EFG tensor at the two sites. Hence the analysis of the 

spectrum at fast motion regime can determine the angle 

betいJeen the EFG principal axes at the two sites. 

iiU Intermediate cases 

The spectrum will change its appearance drastically if 

the rate of chemical exchange becomes comparable to the 

difference of the nutation frequencies at different sites. 

Therefore the 20 nutation spectrum can be applied to 

chemically exchanging systems to determine the rate of 

exchange when it is of the comparable order with e2Qq/h (and 

also with ω1 ). For the analysis of the complicated spectrum 

in the above region one must simulate the nutation spectrum 

with the exchange rate as a variable parameter. 
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3. Simulation 

3.1. Princip le 

3.1.1. Diagonalization of the Liouvil.lians 

In the case when only one kind of si te exists, the 

calculation is straightforward since the analytical expresｭ

sion given in Sec. 2.2 can be applied. Even when several 

nonequi valent si tes exist in the crystal and when no 

chemical exchange occurs, the ~Jhole spectrum can be repreｭ

sented by the superposition of the spectrum corresponding to 

each site. In the case where the chemical exchange occurs, 
one should calculate the Eq. (2.4.3) , or equivalent to say, 

one must diagonalize the matrices in each period numeriｭ

cally. Because the matrices Ll +K and L2 +K in Eq. (2.4.3) 

are complex and non-Hermitian and have very large dimension 

of (2I+1)2xCnumber of site), they cannot be diagonalized diｭ
rectly by the usual methods. Then several modifications on 

the matrices must be made. 

At first, the exchange matrix should be transformed by 

the matrix P so as to symmetrize the whole matrix. Then, 

where 

LS I = (p-1 t& EK ) (Ll + K) C P ( EK ) 

= LI + KS , 

L S 2 = (P-I cg EK ) (L2 + K) (P ⑧ Eト( ) 

= L2 + KS , 

(3.1.1a) 

(3.1.1b) 

KS = (P-1 ( EK ) KC P ( EK) , ( 3 . 1 . 1 c ) 

and P is defined by Eq. (2.4.6), Then it is proved that the 

matrix LS 1 (and also LS 2) can be di.agonalized by a complex 

orthogonal matrix. (The complex orthogonal matrix means 
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that the multiplication of its transposed matrix and itself 

yields the unit matrix.) It should be noted that the 

exchange matrix is symmetrized by the above transformation 

which is however independent of the Liouvillian at each 

site. 

ln the evolution period when rf pulse is applied, 

another transformation is needed to reduce the dimension of 

the matrix to be diagonalized. Th:is can be achieved by 

transforming the lz basis' to lx basis [1 J. When the rows 

and the columns are sui tably interchanged, the Liouvillian 

at the j-th site Lj can be factorized so as to have a blockｭ

diagonal structure whose blocks have the dimension 

(21+1)2/4 = 4. 

LX j = (RT) ー 1 Lj (RT) 

= I Aj 。

Bj 

Bt j 

。 A ・ J (3.1.2) 

and density superket at the site j becomes 

pXj = (RT)-lpj (3.1.3) 

where R = R QﾇI R CR is defined in Eq. (2.2.23)) is an 

争時 tlz basis' means that the axis parallel to the static 

external magnetic field is the quantization axis. Thus lz 

becomes good quantum number. Also, 'Ix basis' means that 

the axis parallel to the rf field is the quantization axis 

and in this choice of the basis, Ix is good quantum number. 

内
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orthogonal matrix which operates to transform the basis from 

lz to lx, and T the matrix to interchange the rows and the 

columns. Sy this transformation , the exchange matrix reｭ

mains unchanged. The explicit matrJlx forms of the block 

matrices A, A' , 8, and S' for 1 = 3/2 are 

Aj = o J3ωo j -J3ωo j 

J3ωQ j -2ωo j +4ω1 0 

-J3ωo j O 

-J3ωo j 

Bj = r 2ωo j +2ω1 J3ωQ j 

J3ωQ j 6ω1 

J3ωo j 

o 

o 
J3ωQ j 

B' j = (-2ωQ j -2ω1 -J3ωo j 

-J3ωQ j -6ω1 

J3ωQ j 

A ・ j = 

-J3ωQ j 

J3ωo j 
。

O 

-J3ωQ j 

-J3ωo j 

O 

-J3ωo j 

2ωo j -4ω1 J3ωo j 

J3ωQ j 0 

J3ωo j 

o 

/2 , 

(3.1.4a) 

o 
J3ωo j 

-2ω1 J3ωQ j I / 2 , 

J3ωQ j -2ωQ j +2ω1 

-J3ωo j 

o 
-2ω1 

-J3ωo j 

J3ωo j 

(3.1.4b) 

O 

-J3ωo j 

-J3ωo j I / 2 , 

2ωQ j -2ω1 

(3.1.4c) 

。

2ωO j +4ω1 0 J3ωo j 

o -2ωo j -4ω1 -J3ωo j 

J3ωQ j -J3ωO j 0 

/2 , 

(3. 1 . 4d) 

where ωQ j represents the first order quadrupole interaction 

at the site j. The corresponding density superkets at j-th 

qu 
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site transformed as the Liouvillian are given by 

p>< j = Pj t ( 0 0 0 0 J3 3 0 -J3 .,13 3 0 -j3 0 0 0 0 ). 

(3.1.5) 

Because the elements of the density superkets corresponding 

to the matrices A and A' on the basis Ix are zero at thermal 

equilibrium, these can be disregarded.. Because the matrices 

B and B' are complex conjugates with each other and the 

density superkets corresponding to B and B ・ are identical at 

time zero, the matrix to be diagonalized is reduced to 

LS l ・= I i B 1 -k 1 EB k ・ EB 1 

l k ・ EB i B2 -k2 EB J (3.1.6) 

where Bj is given in Eq. C3.1.4b) and EB is the unit matrix 

which has the same dimension as Bj ・ s.

Al though the Ix basis is very convenient for diagonalizｭ

ing the Liouvillian, it is not suitable for calculation of 

the FID's since the transition observed in the detection 

period is labelled by the transitio:n between the quantum 

nurnber mz , which is the eigenvalues of Iz. Then it hδ5 to 

be put back to the Iz basis. 

In the detection period, the Liouvillian is diagonal 
and exchange matrix merely couples the densi ty superkets 

with the same labels belonging to different sites. Then one 

calculates a matrix which consists of the elements concernｭ

ing only with the central transition. Because the dimension 

of its matrix, LS 2 ・， is the number o:f the si tes, this matrix 

can be easily diagonalized compared with that in the 

evolution period. 

Then the FID signal at a time t1+t2 becomes 
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S (t2 , tl )∞ 1 x p (t2 , t 1 ) 

=乞 Pi i Q2 i j exp [ -i L2 d j t2 J Q2 -1 j k 

X RklQl Imexp[ ー iLl d m t 1 J Ql -1 m n px (0) n 

(3.1. 7) 

where Ql and Q2 are comp1ex orthogona1 matrices which diagoｭ

na1ize LS l' and LS 2', respective1y. 

The Liouvil1ians LS l' and LS 2 ・ have specia1 properties 

It is symmetric (or can be symmetrized by the method 

described in Sec. 3.1), and a11 their e1ements distant from 
the diagonal e1ement by a certain fixed number, which 

denotes a band width, are zero. These properties can be 

fu11y uti1ized to perform the numerica1 diagonalization. 

There are many possib1e methods to do this but the present 

work adopts a method which consists of two stages [2J. 

First is to find a transformation which reduces the band 

width and gi ves the symmetric tridiaヲona1 matrix but keeps 

the symmetric and bandform characters of the Liouvi11ians 

unchanged. This is accomp1ished by the successive Jacobi 

rotation in the p1ane of i and j = i+ 1 which is the 

orthogona1 transformation 
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J( i, j , x) = I 。 IJ 。

。 COSx Slnx 。

o -sinx C05X 。 j) 

。 。 。

(3.1.8) 

This procedure is for eliminating the matrix element at 

Ci ,i+1)' Although the Jacobi rotation creates a new non-zero 

element at Ci +b ,j+b) , where b is the band width of the 

matrix , a series of rotations gi ves rise to resul t that i +b 

or j+b is greater than the dimension of the matrix. Thus 

one can eliminate the element without creating another one. 

These transformations are continued until the matrix is 

tridiagonalized. Then the Liouvillian becomes 

LT = IICJ-¥ i )LsIIJi , (3.1.9) 

where LT has zero off-diagonal elements except those immεdi­

ately adjacent to the diagonal one. 

Secondly, the matrix is diagonalized by the QR method. 

Let A� be a general symmetric n-dimensional matrix to be 

diagonalized. An origin-shift parameter Sj is suitably 

selected so as to realize the factorization Aj-sjE=QjRj 

where Qj is a complex orthogonal matrix and Rj is an upper 

triangular matrix, then Aj+l = Qj-1AjQj can be obtained. 

¥�hen this procedure is iterated it can be shown that this 

series of matrices similar to A� generally tends to an upper 
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triangular matrix. Since A� is a tridiagonal matrix , the 

resul tant matrix is diagonal and its diagonal elements gi ve 

the eigenvalues in this case. 

In each step of iteration, the origin shift is chosen 

to be one of the two eigenvalues of 2x2 submatrix at the 

bottom right-hand corner that has smaller modulus. The 

Jacobi rotations to effect the decomposition Aj -Sj E=Qj Rj is 

used to triangularize Aj , i.e. , in the rotations in the 

planes Ci,r+ l) where i= 1，2，・・. r , rotation angle is determinｭ

ed such that the element (r+ 1 ,i) becomes zero. 

The actual diagonalization subprogram is the modificaｭ

tion of the one in the NUMPAC routine in the Nagoya 

Uni versi ty. 

red to [2]. 

First stage of the tridiagonalization is referｭ

And second stage is C;!R method modified by the 

use of complex orthogonal matrix instead of Unitary matrix. 

3.1.2 Powder A veraヲing

In the powdered samples, the crystals are oriented at 

random wi th respect to the magnetic field. Thus one must 

designate the orientation of the principal axes of the EFG 

tensor with respect to the static magnetic field so as to 

perform the powder averaging [3] : 
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The coordinate transformation from the laboratory frame 

to the crystalline frame (a coordinate fixed in the crystalｭ

line specimen) is represented by the rotation : 
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Rc = I cos8cosφcos8sinφ-sin8 

-sinφcosφ0 

sin8cosφsin8sinφcos8 (3.1.11) 

where e and φare the polar and the azimuthal angles of the 
crystalline frame referred to the direction of the static 

magnetic field, respectively. When the EFG principal axes 

at the site j are indicated by the Euler angles α ， ß, and γ 

in the crystalline frame by 

。

cos゚ 0 -sin゚ 

010  

sin゚ 0 cos゚ 

cosy sinγO 

-sinγcosγ0 
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(3.1.12) 

then the matrix representing the rotation from the orientaｭ

tion of the magnetic field to the EFG principal axes is 

given by 

Rj I (8j ， φ j ) = Rj Rc (3.1.13) 

Here, the terms needed in the actual calculation are 

Zj 2= cos28j , 

Xj 2 - Yj 2 = sin 2 8 j Cos2φj , (3.1.14) 

以Jhere

Xj = [cosαcosßcosγ-sinαsinγ]Xc 

+[cosαcosßsinγ+sinαcosγ] YC ー cosαsin゚zc 

Yj =ー [s inαcosßcosγ+cosαsinγ]Xc 

ー [s inαcosßsinγー cosαcosγ]Yc + sinαs in゚zc , 

Zj = sinßcosγXc + sinßsinγYc + cos゚Zc , (3.1.15) 
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and 

Xc = sin8cosφ 

Yc = sin8cosφ 
Zc = cos8 (3.1.16) 

where 8j and φ j are the polar an9'les of the EFG principal 

axes with respect to the magnetic field at the site j. By 

the use of Zj 2 and Xj 2 -y j 2, the first and the second order 

quadrupole interactions are expressed by 

ωQ (1) j = e2qQ/81 (21-1 ){3Zj 2-1+η(X j 2_Yj2)} , (3.1.17) 

ωQ ( 2 ) j = (e2 qQ/h) 2/192ωg 
{9 C1 -Zj 2)2-6η( 1 +Zj 2 ) (Xj 2 _y j 2 ) 

+4η2Zj 2+η2(Xj2_y j 2)2 

-72Zj 2 (l-Zj 2 )-48ηZj2(Xj2_Y j 2) 

-8η2 ( l-Zj 2 ) +8η2(X j 2_yj 2)2} . 

