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General Introduction

Self-organization is one of the important processes in nature, and regulates

structures and reactivity of active sites of enzymes in biological systems.r ln

higher-order structures, self-organization usually occurs through the combination of a
number of non-covalent interactions which include electrostatic interactions, van der

Waals' force, hydrophobic interaction, fi-Jt interaction, cation-n interaction, CH-n

interaction, and intermolecular hydrogen bonding. Although non-covalent interactions

are considered as the driving force to form self-assembled structures,2 the weak

interactions are individually undetectable in bio-macromolecules due to numerous

similar functional groups in the complicated structures. However, studies on

non-covalent interactions have been significantly improved by virtue of the

development of analytical techniqre..' Especially, X-ray structural analysis of protein

structures has great impact on understanding dynamics of biological reactions due to

detailed descriptions of non-covalent interactions in the vicinities of active sites of
enzymes as well as other bio-macromolecules.a

In biological systems, N-heteroaromatics have been found to act as building blocks

to make functional assemblies: Protons of N-heteroaromatics can bind to other

heteroaromatics by hydrogen bonding and also by x-r interactions of a-conjugated rings

with other aromatic moieties. In addition, lone pairs of the heteroatoms, especially that

of imidazole of histidine, are available for the coordination to metal ions as can be seen

in the active sites of metalloenzymes. Among the N-heteroaromatics, flavins, pterins,

and other redox-active heteroaromatic coenzymes have been known to play important

roles in biological redox reactions, including electron transfer and substrate oxidation

reactions. Those coenzymes are fixed at appropriate positions by non-covalent

interactions, which can regulate the reactivity of the coenzymes for gaining appropriate

redox potentials.

Many metal complexes having bioactive heteroaromatics as ligands have been

prepared to obtain insights into the influences of metal ions.s'6 For instance, metal

complexes of heteroaromatic coenzymes like pterins and flavins have been investigated

to elucidate their structures and redox properties on the basis of the fact that those

heteroaromatics often exist in the vicinity of metal ions in vivo.7 In order to gain further

understanding of biological reactions performed by the coenzymes, non-covalent

interactions of external molecules with metal complexes having bioactive

heteroaromatics have been studied. However, since non-covalent interactions are found

in the complicated higher-order structures, it has been difficult to identify the influence

of the individual interaction in the active sites.
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Figure l. Schematic description of the background of this thesis.

The concept of self-organization has been applied to bioinspired materials and

supramolecular chemistry.e Supramolecular chemistry is one of the well-established

fields to deal with self-organization of molecules via non-covalent interactions.r0'lr And

also, integration of metal complexes to construct unique supramolecular structures has

been controlled by self-organization through intermolecular non-covalent

Applications



interactions.t2'13't4 Regulated supramolecular structures are expected to provide useful

functions such as unique reaction fields,l5 gas absorption,l6 magnetic properties,lT and

electronic or ionic conduction,r8 which individual monomers can never achieve.

So far, multi-nuclear metal complexes, including metal-organic frameworks

(MOFs) or supramolecular metal complexes, have been prepared to explore new

functions of metal complexes as mentioned above.re Most of the integrated metal

complexes are formed via self-organization of metal ions and bridging ligands and main

concerns of the research have been their crystal structures and properties. The properties

of the bridging ligands have not been emphasized and utilized,2O however, the

redox-active bridging ligands will allow us to access new functionality of integrated

metal complexes (Figure l).

Bioactive Heteroaromatics

To achieve self-organization of metal complexes via non-covalent interactions,

bioactive heteroaromatics should be useful due to their structures and properties: They

can coordinate to metal ions, forming complexes by hydrogen bonding and by n-r
interaction with other appropriate functional molecules. Among many kinds of
heteroaromatics found in biological systems, nucleic acids, flavins and pterins exist in

almost every living cell: Nucleic acids are building blocks of DNA, which is essential

for genetic information, and flavins and pterins are indispensable for many kinds of
redox reactions. Both flavins and pterins are biologically synthesized from the same

origin, guanosine triphosphate (GTP). The skeleton of guanosines is a purine derivative,

and skeletons of flavins and pterins are pteridine derivatives. In common features, they

have pyrimidine rings. These heteroaromatics have several hydrogen bonding site and

coordination bonding sites.

About Guanine

Guanine is one of nucleic acids and a heteroaromatic in vivo. Nucleic acids are well

known components of the DNA double helix, which is formed by intermolecular

hydrogen bonding between each complementary nucleobase pairs, i.e., guanine and

cytosine, adenine and thymine (Figure 2).21 However, it is known that guanine is not

necessarily combined with cytosine.

In the 1960s, Gellert and coworkers suggested the supramolecular structure made of
four guanines linked by hydrogen bonding.22 The supramolecular assembly is called

G-quartet, which has a cavity at the center. In the edge of telomere DNA, the G-quartet

structure induces the formation of G-quadruplex by the integration of G-quartet

planes.2l The G-quadruplex is related with apoptotic deletion of cells.2a A number of



crystal structures of G-quadruplexes have been reported to demonstrate binding of
template cations to four oxygen atoms of four guanine moieties.2s ln the presence of
excess amount of template cations, the formation of G-quadruplex has been observed in

solutions. The selectivity of template cations can be ordered as follows: K* > Na*, Rb*

>> cs* > Li+ .26'27
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Each complementary nucleic acid Guanosine triphosphate (GTP)

Figure 2. Hydrogen bonding between complementary base pairs, and schematic

description of guanosine triphosphate (GTP) with numbering scheme of the guanine

skeleton.

Studies on G-quadruplex have conducted in the field of biochemistry. Since G-rich

oligonucleotide has usually been employed as a component of G-quadruplex, the

analysis of G-quadruplex has always included complicated factors from peripheral

groups. Therefore more fundamental information has been required.

This thesis will supply the fundamental data of the formation behavior of a single

G-quartet based on thermodynamic analysis from the viewpoint of physical chemistry.

About Flavin

Flavins are redox-active heteroaromatic coenzymes. Flavins are prepared from

guanosine triphosphate (GTP) by the biosynthetic pathway with GTP cyclohydrolase II,

III, deaminase, reductase, lumazine synthase and riboflavin synthase.2s Flavins can take

various redox states via proton-coupled electron transfer (PCET) (Figure 3).2e Thus, the

most important role of flavins is electron transport as electron mediators in metabolisms.

In xanthine oxidoreductase, flavins accept two electrons from iron-sulfur cluster, and

donate two electrons and two protons to NAD* via PCET.30 Flavins are also required for

dioxygen activation for substrate oxidation. In the catalytic cycle of flavin

monooxygenase (FMO), reduced flavins have high reactivity, being oxidized

immediately by the nucleophilic attack of Oz.3r The intermediate of dioxygen activation,



flavin hydroperoxide, has never been isolated due to the high reactivity."
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Figure 3. Schematic descriptions of riboflavin, alloxazine and various redox states of

flavin.

Flavins in vitro show irreversible redox behaviors. Concerning the irreversibility,

Rotello and coworkers have reported the influence of proton and hydrogen bonding on

the redox process of flavins.33 In parallel, since flavins can be often found near metal

ions in reaction centers, Kaim and coworkers have conducted the study of the effects of
metal ions using metal complexes having flavins as ligands.3o As a result, reversibility

of the redox processes of the flavin ligands has been improved by the coordination to

metal ions and the redox potentials are shifted to the positive direction. Although flavins

have been known to usually coordinate to metal ions at the 4- and 5-positions to form a

five-membered chelate ring, the l,lO-coordination mode of alloxazine, which is a

flavins analogue, to afford a four-membered chelate ring has been reported by Kojima

and coworkers.35

About Pterin

Pterins, as well as flavins, are also redox-active heteroaromatic coenzymes. Pterins

are also synthesized from guanosine triphosphate (GTP). The ring-opening reaction of
GTP is catalyzed by GTP cyclohydrolase, and 7,8-dihydropterin triphosphate is

produced. The synthesis of 5,6,7,8-tetrahydropterin requires several more steps with

6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase and NADP*.36 Pterin can

manipulate four electrons and four protons, acting as cofactors of reductases and

oxidases in the vicinity of metal ions in reaction centers (Figure 4).

Pterins are included in almost all molybdenum-containing enzymes except

nitrogenase.tt Fo. example, in xanthine oxidoreductase, molybdopterin plays a role as

an oxidase (xanthine oxidase, XO) and donates two electrons to an iron-sulfur cluster

(Figure 5).38
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Figure 5. The electron flow in the reaction center of xanthine oxidoreductase.3s

Pterin-metal complexes have been investigated to reveal that redox processes of the

pterin ligands demonstrate improved reversibility by coordination to metal ions,3e

especially the second-row and third-row transition metal ions such as Ru(II) and Ir(III)

ions. In addition, a Ru(II)-TPA complex having 6,7-dimethyl pterin has been

demonstrated to exhibit a proton shift from l-N to 8-N upon one-electron reduction of

the pterin ligand.ao

Although the redox behavior of pterin ligand has been clarified, the regulation of

the redox potential of pterins by non-covalent interactions has yet to be explored. In

2e-

2e'



order to obtain information on the redox regulation of pterins by non-covalent

interactions, formation of assemblies between pterin complexes and external molecules

should be studied.

Metal units as platforms to form stable metal complexes with pterins or flavins

In this thesis, author employs two kinds of platforms as metal units to form

integrated metal complexes and to elucidate redox regulation of coenzyme ligands.

7,2,3,4,S-penthamethylcyclopentadienyl (Cp*) is a useful ligand due to the formation of
a stable octahedral structure, good solubility and excellent crystallinity of its complexes.

An iridium(lll) ion forms a low-spin 5dn complex with an octahedral structure.

One-electron reduction of an iridium(Ill) complex may afford an iridium(Il) complex,

however, the iridium(Il) species should be unstable to afford iridium(I) and iridium(Ill)
species via disproportionation. An iridium(I) complex should be in a low-spin dn

electronic configuration to form a square-planar structure.o' Actually, the two-electron

reduction process of a iridium(Ill) ion occurs at low reduction potentials even if the

ligands is selected carefully. The reduction potential of two-electron reduction of a

iridium(lll) center of [IrCl(Cp*Xbpy)]. (bpy:2,2-bipyridine) reaches -1.55 V (vs.

F.ot*).0'

In the coordination chemistry of flavins and pterins, the ITIIICp* unit has been

frequently used as a platform to form stable complexes because iridium(Ill) is a

substitution-inert and redox-innocent (Figure 6). The characteristics of the ITIIICp* uril
allows us to observe the redox behavior of flavins or pterins clearly without worrying

the redox process of the metal center in a certain range of potential window.

Figure 6. Crystal structure of an ITIIICp* complex having 1,3-dimethyl-alloxazine.3a



In this thesis, the author uses the lrlllcp* unit to form integrated metal complexes

having alloxazine with 3-dimensional structures on the basis of the octahedral

coordination geometry of the lr(lll) ion. The research aims to discover novel functions
of integrated metal complexes and to observe the redox behavior of alloxazines as

bridging ligands in the integrated metal complexes.

As another platform, a ruthenium(ll)-tris(2-pyridylmethyl)amine unit (RuIITPA)

was employ"d.o''oo Since TPA is a tetradentate chelating ligand, the RuIITPA unit
affords stable complexes with pterins or flavins acting as bidentate chelating ligands.

The main purpose to use the RuIITPA unit is the stabilization of the coordination bond

due to the a-back donation from RuII center in a low-spin 4d6 electronic configuration to
pterins or flavins ligands. Kojima and coworkers have synthesized, isolated and

crystallized a RuIITPA-alloxazine complex with a novel coordination mode of
alloxazine and observed the reversible redox behavior due to the high stability of the

complex in solution.35

Contents of This PhD Thesis

In this thesis, the author focuses on non-covalent interactions that resulate

structures and redox behavior of molecular and supramolecular assemblies.

In chapter l, the crystal structures and the thermodynamics of formation of
G-quartets are discussed with use of 9-isopropylguanine. The fundamental data of
single G-quartet plane provides important information for the study of G-quadruplex on

the basis of thermodynamic analysis of the quartet formation. The data set should be

helpful to provide fundamental understanding on the G-quartet formation using the

simple guanine derivative without complicated contribution of peripheral functional
groups in the G-quadruplex. Further, the direct r-x interaction between a G-quartet and

porphyrins in organic solvents has been detected by means of UV-vis and NMR
spectroscopies, because the interaction between the G-quartet and external n-conjugated

molecules is important for the development of anticancer and antitumor drugs. The

author also describes the temperature-dependent structural change of supramolecular

assemblies consisting of a Ni(Il)-porphyrin and G-quartet.

In chapter 2, the regulation of the redox potential of a pterin ligand bound to the

Ru(II)-TPA unit with nucleotide bases has been achieved by intermolecular hydrogen

bonding. In addition, the structural change of the adduct of the Ru(Il)-pterin complex

and thymidine has been observed before and after the reduction of the pterin ligand. The

regulation of the redox potential of the pterin ligand by intermolecular hydrogen

bonding with nucleobases provides clear evidence for the influence of peripheral amino



acid residue to regulate the reactivity of pterins.

In chapter 3, the synthesis and the characterization of a novel tetranuclear

iridium(III)-alloxazine complex with unprecedented coordination modes and

self-reorganization have been described together with recovery of the tetranuclear

structure in the course of crystallization. The tetranuclear complex has been revealed to

interact with another tetranuclear iridium-alloxazine complex through four hydrogen

bonds to form a supramolecular cage, in which two counter anions are included. The

author also demonstrated exchange of the counter anions included in the cage by virtue

of the self-reorganization.

In chapter 4, the synthesis and the characterization of a novel hexanuclear

iridium(Ill) complex with three alloxazine anions as bridging ligands have been

described together with the stability in solution and the multi-electron redox processes

observed by cyclic voltammetry. The novel hexanuclear iridium-aloxazine complex has

been demonstrated to act as an electron reservoir, which is reminiscent of iron-sulfur

clusters in biological systems.
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Chapter I

Formation of "Nakedoo Guanine-Quartets Using

9-Isopropylguanine: Structures, Formation Thermodynamics,

and Temperature-Dependent Structural Change of

Supramolecular Assemblies with a Ni(Il)-Porphyrin

Abstract

Formation of guanine quartets with 9-isopropylguanine ltPG; is discussed in

organic solvents. Crystal structures of the 'PG quartets were determined by X-ray
crystallography with template cations (Na* and C^'*) and the structure without a

template cation was also obtained by virtue of the stabilization by intermolecular

hydrogen bonding with water molecules of crystallization.In the presence of Na*

and Ca2*, A11 and A,S values in the formation of tPG-4-Na* and tPG-4-Ca2*

complexes were determined to be AI1= -8.4 kcal mol-l and AS : *50 cal mol-r K-r

for Na* and A11 = -12.9 kcal mol-r and A,S : *34 cal mol-l K-l for Ca2* on the

basis of van't Hoff plots attained from the results of temperature-dependent

UV-vis spectroscopic measurements. The G-quartet, 'PG-4-Na*, forms 1:1 or 2:l
complexes with octaethylporphinatonickel(II) (NiOEP) depending on temperature,

whereas the corresponding free-base porphyrin (H2OEP) exhibits negligible

interactions with the G-quartet. The formation constants were determined from
the titration curve in methanol/chloroform as l:1 or 2:l complexes of 'PG-4-Na*
with N|OEP.
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Introduction

Since Gellert and coworkers suggested the guanine tetrad structure linked by

intermolecular hydrogen bonding in 1962,1 the characteristic guanine-quartet (hereafter

referred to as G-4) structure has attracted great attention of researchers in many

different areas.'-t Especially, integrated G-4 structures which exist at the edge of DNA

chain, called guanine quadruplexes (hereafter denoted as G-quadruplex), have been

reported in large numbers.e-r' So fur, many kinds of G-quadruplexes included in

higher-order structures have been crystallized with various template cations.16'17 In

parallel, studies on interaction of molecules to show certain selectivity for the part of the

G-quadruplex have been conducted.r8 tt The main purpose of those studies has been the

acquirement of an anticancer effect. The effect is based on inhibition of telomerase

binding to the G-quadruplex moiety of DNA by protecting the moiety with the

molecules. G-quadruplexes have also been utilized to develop functional biomaterials:

The cavity of G-quadruplex can include guest ions, which can be applied to
ion-conducting material and so on.tt'tn

Study on solution behaviors of guanine and its derivatives in organic solvents

should be important for elucidating the dynamics of the G-4 structure formation by

intermolecular hydrogen bonding in detail. However, the formation dynamics of a

discrete G-4 structure has yet to be well investigated. The lack of the thermodynamic

data on the formation of a discrete and single-layer G-4 structure has hampered the

discussion on the detail of the G-4 formation, including the driving force of the

formation. In fact, G-quadruplex structures involve too many complicated factors

including noncovalent intermolecular interactions30 provided by many functional groups

such as sugar and phosphate moieties, which cover the part of G-4 co.er.'t'" Therefore,

interactions of external molecules with a G-quadruplex have been observed as

interactions with the peripheral groups, not direct interactions with the G-4 units. In

addition, the conformational regulation of the peripheral moieties has been considered

to be difficult for formation of supramolecular assemblies of guanine derivatives linked

only by intermolecular hydrogen bonding in solutions."-t' Thus, G-4 formation with

use of a guanine derivative without complicated peripheral groups is indispensable to

clarify intrinsic thermodynamics of the complementary hydrogen bonding and

interaction of G with a template cation in a discrete and single-layer G-4 structure.

