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Abstract

A new theoretical method which is based on the Liouville
representation was established to describe the evolution of
the quadrupolar spin system under the influence of strong rf
field, which has been termed ‘nutation’. The Liouville
formalism was introduced to handle time development of the
spin system and to construct the theoretical expression for
the complex interactions between the rf field and the
multilevel spin system. Although the dimension of the
matrix to be determined becomes far larger than that based
on standard density matrix or fictitious spin methods, the
formalism with the Liouvillian can easily be coded for
computation and therefore is much suitable for the calcula-
tion by big computers. Also the Liouville representation
has a form which can incorporate effects other than spin
interaction in a straightforward manner. This property
makes it possible to apply the nutation method to chemically
exchanging system.

The new method was coded by FORTRAN to prepare the
general simulation program which is necessary for analyzing
the experimental 2D nutation spectra. The program can be
applied to quadrupolar nuclei with spin numbers 3/2 ~ 9/2
and to systems with and without chemical exchange.

The 2D nutation NMR experiments were conducted for 2?°Na
in several compounds. The 23Na resonance in NaNO: and in
NaHgCls;.2H:0 was used to examine the optimal experimental
conditions for the 2D nutation spectra and to evaluate the
sensitivity of the spectra to the quadrupole coupling
constant, €2Qq/h, and the asymmetry parameter, nm, of the
electric field gradient at the site of the resonant nucleus.
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The 2°Na 2D nutation NMR was applied to Na:Se0: to distin-
guish the three crystallographically nonequivalent Na sites
in this compound. The quadrupole coupling constants at the
individual sites could be determined and also n was estimat-
ed for two of the three sites in this material.
Naj«xZrzSixPs-x012 has been Known as a typical sodium
ion conductor. The 23Na 2D nutation NMR was used to obtain
the direct information on the sodium transport in this
material. The spectrum was remarkably temperature dependent
and indicated unambiguously that the sodium ions are ex-
changing between the two nonequivalent sites. The spectrum
was analyzed by the new theoretical method developed here
and the rate of the Na ion exchange was estimated at each
temperature. It was found that the activation energy
deduced from the nutation spectra differs significantly from
that determined by a previous conductivity measurement. The
large discrepancy between the two values was interpreted
qualitatively by the following model. In the 2D nutation
NMR, the spectra are governed by the local exchange of the
Na ion between two sites, whereas the net ionic conduction
must accompany the long-range ion transport through the
formation of wvacancy iIn addition to the fluctuational

exchange.




1. Introduction

Solid state nuclear magnetic resonance (NMR) can provide
the information on the local static structure of the solid
phase and molecular or ionic motions in the solid. The line
splitting in single crystal and the line shape in powdered
or polycrystalline material can now be routinely analyvzed to
determine the local structure of solid. Very often the line
shape varies with temperature reflecting the onset of some
molecular or ionic motion in solid. The measurements of
line characteristics as well as the relaxation behavior of
the spin system as a function of temperature (or pressure in
some cases) give fruitful information on the molecular
motion excited in the solid.

In the (solid) powdered samples, the spectra are broad-
ened by several interactions such as dipole-dipole interac-
tion, chemical shifts, and so on. For the quadrupolar
nuclei which have the spins 1 greater than 1/2, the
structure of the spectrum is often determined by strong
quadrupole interaction that 1s caused by the coupling
between the nuclear electric quadrupole moment and the
electric field gradient (EFG). The quadrupole interaction
can be used to examine the local site symmetry of the
resonant nucleus and the electronic structure of molecular
and ionic species in the crystalline solid. The quadrupolar
nuclei are also used as a powerful probe for the "slow"
molecular motion in solid. In the case where the quadrupole
interaction is sufficiently large, the usual pure nuclear
quadrupole resonance can apply to determine the quadrupole
coupling constant (e?Qq/h) and the asymmetry parameter of
the electric field gradient (). If the e®?Qq/h is consider-
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ably small, one observes the quadrupole interaction as a
perturbation to the NMR. Sometimes the strength of the
quadrupole interaction is comparable with those of other
interactions. In such case the wusual NMR on powdered
specimen cannot separate the individual interactions.

Two- or multi-dimensional NMR methods evolve different
interactions along different coordinate axes and examine the
different interactions independently. 2D nutation NMR re-
cently proposed is one of such methods. It separates the
quadrupole interaction from chemical shift interaction and
others by evolving these different interactions onto two
directions. In this method one measures the central compo-
nent of the spectrum which is perturbed by the second order
quadrupole interaction for the half-integer spin system but,
by evolving the spectrum onto different directions under a
specific condition, one can pick up the quadrupole interac-
tion in the form free from other interactions. An important
character of the nutation NMR lies in that crystallographi-
cally nonequivalent sites can be distinguished and the
quadrupole interaction parameters as well as the magnitude
of the chemical shift at each site can be determined.

It seems promising to utilize the nutation NMR by making
use of the most of its specific characters to examine the
dynamic process, in other words, chemical exchange Pprocess
between nonequivalent sites. Although the quadrupole inter-
action of deuterium has been widely used to trace the
chemical exchange 1in solid state, there has not been
developed any direct method to study the motion of the
quadrupolar nuclei with half-integer spins in the solid
state. Since in solid electrolytes and fast ionic conduc-

-4~

—l*



tors various ions play the main role and as many of these
ions have half-integer spins, number of valuable informa-
tion about the ionic motion can be obtained if the nutation
NMR can be used to examine the motional process in solid.

In the present work, a theoretical formulation of the 2D
nutation NMR method using a new technique based on the
Liouville representation is given. Next a method to incor-
porate the chemical exchange into the theory of the nutation
NMR will be developed. Then NaNO: and NaHgCls.2H2.0 will be
used to test the efficiency of this method for determination
of the quadrupole interaction parameters. Naz5e0s is chosen
to demonstrate how to separate and distinguish any crystal-
lographically nonequivalent sites in crystal. Finally a
model ionic conductor, Nai+xZrzSixP:-x0:2, is chosen to

examine the effect of the chemical exchange on 2D nutation
NMR spectrum, and the data were analyzed by the simulation
method. The applicability of the 2D nutation NMR for
chemically exchanging system will be discussed.




2. Theory
2.1. Liouville Representation in NMR

General treatment of pulsed NMR spectroscopy has been
done using time dependent density matrix formalism.
Throughout the text in this thesis, however, the Liouville
(superoperator) formalism [1] will be used to describe the
time evolution of the spin system. Since the Liouville
representation is not familiar to the most of chemists, it
seems to be the due course to give brief introduction of
this special formalism. The Liouville representation is
suitable for handling complicated time development of the
density matrix and is well adopted to computer implemen-
tation, because it has a transparent presentation of the
commutator which is by all means needed in the calculation
of the evolution of density matrix. Hereafter, several
important properties of the Liouville formalism are summa-
rized in comparison with the usual Schrodinger representa-
tion.
a) In the Schrodinger representation, the density matrix
p obeys the von Neumann equation of motion (2]

dpr”dt = ‘i[qu] ] (2-1.!]

where H is the total Hamiltonian of the system in the
frequency units. In the Liouville formalism, the elements
of the density matrix form density superkets (basis sets)
and the time dependence of the density superkets is deter-
mined by the Liouvillian L :

dp/dt = -ilLp , (2;1.2)

where p is the density superkets in the column form, i.e..




p=t(p11 Pl P13 e Rin P21 sas we Pnnl
(2.13)

where n = 2I+1 and [ is the spin. L is defined through the
relation

L=H®E-E®!H, (2.1.4)

where E is the unit operator which has the same dimension as
H, and 'H represents the transposed matrix of H and ® stands
for the direct product [3] of two matrices. (See appendix.)

When the Hamiltonian can be diagonalized by a Unitary
matrix U through the similarity transformation :

H® = U"'HU , (2:1:5)

(HY means diagonalized Hamiltonian,) then the Liouvillian
can be diagonalized by the use of the same Unitary matrix :

L' = U'LU
= (U @U'YH®E - E® *H)(U ® U)
=H ®E-E®H , (2.1.6)

It should be noted that while the Hamiltonian plays the role
of the operator characterizing the time evolution as well as
that of operator specifying the energy of the system, the
Liouvillian plays the former role only. This can be seen by
the fact that, according to (2.1.6), the eigenvalues of
Liouvillian consist of the differences of eigenvalues of the
corresponding Hamiltonian.

b) When the Hamiltonian can be separated into a large
time-independent interaction He and a much smaller term Hi,
one often writes the equation of motion of the spin system

=7-




in the interaction representation which removes unnhecessary
term He from the Hamiltonian. In this case, the Liouvillian

can be written

L= a2 # Lt , (Brailetréa)
where

ls = Ho ®E - E® tHo , (2.1.8a)

Li =H ® E-E®ttH . (2.1.8b)

Then the Liouville description of the interaction represen-
tation is expressed by

p exp(+ilet)p . (2.1.9)

Lo

expl+ilot)L: exp(-ilat) , (2.1.10)

where p* and L- are density superkets and Liouvillian in the
interaction representation, respectively. Accordingly the
equation of motion of the density superkets becomes

dp"/dt = -iL"p . 2:15110

If the Liouvillian L* 1is explicitly time-independent, Eq.
(2.1.11) can be solved formally :

P (t) = exp(-iL t)p(0) . (2.1.12)

c) Another feature of the Liouville formalism is in its
convenience in calculating the observables. For example,
the magnetization along the x-axis is described in the
Schrodinger representation as

M« = Tr(lxp) , (2:1.13)

while in the Liouville formalism,




Mo = Ixp , (2.1.14)

where 1. is the operator in the row form.
Thus one can write physical quantities simply as a
product of matrices and vectors.

Appendix

The properties of direct product are summarized as
follows. Direct product of two matrices A and B of n
dimensions is defined by

AxB=| aiB aizB ... arnB
az1B az2B ... aznB
an1B anzB ... annB

Thus the resultant matrix has n? dimension. And
(A+B)®C=A2C+B®C ,

(A® BJ(C® D) = AC® BD ,

where + has usual meaning of matrix sum.




2.2. 2D Nutation NMR

In the high magnetic field, the NMR spectra of quadru-
polar nuclei that have the spins 1 2 1 consist generally of
21+1 lines due to quadrupole interaction. In the powdered
or polycrystalline samples the angles between the external
magnetic field and the principal axes of the electric field
gradient (EFG) are distributed at random in each microcrys-
tal and therefore the spectra show characteristic powder
patterns as exemplified in Fig. 2.1. The powder patterns
shown in Fig. 2.1 are ideal ones and if such spectral
patterns are observed one can analyze the spectra to
determine the quadrupole interaction parameters. In many
cases, however, powder spectrum gives indistinct structure
owing to strong quadrupole interaction and/or dipolar inter-
action; sometimes the former makes the spectrum spread over
several hundred kHz and as a result causes the signal to be
buried under the noise.

For half-integer spins, the central peak, that corre-
sponds to the transition between the spin states
[+1/2> € |-1/2>, can be almost always observed because it
is not affected by quadrupole interaction in the first order
perturbation. Therefore it is meaningful to search for a
method or methods to determine the quadrupole interaction
parameters from observed central transition only. One
method widely used is the line shape analysis of the normal
one dimensional (1D) spectrum, which is governed by the
second order quadrupole interaction. But one weak point of
this method lies in the fact that the interactions other
than the quadrupole interaction cause the line broadening
and/or line shift and it becomes difficult to determine the

-10-
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Figure 2.1
Simulated a) the first order and b) the second order
powder lineshapes for I = 3/2 (n = 0).
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parameters accurately. Especially when several crystallo-
graphically nonequivalent sites exist and the signals corre-
sponding to the individual sites overlap with each other, it
is wvery difficult to derive the quadrupole interaction
parameters at each site from the 1D spectrum.

The two-dimensional (2D) nutation NMR is probably the
most powerful tool in the situation when the direct analysis
of the powder pattern cannot be applied. The 2D nutation
NMR is applicable to the quadrupolar nuclei having half-
integer spin [4]. The rate of the ‘nutation’, which repre-
sents the motion of the magnetization in the frame rotating
at the frequency of the rf field, varies with the strength
of the rf field relative to the quadrupole interaction. In
that rotating frame, the strong rf field makes all original
spin eigenstates |mz> mix and the degree of the mixing
depends on the strength of the quadrupole interaction and rf
field. Since the mixing of the spin states produces shift
in the individual eigenstates, the measurements of the shift
in the spin eigenvalues under irradiation of strong rf field
can be used to obtain information about the quadrupole
interaction. The experiment is based on a pulsed NMR in
which one observes the free induction decays (FID's) by
changing the rf pulse duration incrementally and one per-
forms double Fourier transform to obtain the 2D nutation
spectrum which provides quantitative information on the
quadrupole interaction parameters.

The experiment can be divided into three time-domains
(see Fig. 2.2). a) Preparation period : thermal equilibri-
um magnetization is established, b) Evolution period : the
magnetization nutates around the rf field under the influ-
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Figure 2.2

Schematic representation of 2D nutation NMR experiment.
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ence of an interaction Hamiltonian, H;, during t:, and
c) Detection period : the magnetization along x-y Pplane in
the laboratory frame is detected under the influence of
another interaction. Hz, in the duration t:.

The Hamiltonians which work during the periods b) and ©)
consist of

Hi H: + Ho(Q) + Ho + Hes + Her (L) (2e250)

n

Hz Hz + Ho(Q) + Ho + Hcs (

po

o B )

where Hz is the Zeeman interaction, He the quadrupole
interaction, Ho the dipole interaction, Hcs represents the
chemical shift, and H-r is the coupling between the spin and
the applied rf field. Q represents the angle between the
external static magnetic field and principal axes of EFG
tensor. Their explicit forms are [2]

H: = walz

= yHelz, (2,233
Hoe () = EQmV—m . (2.2.4a)

Qe = al3lz2-1(1+1)1/2 ,

Q1 = J6allzl:s+1+121/74 ,

Q:? - \/63112/4 .

\;E = UEZ/Q ¥

Viy = (Vzx2iVzy)/J6

Viz = (Uxx-Vyy£2iVxy)/2J6 ,

a=eQ/[I(21-1)1 , (2.2.4b)
Ho = £ I;DI; , (2.2.5)
Hes = Hol (2,2 6)
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and
Hrt = w1 [Ixcos(wet)+ilvsinlwet)] (2257

where weg 1s the nuclear Larmor frequency, D and o are the
dipole interaction and the chemical shift tensors, respec-
tively, and o is the strength of the rf f{field in the
frequency units. Note that the Liouvillians in the absence
of the chemical shift does not produce any net shift of the
spectrum. (Although the quadrupole interaction leads to an
asymmetric powder pattern, the center of gravity of its
spectrum does not change. Also, the dipolar interaction
makes the spectrum split but the center of gravity of the
spectrum does not move.)