(3.1.18) 

Then the calculation must be performed over the ranges 

O く O く π ， and --rrく φgπin order to accomplish the powder 

averaglng. 

In the actual calculation, cos8 is used instead of 8 

because the powder averaging (3.1.10) can be rewritten as 

f (t2 • tt) = I dφ[ω8) S( 
(3.1.19) 

Thus the region of the integratio:n is divided into N with 

respect to cos8 (ー 1 く cosθ く+1) and φ(マく φ 三 π).

In the case where only one kind of si te exists, one can 

tentatively coincide the crystalline frame with the EFG 
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principal axes. Since S(t2 ,t l ) is symmetric with respect to 

cose and φ ， the number of calculation can be reduced by a 

factor of 4 of the total division. 

3.1.3 Line Broadening 

The line broadening effect should be incorporated as the 

mul tiplication of the FID's Eq. (3.1.19) by the Gaussian (or 

Lorentzian) function. Since the origin of the line broadenｭ

ing is mainly due to dipole interaction in the detection 

period but the distribution of (static) quadrupole interacｭ

tion and/or dipole interaction caU5e the line broadening in 

the evolution period , the broadening factors in each period 

may be different, and in practice they are used as adjustｭ

able parameters. Other reasons which bring about the line 

broadening are discussed later. 

3.1.4 20 Fourier transformation 

The FID's obtained by the above procedure should be 

Fourier-transformed to deduce the 2-dimensional spectrum. 

九ω1) =卜xp( ー iω2t2 )吋叶iω1 t 1 ) d t 1 f (t2 ,i1) , 

(3.1.20) 

where f(t2,tl) is given in Eq. (3. 1.19), 
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3.2 Computational Procedure 

Two simulation programs were constructed , one for the 

simulation of 20 nutation spectrum without chemical exchange 

and the other with chemical exchange. 

Brief explanation of the former is gi ven in the followｭ

ing. Al though the analytical expre.ssion has been gi ven , the 

diagonalization is performed numerically so as to be able to 

treat the general case in which spin 1 と 3/2.

1) Parameter Input 

Input the parameters necessary to simulate the spectrum. 

spin number 

Larmor frequency 

quadrupole coupling constant and asymmetry parameter 

rf pulse strength in the frequency unit 

number of experiments and increment of the pulse 

length 

number of sampling points and sampling interval 

number of division over the sphere for numerical 

integration 

2) Quadrupole Interaction 

The first and the second order quadruPole interactions 

are determined at a given angle e andφwith respect to the 
external magnetic field. 

3) Calculation of the FID 

Diagonalize the Hamil tonian and calculate the evolution 

of the density matrix to evaluate the FID signal. These are 

accumulated in the range 0 三 cose く1， and 0 三 φ く π.
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Short explanation of the simulation program w咜h chemiｭ

cal exchange is given below. 

1) Parameter Input 

Input the parameters necessary to calculate the FIO's. 

Larmor frequency 

number of site for exchange 

e 2 qQ/h ， ηand the Euler angles 

いJhich relate the crystalline frame 

and the principal axes of the EFG at each s咜e 

relative population of each site 

chemical exchange rate between any pair of the sites 

rf pulse strength in the frequency unit 

number of experiments and increment of the pulse 

length 

number of sampling points and sampling interval 

number of division over the sphere for numerical 

integration 

2) Quadrupole interaction at a given orientation 

The first and the second order quadrupole interactions 

are calculated at a given angle θand φw i th respect to 

the external magnetic field. 

3) Calculation of FID 

Diagonalize the Liouvillians corresponding to each 

dimension and calculate the FIO. 

These are summed over the sphere in the range 

-1 く cose く 1 and 寸r く φ 三 π.

In each case, the number of divi.sions over the sphere is 

chosen to be sufficient to produce the powder spectrum, 

i.e. , 3000-10000. A set of data points 128 x 256 are used 

to calculate the FIO's. The pr09ram lists are given in 

内
/
­

A
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Appendix. The program is coded in FORTRAN and calculated by 

the ACOS-6 of the computer center of Osaka University and/or 

NEC PC-9801E/VM personal computer. 

The Fourier transformation CEq. (3.1.20)) was done by 

the use of the ASPECT-3000 minicomputer incorporated in the 

BRUKER MSL-200 NMR system. The ASPECT-3000 is equipped with 

an array processor which can execute the 2D Fourier transｭ

formation very efficientlY and with the plotting routine to 

draw up the spectrum. The data conversion program provided 

by BRUKER Co. Ltd. was modified to convert the data format 

between the MS-DOS operating system on NEC PC-9801 personal 

computer and the ASPECT -3000 system. The line broadening 

parameters can also be defined in the ASPECT-3000 system. 
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4. Sample 

4.1. NaN02 and NaHgC13 .2H2 0 

NaN02 crystallizes in an orthorhombic (space group lm2rn) 
e 

crysta1 system with the unit ce11 dimension of a = 3.569 A, 

b = 5.563λand c = 5.384 A, Z = 2. [1 J 

Crysta1 of NaHgC13 .2H2 0 lS orthorhombic (space group 

Pnma) with four mo1ecu1es 1n the unit ce11 [2J. The 

1attice parameters are a = 9.372 人 b = 4.037 A, and 

c = 18.71 ﾅ. Sodium atoms are coordinated by two H20 

mo1ecu1es and four ch10rine atoms. 

80th of the above compounds ha ve on1 y one kind of 

sodium site and can be used to pre1iminary test of 2D 

nutation NMR method. 

4.2 Na2Se03 

This crysta1 has three nonequivalent sodium sites [3J. 

This samp1e can be used to examine whether、 20 nutation NMR 

method can be applied to determine the quadrupo1e interacｭ

tion parameters at each site. 

4.3. Nal +x Zr2Six P3-x 012 

The system Nal +x Zr2Six P3-x 012 has been known to be a 

fast a1kali-ion conductor. [4J The crysta1 structure is 

shown in Fig. 4.1. [5J Comp1ete solid solution exists for 

the composi tion between x = 0 and 3 and the crysta1 strucｭ

ture varies between R3 (0.0 三 X く 1.8 ， 2.2 く X三 3.0) and 

C2/c (1.8 三 X 三 2.2 )， The latter is a slight1Y deformed 

structure of the former. The structure consists of a threeｭ

dimensional skeletal network of P04 (and/or Si04) tetrahedra 

which are corner-shared with Zr06 octahedra. The Zr06 

octahedron is 1inked by three P04 tetrahedra so as to form a 

ribbon a10ng the hexagona1 c-axis and a1so 1inked by six P04 
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Crystal structure of Nal +x Zr2Six P3-x 012 ・
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tetrahedra to form a two-dimensional sheet in the c-plane. 

This has two kinds of sodium sites named 1 and 2. In the 

case x=O CNaZr2P3012 ), sodium occupies the site 1 CNa(1)) 

only which is an octahedral site 5urrounded by six oxygen 

atoms of Zr06, and the si te 2 remains unoccupied. As x 

increases, the population of the site 2 (Na (2)) increases. 

Na (1) lies on the three-fold axis and is also surrounded by 

six Na (2) sites which locate in the same plane of the 

nearest-neighbor 02 -. Thus it ha.s been supposed that the 

sodium ion transport occurs through the path 

Na(1 )• Na(2 )• Na (1). The conductivity changes with x and 

assumes the maximum value at x:= 2.0 , but the activation 

energy for conduction is almost constant in the range 

between x = 0.0 and 3.0. 

The compound can therefore be an appropriate model for 

examining the sodium ion exchange by NMR. Moreover, since 

the site symmetries at the Na (1) and Na (2) sites are both 

lower than the cubic symmetry and so non-zero quadrupole 

interaction in each site is expected to exist. Therefore 

the application of the new theory for the 2D nutation NMR on 

chemically exchanging system to Na1 + x Zr2 Six P3 -x 01 2 brings 

about information on the dynamic process and the microscopic 

mechanism of the ion conduction in this material. 
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5. Experiment 

5.1. Sample Preparation 

5.1.1. NaN02 and NaHgC12 .2H2 0 

NaN02 is of commercial source (トJacalai Tesque, guaranｭ

teed reagent grade, purity 98.0%) and used without further 

purification. 

NaHgCb .2H2 0 was prepared from aqueous solution of the 

appropriate mixture of NaCl CTomi ta Seiyaku) and HgC12 

(トJacalai Tesque, guaranteed reagent grade, purity 99.5%に

Colorless polycrystals were grown by slow evaporation of 

water. The X-ray powder diffraction pattern of this 

product CFig. 5.1) was compared with that calculated with 

the lattice parameters given in the literature [1J. The 

resul t identified NaHgC13 .2H2 0 but indicated at once the 

existence of small amount of HgC12 ・ HoいJever ， this HgC12 

impurity is supposed to have little influence on the NMR of 

23Na. 

5.1.2. Na2 Se03 

Na2Se03 was prepared from aqueous solution of a stoiｭ

chiometric mixture of NaOH CNaca.lai Tesque, reagent grade, 

puri ty 93%) and seleni us acid H2 Se03. [2J H2 Se03 is preparｭ

ed by dissol ving Se02 (卜Jacalai Tesque, guaranteed reagent 

ヲrade ， purity 98%) in water. Slow evaporation of the 

solution gave the white powder. 

5.1.3. Na1 +x Zr2Six P3-x 012 

The powdered specimen was synthesized from the stoichioｭ

metric mixture of Na2 C03 : Zr02 : Si02 : NH4 H2 P04 = 1 +x : 4 

2x : 2C3-x) , x=O.O , 1.0, and 2.0. [2J The reagents used 

here were : Na2 C03 , r、Jacalai Tesque, guaranteed reagent 

grade, puri ty 99.5%; Zr02 ・ Nacalai Tesque, reagent grade; 
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Si02 ，トJacalai Tesque, guaranteed reagent grade; NHA H2 P04 , 

Wako Junyaku, guaranteed reagent grade, puri ty 98%. The 

mixture was at first heated to 900
0
C for several hours to 

decompose Na2 C03 and NHA H2 P04 , then heated to 12000 C for 

10 to 20 hours in the platinum crucible in an electric 

furnace. The sample obtained here is white fine powders. 

The specimen was identified by X.-ray powder diffraction. 
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5.2 Nutation NMR 

The 23 Na NMR spectrum was measured by the use of the 

BRUKER MSL-200 NMR system at the Larmor frequency of 

52.938 MHz. In some cases, offset of "':t 1 0 kHz was added so 

as to minimize the difference between the resonance frequenｭ

cy and the rf frequency. The pulse length was increased 

from 1 to 128μs every 1μs， or from 2 to 256μs every 2μs 

by the use of the automation program. The FIO signal was 

sampled every 0.8μs. The number of data points was usually 

lk words. Each FID was quadrature-detected and accumulated 

16 to 500 times using phase cycling technique to eliminate 

phase and intensity errors arising from the non-ideality of 

the pulses and/or the receivers in each experiment. The 

recycle time for accumulation was set to be greater than the 

time required for the magnetization recovery towards thermal 

equilibrium value : Usually it was 5 s. The temperature of 

the sample was controlled using VT-I000 temperature control 

system which is equipped in the MSL-200 system and measured 

by the Cu-Constantan thermocouples. The fluctuation of the 

temperature is within :tl K. 

In order to minimize the effect of the rf pulse 

inhomogeneity, the samples were sealed in the glass ampules 

¥iJith 10mmφin ca. 10mm long. The si~3"nal of sodium from the 

ampule was negligible since the glass ampule used here was 

very thin and the amount of sodium in it was negligibly 

small compared with that in the sample. 

The data acquired were 20 Fourier transformed by 

the use of ASPECT-3000 computer. Before 20 FT, zero filling 

up to 1k or 2k words in the Fl dimension was made in order 

to increase the digital resolution of the spectrum. In some 
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cases , the trapezoidal function Iwas mul tiplied to the Fl 

data to avoid the effect of cut-off of the tail that causes 

auxiliary wiggles on either side 0:[ the spectrum [4J. 
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6. Data Analysis 

6.1 Nutation Spectrum 

Fi gs. 6.1 and 6.2 show stacl<:ed and contour p lots of 

typical 20 nutation spectrum simulated with parameters 

e2Qq/h = 0.2 MHz ， η= 0, and ω1/2π= 50 kHz. The horizontal 
axis，以Ihich will be called F2 for brevity, is the convenｭ

tional 1 D NMR spectrum axis and the projection onto this 

axis gi ves the powder spectrum characterized by the second 

order quadrupole interaction. (See Fig. 6.2a.) The vertical 

axis, Fl , shows the nutation spectrum whose pattern varies 

with strength of the quadrupole interaction relative to the 

rf strength. 