In this work, 9-isopropylguanine ('PG)to having the isopropyl group at the 9-N

position was used to form the G-4 structure (Figure l). The introduction of the small

isopropyl group allowed us not only to improve the solubility into organic solvents and

but also to accommodate the crystallization of "naked" G-4 supramolecules, without
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any steric protection of the G-4 core by such as deoxyribose-phosphate moieties in

guanosine derivatives reported so far. The strategy presented herein makes it possible

for the first time to discuss on the intrinsic characteristics of the G-4 structure and on

detailed thermodynamics of the G-4 formation to elucidate the role of the template

cations. Based on the observations, the author would clarify the switching of the driving

force of the G-4 formation from desolvation of the guanine molecule in the absence of

template metal ions to electrostatic attractive interactions between 'PG and metal ions in

the presence of the template cations.

+ INat =

N-9-isopropylguanine (/PG)

.-

Crystal structure of G-quartet

/ (rPG-4-Na*)

- interaction

Octaethylporphyrin (OEP): M=2H, Ni

Figure 1. Schematic descriptions of N-9-isopropylguanine ('PG), octaethylporphyrin

(OEP) and the crystal structure of the G-quartet ('PG-4-Na*).

As mentioned above, intermolecular interaction between G-quadruplex2'37 and an

external molecule has been considered to play an important role in anticancer strategies

based on protecting the part of G-quadruplex from telomerase.23-26 So far, several

adducts of G-quadruplexes and external molecules have been reported to clarify their

crystal structures, binding modes of the external molecules and the binding selectivity

for the G-quadruplex moiety in G-rich oligonucleotides.re-2r'38 When porphyrin

derivatives are used as external molecules, the intermolecular interactions between

G-quadruplex and porphyrins have been observed in various topologies such as the

intercalation of porphyrins into G-quadrupleX,tt't' side binding,3l and end-stacking of

porphyrins around the G-quadruplex,27'32 depending on substituents connected to

G-quadruplexes. These different binding modes need to be clarified for the development

of telomerase inhibition. However, the direct interaction between a G-quartet moiety in
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G-quadruplex and porphyrins has not been always clearly elucidated in solutions due to

additional complicated interactions with peripheral groups of G-quadruplex.lt' Thus,

study on the direct interaction between the G-quartet without peripheral groups and

porphyrin is expected to supply fundamental information on the complex formation

between G-quadruplex and porphyrin.

The author presents the direct observation of the interactions between the naked
tPG-4-Na* and porphyrins as an external molecule by the UV-Vis and rH NMR

spectroscopic measurements. Octaethylporphyrin (HzOEP) having ethyl groups at the

pyrrole B-positions and octaethylporphinatonickel(Il) (NiOEP) were used as external

molecules. The square planar geometry of NiOEP is reasonable for r-n interaction with

the G-quartet plane, and the use of diamagnetic NiOEP makes possible to detect the

interaction with the G-quartet by 'H NMR measurements.

Results and discussion

1.1. Quartet formation of a guanine derivative with an isopropyl group: Crystal

structures of "naked" G-quartets and thermodynamics of G-quartet formation

1.1.1. Crystal structures of G-quartets

In all cases, crystallization of G-4 assemblies was conducted in methanol solutions

with vapor diffusion of diethyl ether. Crystal structures of the G-4 assemblies made of

'PG are shown in Figure 2 to 4. Even in the absence of a template cation, it was clearly

demonstrated that'PG could form the quartet ('PG-4) structure in the crystal with the aid

of two water molecules (Figure 2(a)). As observed in the G-quadruplex, the G-4

assembly was formed by the complementary intermolecular hydrogen bonding between

the 6-0 and I -NH groups and that between the 2-NHz group and the 7-nitrogen atom.

Intermolecular hydrogen bonding was observed among the water molecule of

crystallization and the oxygen atoms at the 6-position in 'PG showing the interatomic

distance (O1...O3(W) and O2...O3(W), 2.85 and 3.03 A, respectively). This hydrogen

bonding could assist the G-4 formation to compensate the lack of the stabilization by

template cations. In the packing structure, the 'PG-4 planes overlap partially due to

CHln and n-r interactions (Figure 2(b)). The integration of the 'PG-4 planes by stacking

as seen in the G-quadruplex could not be observed, because the two hydrogen atoms of

the water molecule of crystallization can direct only to one 'PG-4 plane and the water

molecule cannot link two 'PG-4 planes. Although a G-4 structure without template

cations has been reported,3e'40 no report has appeared on "naked" G-4 structures without

steric protection by large substituents attached to the guanine scaffold.
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(b)(a)

Figure 2. (a) Crystal structure of the asymmetric unit of PG-4 without template cations.

(b) A view of crystal packing. Interatomic distances (A), representing intermolecular

CHln and n-ninteractions and hydrogen bonding, are given in the figure.

In the presence of sodium cation derived from Na[B(CeHs)a] (NaBPfu), the crystal

structure of 'PG clearly demonstrated the formation of the G-4 dimer. The Na* ion

resided nearly in the mean plane of the 'PG-4 assembly. Two of the G-4 assemblies

formed a dimer by the electrostatic interaction between Na- and 6-0 of guanine in the

other tPG-4 plane, showing the interatomic distanca sf \4oooO4' to be 2.729(D A

(Figure 3). Onp diethyl ether molecule was found to bind to the Na* ion with the

interatomic distance of 2.609(7) A to cap the dimeric structure, preventing further

stacking with the 'PG-4 assemblies. In the dimeric unit in the crystal, a-z interactions

are operating with the closest interatomic distance of 3.a22$) A.

The author also examined the formation of the tPG-4 structures in the presence of

calcium ion derived from CaClz. In this case, a'PG-4 structure was formed and the Ca2*

ion also resided in the mean plane of the 'PG-4 structure. Two chloride counter anions

interacted with the calcium ion with 1[s Q22+...C1- distance of 2.6980(4) A both above

and below the mean plane of the 'PG-4 bound to Ca2* ('PG-4-Ca2) (Figure 4). The

packing structure is similar to that of the water-assisted tPG-4 assembly: As well as in

the case of the water-assisted tPG-4, two of the 'PG-4-Ca2n assemblies stack viaCHln

and n-n interactions to form a dimeric motif in the crystal.

∞
●
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(a)

Figure 3. (a) Crystal structure of the asymmetric unit of 'PG-4-Na*. (b) Interatomic

distances for intermolecular hydrogen bonding in the quartet (A). (c) Axial interactions

to Na*. (In (b) and (c), BPhc- was omitted for clarity.) (d) and (e) Views of crystal

packing of 'PG-4-Na* lthe diethyl ether molecules were omitted clarity).
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(a)

Figure a. @) Crystal structure of the asymmetric unit of tPG-4-Ca2*. (b) A view of

crystal packing structure. Interatomic distances (A), representing intermolecular CWn

and n-n interactions and hydrogen bonding, are given in the figure.
!

Table 1. Summary of the interatomic distances related to template cations, those of

l-fy'flooo{-Q as intermolecular hydrogen bonding in 'PG-4 structures, and interplane

distances between two G-4 assemblies.
,PG-4 'PG-4-Na- 'PG-4-Ca-

WaterO・ 00(Å
) Qafi6nrorQ ([1

o3...ol 2.852(l)

o3.-.o2 3.030(l)

frf6f oorQl 2.257(4)

frJal rooQl 2.300(3)

Nal...O3 2.320(4)

\4f orrQ{ 2.357(3)

Qaf rooQf 23212(9)

Cal...O2 3.3232(9)

|gg...g 1f;

frf grorQf 2.849(2)

N3.o.O2 2.782(l)

Nlg...Ol 2.876(5)

N3...O2 2.878(6)

N8...O3 2.872(4)

N13...O4 2.906(5\

\$oooQf 2941(2)

N3...O2 2.943(1)

G‐4 plane・・。G¨4 plane(Å )

3.597 3.626 3.652

Selected bonds

1q41..oQ{' 2.729(4\

\41oooQJ 2.609(7)
Cal...Cll 2.6980(4)

Each distance between the

plane and that between 3-NH

cation and 6-0 of guanine in the corresponding 'PG-4

and 6-0 for the hydrogen bonding to form the tPG-4

20



structure were slightly different among three kinds of 'PG-4 structures. However, the

distances fall in the normal range of those reported in G-quadruplexes, i.e.,2.3 A and

2.9 A,respectively,ot as summarizedin Table l. Thus, the G-4 formation can be assisted

by electrostatic interactions of 6-0 in guanine with a cationic entity or water molecules

having polarized O-H bonds, regardless of the steric protection by bulky peripheral

substituents.

All the X-ray crystallographic data are summarized in Table 2.

Table 2. X-ray crystallographic data for supramolecular structures of

9-isopropylguanine lrRC; lilc_R, ribbon-type assembly; 'PG-4-water, a quartet of 'PG

with water; 'PG-4-Na*, a quartet of tPG with Na*; 'PG-4-CaZ*, a quartet of 'PG with

Ca2*).

Filc namc

forlllula

肺

crystal systcrn

spacc group

r(K)

α(Å )

わ(Å )

C(Å )

β(dCg)

〆(Å
3)

Z
no of rcflections

mcasurcd
no.of

obscwations

no.ofparamctcrs

rcflncd

Rlα

R「′

GOF

CCDC no

IPG R

C17H23C13N1002

505.80

orthorhombic

Pわ
`α

120(2)

15.6275(12)

14.9143(11)

20.2340(15)

4716.0(6)

8

25346

5420

293
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00941

(′
>20o(の

)ご

1030

898242

′
PG-4-watcr

C16H22N1003

402.44

monoclinic

P21/77

120(2)

8.9487(6)

16.7979(11)

13.0420(8)

97.5930(10)

1943.3(2)

4

10876

4410

266

00423

01119

(′
>20o(ぅ

)′

1061

898243

'PG-4-Na'

C66H6eBN26NaO5

r 184.15

monoclinic

C2lc

120(2)

3s.482(4)

10.0503(1 1)

35.888(4)

r 08.3960(1 0)

12t44(2)

8

33535

13705

779

0.1217

0.3335
(l > 2.\o(t))"

r.069

898245

tPG-4-cat*

C16H22Cao.5ClN1s

O2

44t.93

monoclinic

P\tn
e0(2)

8.ee42(s)

17.e68e(l l)
l 2.8636(8)

99.8840( r o)

2048.r(2)

1

I 1513

4614

272

0.0304

0.0753

(t > 2.\o(Df
1.050

898244

" Rl :> llFol - lpcll / > lFol. 
b Rw : [ > (w (Fo' - F"1\ I ) w1Fo2;21''2." * : t t 7&1nr27

+ (0.0474P)2 + 3.9739P1, where p: (Max(Fo',0) + 2F,2) I 3,0 w: I I 7o211621 +

(0.0535P)2 + 1.2778P1, where P : (Max( Fr', 0) + 2F,2) I 3, n w : I I 7o21rg21 +

(0.1754D2 + 43.3385P1, where P: (Max(F0z,0) + 2F,\ I 3,r w: I I 7o21Fg21 +

(0.0348P)2 + l.l I l9Pl, where P : (Max(Fot, 0) * 2F,.\ I 3.
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(a)

1.1.2. Discussion of G-quartet formation in organic solvents

Observations of the 'PG-4 structure formation in organic solvents were carried out

using ESI-MS, UV-vis and rH NMR measurements. Since 'PG is capable of forming a

variety of supramolecular structures by virtue of intermolecular hydrogen bonding,

including a ribbon structure as shown in Figure 5. Thus, the regulation of the

supramolecular structure should be carried out under strictly optimized conditions in

organic solvents to form the G-4 structure selectively.

Figure 5. (a) Crystal structure of the asymmetric unit of 'PG-ribbon. (b) A view of

crystal packing to clarify the ribbon-type supramolecular structure. Interatomic

distances (A) representing intermolecular hydrogen bonding are given in the figure.

In general, following issues have been considered: (l) The proton of N1H fixed into

a G-4 assembly by intermolecular hydrogen bonding does not undergo exchange with

deuterium of solvents, and (2) noncovalent intermolecular interactions including

hydrogen bonding and electrostatic interaction in G-4 become stronger at low

temperature, and then the G-4 structure is stabilized by the decrease of enthalpy beyond

the decrease of entropy.o' ln the presence of Na*, the proton signal of NlI1 of 'PG

forming the 'PG-4 assembly can be detected around 12 ppm in the mixed solvent of

CH3OH and CDCI:. The signal became clearer as cooling down to 253 K (Figure 6(a)).

On the other hand, in the absence of Na*, the iPG-4 structure could not be formed even

cooling down to 253 K. Instead, the chemical shift of the proton of N lF1 of 'PG without

forming the 'PG-4 structure (d : 10.5 ppm) could be observed clearly at low

temperature. In addition, as cooling, the signal of Nlllshowed downfield shift due to

(b)

９
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intermolecular hydrogen bonding probably between the guanine derivative and

methanol (Figure 6(b)). This result indicates that, in the absence of electrostatic

interaction with template cations, the solvation of the 'PG molecule by methanol exerts

stronger effect in the methanol solution of 'PG rather than intermolecular hydrogen

bonding to form the'PG-4 structure. This result suggests that the gain of the enthalpy by

I..i4-...Q interaction can compensate the instability caused by desolvation.

Nl月 of G‐quartet

(b)(a)

Nl月 of G‐ quartet

↓ 283K I      NI月283K

273K

13 12    11
δノppm

12     11

δ/ppm

Figure 6. Temperature dependent 'H NMR studies of 'PG with NaBPh+.; Conditions:

(a) 'nG ( 19 mM) and NaBPh o (5.4 mM) in CDCI: and CH:OH (600 pl (30: I v/v)); (b)

'tc 1:.0 mM) in CDCI3 and CH:OH (600 pl (5:l v/v)).

(a)1

′PG‐ 4‐ Na+
sm 17954
exp 1795 2

jPG‐
4‐Ca2+

sim 406 2
exp● 4061

273K

263K263K

253K

|[jPG‐ 4-Ca2+]

Figure 7.ESI‐ MS spectra of self― assembled species of'PG with(a)NaBPh4 and(b)

CaC12;in methanol at room temperature under N2・ COnditions:(a)′PG(15 mM),

NaBPh4(6.8 mM);(b)′ PG(18 mM),CaC12(8.4 mM).Peaks:(a)1:′ PG¨Na+(“/Z=

216.0).2:'PG-2¨ Na+(“/Z=409.1).3:′PG―NaBPh4~Na+(4/Z=558.1).(b)1:′ PG-2¨ Ca2+

(“/z=213.0).2:′ PG-3‐Ca2+(″/z=309.6).3:′ PG-5-Ca2+(“ /z=502.7).4:jPG-8¨ Ca2+

(“/z=792.3).
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ESI-MS measurements of 'PG in the presence of template cations allowed us to

detect the formation of the 'PG-4 structure clearly even in the methanol solution. Upon

addition of NaBPh+ to provide Na* as a template cation, a peak cluster was observed at

mlz : 795.2 (calcd.,7g5.4), assignable to that derived from rPG-4-Nan (Figure 7(a) and

(c)). In the presence of Ca2'. a peak cluster assigned to lrPG-4-Ca2*12* was observed at

mlz:406.1 (calcd., 406.2; see Figure 7(b) and (d)), also confirming its formation.

Further scrutiny was given to the formation of 'PG-4 in the presence of the template

cations in CH:OH-CHCI3 mixed solution by UV-vis absorption spectroscopy. The

absorption spectra of 'PG showed red shifts in the course of addition of NaBPh+ or

CaClz (Figure 8(a) and Figure 9(a)). The shift was assigned to form G-4-cation

complexes: A Job's plot forrPG and NaBPfu gave the maximum at0.2 mole fraction,

indicating the 4:l complexation of iPG with sodium ion (Figure 8(c)). In the presence of
excess amount of Na*, however, the presence of a 1:l complex of 'PG with Na- was

observed by ESI-MS spectrometry @igure 10).
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Figure 8. UV-vis spectral change by adding (a) NaBPha, (b) titration curve at 295 nm

and (c) Job's plot of thetPG-Na* complex: Conditions: 1a;ilG (207 lt}/r) in CH:OH and

CHCIr (1:74 vlv), the additional NaBPlu (15.5 mM) in CHrOH and CHCI: (1:9 v/v); (b)

The total mole concentration was adjusted to 41.3 pM in CHrOH and CHCh (1:374 vlv),

'PG (0.62 mM) in CHIOH and CHCI: (l:24 vlv), NaBPh+ (0.62 mM) in CH:OH and

CHCIr (1:24 vlv); All the measurements were carried out at room temperature.
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Figure 9. UV-vis spectral change by adding (a) CaCl2 to 'PG, (b) titration curve at 295

nm and (c) job's plot of the'PG-cation complexes: Conditions: (a)(b)'PG (146 pM) in

CH3OH and CHCI3 (l:74 vlv), the additional CaClz (66.9 mM) in CH:OH and CHCIr

(l:19 v/v); (c) The total mole concentration was adjusted to 32.9,r.rM in CH:OH and

CHCI3 0:374 v/v), 'PG (0.49 mM) in CH:OH and CHCII (l:24 vlv), CaClz (0.48 mM)

in CH:OH and CHCI: (1:24 v/v): All the measurements were carried out at RT.