Henceforth, we will always assume that the relative
strength of the different interactions is Hz > He = Hr¢
>>Hp, Hes. This situation is realized in the case of nuclei
with fairly large quadrupole interaction such as 23Na, 3*°K,
°9Co, °3Nb etc. The most important condition is that the
pulse apparatus can provide very strong rf field. Under
above conditions one can treat the quadrupole interaction as
well as the chemical shift as a perturbation and can
neglect weaker dipole interaction. Then quadrupole interac-
tion can be expanded up to the second order terms as

Ho' = Ha*!'? 4 Ho'2) (2.2+8)
where

HQHJ

e2qQ/81(21-1)(3cos26-1+nsin?6cos2¢)
x [3122-1(1+1)]
wo [122-1(1+1)731 , (2.2.9)
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and

Hot2) = (3e2qQ/21(21-1))212 /32w
x[{9(1-cos?8)2-6m(1-cos*8)cos2¢
+12 (1+c0526)2c052¢+4n2cos?6(1-cos?2¢) )}
x[2122-21(1+1)#1]
-{9(1-c0526)Ccos26+6m(1-cos%68)cos?0c0o52¢
+12 (1-cos?6)cos?6cos?2¢
+12(1-cos26) (1-cos?2¢)}
x4[8122-41(1+1)+111 , (2.2.10)

where, 6 and ¢ are the polar and the azimuthal angles of the
direction of the static magnetic field with respect to the
principal axes of the EFG, respectively, and others have
usual meanings. The chemical shift interaction is repre-
sented by

Hes' = olz . (22011

Usually one can assume that the second order quadrupole
interaction is negligible in the presence of a strong rf
pulse, and the chemical shift term can be included in the
Zeeman term, the Hamiltonians in Eqs. (2.2.1-2) can be rede-
fined to be

Hi

Ho¢*? + Her €2.2.12)

and

He/ &5 Ha 20 ab He (e (2.2.13)

The density superkets (Eq. (2.1.10)) at a time t;+te
becomes in the frame rotating at we (interaction representa-
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tion),

p (ty+te)=expl(-ile* tz)exp(-iLi*t1)p(0) . (2.2.14)
and

Li* = Hy* R E=-E® *Hi* , (2:.2:15)

[2* = H* ®E - E®'He C252516)
where

Hi* = He* + Hrr* 220300

He® = He® (2.2.18)
and

He* = Ho' = Ho'!' + Ho'2? , (2.2.19)

Hee® = w1 Ix (2.2.20)

In Egq. (2.2.14) p(0) is the density superkets at thermal
equilibrium. In the high temperature approximation, it
vields

p(0) = (1 - hwe I2/kT)/(21+1) , (2.2.21)

assuming that the Zeeman coupling dominates other interac-
tions. The unit ket 1 in Eq (2:221) can be always
disregarded in the calculation since it does not contribute
to signal.

Hereafter, Eq. (2.2.14) is solved for I =3/2 as an
example with respect to each period, i.e., evolution and
detection periods.

a) Evolution period
Before examining the general feature of the nutation
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NMR, two limiting cases will be studied as an illustration.
In the evolution period an rf pulse, H = w1/, 1is
applied on the spin system. If the rf strength is much
stronger than the quadrupole interaction, the spin system
can be treated as if the quadrupole interaction is absent
while the rf field is applied. Then the Hamiltonian becomes

Hi = 0 J3m/72 0 0
J3wi /2 0 W1 0
0 W 0 V3w /2
0 0 J3wm/2 0 . (2.2.22)

This Hamiltonian can be diagonalized through a similarity
transformation by the orthogonal matrix :

R=[43 1 =1 /3
=1 43 J3 1
-1 J3 -3 -1 |/ 2/2,
J3 1 1-43 (2.2.23)

and the corresponding eigenvalues are -wi/2, 3w /2, &1/2,
and 3w:1/2. Then one can immediately show that the magneti-
zation nutates around the rf field at the characteristic
frequency wi.

In the opposite case when the rf pulse strength is much
smaller than the quadrupole interaction, the rf pulse can
merely excites the central transition when the rf frequency
satisfies nearly the resonance condition, and so no effec-
tive mixing of the eigenstates occurs. This is because the
energy difference of the adjacent levels is quite different
from each other. Hence one can pick up the components
concerning with the central transition from the Hamiltonian

=B




0 a1
g 0

H' =

(2.2.24)

and this has the eigenvalues fwi. Therefore the motion of
the magnetization is represented by the rotation at frequen-
cy of 2wi. In general, it can be shown that the magnetiza-
tion corresponding to the central transition rotates at
(I+1/2)w1 [2].

In summary, when quadrupole interaction is weak enough
compared with the strength of the rf field, then the
magnetization nutates at wi, and in the opposite case the
magnetization nutates at (I+1/2)w;.

If the quadrupole interaction and the rf field are
comparable in magnitude, the nutational motion becomes
complex. The equation of motion of the spin system in such
complex cases has been solved using several different
techniques [5]1. In the present work a new technique based
on the Liouville representation is introduced to solve the
Problem.

The matrix representation of the Hamiltonian in the
period t: can be written as

Hi = o J3w1 /2 0 0
J3w1 /2 -we W1 0
0 W1 -0 V3w /2
0 0 J3wi/2 e ' (2.2.25)

where we 1s defined in Eq. (2.2.9). This Hamiltonian can be
dlagonalized through the similarity transformation by the
orthogonal matrix [6]
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Q = | cosf- -sinf- -sinB. COS6-.
sinf- cose- cosf. Sind.
s5in6- cos#- -cosé. -sind. | / J2
cosf- -sinf- siné. -cos6+ (2.2.26a)

tan20: = (J3/2)o /(wetw1 /2) (2.2.26b)

and the corresponding eigenvalues are

At = /2 + (0%t ?-orwe)t 7R,
A2 = @/2 - (@ %+ ?-01we )72
Az = -01/2 = (@1 2+we 2+@1@e )72
A =m0 /2 + (0 24eePtorwe )02 (2.2.27)

The Liouvillian can be diagonalized by taking account of
Eq. (2.1.6) and it leads to the density superkets at the end
of the pulse as

p' (t1) = Rexp(=ildi t1 IR ' p(0) , (2.2.28a)
or
pilty) = E [RjxRer g (D) ]expl-ixity) (2.2.28b)

where A1 is the 1-th eigenvalue of the Liouvillian. In the
above Eq. (2.2.28b), A;1 = Z [RjxRcim(®] 1is called the
'transition amplitude' which represents the intensity of the
component with the frequency A..
b) Detection period

After the rf pulse field is switched off, the Hamilton-
ian (also the Liouvillian) is diagonal and the density
superkets at a time t:;+t: is given by

p* (ti+t2) = expl-ilat2)p (t1) . (2.2:23)

-20-




A lengthy manipulation vyields the result that the signal
corresponding to the central transition at a given orienta-
tion of the principal axes of the EFG with respect to He is

proportional to

S(ty+t2)e
{[35in26-5in26. -(1-co0526- ) (1+c0s26+ )1sin(As-A1 )ty
-[35in20-51n26+ +(1-cos26- ) (1-cos26. )1sin(As-A1 )ty
-[35in26-5in26. +(14cos26- ) (1+c0526+ )1sin(Az-kz )1,
+[35in20-sin26. - (14+cos26- ) (1-cos28.)1sin(As-Az )t}
x exp(-iwe‘2’'t2) ,
(2.2.30)

where e’ is the second order quadrupole shift of the
central transition expressed by [7]

@ '2) = (e2qQ/h)?2/192we
x{9(1-cos26)2-6n(1-cos*6)cos2¢
12 (1+c0s26)2c0os?2¢+4n%cos?6 (1-cos?2¢)
-72(1-c05268)cos?6-48n(1-cos?6)cos?6cos2¢
-812(1-cos?8)cos?6cos?2¢
-8n2(1-c0526) (1-cos22¢)} . (2.2.81)

Eq. (2.2.30) indicates that four of six transitions between
the four eigenvalues contribute to the spectrum and their
transition frequencies can be determined by numerical analy-
sis of the spectrum. It should be noted that Eq. (2.2.30)
consists of two parts; one is the nutation which is merely a
superposition of sine functions of ti, and the other depends
on tz and is governed by the second order quadrupole
interaction.
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2.3. Chemical Exchange Effect

Chemical exchange means that the nucleus jumps between
the ‘'sites’ whose environments are different from each
olther, i.e., crystallographically nonequivalent sites in
solids.

The basic assumption of the chemical exchange is that
the principle of detailed balance between the sites is
satisfied, i.e..

PiKii = Pikii » (2.3:.1)

where p; stands for the thermal equilibrium population of
the Jj-th site and K;: represents the exchange rate from the
J-th to i-th site. Then one can write the exchange matrix
for m sites :

K= Ky e ... Kin
K2y Kee .i. Kom

Knt Kez ... Kan ; (2.3:29

where the diagonal component ki; is the rate of Jjump from
i-th site to another, i.e., the reciprocal of the average
life time at the i-th site. The sign of kii is taken to be
negative (or zero). Each column must satisfy the following
relation

Kipdlcia® cae #Kpe 20 . {2:3.3)

Another assumption adopted here is that the spin-spin
interaction between the sites is extremely small and can be
neglected. This assumption makes possible to describe the
Liouvillian and the density superkets in a simple form.
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In principle. in the case where the chemical exchangae
occurs among the m sites, the density superkets p is defined
by [8]

p=p" ®@p' ® ... ®pi* (2.3.4)

where p'’ represents the density superkets at the j-th site
and x means the direct product of the kets. Eq. (2.3.4)
tells that the cross terms between the density superkets at
different sites should be calculated in order to describe
the time evolution of the system. Since such cross terms
appear mainly as a result of the interaction between spins
at different sites, and fortunately, the spin-spin interac-
tion between quadrupolar nuclei is usually very weak, one
can 1ignore this type of interaction. Then, the total
density superkets can be reduced as follows :

p=pt @p2) ®.., @pm (2.3.5)

s

where @ means the direct sum of the density superkets.
Similarly, the Liouvillian consists in principle of complex
components if we take account of the interaction between the
different sites. However, if we disregard the spin-spin
Interaction as mentioned above, the Liouvillian can be
written in a simple form as

= g 0 0 ... '@
B = 9 ... 0
0 9 L& . 0
0 0 0 wew  LIE¥ (2.3.6)

where LY’ 1is the Liouvillian corresponding to the j-th
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site.

When the chemical exchange occurs, under the assumption
that the exchange between the sites is instantaneous, the
spin does not change its state during the Jjump. In other
words no relaxation occurs in the course of the exchange
process. Then

dp/dt = -(iL+K)p , (L= vE=a)
and
K = Kit kKiz Kiz ... Kis
K21 Kkez Kezs ... Kea
g]EK '
Kot Ks2 Knz ... Knn (243L8

where Ex is (2I+1)2 dimensional unit matrix.
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2.4. Chemical Exchange Effect on the Nutation Spectrum

In this section, two-site exchange 1is examined for
simplicity but the extension to the general multisite case
is straightforward.

In usual treatment of the chemical exchange, the effect
of chemical exchange on the spin system is neglected during
the short rf pulse so as to simplify the problem. But in
this work, the exchange of spins should be taken into
account because it has severe effect on the nutation
spectrum.

The Liouvillians corresponding to the j-th site are

L¢idy
L¢i?,

B Cid % faatdd (2.4.1a)
Loid? # Les!d) + Lae ; (2.4.1b)

where Lg "' and Lece ' stand for quadrupole interaction and
chemical shift at the j-th site, respectively. The exchange
matrix becomes

K= | ki =kz

-kKi ke

® Ex . (242
Thus the density superkets at a time ti;+t: becomes

plti+te) = exp{-(il2+K)tz Yexp{-(iLi +K)t: }p(0) ,
(2.4.3)

where Li and L. are the Liouvillians in the presence and
absence of the rf pulse. respectively.

Now two limiting cases are examined.
D) Slow motion regime : Ki, ko << Ha, Hr¢

In this case the chemical exchange effect can be treated
as a perturbation because the effect on the spectrum from
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the chemical exchange is small compared with that from the

quadrupole and rf couplings. Then one can diagonalize the
Liouvillian alone by means of the orthogonal matrix Eq.

(2.2.26) :

Ld = Q—!:H O L{1) 0 QHI O
0 Q—IlEJ) l 0 Lt?)] [ 0 Q(2)l
= Letr? 0 ]
0O [d¢2) (2.4.4)
And the exchange matrix becomes
Ks = klEK _Qti}-ikQQtE’l
-Qf21-1k, Q¢! Kz Ex i (2.4.5)

According to the perturbation theory, the diagonal terms of
the exchange matrix should cause the change of the spectrum
in the first order. Hence the line width of the peak
corresponding to each site is determined by the exchange
rate ki1 and ks, respectively.
ii) Fast Motion Regime : ki, Kz >> Ha, Hr¢

In the opposite case, one must diagonalize the exchange
matrix and treat the quadrupole and rf pulse as the
perturbation. To diagonalize the exchange matrix, one must
symmetrize the exchange matrix if it is not symmetric. This
symmetrization can be done by the matrix P,

Plj =\/P|5n_| {2-4-81

through the similarity transformation, where &8i; stands for
the Kronecker's delta. The Liouvillian is not altered and
the exchange matrix becomes
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Ks = 1 /4Py 0 } {-k; kz ] ‘JP'. 0 l
0 1/Jp2 Ki -k2 0 Jp: & E¢
= | -ki+ k'
K' <k % B . E@ud )
This can be diagonalized by
K¢ = [ cos® -sind l ki k' ] cos® sind
sin® coso K' -k -5ind cos® ) ¥ Ex ,
z -(ki+ke) O
0 0 ®B (2.4.8a)
tan2¢ = 2k'/(ki-k2) , (2.4.8b)
and so the Liouvillian is expressed as
Lf = L1 4Lt2) 0
0 SRS )
, cos2¢ sin2d
B AREIES B S
5in2® -cos2¢ (2.4.9)

Here the diagonal blocks of the Liouvillian determine pre-
dominantly the spectral appearance. However the components
of the Liouvillian corresponding to -(ki+kKe) decrease SO
fast that these can be neglected. Then the spectrum is
characterized by :

(1-cos2®)L''? +(1+cos2®)L2?
= pyLi1 #+palt2) (2.4.10)

Thus the spectrum is described by the use of the weight-
averaged Liouvillian. In the case of the two-site jump the
time-averaged spectrum shows a characteristic pattern de-
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pending on the relative orientation of the principal axes of

the EFG tensor at the two sites. Hence the analysis of the
spectrum at fast motion regime can determine the angle
between the EFG principal axes at the two sites.
iii) Intermediate cases

The spectrum will change its appearance drastically if
the rate of chemical exchange becomes comparable to the
difference of the nutation frequencies at different sites.
Therefore the 2D nutation spectrum can be applied to
chemically exchanging systems to determine the rate of
exchange when it is of the comparable order with e?Qq/h (and
also with wi). For the analysis of the complicated spectrum
in the above region one must simulate the nutation spectrum
with the exchange rate as a variable parameter.
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3. Simulation

3.1. Principle
3.1.1. Diagonalization of the Liouvillians

In the case when only one Kind of site exists, the
calculation is straightforward since the analytical expres-
sion given in Sec. 2.2 can be applied. Even when several
nonequivalent sites exist in the crystal and when no
chemical exchange occurs, the whole spectrum can be repre-
sented by the superposition of the spectrum corresponding to
each site. In the case where the chemical exchange occurs,
one should calculate the Eq. (2.4.3), or equivalent to say,
one must diagonalize the matrices in each period numeri-
cally. Because the matrices Li+K and L:+K in Eq. (2.4.3)
are complex and non-Hermitian and have very large dimension
of (2I+1)2x(number of site), they cannot be diagonalized di-
rectly by the usual methods. Then several modifications on
the matrices must be made.