If the Hamil tonian in the evolution period, H2 , does not 

contain any useful information other than quadrupole interｭ

action, an FT over tl gives nutation spectrum which gives 
rise directly to the ratio flG /ω1 = [3e 2 Qq/2H2I-l)百J/ω1 ，

where no is the lowest pure quadrupole resonance frequency. 
Fig. 6.3 illustrates the simulated dependence of the 

nutation spectrum on the strength of the quadrupole interacｭ

tion for I = 3/2 (η= 0 and ω1/2π= 50 kHz). The numbers on 

the right-hand side of the spectrum represent e2Qq/h. The 

bottom spectrum corresponds to the case when the quadrupole 

interaction is absent; only one sharp peak appears at around 

ω1 as mentioned in Sec. 2.3. As the strength of the 

quadrupole interaction is increased, the spectrum splits 

into several peaks and they move away from ω1 ・ In the topｭ

most spectrum, the quadrupole interaction is so strong that 

only one peak is found at around 2ω1 ・ In this case, the 

intensity of the peak at 2ω1 is reduced to 1/4 of that of 

the peak at ω1 in the case of e2 Qq/h = 0, indicating that 
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Figure 6.1 

Stacked plot of 20 nutation spectrum simulated with 

parameters e2Qq/h = 0.2 MHz， η= 0 ， ω1/2π= 50 kHz. 
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Figure 6.2 

Contour plot of simulated 2D nutation spectrum. 

Calculated parameters are as in Fig. 6.1. a) Projections 

onto Fl and b) F2 axis~ respectively. 
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only the transi tion between m = :t 1/2 can be exci ted by weak 

rf field. 

The variation of the nutation spectrum with ηis shown 

in Fig. 6.4 for ﾜQ /ω1 = 2.0. When η 手 0 ， the spectrum 

sp li ts into several 

with increasingη. 

other. 

peaks and their separations increase 

Ifη= 1, they are merged wi th each 

Based on the above results, one can determine the 

quadrupole interaction parameters from the positions and 

(relati ve) intensi ties of the peaks. In order to avoid 

possible effect of improper phase setting in the experiment 

on the spectrum, only the magnitude spectra. are used to 

compare the experimental nutation spectra with the theoretiｭ

cal ones, although it gives rather broad peaks owing to the 

contribution of the dispersion component. 

The magnitude spectrum means 

JA(ω)ど+ D(ω) ど，

where A and D are absorption (real) and dispersion (imagiｭ

nary) components of the spectrum. 
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Figure 6.3 

Dependence of nutation spectrum on the strength of quadruｭ

pole interaction. 
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6.2 Data Analysis 

1) NaN02 and NaHgCb .2H2 0 

The 20 nutation spectrum of NaN02 is shown in Fig. 6.5, 

and its projection onto the Fl axis is shown in Fig. 6.6a. 

Three broad peaks are found at near 0 ， ω1 ， and 2ω1 ・ The

peak at around 0 is probably due to the offset effect which 

is caused by a non-zero offset between the Larmor frequency 

and the rf frequency and/or due to the rf inhomogenei ty. 

This point will be discussed further in Sec. 7.2. If this 

minor disagreement is ignored, the nutation spectrum can be 

interpreted with e2Qq/h ~ 1.1 MHz which has been reported in 

the literature [1 J. The projection onto the F2 axis CFig. 

6.6b) gives the structure due to the second order quadrupole 

interaction, and ηcan be estimated from i ts line shape to 
be ~ 0.1. 

The spectrum of NaHgC13.2H20 is shown in Fig. 6.7, which 

resembles with that of NaN02, but the relative intensities 
of the peaks are different CSee Fig. 6.8,). This spectrum 

corresponds to the spectrum of e2Qq/h ~ 0.6 MHz and η~ 0.2. 

3) Na2Se03 

This samp le has three nonequi valent sodi um si tes and 

these can be distinguished in the nutation spectrum in Fig. 

6.9 : The slices of the spectrum .at the posi tions marked by 

arrows CFigs. 6.10a-c) are d�ferent from each other in 

their relati ve intensi ties of the peak nearω1 and that near 

ω1 , due certa�ly to the pre5ence of three different 

quadrupole interactions. The strength of the quadrupole 

interaction at the sites a, b, and c is estimated to be 1.4, 

0.8, and 1.3 MHz, respectively, The value ηis estimated to 

be 0.8 and 0.0 for a and b. No significant temperature 
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Figure 6.5 

Contour plot of 2D nutation spectrum of NaN02 at room 

temperature. 
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Figure 6.6 

20 nutation spectrum of NaN02 at room temperature. 

a) Projection onto Fl axis. b) Projection onto F2 axis. 
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Figure 6.7 

Contour plot of 20 nutation spectrum of NaHgCb .2H2 0 at 

room temperature. 
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20 nutation spectrum of NaHgCb .2H2 O. Projection onto Fl 
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Contour plot of 2D nutation spectrum of Na2Se03 at room 

temperature. 
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dependence was found except at the highest temperature 

(330 10, at vJhich a sharp peak appeared at ω1 ・ This peak 

corresponds obviously to very small quadrupole interaction 

but the origin of such small e2Qq/h is not clear. 

4) Nal +x Zr2Si3-x PX 01 2 

The spectra of the samples ~"ith x = 0.0 and 1.0 have 

shown no significant temperature dependence. 

The spectrum for x = 0.0 at room temperature is shown in 

Fig. 6.11. ln the spectrum of x = 0.0 , one can clearly 

distinguish two sites Ci.e. , a considerable amount of 

fraction of sodium ions occupies the ・ site 2・).

Remarkable temperature dependence of the spectrum is 

found for x = 2.0. The temperature dependence of 10 specｭ

trum is shown in Fig. 6.12 and that of 20 nutation spectrum 

is shown in Figs. 6.13-6.17. By Fig. 6.12 alone, one can 

nei ther distinguish two nonequi valent si tes nor assi gn the 

nature of motion that causes the variation of the lineshape. 

But the analysis of 20 nutation spectrum can provide 

frui tful information about these points. 

ln the spectrum of the lowest temperature Cl16 K) , i t is 

shown clearly that there are two independent nonequivalent 

sodium sites and so it can be assumed that the chemical 

exchange between the sites does 110t occur. The slices at 

the position indicated by arrows are shown in Figs. 6.18a 

and b. These were compared with the simulated patterns with 

e2Qq/h of 1.0 MHz and 1.5 MHz, respectively. Moreover from 

the relative intensities of the two spectral components, the 

spectrum in Fig. 6.18a Ce2Qq/h = 1.0 MHz) was assigned to 
the site 1 and Fig. 6.18b Ce2Qq/h = 1.5 MHz) to the site 2. 

The projection onto F2 axis (except the spectral component 
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Figure 6.19 

Projection onto F2 axis of 20 nutation spectrum of 

Na3Zr2SiP2012 at 116K. 



appeared at around 0 frequency in the Fl dimension) is shown 

in Fig. 6.19. Using the above values of e2Qq/h the simulaｭ

tion of the best fitting to the experimental line shape was 

obtained by puttingη= 0.0 (site 1) and 0.8 (site 2) , and 

that difference between the chemical shifts at the two sites 

is 16 kHz. These resul ts are supported by the crystal data 

: The site 1 has three fold symmetry and soηshould be O. 

As the temperature was increased, the difference between 

the two sites became gradually unclear , and it disappeared 

to gi ve a spectrum which corresponded to well defined one 

site case at the highest temperature (Fig. 6.17, 363 K). 
This phenomenon suggests strongly that the rapid chemical 

exchange occurs between the two nonequivalent sites at the 

high temperature. 

The simulation of the spectrum at the highest temperaｭ

ture led to the values of the apparent interact�n parameｭ

ters e2Qq/h = 1.1 MHz and η= 1.0 (see Fig. 6.20 ), These 

parameters as well as the above values for the rigid lattice 

were used to estimate the Euler angles between the two EFG 

tensors to be ﾟ = 30.0 ， γ= 60.0. The s�ulation of the 

spectrum at each temperature was performed to reproduce the 

experimental spectrum wi th the chemical exchange rate k as 

unknown parameter. The s�ulated spectra are shown � 

Figs. 6.21-6.25. It was found that the chem�al exchange 

rates are 0.1 kHz at 237 K, 1 kHz at 300 K, and 10 kHz at 

363 K. From these values the activat�n energy for the 

chemical exchange between the sites 1 and 2 was estimated to 

be Ea ~ 13 ]くJ/mol. On the other hand the activation energy 

values obtained above do not coincide with that found in the 

conductivity measurement (Ea ~ 31 kJ/moll [2J. The large 
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Projection onto Fl axis of 2D nutation spectrum of 
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Contour plot of 20 nut己tion spect:rum simula ted v!i th 

chemical exchange rate k = 0.001 kHz. Other parameters are 

described in the tε::t. 
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Figure 6.22 

Contour p lot oﾍ 2D nuta tion spectrurn sirnula ted wi th 
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Contour plot of 20 nutation spectrum simu.lated wi tb 

chemical exchange rate k = 0.1 kHz. 
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discrepancy between the Ea 's values obtained by the NMR and 

conductivity measurement suggests that there exists a fundaｭ

mental difference between the local motion of the sodium 

ions and the global motion ~]hich causes the net ionic 

conduction. This point will be discussed later. 

-87-



References 

[1 J Landol t-Bbrnstein Tavellen, New Series, 

Group III , Vol 20a. 

[2J J .B. Goodenough, H. Y -P. Hong, and J .A. 1くafalas ，

Mat. Res. Bu 11. , 11, 203 (1 976), 

-88-



7. Discussion 

7.1 Summary of the Present Wor k 

50 far in the previous Chapters a new theoretical method 

to describe the evolution of the quadrupolar spin system 

under the influence of strong rf field was established. 

This method is based on the Liouville representation and is 

superior in the following points to the other methods 

previously developed : 

1. It is easy to construct the theoretical expression for 

the complex interaction between the spin system and the rf 

field and so can be easily extended to the system wi th spin 

hi gher than 3/2. 

2. Al though the dimension of the matrix to be determined is 

far larger than that based on other standard methods, the 

formalism with the Liouvillian can be coded by computer 

language(s) and therefore is much s:uitable for the computaｭ

tion by a big computer. 

3. Liouville representation has a form which can incorporate 

effects other than spin interaction in a straightforward 

manner. This property makes it possible to apply the 

nutation method to chemically exchanging system. 

The new method was coded by FORTRAN to prepare the 

general simulation program which is necessary for analyzing 

the experimental 20 nutation spectra. The program can be 

applied to quadrupolar nuclei with spin numbers 3/2 'v 9/2 

and to systems with and without chemical exchange. 

The 2D nutation NMR experiments were conducted for 23Na 

species involved in several compounds : 

1. The 23 Na resonances in NaN02 and NaHgC13 .2H2 0 were used 

to establish the optimal experimental conditions for the 20 

-89-



nutation spectra and to evaluate the sensitivity of the 

spectra to the quadrupole interaction parameters, e2Qq/h and 

η. 

2. The 23Na nutation NMR was applted to Na2Se03 to distinｭ

guish the three crystalloヲraphically nonequi valent Na si tes 

in this compound. The value e2Qq/h at the individual sites 

could be determined and also ηwas estimated for two of the 

three sites in this material. 

3. The 23Na 20 nutation NMR was used to examine the dynamic 

process of Na 1 + x Zr2 Six P3 -x 01 2. The spectrum ωas remarkably 

temperature dependent and by applying the new theoretical 

method for the chemically exchanging system to it the 

chemical exchange rate of Na ions between two nonequivalent 

sites was estimated at each temperature. It was found that 

the acti vation energy deduced from the nutation spectra 

differs significantly from that determined by a previous 

conducti vi ty measurement. 