Figure 10. ESI-MS spectrum of rPG in the presence of excess amounts of NaBPh+ in

methanol.

In contrast, the Job's plot for'PG and CaCl2 afforded two maximums at 0.2 and 0.5,

indicatins that tPG-4-Ca2* is formed at lower concentration of Ca2*. however, a 1: I
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complex (rPG-Ca2') became dominant at higherconcentrafions of Caz* (Figure 9(c)). It
should be noted that the Ca2t ion binds to guanine more tightly than the Na* ion due to

the higher cationic charge, even though the Cl anion may interact with the Ca2* ion in

solution to reduce the Lewis acidity.

In the range under 0.5 mole fraction in the Job's plots, allosteric effects could not

be observed clearly on the sequential process relating to the formation of 'PG-4-cation

complexes in both cases of Na* and Ca2* lFigure 8(b) and inset of Figure 9(b)). This

indicates that the intermolecular hydrogen bonding to form the G-4 structure is much

weaker than the electrostatic interaction between the 6-0 oxygen of guanine and the

template cation. Therefore, jn the presence of a template cation, the main driving force

of the G-4 formation is the interaction of the guanine 6-0 oxygen with the template

cation.

1.1.3. Thermodynamics of the formation of G-quartet analyzed by van't Hoff plots

As mentioned above, the electrostatic interaction among the template cation and the

6-0 oxygen of guanine is much stronger than the intermolecular hydrogen bonding to

form the G-4 structure. In addition, the contribution of equilibrium of G-4 formation by

the metal-free guanine molecules should be negligible. Furthermore, as observed in

variable-temperature NMR measurements (Figure 6), 'PG molecules can form a'PG-4

strucfure in CH:OH-CDCI3 at temperatures above 253 K, however, below 253 K, the

formation is negligible. Therefore, in order to simplify the equilibrium of G-4 formation

in the presence of a template cation, spectroscopic titration to determine the equilibrium

constants of the 'PG-4 formation was conducted at temperatures below 253 K. Under

such conditions, fhe equilibrium can be elucidated as shown in Scheme l.

κ
l

+Na+
亀
+IPG

亀
+iPG

絶
+IPG

JPG・
画面言

'G‐

Na+市 JPG2‐ Na十
三可言

雪JPG3‐ Na+電
可言

=′PG4‐Na+

Scheme 1. The equilibrium of G-quartet formation with a template cation.

Spectroscopic titration to determine the equilibrium constant of the 'PG-4-Na-

formation was carried out at 253 K or lower and under 0.5 of the equivalence of
NaBPh+ relative to iPG, i.e., under 0.333 of the mole fraction of NaBPha for iPG. At
temperatures below 253 K, the plot of UV-vis absorbance changes at 295 nm by adding

NaBPh+ exhibited no sigmoidal change, suggesting the absence of the allosteric effect

(Figure 8(b)). The analysis of the spectral change at each temperature was made to
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determine an apparent equilibrium constant based on the following equation.

κ=κ lκ2κ3κ4=
[jPG-4-Na+]

[′
PG]4[Na+]

In the case of CaClz, the treatments were the same as described above for NaBPha.

using [Ca2*] in eq. ( I ) in place of [Na*].
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Figure I 1. (a) Absorbance change of 'PG at 295 nm upon addition of NaBPtr+ at various

temperatures in the course of the formation of 'PG-4-Na*; (b) a van't Hoff plot for the

equilibrium constants. Conditions: 'PG (215 pM) in CH3OH and CHCI: (l:74 vlv), the

additional NaBPha (15.5 mM) in CH:OH and CHCI: (l:9 v/v).
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Figure 12. (a) Absorbance change of 'PG at 288 nm upon addition of CaClz at various

temperature in the course of the formation of tPG-4-Ca2*; (b) a van't Hoff plot for the

equilibrium constants. Conditions: 'PG (218 pM) in CH:OH and CHCI: (l:74 vlv), the

additional CaClz (34.3 mM) in CH:OH and CHCI: (l:9 v/v).
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Equilibrium constants (K, M*) of the formation of tPG-4-Na* and 'PG-4-Ca'* at

various temperatures are summarized in Table 3. The enthalpy and entropy changes (AH

and AS, respectively) in the formation of 'PG-4-Na* were determined to be -8.4 kcal

mol I and +50 cal mol I K l, respectively, on the basis of a van't Hoff plot (ln K vs. ll7)
as depicted in Figure 11(b). Similarly, the L,H and A,S values of the 'PG-4-Cazn

formation were also determined to be _12.9 kcal mol I and +34 cal mol-l K r,

respectively (Figure l2). The results indicate that the more positive Ca2* ion binds more

tightly to the'PG-4 assembly to stabilize the quartet structure than the Na* ion does.

Table 3. Equilibrium constants at each temperafure and the enthalpy and entropy of the

formation of tPG-4-Nan and 'PG-4-Ca2n.

'PG-4-Na*

r(K) K (l{4)" LHb
kcal mol-1

a,s "
cal mol-r K-l

253

243

zJ5

223

t0r8

t0r8

[ 01e

1.4 x

2.5 x

4.7 x

1.6 x

l0r

+50-8.4

'PG-4-ca'*

T(K) K (M")' LHb a^s "
cal mol-r K-r

８

　
３

　
８

０

　
０

　
９

２
υ
　

ｊ^

　
つ
４

mol-l

-t2.9 +346.3 x 1016

1.0 x 1017
u Each equilibrium constant was obtained by temperature-dependent UV-vis

measurements.l3 b'" Each value was estimated by the slope and the intercept of the van't

Hoff plot; ln K: -LHIRT + LSIR.

The enthalpy change can be elucidated as the summation of the stabilization by the

coulombic interaction between iPG and sodium ion, intermolecular hydrogen bonding

between each iPG and the desolvation of methanol from tPG. As noted at the end of the

former section, since the intermolecular hydrogen bonding cannot become the main

driving force to form tPG-4, the enthalpy change should be derived from the attractive

electrostatic interaction between 'PG and the template-cation. In addition, although the

formation of iPG-4-Na' and 'PG-4-Ca2* should be unfavorable in terms of entropy

changes, the entropy loss can be compensated by the desolvation of methanol from rPG

as well as Na*. The degree of contributions to the entropy change from the desolvation

of iPG and the template cations, however, remains unclear due to the lack of the
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thermodynamic parameters for the 'PG-4 formation in the absence of a template cation.

1.2. Temperature-dependent formation behavior of supramolecular assemblies

between a G-quartet and a Ni(Il)-porphyrin complex

1.2.1. Detection of interactions between porphyrins and a G-quartet

The UV-Vis measurements in CH:OH/CHCI3 (l :40 vlv) were examined to observe

intermolecular interactions between the G-quartet and the porphyrin molecules. The
tPG-4-Na* solution, prepared with 'PG and NaBPh a (4:l mol/mol), was added to the

solution containing H2OEP or NiOEP. The absorption spectra were recorded after

stirring for 20 min at 293 K at every addition of a portion of the 'PG-4-Na- solution.

(a)
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00ヒ
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(C)

0

0 N10EP
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Figure 13. UV-Vis spectral changes of (a) H2OEP (l.6,aM) by addingtPG-4-Na* 10 to

1.6 mM) at 293 K in CHCI:/CH:OH, (b) NiOEP (.  pM\ by adding 'PG-4-Na- (0 to

0.26 mM) at 288 K in CHCI:/CH:OH and (c) NiOEP (l.  p$ by adding'PG-4-Na* 10

to 0.46 mM) at 298 K in CHCIg/CHgOH: 'PG-4-Nao solutions were made from'PG and

NaBPha (4:l mol/mol) in CH:OH/CHCIr (l:40 v/v).

When H2OEP was employed as an external molecule, the author could observe

spectral change as shown in Figure 13(a). Although continuous spectral change was

29

H20EP
at 293 K

NiOEP
at 288 K

Wavelength / nm



(b)(a)

observcd during the addition of′PG-4-Na+(～ 1000 eq)to the H20EP solution,the

change showcd neithcr isosbestic points nor the saturation behavior. This spectral

change was lnerely caused by the raise ofthe baseHne duc to the signiflcant amount of

'PG-4¨Na+(Figure 14(a)and(b)).Thus,the interaction of H20EP with the quartet

should be negligible under the cxperillnental conditions.
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Figure la. (a) Spectral change in the course of the addition of 'PG-4-Na* to the solution

of HzOEP (1.6 pM). The baseline was adjusted by subtracting the absorbance of

'PG-4-Na* at each concentration. (b) A plot of absorbance at 400 nm relative to

[tPG-4-Na*] in the corrected absorption spectra depicted in (a).

In sharp contrast to the case of HzOEP, UV-Vis spectral changes with several

isosbestic points were observed by adding the 'PG-4-Nan solution to that containing

NiOEP at each temperature (283 K to 298 K), as shown in Figure 13(b) and (c). The

absorption of NiOEP showedthe decrease of the Soret (393 nm) and Q (519,553 nm)

bands with slight red shifts (-2 nm).aa The decrease of the Soret band of porphyrin has

been observed for a porphyrin forming an adduct by intermolecular interactions and the

red shift can be attributed to the formation of a J-type n-n stacking assembly between

'pG-4-Na* and NiOEP.ot The difference from HzOEP may stem from the stronger

n-ninteraction due to the more rigid planar structure of NiOEP.au Additionally, there

should be an electrostatic interaction between the positively charged 'PG-4-Na*

complex and NiOEP bearing -2 charges on the porphyrin ligand, whereas HzOEP is a

neutral compound. As the consequence, the J-type n-n stacked assembly between

tPG-4-Na* and NiOEP is more stabilized than that of HzOEP.

To confirm that the UV-Vis spectral change was derived from the intermolecular

interaction between tPG-4-Na* and NiOEP, following experiments were carried out.

When the solution of NiOEP was added to the'PG solution (0.21 mM) without NaBPh+,
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no change was observed the absorption of NiOEP (Figure l5(a)). This result indicates

that NiOEP does not interact apparently with 'PG molecules in the absence of Na* as a

template of the quartet structure.a7 In addition, the absorption spectrum of NiOEP did

not change by the addition of only NaBPh+ (Figure l5(b)). These results indicate that

NiOEP interacts only with'PG-4-Na" formed in the presence of Na-.
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Figure 15. (a) Absorption spectral change of NiOEP in the presence of 'PG (0.21 mM)

at room temperature in CHTOH/CHCI3. (b) Absorption spectra of NiOEP upon addition

of NaBPh (0-106 ,nM) to NiOEP solution (1.1 pM) at room temperature in

CH:OH/CHCI:. In (b), the number in parentheses shows the mole ratio as tPG-4-Na*

(['PG](4[NiOEP]))

ESI-MS measurements were made for the 'PG-4-Na* solution containing 'PG and

NaBPha (4:l mol/mol), to which excess amount of NiOEP was added. A peak cluster

was detected'at 1385.7, as shown in Figure 16, corresponding to the calculated, mlz

value of the l:l complex of 'PG-4-Na* with NioEP, ;'PG-4-Na*...NioEP]. This result

1388     1392
m/z

Figure 16.A peak cluster observed in the ESI¨ MS spectrurn of'PC}-4-Na+and Ni()EP

solution in the mixed solvent of CH30H/CHC13(red HnC)and a simulation spectrum for

the l:I complex,[′PG-4‐ Na+・ “NiOEP](blaCk linc).

NiOEP:′ PC(moγ m。|)

――-1 :192(48)

――-1 :288(72)

――-1 :385(96)

′PG‐4‐ Na+‐ NiOEP
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provides a direct evidence to support the complexation between 'PG-4-Na' and NiOEP

in solution.

The intermolecular interaction between the G-quartet and NiOEP can be also

observed directly by tH NMR measurements in the mixed solvent of CH:OH/CDCh

(l:60 v/v) (Figure l7). In the absence of rPG-4-Na*, the chemical shift of the signal due

to the proton at the meso-position of NiOEP was observed at 9.77 ppm at 283 K. On the

other hand, in the presence of 'PG-4-Na*, the meso-proton signal showed a slight upfield

shift (9.76 ppm) compared to that of NiOEP at 283 K (Figure l7(a)). Together with the

results of the UV-Vis and ESI-MS measurements mentioned above, the upfield shift

indicates the shielding of the meso-proton of NiOEP over aromatic rings of 'PG due to

the rn interaction between the G-quartet plane and NiOEP. Similarly, the methylene

proton signal of NiOEP (q: d : 3.93 ppm, J : 7.6 Hz, without 'PG-4-Na*) exhibited

upfield shifts (q: d: 3.91 ppm, /: 7.6H2\ in the presence of 'PG-4-Na* lFigure l7(b)).

(a) (b)

9.80 9.76 9.72 4.00 3.90 3.80
6/ppm 6/ppm

Figure 17. tH NMR signal due to (a) the meso-proton of NiOEP and (b) the

ethyl-proton of NiOEP with 'PG-4-Na- (red line), with only NaBPha (dotted line) and

without additive(black line). Conditions: 'lG 19.9 mM), NaBPlu (2.5 mM) and NiOEP

(L3 mM) at 283 K in CH:OH/CDCI3 (I:60 v/v). 'PG-4-Nan means the mixture of 'PG

(9.9 mM) and NaBPtr+ (2.5 mM).

l.2.2.Temperature-dependent structures of assemblies of iPG-4-Na* with NiOEP

Scrutiny was given to the thermodynamics of the complex formation between
tPG-4-Na* and NiOEP by variable-temperature UV-Vis titration. At 288 K, the titration

curves for the absorbance changes at 393 nm are shown in Figure 18(a). A plot of

inverse of the absorbance of NiOEP at393 nm relative to l/['PG-4-Na*] is depicted in

Figure l8(b) (the titration curve at 283 K are shown in Figure 20). The plot suggests

that the adduct is a l: I complex of the G-quartet and NiOEP (see eq (3) in experimental

section).48 When the adduct is assumed as a l:1 complex, the formation constant is

estimated to be I .4xl}a M-' by the fitting curve (see eq (2) in experimental section).48
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Figure 18。  Analysis of the UV― Vis spectral change due to the adduct follllation in

CHC13/CH3011: Fitting curves of the absorbance change during the addition Of
′PG-4-Na+lo NiOEP(a)at 393 nm and(b)a p10t Of 1/△ Abs at 393 nm against
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298K.
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Figure 19. Analysis of the UV-Vis spectral change at 553 nm for the adduct formation:

Fitting curves of the absorption change of the adduct of 'PG-4-Nan with NiOEP (a) at

288 K (I) and at298 K (O), (b) Plot of ll(As-A) vs. ;'PG-4-Na*l-r at 288 K. and (c)

Plot of ll(A0-A\ vs. ;'PG-4-Na*12 at298 K in CHCI:/CH3OH.
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The titration curve based on the absorbance at 553 nm afforded the same formation

constant at 288 and 298 K (Figure 19).

In contrast to the results at 288K, the titration curves showed sigmoidal shapes at

298 K as shown in Figure 18(a) for 393 nm and Figure l9(a) for 553 nm, respectively.

ln addition, the linear plot of the inverse of the absorption of NiOEP relative to

1/[iPG-4-Na*]2 suggests the formation of a 2:l complex of 'PG-4-Na* and NiOEP (see

eq (5) in experimental section). These sigmoidal behavior and 2:1 complexation were

also observed at293 K (Figure 20). The formation constant of the 2:l complex was

estimated to be 7.6x107 }y'l-z by the fitting curve (see eq (4) in experimental section). In

this case, NiOEP is assumed to be sandwiched between fwo iPG-4-Na* planes as

described in Scheme 2.The proposed structure of the 2:1 complex is supported by (1)

the observation of the peak cluster assignable to the l:l complex, ['PG-4-Na+...\iQpp],
as a fragment in the ESI-MS spectrum (Figure 16), (2) no peak cluster assignable to a
doubled G-quartet (['PG-4-Na*lr'*), and (3) the observation of the upfield shift of the

meso-proton signal in the'H NMR spectrum (Figure l7).

['PG-4-Na*]/ [NiOEP]

Figure 20. Titration curves for temperature-dependent UV-Vis measurements on the

adduct formation of 'PG-4-Nan and NiOEP. Conditions: 'PG-4-Na* prepared by tPG and

NaBPh+ (4:l mol/mol) was added to the NiOEP (l.a pM) at 283 K (-'-), 288K (-r-)
and 298 K (-O-) in the mixed solvent of CH3OH/CHCI3. At 293 K (-A-), NiOEP

(1.6 pM) solution was prepared and then the absorbance at 393 nm of NiOEP was

normalized by the ratio of the concentration of NiOEP (Abs. (393 nm) x 1.411.6).

