

Title	Raman microscope imaging and analysis of molecular dynamics in a living cell
Author(s)	Okada, Masaya
Citation	大阪大学, 2013, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/27548
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏 名	岡 田 昌 也
博士の専攻分野の名称	博士 (工学)
学 位 記 番 号	第 26168 号
学 位 授 与 年 月 日	平成 25 年 3 月 25 日
学 位 授 与 の 要 件	学位規則第 4 条第 1 項該当
学 位 論 文 名	Raman microscope imaging and analysis of molecular dynamics in a living cell (ラマン顕微イメージングによる生細胞内分子の動態解析)
論 文 審 査 委 員	(主査) 教授 河田 聰 (副査) 教授 井上 康志 教授 萩行 正憲 京都府立医科大学大学院医学研究科・細胞分子機能病理学教授 高松 哲朗 准教授 藤田 克昌

論 文 内 容 の 要 旨

Understanding the molecular dynamics in a cell is an important step for exploring biological phenomena. Optical microscopy, especially fluorescence microscopy, has contributed to reveal the molecular dynamics due to its capability of live cell imaging. For further investigation of molecular dynamics, Raman microscopy is promising because it provides ensemble cell spectral information including molecular species and its structures. In addition, label-free observation is possible because Raman microscopy detects vibrational frequency of cellular molecules.

In this research, I aimed to image and analyze molecular dynamics in a living cell using Raman microscopy.

In chapter 1, imaging of a living cell using Raman scattering is explained. Raman scattering at molecular vibration was interpreted by the classical and quantum theory. Then, past researches about Raman analysis of cellular molecules using Raman microscopy was introduced. For live cell imaging, a slit-scanning Raman microscope was built. A sample was irradiated with a line-focused laser. Raman scattering signals were detected from multiple focus spots on the line simultaneously.

Chapter 2 represents the observation of apoptosis, which is the suicide of unwanted cells in a body. Apoptosis is triggered by cytochrome c release from mitochondria to cytoplasm. Cellular cytochrome c was imaged with high sensitivity by enhancing its Raman scattering by resonant Raman effect. Apoptosis was induced to a HeLa cell by inhibiting DNA transcription with a cancer drug. Through Raman imaging of the apoptotic cell in time, the release of cellular cytochrome c from mitochondria to cytoplasm was observed. In the release process, Raman scattering intensity of cytochrome c was maintained. When cytochrome c in a cell is oxidized, no Raman scattering of cytochrome c was detected from the cell. These results suggest that the redox state of cellular cytochrome c was maintained during its release from mitochondria to cytoplasm. This analysis provided a new insight about the molecular mechanism of apoptosis.

In chapter 3, using resonant coherent anti-Stokes Raman scattering (CARS) is discussed for detecting cytochrome c with higher sensitivity. With resonant Raman effect, CARS intensity of cytochrome c solution increased. However, the detection limit with the resonant CARS was several to several tens of mM. Since concentration of cellular cytochrome c is several tens of μ M, I concluded that resonant CARS is not suitable to observe cellular cytochrome c.

In chapter 4, I examined the imaging capability of small molecules with molecular weights of several tens to hundreds by using Raman microscopy. Small molecules cannot be labeled because their properties change by labeling with conventional large tags. Therefore, a tiny tag is desirable for imaging of small molecules. Raman microscopy can detect a tiny tag. Here, I used alkyne as a tiny tag. Alkyne has an unique Raman peak, and it is detectable in a cell without interference from other Raman peaks of cellular biomolecules. As a demonstration, I loaded EdU, an alkyne-tagged dU commonly used as a cellular probe for DNA synthesis, in living HeLa cells and observed it with Raman microscopy. After 21 hrs, corresponding to the HeLa cell cycle time, almost all cells had EdU in their nuclei. This result implies that alkyne did not disturb the functions of dU in the cells.

論 文 審 査 の 結 果 の 要 旨

本学位論文は、ラマン散乱顕微鏡を用いて、生きた細胞における分子の動態観察を試みた研究をまとめたものである。その成果は、以下の通りである。

- ・生きた細胞を十分な時間分解能でイメージングできるラマン散乱顕微鏡を自作している。ライン照明を励起光とすることで、細胞内複数点からのラマンスペクトルを同時に検出している。生きた HeLa 細胞を試料とし、2 分間で 20×360 ピクセルの画像を取得している。
- ・抗がん剤によりアポトーシスした HeLa 細胞を、5 分毎にラマンイメージングしている。 750 cm^{-1} の空間分布を観察することで、シトクロム c がミトコンドリアから細胞質へと拡散する様子を捉えている。
- ・拡散時、シトクロム c のラマンスペクトルの形状は変化しないことを見出している。この結果は、拡散時にシトクロム c の酸化還元状態が変化しなかったことを示している。この結果を裏付けるため、細胞内のシトクロム c を過酸化水素水で酸化し、シトクロム c のピークが消えることを確認している。
- ・シトクロム c を高感度に検出するには、可視光を励起波長とし、シトクロム c の共鳴ラマン散乱を得ることが有效であることを示している。
- ・ラマン散乱が弱く検出が難しい細胞内分子を観察するため、ラマンタグを用いたイメージング法を提案している。ラマンタグとしてアルキンを用い、その分子量は蛍光標識に比べて 10 倍以上小さい。このため、巨大な蛍光標識を用いて観察できない微小な DNA 分子等の観察に利用できることを述べている。原理検証のため、アルキンをスクレオチドの一種である dU (デオキシリジン) にタグした EdU を HeLa 細胞に取り込ませ、ラマン観察している。その結果、細胞核から EdU 内のアルキンに由来するラマンピークを 2123 cm^{-1} の位置に検出している。細胞と EdU を 21 時間培養すると全ての細胞核に EdU が集積したことから、アルキンは dU の機能を阻害しなかったと結論づけている。

以上のように、本学位論文では、ラマン散乱顕微鏡を用いて、細胞内シトクロムcの分布変化、酸化還元状態の解析や微小な分子の観察を行っている。特に、酸化状態の解析や、微小な分子の観察は、従来の顕微鏡法（蛍光顕微鏡法等）では困難である。そのため、本学位論文は、応用物理学、特に生体の計測光学において寄与するところが大きい。

よって本論文は博士論文として価値あるものと認める。