In the course of this work a number of problems have 

been encountered concerning the practice of the 2D nutation 

NMR. In what follows 1 will discuss the applicability , 

advantage and/or disadvantage of the 20 nutation NMR newly 

developed in the present work. 
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7.2 2D Nutation NMR 

Nuclear quadrupole interaction can provide a lot of 

useful information on the static and dynamic structures of 

crystalline materials. In the case that e2Qq/h is larger 

than about 1 MHz, the pure quadrupole resonance can be 

applied to determine the quadrupole interaction parameters. 

�hen e2 Qq/h is much smaller than 'V 100 kHz, the conventional 

NMR is used to detect the quadrupole-perturbed spectra 

either on single crystal or powdered specimen. 

Many of chemically interesting nuclei such as 23Na, 

27 Al, 39 K, 59 Co , etc. gi ve often e2 Qq/h of the magni tude 

between ca. 100 kHz and a few MHz region. In such a 

frequency region it is extremely difficul t to app!y the 

above two methods because of the limitation on the sensitivｭ

ity and/or band width of the radio--frequency spectrorneters. 

Moreover when a number of crystallographically nonequivalent 

sites exist for the nuclei of interest, it is usually almost 

impossible to analyze the complex spectra even if the second 

order quadrupole interaction could be detected. 

It was shown in a preceding Chapter that the 2D nutation 

NMR can successfully be applied to such cases. Since the 

strenヲth of the rf pulse usually a vailable is 100 kHz at 

most, it means that this method can be applied to determine 

the quadrupole coupling constant rkl/2πup to about 1 MHz. 

Most remarkable feature of the nutation NMR method lies 

in the fact that if a strong rf field can be used and if the 

condi tion HD , Hc s くく Hr f holds, undesirable line broadening 

effect due to HD and Hc s along the F1 axis is dramatically 

reduced. CIn the usual 1 D spectrum \~hich corresponds to the 

F2 direction, the line broadening due to other interactions 
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can not be eliminated') 1n this ~~ay ， detailed information 

on the quadrupole interaction can be derived from the 

nutation spectrum. 

Another advantage of the nutation NMR is found in its 

simple setting of the experiment as having been demonstrated 

in Chap. 5. 

A special use of the nutation method is, as pOinted 

out [1 J, the deter、mination of rela ti ve orientation between 

the EFG and the other interaction tensors. 1t is possible 

if the dominant interaction in the detection period, t2 , is 

other than the second order quadrupole interaction. For 

example, if the static magnetic field is considerably high 

the line width due to the chemical shift extends over wide 

frequency range and may dominate the second order quadrupole 

interaction. 1n such case, the spectra developed onto Fl 
and F2 axes contain the information mainly on the quadrupole 

and chemical shift interaction, respectively , and the correｭ

lation between them allows to determine the angles between 

tensors of both interactions. 

However, several effects are found to deform the specｭ
trum. These are discussed below. 

a) Peak near 0 in Fl 

¥JJhen an off-resonant rf pulse is applied, i.e. when 

Larmor frequency in the absence of quadrupole interaction 

does not coincide with the rf frequency , there must appear a 

peak at zero frequency. This can be explained as follows in 

the case of 1 = 1/2 for simplicity. If the offset between 
the rf frequency and the Larmor frequency is åω， the signal 

at the end of the pulse becomes 
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S(t) ∞ [α(}-cos20t)+ißsin20t)] (7.2.1) 

以lhere

o = jð.ω2+ω12. 

α=ωl ð.ω/02 

。 =ω1/20 (7.2.2) 

Since ð.ω 手 0 ， αdoes not vanish and the term independent of 

time generates the peak at 0 frequency. Also the cosine 

term survives and this results in the phase modulation along 

Fl which will cause the distortion of the spectrum. Then it 

is desirable to minimize the resonance offset as long as 

possible. But when the inhomogeneity of the external 

magnetic field and/or dipole interaction between the spins 

are significant, this effect cannot be eliminated perfectly. 

Another cause of central peak is the effect of the 

second order quadrupole shift during the evolution period 

which has been neヲlected in the theoretical formulation. 

The nutation spectrum including these effects is shown in 

Fig. 7.1. The greater the quadrupole interaction, the 

greater the intensity of the central peak. 

b) Line Broadening 

Another undesirable effect in the nutation NMR is caused 

by the inhomogenei ty of the rf field in space. This cannot 

be avoided in the use of the solenoid of the finite length : 

The rf magnetic field is strongest at the middle of the coil 

and decreases to some extent at the ends of it. [2J This 

brings about the distribution of the ratio ﾜG /ω1 and it 

causes the line broadening in Fl dimension. Also, if the 

shape of the rf pulse is not rectangular (al though i t is 
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Figure 7.1 

Dependence of nutation spectrum on the ratio ﾜG /ω1 

including the second order quadruPole interaction as well as 

chemical shift. 
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assumed tacitly) , it causes the spectrum to modify. The 

effect of the inhomogeneity in the rf field cannot be 

treated quantitatively. 

In the discussions so far , the effect of the relaxation 

was not taken into account, but in the actual experiment the 

relaxation of the spin system sometimes influences the 

spectrum. The qualitative analysis of the Bloch equation 

shows that the magnetization which nutates around the rf 

field is decreased with the time constant Tn = 2/C1/Tl+1/T2) 

under the assumption that (Jl >> l/Tl , 1/T2 ・ This leads to 

the conclusion that the inverse of the peak width along Fl 

cannot exceed 2T2 and the best resolution is determined by 

T2 since usually T2 is much shorter than Tl in solids. When 

the effect of the relaxation can be treated theoretically , 

it must give the information on the dynamics of the nucleus. 

The relaxation effect on the nutation spectrum has been 

examined by the rotary echo nutation method [3J in which the 

effect of homogeneous line broadening arising from the 

relaxation can be separated from that of inhomogeneous line 

broadening due to the distribution of the quadrupole interｭ

action and/or external magnetic field. 

c) tl noise 

Another relaxation effect which influences the spectrum 

is tl noise [4J which is due to the variations of the 

experimental condi tions from experiment to experiment in a 

2D sequence, leading to irregular fluctuations of the signal 

as a function of tl ・ In the 2D nutation NMR, tl noise is 
caused if the recycle time between the accumulation is too 

short for the magnetization to recover towards the thermal 

equilibrium value, M�. Since the magnetization recovery 
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depends on tl (and the recycle time) the peaks at 2ω1 ， 3ω1 ， 

. .• appears in the nutation spectrum. 
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7.3 Chemical Exchange Effect 

As already demonstrated in a previous Chapter, the 20 
nutation NMR gives its full ability in the situation where 

the spectrum arises from several nonequivalent sites. Often 

the si gnals corresponding to them over lap wi th each other 

and it is very difficult to decide which peak corresponds to 

each si te. While by the use of 2:0 nutation NMR one can 

easily distinguish each si te according to the difference of 

the strength of quadrupole interaction. 

It was shown theoretically and experimentally that the 

nutation spectrum is drastically changed when the chemical 

exchange of the resonant nuclear species is exci ted. The 

detailed analysis of the spectrum brings about the quanti taｭ

tive information of the mechanism of the chemical exchange. 

Especially when slow and fast limits of the spectra can be 

obtained, one can determine the relative orientation of the 

EFG tensors as well as the rate constant of the exchange. 

Thus the method can be used to examine the mechanism of 

chemical exchange, ionic conduction, and/or solid state 

reaction from the microscopic point of view. 

In Chap. 6 it was pointed out for Nal+xZr2SixP3-x012 

that the activation energy for the sodium exchange was 

estimated from the 20 nutation NMR experiment to be 

13 kJ/mol and that this value was very small compared with 

31 kJ/mol deduced from a previous conductivity measurement. 

The most simple model for ionic conduction is based on the 

classical hopping mechanism through successi ve nearestｭ

nei ghbor si tes. In such a model conducti vi ty measurement 

and NMR should give the same activation energy and jump 

rate. Serious discrepancies as was found above are often 
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encountered. [5] In the case that the ion transport occurs 

through the hopping between two or more nonequivalent ionic 

sites as was found in Nal +x Zr2Six P3 x 01 2, the discrepancy 
between the activation energies determined by different 

techniques can qualitatively interpreted. Consider an ion 

transport through a potential shown in Fi g. 7.2. As the 

potentials at si tes 1 and 2 are largely different one ion 

can jump easily from ・ site 2 ・ to 'site 1 ・ but the opposi te 

is much difficult. If the neighboring 'site 1 ・ is initially 

occupied, the ion will hop back and forth between the 

nearest si tes until one of the other ・ site 1 ・ happens to 

become empty. The repeti tion of such local motion does not 

contribute to the net conductivity wlhereas it affects the 

NMR spectrum. The exchange and conduction of the sodium 

ions in Na1+xZr2SixP3-x012 are considered to apply to such a 

model. The 20 nutation NMR mothod looks at the rapid local 

motion with an average activation' energy while the ion 

transport experiment measures an energy which is the sum of 

the acti vation energy for the jump and the energy for the 

vacancy formation at the 'si te 1'. This idea enables one 

also to interpret the experimental resul ts that the acti vaｭ

tion energy obtained from conducti vi ty measurement is indeｭ

pendent of the composition (x) while that from NMR is 

strongly dependent on x. (¥t)hen x = 2 the frequent jump 

between the sites 1 and 2 was observed as mentioned before 

but no sodium jump was recognized in the specimens wi th 

x = 0 and 2. In the latter two sa.mples the activation 
energies for the sodium excha.nge appear to be infinity.) 
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Figure 7.2 

Nonequivalent site model with deep and shallow wells. 
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00 400 1 = I , NT 
CT1=OBLE(I)/OBLE(NTl 
CT2(1)=CTl 決CTl

400 CONTINUE 
IF (ETA .EQ. 0.00+00) TIIEN 
NP=1 
Crl(I)=O.OO+OO 
ELSE 
NP=NT 
00 41 0 1 = I , NP 
CPl(I)=ETA*OCOS(P12発OßLE(I)/OBLE(NTll

410 CONTINUE 
ENO IF 

Store the Parameters 

OPEN (UNIT=50 , FILE=RGF , ACCESS= ・ SEQLJENTIAし・)

WR1TEC50 ,' (^40) ・) ・ 一一一ーー一 Computational Conditions 
¥J}R 1 TE ( 50 , ・(^ 1 6) ・) ・く 1nteractions >・
¥I} R 1 T E C 5 0 ，・ (AI0 ， I2 ， A41 ・)・ Spin =・， Nsr ，・/ 2 ・

WRITEC50 ，・ (A22 ， F8.3) ')・ Lamor Fr eq / MlIz = " ¥110 
WRITEC50 ，・ CA22 ， F7.3) ・)・ RF Field / kHz =・， ¥11 1 
\I)RITE(50 ，・ CA15 ， FI0.6 ， A8 ， FI0.6) ') 
&・ QCC / MHz =・， QCC ，・; ETA =・， ETA

WRITE(50 ,' CA15)') ・く Calculation >・
WR 1 T E C 50 , ' C A 44 )・)' Oimension Oata Points Time IncremenLs' 
00 500 1 = 1 , 2 

\I1 RITEC50 ，・ (7X ， 1 1 , 10X , 14 ， 9X ， FI0.51 ・) 1 , OIM(I) , TICI) 
500 CONTINLJE 

\JJRITE(50 ，・ (/A28 ， 15) ・)・ Total Oivision over e = ・， NT
¥I} R 1 T E ( 5 0 ，・ (/AI8 ， AI5) ・)・ Oata Stored in ', TOF 
CLOSE CUN1T=50) 



PAGE 3 
09-27-90 
18:48:36 

Linen Source Line Microso.ft FORTRAN Optimizing Compiler Version 4.01 

Fし
「
u
f
u

「
U
Fし
「
u
f
u
p

し
Fし

0
1
2
3
4
5
6
7
8
9
0
1
i
2
3
4
5
6
7
8
9
0
1
A
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
 

0
0
0
n
u
n
u
o
n
u
O
G
n
u
-
l
i
l
i
-
-
A
-
A
f
l
i
l
i
-
-

ゐ
勺
ム

2
2
2
2

円
/
』
つ
』
2
q

ノ
』
2

つ
u
q
u
3
3
3
3

つ
u

勺
u
n
J
3
4
4
4
4
4
4
4
4
4
4
R
J
R
u

l
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
 

Oetermine the Parameters 5u咜able to Calculation 

600 

p
且

M
川

V宵ri 

n
U
M

山
門

nu

, 

+
・nu 
n

u

=

 

、
J

門
/
』

1
1

1

/

H

 

n
u

、

J
n
γ

-
、

J

1

i

n

u

n

u

'