Since the adduct exhibits the 2:1 structure at higher temperature, the formation of
the supramolecular assemblies depending on temperature should be an

entropy-controlled process, which is enhanced at higher temperatures probably due to

the desolvation. Actually, the formation constant of the l:1 complex decreases with
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raising temperature. At some temperature in the range from 288 K to 293 K, the adduct

formation is switched from the l:1 complex to the 2: I complex, and then the formation

constantbecomes larger(4.6x106 fvf2 IZOZ K) to 7.6x107 M-2 (298 K)) as temperature

is raised (Figure 20).

Summary

288k 293k
,'

Scheme 2. The schematic description of the adducts.

In this study, the author determined crystal structures of "naked" G-4 assemblies

without bulky substituents using 'PG as a building block. In the crystal structure of

'PG-4-HzO, the quartet structure is stabilized by intermolecular hydrogen bonding

among the 6-0 oxygen of 'PG in the quartet and the water molecules of crystallization.

In the structures of tPG-4-Na* and 'PG-4-Ca'*, the template cations such as Na* and

Ca2* reside at the centre of the quartets. It should be noted that the 'PG-4 structure can

be obtained without the presence of the template cations and bulky peripheral

substituents to protect the hydrogen-bonded supramolecular G-tetramer.

The author also discussed the thermodynamics of the 'PG-4 formation in CH3OH

and CHIOH-CH(D)CIr solutions on the basis of spectroscopic measurements.

Concerning the tPG-4 formation, it is clarified that the electrostatic interactions between

the template cations and the 6-0 oxygen of 'PG contribute more dominantly to the

stabilization than the multiple intermolecular hydrogen bonding among the guanine

molecules in the 'PG-4 structure. In the absence of the template cations, the iPG-4

formation is governed by entropy change due to the desolvation of methanol from tPG.

In sharp contrast, in the presence of template cations, the charge of the cations, i.e., the

Lewis acidity of the cations, is important to stabilize the tPG-4 assemblies by virtue of

the electrostatic attractive interaction between the template cations and the

electrostatically negative 6-O oxygen of 'PG. This is clearly reflected on the more
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negative AH values of the 'PG-4-Ca" formation than that of the 'PG-4-Na- formation.

Thus, the dicationic Ca2* ion is more favorable to stabilize the iPG-4 structure

thermodynamically than the monocationic Na- ion.

In addition, the author has described the direct interaction between the less

sterically-hindered G-quartet and the porphyrin complex observed by UV-Vis. 'H NMR,

and ESI-MS measurements. The structure of supramolecular assembly depends on the

temperature: The 1 :1 complex of the G-quartet and the porphyrin is formed at 288 K or

lower, whereas the 2:l complex at 293 K or upper (note; the G-quartet structure is

unstable over 3 l3 K).

The results obtained in this work provide solid thermodynamic basis of the driving

force of the G-quartet formation without any bulky substituents on the guanine scaffold.

This work will also contribute to the manipulation of G-quartet structures toward their

further application to construction of supramolecular materials.

Experimental section

Materials and methods. CHClr, (Wako Pure Chemical Industries) were purified by

distilled with CaHz. CH:OH (Wako Pure Chemical lndustries) were dried using Mg and

Iz. CDCI: was purchased from Cambridge Isotope Laboratories, Inc.. Other chemicals

and solvents were purchased from Wako Pure Chemical Industries and Tokyo Chemical

Industries. These reagents were used as received. 9-isopropylguanine was synthesized

according to the literature method (see the reference, 36, in the text).

Octaethylporphinatonickel(II) (NiOEP) was also synthesized by a literature method (see

the references 44 and 46).

Apparatus. 'H NMR spectra were measured on a JNM-EX270 spectrometer (JEOL).

UV-vis absorption spectra were recorded on a SHIMAZU UV2450. ESI-MS

measurements were recorded on an Applied Biosystems QStar Pulsar i (ESI-TOF;

positive mode) spectrometer.
tH NMR measurements. A mixed solvent of CDCII/CH:OH was used for

measurements and chemical shifts were determined relative to an internal standard

(TMS). Variable-temperature NMR measurements were made on a sample containing

9-isopropylguanine and each template cation after incubating for over 3 minutes at

certain temperature.

UV-vis titration to determine thermodynamic parameters. UV-vis spectroscopic

titrations of 'PG upon addition of template cations were conducted in mixed solvents of

CHCI3/CHiOH. Sodium tetraphenylborate and calcium dichloride were used as the

sources of the template cations. In order to determine K value (expressed by eq (l) in
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the text), absorbance at an appropriate wavelength (295 nm for 'PG4-Na- and 288 nm

for 'PG-4-Ca2*) was monitored. Thermodynamic parameters were determined using

van't Hoff plot (Table 3).

UV-Vis titration to determine the equilibrium constant. UV-Vis spectroscopic

titrations of HzOEP and NiOEP upon addition of 'PG-4-Na- were conducted in mixed

solvents of CHCI:/CH3OH after stirring for 20 min at every addition of 'PG-4-Nan at

each temperature. Sodium tetraphenylborate was used as the sources of the template

cation and the 'PG-4-Na* solution was prepared from the mixture of 'PG/NaBPtr+ (4: I

mol/mol) in CH:OH/CHCI: (l:40 v/v). HzOEP and NiOEP solutions were prepared in

CHCI3 for every measurement. In order to determine K values (see below), absorbance

at 393 nm due to the Soret band of NiOEP was monitored. The UV-Vis spectra of 'PG
(0.21 mM) in CH:OH/CHCI3 were monitored with addition of NiOEP solution in

CHCI3 due to the low solubility of 'PG in CHCI:. The UV-Vis spectrum of NiOEP upon

addition of NaBPh+ was monitored by adding NaBPtr+ solution (0-106 pM) in
CH3OH/CHCI: to the solution of NiOEP (1.1 ttM) in CHCI:. Their absorption

coefficients were used for the comparison (Figure l4).

Analysis of titration curves of the adduct formation. Data obtained from

temperature-dependent UV-Vis measurements were analyzed by curve fitting for plots

of 1'lc-4-Na*l-n vs. l(A0-A) (n:l or 2) to determine formation constants of complexes

between tPG-4-Na* and NiOEP. Concerning the formation of the l: I complex, the

author assumed the following equilibrium:

′PG-4-Na++NiOEP IPG‐ 4-Na+―NiOEP

Curve-fitting was made to estimate the formation constants of the 1:l complex on the

basis of following equation (2) for the plots in Figure 1 8(a) and Figure l9(a) at 288 K

and equation (3) for the plots in Figure l8(b) and Figure l9(b):

(2)

κ一一

ん4=△ε

去
=lz雇

玉可:予面丁T十JI嵩 )
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As for the formation constant of the 2:l complex between 'PG-4-Na- and NiOEP, the

author assumed the following equilibrium:

為

κl           IPG-4-Na+
ブPG-4-Na+十 NiOEP_― ′PG-4-Na+―NiOEP 7~f′PG-4-Na十 )2~NiOEP

′PG-4-Na+

The calculation ofthe forlnation cOnstant fbr the 2:l complex was rnade on the basis of

following equation(4)for the plots in Figure 18(a)and Figure 19(a)at298 K and

equation(5)for the p10ts in Figure 18(c)and Figure 19(c):

Ю倒細=4M/Ap十
tLA/ I' / L.r',

K$r*;q) (4)

(5)

(κ =κlK2)

Jォ
=(ラ豆マキョ孔lit)(i百嘉I)

X-ray crystallography. Single crystals of 'PG-4 assemblies made of tPG with water

molecules of crystallization and template cations were attained by recrystallization from

methanol with vapor diffusion of diethyl ether. The crystallization of the G-ribbon type

was carried out in the mixed solvent of methanol and chloroform with vapor diffusion

of diethyl ether. All measurements were performed on a Bruker SMART APEX II

ULTRA CCD diffractometer at 120 K or 90 K with graphite-monochromated Mo Ka
radiation (),:0.7107: A1. fhe structures were solved by direct methods and expanded

using Fourier techniques. Non-hydrogen atoms were refined anisotropically including

solvents except disordered molecules (efher in the crystal structure of the G-4 with

sodium tetraphenylborate). Refinements were carried out by full-matrix least squares

techniques on F with scattering factorsae and including anomalous dispersion effects.s0

All calculations were performed using the Yadokari-XG crystallographic software

package,5r and structure refinements were made by wing SHELXL 97.s2
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Chapter 2

Regulation of Redox Potential of a Pterin Derivative

Bound to a Ruthenium(Il) Complex

by Intermolecular Hydrogen Bonding with Nucleobases

Abstract

A Ru(Il)-bound pterin forms a stable hydrogen-bonding adduct with 
^

guanine derivative through three-point recognition: The hydrogen bonding

allowed us to observe a large positive shift of the reduction potential of the pterin

ligand up to +320 mV. In the case of a thymine derivative, the mode of hydrogen

bonding is altered upon reduction of the pterin ligand from a two-point mode to a

single-point mode. This is the first example to demonstrate the regulation of redox

potentials of a pterin coenzyme by non-covalent interaction.
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Introduction

Pterins are redox-active heteroaromatic coenzymes involved in a variety of
redox-related reactions in biological systems to perform proton-coupled electron

transfers (PCED.r They are originated from guanosine triphosphate2 and fixed in the

vicinity of metal ions by non-covalent interactions including hydrogen bonding and rn
interactions to form active sites of metalloenzy-e..t ln order to realize a required

functionality in a certain enzyme, redox potential of the pterin cofactor needs to be

appropriately regulated. For example, in the active site of heme-containing induced

nitric oxide synthase (iNOS), tetrahydrobiopterin (H+B) has rc-x interaction with the

indole ring of tryptophan 457 in the vicinity of the heme cofactor, resulting in the

stabilization of the radical intermediate of H+B to facilitate electron transfer from H+B

to an Fe-Oz complex.a'5 Since the pterin cofactors are involved in extensive

hydrogen-bonding network in the active sites of pterin-dependent enzymes,n hydrogen

bonding should be an important factor to regulate the redox potential. Any clear

evidence, however, has yet to be provided to support that hydrogen-bonding interaction

exerted to the pterins is the critical factor for the regulation of their redox behavior. This

is due to the fact that the direct determination of the redox potentials of pterins is

generally difficult in biological systems,T and thus, the tack of sufficient dataset of
redox potentials of pterins has precluded the detailed discussion on the reactivity control

of pterin-dependent enzymes by non-covalent interactions, which regulate the redox

potentials of pterins in active sites of pterin-dependent enzymes.

Transition metal complexes of pterin and their derivatives have been synthesized

and characterized, to demonstrate mainly their structures and redox behaviors.8-rr

Among the complexes, RuII complexes have been revealed to be useful for evaluating

the redox potentials of the pterin ligand and for elucidating the PCET processes.t''13 The

author has employed a RuI-TPA unit (TPA: tris(2-pyridylmethyl)amine) as a platform

to obtain Rulr-pterin complexes, which have exhibited reversible redox waves for the

pterin ligands to afford fairly stable radical species, which were spectroscopically

well-characterized.l3 Herein, the author would like to demonstrate the first observation

of redox potential control of pterin cofactors by hydrogen bonding on the RuII-TPA

platform. The author adopted the Rurr-bound 6,7-dimethylpterin anion (dmp-) of
complex I (Figure I ) and ribonucleoside derivatives of guanosine, adenosine, and

cytidine, and a deoxyribonucleoside derivative of thymidine, as hydrogen-bonding

receptors (Figure l).
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Figure 1. Structures of Ru-pterin-TPA complexes (1 and 2) (upper) and Schematic

description of plausible structures of hydrogen-bonding adducts between 1 and the

nucleosides (middle). R denotes the sugar moiety in the corresponding nucleosides

(lower).

Results and discussion

The author performed spectroscopic titration experiments of nucleoside derivatives

into the solution of I in a mixed solvent of acetonitrile and chloroform to determine the

binding constants.ra In the 'H NMR spectrum of 1 in CDCI:/CDTCN/ (4:l v/v), a singlet

peak assigned to the 7-methyl group of the dmp- ligand was observed at 2.83 ppm and

the signal showed a gradual upfield shift in the course of the addition of G-TBDMS as

shown in Figure 2.r5 Curve fitting of the change of the chemical shift relative to the

concentration of G-TBDMS, as depicted in Figure 3(a), allowed us to determine the

binding constant to be I .0 x 103 M t. The addition of T-TBDMS caused a slight upfield

shift of the 7-methyl signal of the dmp- ligand and the binding constant was estimated

to be -l x 102 M t lFigure 3(b)). Concerning A-TBDMS and C-TBDMS, no significant

予
喝

｀
Rl
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change was observed even in the presence of cq. 50-fold excess amount of the

nucleosides. These results indicate that the guanine part of G-TBDMS binds to the

pterin ligand most strongly among the four nucleosides.

(a)

[Ru(dmpXTPA])(Ci04)

7‐9祐

1.1 eq Guanosine

2.6 eq

3.l eq

4.8 eq

5.8 eq

7.l eq

9.4 eq

15 eq

115 eq      :        1 _
2.90 2.85 2.80

δ′ppm
2.75 2.70

Figure 2.(a)lH NMR spcctral change of l(1.OmM)during the addition of G― TBDMS

at 293 K in CDC13/CD3CN(4:Iv/v);(b)CXpanded plots of the region involving the

signal due to 7-C〃 3 0fl・
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Figure 3. Chemical shift changes of the signal due to 7-CH, of I during the addition of
(a) G-TBDMS ([] : Ll mM), (b) T-TBDMS ([]: 1.2 mM), (c) C-TBDMS (Ul:
0.66 mM), (d) A-TBDMS (Ul :0.98 mM) in CDCI./CD3CN (4:l v/v).

For the combination of the dmp- ligand in 1 with the guanine, it is possible to form
an adduct with three-point complementary hydrogen bonding as depicted in Figure 4.

The possibility has been clarified by the determination of the crystal structure of the

hydrogen bonding complex of 2-(isobutyrylamide)-6,7-dimethylpterin (Figure 5) with

9-isopropylguanine, as shown in Figure 4, which clearly demonstrates a three-point

hydrogen bonding between them.i6 On the basis of the crystal structure depicted in
Figure 4, in the complementary hydrogen bonding pair between complex 1 and the

guanine part of G-TBDMS, the dmp ligand accepts two protons at the 1-N and 8-N

positions, one of which is donated from the 2-amino group and the other from the I -NH

of the guanine part of G-TBDMS, and donates one proton of the 2-amino group of the

dmp- ligand to the carbonyl oxygen at the 6-position of the guanine part. All the X-ray

crystallographic data are summarized in Table 1. Selected bond lengths (A) and angles

(deg) of 2-(isobutyrylamide)-6,7-dimethylpterin and the adduct are listed in Tables 2

and 3, respectively. Interatomic distances tA) for hydrogen bonding in the adduct are

also summarized in Table 4.
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Figure  4。  (a)  An  ORTEP  drawing  of  the  adduct  made  of
2-(isobutyrylanlide)-6,7-diinethylpterin  and  9-isopropylguaninc  with  three― points

hydrogen bonding with 50%probability thellllal ellipsoids:N2"・ 032.767Å ,N1000N8

2.957Å ,N5000N72.988A。 (b)a View Ofthe crystal packing.
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(a) (b)

Figure 5. The crystal structure of 2-(isobutyrylamide)-6,7-dimethylpterin: (a) An

ORTEP drawing of the molecular structure; (b) intermolecular hydrogen bonding.

Table l. X-ray crystallographic data for 2-(isobutyrylamide)-6,7-dimethylpterin and the

adduct made of 2-(isobu8rylamide)-6,7-dimethylpterin and 9-isopropylguanine.

2-(isobutyrylamide)-6,7-dimethylpterin The adduct

follllula

fw

crystal system

spacc group

7(K)

α(Å )

b(Å )

ε(Å )

β(deg)

/(Å
3)

Z

no.of reflections

measured
no.of obseⅣ ations

no.of parameters

reflned

Rlα

Rノ

GOF
CCDC no.