At first, the exchange matrix should be transformed by
the matrix P so as to symmetrize the whole matrix. Then,

L%y = (P! ® Ex)(L;y + K)(P ® Ex)
=Ly + K® , G320, 1a)
LS = (P! & Ex)(Le + K)(P ® Ex)
=L + K , €3 1452
where
K¢S = (P! ® Ex)K(P ® Ex) , (351:1¢)

and P is defined by Eq. (2.4.6). Then it is proved that the
matrix L®; (and also L%:2) can be diagonalized by a complex
orthogonal matrix. (The complex orthogonal matrix means
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that the multiplication of its transposed matrix and itself
yvields the wunit matrix.) It should be noted that the
exchange matrix is symmetrized by the above transformation
which 1s however independent of the Liouvillian at each
site.

In the evolution period when rf pulse is applied,
another transformation is needed to reduce the dimension of
the matrix to be diagonalized. This can be achieved by
transforming the Iz basis® to Ix basis [1]. When the rows
and the columns are suitably interchanged, the Liouvillian
at the j-th site L; can be factorized so as to have a block-
diagonal structure whose blocks have the dimension
(I+1)%2/4 = 4.

L¥ ; (RT)-'L; (RT)

0 a'; ; (8il2)
and density superket at the site j becomes
Pty = (RTY 'p; {3ol=30

where R = R & R (R is defined in Eq. (2.2.23)) is an

* 'lz basis' means that the axis parallel to the static
external magnetic field is the quantization axis. Thus Iz
becomes good quantum number. Also, 'Ix basis' means that
the axis parallel to the rf field is the quantization axis
and in this choice of the basis, Ix 15 good quantum number.
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orthogonal matrix which operates to transform the basis from
Iz to
columns.

Ix, and T the matrix to interchange the rows and the
By
mains unchanged. The explicit matrix forms
B, and B' for I = 3/2 are @

the exchange matrix re-
of the block

this transformation,

matrices A, A',

A; = 0 J3wa -J3wq ; 0
J3we; -2 ; +40 0 -J3wg
-J3w0 0 200 ; -4 /3we L2000
0 -J3w0 V30 | 0
(3.1.4a)
B; = [ 2wc;+201 V3w J3we j 0
J3wg j 6w 0 J30
J3wg ; 0 -2w1 J30e | L2
0 J3we ; J3wa; -2we;+20:
(3.1.4b)
B'j= [-2ws;-2w1 -v/3we; -J3wq ; 0
-J3wq ; -6 0 -J3wa ;
V3w 0 -2 -J3ws 7
0 -f3we;  -/3we; 200 -2
(3.1.4¢0)
A'j= 0 -J3we ; Y3 0
-J30q 20a j +4w 0 Ve
J3wse j 0 -2wa j -4 ~v3wa ] L2
0 J3we j ~-J3wq ; 0
(3.1.4d)
where we; represents the first order quadrupole interaction

at the site J.
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site transformed as the Liouvillian are given by :

P, =Pt (0000 VY330-/3 V330-J3 0000O0)).
(3.1.5)

Because the elements of the density superkets corresponding
to the matrices A and A' on the basis Ix are zero at thermal
equilibrium, these can be disregarded. Because the matrices
B and B' are complex conjugates with each other and the
density superkets corresponding to B and B' are identical at
time zero, the matrix to be diagonalized is reduced to

LS1* = [ iBi-kiEs Kk'Es
K'Ee iBz2-K2Es ’ (3.1.6)

where B; is given in Eq. (3.1.4b) and Es is the unit matrix
which has the same dimension as B;'s.

Although the Ix basis is very convenient for diagonaliz-
ing the Liouvillian, it is not suitable for calculation of
the FID's since the transition observed in the detection
period is labelled by the transition between the quantum
number mz, which is the eigenvalues of Iz. Then it has to
be put back to the Iz basis.

In the detection period, the Liouvillian is diagonal
and exchange matrix merely couples the density superkets
with the same labels belonging to different sites. Then one
calculates a matrix which consists of the elements concern-
ing only with the central transition. Because the dimension
of its matrix, L®:2', is the number of the sites, this matrix
can be easily diagonalized compared with that in the
evolution period.

Then the FID signal at a time t;+tz becomes
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S(ta,t1)e Ixpltz,ty)
= Z PiiQijexpl-ile?;t21Q" ;¢
X Re1QrinexXpl=iLi%at11Qi " 'wnapx(0)n
(3.1.7)

where Qi and Q2 are complex orthogonal matrices which diago-
nalize LS;' and Lf®:', respectively.

The Liouvillians L%:;' and L%:2' have special properties :
[t is symmetric (or can be symmetrized by the method
described in Sec. 3.1), and all their elements distant from
the diagonal element by a certain fixed number, which
denotes a band width, are zero. These properties can be
fully wutilized to perform the numerical diagonalization.
There are many possible methods to do this but the present
work adopts a method which consists of two stages [21.
First is to find a transformation which reduces the band
width and gives the symmetric tridiagonal matrix but Kkeeps
the symmetric and bandform characters of the Liouvillians
unchanged. This is accomplished by the successive dJacobi
rotation in the plane of i and J = i+l which is the
orthogonal transformation
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Jld s Fs XD = ey o 0 0 0

D icosy sing 0 e i)
0 -sinx cosxy 0 J)
0 0 0 1

(3.1.8)

This procedure is for eliminating the matrix element at
(i,i+1). Although the Jacobi rotation creates a new non-zero
element at (i+b,j+b), where b is the band width of the
matrix, a series of rotations gives rise to result that i+b
or Jj+b is greater than the dimension of the matrix. Thus
one can eliminate the element without creating another one.
These transformations are continued until the matrix is
tridiagonalized. Then the Liouvillian becomes

LT = mJ-')Lsndi £3.1.8)

where LT has zero off-diagonal elements except those immedi-
ately adjacent to the diagonal one.

Secondly, the matrix is diagonalized by the QR method.
Let Ae be a general symmetric n-dimensional matrix to be
diagonalized. An origin-shift parameter s; is suitably
selected so as to realize the factorization A;-s;E=Q;R;
where Q; is a complex orthogonal matrix and R; is an upper
triangular matrix, then A;+1 = Q;"'A;Q; can be obtained.
When this procedure 1is iterated it can be shown that this
series of matrices similar to Ae generally tends to an upper
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triangular matrix. Since Ae is a tridiagonal matrix. the
resultant matrix is diagonal and its diagonal elements give
the eigenvalues in this case.

In each step of iteration, the origin shift is chosen
to be one of the two eigenvalues of 2x2 submatrix at the
bottom right-hand corner that has smaller modulus. The
Jacobi rotations to effect the decomposition A;-s;E=Q;R; is
used to triangularize A;, i.e., in the rotations in the
planes (i,r+1) where i=1,2,--°r, rotation angle is determin-
ed such that the element (r+l,i) becomes zero.

The actual diagonalization subprogram is the modifica-
tion of the one in the NUMPAC routine in the Nagoya
University. First stage of the tridiagonalization is refer-
red to [2]. And second stage is QR method modified by the
use of complex orthogonal matrix instead of Unitary matrix.
3.1.2 Powder Averaging

In the powdered samples, the crystals are oriented at
random with respect to the magnetic field. Thus one must
designate the orientation of the principal axes of the EFG
tensor with respect to the static magnetic field so as to
perform the powder averaging [3] :

itz L) = J d¢J sinféde S(tz,t:1) .
A = (3.1.10)
The coordinate transformation from the laboratory frame
to the crystalline frame (a coordinate fixed in the crystal-
line specimen) is represented by the rotation :

=




Re cos8cos¢ cos8sing -sind
-5ing cos¢ 0

sinfcose sinfsing cos6 4 | G 2% RP 1

where 6 and ¢ are the polar and the azimuthal angles of the
crystalline frame referred to the direction of the static
magnetic field, respectively. When the EFG principal axes
at the site j are indicated by the Euler angles a, 8, and vy
in the crystalline frame by :

R; = | cosa sina 0 cosp 0 -sing cosy sinr 0
-Sina cosa 0 (Y] 0 -siny cosy 0

0 el sing 0 cosp 0 B 1 s

(3. 1:12)

then the matrix representing the rotation from the orienta-
tion of the magnetic field to the EFG principal axes is
given by

Rj.[93‘¢J) = RJRC . (3.1.13)
Here, the terms needed in the actual calculation are

Ziy%= :cos%0y ,
X;j2 - y;2 = 5in%0;cos29; , (3.1.14)

where

Xi [cosacosBcOSY-SinasinylXe

+[cosacosBsiny+sinacosyly. - cosasinfz. ,

yi = -[sinacosgcosr+cosasinylxc
-[sinacosgsiny-cosacosylye + Sinasinfz. ,

Zj = SinfcosyX. + sinpsinyy. + cospzc , (o fss g M)
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and
Xe = S5infcose .
Ye = 5inécose ,
Ze = COSO , (3wl 16

where 6; and ¢; are the polar angles of the EFG principal
axes with respect to the magnetic field at the site j. By
the use of z;2 and x;2-y;?, the first and the second order
quadrupole interactions are expressed by

we‘!); = e2qQ/B81(21-1){3z; 2-14n(x;%-y;2)} , (3.1.17)

(e2qQ/h)2%/192we
{9(1-2;2)2-6n(14zZ; 2) (x; 2-y; 2)
+4T?22-j 2+T?2(Xj Q_y.j 2)2
-722;2(1-2;2)-48nz; 2 (x; 2-y; ?)
-8n2(1-z;2)+8n2(x; 2-y; %)%} .
(3.1.18)

m0{211

Then the calculation must be performed over the ranges
0<6 <m and -w < ¢ s w in order to accomplish the powder
averaging.

In the actual calculation, cosé is used instead of 6
because the powder averaging (3.1.10) can be rewritten as

f(te,t1) = d d(cos@) S(ts,t1)
& I # J b (3.1.19)
Thus the region of the integration is divided into N with
respect to cosf (-1 < cosf < +1) and ¢ (- < ¢ £ =m).

In the case where only one kind of site exists, one can
tentatively coincide the crystalline frame with the EFG
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principal axes. Since S(tz,t;1) is symmetric with respect to
cosfé and ¢, the number of calculation can be reduced by a
factor of 4 of the total division.
3.1.3 Line Broadening

The line broadening effect should be incorporated as the
multiplication of the FID's Eq. (3.1.19) by the Gaussian (or
Lorentzian) function. Since the origin of the line broaden-
ing is mainly due to dipole interaction in the detection
period but the distribution of (static) quadrupole interac-
tion and/or dipole interaction cause the line broadening in
the evolution period, the broadening factors in each period
may be different, and in practice they are used as adjust-
able parameters. Other reasons which bring about the line
broadening are discussed later.
3.1.4 2D Fourier transformation

The FID's obtained by the above procedure should be
Fourier-transformed to deduce the 2-dimensional spectrum.

glwz 1) = Jexp(—iwete)dtejlexpl—iwm Tyt Tltaatl )l o
£3..1:520)

where f(tz,t;) is given in Eq. (3.1.19).
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3.2 Computational Procedure

Two simulation programs were constructed, one for the
simulation of 2D nutation spectrum without chemical exchange
and the other with chemical exchange.

Brief explanation of the former is given in the follow-
ing. Although the analytical expression has been given, the
diagonalization is performed numerically so as to be able to
treat the general case in which spin 1 2 3/2.

1) Parameter Input

Input the parameters necessary to simulate the spectrum.

Spin number
Larmor frequency
quadrupole coupling constant and asymmetry parameter
rf pulse strength in the frequency unit
number of experiments and increment of the pulse
length
number of sampling points and sampling interval
number of division over the sphere for numerical
integration

2) Quadrupole Interaction

The first and the second order quadrupole interactions
are determined at a given angle 6 and ¢ with respect to the
external magnetic field.

3) Calculation of the FID

Diagonalize the Hamiltonian and calculate the evolution
of the density matrix to evaluate the FID signal. These are
accumulated in the range 0 £ cosf < 1, and 0 < ¢ < =.

A%




Short explanation of the simulation program with chemi-

cal exchange is given below.

1) Parameter Input

Input the parameters necessary to calculate the FID's.

Larmor frequency
number of site for exchange
e2qQ/h, n and the Euler angles
which relate the crystalline frame
and the principal axes of the EFG at each site
relative population of each site
chemical exchange rate between any pair of the sites
rf pulse strength in the frequency unit
number of experiments and increment of the pulse
length
number of sampling points and sampling interval
number of division over the sphere for numerical
integration

2) Quadrupole interaction at a given orientation

The first and the second order quadrupole interactions
are calculated at a given angle 6 and ¢ with respect to
the external magnetic field.

3) Calculation of FID

Diagonalize the Liouvillians corresponding to each
dimension and calculate the FID.

These are summed over the sphere in the range
-1 <cos@ <1 and -w < ¢ £ =m.

In each case, the number of divisions over the sphere is
chosen to be sufficient to produce the powder spectrum,
i.e., 3000-10000. A set of data points 128 x 256 are used
to calculate the FID's. The program lists are given Iin
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Appendix. The program is coded in FORTRAN and calculated by
the ACOS-6 of the computer center of Osaka University and/or
NEC PC-S801E/VM personal computer.