 

0

5

0

A

 

+

T

I

 

D

7

D

E

 

R
V

一
円

U
H

円

-
Y
E
A
-

司E
A

門
ノ
』A
門

'
l

発
(
一

)
奨

D
e

p

)

(

V

 

S
2
3
i
v

宵

O

M
N
r
t
n
U
A
H
n
u
 

'
i
-

一

-
n

p

T

o

o

l

)

O

 

S
V

宵

O
O
O
A
-
­

N
2

・

0
+
(
)
S

V宵
]
)
i
+
D
T
/
i

p
p
l
v

肯
D
I
O
R
5
v

s
v
肯
(
)
O
+

・

Q
l

・­

N

O

T

A

-

-

P

3

S

'

D

 

(
W
T
(
2
S
V

宵
D
0
8

E
/

挺

l
/
N
D
V

宵
0
3
i

し

C
2
T
)
'
v

肯
i
+

八

a

B
C
I
V

肯

p
i
D
D
M
D
(
t

D
Q
P
2
S
=
=
=
=
0

・
。

/
美
栄

I
N
i
)
)
)
-
E
'
T

C
C
C
P
(
I
I
I
1
U
V

宵

c
c
c
v

宵
E
O
(
(
(
-
N
(

Q
Q
Q
l

し

0
D
F
F
D
I
E

-
-
一
一
-
一

W
B
6
H
1
1
=
T
T

f
し
司
ノ
』
「
し
=
n
u
T
i
n
w
M
w
h
U
M
門
T
i

f
し
「
し
「
し1
i
=
n
u
n
U
D
H

・

Q

Q

Q

M

w

D

D

C

M

 

oAU 

PO'.lJder Avcraging Slarl here 

700 
710 

DO 71 0 1 = 1 , NT 
¥IJR 1 TE (発，・ CA30 ， I5) ・)・+

DO 700 J=l , NP 
CALL EVOLVECNSP+l , Hl ,1-1 11 , Rl , El , CT2C 1) , CPl CJ) , ERS) 
IF CERS .NE. 0) GOTO 20000 
CONTINUE 
CONTINUE 

Powder Aver ag i ng NO'.lJ :・， 1*NP 

Normalize and Store the Data 

800 
810 

OPEN CUNIT=lO , FILE=TDF) 
D=I.0D+00/DBLECNT栄NP)

DO 8 1 0 1 = 1 , D 1 M C 1 ) 
00 800 J=I , DIM(2) 

ARYDAT(J ， IJ=ARYOAT(J ， I) 発D

WRITECI0 , FMT=9000 , 10STAT=ERS , 
CONTINUE 
CONTINUE 
CLOSE CUNIT=10) 
FORMATCD22.16 , IX , D22.16) 

ERR=lOOOOl ^RYDAT(J , I) 

9000 
c 
c 
c 

Normal Encl. 

GO TO 99999 
C --一-ーーーーー一一一ーー一一ー一ー一一一一一ーーーーーーーーー一一一一一一一ーー一一一

C Erl'or Exist in the rrocedure. 
C -一一一一一一一一一ー一一一一一一一一ーーーーーー

1 0 0 0 0 ¥il R 1 T E C 浜" C^18 , 15) ・)・ Fi 1 e ¥il r i t e E r r 0 r ・， ERS

GO TO 99999 
20000 \ilRITEC 決，・ (^23 ， I5) ・) • DiagonLll izat卲n Error ｷ , ERS 
C 
99999 END 
$PA<;E 
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日 1I 日I?OlJTINf': 1 .: V(ll . \/I ~ (I..111 .111 I .In .Fl.("T2.(� 1l.FI¥P) 

CaJculat 台 the Evo] u t i on of the Dens i ty Vector's 

COMPLEX発 16 ARYDAT( 1 , 1024) , Hl (L ，し)， Rl (し， L) , E 1 (し)， IC ， Q2E

COMPLEX誕 16 RDR ( 1 0 , 1 0 ) , EE ( 1 0 ) , REC ( 10 ) , ERC ( 10 ) , UJ ( 10 ) 
REAL~時 8 1111 (2 , L , L) , Ql , Q2 , D , CT2 , CT4 , ST2 , ST4 , CPl , CP2 , SP2 
RE^L決 8 TIID( 10) , QCC , ETA , QC2 , QIP( 10) , \vlF( 1(J) 
INTEGER挺 4 D 1 M ( 2 ) , N 1 , N2 , 1 , J , K , ERR 

Vel'sloll 仁ι) 川 p1 1 Cl' I : UI~TI<^N UpLi Jn L 乙 ln9MI し・ 1 ・ o:::;ofLLlne Soul'ce 

Fし
F
し
「
し

20 

30 

COMMON IARYDAT/ARYDAT , DIM 
COMMON IPARAMS/TIID , QCC , ETA , QC2 , QIF , UJIF 
COMMON IUJRKVAR/RDR , EE , REC , ERC , UJ 

Transformλtion of Coordinate to Molecular Frame 

CT4=CT2奨CT2

5T2=1.0D+00-CT2 
5T4=5T2奨ST2
CP2=CPl 発CPI

5P2=ETA決ETA-CP2

First Or�r QuacJrupole 5plitting 

Ql=QCC栄 (3.00+00 持CT2-1.00+00+5T2発CP1 ) 

5econd Order Quadrupole 511ift for the Central Transition 

Q2=QC2巣 ( 5T4*9.0-( 1.0-CT4) 争時 CPI 挺 6 . 0+(CT2 挺 4 . 0+5T4) 挺CP2+CT2￥SP2 決 4 . 0

& -5T2栄 (CT2 発 (9.0+CPl 奨 6.0+CP2)+SP2) 発 8.0 ) 
Q2E=DCMPLX(OC05(Q2) , 05IN(Q2)) 

Set the Hamiltonian 

00 30 1 = 1 , L 
DO 20 J=I ，し

十11 (J , 1 )=O.OD+OO 
CONTINUE 
Hll(2 ， I ， J)=Ql 決Ql F ( 1 ) 
J F (1 . GT. 1) H 1 1 ( 2 , 1 -1 , I ) = ¥v I F ( 1 -1 ) 
IF (1 .LT . し) HII(2 , I+l , I)=hllF( 1 ) 
CONTINUE 
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END 
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Mi crosof t FORTf~AN Opl i mi zi ng Compi 1 er Vers i on 4.0 J 

「
U
「
u
f
u

日り nr~OIJT 1 NF 仁 11 EQr~ l) C N . LC , EC , VC • 1 ~In~ ) 

Calculate the Eigcnv匀luc5 and Eigenvectors of Symrnetric Mat γix 

COMPLEX矢 16 LCCN , N) , VCCN , N) , ECCN) , ZX , ZY , ZZ , ZR , ZC , ZS 
REAL*8 CD^BSr , DEL 
INTEGER発 4 1 , J , IPl , LL , LU , ITR , ITRMAX , ERR 

CDA゚ SP(ZZ)=DABS(DREAL(ZZ))+DA゚ SCDIMAGCZZ)) 
DATA DEL , ITRMAX/5 . 00-15 , JO/ 

Set the Eigenvectors to Unit Malri:x 

00 1 10 1 = 1 , N 
00 100 J= 1 , N 

VC(J , I )=O.OD+OO 
CONTINUE 
VCC 1 , 1 )=1.00+00 
CONTINUE 

Search for a Small Sub-dia90nal Element. 

しU=N

ITR=O 
Lし=LU
IF (COAßSPCLC( しL ，ししー 1 )) . GT. DEし) TI!EN 

しし=しL-l

IF (LL .GT. 1) GO TO 320 
END IF 
IF CLL .NE. LU) THEN 

If Convergence is llot Attained within 30 Itcrations , 
Truncate the ComPlltation. 

1 F (1 TR . GT. 1 TRMAX) GO TO 10000 

Determ匤e the Origin Shift as the Eigenvallle of the 2 by 2 
ﾟ 0 t t 0 m 5 u b m a t r i X ...1 h i c 11 i 5 N e a r e r t 0 t h e b 0 L l 0 m E 1 e m e 11 t . 

ZX=( しCCLU-l ， LU-l)+ しCC しU , LU ) )挺 0.5D+00
ZY=ZX-LCCLU , LU) 
ZZ=CDSQRTCLCC しU-l ，しU) 訴しCC しlJ， LU-] )+ZY発ZY)

ZZ=OSIGNCl . 0D+00 ， CDAßSP(ZY-ZZ)-CD八 BSP(ZY+ZZ)) 発ZZ+ZX

LCCLL ，しし )=LC( しL ，しし) -ZZ 
ZC=I.0D+00 

C 

f
‘u
pし
F
し

100 

nu 
---EA 
--EE--

300 
310 
320 
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Left- and Right-hand Transformation. 

00 360 1= しし， LU-l

IP1=I+l 
zx= しc( [ , 1) 
ZY= しC(IP1 ， I)

ZR=COSQRTCZX 争時zx+ZY発ZY)
IF (COABSP(ZRl .LT. OEし)
LC C 1 • 1 ) =ZC発ZR
1 F C 1 . GT . しし) LC C 1 , 1 -1 ) = ZS発ZR
LC ( 1 P 1 , 1 P 1 ) =しC( 1 P 1 , 1 P 1 ) -ZZ 
ZC=ZX/ZR 
ZS=ZY/ZR 

00 J 3 0 J = 1 P 1 , N 
ZY= しCC I. a)

しC( 1 ， J)=ZY ￥ZC+ LC ( J r 1 ， J) 決ZS
LC ( 1 P 1 , J ) =しC(IPl ， J) 挺ZC-ZY 決ZS

CONTINUE 

00 340 J= 1 , 1 
ZY= しC(J ， I)

LC(J , 1 )=ZY 決ZC+ LC ( J , 1 r 1 )挺ZS
LC ( J , 1 r 1 ) = LC ( J , 1 P 1 )発ZC-ZY発ZS
CONTINUE 

LC ( 1 , 1 ) = LC ( 1 , 1 ) + Zl 
00 350 J=I , N 

ZY ご VC( J , 1 ) 
VC(J , 1 )=ZY 挺ZC+ \l C(J ， IPl) 挺ZS

VC ( J , 1 P 1 ) = VC ( J , 1 P 1 )奨ZC-ZY決zs
CONTINUE 

CONTINUE 
LC(LU ，しU-l)=LC(LU ，しU) 決ZS

LC(LU , LU )=LC( しU ，しU) 挺ZC+ZZ

ITR=ITR+1 

GO TO 310 
END lF 

LU=LU-l 

IF (LU .GT. 1) GO TO 300 

QR-Transformation is Over. 
Eigenvalues are Given 
by the Oiagonal ElelOents of thc Re.sultant Matrix. 

00 400 1 = 1 , N 
EC ( 1 ) = LC ( 1 , 1 ) 
CONTINUE 

Compiler rORTRAN Optimizin9 

20000 GOTO 

Microsoft Line Source 

340 

330 

350 

360 

400 

F
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310 C 
331 C 
332 C 
33 ~3 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 

Normal Exit. 

E r~r~ = 0 
RETURN 

C 
C 
C 

C 
C 
10000 

Error Exll. 
10000 : Not COIlverged. 
20000 : Devide by Zero. 