C12H15N502

261.29

orthorhombic

P212121

120

7.2428(15)

9.5601(19)

17.720(4)

1226.9(4)

4

6934

2773

184

0.0363

0.0790

(/>2.Oo(o)C
l.021

851578

C22H34N1005

518.59

monoclinic

P21/α

120

7.681(3)

28.221(12)

11.958(5)

104.335(6)

2511.38(18)

4

11976

4472

344

0.0725

0.1723

(J>2.Oσ (の )′

0.998

849641

' Rl :> llFol - lFcll / > lFol.' R* : [ : (w (Fo' - F,1\ l> w(Fot)']'''." * : t I l&(F62)
+ (0.0301P;2 + 0.4853P1, where P: (Max(Fo',0) + 2F,2) I 3,0 w: I I 1o21F1121 +

(0.0996P)2 + 0.00P1, where P: (Max(F6', 0) * 2F"1 13.
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Table 2. Selected bond lensths

2-(isobutyry lamide)-6, 7-dimethylpterin

(A) and angles (deg) Of

Nl― Cl
Nl一 C6
Cl― N2
Cl― N3
N2-C9
N3-C2
C2-C3
C2-01
C3-C6
N4-C4
C5-N5
N5-C6

1.298(2)

1.373(2)

1.380(2)

1.360(2)

1.384(2)

1.395(2)

1.468(2)

1.211(2)

1.394(2)

1.323(2)

1.326(2)

1.352(2)

Nl― Cl― N2
Nl― C6-N5
Cl― N2-C9
N2-C9-02
N3-C2-Ol
Ol一 C2-C3
C2-C3-N4

117.3(1)

115.4(1)

126.7(1)

121.8(2)

120,6(1)

127.3(2)

118.6(1)

Table 3. Selected bond lengths fAl and angles (deg) of the adduct of
2-(isobutyrylamide)-6, 7-dimethyl- pterin and 9-isopropylguanine.

Nl― Cl
Nl― C6
CI一 N2
Cl― N3
N2-C9
N3-C2
C2-C3
C2-01
C3-C6
N4-C4
C5-N5
N5-C6
C9-02
N6-C13
N7-C13
N8-C13
N8-C14
N9-C15
N9-C16
C14-03
C14-C15
C15-C17

1.299(5)

1.382(4)

1.385(5)

1.352(5)

1.375(5)

1.380(5)

1.468(6)

1.223(5)

1.389(5)

1.313(5)

1.328(5)

1.344(5)

1.291(5)

1.330(5)

1。333(5)

1.364(5)

1.399(5)

1.391(5)

1.305(5)

1.239(5)

1.418(5)

1.366(5)

Nl― Cl― N2
Nl― C6-N5
Cl一 N2-C9
N2-C9-02
N3-C2-01
01-C2-C3
C2-C3-N4
N6-C13-N7
N6-C17-N10
N7-C13-N8
N8-C14-03
C13-N6-C17
C13-N8-C14
N9-C15-C14

l17.4(3)

116.7(3)

126.8(4)

122.9(4)

120.6(4)

126.6(4)

117.8(4)

119.9(4)

124.5(4)

117.0(4)

120.0(4)

111.9(3)

125.8(3)

130.4(4)
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Table 4. Interatomic distances (A) for hydrogen bonding in the adduct consist of

2-(isobutyrylu-i
Intermolecular hydrogen bonding

N 1...HN8
N2H...O3
N5...I{N7
o4H...N6
N7H...04
o I ...HO5

Intramolecular hydrogen bonding

N3H・・・02 2.62r(4)

The binding constant of G-TBDMS exhibited a linear correlation with f ' to allow

us to determine the enthalpy change (Llf) upon the formation of the hydrogen-bonding

complex to be -4.5 kcal mol ' from the slope and the entropy change to be -l .9 cal

mol t K-r (Figure 6). These values are comparable to those values obtained for the

formation of three-point hydrogen bonding adducts of flavin derivatives with

2.6-bisamidepyridines. I t

'3.1 3.2 3.3 3.4 3.5 3.6

1/T(x1O-3;/11-t

Figure 6. A van't Hoff plot for the binding constants of G-TBDMS with I in

CDCI3/CD3CN (4:1 v/v).

As for the thymidine derivative, a two-point hydrogen bonding should be available

with the l-N and 2-NH2 sites of the dmp ligand as depicted in Figure 1. However, the

lone pair of one of the two carbonyl oxygen atoms of the thymine part causes

2.es7(4)
2.767(4)
2.e88(s)
2.786(4)
2.94e(s)
2.8e4(6)

Ｔ
Σ

ヽ
マ

Ｃ
一
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electrostatic repulsion with that of the 8-N nitrogen of the dmp ligand. DFT

calculations suggested that, in the formation of a hydrogen-bonding adduct, the thymine

plane should be tilted with a dihedral angle of 9o relative to the pterin mean plane to

avoid the repulsion as shown in Figure 13. This may cause partial loss of stabilization of
the hydrogen-bonding adduct to afford a small binding constant as mentioned above.

Since the most basic site in the dmp ligand has been proved to be the N-1 position,tl3'l

the hydrogen bonding to the l-N position is favorable for the dmp ligand. From this

viewpoint, G, T, and A should be favored because of their possibility to form at least

two-point hydrogen bonding with the dmp ligand. However, the electrostatic repulsion

between the lone pairs of l-N of dmp- and 3-N of the cytosine may avoid the close

contact of the pterin ligand to the cytosine moiety of C-TBDMS. As can be seen in

Figure l, the adenine moiety of A-TBDMS is assumed to form two-point

complementary hydrogen boning at the 6-amino group and the 1-N atom with the l-N
and the 2-amino group of the pterin ligand, respectively, however, its binding constant

is too low to be determined. The author assume that the acidity of the 6-amino group of
the adenine moiety is too weak to form a stable hydrogen-bonding adduct in a polar

medium containing acetonitrile. r8

The author examined the importance of the 2-amino group of the dmp ligand to

form hydrogen bonding with the nucleobases by using complex 2 (Figure 1) bearing

dmdmp (Hdmdmp N,N-dimethyl-6,7-dimethylpterin),13 which has the

{N-dimethylamino group in place of the amino group at the 2-position, as a ligand. The

singlet signal assigned to the 7-methyl group of the dmdmp ligand of 2, which was

initially observed at 2.82 ppm, did not show any shift by addition of G-TBDMS,

because the steric hindrance caused by the {N-dimethylamino group of the dmdmp

ligand inhibited the hydrogen bonding with nucleobases even for G-TBDMS. This

difference between I and 2 clearly indicates the importance of the 2-amino group of the

dmp ligand in the formation of hydrogen-bonding complexes with nucleobases.

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were applied

to determine the redox potentials of I with or without nucleoside derivatives in CH:CN

in the presence of 0.1 M of tetra(r-butyl)ammonium hexafluorophosphate (TBAPF6) as

an electrolyte at room temperature under Ar. In the absence of the nucleosides, the

complex I showed a reversible redox wave at -1.63 V vs SCE due to the dmp-/dmp'2

couple to produce fRurrldmp'2 XTPA)] (the dotted line on Figure 7).13 Upon addition of
7.7-fold excess amount of G-TBDMS, the redox wave in the CV trace showed a large

positive shift and lost the reversibility (Figure 8(a)). The DPV measurement allowed us

to determine the reduction potential of the dmp- ligand to be *1.31 V vs SCE (AE1s6:

+0.32 V) (the solid line in Figure 7) in the hydrogen-bonding complex.
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Figure 7. DPV traces for I (0.94 mM) in the absence (dotted line) and the presence

(solid line) of 7.2 mM of G-TBDMS in CH:CN in the presence of 0.1 M of TBAPFo as

an electrolyte under Ar at room temperature.
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Figure 8. (a) CV traces for I (0.94 mM) in the absence (black solid line) and the

presence of 0.80 mM (dotted line), 1.6 mM (black broken line) and 7.2 mM (red solid

line) of G-TBDMS in CH:CN in the presence of 0.1 M of TBAPF6 as an electrolyte

under Ar at room temperature. (b) DPV traces for I in the absence (black solid line) and

the presence of 0.51, 1.4 and 2.4 eq (dotted lines) and 7.7 eq (red solid line) of

G-TBDMS in CHrCN in the presence of 0.1 M of TBAPF6 as an electrolyte under Ar at

room temperarure.
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In the case of T-TBDMS, the addition of the nucleoside to the solution of I gave an

anodic shift of the redox wave due to the dmpTdmp'z- couple from -1.63 V to -1.42V
vs SCE (AE.6 : +0.21 V) (Figure 9). This suggests that the thymine moiety of
T-TBDMS also strongly interacts with the reduced form of the dmp- ligand (d-p't-),

even though it does not bind so strongly to the dmp- ligand.

――̈ ―――‐
[Ru(TPA)(dmp)](C104)

一

      [Ru(TPA)(dmp)](C104)+T‐ TBDMS

‐16     ‐1.4

[′ V(VS SCE)

(a)

‐10-12‐1.8-20

(b)
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Figure 9. (a) CV traces for I (0.84 mM) in the absence of nucleosides (dotted line) and

in the presence (solid line) of 3.4 mM of T-TBDMS. (b) DPV traces for I in the absence

(black solid line) and in the presence of 0.65, 1.3, 1.9, 2.3,2.7 eq (dotted lines) and 4.0

eq (red solid line) of T-TBDMS in CH:CN. Measurements were made in the presence

of 0. I M of TBAPF6 as an electrolyte under Ar at room temperature.

As for the addition of C- and A-TBDMS, the one-electron reduction potential

exhibited only trivial shifts, at most +0.03 V for C-TBDMS and +0.01 V for A-TBDMS,

respectively (Figure l0). These results indicate that cytosine and adenine do not interact

significantly with the pterin ligand, regardless of its reduction. Binding constants of the

nucleoside derivatives for I and redox potentials of the dmp-/dmp'2- couple are

ξ
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summarized in Table 5. In comparison with the case of flavins,6're the AE,"a values

obtained here for the pterin complex for G- and T-TBDMS are much larger. The author

attributes this difference of the hydrogen bonding effects on the redox potentials

between pterins and flavins to the positions in the coenzymes to form hydrogen

bonding: Flavins have been reported to form hydrogen-bonding adducts at the 2-O,

3-NH, and O-4 positions,6'r7'1e which have little relationship with the PCET process of
flavins. In contrast, in the cases of the pterin ligand in l, intermolecular hydrogen

bonding can be formed at the 8-N position that is involved in the PCET region (5-N,

6-C,7-C and 8-N) of pterin and forms the strongest hydrogen bonding with a hydrogen

donor upon reduction of the pterin ligand in comparison with the 3- and 5-N

positions.l3'

(a) IRu(TPA)(dmp)](ClOa)

- 

[Ru(TPA)(dmp)](CtO+)+ C-TBDMS

-t.c

E/ V (vs. SCE)

IRu(rPA)(dmp)](cloa)

- 

[Ru(TPA)(dmp)](ClOa)+ A-TBDMS

-2'o 
., u-,t"f. r"., 

-1 0

Figure 10. (a) CV traces for 1 (1.2 mM) in the absence of nucleosides (dotted line) in

the presence (solid line) of l4 mM of C-TBDMS, and (b) CV traces for I (0.81 mM) in

the absence of nucleosides (dotted line) in the presence (solid line) of 7.4 mM of
A-TBDMS in CH:CN. CV traces were measured in the presence of 0.1 M of TBAPF6

as an electrolyte under Ar at room temperature.

(b)
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Table 5. Binding constants of the nucleosides and redox potentials of the dmp /dmp'2-

couples.

Compound Ko*, M-l o Er"d,Y b
」 rcd,V

1                  -

1-G― TBDMS   l.0× 103

1-T―TBDMS   ～1× 102

1-C―TBDMS    <10
1-A―TBDMS    <10

-1.63C

-1.31

-1.42

-1.60

-1.62

0.32

0.21

0.03

0.01

'Determined by 'H NMR measurements in CDCI:/CD:CN (4:1 v/v) at 293 K. '
Measured relative to AglAgNO: in CH:CN at 293 K. The potentials (V) were converted

to values relative to SCE by adding +0.29 V. The values were obtained by adding7.7 eq

of G-TBDMS,4.0 eq of T-TBDMS, 12 eq of C-TBDMS and 9.1 eq of A-TBDMS,

relative to 1.'Reversible. The value is presented as E112.

In order to prove the formation of hydrogen bonding between the dmp'2 ligand and

the nucleobases, the author measured ESR spectra of one-electron reduced species of 1

as a probe by means of the chemical reduction of I (2.0 mM) with sodium

naphthalenide (Na(naph' )) in the presence of the nucleosides (20 mM) at 243 K in
CH3CN. The one-electron reduced species of 1 showed a well-resolved ESR signal at g
: 1.99gl as shown in Figure 1l(a).'3b Computer simulations of the spectrum allowed us

to determine the hyperfine coupling @fc) constants as 4.90 G for 5-N, 4.00 G for 8-N,

0.70 G for 6-CHz, and 7 .70 G for 7 -CHz, respectively, as shown in Figure I 1(d). These

results indicate that the unpaired electron is delocalized in the PCET region as observed

in other related Ru-bound pterin radical species.l3 DFT calculations on the d-p''
n-radical dianion were also performed at the B3LYP/6-3IG(d) level of theory to

estimate the hfc constants (Figure l2). ESR spectrum of the reduced species of 1 in the

presence of G-TBDMS exhibited a well-resolved ESR signal at g : 1.9990 with

hyperfine splitting (Figure ll(b)) and the simulation afforded hfc constants as 4.60 G

for 5-N, 3.60 G for 8-N, 0.74 G for 6-CHz and7.70 G for 7-CHz, respectively, as shown

in Figure I l(e). The values for 5-N and 8-N became smaller by the addition of

G-TBDMS than those of the dmp'z- r-radical dianion of 1. This tendency is also

confirmed by DFT calculations and is caused by delocalization of an unpaired electron

in a wider region: This delocalization can be attained as a result of the intermolecular

hydrogen bonding between G-TBDMS and the d-p'' n-radical dianion ligand. This

indicates that the hydrogen bonding alters the distribution of the unpaired electron as in

the case of those for flavins and their derivatives.re
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Figure 12. Calculated hyperfine coupling constants of (a) d-p't , (b) dmp'2 -Guanine
adduct, and (c) Hdmp' -Thymine adduct at the B3LYP/6-3LG(d) level of theory.
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Figure 11. ESR spectra of the reduced species of 1 with their computer simulations (a)

and those in the presence of G-TBDMS (b), T-TBDMS (c), in deaerated CH3CN at243

K. Estimated hfc vafues with computer simulations are included (d)-(0. A-F1-.1 denotes

the mid-slope line width for the simulation.
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In the case of T-TBDMS, the ESR spectrum of the reduced species of I drastically

changed to show an ESR signal at g:2.0017 as shown in Figure I l(c). Simulation of

the spectrum allowed us to estimate the hfc constants of 8.87 G for 5-N and 2.98 G for

8-N. Comparison of the hfc constants clearly indicates that thymine binds to the dmp'z*

x-radical dianion in a different hydrogen-bonding mode from that of the guanine. The

hydrogen bond formation of T-TBDMS is assumed to occur only at the 8-N position of
the dmp'2 ligand, as supported by the fact that a proton shift occurs from I -N to 8-N in

the course of one-electron reduction of protonated [Ru(TPA)(Hdtp)]'*, where the

proton initially resides at the l-N position.r3'Once the dmp- ligand is reduced, the spin

density is delocalized onto the N5-C6-C7-N8 region,13 whereas in the

one-electron-reduced species of the protonated complex l, the proton goes to the 8-N

position to stabilize the radical species.r3'This suggests that the hydrogen bonding at

the 8-N position should be strengthened in the reduced form due to the increase of the

negative charge at the 8-N position of the d-p't- ligand. Since the pK" values of the

3-NF/ of guanine and that of thymine have been reported to be 9.2-9.6 and 9.9,

respectively,rs the LH of single-point hydrogen bonding at the 3-Nll should be virtually

the same for both the nucleobases in an electrostatic sense. These arguments suggest

that the large positive shift of the reduction potential of the dmp- ligand in the presence

of T-TBDMS may stem from the change of binding mode: The thymine moiety which

binds to the l-N and 2-NHz positions of the dmp- ligand shifts to form a single-point

hydrogen bonding to the 8-N position of the dmp'z- ligand in the one-electron-reduced

species of 1 with the imido N-H group of thymine as shown in Figure 13, similar to the

proton shift mentioned above.r3'

下

Figure 13. DFT-optimized structures of hydrogen-bonding adducts of

Hdmp-l-methylthymine and Hdmp' -l-methylthymine at the 83LYP/6-3lG(d) level of

theorv.
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DFT-optimized structure of the one-electron-reduced species of

Hdmp'--(1-methylthymine) adduct is depicted in Figure 13 and the dihedral angle

between the Hdmp' ligand and the thymine plane is estimated to be 65". Thus, the

results of DFT calculations also suggest a hydrogen-bond shift of the thymine moiety as

shown in Figure 13. The compensation of the attractive interaction (hydrogen bonding)

and the electrostatic repulsion between the carbonyl oxygen atoms and the z-electron

clouds of the aromatic ring of the pterin ligand caused weaker impact on the redox

potential of the pterin ligand, compared to that of the complementarily stabilized

guanine adduct.