The Fourier transformation (Egq. (3.1.20)) was done by
the use of the ASPECT-3000 minicomputer incorporated in the
BRUKER MSL-200 NMR system. The ASPECT-3000 is equipped with
an array Pprocessor which can execute the 2D Fourier trans-
formation very efficiently and with the plotting routine to
draw up the spectrum. The data conversion program provided
by BRUKER Co. Ltd. was modified to convert the data format
between the MS-DOS operating system on NEC PC-8801 personal
computer and the ASPECT-3000 system. The line broadening
parameters can also be defined in the ASPECT-3000 system.
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4. Sample
4.1. NaNO2 and NaHgCls.2H20

NaNO: crystallizes in an orthorhombic (space group Im2m)
crystal system with the unit cell dimension of a = 3.569 A,
b=55634 and c =5.384 A, Z =2 [l]

Crystal of NaHgCl:.2H:0 is orthorhombic (space group
Pnma) with four molecules in the unit cell [2]. The
lattice parameters are : a = 9.372 A, b = 4.037 A, and
c = 18.71 A. Sodium atoms are coordinated by two H20
molecules and four chlorine atoms.

Both of the above compounds have only one Kind of
sodium site and can be used to preliminary test of 2D
nutation NMR method.

4.2 NazSe0s

This crystal has three nonequivalent sodium sites [3].
This sample can be used to examine whether 2D nutation NMR
method can be applied to determine the quadrupole interac-
tion parameters at each site.

4.3. Nai1+xZr25ixP3-x012

The system Nai+xZre:SixPs-x0:12 has been Known to be a
fast alkali-ion conductor. [41 The crystal structure 1s
shown in Fig. 4.1. [5] Complete solid solution exists for
the composition between x = 0 and 3 and the crystal struc-
ture varies between R3 (0.0 s x < 1.8, 2.2 < x= 3.00 and
Cc2/7¢c 1.8 = x s 2.2)., The latter i5 'a slightly deformed
structure of the former. The structure consists of a three-
dimensional skeletal network of PO: (and/or SiOs) tetrahedra
which are corner-shared with ZrOs octahedra. The ZrOs
octahedron is linked by three POs tetrahedra so as to form a
ribbon along the hexagonal c-axis and also linked by six POs
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Rl-%c

Figure 4.1

Crystal structure of Nai:xZr>SixPz-x012.
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tetrahedra to form a two-dimensional sheet in the c-plane.
This has two kinds of sodium sites named 1 and 2. In the
case x=0 (NaZrz2P30:2), sodium occupies the site 1 (Na"’)
only which is an octahedral site surrounded by siX oxygen
atoms of ZrOs, and the site 2 remains unoccupied. As X
increases, the population of the site 2 (Na‘®’) increases.
Na‘'’ lies on the three-fold axis and is also surrounded by
six Na‘®’ sites which locate in the same plane of the

nearest-neighbor 0¢-. Thus it has been supposed that the
sodium ion transport occurs through the path
Na‘l’aNa‘2)aNa'1?, The conductivity changes with X and

assumes the maximum value at x = 2.0, but the activation
energy for conduction is almost constant in the range
between x = 0.0 and 3.0.

The compound can therefore be an appropriate model for
examining the sodium ion exchange by NMR. Moreover, since
the site symmetries at the Na‘’ and Na‘’ sites are both
lower than the cubic symmetry and S0 non-zero quadrupole
interaction in each site is expected to exist. Therefore
the application of the new theory for the 2D nutation NMR on
chemically exchanging system to Naj+xZr:SixPs:-x012 brings
about information on the dynamic process and the microscopic
mechanism of the ion conduction in this material.
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5. Experiment
5.1. Sample Preparation
5.1.1. NaNOz and NaHgClz.2H20

NaNO: is of commercial source (Nacalai Tesque, guaran-
teed reagent grade, purity 98.0%) and used without further
purification.

NaHgCls:.2H20 was prepared from aqueous solution of the
appropriate mixture of NaCl (Tomita Seiyaku) and HgCl:
(Nacalai Tesque, guaranteed reagent grade, purity 99.5%).
Colorless polycrystals were grown by slow evaporation of
water. The X-ray powder diffraction pattern of this
product (Fig. 5.1) was compared with that calculated with
the lattice parameters given in the literature [1]. The
result identified NaHgCl:.2H2O0 but indicated at once the
existence of small amount of HgCl.. However, this HgCl:
impurity is supposed to have little influence on the NMR of
23Na.

5.1.2. Naz2S5e0s

Na:Se0Os; was prepared from aqueous solution of a stoi-
chiometric mixture of NaOH (Nacalai Tesque, reagent grade,
purity 93%) and selenius acid H2SeO:. [2] H:Se0s: is prepar-
ed by dissolving 5e0: (Nacalai Tesque, guaranteed reagent
grade, purity 98%) in water. Slow evaporation of the
solution gave the white powder.

5.1.3. Naj+xZr2SixP3-x0i12
The powdered specimen was synthesized from the stoichio-
metric mixture of Na2CO: : Zr0Oz : Si0O2 : NHsaH2POs = 14x : 4

2x : 2(3-x), x=0.0, 1.0, and 2.0. [21 The reagents used
here were : Na2C0sz, Nacalai Tesque, guaranteed reagent
grade, purity 99.5%; Zr0Oz, Nacalai Tesque, reagent grade;
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Si0z2, Nacalai Tesque, guaranteed reagent grade; NH:H2PO:,
Wako Junyaku, guaranteed reagent grade, purity 98%. The
mixture was at first heated to 900°C for several hours to
decompose Na:COs and NH«H2POs, then heated to 1200°C for
10 to 20 hours in the platinum crucible in an electric
furnace. The sample obtained here is white {fine powders.
The specimen was identified by X-ray powder diffraction.
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SAMPLE NAHE:Mair2P3012 DATE:89. 1@. 29

TARGET Cu

VOL and CUR: 4@KY 48=R SHOOTHING NO.: 11

SLITS :05 1 RS .J 85 1 THRESH, INTEN.: 157 CPS

SCAN SPEED: 3 DEG/HIN. 2nd DERIY.. 263 CPS/(DEGxDEG)

STEP/SAMPL.. .B2 QDEG WIOTH: .89 DEG

PRESET TIHE: 8 SEC B.C.REQUCTION:NO EXECUTION

FILE NAME :01184d QUTPUT FILE :

OPERATOR : TRHAHOTO

COMHENT :

Sampla Meme : NaZr2P3012

g.8eK

CPS

Py

- JJJQM:

5.8@ 19. 89 28.8@ 3g.8@ 4@. 88 S8.4da 50.88 74,08 Gd. 24 9@.8e

Figure 5.2
The X-ray powder diffraction pattern of NaZr:Siz0::z.
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SAMPLE NAME:Na3Zr2512P DATE:89. 18,27

TARCET ‘Cu

YOL and CUR: 4@KHY 48mA SHOOTHING NO.: 11

SLITS 108 1 RS .5:59 | THRESH. [NTEN.: 137 CPS

SCAN SPEED: 3 DEG/MIN. 2nd DERIV.: 263 CPS/(DEGxDEG)
STEP/SAMPL.: .82 DEG WIOTH: .@9 OEG

PRESET TIME: @ SEC B.G.REDUCTION:NO EXECUTION

FILE NARME :0310@ QUTPUT FILE :

OPERATOR : TAMAKOTO

COMMENT

Sampla Name : MNa3Zr2S12P

5.08K

a1

%

CPS
1]

reg

s

1

35.89 19.24 28.928 3g.ea 48.28 58.89 60.84 70.28 6a.89 9a.8a

Figure 5.3
The X-ray powder diffraction pattern of Naz:Zrz2SiP20:2.
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5.2 Nutation NMR

The 23Na NMR spectrum was measured by the use of the
BRUKER MSL-200 NMR system at the Larmor {frequency of
52.938 MHz. In some cases, offset of ~*10 kHz was added so
as to minimize the difference between the resonance frequen-
cy and the rf frequency. The pulse length was increased
from 1 to 128 us every 1 us, or from 2 to 256 us every 2 us
by the use of the automation program. The FID signal was
sampled every 0.8 us. The number of data points was usually
1k words. Each FID was quadrature-detected and accumulated
16 to 500 times using phase cycling technique to eliminate
phase and intensity errors arising from the non-ideality of
the pulses and/or the receivers in each experiment. The
recycle time for accumulation was set to be greater than the
time required for the magnetization recovery towards thermal
equilibrium value : Usually it was 5 s. The temperature of
the sample was controlled using VT-1000 temperature control
system which is equipped in the MSL-200 system and measured
by the Cu-Constantan thermocouples. The fluctuation of the
temperature is within *1 K.

In order to minimize the effect of the rf pulse
inhomogeneity, the samples were sealed in the glass ampules
with 10mm¢ in ca. 10mm long. The signal of sodium from the
ampule was negligible since the glass ampule used here was
very thin and the amount of sodium in it was negligibly
small compared with that in the sample.

The data acquired were 2D Fourier transformed by
the use of ASPECT-3000 computer. Before 2D FT, zero filling
up to 1k or 2k words in the Fi dimension was made in order
to increase the digital resolution of the spectrum. In some
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cases, the trapezoidal function was multiplied to the F;
data to avoid the effect of cut-off of the tail that causes
auxiliary wiggles on either side of the spectrum [4].
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6. Data Analysis
6.1 Nutation Spectrum

Figs. 6.1 and 6.2 show stacked and contour plots of
typical 2D nutation spectrum simulated with parameters
e?Qqa/h = 0.2 MHz, n = 0, and & /27 = 50 kHz. The horizontal
axis, which will be called F2 for brevity, is the conven-
tional 1D NMR spectrum axis and the projection onto this
axis gives the powder spectrum characterized by the second
order quadrupole interaction. (See Fig. 6.2a.) The vertical
axis, Fi1, shows the nutation spectrum whose pattern varies
with strength of the quadrupole interaction relative to the
rf strength.

If the Hamiltonian in the evolution period, Hz, does not
contain any useful information other than quadrupole inter-
action, an FT over ti: gives nutation spectrum which gives
rise directly to the ratio Q/¢ = [3e2Qq/2I_I-Dh)/ w:,
where (o is the lowest pure quadrupole resonance frequency.

Fig. 6.3 illustrates the simulated dependence of the
nutation spectrum on the strength of the quadrupole interac-
tion for I = 3/2 (n = 0 and w1 /2 = 50 kKHz). The numbers on
the right-hand side of the spectrum represent e?Qq/h. The
bottom spectrum corresponds to the case when the quadrupole
interaction is absent: only one sharp peak appears at around
w1 as mentioned in Sec. 2.3. As the strength of the
quadrupole interaction 1is increased, the spectrum splits
into several peaks and they move away from wi. In the top-
most spectrum, the quadrupole interaction is so strong that
only one peak is found at around 2w:. In this case, the
intensity of the peak at 2w: is reduced to 1/4 of that of
the peak at w1 in the case of e2Qq/h = 0, indicating that
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Figure 6.1
Stacked plot of 2D nutation spectrum simulated with
parameters e2Qq/h = 0.2 MHz, n = 0, @1/27 = 50 kHz.
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Figure 6.2
Contour plot of simulated 2D nutation spectrum.
Calculated parameters are as in Fig. 6.1. a) Projections
onto F; and b) F2 axis, respectively.




only the transition between m = %£]1/2 can be excited by weak
rf field.

The variation of the nutation spectrum with n is shown
in Fig. 6.4 for &/ = 2.0, When n # 0, the spectrum
splits into several peaks and their separations increase
with increasing #n. If n =1, they are merged with each
other.

Based on the above results, one can determine the
quadrupole interaction parameters from the positions and
(relative) intensities of the peaks. In order to avoid
possible effect of improper phase setting in the experiment
on the spectrum, only the magnitude spectra® are used to
compare the experimental nutation spectra with the theoreti-
cal ones, although it gives rather broad peaks owing to the
contribution of the dispersion component.

* The magnitude spectrum means

JAlw* + D)< ,

where A and D are absorption (real) and dispersion (imagi-
nary) components of the spectrum.

..60 =
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Dependence of nutation spectrum on the strength of quadru-
pole interaction.
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6.2 Data Analysis
1) NaNOz and NaHgCls.2H:0

The 2D nutation spectrum of NaNO: is shown in Fig. 6.5,
and its projection onto the F: axis is shown in Fig. 6.6a.
Three broad peaks are found at near 0, w1, and 2wi. The
peak at around 0 is probably due to the offset effect which
iIs caused by a non-zero offset between the Larmor frequency
and the rf frequency and/or due to the rf inhomogeneity.
This point will be discussed further in Sec. 7.2. If this
minor disagreement is ignored, the nutation spectrum can be
interpreted with €?Qq/h ~ 1.1 MHz which has been reported in
the literature [1]. The projection onto the F2 axis (Fig.
6.6b) gives the structure due to the second order quadrupole
interaction, and n can be estimated from its line shape to
be & 0.1,

The spectrum of NaHgCl:.2H.0 is shown in Fig. 6.7, which
resembles with that of NaNO2, but the relative intensities
of the peaks are different (See Fig. 6.8.). This spectrum
corresponds to the spectrum of €2Qgq/h ~ 0.6 MHz and n =~ 0.2.
3) Naz5Se0s

This sample has three nonequivalent sodium sites and
these can be distinguished in the nutation spectrum in Fig.
6.9 : The slices of the spectrum at the positions marked by
arrows (Figs. 6.10a-c) are different from each other in
their relative intensities of the peak near w: and that near
w1, due certainly to the presence of three different
quadrupole interactions. The strength of the quadrupole
interaction at the sites a, b, and ¢ is estimated to be 1.4,
0.8, and 1.3 MHz, respectively, The value n is estimated to
be 0.8 and 0.0 for a and b. No significant temperature

-63-




40 20 0 -20 -40 -60
kHz

Figure 6.5
Contour plot of 2D nutation spectrum of NaNO: at room

temperature.
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Figure 6.6
2D nutation spectrum of NaNOz at room temperature.
a) Projection onto Fi1 axis. b) Projection onto Fz axis.
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Figure 6.7
Contour plot of 2D nutation spectrum of NaHgCls;.2H,0 at
room temperature.
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Figure 6.8
2D nutation spectrum of NaHgCls.2H:0. Projection onto Fi
axis.
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Figure 6.9
Contour plot of 2D nutation spectrum of Na2Se0O: at room

temperature.
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dependence was found except at the highest temperature
(330 K), at which a sharp peak appeared at wi. This peak
corresponds obviously to very small quadrupole interaction
but the origin of such small €?Qq/h is not clear.