ERR=lOOOO 
RETURN 

20000 ERR=20000 
RETURN 
END 
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事OECLARE
PROGRAM EXCl-IANGE 

c

c

c

c

c

c

c

c

c

 

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
 

1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
q

/
二

4
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5

Simulation Progl'�1Jn [01' 20 Nutation NMR wit.h Chemical Exchange 

COMPLEX 争時 8 ARO(25G , 128) 
REAL争時 8 QCC(2J , ETA(2J , QC2(2J , ET2(2) , C))S(2) , Rr:S , EXC(2 , 2 , 2) 
REAL誕 8 ALP ( 2 ) , BET (2) , GAM ( 2 ) , TOX ( 8 ) , THO (4 , 2) , R ( 4 ) , P ( 2 ) 
REAL決 8 X(-50:50 , 0:50) , Y(-50:50 , 0:50) , Z(-50:50) 
REAL*8 SA ( 2 ) , CA ( 2 ) , S  ゚( 2 ) , CB ( 2) , SG ( 2) , CG ( 2 ) , T 1 ( 2 ) 
REAL決 8 WO , Wl , 0 , PIO , SNT , D2R , Pl1 , PI2 , SQ3 
INTEGER美 4 OIM(21 , MXO(21 , NSP , NSI , MXS , NN , MXT , I , J , N , ERS 
CHARACTER CHA 
CHARACTER発 15 RG f7, TDF 

C 
EQU 1 VALENCE (TOX , THD) , (C)[A , RGF) 
COMMON /ARO/ARD , DIM , TDX , R , P 
COMMON /PAR/QCC , ETA , QC2 , ET2 , C)15 , RF5 , EXC 
COMMON /ARG/SA , CA.SB.CB , SG , CG 

Declarations of Constants 

PARAMETER(NSP=4 , MXS=2 , MXT=501 
PARAMETER(D2R=I.745329251994329D-02 , SQ3=8.6602540378443850-01) 
PARAMETER(PIl=3. 141592653589793D+00 , PI2=6.283185307179586D+00) 
DATA MXD/128 , 256/ 

Fし
「
し
「
U

Lamor FreqUellCY 

¥tlR 1 TE (※，・ (A20 ￥)・)・ OLamor Freq / MHz = 
READ (発， , (F7 .41 ・) WO 

Number of Sites to be Considered 

-= 一e
 

+
し

.
唱
目
.Q
u
 
ri o
 
r
 
e
 

、h
u
-
­
m
 
u

o

 

N

T

 

n
U
T
I

ハU

・
戸
、

J
F
U

M
円

、
.
，
、

I
F

-
-
J

戸
、
〕

、
J

・

V
八

〉
字
、
J
M
川

n
H
U
2
1
 

.
‘
，

A
'
E
・
』

A
H
f
t
T
l
 

f

、
，

F
U

，

v宵

V肯
(
I

(

S

 

E

N

 

T
i
h
u
r
t
 

T
I
A
U
H
 

R

E

F

 

W
R
I
A
 

-'ae 

「
U
F
し
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Quadrupole Interaction Parameters and Chemical Shifts 

00 1 00 1 = 1 , NS 1 
¥tJRITE( 争時 , ・ (A7 , Il) ・ ) ・ 51 te : ・ , 1 
¥llR 1 TE (誕， • (A21 ￥)・)・ CqQ / MHz , eta = 
READ ( 争時 , ・ (2F10.6) ・ ) QCC ( 1 ) , ET A ( 1 J 
\llRITE( 栄，・ (A37￥)・〕・ Eular Angles of Principal 
READ( 発" (3F10.6) ・) ALP ( 1 ) , ゚ ET ( 1 ) , GAM ( 1 ) 
D=ALP(Il 挺D2R

SA ( 1 ) = DS 1 N ( 0 ) 
CA(I)=DCOS(D) 

D=BET( 1) 発D2R
SB ( 1 ) = DS 1 N ( 01 
CB(Il=DCOS(D) 

D=GAM( 11 浜 D2R

SG ( 1 ) = DS 1 N ( D ) 
CG(I)=DCOS(D) 

UJRITE( 争時 , • (A27 ￥ ) ・ )' Chemical Shift / kHz = 
READ (発，・ (FI0.6) ・ 1 CHS(I) 

CHS ( 1 ) = CHS ( 1 1 決 1.0D-03

Axis = 
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59 100 CONTINUE 
60 C 一一一一一一一一ーーーーーーー一一一一一一一一一一一一一ーー一一一--

61 C Chemical Exchange 
62 C ーーー一一一一一一一一ーーー一一一一一一一一ーー一一一一一ー一-

63 \tlRITE( 争時， ・ (A60 ￥ ) ・ ) 
64 &・ OEquilibrium Population of Each Site are Equal ( Y or N ) ? 
65 REAO (発，・ (A1 ) ') CHA 
66 IF (( ICHARCCIIA) .EQ. ICII 八 RC ・ y ・)) . OR. 
67 & (ICHAR(CHA) .EQ. ICHAR( ・ y ・))) THEN 
68 O=OBLE(NSI) 
69 00 200 l=l , NSI 
70 P(I)=1.00+00/0 
71 200 CONTINUE 
72 ELSE 
73 0=0.00+00 
74 00 21 0 1 = 1 , NS 1 
75 WRITE( 挺，・ (A30 ， I 1 ， A3 平)・)

76 & . Relative Population of Site ・， 1 ，・=

77 REAO (栄，・ (F6. 4) ・) P ( 1 ) 
78 O=O+P(I) 
79 210 CONTINUE 
80 00 220 1=I , NSI 
81 PCI)=PCI)/O 
82 220 CONTINUE 
83 ENO IF 
84 00 230 I=l , NSI 
85 EXC(I , I , 1)=0.00+00 
86 00 230 J=1 , NSI 
87 1 F (J . GT. 1) T H EN 
88 WRITE( 発，・ (A22 ， lX , 11 , 1X , A2 , lX , 11 , lX ， A9 平) , ) 
89 &・ Exchange Ra te from' , 1 ，・ to' ， J ，・/ MHz 
90 REAO (美，・ (F10.8)') EXC(J , I , I) 
91 EXC ( 1 , J , 1 ) = EXC ( J , 1 , 1 )挺 P( 1 ) IP ( J ) 
92 ENO IF 
93 IF (1 .NE. J) EXC(I , I , 1)=EXC(I , 1 ， 1) ー EXC(J ， I ， I)

94 230 CONTINUE 
95 C ーーーーーーーーーーーーーーーーーーーー一一ーーー一一一ーー一ーーーーーー一一一一一ーーー一一ー一一一

96 C RF Strength in Frequency Units 
97 C 一一一一ーーーーーーーーーーーー一一一一ーーーー一一一ーーーーーーーーーー一一一一ー一一ーー-一一一一ーー一一ーー一一一一ーーーー-

98 WRITE( 争時， I (A27 平 ) ・ ) ・ ORF Field Strength I }く Hz = 
99 REAO C 争時 , 'CF6 . 3) ・ ) ¥tl 1 
100 C 一一ーーー一ー一ー一ー一ーーーーーー一ー一一一ーー一ー-ーーーーーーーーー-ー

101 C OIM(1) , DIM(2) : Sampling Points in each Oimension 
102 C -ーー一一ー一一一一ー一一一ー一ーー一ーー一一一一一一一一ー一一

103 00 300 1 = 1 , 2 
104 WRITE( 発，・ (AI3 ， I1) ・)・ ODimension :・， 1 
105 2 WRITE( 決，・ (A30 平)・)・ Number of Sampling Points = 
106 READ (挺，・( 15) ・) DIM(I) 
107 IF CDIM(I) .GT. MXO(I)) THEN 
108 WRITEC 決， '(A14) ・)・ o Too Large !! 
109 GO TO 2 
110 ENO 1 F 
111 WRITE( 決， . (A35 平)・) , Time Increment C in microsec ) = 
112 REAO (発， I (F5. 3) ・) Tl(l) 
113 300 CONTINUE 
114 C 一一一一一ーーーーー一一一ー

115 C RGF : Stol'es COlllputational Condition 
116 C TDF : Saves FID Data 
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117 C 一一一一一一ーー一一ー一一一一一一一一ーーーー一一一ー一一ー一ーーーーーー一一一一一一一一一一一一一

118 WRITEC 発，・ (A25￥)・)・ ORegistry File Name = 
119 R r.ADC 決，・(八 15 )・) RGF 
120 WRITEC 美， ' (A25平)・)・ Time OOlllain File Name = 
121 REAO( 決，・ (A 15) ・) TOF 
122 C -ーーー一ーーーー一一一ーーーーー一一一一一ー一一

123 C Get tl1e Number to be calculated 
124 C -ーーーーーーーー一一ーーーーーー一一一一ー一一ーー一一一一一一ー一一ーーーーーーー一一ーーーーー一一

125 3 WRITE( 争時 , ・ (A33 ￥ ) ・ ) ・o NUlllbel、 of Oivls1on over THETA = 
126 REAO( 発，・( 13) ・) N 

127 IF CN .GT. MXTl GOTO 3 
128 O=DBLE(Nl 

129 PIO=PII/0 

130 00 400 I=O , N 
131 Z( 11=OBLE(I1/D 
132 ZC-!)=-Z(I) 

133 SNT=DSQRT(I.0-Z(ll 栄Z( 1 ) ) 

134 DO 400 J=O , N 
1 35 X ( J , 1 1 = SNT誕DCOS(PID発DßLE(J) ) 
136 YC J ， I)=SNT決OSIN(PID決OßLE(J))
137 X(-J , Il= X(J , I) 
138 Y (ー J , 1 )ごー YC J , 1 ) 
139 400 CONTINUE 
140 WRITE( 美，・ CA38 ， 15/) ・)

141 &・ Total Division over TIIETA , PIII =・， N挺N発 4-N巣2
142 C 一一ーー一一ーーー一一一一一一一一一一一一ー一一一一一ー一一一一一一一一一一一一一ーーー一一一一

143 C Store the Parameters 
144 C -ーーー一ーー一一一一一一一一一一ーー一一一一一一一

145 OPEN (UNIT=50 , FILE=RGF , ACCE5S= ・ SEQUENTIAL ・)
1 4 6 ¥1) R 1 T E ( 5 0 , • (̂  4 0 J ・) ・ ーーーー一一 COlnput.ational Conditions 
147 WRITE(50 ，・ (/AI7) ・)・く lnteractions >・

148 WRITE(50 ，・ (A22 ， F8.3l ・)・ Lamor Freq I MHz =・， ¥110 
149 WRITE(50 , 'CA22 ， F7.31 ・)' RF Field I kllz =・， ¥I} 1 

150 00 500 1=I , NSI 
151 WRITE(50 ,' (/AI0 , 11 ， AI6 ， FI0.8 ， A2) ・)
152 &.  Site: ・， 1 ，・ C PopuJatiol1 =・， P ( 1 ) ，・)・

153 WRITE(50 , '(AI6 ， F6.4 ， ^8 ， FG.4) ・)

154 &'  QCC I MHz = '， QCC(IJ ，・; ET̂  =・， ETA ( 1 ) 
1 5 5 ¥1] R 1 T E ( 5 0 , ' ( A 1 9 , F 5 . 2 , A 2 , F 5 . 2 • A 2 • F 5 . 2 )・)
156 &.  Euler Angles :・， ALP ( 1 ) ，・，・， BET ( 1 ) ，・，・， GAM ( 1 1 
157 WRITE(50 ，・ (A27 ， F6.21 ・)

158 &・ Chernical Shifl I kIlz =・， CIIS ( 1 )決 1.00+03
159 500 CONTINUE 
160 WRITE(50 ，・ (/A25) ・) ，く Exch(] !1 ge Rate.s I Mllz >・
161 00 51 0 1 = 1 , NS 1 
162 00 510 J=I , NS! 
163 WRITE(50 ，・ (4X ， 1 1 , A5 , J 1 ， FI6.12) ・) 1 ,' 一一〉 ・， J , EX C ( 1 , J , 1 ) 
164 510 CONTINUE 
165 WRITE(50 ，・ C/AI6) ・)・く Calculatio l1 >・

166 WRITE(50 ，・ (A451 ・)・ Oimension Oata Points Time Increments ・
167 00 530 1=1 , 2 
168 WRITE(50 ，・ (8X ， 1 1 , 10X , 13 , IOX ， FIO.5) ・) I , DIM(I) , TI(I) 
169 530 CONTINUE 
170 WRITE(50 ，・ (/A21 ， 13) ・)・ Tolal Oivisiol1 =・， N決 N決 4-N発 2

171 WRITE(50 ，・ C/AI9 ， AI51 ・)・ Oata Stored in ', TO [7 
172 CLOSE (UNIT=501 
173 C 一一一一一一一ー一一一ー一一一 一 一一一一一ー一一一ーーーーーー一一一一

174 C Symmetrize the Exchange Malrix 
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175 
176 
177 
178 
179 
180 
1 81 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
19G 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
21R 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 

C and Sei the Spin Density Vectol~S at Thermal E<-Iuilibrium 
C 一一一一一ーー一ーーー一一ーーーー一一一一一一一一一一一一一一一ー一一ーーー一ー一ー一ーーー一一一一一一一一一一一一ー一一

DO 600 1 = 1 , NS 1 
r ( 1 ) = DSQFr[ ( P ( 1 ) ) 
THO(l , I)= SQ3 栄 P( 1 ) 
THD(2 , I)= -P(I) 
THO(3 , I)= 0.00+00 
THO(4 ， I)=-SQ3挺P( 1 ) 