Summary

In summary, the author has clearly demonstrated the modulation of redox potential

of a pterin coenzyme by intermolecular hydrogen bonding for the first time with the aid

of the RuII-TPA coordination environment. The pterin ligand undergoes complementary

three-point hydrogen bonding with the guanine derivative, at the 2-NHz, the l-N, and

the 8-N positions of the dmp- ligand, as clarified by X-ray crystallography on a complex

made of 2-(isobutyrylamide)-6.7-dimethylpterin and 9-isopropylguanine, to show a

large anodic shift of the reduction potential of the dmp- ligand to be +0.32 V. The

thymine derivative forms probably two-point intermolecular hydrogen bonding with the

dmp- ligand at the 1-N and 2-NHz sites showing a 1O-fold smaller binding constant than

that of the guanine. The thymidine derivative also induced a fairly large positive shift

(+0.21 V) of the reduction potential of the dmp- ligand. This positive shift is probably

derived from a s{rong single-point hydrogen bonding between the 8-N position of the

pterin and the 3-N/1 of the thymine moiety via the "proton shift" in the course of the

reduction of the pterin ligand. In consequence, the hydrogen bonding toward the 8-N

position of pterins, which is involved in the PCET region (5-N, 6-C, 7-C, and 8-N),

causes a significant modulation of their redox potentials.

Experimental section

Materials. CH:CN, CHzClz, (Wako Pure Chemical Industries) were purified by

distillation over CaHz. Anhydrous {N-dimethylformamide (99.8%, Sigma Aldrich)

was kept in a globe box and used without further purification. CH3OH, CHCI3 (Wako

Pure Chemical Industries) were used without further purification. Chloroform-d and

acetonitorile-d3 were purchased from Cambridge Isotope Laboratories, Inc. Guanosine,

thymidine, cytidine, and triethylamine were purchased from Wako Pure Chemical
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Industries. Adenosine, tert-butyldimethylsilyl chloride (TBDMSCI), imidazole, and

isobutyric anhydride were purchased from Tokyo Chemical Industries. These reagents

were used as received. TBAPF6 (Tokyo Chemical Industries) was recrystallized from

water and ethanol (l:l (v/v)) and then from ethanol. [Ru(dmp)(TPA)]ClO+ (1),20 all

TBDMS-derivatives of nucleosides,2r and 9-isopropylguanine22 were synthesized

according to literature methods.

Apparatus. tH NMR spectra were measured on a JNM-8X270 speclrometer. ESR

spectra were recorded on a JEOL JEX-REIXE spectrometer. Electrochemical

measurements were performed on a BAS CV-50W voltammetric analyzer.
tH NMR Titration. A mixed solvent of chloroform-dlacetonitrile-d: (4:1 (v/v)) was

used for measurements and chemical shifts were determined relative to an internal

standard (TMS). Variable-temperature NMR measurements were made on a sample

containing I and each nucleoside derivative after incubating for over 3 minutes at a

certain temperature. Binding constants were determined by the following equation; d.6.

Qnuto-(d,nuro-4Nst)[([Ru]0+[NS]+(l/K1)-{(tnul0+INS]+(l/K);'z-1+1NS1;nu1s;]r/2112[Ru16,
where NS denotes nucleosides. Thermodynamic parameters for intermolecular

hydrogen bonding, 411", AS' were determined by the following equation: lnK: -LHIRT
+ A.S/R.

ESR Spectroscopy. ESR spectra were recorded at 243 K in CH:CN and g values were

determined relative to an Mn2* marker. [Ru(TPA)(dmp)](ClOa) (2.0 mM) was reduced

by naphthalene radical anion (0.20 M), which was prepared from naphthalene (250 mg)

and sodium in dry THF (10 mL).

Electrochemical Measurements. Cyclic voltammetry and differential pulse

voltammetry were performed in CH3CN in the presence of 0.1 M [(n-butyl)+N]PFo
(TBAPF6) as an electrolyte under Ar at room temperature, with use of a Pt working

electrode, Ag/AgNO3 as a reference electrode, and Pt wire as an auxiliary electrode.

DFT Calculations. Density functional theory (DFT) calculations were executed on a

32CPU workstation (PQS, Quantum Cube). Geometry optimizations were carried out

using the Becke3LYP functional and 6-31G(d) basis set as implemented in the Gaussian

03 program Revision C.02.23-2s Graphical outputs of the computational results were

generated with the Gauss View software program (ver. 3.09) developed by Semichem,

Inc..26

X-ray Crystallography. A single crystal of 2-(isobutyrylamide)-6,7-dimethylpterin

was obtained by recrystallization from ethanol. A single crystal of the adduct consist of
2-(isobutyrylamide)-6,7-dimethylpterin and 9-isopropylguanine was attained by

recrystallization from methanol with vapor diffusion of diethyl ether. All measurements
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were perforrned on a Bruker SMART APEX II ULTRA CCD diffractometer at 120K

with graphite-monochromated Mo Ka rudiation (1: 0.7107347. The structures were

solved by direct methods and expanded using Fourier techniques. All non-hydrogen

atoms were refined anisotropically including solvents. Refinements were carried out by

full-matrix least squares techniques on F2 with scattering factors2T and including

anomalous dispersion effects.2s All calculations were performed using the Yadokari-XG

crystallographic software package, 2e and structure refinements were made by using

SHELXL 97.30

Synthesis

2-(Isobutyrylamide)-607-dimethylpterin.3r 6,7-dimerhylpterin (203 mg, 1.06 mmol)

was mixed with triethylamine (1 ml) in neat isobutyric anhydride (2 ml) under Ar. The

mixture was heated at 150 "C for 12 h. After cooling down to room temperature, water

was poured onto the reaction mixture. The organic layer was extracted with CH2Clz and

then dried on sodium sulfate. The solvent was removed by a rotatory evaporator and the

residue was washed with diethyl ether. The yellow-orange product was collected (60.0

mg, 21o/o). Single crystals of the compound were prepared by recrystallization of the

crude product from ethanol for elemental analysis andX-ray crystallography. Elemental

analysis (%) calcd. for C12Hl5sNsOz.zs (C12H15N5O2.0.25H2O): C 54.23, H 5.88, N
26.35; found: C 54.50, H 5.71, N 26.18.
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Chapter 3

A Tetranuclear lridium(Ill) Complex Having a Flavin Analog

as Bridging Ligands in Different Coordination Modes and

Exchangeable Anion Encapsulation

in a Supramolecular Cage

Abstract

A novel tetranuclear Ir(III) complex involving unprecedented coordination

modes of alloxazine formed a closed Jl-space by intermolecular hydrogen bonding

and the counter anions encapsulated in the space could be exchanged via

self-assembly.
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Introduction

Discrete multinuclear transition metal complexes have been constructed by

organized accumulation of mononuclear units with use of heteroaromatic compounds as

bridging ligands.r Those multinuclear complexes have been demonstrated to form

closed inner space for inclusion of electrically neutral guest molecules.2 To our

knowledge, however, no example has been reported on construction of supramolecular

assembly consisting of multinuclear metal complexes linked by non-covalent

interactions to form a discrete functional space.

Heteroaromatic coenzymes, including flavins and pterins, have been known to

coordinate to metal ions to form metal complexes.3-t Since those heteroaromatic

coenzymes have several potential metal binding sites, more than two metal ions can be

expected to bind to those coenzymes acting as bridging ligands. A number of
mononuclear metal-coenzyme complexes have been reported to demonstrate mainly

their structures and redox behavior, however, their ability acting as bridging ligands to

form multinuclear metal complexes has never been demonstrated. In addition to

multinucleating ability of the heteroaromatic coenzymes and their analogs as bridging

ligands, it should be recognized that they have several hydrogen bonding sites." Their

hydrogen bonding ability has been applied to construction of supramolecular structures

via self-assembly in organic chemistry.T However. the demonstration of discrete

supramolecular structure by virtue of hydrogen bonding has yet to be explored to

construct a closed 7r space.

Among those heteroaromatic coenzymes, flavin and its analogs have been revealed

to form a five-membered chelate ring by the coordination of the 4-oxygen and the

5-nitrogen in the flavin skeleton.s Recently, the author has demonstrated that alloxazine

(H2Allo), which is a flavin analog, binds to a Ru(II) complex by the coordination of the

l- and 1O-nitrogens to form an unusual four-membered chelate ring.8 The discovery of
this novel coordination mode has opened a way to make alloxazine act as a bridging

ligand together with the traditional 4, 5-chelation.

The author reports herein the preparation and crystal structure of a novel

tetranuclear iridium(Ill) complex bridged by three alloxazines that show two different

types of bridging modes. The tetranuclear Ir(IIl)-alloxazine complex possesses a cavity

and dimerizes to form a closed cage by intermolecular hydrogen bonding to include

exchangeable anions into the cage.

Results and discussion
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Synthetic procedure of the tetranuclear Ir(III)-alloxazine complex is summarizedin

Scheme 1. After removing chloride anions from [Ir(Cp*)Clz]z by using AgPF6 in

CH:CN and filtering AgCl off, the filtrate was dried up and dissolved into CH3OH. To

the solution, H2Allo was added under Nz and the mixture was stirred at room

temperature. The purification and isolation of a mononuclear precursor,

[r(Cp*)Cl(H2Allo)]PFo (A), was made by washing the crude product with CHCI3 and

the complex was obtained in 33o/o yield. After washing with CHCI:, the rH NMR signal

of the product, (A), in acetone-d6 indicated that the compound A contained one kind of
the Cp* ligand (Figure l). In the ESI-MS spectrum in acetone, A showed a peak cluster

assigned to [Ir(Cl)(Cp*XH2allo)l* 1m/z : 577.l) (Figure 2).In the IR measuremenr of A
in a KBr pellet, the stretching vibration of one of C:O bonds in the alloxazine ligand

shifted to a small wave number (1709 to 1600 cm-t) by the metalation (Figure 3). To

attain the information of the number of protons attaching to allxaozine, UV-Vis titration

was conducted by adding a base (Figure 4). As the result, the spectral change occurred

in two steps with two distinct isosbestic points. Thus it was revealed that the alloxazine

(cH3)2co /
diethylether

/
t4 -l+
,- i: PFc-
ctzi'\o, l __1> l-pFe

fY*'t^T" [ffif53;;o;' 
'-' 'o

\AttAnAO acetone

H

(A)

Scheme 1. Synthetic procedure of l-PF6.

2'o 1I tot,oor 1'7 16 1s

Figure l. 'H NMR spectrum in acetone-do at RT: The crude product mixture after

synthesis (lower), and the filtrate (middle) and the residue (A) (upper) obtained by

washing CHCI3.
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Figure 3. IR spectrum of (A) in a KBr pellet at room temperature.
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Figure 4. UV-titration of (A) (20 ,aM) by adding tetra-n-butylammonium hydroxide

(TBAOH) in CH:OH at room temperature. The red line is the spectrum after adding 2

eq of TBAOH and the blue line is the spectrum after adding 30 eq of TBAOH.

Wavelength / nm
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ligand in A should have two dissociable protons.

Recrystallization of the precursor A from acetone with vapor diffusion of CHCI:

gave red crystals of the tetranuclear lr(Ill)-alloxazine complex,

flr+(AlloXCp*)a(Hallo)2cl2l(PF6)2 (1-PF6). In the 'H NMR measurements in acetone-d6,

one singlet was observed for A at 1.84 ppm and, in contrast, four singlet signals were

detected for 1-PF6 at 1.27,1.46, 1.69, and 1.98 ppm, indicating the existence of four

inequivalent Cp* moieties (Figure 5).

20

(C)

16     14
δ/ppm

16    14
δ/ppm

80
δ/ppm

80
δノppm

Figure 5. 'H NMR spectrum of (A) (the Cp* part (a) and the alloxazine part (c)) and

that of the tetranuclear iridium complex obtained by recrystallization of A (the Cp* part

(b) and the alloiazine part (d)) in acetone at room temperature.

The tetranuclear Ir(III) complex l-PFe was crystallized in the monoclinic space

group of C2lc.e The crystal structure of the cation moiety of 1-PF6 is depicted in Figure

6(a) with thermal ellipsoids at the 50% probability level. Selected bond lengths are

listed in the figure caption. The four Ir(IIl)-Cp* units including two terminal and two

hinge moieties are seen to be linked by three alloxazine ligands to form a U-shaped

structure. The most striking feature of this complex is two different bridging modes of

the alloxazine ligands. The two hinge [Ir(Cp*)] units are linked by di-deprotonated

dianion, Allo2-, via the 4,S-bidenntate coordination mode for Ir2 and the 1,10-bidentate

mode for Ir4. In this case the Allo2- ligand is in a p:q',r7'-fashion. The two alloxazine

ligands are deprotonated to be a monoanion, Hallo-, to bind to the terminal [Ir(Cp*)Cl]
(lrl and Ir3) unit via the 4,5-bidentate mode and to the hinge [Ir(Cp*)] unit (Ir2 or Ir4)
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via the 3-monodentate mode. ln this case, the Hallo- ligand is in a 7t:r7',r.-'-fashion. In

the crystal, one of the counter PFo- anions was included in the U-shaped cavity and the

(a)

為"Itt υ
備

"ギ
貯

(C)

●
●

Figure 6.a)CryStal structure of the cation lnoiety of l¨PF6・ Light gray carbon,bluc

nitrogen,red oxygcn,light green chlorinc,purple iHdium. Hydrogen atoms are onlitted

for clarity. Selected bond lengths(Å )and angles(deg): Irl― CH 2.375(3),Irl― Ol

2.155(7),Irl¨N12.H9(9),Ir2-N22.121(7),Ir2-052.224(7),Ir2‐N92.284(5),Ir3-C12

2.387(3),Ir3-032.154(7),Ir3-N52.H9(8),Ir4¨ N62.140(7),Ir4‐NH2.135(6),Ir4-N12

2.157(6);01-Irl¨ N177.0(3),05‐ lr2-N972.70(15),03-Ir3-N576.8(3),NH‐ Ir4-N12

65.51(13).b)A schematic dcscription of the tetranuclear structure.c)A dimeric

structure in the crystal. Two PF6~aniOns are encapsulated in the cageo Phosphorus

orange,fluorine yenow green.
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other was located outside of the cavity, just above the,r.r:r12,r'-Allo'- bridging ligand

(Figure 6(c)). Moreover, the two of the adjacent tetranuclear complexes form

intermolecular hydrogen bonds for O2...N7' (2.808 A) and N3"'O4' (2.804 A),

resulting in supramolecular dimerization to form a closed cage including two PF6

anions as shown in Figure 6(c). The inner space is surrounded by six alloxazine

molecules to be a 7r-space and the size of the space can be estimated to be 9 x 8 x l7 A3.

It is noteworthy that the anion encapsulation of 1 does not involve hydrogen bonding as

observed anion binding systems reported so far.l0

The author also examined the exchange of confined counter anions in the cavity.

The single crystals of 1-PFo were dissolved into methanol and 2O-fold excess amount of

f(r-butyl)aN]ClOa was added to the solution. Crystallization was made from an acetone

solution with vapor diffusion of CHCI: to obtain again red crystals. This result indicates

that PFo ions in 1-PF6 are completely replaced by CIO+- ions. X-ray crystallographic

analysis revealed the crystal structure of a ClOa--included tetranuclear Ir(III)-alloxazine

complex as shown in Figure 7 with thermal ellipsoids at the 50% probability level.e The

complex, flra(Allo)(Hallo)z- (Cp*)+Clz](ClO4)2 (l-ClO+), exhibited the same structure as

that of l-PFo in the tetragonal space group of l41la, which was different from that of

l-PFo. Thus, the author can conclude that the confined anion species can be exchanged

without losins the tetranuclear structural motif.

ヴq■。
°

《藝ジo

Figure 7. Crystal structure of 1-ClO+. Purple iridium, green chlorine, red oxygen, blue

nitrogen, grey carbon.
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Table l. Crystallographic Data for l-PFo and l-ClO1

1-PF6 1~C104

formula
fw

crystal system
space group

arA
b,A
crA

P,dPF
V, A'

Z
dsa6, g Cfn 

I

T,oC
no. ofobservn
no. of variants
Rl (1> 2d,D)^

wRb''
GOF

CCDC no.

C745H825C1155F121r4N1208P2

2882.38

monoclinic

C2/ε

31.4226(7)

24.4702(5)

34.0543(8)

122.6940(7)

22036.3(8)

8

1.737

-150
25019
1048

0.0778

0.2292

10.58

726570

C735H77 5Cl14 51r4N12012

2635,94

tetragonal

/41/α

27.1659(9)

27.1659(9)

60.542(1)

44679(2)

16

1.567

-150
20165
852

0.1078

0.3517

1.346

729384

αRl=Σ ‖E。 |― IFc‖ /Σ IE。 .ら Rw=[Σ (WtF。
2_ft2)2)/Σ

″(Д。
2)2]1/2.c″ =1/[σ2(F。2)+

(0.05000P)2+30.00000P,where P=(Max(鳥
2,0)+2民 2)/3.

The infrared spectrum of the crystals exhibited a strong absorption due to the Cl-O

stretching mode of ClO4- at -1100 cm-r with overlap of signals derived from the

alloxazine units and no peak assigned to that of P-F bond in PFo at 845 cm-r (Figure 8).

(b)(a)

2000 1800 1600 1400 1200 1000 800
Wavenumber / cm-1

Figure 8. IR spectra of l-PF6 (a) and

temperature.
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Wavenumber/cm‐
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1-ClO4 (b) measured in KBr pellets at room
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In order to shed some lights on the exchange mechanism for the confined anions,

the author examined the solution behavior of 1-PFe in acetone by spectroscopic methods.