4) Nai+xZrzSis-xPx 012

The spectra of the samples with x = 0.0 and 1.0 have
shown no significant temperature dependence.

The spectrum for x = 0.0 at room temperature is shown in
Fig. 6.11. In the spectrum of X = 0.0, one can clearly
distinguish two sites (i.e., a considerable amount of
fraction of sodium ions occupies the 'site 2').

Remarkable temperature dependence of the spectrum is
found for x = 2.0. The temperature dependence of 1D spec-
trum is shown in Fig. 6.12 and that of 2D nutation spectrum
iIs shown in Figs. 6.13-6.17. By Fig. 6.12 alone, one can
neither distinguish two nonequivalent sites nor assign the
nature of motion that causes the variation of the lineshape.
But the analysis of 2D nutation spectrum can provide
fruitful information about these points.

In the spectrum of the lowest temperature (116 K), it is
shown clearly that there are two independent nonequivalent
sodium sites and so it can be assumed that the chemical
exchange between the sites does not occur. The slices at
the position indicated by arrows are shown in Figs. 6.18a
and b. These were compared with the simulated patterns with
e?Qa/h of 1.0 MHz and 1.5 MHz, respectively. Moreover from
the relative intensities of the two spectral components, the
spectrum in Fig. 6.18a (e2Qq/h = 1.0 MHz) was assigned to
the site 1 and Fig. 6.18b (e?Qg/h = 1.5 MHz) to the site 2.
The projection onto F: axis (except the spectral component
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Figure 6.11
Contour plot of 2D nutation spectrum of NaZr:Siz012 at

room temperature.
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Temperature dependence of 1D spectrum of NasZrzSiP:012.
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Figure 6.13
Contour plot of 2D nutation spectrum of NasZr:SiP:0;> at
116 K.
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Contour plot of 2D nutation spectrum of NazZr:SiP2012 at
186 K.
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Contour plot of 2D nutation spectrum of Na:Zr:SiP20i12 at

237 K.
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Figure 6.16
Contour plot of 2D nutation spectrum of NazZrz2SiP2012 at
300 K.
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Figure 6.17
Contour plot of 2D nutation spectrum of NazZr:SiP:20:12 at

363 K.
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Figure 6.19
Projection onto Fz axis of 2D nutation spectrum of
NazZr:SiP20,2 at 116K.



appeared at around 0 frequency in the Fi dimension) is shown
in Fig. 6.19. Using the above values of e?Qq/h the simula-
tion of the best fitting to the experimental line shape was
obtained by putting n = 0.0 (site 1) and 0.8 (site 2), and
that difference between the chemical shifts at the two sites
is 16 kHz. These results are supported by the crystal data
: The site 1 has three fold symmetry and so n should be 0.

As the temperature was increased, the difference between
the two sites became gradually unclear, and it disappeared
to give a spectrum which corresponded to well defined one
site case at the highest temperature (Fig. 6.17, 363 K).
This phenomenon suggests strongly that the rapid chemical
exchange occurs between the two nonequivalent sites at the
high temperature.

The simulation of the spectrum at the highest tempera-
ture led to the values of the apparent interaction parame-
ters e?Qq/h = 1.1 MHz and n = 1.0 (see Fig. 6.20). These
parameters as well as the above values for the rigid lattice
were used to estimate the Euler angles between the two EFG
tensors to be B =30.0, vy =60.0. The simulation of the
spectrum at each temperature was performed to reproduce the
experimental spectrum with the chemical exchange rate k as
unknown parameter. The simulated spectra are shown in
Figs. 6.21-6.25. It was found that the chemical exchange
rates are 0.1 kHz at 237 K, 1 kHz at 300 K, and 10 kHz at
363 K. From these values the activation energy for the
chemical exchange between the sites 1 and 2 was estimated to
be Es =~ 13 kdJ/mol. On the other hand the activation energy
values obtained above do not coincide with that found in the
conductivity measurement (E: =~ 31 kd/mol) [2]. The large
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Figure 6.20
Projection onto Fi axis of 2D nutation spectrum of
NaszZr2SiP>012 at 363K.
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Contour plot of 2D nutation spectrum simulated with

chemical exchange rate k = 0.001 kHz. Other parameters are
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Contour plot of 2D nutation spectrum simulated with
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Contour plot of 2D nutation spectrum simulated with

Chemical exchange rate k = 0.1 kHz.
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discrepancy between the E;'s values obtained by the NMR and
conductivity measurement suggests that there exists a funda-
mental difference between the local motion of the sodium
ions and the global motion which causes the net ionic
conduction. This point will be discussed later.
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7. Discussion
7.1 Summary of the Present Work

So far in the previous Chapters a new theoretical method
to describe the evolution of the quadrupolar spin system
under the influence of strong rf field was established.
This method is based on the Liouville representation and is
superior in the following points to the other wmethods
previously developed :

1. It is easy to construct the theoretical expression for
the complex interaction between the spin system and the rf
field and so can be easily extended to the system with spin
higher than 3/2.

2. Although the dimension of the matrix to be determined is
far larger than that based on other standard methods, the
formalism with the Liouvillian can be coded by computer
language(s) and therefore is much suitable for the computa-
tion by a big computer.

3. Liouville representation has a form which can incorporate
effects other than spin interaction in a straightforward
manner. This property makes it possible to apply the
nutation method to chemically exchanging system.

The new method was coded by FORTRAN to prepare the
general simulation program which is necessary for analyzing
the experimental 2D nutation spectra. The program can be
applied to quadrupolar nuclei with spin numbers 3/2 ~ 9/2
and to systems with and without chemical exchange.

The 2D nutation NMR experiments were conducted for 2°Na
species involved in several compounds :

1. The 23Na resonances in NaNO: and NaHgCls:.2H:0 were used
to establish the optimal experimental conditions for the 2D
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nutation spectra and to evaluate the sensitivity of the
spectra to the quadrupole interaction parameters, e?Qq/h and
7.

2. The ?3®Na nutation NMR was applied to Na:Se0s to distin-
guish the three crystallographically nonequivalent Na sites
in this compound. The value e2Qq/h at the individual sites
could be determined and also n was estimated for two of the
three sites in this material.

3. The 23Na 2D nutation NMR was used to examine the dynamic
process of Nai+xZrzSixP3-x012. The spectrum was remarkably
temperature dependent and by applying the new theoretical
method for the chemically exchanging system to it the
chemical exchange rate of Na ions between two nonequivalent
sites was estimated at each temperature. It was found that
the activation energy deduced from the nutation spectra
differs significantly from that determined by a previous
conductivity measurement.

In the course of this work a number of problems have
been encountered concerning the practice of the 2D nutation
NMR. In what follows 1 will discuss the applicability,
advantage and/or disadvantage of the 2D nutation NMR newly
developed in the present work.
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7.2 2D Nutation NMR

Nuclear quadrupole interaction can provide a lot of
useful information on the static and dynamic structures of
crystalline materials. In the case that e?Qq/h is larger
than about | MHz, the pure quadrupole resonance can be
applied to determine the quadrupole interaction parameters.
When e?Qq/h is much smaller than ~ 100 kHz, the conventional
NMR 1is used to detect the quadrupole-perturbed spectra
either on single crystal or powdered specimen.

Many of chemically interesting nuclei such as 2°Na,
27A1, ®°K, ®°Co , etc. give often e2?Qq/h of the magnitude
between ca. 100 KHz and a few MHz region. In such a
frequency region it is extremely difficult to apply the
above two methods because of the limitation on the sensitiv-
ity and/or band width of the radio-frequency spectrometers.
Moreover when a number of crystallographically nonequivalent
sites exist for the nuclei of interest, it is usually almost
impossible to analyze the complex spectra even if the second
order quadrupole interaction could be detected.

It was shown in a preceding Chapter that the 2D nutation
NMR can successfully be applied to such cases. Since the
strength of the rf pulse usually available is 100 kHz at
most, it means that this method can be applied to determine
the quadrupole coupling constant Qo /2w up to about 1 MHz.

Most remarkable feature of the nutation NMR method lies
in the fact that if a strong rf field can be used and if the
condition Hp, Hes << Hr¢+ holds, undesirable line broadening
effect due to Ho and Hecs along the Fi axis is dramatically
reduced. (In the usual 1D spectrum which corresponds to the
F: direction, the line broadening due to other interactions
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can not be eliminated.) In this way, detailed information
on the gquadrupole interaction can be derived from the
nutation spectrum,

Another advantage of the nutation NMR is found in its
simple setting of the experiment as having been demonstrated
in Chap. 5.

A special use of the nutation method is, as pointed
out [1], the determination of relative orientation between
the EFG and the other interaction tensors. It is possible
if the dominant interaction in the detection period, tz, is
other than the second order quadrupole interaction. For
example, if the static magnetic field is considerably high
the line width due to the chemical shift extends over wide
frequency range and may dominate the second order quadrupole
interaction. In such case, the spectra developed onto F;
and Fz axes contain the information mainly on the quadrupole
and chemical shift interaction, respectively, and the corre-
lation between them allows to determine the angles between
tensors of both interactions.

However, several effects are found to deform the spec-
trum. These are discussed below.

a) Peak near 0 in Fi

When an off-resonant rf pulse is applied, i.e. when
Larmor frequency in the absence of quadrupole interaction
does not coincide with the rf frequency, there must appear a
peak at zero frequency. This can be explained as follows in
the case of I = 1/2 for simplicity. If the offset between
the rf frequency and the Larmor frequency is Aw, the signal
at the end of the pulse becomes
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S(t) « [all-cos2Qt)+ipsin2Qt)] , bRl

where
Q= JAw?+w: 2
= 0 Aw/Q?
B = /20 . A

Since Aw # 0, a does not vanish and the term independent of
time generates the peak at 0 frequency. Also the cosine
term survives and this results in the phase modulation along
Fi which will cause the distortion of the spectrum. Then it
is desirable to minimize the resonance offset as long as
possible. But when the inhomogeneity of the external
magnetic field and/or dipole interaction between the spins
are significant, this effect cannot be eliminated perfectly.

Another cause of central peak is the effect of the
second order quadrupole shift during the evolution period
which has been neglected in the theoretical formulation.
The nutation spectrum including these effects is shown in
Fig. 7.1. The ogreater the quadrupole interaction, the
greater the intensity of the central peak.
b) Line Broadening

Another undesirable effect in the nutation NMR is caused
by the inhomogeneity of the rf field in space. This cannot
be avoided in the use of the solenoid of the finite length :
The rf magnetic field is strongest at the middle of the coil
and decreases to some extent at the ends of it. [2] This
brings about the distribution of the ratio /01 and it
causes the line broadening in F: dimension. Also, if the
shape of the rf pulse is not rectangular (although it is

-93-




200

10.0

5.0

20

L e

1.0

uy 20y

Figure 7.1
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assumed tacitly), it causes the spectrum to modify. The
effect of the inhomogeneity in the rf field cannot be
treated quantitatively.

In the discussions so far, the effect of the relaxation
was not taken into account, but in the actual experiment the
relaxation of the spin system sometimes influences the
spectrum. The qualitative analysis of the Bloch equation
shows that the magnetization which nutates around the rf
field is decreased with the time constant Tn = 2/(1/T1+41/T2)
under the assumption that i > 1/Th, 1/To. This leads to
the conclusion that the inverse of the peak width along Fi
cannot exceed 2T and the best resolution is determined by
Te since usually Tz is much shorter than T: in solids. When
the effect of the relaxation can be treated theoretically,
it must give the information on the dynamics of the nucleus.
The relaxation effect on the nutation spectrum has been
examined by the rotary echo nutation method [3]1 in which the
effect of homogeneous line broadening arising from the
relaxation can be separated from that of inhomogeneous line
broadening due to the distribution of the quadrupole inter-
action and/or external magnetic field.

c) t1 noise

Another relaxation effect which influences the spectrum
is t1 noise [4] which is due to the wvariations of the
experimental conditions from experiment to experiment in a
2D sequence, leading to irregular fluctuations of the signal
as a function of ti. In the 2D nutation NMR, t: noise is
caused if the recycle time between the accumulation is too
short for the magnetization to recover towards the thermal
equilibrium value, Ms. Since the magnetization recovery
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depends on ti1 (and the recycle time) the peaks at 2e:, 3wi,
-+« gppears in the nutation spectrum.
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7.3 Chemical Exchange Effect

As already demonstrated in a previous Chapter, the 2D
nutation NMR gives its full ability in the situation where
the spectrum arises from several nonequivalent sites. Often
the signals corresponding to them overlap with each other
and it is very difficult to decide which peak corresponds to
each site. While by the use of 2D nutation NMR one can
easily distinguish each site according to the difference of
the strength of quadrupole interaction.

It was shown theoretically and experimentally that the
nutation spectrum is drastically changed when the chemical
exchange of the resonant nuclear species is excited. The
detailed analysis of the spectrum brings about the quantita-
tive information of the mechanism of the chemical exchange.
Especially when slow and fast limits of the spectra can be
obtained, one can determine the relative orientation of the
EFG tensors as well as the rate constant of the exchange.
Thus the method can be used to examine the mechanism of
chemical exchange, ionic conduction, and/or solid state
reaction from the microscopic point of view.

In Chap. 6 it was pointed out for Nai+xZrzSixP:-x0i12
that the activation energy for the sodium exchange was
estimated from the 2D nutation NMR experiment to be
13 kd/mol and that this value was very small compared with
31 kd/mol deduced from a previous conductivity measurement.
The most simple model for ionic conduction is based on the
classical hopping mechanism through successive nearest-
neighbor sites. In such a model conductivity measurement
and NMR should give the same activation energy and Jjump
rate. Serious discrepancies as was found above are often
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encountered. [6] In the case that the ion transport occurs
through the hopping between two or more nonequivalent ionic
sites as was found in Nai+xZr2SixPsz <012, the discrepancy
between the activation energies determined by different
techniques can qualitatively interpreted. Consider an ion
transport through a potential shown in Fig. 7.2. As the
potentials at sites 1 and 2 are largely different one ion
can Jjump easily from 'site 2' to 'site 1' but the opposite
is much difficult. If the neighboring 'site 1' is Iinitially
occupied, the ion will hop back and forth between the
nearest sites until one of the other ‘site 1' happens to
become empty. The repetition of such local motion does not
contribute to the net conductivity whereas it affects the
NMR spectrum. The exchange and conduction of the sodium
ions in Nai«xZrzSixP3-x0:12 are considered to apply to such a
model. The 2D nutation NMR mothod looks at the rapid local
motion with an average activation energy while the ion
transport experiment measures an energy which is the sum of
the activation energy for the jump and the energy for the
vacancy formation at the 'site 1'. This idea enables one
also to interpret the experimental results that the activa-
tion energy obtained from conductivity measurement is inde-
pendent of the composition (x) while that from NMR is
strongly dependent on xX. (When x = 2 the frequent jump
between the sites | and 2 was observed as mentioned before
but no sodium Jjump was recognized in the specimens with
X =0 and 2. In the latter two samples the activation
energies for the sodium exchange appear to be infinity.)