600 CONTINUE 
00 61 0 1 = 1 , NS 1 
00 610 J= 1 , NS 1 
IF (J .NE. 1) EXC(J , I , 1 )=EXC(J , 1 ， 1) 発P(I)/P(J)

610 CONTINUE 
C -ーーーーーーーーー一一一一一一一一一一ーー一一一一一一

C Oetermine the Parameters suitable to Calculation 
C -ー一一一ーーー一一一ーーーーーーーー一ーーー一一一ー一一一一一一一ー一一一一一一一ーーーー一一一一一一ー一一一ーー

00 G20 I=l , NSI 
QC2 ( 1 ) = P 1 2決QCCC 1 )決QCCC 1 )/\t.l 0 決TI (2)/9.60+01 
QCC( 1 )=PI 2 誕QCC( 1) 18. OD+OO 発T1 ( 1 ) 
ET 2 ( 1 ) = ET A ( 1 )発ETA ( 1 ) 
CHS ( 1 ) = P 1 2 挺CHS( 1 )発T1 ( 2 ) 

00 620 J=1 , NSI 
EXC(J , l , 2)=EXC C,J , 1 ， 1) 対 T 1 (2) 
EXC ( J , 1 , 1 ) = EXC ( t! , 1 , 1 )日r 1 ( 1 ) 

620 CONTINUE 
RFS=PI2 誕\1} 1 併T 1 ( 1 )発 1.0[)-03

C 一一一一一ー一ー一一一一ーーーーーーーーー一一ー一一一ーー一一一ー一一ー一一ー-ー一一一一一一一一一一一

C P 0"" d e r ̂  v e r a 9 i 11 9 S L () l' l h e r e 
C -ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

NN=O 
00 7 1 0 1 = -N + 1 , N -1 

\l) RITEC 栄，・ CA30 ， 15) ・)

& '+ Powder Averaging Now :・， NN+N挺 2
00 700 J=-N+l , N 
NN=NN+l 
CALL EVOLVE (NSP , NS 1 , X ( J , 1 ABS ( 1 ) ) , Y ( J , 1 ABS ( 1 ) ) , Z ( 1 ) , ERS ) 
IF (ERS .NE. 0) GOTO 20000 

700 CONTINUE 
710 CONTINUE 
C --一一一一一ーー一一一ー一一ー一一一一一一一一一ー一ー一ー一一-

C Normalize and Store ihe Oata 
C 一一一ーーーー一一一一一一一一一ー一一一一一一一一一ー一一ー一ーーー一一

OPEN(UNIT=10 , FILE=TOF) 
D = 1 . 0 D + 0 0 1 D n U~ ( N N ) 
00 8 U 0 1 = 1 , 01 M ( 1 ) 
00 800 J=1 , OIM(2) 
¥t.IRI TE( 10 ，・( E 1 3 . 7 , 1 X , E 1 3 . 7 ) , , 1 05 T A T = E r~ S , E [~r~ = 1 U () 0 0) A R 0 ( J , 1 )挺D

800 CONTINUE 
CLOSE (UNIT=lO) 

C 一一一一一一ー一一ー一ーーーー一ー一一一一一一ーーーーーーー一一ー

C Normal End. 
C 一一一一一一一一ー一一一ーー一一一一一一一ー一一一一一ーーーー一一一一一一一ー一

GO TO 99999 
C 一一ーーー一一一ーー一一ーーーーー一一一一ーー一
C Error Ex i 5 t i 11 the Procedur e. 
C -一一一一一一一 一 一一一一一ー一一一一 一 一一
1 0 0 0 0 ¥1] R 1 T E (持， '(A18 ， I5) ・) , F i 1 e \I} J、 ite Error ', ERS 
GO TO 99999 
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23J 
234 
235 
23G 
237 
238 
239 
240 
241 

242 
243 
244 
245 

246 
247 

248 
249 
250 

:2 (J 0 (J U ¥JJ 1 ~ 1 T 1":: (奨， . (ハ:2:J， 15) ・)

C 
Di (_lつり lldli 乙 a L i 011 1..:: 1 、 1 ・り 1 ・ ・， l~:I~S 

99999 END 
C 

BLOC~ DATA JXTOJZ 
COMPLEX*8 ハ I~D(25G ， 12B)
REAL争時 8 TDX(8) , I-H4) , P(2) 
INTEGER挺 4 DIM(2) 

COMMON 1 八 RDI 八 f~D , 0 1 M , T D X , f< , r 
C 一一一ーーーーーー一一一ーーーーーー一一ー一一一ー一一ーーーーー一ーーー一一一-

C Transformation Laws in Ix lo Iz basis 
c ---ーー一ーーーー一一一一一一一ーー一一ーーーー一一一一一ーー一一ー一一ーー

$PAGE 

OATA R/ 6.1237243569579450-01 , 
& 3.5355339059127380-01 , 
&一1.OGOG601717798210+UO ，
& -6. 12:J72435G957945D-O 11 
END 
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251 
252 
253 
254 
255 
256 
257 
258 
259 
2GO 
261 
2G2 
263 
264 
265 
266 
267 
268 
2G9 
270 
271 
272 
273 
274 

275 
276 
277 
278 

279 
280 

281 
282 
283 

284 

285 
286 

287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 

298 
299 
300 
301 
302 

303 
304 
305 
30G 
307 

308 

f
u
「
u
f
u

C 

「
u
f
し
「
U

c
c
c
 

「
U
「
U
「
U

f
し
「
し
f
し

Fし
「
し
「
U

SUßROUTINEιVOLVEC し， M ， X , Y , l , EI<R ) 

Calculate the Evolution of lhe Density Vectors 

COMPLEX決 8

COMPLEX美 16

COMPLEX栄 1 G 
REAし発8

r~EAL挺 8

RE^し決 8
REAし発 8

INTEGER*4 

八RD(256 ， 128)

し 1 ( 8 , 8 ) , 111 ( 4 , 2 , 4 , 2 1 , Q 1 ( 8 , B ) , E 1 ( 8 1 , L2 ( 2 , 2) , Q2 (2 , 2) , E2 ( 2 ) 
DZ 1 ( 2 , 128 1 , RQ 1 ( 2 , 8 ) , PQ2 ( 2 , 2 1 , C 
QCC(21 , ETA(2) , QC2(2) , ET2(2) , CHS(2) , RFS , EXC(2 , 2 , 2) 
X ， Y ， Z ， SA(2l ， C八( 2 ) ; S  ゚( 2 ) , CB ( 2 1 , SG ( 2 ) , CG ( 2 ) 
X C ( 4 , 4 , 2 ) , \I/(~ 1 , \t} ω :2. \11ωJ , SQ:3 '1 X 2 , Y:2 , 1.2. , CT 2 , ST:2 ，じい i

TDX(8) , R(4) , P(2) , CD^ßSP , EPS 
D J M (2) , 1 , J , K , S , S 1 , S2 , SS , LM , ERR 

EQUIVALENCE (し 1 ， 111 ) 
PARAMETER(SQ3=8.660254037844385D-Ol) 

COMMON /P^R/QCC , ET^ , QC2 , ET2 , CI!S , RFS , EXC 
COMMON /ARG/SA , CA , Sß , Cß , SG.CG /ARD/ARD , DIM , TDX , R , P 
CDABSP(C)=D八日S(DRE^L(C))+DAßS(DIMAG(C))

DATA EPS/l.0D-18/ 

Set the Liouvillians COITP.5POlld to rl and r2 axis 

DO 100 S= 1 , M 

Tl' ans f 0γlllDtion of CoordillJ.lc to Molecular rrallle 

& 

Z2=SB(S) 挺CG(S) 決X+Sß(S) 発SG(Sl 発Y+Cß(S) 発Z

X2= (C^(Sl 発C f3 (S) 疑CG(S l-S八 (S 1 奨 SG( 日) :1決 X

+(CA(S) 発Cß(S) 決SG(S)+SA(SI 挺CG(S) ) 栄Y-CA(S) 挺58(S) 争時Z

Y 2 = -( SA ( .s ) :疑 Cß(S) 挺CG(S)+C八 (S) 誕SG (S) J 決 X

ー (SA(S) 挺Cß(S) 浜SG(S)-CA(S) 疑CG (S) ')決 Y+SA(S) 誕S8(S) 挺Z

CT2=Z2発 Z 'l..

ST2=1.0D+00-(T2 

CPl=(X2発X2-Y2誕Y2)*ETA(S)

& 

First Or�r Quadrupole SpliLt匤g 

¥I]Q 1 = QCC ( S )決 (CT2 挺 3.0+CPl-l.0)

Second 01' けれl' Quadl、 IIPOJC Shlft + Chemlcal Shlft 

& 

& 

WQ2=CHS(S)+QC2(Sl 
*( ST2 挺ST2*9. ー ( 1 . + CT 2 ) 発CPl ・疑G.+CPl 持CPl+ET2(S) 挺CT2 挺4. 
一 (ST2 挺CT2 挺 9. +CT2 挺CPl 浜6 伽 O-CPl 挺CPl+ET2(S) 争時 5T2)*8.0 ) 

L2(S , S)=DCMPLX(EXC(5 , S , 2) , WQ2) 

Set the I13milLonian ﾌn Lhc ba~i5 Ix 
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JU リ XC( 4 , 4 , S ) = -¥lJW 1 + I~I <~ 
310 100 CONTINUE 
311 C 一一一一一ー一一一一一一一一一一一一一一一一 一一 一一一一一一一ーー一一一一一一ーーー一一- -

312 C 5et the Liouvillan 
313 C 一一一ーーーーーー一ーー一一一一一一ーーー一一ー一一一一ーーーーー一一一一ー一一一一一ー一一一一一一一一一一一一一一一一一一一一一一

314 DO 220 5=1 , M 
315 00 200 l=l , L 
316 H1 (1 , 5 , 1 , 5)=OCMPLX(EXC(5 , 5 , 1) , XC( 1 , 1 , 5)) 
317 00 200 J=I+1 ，し
318 H 1 ( 1 • S , J • S) = DCMPLX ( 0 . 00+ 00 • XC ( 1 , J • S ) ) 
319 H1(J , 5 , J , 5)=H1(f , 5 , J , 5) 
320 200 CONTINlJE 
321 00 210 55=5+J , M 
322 [)O 210 1=1 ，し

323 00 210 Lì=l ，し
324 1 F (1 . EQ. J) T 11 EN 

325 111 (1 , 5 , 1 , 55)=EXC(S , 55 , 1) 
326 Hl (1 , 55 , 1 , 5)=EXC(5 , SS , J) 
327 EL5E 
328 Hl(I , 5 , J , 55)=0.00+00 
329 Hl(J , 5 , I , 55)=0.00+00 
330 H)(I , 55 , J , 5)=0.OO+00 
331 Hl(J , 55 , I , 5)=0.00+00 
332 ENO IF 
333 210 CONTINUE 
334 220 CONTINUE 

335 C 
336 00 300 5=1 , M 
337 00 300 5S=5+1 , M 
338 L2(5 , 5S)=EXC(5 , 55 , 2) 
339 L2(55 , 5)=EXC(5 , SS , 2l 
340 300 CONTINUE 
341 C 一一一ーーーー

342 C Get the Eigenvalues allcl Eigenvectors to Calculatc Exponentials 
343 C 一一一ー一一一ー一一ーーー一一一一一一一一一一一一一一一ー一一ーー

344 LM= し争時M

345 CALL CHEQRO(LM , L1 , 4 , El , Q1 , ERR) 
346 IF (ERR .NE. 0) RET lI r~N 

347 00 400 1=1 ，しM
348 E1(1)=CDEXP( 巳 1 (1) J 

349 400 CONTINUE 
350 55=0 
351 00 420 S=J , 2 
352 00 410 K=l , LM 
353 RQ1(5 , KJ=0.00+00 
354 00 410 J=l , L 
355 00 41U I=I , LM 
356 RQ1(5 ， K)=RQ1(5 ， K)+R(J) 栄ω1 (J +55 ， 10 挺Q1 ( 1 , K) 栄TOX( 1) 

357 410 CONTINUE 
358 55=55+ し
359 420 CONTINUE 
3GO Ĉ LL CHEQRO(M ，し2 ， 1 ,1.:: 2 , Q2 , ERr~ ) 
361 1 r (ERR . NE. 0) RETLJRN 
3 6 2 [) 0 5 0 0 1 = J , 111 
363 E2(I)=COEXド (E2( 1 J) 