The author observed the fragmentation of the tetranuclear form in acetone by 'H NMR

and ESI-MS spectroscopies. The ESI-MS spectroscopic measurements allowed us to

observe peak clusters which were assignable to those of [r(Cp*)Cl]- (362.9),

[Ir(Cp*)(HAllo)]- (s40.6), [{Ir(Cp*)}z(Allo)- Cl]- (902.5), [{Ir(Cp*)}z@allo)2C1]-
(1r16.7), [{Ir(Cp+)}:(Allo)-(Hallo)Cl2]- 0478.6), and [{Ir(Cp*)}+(Allo)2(Hallo)Cl2]-
([M-H"]*, 2018.2),just after dissolving the crystals of l-PFo into acetone (Figure 9).

(a)

2000   2500

Figure 9. ESI-MS spectra of l-PFo just after dissolving into acetone (a),24h later after

dissolving crystals of 1-PF6 into acetone (b), and recrystallized sample of l-PF6 just

after dissolvins into acetone.

，
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After 24h, the peak cluster due to the [M-Ht]* ion disappeared, however, other peaks

were still observed with increased intensity for the peaks attributed to [r(Cp*)Cl]-.
Finally, the author could recover the same ESI-MS spectrum as that of the original

l-PF6 for the recrystallized sample from the same acetone solution with vapor diffusion

of CHCI:. Thus, the author concludes that the PF6- counter anion in the cavity of the

tetranuclear unit can be exchanged via fragmentation and self-organization (Scheme 2).

cl ct04- cl
k_t{
I

I ttnlr-lr.

Self-reorganization
17-11/

| ",o.-
cl

Scheme 2. Exchange

tetranuclear unit.

Summary

PFo-

mechanism of a confined counter

lr-lr.
cl

anion in the U-shaped

In summary, the author prepared a novel tetranuclear motif based on Ir(III)-Cp*

units with use of alloxazine, a flavin analog, as a bridging ligand. The tetranuclear

Ir(III) complex involves unprecedented coordination modes of alloxazine to link the

Ir(lII) centers to give rise to a U-shaped structure with a cavity for inclusion of a counter

anion. The alloxazine ligands also undergo intermolecular hydrogen bonding to form a

supramolecular dimeric structure with a closed Tr-space that can encapsulate two of
counter anions. The confined anions can be exchanged by self-reorganization through

the fragmentation process to release the originally entrapped anions. The findings

described here have provided a strategy for the construction of integrated

metal-coenzyme complexes and their new functionality involving exchangeable anion

encapsulation via self-reorgan ization.

Experimental section

Materials and Methods. CHCI:, CH:OH, acetone, 1,2-diethylether (Wako Pure

Chemical Industries), 1,2,3,4,5-pentamethylcyclopentadiene (KANATO CHEMICAL

Co., Inc.) were used without further purification. Acetone-da were purchased from

Cambridge Isotope Laboratories, Inc. IrH2Cla was purchased from Tanaka Kikinzoku.

Fragmentation

Ｏ
υ

ワ
ー



CH3CN (Wako Pure Chemical Industries) was purified by distilled over CaHz.

Alloxazine was synthesized according to a literature method.rr

Apparatus. 'H NMR spectra were measured on a JEOL JMN-AL 300 spectrometer.

UV-vis absorption spectra were recorded on a Hewlett-Packard HP8453 diode array

spectrophotometer at room temperafure. ESI-MS spectra were measured on a

Perkin-Elmer API-150 EX spectrometer. Infrared spectra were recorded on Thermo

Nicolet Nexus 870 FT-IR spectrometer.

X-ray Crystallography. All X*ray measurement were made on a Rigaku/MSC

Mercury CCD difftactometer with graphite-monochromated Mo Ka radiation (/ :
0.71075 A1 at -150 'C and the data were processed using CrystalClear ptogram

(Rigaku Co.p.).tt

For both l-PFo and l-ClO+, the structures were solved by direct methods (SIR 97

and SHELXS 97)t3 and refined by full-matrix least-squares method on f Uy using

Crystalstructure program package.to All non-hydrogen atoms were refined

anisotropically. Crystallographic data are summarized in Table 1. For l-ClO+, one of
the ligands, bridged between k2 and Ir4, could be resolved with two disordered

moieties, which were treated as rigid groups. The atoms in the disordered portions were

heavily superimposed, so that they were refined isotropically. All the chlorofoffns were

disordered with site occupancy of 0.5.

Synthesis

1-PF6. To a suspension of [IrCl2(Cp*)]2 (161 m9,0.20 mmol) in acetonitrile (20 ml),

was added AgPF6 (103 mg, 0.41 mmol). After 30 min of stirring at RT, the white

precipitate of AgCl was filtered off through a Celite pad and yellow powder was

obtained by removing acetonitrile. After dissolving the yellow powder into methanol

(30 ml), alloxazine (87.8 mg, 0.41 mmol) was added to the solution under Ar. The

mixture was stirred for 24 h at RT and then the solvent was removed by a rotary

evaporator. The residue was dissolved in a small volume of acetone and the solution

was filtered and then orange powder precipitated by adding a large amount of diethyl

ether to the frltrate. The orange powder was stirred overnight in chloroform. After that

the orange precipitate of [Ir(Cp*)(Hallo)Cl]PFo (A) was collected by filtration, washed

with chloroform and then dried in vacuo (yield: 33%). Elemental analysis (%) calcd for

CzosHzr.sOzNqlrClzsPFe(A'0.5(CHCI3)): C 31.50, H 2.77,N 7.17; found: C 31.80, H

2.94,N 6.62.

The precursor complex A was dissolved into acetone and vapor diffusion of CHCI:

into the solution gave crude crystalline 1-PF6, which was contaminated by alloxazine.
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This crude product was dissolved into acetone and the solution was filtered to remove

alloxazine. To the solution, CHCI3 vapor was diffused again to obtain red single

crystals of 1-PFo. Elemental analysis (%) calcd for CzrHsrNrzOsClrrPzFrzlra

(I-PF6.3CHCI3.2H2O): C 32.43, H 3.02,N 6.22; found: C 32.40, H 2.97, N 6.30.

Absorption maxima in acetone (L^u*,nm (e, M-lcm-')): 358 (2.4 " l0a), 400 (2.4 r 104),

455 and 535 (shoulder).

1-ClO4. The single crystals of l-PF6 were dissolved into methanol and 20-fold excess

amount of [(r-butyl)aN]ClO+ was added to the solution. Crystallization was made from

an acetone solution with vapor diffusion of CHCI: to obtain again red crystals.

Efemental analysis (%) calcd for Ctz.sHtssNrzOr+Clu.slr4 (1-ClOq.2.5CHClt): C 34.60,

H 3.06. N 6.68: found: C 34.60. H 3.16. N 6.89.
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Chapter 4

A Triangular Prismatic Hexanuclear Iridium(Ill) Complex

Bridged by Flavin Analogues

Showing Reversible Six-Electron Redox Processes

Abstract

[Ir6(alloCl2'}(Cp*)u(OH)sl8Fe)3 (complex 1) which has a novel coordination

mode was synthesized and characterized the crystal structure by X-ray analysis.

The complex indicated the reversible six-electron redox process on alloxazine

ligands in the organic solvent; an alloxazine can be reduced by two-electron. First
reduction processes on each of three alloxazine ligands in I to

[IrIII6Cp*6ftr-alloCl2'3-):(OH):l occurred at very near reduction potentials, such as

one-step reduction process, -0.65 V (vs FcO/*;. And also second reduction processes

on each of three alloxazine ligands in I were recorded in almost same reduction

potential, -0.78 V (vs F.o'*), and the multi-electron reduced form,

IIrIII6Cp*6ftr-alloCl2al3(OH):13-, was obtained. This organic metal in solution could

act as an electron pool due to the reversibility of the redox process; by the UV-Vis

measurement, the reduction process of I was traced with cobaltocene, and the

oxidation process of reduced form was underwent with p-chloranil. The radical

anion of alloxazine derivative was detected bv the EPR measurement.

η
‘

ワ
イ



Introduction

In nature, multi-electron redox reactions are found in important biological

processes including water oxidation at the oxygen evolving complex in photosystem IIr

and nitrogen fixation by nitrogenas".' In the former case, proton-coupled four-electron

oxidation of water to afford dioxygen is performed at a tetranuclear manganese-oxo

cluster.3 In the latter, proton-coupled six-electron reduction of dinitrogen is conducted at

the iron-molybdenum-cofactor, which is an iron-sulfur cluster with one molybdenum

centre, to form ammonia.a In each case, the multinulclear metal cluster manipulates the

multi-electron redox reaction as the redox-active site. Synthetic metal clusters having

bridging ligands have also demonstrated reversible multi-electron redox processes, in

which mixed-valence species are often involved.s In those metal clusters, redox

processes usually occur stepwise due to strong interactions among metal centers.5

Redox reactions of the bridging ligands in metal clusters, however, have not yet to be

much explored.6

Organic molecules often exhibit ill-reversible redox behaviour due to their large

structural change in the course of the redox processes. For example, heteroaromatic

coenzymes such as flavinsT and pterins8 mainly manipulate two-electron processes,

although they show irreversible redox behaviour in vitro. The metal coordination of the

coenzymes mentioned above makes their redox processes reversible by stabilization of
radical intermediates involved in the redox processes.e-rl In spite of their rich redox

chemistry, the redox-active heteroaromatic coenzymes have not been applied as

bridging ligands to form metal clusters exhibiting multi-electron redox processes.

HN

"4,uH

R = H : Alloxazine (H2allo)
R = Cl: 7,8-dichloroalloxazine (H2alloCl2)

Figure 1. Structures of alloxazine derivatives.

As a strategy to converge redox-active heteroaromatic coenzymes, the author

adopted alloxazines (Figure l) as flavin analogues performing stepwise two-electron

redox processes and the stable and redox-innocent iridium(Ill)-Cp* unit (Cp* :
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pentamethylcyclopentadienyl anion) as a platform to form lr(Ill)-alloxazine complexes.

The author has reported that alloxazine forms a tetranuclear lr(lll) complex, in which

alloxazine (H2allo) acts as a bridging ligand, however, the tetranuclear complex having

allo2 as bridging ligands is unstable to undergo fragmentation in solution.l2 The

instability of the tetranuclear complex has precluded to examine the redox process in

solution. Therefore, in this work, the author has employed 7,8-dichloroalloxazine

(HzalloClz) as a bridging ligand to attain a stable multinuclear Ir(III)-Cp* complex on

the basis of its better z-accepting character, i.e. the lower LUMO level, than Hzallo to

enhance z-back bonding from the Ir(III) centre (Figure 2). The author reports herein the

synthesis, characterization, and redox behaviour of a unique hexanuclear prismatic

Ir(III) complex having three deprotonated HzalloClz, alloClz2-, as bridging ligands. The

complex exhibits excellent stability in solution, making it possible to examine the

multi-electron redox processes.

LUMO――_… 1:"7kcJ mo卜
1

HOMO――

H2al10C12H2a‖0

Figure 2. LUMO orbitals of Hzallo (a) and HzalloClz obtained by DFT calculations at

the 83LYPl6-3lc level of theory. The energy level of LUMO (HzalloClz) was lower

than that of LUMO (H2allo) by 2.667 kcal mol-r.

Result and discussion

A novel hexanuclear Ir(III) complex was synthesized by the procedure described in

Scheme l. After the removal of the chloride ligands of a dinuclear bis-,u-chloro Ir(lII)
complex, [r(Cp*)Cl2]2, by AgPF6 in methanol, HzalloClz wos added to the solution
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under Ar. The mixture was stirred for 16 h at reflux. After cooling to room temperature,

the reaction mixture was filtered and orange powder precipitated by adding a large

amount of diethyl ether to the filtrate. The orange precipitate was recrystallized from

2-propanol to purify, and finally, the red crystal of I was obtained in l2o/o yield.

(H2alloGl2)
AAgPF5 4AgCl-(i- 

\ -lin CH3OH, RT in CH3OH, A, 16 h

Scheme 1. Synthetic procedure of l.

The crystal structure of [Ir6(alloClz)r(Cp*)o(OH)3]GF6)3 (1) is shown in Figure 3.r3

The crystal system was trigonal and the space group was R3c. As can be seen in the

Figure 3(a), the hexanuclear complex shows a three-fold symmetric structure. In Figure

3(b), the structure of the Ir6(alloCl2)3 core is presented by omitting the Cp* ligands and

PF6- counter anions for clarity. Each alloxazine ligand coordinates to three Ir(lII) ions in

u tr,-r7t:r7':r72-fashion. The complex includes a triangle-pole rt-space surrounded by

alloxazine ligands, and the maximum distance between the alloxazine ligands is 3.5 A.

This indicates that there are intramolecular n-r interactions to stabilize the structure.ra

Two protons at l-N// and 3-NH of HzalloCl2 are deprotonated to be a dianion and

replaced by Ir(IIf ions. The bond lengths for the lrl centre having the monodentate Nl
nitrogen (labeled as N3) of alloCl22 and a five-membered chelate ring involving N4

(labeled as Nl) and 05 (labeled as 01) positions were determined to be 2.16(4)

(Ir1-N3),2.17(3) (Irl-N1), and2.l4(4) A (Irl-Ol), respectively. As for theIr2 centre

having a four-membered chelate ring consisting of the N3 (labeled as N2) and 02

(labeled as 02) positions of the alloxazine ligand, the bond lengths of Irl-N2 and

b2-O2 were determined to be 1,98(3) and 2.22(4) A with the bond angle of O2-Ir2-N2

to be 60.6(12)o, respectively. In addition, the complex l contains three OH- ligands:

The bond distance of Ir-OH (Ir-O3 in Figure 3(a)) was 2.13(4) A. the three OH- ligands

form strong intramolecular hydrogen bonding, with the distance of 2.66 A, which also

contributes to stabilize the hexanuclear prismatic structure of l.
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ジ

N

lr: lrrrr(OH)(Cp.)
,r,.,rrrr{Cp*)

Figure 3. Stick description of crystal structure of 1. (a) A view of the hexanuclear

structure from the three-fold axis. (b) A view of the {Iro(alloClz)3} core; the Cpt ligands

and the OH ligands on the [r2 centers are omitted for clarity. (c) A schematic

description of the hexanuclear core structure of 1.
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Table 1. X-ray crystallographic data for l.PFo.

follllula

fw

crystal systern

space group

7(K)

α(Å )

C(Å )

/(Å
3)

Z

no.ofreflectiOns lneasured

no.ofobscrvations

no.ofparameters rcflncd

RI″

R″
ら
'C

GOF

CCDC no.

" Rl : > llFol - lFcll/ > JFol.'Rw: [ > (rv (Fo2 - F,11 lx w(F62)2]''t.' *: t I 7o211021

+ (0.1361P72 + 169L4005P1, where P: (Max(F6t, 0) * 2F,\ I 3

Table 2. Selected bond lengths (A) and angles (deg) of I

C90H99C16F181r6N1209P3

3293.78

trigonal

R3`

123

16.0783(6)

74.528(6)

16685.1(15)

6

31593

2214

211

0.0965

0.2415

σ>2.Oσ (ぅ )

1.092

888985

I11-01
1rl― Nl
lr2-N2
1r2-02
1r2-03
1rl― N3
01-C12
Nl― Cll
Nl― C20
N2-C12
N2-C13
02-C13
N3-C13
N3-C14
N4-C14
N4-C15

2.14(4)

2.17(3)

1.98(3)

2.22(4)

2.13(4)

2.16(2)

1.23(4)

1.35(4)

1.35(4)

1.39(5)

1.39(4)

1.10(5)

1.39(5)

1.39(5)

1.35(4)

1.35(4)

72.5(11)

87.1(14)

82.7(13)

119(3)

111.7(17)

118.1(18)

121(2)

116(3)

116(2)

60.6(12)

91.0(13)

92.3(19)

89(3)

118(3)

122(3)

Nl― Irl-01
Nl―Irl一 N3
01-Irl一 N3
lrl-01-C12
1rl― Nl一 CH
Irl― N3-C13
1rl― N3-C14
01-C12-CH
Nl― Cll― C12
N2-Ir2-02
N2-Ir2-03
1r2-N2-C13
1■2-02-C13
02-C13-N2
02-C13-N3

CH― C12  _   1.39(5)

82



The stabilization of the hexanuclear structure of 1 in organic solvents was

confirmed by diffusion-ordered NMR spectroscopy (DOSY) measurements in CDzClz.

The diffusion coefficient of I estimated from the DOSY spectrum (Figure 4) was 7.6 -
7 .7 x l0-ro mt s-'. On the basis of the result, the excluded volume of the molecule was

calculated to be 1.4 x 103 A3. According to the crystal structure, the radius of 1 is 7.2 A,

and the excluded volume is calculated to be ca. 1.5 x 103 A3. The good agreement

between the excluded volume obtained from DOSY experiment and that estimated from

the crystal structure indicates that the hexanuclear structure should be stable and

maintained in solution. In addition, the rH NMR spectrum of l was intact (Figure 5), in

sharp contrast to that of the tetranuclear Ir(IIf complex reported before.12 These results

Figure 4. DOSY spectra of I (2.8 mM) at room temperature in CDzClz after 48 h since

making sampie: (a) Low magnetic field; (b) high magnetic field.