-98-




Figure 7.2

Nonequivalent site model with deep and shallow wells.
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Line# Source Line Microsoft FORTRAN Optimizing Compiler Version 4.01
1 ENOTRUNCATE
2 $DECLARE
3 PROGRAM NUTATION
= O
5 COMPLEX*16 ARYDAT(1,1024),H1(100),R1(100),RDRC100)
6 COMPLEX»*16 E1(10),EE(10),REC(I10),ERC(10),W(C10)
7 REAL*8 THD(10) ,QCC,ETA,QC2,W1,QIFCI10),WIFC10)
8 REAL*8 Al wo,Pl2,T1(2),CT1,CT2(20000),CP1(¢900),H11(2,100),S:D
9 INTEGER*4 DIM(2),MXD(2),NSP,NT,NP,MXT,I,dJ,K,L,N,ERS
10 CHARACTER*15 RGF,TDF
I, G
12 EQUIVALENCE (H1,H11),(CT2(901),CP1(1))
13 COMMON /ARYDAT/ARYDAT,DIM
14 COMMON /PARAMS/THD,QCC,ETA,QC2,Q1F,W1F
15 COMMON /WRKVAR/RDR,EE,REC,ERC,W
16 C W mmmmmmmm e e
7 Declarations of Constants
18 € s e
1.9 PARAMETER(PI12=6.283185307179586D+00)
20 DATA MXD/1024,1/
21 €C @ mmmmmmm e e =
22 G Spin Number
¢ N
24 WRITE(%, '(Al11¥)') '0Spin %2 =
25 READ(%, " (12) ") NSP
26 S=DBLE(NSP)/2.0D+00
27 Al=5%5+S
28 C W @ mmmmmmmm e e e e
29 C Lamor Frequency
30 C —mmmmmmmmmmmm e e e e Fem e e s st e
31 WRITE(, ' (A20¥)') 'OLamor Freq / MHz =
32 READ (%, '(F7.4)") W0
33 € mmmm e e e -
34 C Quadrupole Interaction Parameters
35 € @ e e e e -
36 WRITE(*,'(A17¥)') '0OeqQ / MHz, 7 = '
37 READ (%, '(2F10.6) ") QCC,LETA
38 € s e e e
39 C RF Strength in Frequency Units
40 € s e e
41 WRITE (%, ' (A27¥) ") °ORF Field Strength / kHz = '
42 READ (%,'(FG6.3)') Wl
e S e
44 C Sampling Points in each Dimension
S T G e e
46 DO 300 I=1,2
47 WRITE(*, '(A13,11)') 'ODimension : ', 1
48 WRITE (%, "' (A35,14,A5%) ")
49 & ' Number of Sampling Points ( Max. ',MXD(I),' ) = '
50 READ (%,'(15)") DIMCI)
51 WRITE(*,'(A25¥)') ' Time Increment / us =
52 READ (%, (F5.3)") TI(L)

53 300 CONTINUE
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C  mmmmmm e e e, —————————
o RGF : Stores Computational Condition
C TDF : Saves FID Data
(.. __________________________________________________________________
WRITE(*, '(A25¥)"') 'ORegistry File Name = '
READ(%*,'(A15)"') RGF
WRITE(,'(A25¥)"') ' Time Domain File Name =
READ(*, ' (A15)"') TDF
C __________________________________________________________________
Z Get Lhe Number to be calculated
C __________________________________________________________________
WRITE(%*,"(A20)") ' Number of Division over @'
WRITE(%, "(A¥) ") [ Max. : 20000 ¢z = 0) 900 (7 > 0) 1 =
READ(%,'(1I5) ') NT
DO 400 1=1,NT
CT1=DBLE(1)/DBLE(NT)
CT2(1)=CT1=CT1
400 CONTINUE
IF (ETA .EQ. 0.0D+00) THEN
NP=1
CP1C1)=0.0D+00
ELSE
NP=NT
DO 410 I=1,NP
CP1 (1)=ETA%DCOS(P12%DBLE(1)/DBLE(NT))
410 CONTINUE
END IF
C __________________________________________________________________
C Store the Parameters
C __________________________________________________________________
OPEN (UNIT=50, FILE=RGF, ACCESS='SEQUENTIAL")
WRITE(S50, '(Ad40)"') ' ====== Computational Conditions ------
WRITE(50, “(Al6)*') ‘¢ Interactions »>°'
WRITE(S0, '(A1D,12,A4)°)" Spin 5 ' NSRS 4 27
WRITE(S50, "t(A22,F8.3)"') ' Lamor Freq / MHz = ', WO
VRITE(S50, "(A22,F7.3)") ° RF Field 7 kHz = ', WI
WRITE(S50, '(A15,F10.6,A8,F10.6)")
& QRQCC /7 MHz = *',QCC,;'s ETA = ',ETA
WRITE(50, '(Al15) ') ' Calculation >
WRITE(50.,"'(Ad44)"') ° Dimension Data Points Time Increments'
DO 500 I=1,2
WURITECSHO, GG T, 10X, T4, 9%, F10.5Y") L;DIMCI):;TICL)
500 CONTINUE
WRITE(S0, '( /A28, 15)') °* Total Division over 6 = ', NT
WRITE(50, '(/A18,A15)") ° Data Stored in ',TDF

CLOSE (UNIT=50)
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e e T T
C Determine the Parameters suitable to Calculation
(‘ __________________________________________________________________
QCC=QCC/DBLE (NSP*NSP-N5SP)*2.5D-01
QC2=QCC*QCC/WO*PI12=T1(2)*(Al-7.5D-01)
QCC=QCC*PI2%TI(1)
Wi=WIxPI[2%T1(1)%1.0D-03
D=DBLE(NSP)/2.0D+00
DO 600 I=1,NSP+1
THD(1)=D
QIF(1)=D=*D*3.0D+00-A1
WIF(I)=WI*DSQRT(Al-D*(D-1.0D+00))/2.0D+00
D=D-1.0D+00
600 CONTINUE
WRITE(*,'(A38,15/)")
g Total Division over THETA, PHI = ' ,NT%NP
C __________________________________________________________________
[ Powder Averaging Start here
C __________________________________________________________________
DO 710 I=1,NT
WRITE(*, ' (A30,15)") '+ Powder Averaging Now ¢ ',I*NP
DO 700 J=1,NP
CALL EVOLVE(NSP+1;Hl ;HI'T,RL{ELl,CT2(I) ,CP1(J); ERS)
IF (ERS .NE. 0) GOTO 20000
700 CONT INUE
710 CONTINUE
C __________________________________________________________________
& Normalize and Store the Data
C ____________________________________________ i e e e e Y

OPEN (UNIT=10, FILE=TDF)
D=1.0D+00/DELE(NT*NP)
DO 810 I=1,DIMCI1)
DO 800 J=1,DIM(2)
ARYDAT (J, 1 )=ARYDAT (J, I ) %D
WRITECLO, FMT=9000, 10STAT=ERS, ERR=10000) ARYDAT(J,I)
800 CONTINUE
810 CONTINUE
CLOSE (UNIT=10)
9000 FORMAT(D22.16,1X,D22.16)

C __________________________________________________________________

C Normal End.

c __________________________________________________________________
GO TO 999899

C __________________________________________________________________

C Error Exist in the Procedure.

C __________________________________________________________________

10000 WRITE(%*,'(A18,1I5)') ' File Write Error ',ERS
GO TO 99999
20000 WRITE(*, '(A23,15)') ' Diagonalization Error ',ERS
B
99999 END
$PAGE
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SUBROUTINE EVOLVECL A HET (R, EL L CT2,011,FRR)
C s e
. Calculate the Evolution of the Density Vectors
(.' __________________________________________________________________
COMPLEXx%x168 ARYDAT(4+1824),Hl1(L,L),RICL,L),El(L),I1C,Q2E
COMPLEX*16 RDR(10,10),EEC10),REC(10),ERC(10),W(10)
REAL*8 HITC2:, L5l Q1 vQ25D, T2 CTd 812, 5T4,CRP1,CP2,5P2
REAL*8 THDC(10),QCC,ETA,QC2,QIF(10),WIFC10)
INTEGER%4 DIM(2),N1,N2,1,J,.K,ERR
C
COMMON /ZARYDAT/ARYDAT,DIM
COMMON /PARAMS/THD,QCC,ETA,QC2,Q1F,WIF
COMMON /WRKVAR/RDR, EE,REC,ERC,W
C __________________________________________________________________
] Transformation of Coordinate to Molecular Frame
C __________________________________________________________________
CT4=CT2%CT2
ST2=1.0D+00-CT2
ST4=ST2%ST2
CP2=CP1%CP]
SP2=ETA*ETA-CP2
C __________________________________________________________________
5 First Order Quadrupole Splitting
0 b e et e i e i i e i S S B e e S R R
Q1=QCC*(3.0D+00=CT2-1.0D+00+S5T2%CP1)
o ) L e i e e L e S e b S
C Second Order Quadrupole Shift for the Central Transition
c __________________________________________________________________
% Q2=QC2x%( ST4*9.0-(1.0-CT4)*CP|*6.0+(CT2%4.0+4S5T4)*CP2+CT2%SP2%4.0
C & =S T2 CE2% 00 JrCP %8 . 0+ CR2 TSP 2 Y%8 .0 1]
Q2E=DCMPLX(DCOS(Q2),DSIN(Q2))
C __________________________________________________________________
C Set the Hamiltonian
C __________________________________________________________________
DO 30 I=1,L
DO 20 J=1,L

H1(J,1)=0.0D+00
20 CONT INUE
HIT(2,1,1)=Q1*%*Q1F(1)
IROLE SGE. 1) HEE(25T=k, 1)
1 o o R U S A 1 o I [ Gt 1 3 ) )
30 CONTINUE

WIFCI=1)
WIFC 1 )

4
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C Get the Eigenvalues and Eigenvectors to Calculate Exponentials

CALL CHEQRD(L,HI,El,R1,ERR)
IF (ERR .NE. 0) RETURN
DO 100 I=1,L
EEC1)=CDEXP(EI (1))
100 CONTINUE
PO 110 J=1,L
DO 110 I=1,L
RDR(1,J)=0.0D+00
DO 110 K=1,L
RPRCI,J)=RDRCI,JI+RICK, 1 )*THD(K)*R1 (K, J)
110 CONTINUE
DO 120 T=1,L
REC(I)=RI1(L/2,1)
ERC(I)=RI(L/2+1, 1)
120 CONTINUE

¢ ale]
l
o
0
=
(4]
S
(D
s
=

DO 300 N1=1,DIM(1)

DO 200 J=1,L
REC(J)=REC(J)*EE(J)
ERC(J)=ERC(J)*DCONJG(EE(J))

200 CONTINUE

DO 210 I=1,L
W(I1)=0.0D+00
DO 210 J=1,L

W(TI)=W(I)+REC(J)*RDR(J, 1)
210 CONT INUE

DO 220 I=1,L
IC=0.0D+00
DO 220 J=1,L

1C=1C+W(J)*ERC(J)
220 CONTINUE

DO 300 N2=1,DIM(2)
ARYDAT(N2,N1)=ARYDAT (N2,N1)+IC
[C=1C*Q2E

300 CONTINUE

RETURN
END

C
$PAGE
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239 SUBROUTINE CHEQRD (N, LC, EC, VO, ERR)

240 € @ mmmmmm e e e e e e

241 C Calculate the Eigenvalues and Eigenvectors of Symmetric Matrix

242 € 2 mm e e mm e e e e e e e e e e m e — -

243 COMPLEX%*16 LC(N,N),VC(N,N),EC(N),ZX,2Y,ZZ,2ZR,ZC,Z5

244 REAL*8 CDABSP, DEL

245 INTEGER%4 1,dJ,IPI1,LL,LU,ITR, ITRMAX,ERR

246 C

247 CDABSP(ZZ)=DABS(DREAL(ZZ))+DABS(DIMAG(ZZ))

2438 DATA DEL, ITRMAX/5.0D-15,30/

249 €  mmmmmm e e e e

250 € Set the Eigenvectors to Unit Matrix

251 e m e e e e e

252 DO 110 1=1,N

253 DO 100 J=1,N

254 VC(J,1)=0.0D+00

255 100 CONT INUE

256 VC(I,1)=1.0D+00

257 110 CONTINUE

258 € mmmm e e

258 € Search for a Small Sub-diagonal Element.

260 € s e e e e

261 LU=N

262 300 ITR=0

263 310 LL=LU

264 320 IF (CDABSP(LC(LL,LL-1)) .GT. DEL) THEN

265 LL=LL-1

266 IE (1L, .GT. 19 GO TO: 320

267 END IF

268 IF (LL .NE. LU) THEN

269 € s e e

270 C If Convergence is not Attained within 30 lterations,

27l ¢ Truncate the Computation.

272 € s e e -

273 IF (ITR .GT. ITRMAX) GO TO 10000

274 C s m e e e

275 C Determine the Origin Shift as the Eigenvalue of the 2 by 2

276 € Bottom Submatrix which is Nearer to the botLom Element.