JG4 500 CONTINUE 
JG5 DO 510 S2=1.M 
JGG DO 510 S 1 = 1 , M 
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J> Q2(SI ， S2)=O.0 り+り O

00 510 5= I , M 
PQ2(51 , S2)=PQ2(Sl , S2H-P(SI) 発Q2(SI ， S2) 争時 Q2(S ， 52)

510 CONTINUE 
F
し
「
し
「
し

Calculate Oensity Vectors aL the end of rf Pulsc 

600 

DO 600 1 = 1 , D 1 M ( 1 ) 
DO 600 5=I , M 
OZl (5 , 1 )=0.00+00 
DO 600 J=l , LM 
RQ 1 (5 , J ) = RQ 1 ( 5 , J) 決 E1 (J) 
OZ 1 (5 , 1 ) = OZ 1 ( 5 , 1 ) + ( RQ 1 (5 , r] )ー OCONJG(RQ1(5 ， J)) ) 

CONTINUE 
F
し
「
u
f
u

Calculate FIO's 

700 

00 710 J = 1 , D 1 M ( 2 ) 
00 700 1 = 1 , 01 M ( 1 ) 
00 700 51=I , M 
DO 700 52=I , M 

ARD(J , 1 )=ARO(J , 1 )+PQ2(51 ， S2) 挺OZl(52 ， I)

CONTINUE 
00 710 S2=1 , M 
DO 71 0 S 1 = 1 , M 

PQ2(Sl , S2)=PQ2(SI ， 52) 持1:: 2(5 :2)

CONTINUE 710 
C 

RETURN 
END 

C 
$PAGE 
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M i cl'o5of L FOI~TI~^N Opt i m i z i I1g Comp i 1 er Vers i on 4.01 

.sU!J[{UIJT 1 Nl: C1 1Eω1< 1) (N ，しじ， ~JU\IJ ， Lど， VC , El<[{) 

CalclIl匀1c the Eigrnv 九 Ilw.s刀 nd Eigenv 尽 ct 0 t-5 0 r 5 Y III m e 1, r i C M �1 t r-i x 

COMPLEX発 1G LC(N , N) , VC(N , N) , EC(N) , ZX , ZY , ZZ , ZR , ZQ , ZC , ZS 
R r.八し挺 8 (D八 ßSP ， Dr.I. 
INTEGER決 4 1 , J , 1(, 1 ド 1 , [ P M, 1 M 1 , J P M , J M 1 , L L , L U , M, 1 T R , 1 T 1 < M A X , E l~ R 

CDAßSP(ZZ)=O^ßS(DRE八し (ZZ) ) +1)ハじS ( 0 1 MAG ( ZZ) ) 

D̂ T̂  DEL , Il'RM̂X/l .OD-l~ ， 10/ 

Parameter Error Chcck 

IP ((N .LE. 1) .01<' (ND¥II .CT. N)) GO TO 20000 

Set the Eigenvectors to lJni t Matrix 
a 11 cl 0 e t. e r rn i n e 5 t. h e ゚  a n d ¥I} i d L h 0 f t h e M a L r i x 1111 CI e r T r e a t m e 11 t . 

nu 
nu 

00 1 1 0 1 = 1 , N 
D() 100 .J=I.N 

VC(J , J l=O.OD+OO 
CONTINUE 
VC ( 1 , 1 ) = I . 0 D+ () 0 
CONTINUE 
1 [7 (Nß~] .し E. 0) TIIFN 
00 130 1=I , N 
00 120 J=I+I , N 
IF (CDA8SP(LC(J , I)) .GT. DEL) ~=J-I 
CONTINUE 
N B ¥I} = M A X 0 ( N B¥I} , 1< ) 
CONTINUE 
ENO IF 

1 1 0 

120 

130 

R e clll c t j 011 0 f ﾟ a 11 cl ¥t} i d t 11 L 0 T r i d i a 9 011 a 1 M a t]' i x 
by Jacobi Rotatiol1:5. 

200 

00 270 M=N D\IJ , 2 , -1 
00 270 1=I , N-M 
IPM=I+M 
lMl=IPM-l 
r F (CD八 cs P ( L C ( 1 , r P ~"，)) . GT. 0 Eし) TIlEN 

ZR= ーしC(I , 1Ml)/LC(I , IrMl 
ZQ=COSQRT(I . 00+00+ZR美 ZI< ) 

IF (CÔ s゚P(zc:n .しT. OEし) GOTO 30(J00 
ZS=I.ODO/ZQ 
ZC=-zs矢ZR

DO 200 J=l , N 
ZZ= LC ( 1 M 1 , J) 
LC ( 1M 1 , J) =ZZ発ZC+LC(JPH ， J) 持ZS

LC ( 1 PM , J) =しC( 1 PM , t1 )発ZC-ZZ*ZS
CONTINUE 

00 210 <1 =I , N 
zz= しC (,], 1 M 1 ) 
LC ( ,J . 1 i\,11 ) = ZZ桝ZC+ しC( J , J I市1 )争時ZS

L C ( ,J , 1 P M ) = L C ( ,J • 1 P~， 1 ) 栄之(-lχ咲zs

CONTINUE 
00 220 ,J = 1 , N 
ZZ=¥'C( J. 1M1 ) 

21U 
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4S7 VC(J , 1Ml)= 乙乙矢乙じ+VC ( J , 11 'M) 挺zs
458 VC(J ， lPM)=VC(J ， IPM) 誕ZC-zz挺ZS

45Q 220 CONTINIJE 
460 00 260 J=IMl , N-M-l , M 
461 .JPM=J+M 
4G2 JMl=JrM+1 
4 6 3 1 F (C 0 A D 5 P ( L C l ! J , (J M 1 )) . GT. D EL) T H日N
464 ZR= ーしC( J , JPM) ILC ( J , JM I ) 
465 ZQ=COSQRT(I.000+ZR浜Zl~) 
466 IF (COABSP(ZQ) .LT. OEし) GOTO 30000 
467 ZS=1.000/ZQ 
468 ZC=-ZS誕ZR
469 00 230 K=1 , N 
470 ZZ= しC( JPM , 10 
471 LC ( JPM , 10 = ZZ決ZC+ しC( JMI ， 1<) 矢ZS
472 LC ( JM 1 ,1\) =しC( JM1 ， 1<) 決ZC-ZZ決ZS
473 230 CONTINUE 
474 00 240 K=I , N 
475 ZZ= しC(K ， JrM)
476 LC(K ， JPM)=ZZ浜ZC+ しC( 1< , JM 1 )挺ZS
477 しC (K , JM 1 ) =しC(K , JM 1 )美ZC-ZZ決ZS
478 240 CONTINUE 
479 00 250 K= 1 , N 
480 ZZ=VC(K , J+M) 
481 VC(K ， JPM)=ZZ発ZC+VC( I<， JM1) 発ZS
4 8 2 V C ( 1< , J M I ) = V C ( 1< , J M 1 )栄 ZC-ZZ決ZS
483 250 CONTINUE 
484 ENO IF 
485 260 CONTINUE 
486 ENO IF 
487 270 CONTINUE 
488 C -ー一一一ーー一一ー一一一一一ーー

489 C Search for a Small SUb-diagonal Elcment. 
490 C 一一一ー一ー一一ーーーーーー

491 LU=N 
492 300 ITR=O 
493 310 しし=LU
494 320 IF (CD八 BSr( 卜C(U. ， U.-))) .CT. DEし) TIH::N 
495 しし=しL-l
496 IF (LL .GT. )) GO TO J20 
497 ENO IF 
498 IF (LL .NE. LU) THEN 
49Q C -一一一一一ー一一ーーー一一一一一ーーーーーーー

500 C If COllvergence is 1l0t Attaincd within 30 Ilcratio l1 s , 
50) C Trunc<1 lc Lhe Cornpu l 九 l i O!1 . 
502 C 一一一ーーー一一ーーーーーーー一一一一一ーーーーーーーーー-ーーー一一一一ーーー一一一一ー- --

503 IF (ITR .GT. ITRMAX) GO TO 10000 
504 C 一一一一一ーー一一一ーーー一一一一一一ーーーーー一一ーーーーー一一ーーー一ーーーーーーーー一一ーーーー

505 C Oetermine the Origin Shifl as the EigenvaJuc of the 2 by 2 
5 0 6 C B 0 t t 0 m S 1I b III a t r i X ¥0111 i c 11 i 5 N e a r e r t 0 t 11 e b 0 t t 0 m E 1 e m e n t . 
507 C -一一一一一ー一一一ーーーーーー一ーーーーー一一一

508 ZX=(LC(LU-l ， LU-1)+ しC(LU ， LU)) 発 0.50+00

509 ZY=ZXーしC( しU ， LU)
510 ZZ=COSQRT(LC( しU-1 ， LU) 決 LC( UJ , LU-l ) + ZY発ZY)
511 ZZ=OSIGN(I.00+00 ， COAßsr(ZY-ZZ) 一 COAl13SP (Zγ+ZZ) )挺ZZ+ZX
512 LCl しし，しし )=LC(LL ，しし) -ZZ 
513 ZC=I.00+00 
514 00 360 I=LL , LU-) 

-A 一一一四回国 | 
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4.01 Version 

1 PI = I +-1 

Lcft- ancl Right-h 凡 11cl T r <1115 f 0 r m a. t i 0 n . 

ZX=LC ( 1 , 1) 
Z Y = LC ( 1 P 1 , 1 ) 
ZR=COSQRT(ZX*ZX+ZY挺ZY)
1 F (CD八日SP( ZR) . L T. DEし)
LC(I ， I)=ZC挺ZR

1 r (1 . GT. Lし l LC ( 1 、 r -I l =ス.s挺ZR
LC( 1 ド l.rpl)= しC( 1 P 1 , I r I ) -ZZ 
zc=ZX/えR
ZS=ZY/ZR 
00 3:30 J=IP1 , N 

ZY=LC(I. ,Jl 
LC ( 1 , J) =ZY 発ZC+ LC ( [ P 1 • J )栄之S
LC ( r r 1 , J) = LC ( r P 1 , tﾌ )栄えC-ZY挺ZS
CUNTINUE 
00 340 J = 1 , 1 

ZY= しC(J ， I)

LC(J , 1 )=ZY挺ZC+ しC( J , 1 Pl )美ZS
LC ( J , 1 r 1 ) = LC ( J , 1 P 1 )奨z.c-ZY栄之S
CONTINUE 
しC(I ，[)=しC( 1 • 1 ) + 7,Z 
00 350 J=l , N 

ZY=VC(J , I) 
VC ( .], 1 ) = Z Y 決ZC+Vじ(J. 1 r 1) 争時 ZS
VC ( J , 1 P 1 ) = VC ( J , 1 P 1 )挺ZC-ZY持ZS
CONTINUE 
CONTINUE 
LC( LIJ. L.1J-l ) =LC( しU ， LU) 挺ZS

LC( しU ， LU ) =しC(LU ， LU) 栄之C+ZZ
1 TR= [T[<+ I 
GO TO 310 
END IF 
し(j =LU-l

1 F (しU .GT. 1 l GO TO 3UO 

QR-Transformation is Over. 
Eigenvalues are Givell 
by the Diagonal Elements of llle Rc.sultant M飩lrix. 

00 400 1 = 1 , N 
EC ( 1 ) = LC ( 1 , 1 ) 
CONTINUE 

Normal Exit. 

ERR=O 
RETURN 

El'ror Exit. 
10000 : Not Converged. 
20000 : Parametcr E1'ro1'. 
30000 : Oevide bv 7..ero. 

ERR=10000 
[~ETURN 

COnlpiler Optimizillg 

30UOO GUTU 

FORTI~^N Microsoft Lille Source 

340 

330 

350 
360 

400 

c 
c 
c 
c 
c 
c 
10000 

「
u
f
u
pし

「
V
「
u
f
u
f
u
fし

「
し
F
し
F
U

LineH 

515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
52G 
527 
528 
529 
530 
531 
532 
533 
534 
535 
53G 
537 
538 
539 
540 
541 
542 
54:3 
544 
545 
54G 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
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573 20 0 0 0 U< 1< = 2 U 0 U 0 
574 RETURN 
575 30000 ERR=30000 
576 RETIJRN 
577 END 

G1oba1 Symbo1s 

Name 

Code size = 
Data sﾌze 
Bss size 

0000 (0) 
0000 (0) 
= 0000 (0) 

No errors detected 
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