(b)(a)

(a) (b)

| | | 48h

Figure 5. 'H NMR spectra of 1 (2.8 mM) at room temperature in CDzClz after 0.5 h,24

h and 48 h: (a) Low magnetic field; (b) high magnetic field.
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allow us to conclude that I is stable in solution and thus the redox behavior of the

hexanuclear Ir(lII) complex having three redox-active alloxazine ligands can be

discussed by electrochemical and spectroscopic measurements.

ESI-MS measurements also support the stability of the hexanuclear structure in

methanol solution to observe the peak cluster assigned to

f {Ir(Cp*)}e(alloCl2)3(CHrO)rl'* (mlz:967.1) as shown in Figure 6.

(a)

970

m/z

(b)

970

m/z
980

Figure 6。 (a)ESI―MS spectrum of l in CH30H at room temperature.(b)CalCulated

mass  number  of  [{Ir(Cp*)}6(al10C12)3(CH30)3]3+  (blaCk  line)  and

[{Ir(Cp*)}2(a110C12)Cl]+(dOtted line).

The traces of cyclic voltammograms of I and HzalloClz in CHrCN are presented in

Figure 7. The first reduction potential of the iridium complex was determined to be

-0.65 V (vs. ferrocene/ferrocenium (Fc/Fc-;;, and the process is assigned as the

reduction of the alloxazine ligand (alloClzz-lalloClz'3-) by EPR measurements (shown in

Figure 10). Owing to the interaction with three Ir(III) ions, the reduction potential of the

alloxazine ligand was positively shifted by +0.52 V in comparison with that (-1.17 V)

of uncoordinated HzalloClz (dotted line in Figure 7;.r5 The second reduction potential of

I was determined to be -0.78 V (vs. FclFc*).'t The reduction processes of 1 exhibited
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improved reversibility in comparison with those of uncoordinated H2alloClz: Peak

separations are 0.12 V in the first reduction and 0.08 V in the second reduction. The

two-step reduction of 1 indicates that the three alloClz2- ligands are simultaneously

reduced in each step to form llrtttoCp*u(l-alloCl2'3-)3(OH)s] and

lIrlII6Cp*o(&r-alloCl2a-)3(OH)l]3 , respectively. Thus, each redox process can be ascribed

to a three-electron process. In the reduction processes, the II(III) centre is

redox-innocent, since the Ir(lII) centre would undergo two-electron reduction to afford a

diamagnetic Ir(I) centre in a square-planar geometry by losing some ligands. This is

inconsistent with EPR spectral change in the course of the reduction as discussed below.

― ―
‐ 1

・口"・・H2a‖OC12

‐1.0       ‐15

E/V(vs FcO/+)

‐2.0

Figure 7. Cyclic (upper) and differential pulse (lower) voltammograms of I and

HzalloClz. Conditions: (black line) I (l mM), (broken line) Hzallocl2 (l mM) in the

presence of TBAPFo (0.1 M) in CH3CN under Ar at room temperature using Pt as

working and counter electrodes, and Ag/AgNO: as a reference electrode.

UV-vis absorption spectral change in the course of the reduction of I with

cobaltocene (CoCp2) is shown in Figure 8. The spectral change continued until adding 6

equivalents of CoCpz, indicating that three two-electron accepter ligands (the alloClz2

ligands) in I were fully reduced to reserve six electrons in one molecule. It should be

noted that the spectral change was reversible: The original spectrum of I was recovered

by oxidation with p-chloranil (Figure 9). The increase of the absorbance at 648 nm

(LMCT) is enhanced after the addition of three equivalents of CoCpz, as shown in Fig.

5(b). This result suggests that the spectral change in the first reduction step of the
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alloCl2- ligands is smaller than that for the second reduction step of the ligands. The

spectral change also indicates that the three alloxazine ligands are reduced by

cobaltocene independently and three radical anions are produced

([Ir6(alloClr'-)r(Cp*)u(oH[]3*/[Ir6(alloCl2'3-)r-(Cp*)o(oH)r]). After the first

independent one-electron reduction, the three one-electron-reduced alloxazine

(alloCl2'3-) ligands undergo another simultaneous one-electron reduction to afford

alloClza-. Thus, it is concluded that the hexanuclear Ir(Ill)-alloxazine complex I can

accept six electrons reversibly at higher potential than -1 V.
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Figure 8. Absorption spectral change in the reduction of 1 with cobaltocene in CHICN

at room temperature. lnset: The titration curve based on the absorbance change at 648

nm relative to the concentration of cobaltocene: (a) 0 - 3eq of CoCpz; (b) 4 - 8eq of

CoCpz.
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[Chloranil]/ [1]

Figure 9. UV-vis titration with p-chloranil for the six-electron reduced species of 1

formed by cobaltocene in CH:CN (see Figure 8). The reoxidation process was

monitored by the absorption at 448 nm due to the radical anion ofp-chloranil.

EPR measurements for the reduced species rof 1 formed by the reduction with

CoCpz were carried out in CH3CN at 100 K. Upon addition of I equivalent of CoCpz,

an EPR signal was observed atg:1.9977 without showing any hyperfine structure as

shown in Figure 10. The signal was assigned to an lr(Ill)-coordinated radical anion of

-1eq
-2 3

-4 5

-6

310

Figure 10. EPR spectral change observed in the course of the reduction of 1 (l mM)

with cobaltocene in acetonitrile under Nz at 100 K.
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Figure ll. Change of spin concentration of reduced species of I relative to the ratio of

lCoCpz]/[l]. The spin concentration was represented by the percentage of double

integration of the signals due to the reduced species of 1 relative to that of the same

concentrati on of DPPH (2,2-diphenyl- I -picrylh y drazyl).

the alloxazine ligand. The signal is not merely due to the simply one-electron reduced

species of 1, but also one or two or three alloClz2- of the three alloClz2 , which can be

reduced independently, since the three alloxazine ligands in I show the same redox

potential as described above.l6 In addition, the alloxazine ligands exhibit intermolecular

x-x interactions as indicated by the crystal structure, and thus some magnetic coupling

may operute among the alloxazine radical anions through space. The second equivalent

of CoCpz slightly decreased the EPR signal intensity at the same g value, however, the

spin concentration was little altered as shown by the peak integration in Figure 11.16 In

the third electron injection, the spin concenffation was almost the same as those

observed in addition of the first and second equivalents of CoCpz. It is suggested that

the unpaired electrons are coupled antiferromagnetically, not fenomagnetically, to

reduce the EPR signal intensity in the two- and three-electron reduced species of I due

to the close contact among the alloClz2 ligands.rT

In order to elucidate the little spin concentration change in the course of the

three-electron reduction of 1, disproportionation of the two-electron reduced complex

can be considered to give the one-electron and three-electron reduced species upon the

addition of the second equivalent CoCp2 as depicted in Figure 12. The driving force of
the disproportionation should be neutralization of the molecular charge. The third

equivalent of the reductant affords the three-electron reduced species involving the three

alloClz'3 ligands.

0
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In the four-, five-, and six-electron reduction steps, the alloxazine radical anions

(alloCl2'3 ) are further reduced to two-electron-reduced diamagnetic alloxazine anions

(alloClza ). In this process, the alloClz'3 showed a different g value (l.ggg2) from that

(1.9977) of the first three-electron reduction process because of the interaction with

alloClza- in place of alloCl2'3 .

r,,zl
-5l 

": I

Ir,, t
I

e-arl
--l

tf-r- -r-

Figure 12. Schematic description of unpaired electron occupancy of z+ orbitals of the

alloClzz* ligands of 1 in the course of the first three-electron reduction.

Summary

The author has synthes ized anorganometallic lr(III) hexanuclear prismatic complex

with alloxazine derivatives as redox-non-innocent bridging ligands. In sharp contrast to

the previously reported tetranuclear Ir(lll)-alloxazine complex, the complex I exhibited

excellent stability in solution without fragmentation. The stability allows us to observe

the reversible multi-electron redox processes at the bridging ligands to give a

six-electron reduced species of 1 in solution. The strategy to converge redox-active

organic molecules into one multinuclear metal complex as bridging ligands would

provide new functionality of integrated metal complexes as ligand-centered

multi-electron redox svstems.

Experimental section

Material and Method

CH3CN (Wako Pure Chemical Industries) was purified by distillation over CaHz.

CH3OH (Wako Pure Chemical Industries) was used without further purification.

Iridium(Ill) trichloride was purchased from Tanaka Holdings Co., Ltd.. Alloxane,

4,5-dichloro-1,2-phenylenediamine, 1,2,3,4,S-pentamethylcyclo-pentadiene were

purchased from Tokyo Chemical Industries. Silver hexafluorophosphate was purchased

from Sigma-Aldrich. These reagents were used as received. TBAPF6 (Tokyo Chemical

Industries) was recrystallized from water and ethanol (l:1 (v/v)) and then from ethanol.
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[IrCl2(Cp*)]2r8 and 7,S-dichloro-alloxazine'' were prepared according to literature

methods.

Apparatus. UV-vis absorption spectra were recorded on a Hewlett-Packard HP8453

diode array spectrophotometer. ESI-MS spectra were measured on a Perkin-Elmer

API-150 EX spectrometer. Electrochemical measurements were performed on a BAS

CV-50W. EPR spectra were recorded on a JEOL JEX-REIXE spectrometer. All the

measurements were carried out at room temperature.

Electrochemical Measurements. Cyclic voltammetry and differential pulse

voltammetry were performed in CH3CN in the presence of 0.1 M [(n-butyl)4N]PF6
(TBAPF6) as an electrolyte under Ar at room temperature, with use of a Pt electrode as

a working electrode, AglAgNO3 as a reference electrode, and a Pt wire as an auxiliary

electrode.

UV-vis Atrsorption Spectroscopy. UV-vis absorption spectra were measured at RT in

CH:CN (3 ml) under Ar. The concentration of hexanuclear iridium complex was 46 pM.

CH3CN was degassed by freeze-pump-thaw cycling and was filled with Ar. The

reduction of I by cobaltocene (99%) was followed by UV-vis spectroscopy in CH:CN

at room temperature.

EPR Spectroscopy. EPR spectra of reduced species of 1 (l mM) with sequential

addition of cobaltocene were recorded in CH3CN (300 pl) at room temperature and the

g values were determined relative to an Mn2* marker.

DFT Calculations. Density functional theory (DFT) calculations were made on a

32CPU workstation (PQS, Quantum Cube). Geometry optimizations were carried out

using the Becke3LYP functional and the 6-31G(d) basis set as implemented in the

Gaussian 03 program Revision C.02.20-22 Graphical outputs of the computational results

were generated with the Gauss View software program (ver. 3.09) developed by

Semichem,Inc.23

X-ray Crystallography. The single crystal of 1 was obtained by recrystallization from

2-propanol. X-ray diffraction data were collected on a Rigaku R-AXIS RAPID imaging

plate diffractometer with graphite-monochromated Cu Ka radiation (A: 1.54187 A1 at

-150'C. The data were processed using PROCESS-AUTO program (Rigaku Co.p.).'o

For the hexanuclear iridium(Ill) complex, the structure was solved by direct methods

(SHELXS 97)2s and refined by full-matrix least-squares method on F 26 by using

Crystalstructure 4.0.1 program package (Rigaku Co.p.).tt The six-membered rings of
alloClz2 and the Cpx groups were treated as rigid groups, and the latter groups were

refined isotropically. The hydrogen atom of OH coordinated to Ir ion could not be

located. After successive trials, solvent-accessible voids of 1870 A3 in all (calculated

by SQUEEZE) were left unfilled, in which heavily disordered solvent molecules were
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supposed to be contained. The last refinement was performed using the reflection data

modified by SQUEEZE- Crystallographic data are summarized in Table l. The selected

bond lengths (A) and angles (deg) are listed in Table 2.

Synthesis

Complex l. To a suspension of [IrCl2(Cp*)]z (83.6 mg, 0.105 mmol) was added to the

solution of AgPF6 (113.5 mg,0.449 mmol) and methanol (10 ml). After 15 min of
stirring at room temperature, the white precipitate of AgCl was filtered off through a

Celite pad. The filtrate was concentrated to a small volume and 7,8-dichloroalloxazine

(29.7 m9,0.105 mmol) was added to the solution under Ar. The mixture was refluxed

for 16 h and then the solution was cooled down to room temperature. After the solvent

was removed. the residue was dissolved in acetonitrile. The solution was filtered

through a Celite pad and then the filtrate was dried up by a rotary evaporator. The

residue was dissolved in acetone and a large amount of diethyl ether was added to

obtain orange precipitate. Recrystallization of the precipitate from 2-propanol afforded

red crystals of I (40.0 mg 12o/o). Elemental analysis (%): Found. C 33.06, H 3.03, N

5.53; Calcd. for CqzHrozNr:OqlroP:FrsClo (1.CH3CN) C 33.14, H 3.08, N 5.46. ESI-MS

in CH:OH: m/z : 967. I ([{Ir(Cp*)}6(allocl2)3-(CH3o)r]'*).
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Concluding Remarks

In this thesis, the author described crystal structures of metal-containing assemblies

of N-heteroaromatics as ligands. Thermodynamic analysis of formation behaviors of
assemblies and elucidation of the impact of the formation of supramolecular assemblies

by non-covalent interactions gave us important information in relevance to biologically

important phenomena. As component of assemblies, the N-heteroaromatics form

various non-covalent interactions with molecules or ions by using their a-conjugated

ring, hydrogen-bonding sites, and coordination sites. Metal ions occasionally act as

template cations to form well-organized structures and improve the reversibility of the

redox behavior of redox-active heteroaromatics. Results and findines in this work are

summarized as follow.

(1) The main purpose of the direct observation of the interaction between a G-quartet

and porphyrins was achieved by producing the stable G-quartet without bulky

peripheral functional groups. Crystal structures of G-quartets with Na* and Ca2* as

templates and without template cations were obtained and the formation behavior of
G-quartet structures with Na* and Ca2* was analyzed on the basis of the thermo-

dynamic analysis. The author elucidated that the electrostatic interactions is the

most important factor to stabilize the G-quartet structures and the Lewis acidity of
template cations inversely affected on the enthalpy of the formation of the G-quartet.

It was clarified that the adduct of the G-quartet and a porphyrin is formed by J-type

a-a stacking. It was suggested that the driving force of the adduct formation is the

electrostatic interaction between an anionic porphyrin ligand and the cationic

G-quartet. The assembly of the G-quartet and a porphyrin changed the structural

motif depending on temperatures.

(2) The effect of hydrogen bonding on the redox behavior of the pterin ligand was

investigated using nucleobases in organic solvents. The first reduction potential of
pterin ligand was demonstrated to show large positive shift by the three-point

complementary hydrogen binding with a guanosine derivative. Binding constants of
nucleosides to the Ru(Il)-bound pterin was determined and the thermodynamic

parameters of the formation of the supramolecular assemblies were analyzed on the

basis of van't Hoff plots. The crystal structure of the adduct of the pterin derivative

and a guanine derivative was determined to demonstrate the three-point hydrogen

bonding in the adduct. In the presence of thymidine, the formation behavior of
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adduct of the pterin ligand and the thymidine derivative was suggested to be

different according to the redox state of the pterin ligand: The thymidine binds to

the oxidized form in a two-point mode and to the reduced form in a single-point

mode with the N-8 position.

(3) The author synthesized and characterized a novel tetranuclear iridium(lll) complex

with alloxazine as a functional bridging ligand in various coordination modes. The

novel tetranuclear iridium(Ill) complex was demonstrated to form a supramolecular

structure having a cavity, in which two of counter anions were included, through

intermolecular hydrogen bonding. The counter anion could be exchanged to another

counter anion via self-reorganization in the course of crvstallization.

(4) A dichlorinated alloxazine derivative was revealed to act as a bridging ligand to

stabilize a hexanuclear prismatic iridium(lll) complex in solutions due to enhanced

r-back bonding from the Ir(III) center to the lowered n* orbital of the alloxazine

ligand. The stable hexanuclear iridium(Ill) complex allowed us to observe the

redox behavior of the three bridging alloxazine ligands in the integrated metal

complex. Two-step three-electron reduction processes of the alloxazine ligands

were reversible and the potentials were higher over -0.5 V than those of the

corresponding uncoordinated neutral alloxazine. Thus, it was revealed that

six-electron reduction in total occurred in one molecule due to the integration of the

alloxazine ligands. The integration of functional ligands as bridging ligands into

one multinuclear metal complex provides possibility to access new redox functions

of those complexes.

Assemblies regulated by non-covalent interactions demonstrate characteristic structures

andproperties in vivo as well as invitro. The self-organization is absolutely imperative

for life. Throughout this thesis, the author has demonstrated the elegance of the

optimized environment and structural design of biological systems through the

compounds prepared in this work. The author believes that the fundamental insights into

assemblies of bioactive heteroaromatics via self-organization can provide the

development of enhanced understanding biological reactions and the application of
biological phenomena to develop functional molecular and supramolecular assemblies.
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