277 € s e

278 ZX=(LC(LU-1,LU-1)+LC(LU,LU))*0.5D+00

279 ZY=ZX-LC(LU, L)

280 ZZ=CDSQRT(LC(LU=-1,LW)=LC(LU,LU=-1)+ZY%ZY)

281 ZZ=DSIGN(]1.0D+00,CDABSP(ZY-ZZ)-CDABSP(ZY+ZZ) ) *ZZ+7ZX

282 LCCLL L) =LC(LL; LL)=ZZ

283 Z2C=1.0D+00
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284 € 2  mmmmmmmm e e e e ————— = m
285! T Left- and Right-hand Transformation.
286 € mm e e e e e e e e
287 DO 360 I1=LL,LU-1I
288 IP1=1+1
289 2=t 510
290 Y=l CIPL A 1)
291 ZR=CDSQRT(ZX%ZX+ZY%*ZY)
292 IF (CDABSP(ZR) .LT. DEL) GOTO 20000
293 LCCI ;1 )=ZC*ZR
294 IE (1 GT EE) ECCLoI=-1)=Z5S%ZR
295 LCLIPY, IP1 ¥=LECTPL, IP1)=2Z2Z
296 ZC=ZX/ZR
297 25=7Y/1R
298 DO 330 J=IP1,N
299 ZY=LC(I,d)
300 LCC 1 ,JI=ZY%ZC+LCLIP] ,J)%ZS
301 LC(IP1,J)=LC(IPI1,J)*ZC-ZY*ZS
302 330 CONTINUE
303 DO 340 J=1.,1
304 ZY=LC(J, 1)
305 LCUJ, 1 }=ZY®ZC+LC{J, IP]1)*ZS
306 LCCJ,IP1)=LC(J, 1Pl )*ZC-2ZY*ZS
307 340 CONTINUE
308 LE( . 1 )=E€C] ;; 10+ ZZ
309 DO 350 J=1,N
310 ZY=VC(J,1)
311 VC(J, 1 1=Z2Y*7ZC+VC(J,IP1)*Z5
312 VC(J,IP1)=VC(J, Pl )*ZC-2ZY*ZS
313 350 CONTINUE
314 360 CONTINUE
315 LC(LU,LU=-1)=LC(LU, LU)*ZS
316 LC(LU, LU J)=LC(LU,LU)*ZC+ZZ
37 ITR=ITR+1
318 GO TO 310
319 END IF
320 LU=LU=1
321 IF (LU .GT. 1) GO TO 300
322 € mm e
328 € QR-Transformation is Quer.
324 C Eigenvalues are Given
328 e by the Diagonal Elements of the Resultant Matrix.
326 € s e e e e
327 DO 400 I=1,N
328 ECCI)=LC(I,I)

329 400 CONTINUE
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0000

20000

Normal Exit.

ERR=0
RETURN

Error Exit.
10000 : Not Converged.

20000 : Devide by Zero.

ERR=10000
RETURN
ERR=20000
RETURN
END
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$DECLARE
PROGRAM EXCHANGE
C __________________________________________________________________
| Simulation Program for 2D Nutation NMR with Chemical Exchange
C __________________________________________________________________
COMPLEX*8 ARD(256,128)
REAL*8 QCC(2),ETA(C21;QC202) ,ET2(2),CHS(2),RFS,EXCli2v2+2)
REAL*8 ALP(2),BET(2),GAM(2),TDX(8),THD(4,2),R(4),P(2)
REAL*8 X(-50:50,0:50),Y(-50:50,0:50),Z(-50:50)
REAL*8 SA(2),CA(2),SB(2),CB(2),8G(2),CG(2),TI(2)
REAL*8 wo,w!,D,PID,SNT,D2R,P11,PI12,5Q3
INTEGER*4 DIM(2) ,MXD(2),NSP,NSI ,MXS,NN,MXT,I1,J,N,ERS
CHARACTER CHA
CHARACTER%*15 RGF,TDF
C
EQUIVALENCE (TDX,THD), (CHA, RGF)
COMMON /ARD/ARD,DIM,TDX,R,P
COMMON /PAR/QCC,ETA,QC2,ET2,CHS,RFS, EXC
COMMON /ARG/SA,CA,SB.CB, SG,CG
C __________________________________________________________________
& Declarations of Constants
C __________________________________________________________________
PARAMETER (NSP=4 ,MXS5=2 ,MXT=50)
PARAMETER(D2R=1.745329251994329D-02,5Q3=8.660254037844385D-01)
PARAMETER(P11=3.141592653589793D+00,P12=6.2831853071739586D+00)
DATA MXD/128,256/
C __________________________________________________________________
& Lamor Frequency
C __________________________________________________________________
WRITE(*, ' (A20¥)') 'OLamor Freq / MHz = '
READ (%, '(F7.4)') W0
C  mmemm e e e e e e e e e ————————
G Number of Sites to be Considered
C __________________________________________________________________
WRITE(%, " (A18¥%)') "ONumber of Site =
READ (*,'(I1)"') NSI
IF (NSI .GT. MXS) GOTO 1
C __________________________________________________________________
G Quadrupole Interaction Parameters and Chemical Shifts
C __________________________________________________________________

DO 100 I=1,NSI
WRITE (' ¢A7,11)") * Site & * ;I

WRITE (%, '(A21¥%)') ' eq / MHz, eta =
READ (»,'(2F10.6)°') QCCt1),ETA(I)
WRITE (%, (A37%¥)"') ' Eular Angles of Principal Axis =

READ (%, ' (3F10.6) ") ALP(I1),BET(1),GAM(I)
D=ALP(1)*D2R

SA(I)=DSIN(D)

CA(1)=DCOS(D)

D=BET(1)*D2R

SB(I)=DSIN(D)

CB(1)=DCOS(D)

D=GAM(1)*D2R

SG(I)=DSIN(D)

CG(I1)=DCOS(D)

WRITE(*, ' (A27%)') ' Chemical Shift / kHz = '
READ (%,'(F10.6)') CHS(1)
CHS(1)=CHS(I1)*1.0D-03
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59 100 CONTINUE
80 C 2~ mpcmmrmeee e e i i . s e e e 7 i 5 e e S e
6L, € Chemical Exchange
I o
63 WRITE (%, ' (AGD¥) ")
G4 & 'OEquilibrium Population of Each Site are Equal ( Y or N ) ? '
65 READ (3, “CAL)") CHA
66 IF ((ICHAR(CHA) .EQ. ICHARC'Y')) .OR.
67 & (ICHAR(CHA) .EQ. ICHAR('y'))) THEN
68 D=DBLE(NSI1)
69 DO 200 1=13NS1
70 P(I)=1.0D+00/D
71 200 CONT INUE
T2 ELSE
13 D=0.0D+00
74 DO 210 I=1,NSI
D WRITE(*, ' (A30,11,A3%)")
76 & * Relative Populaktion of Site *,[;* =
77 READ (x,'(F6.4)') P(1)
78 D=D+P(1)
79 210 CONT INUE
80 DO 220 1=1,NSI
81 P(l1)=P(1)/D
82 220 CONTINUE
83 END IF
84 DO 230 I=1,NSI
85 EXC(I,1,1)=0.0D+00
86 DO 230 J=1,NSI
87 IE td <8T. 1) THENM
88 WRITE(*, ' (A22,1X, 11, 1X,A2,1X,11,1X,A9¥%)")
89 & i Exchange Rate from',I1,'to"',d,' 7/ MHz =
30 READ (3, "CELOL8) ") EXC{J, L, )
91 EXC(1,d,1)=EXC{d,[,1)%P(1)/P(J)
92 END IF
93 EE' I SNEs ) BXCOL ] v 1i3=EBXEELT 5 1)=EXC(ds Tisel )
| 94 230 CONTINUE
95 €C === e e e e e e -
' 96 C RF Strength in Frequency Unils
97 € = mmmmmmmm e m e e e e e e e e e
98 WRITE(3, '(A27¥)"') 'ORF Field Strength / kHz =
99 READ (s, '(F6.3)"') Wl
0 R e
101 C DIM(1),DIM(2) Sampling Points in each Dimension
02 € 2@ c e e e e e e e e e e e e e e s e e e e e e e e e e o e
103 DO 300 I1=1,2
104 WRITE (%, (A13,11)") '0Dimension 3 ', I
105 2 WRITE(*, *(A30¥)') ' Number of Sampling Pcoints = '
106 READ (%, °(15)') DIMCI)
107 IF (DIM(I) .GT. MXD(I)) THEN
108 WRITE (%, " CAT4Y Y)Y 0 'TFoo Earge 1} ¢
109 GO TO 2
110 END IF
111 WRITE(%, ' (A35¥)') ' Time Increment ( in microsec ) = '
1312 READ (%, (RBS3) ) TLELD
1113 300 CONTINUE
114 € @ mmm e e mm e e e -
| Y RGF : Stores Computational Condition
116 C TDF : Saves FID Data
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WRITE(*, '(A25¥) ') 'ORegistry File Name = '

READ (%, "(A15) ') RGF
WRITE (%, " (A25¥)') ' Time Domain File Name =
READ(*, ' (A15) ") TDF

WRITE(*, ' (A33¥)"') '0ONumber of Division over THETA =
READ(%, '(I31') N
IF (N .GT. MXT) GOTO 3
D=DBLE(N)
PID=PI1/D
DO 400 I=0,N
Z( 1)=DBLE(1)/D
Z(=-1)==2Z(1)
SNT=DSQRT(1.0=-Z(1)%*Z(1))
DO 400 J=0,N
XO J,1)1=SNT*DCOS(PID*DBLEC(.J))
YO J,1)=5NT=DSIN(PID*DBLE(J))
X(=ds1d= ¥X(Jd, )
Y('J‘ ] }='Y((];]]
CONT INUE
WRITE(*, '(A38,15/)"')
Total Division over THETA, PHI = " ,NxNx4-Nx2

Store the Parameters

OPEN (UNIT=50, FILE=RGF, ACCESS='SEQUENTIAL")

WRITE(SD, "(A40) ') " —==-=- Computational Conditions -----
WRITE(50,°(/A17)') * < Interactions 2°
WRITE(50, ' (A22,F8.3)"') * l.Lamor Freq / MHz = ', W0

WRITE (S0 " (A22,E7.3) ") °* RE Field £ kHz = ', Wul

DO 500 1=1.NSI

WRITE(50,'(/A10,11,A16,F10.8,A2)")

: STterd 2 et paRapuliatiions =it STy L St
WRITE(50, '(Al16,F6.4,A8,FG.4)")

y QCC / MHz: = ", QCCLTY % ETA = *ETAC])
URITELS0, "CALIDFS.2,82+F8.2,82,F5.2)")

! Euler Angles : Y JALPUL),™®, “.BET(l)."', '.GAMCGCL)
WRITE(S0, "(A27,F6.2)")

! Chemical Shift 7 kHz = *,CHS(1)#*1.0D+03

500 CONTINUE

510

530

WRITE(50,"'(/A25)') ' < Exchange Rates / MHz >'
DO 510 I=1,NSI
DO 510 J=1,NSI

WRITE(505° (4X;5 11 ;A5 11 ;FLI6.42)" ) 1,° ==> °* J;EXCUTJ;1

CONTINUE
WRITE(S50,"' (/A1B)") ' ¢ Calculation >

WRITE(S0, ' (A45) ') * Dimension Data Points Time Increments'

DO 530 [=1,2

WRITE(50, ' (8X, 1, 10X,13,10X,F10.5)') I,DIMCL),TICI)
CONTINUE
WRITECGS0,." CZA20, T84y Total Division = ' ,NxNx4-Nx2
WRITE(S0, " (/A19,ALl5) ") ' Data Stored in *',TDF
CLOSE (UNIT=50)

Symmetrize the Exchange Malrix
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75 € and Set the Spin Density Vectors at Thermal Equilibrium

176 € mm e m e e e e e e -

127 DO 600 1=1,NSI

178 P(1)=DSQRT(P(]1))

179 THD(1,1)= SQ3%P(1)

180 THD(2,1 )= -Pt1)

181 THD(3,1)= 0.0D+00

182 THD(4,1)=-SQ3%P(1)

183 600 CONTINUE

184 DO 610 I=1,NSI

185 DO 610 J=1,NSI1

186 IF (d .NE. 1) EXCUds [0 Y=EXCED, Lo 1dy%*PCE)Y/PLd)

187 610 CONTINUE

188 C W ——mmmm e

189 C Determine the Parameters suitable to Calculation

190 € @ s e -

191 DO 620 1=1,NSI

192 QC2([)=PI2=QCC(I1)*QCC(I)/W0*TI(2)/9.6D+01

193 QCC(1)=PI2%QCC(1)/8.0D+00*TI(1)

194 ET2(1)=ETAC(I)*ETA(])

195 CHS(1)=PI2%CHS(1)*TI1(2)

196 DO 620 J=1,NSI

187 EXCET T v 2)=sEXC T 1, 1)VRTT(2)

198 EXCCd, 1 , LY=EXCTI, Iy FI%TI L)

199 620 CONTINUE

200 RFS=PI2%W1*TI(1)*].0D-03

124 0 1 T

202 C Powder Averaging Slart here

203 € s e e e -

204 NN=0

205 DO 710 I=-N+1,N-1

206 WRITE(%, ' (A30,15)")

207 & '+ Powder Averaging Now : " ,NN+Nx2

208 DO 700 J=-N+1,N

209 NN=NN+ 1

210 CALL EVOLVE(NSP,NSI,X(J,1ABS(1)),Y(J,IABS(1)),Z(1),ERS)

211 IF (ERS .NE. 0) GOTO 20000

212 700 CONTINUE

4 s 710 CONTINUE

214 C W - e

215 € Normalize and Store the Data

216 € s e e o

2112 OPEN(UNIT=10,FILE=TDF)

218 D=1.0D+00/DBLECNN)

219 DO 800 I=1,DIM(1)

220 DO 800 J=1,DIM(2)

221 WRITE(10, "(E13.7,1X,E13.7)"',10STAT=ERS,ERR=10000) ARD(J,1)*D

222 800 CONTINUE

223 CLOSE (UNIT=10)

224 € mm e e -

225 € Normal End.

226 € e e e e

227 GO TO 99999

228 C 2 == mmmmcmcm e mmm e e e e e e e e e e —— e —————

229 Error Exist in the Procedure.

230 € mmmemm e e e e e

231 10000 WRITE(*,'(A18,15)') ' File Write Error ',ERS

232 GO TO 99999
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233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

Source Line Microsoft FORTRAN Optimizing
20000 WRITIEC», "(A23,15)") " Diagonalizalion Error
C

99999 END
2

BLOCK DATA 1XTOIZ

COMPLEX*8 ARD(256,128)
REAL=8 TDX(8),R(4),P(2)
INTEGER*4 DIM(2)

COMMON /ARD/ARD,DIM,TDX,R,P

Transformation Laws in Ix Lo Iz basis

SUPES®!

DATA R/ 6.123724356957945D-01,
& 3.535533905932738D-01,
& -1.060660171779821D+00,
& -6.123724356957945D-01/

END

$PAGE
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251 SUBROUTINE EVOLVE(L.M,X,Y.Z,ERR)

252 e e e e e e e

253 Calculate the Evolution of the Density Vectors

254 € 2@ s e e e e e e e e e e e B e e R R e i et i e i e e

255 COMPLEX=*8 ARD(256,128)

256 COMPLEX*16 L1(8,8),H1¢(4,2,4,2),0Q1(8,8).E1(8),L2(2,2),Q2(2,2).,E2(2)

257 COMPLEXx16 DZ1(2,128),RQ1(2,8),PQ2(2,27,C

258 REAL*8 QCC(2),ETAL2) ,QC2(2).,.ET2(2),CHS(2),RFS,EXC(2,2,2)

259 REAL*8 XY s 2 SAE2) . G L2220 SB62 ), EB (21456121, EGL2)

260 REAL*8 KE6E o d w20 el WER2 L WQR LSO X2, Y2 22 602, STi2 €17

261 REAL*8 TDX(8),R(4),P(2),CDABSP,EPS

262 INTEGER=*4 DIM(2),1,d,K,5,8],52,55,LM,ERR

263 C

264 EQUIVALENCE (L1,H1)

265 PARAMETER (5Q3=8.660254037844385D-01)

266 COMMON /PAR/QCC,ETA,QC2,ET2,CHS,RFS,EXC

267 COMMON /ARG/SA,CA,SB,CB,5G.CG /ARD/ARD,DIM,TDX,R,P

268 CDABSP(CI=DABS(DREAL.(C))+DABS(DIMAG(C))

269 DATA EPS/1.0D-18/

270 € s e e

2il Set the Liouvillians correspond to IF'l and F2 axis

272 € e e e e e — e —— o ——

273 DO 100 S=1.,M

274 € s e e

278 G Transformation of Coordinate to Molecular Frame

276 € s e e e e e e

277 Z2=SB(S)*CG(S)*xX+5B(S)*5G(S)*Y+CB(5) %7

278 X2= (CA(S)=CDR(S)I*CGIS)I-5A(5)1%5G(5) 1=X

279 & +(CA(S)*CB(S)*S5G(S)+5A(5)1%CG(S5))*Y-CA(S5)*5B(S5) %7

280 Y2=-(SA(S5)1%CB(S)*CG(S)1+CA(S)*5G(S5) ) %X

281 & ~(SA(S)*CB(S)*SG(S)-CA(S)*CG(S) )1%Y+SA(S)%SB(5) *Z

282 CT2=72%72

283 S5T2=1.0D+00-CT2

284 CPI=(X2%X2-Y2%xY2)*ETA(S)

280 € mmm e e e e e e

286 € First Order Quadrupole Splilting

287 € mm e e e e

288 WQI=QCC(S)*(CT2%3.0+CP1-1.0)

289 € @ mmm e e

230 C Second Order Quadrupole Shift + Chemlcal Shift

29 € 2 mmmmmree e e s e e e e e e e e e e e e e e e e e e e e S

292 WQ2=CHS(5)+QC2(S)

293 & *¥( ST2#ST2%#0.-(1.+CT2)%CP1%#6.4CP1*#CPI+ET2(S)xCT2%4.

294 & - (ST2%CT2%9.+CT2%CP1%6.0-CP1%CP1+ET2(S)%S5T2)1%8.0 )

285 L2(5,5)=DCMPLX(EXC(5,5,2),WQ2)

298 € 2@ mmrmme e s e e e e e e e e e e e e e e e e e e i

297 C Set the lHamilltonian in the basis Ix

298 € 2  momrmmmmrmsmmm e mmm e e e e e e e e e m e e e e e s e S

299 WQR3=WQ1*5Q3

300 XC(1,1,8)= WQI+RFS

301 XC(1,2,5)= Q3

302 XC(1,3,S)= wQR3

303 XC(1,4,5)= 0.0

304 XC(2,2,8)= -RFS

305 XC(2,3,8)= 0.0

306 XC(2,4,5)= WQ3

307 XEC(353:5)= RIFS*3.0D+00

308 XC(3,4,5)= Q3
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XC(4,4,5)1=-WQ1 +RI'S
100 CONTINUE

DO 220 S5=1,M
DO 200 I=1I,L
H1(1,8,1,;S)=DCMPLX(EXC(S,5,1),.XC(1,1,5))
DO 200 J=I1+1,L
HI(I,S,J,5)=DCMPLX(0.0D+00,XC(1,d,5))
H1(J,S,1,5)=H1(1,5,d,5)
200 CONTINUE
DO 210 S5=5+|.,M
po 210 1=1,L
po 210 J=1,L
[E- (L JEQ. J) THEN
H1 €] +5, 14,85)=EXC1S,55.1)
H1 (15855 1:8)=EXCL5558541)
ELSE
H1(1,5,d,55)=0.0D+00
H1(J,5,1,55)=0.0D+00
HI1([,55,d,51=0.0D+00
HI(J,55,1,5)=0.0D+00
END IF
210 CONTINUE
220 CONTINUE
85
DO 300 S=1.M
DO 300 SS5=5+1,M
L2(S;55)=EXC(5,55,2)
L2(55,S5)=EXC(S5,55,2)
300 CONTINUE

Get the Eigenvalues and Eigenvectors to Calculate Exponentials
LM=L*M
CALL CHEQRD(LM,L1,4,E1,Ql,ERR)
IF (ERR .NE. 0) RETURN
DO 400 I1=1,LM
E1C(1)=CDEXP(EL(]))
400 CONTINUE
S55=10
DO 420 S=1,2
DO 410 K=1,LM
RQ1(5,K)=0.0D+00
DO 410 J=1,L
DO 410 I=1,LM
RAI(S.,K)=RQI(5,K)+R(J)*Q1 (J+SS,K)*Q1 (1 ,K)*TDX ()
410 CONTINUE
55=55+L
420 CONTINUE
CALL CHEQRD(M,L2,1,E2,Q2.ERR)
IF (ERR .NE. 0) RETURN
DO 500 I=1,M
E2(1)=CDEXP(E2(]1))
500 CONTINUE
DO 510 S2=1,M
DO 510 Si=1,M

slale!
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367 PQ2(51,52)=0.0D+00

368 DO 510 S=1,M

369 PQ2(S1,52)=PQ2(S1,52)1+P(S51)*Q2(S51,582)%Q2(5,52)

370 510 CONTINUE

2 L G

372" € Calculate Density Vectors al the end of rf Pulse

373 € W mmmmmmm e e

374 DO 600 I=1,DIM(1)

375 DO 600 S=1.,M

376 DZ1(S,1)=0.0D+00

377 DO 600 J=1,LM

378 RQ1(S,d)=RQ1(S,J)*El1(J)

379 DZ1(5,1)=DZ1(5,1)+(RQ1(S,J)-DCONJG(RQ1(S,J)))

380 G000 CONTINUE

381 € s e e

382 C Calculate FID's

383 € memmmm e e e e e

384 DO 710 J=1,DIM(2)

385 DO 700 I=1,DIMC1)

386 DO 700 Si=1,M

387 DO 700 S2=1,M

388 ARD(J, 1)=ARD(J, 1 )+PQ2(51,52)%DZ1(52,1)

389 700 CONTINUE

390 DO 710 S2=1,M

391 DO 710 Si=1,M

392 PRQ2(51,52)=PQ2(S1,52)1%E2(52)

393 710 CONTINUE

394 C

395 RETURN

396 END

397 ' C

388 S$PAGE
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(i mle

IO O

aaono

100

110

120
130

200

210

SUBROUTINIE CHEQRDON, LC, NBW, EC, VO, ERR)

Calculate the Eigenvalues and Eigenvectors of Symmelric Malrix

COMPLEX*16 LC(N,N),VC(N,N),EC(N),ZX,2Y,ZZ,ZR,ZQ,ZC,Z5
REAL*8 CDABSP, DEL,
INTEGER*4 | ,J K, IP1,1PM,IM]1,JPM,dJM1,LL,LU,M, TR, [TRMAX, ERR

CDABSP(ZZ)=DABS(DREAL(ZZ))+DARS(DIMAG(ZZ))
DATA DEL, ITRMAX/1.0D-15,30/
Parameter Error Check
IF ((N .LE. 1) .0R. (NBW .GT. N}) GO TO 20000
Set the Eigenvectors to llnit Matrix
and Determines the Band Width of the Matrix under Treatment.
DO 110 I=1,N
DO 100 J=1,N
VC(J,11=0.0D+00
CONTINUE
VCOl,1)=1.0D+00
CONTINUE
IF (NBW .LE. 0) THEN
DO 130 I=1,N
DO 120 J=1+1],N
IF (CDABSP(LC(J, 1)) .GT. DEL) K=J-1
CONTINUE
NBW=MAX0O (NBW,K)
CONTINUE
END IF
Reduction of Band Width to Tridiagonal Matrix
by Jacobi Rotations.
DO 270 M=NDW,2,-1
DO 270 1=1,N-M
IPM=1+M
IMl=1PM-1
IF (CDABSP(LC(I,IPM)) .GT. DEL) THEN
ZR=-LC(T,IMLY/ZLCCT, IPM)
ZQ=CDSQRT (1.0D+00+ZR*7ZR)
IF (CDABSP(ZQ) .LT. DEL) GOTO 30000
25=1.0D0/72Q
LC==75%7R
DO 200 Jd=1,N
ZZ=LCCIML,d)
LCCIML, J)=ZZxZC+1.CCIPM, J)*ZS
LCCIPM, J)=LC(IPM, J)%xZ(C-ZZ%ZS
CONTINUE
po 210 J=1,N
ZZ2=1L.C(J, IM1)
LC(J . IM1 ) =ZZ#ZC+LC(J, 1PM)*ZS
LCCJ, IPMY=LC(J, IPM)%7C-77%72S
CONTINUE
DO 220 J=1,N
ZZ2=NC(J, IM]1)
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VCU, IML ) =Z4%x2C+NVC(J, 11'"M) %25
VC(J, IPM)=VC(J, IPM)%ZC-Z7Z%ZS
220 CONTINUE

a0

elelele

~
4

Yy O

DO 260 J=IMI,N-M-1,M

JPM=J+M

JM1=JPM+ 1]

IF (CDABSP(LCC(.J,JM1)) .GT.
ZR=-LC(d,JPMI/LC(J, M)
ZQ=CDSQRT(1.0DU+ZR*ZR)
[F (CDABSP(ZQ) .LT. DEL) GOTO 30000
25=1.0D0/Z2Q
LC=-7L5*ZR
DO 230 K=1,N

ZZ=LC(JPM,K)
LC(JPM,K)=ZZ*xZC+L.C( JM]1 ,K)%ZS
LCCJMI ,K)=LC(JIMI , K) *ZC-2Z%Z5

DEL) THEN

FORTRAN Optimizing Compiler
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Iterations,

the Eigenvalue of the 2 by 2

230 CONTINUE
DO 240 K=1,N
ZZ=LC(K,JPM)
LC(K,JPM)=ZZ%xZC+1.C(K, JMI)*ZS
LC(K,JM1)=LC(K, JM| )*ZC-ZZ*7Z5
240 CONTINUE
DO 250 K=1,N
Z2Z=VC(K,J+M)
VC(K,JPM)=ZZ%ZC+VC(K,JM]1 ) *ZS
VC(K, M1 )Y=VC(K,JIM1 ) *ZC-27Z%7.5
250 CONTINUE
END IF
260 CONTINUE
END IF
270 CONTINUE
Search for a Small Sub-diagonal Element.
LU=N
300 ITR=0
310 LL=LU
320 IF (CDABSP(I.C(LL.,LLI.-1)) .GT. DEL) THEN
LL=LL-1
[F (L %G 107G T (320
END 1F
IF (LL .NE. LU) THEN
1f Convergence is not Attained within 30
Truncate the Compulalion.
IF (ITR .GT. ITRMAX) GO TO 10000
Determine the Origin Shift as
Bottom Submatrix which is Nearer to the bottom Element.

ZX=(LC(LU-1,LU-1)+4LC(LU,LU))»*0.5D+00
ZY=ZX-LC(LU, L)
ZZ=CDSQRT (LC(LU=-1, LI *LCCLU, LU=1)+ZY*ZY)

ZZ=DSIGN(1.0D+00,CDABSP(Z2Y~-ZZ)-CDABSP (ZY+Z27.) ) »ZZ+7X

LC(LL,LL)Y=LC(LL,LLY-ZZ
ZC=1.0D+00
DO 360 I=LL,LU-I
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o S IPi=]4%]
o I G e
517 € LLeft- and Right-hand Transformation.
518 € | e e e e e g e o i e i e s e Ty S i € S B S S Sy v S P e
519 o= U et N RS 14
520 ZY=LC(IP1,1)
521 ZR=CDSQRT(ZX*ZX+ZY*ZY)
522 IF (CDABSP(ZR) .LT. DEL) GOTO 30000
528 LCt1,1)=ZC%ZR
524 IF 1 .GT. LLY LCU1,I=1)=75%ZR
525 LCCIPL TP Y=LCC(IP1 ,IPLYV-ZZ
526 ZC=ZX/7R
527 25=2Y/7R
528 DO 330 J=I1PI1,N
529 ZY=LC(] )
530 LCt 1 J)=ZYXZC+LC(IP1,Jd)%*Z5
531 LECTPL,d¥=LC(ITP1 ,J)»72C-2ZY*Z5
D32 330 CONTINUE
533 DO 340 J=1,1
534 ZY=LCT T
535 LCCd, 1 )=ZY#ZC+LC(J, I[P )¥ZS
536 LC(J,IP1)=LC(J, IP1)%ZC-ZY*.S
537 340 CONTINUE
538 LELT, IDELEET oI T2
539 DO 350 J=1,N
540 2Y=VCld 1)
541 VC(.J, 1 J)=ZY*ZC+VC(J, 111 )1%ZS
542 VC(J,IP1)=VC(Jd; IP1)»ZC-ZY*ZS
543 350 CONTINUE
544 360 CONTINUE
545 LC(LU,LU-1)=LC(LU,LU)*ZS
546 LC(LU, LU )=LC(LU,LUI*ZC+ZZ
547 ITR=ITR+1
548 GO TO 310
549 END IF
550 LU=LU-1
551 IF (LU .GT. 1) GO TO 300
B52 € s e e e e -
b G QR-Transformation is Qver.
554 C Eigenvalues are Given
BSS € by the Diagonal Elements of Lhe Resultant Matrix.
] T O et b
557 DO 400 I=1,N
558 ECCI)=LC(I,1)
559 400 CONTINUE
560 € @ ——-mmmm e
561 € Normal Exit.
BB2 € mmm e e e e e e e e e e
563 ERR=0
564 RETURN
565 €C == -mmmmmm e e
566 C Error Exit.
K67 C 10000 : Not Converged.
568 C 20000 : Parameter Error.
68 © 30000 : Devide by Zero.
570 € @ s e e e e e e e e e e e e
B 10000 ERR=10000

572 RETURN
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573 20000 LERR=20000

574 RETURN

575 30000 ERR=30000

576 RETURN

BT END

Global Symbols
Name Class Type Size ODffset
0000 c0)

0000 (0)
goon o)

Code size
Data size
Bss size

No errors detected
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