

Title	閃亜鉛鉱型構造を有するGa関連化合物の熱電特性及び 構造空孔がそれらの特性に及ぼす影響
Author(s)	金, 昶恩
Citation	大阪大学, 2013, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/27553
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

江市,6453

博士学位論文

閃亜鉛鉱型構造を有する Ga 関連化合物の熱電特性及び構造空孔がそれらの特性に及ぼす影響

金 昶恩

2013年1月

大阪大学大学院工学研究科

博士学位論文

閃亜鉛鉱型構造を有する Ga 関連化合物の熱電 特性及び構造空孔がそれらの特性に及ぼす影響

金 昶恩

2013年1月

大阪大学大学院工学研究科

目次

第1章	序論・・・	1
1.	1 研究	背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
·	1.1.1	エネルギーの現状及び熱電変換・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1.1.2	熱電変換の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2
	1.1.3	性能向上に関する基礎理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・7
	1.1.4	熱電変換の応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
	1.1.5	近年の熱電変換材料研究の傾向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
1.	2 自然;	ナノ構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	1.2.1	構造空孔を含むDiamond-like構造材料・・・・・・・・・・・・・・・・・・・・・・・・18
	1.2.2	欠陥型閃亜鉛鉱型構造を有するGa2Te3, Ga2Se3, In2Te3のナノ構造・・・・・・・20
	1.2.3	自然ナノ構造を有するGa2Te3の熱伝導率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.	3 研究(の目的と内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
参	考文献・	
第2章	Ga ₂ Te ₃	とGa2Se3において見られる構造空孔の分布状態が熱伝導率に与える影響・・・・・・28
2.	1 研究和	皆景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	2 本章(の目標・・・・・・・・・・・・・・・・28
2.	3 実験2	方法••••••••••••••••••••••29
	2.3.1	試料作製・・・・・・29
	2.3.2	試料同定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.3.3	物性測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

2.4 結果と考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.4.1 試料同定・・・・・・・
2.4.2 構造空孔の分布状態と熱伝導率の相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.5 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
参考文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第3章 GaSb-Ga2Te3固溶体作製による構造空孔の導入及び熱電特性の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1 研究背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.1 構造空孔の熱電性能向上の手法としての応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.2 構造空孔の導入方法及び対象の選択・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.1 試料作製・・・・・・50
3.2.2 試料同定・・・・・・50
3.2.3 物性測定・・・・・52
3.3 結果と考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3.1 試料同定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3.2 電気的特性・・・・・・55
3.3.3 熱伝導率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3.4 性能指数・・・・・・58
3.4 結論・・・・・・60
参考文献 · · · · · · · · · · · · · · · · · · ·
第4章 GaSbのキャリア濃度調整及び熱電特性の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1 研究背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

4.1.1 高移動度を有する閃亜鉛鉱型構造材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1.2 熱電材料としてのGaSb・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2 実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2.1 試料作製・・・・・・・66
4.2.2 試料同定・・・・・・66
4.2.3 物性測定・・・・・・67
4.3 結果と考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.1 試料同定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.2 電気的特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.3 熱伝導率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.4 性能指数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.4 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
参考文献 ••••••••••••••••••••••••••••••••••••
第5章 総括・・・・・・・・・・.81
謝辞••••••86
研究成績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

.

第1章 序論

1.1 研究背景

1.1.1 エネルギーの現状および熱電変換

近年、化石燃料の枯渇などの資源問題や地球温暖化などの環境問題が至急に解決しなければならない問 題となっている。これら2つの問題は、新エネルギー源の開発および確保によって解決できる。そのため、新しいエ ネルギー源に関する研究が盛んに行われている。例えば、自然エネルギーを有効利用できる方法として太陽光 発電、風力、地熱などがある。特に太陽光発電は国の政策によって普及しつつあり、上に述べた2つの問題の 解決に対してある程度貢献している。しかし、エネルギーを消費している我々は新しいエネルギー源を探索するこ とと同時に、現在のエネルギー消費状態について十分に反省および見直す必要がある。我々は多様な形態で エネルギーを消費しているが、熱として無駄に捨てているエネルギーの量は莫大である。例えば、工場や発電所 などの大規模施設・車やビルなどの中型施設・家庭などの中・小規模施設では廃熱が利用されずに捨てられて いる。しかし、これらの熱エネルギーはエネルギー密度が低く、再回収して有効に利用できるための適切な手段が なかった。

もしこれらの廃熱エネルギーを回収して利用することができれば、上記の2つの問題の解決へ大きく貢献するこ とができる。そこで注目され始めたのが熱電変換技術である。熱電変換技術は材料に温度差がある場合に起 電力が生じるゼーベック効果を用いた発電方法であり、構造が簡単かつコンパクトであり、エネルギー変換効率 が規模によらないため小型化が可能といった特徴を有しており、エネルギー密度の低い廃熱エネルギーの回収に 最適であると考えられる。また、熱電変換技術で廃熱エネルギーを我々にとって一番有効な形態である電気エ ネルギーとして回収できるため、回収したエネルギーを再利用しやすいといった利点もある。図1.1に熱電変換技 術を利用した廃熱エネルギーの回収の概要を示す。

図1.1.熱電変換による廃熱の再利用の効果

1.1.2 熱電変換の概要

表1.1に熱電変換の歴史を示す。

		我们,就是实际的准义
年度	研究者	
1762年	Ëpinus	・電気石の電気現象に関する研究
		・電気石の表面を暖めると両電極間に電位が発生する
		\cdot WX ₃ B ₃ Al(AlSi ₂ O ₉) ₃ (O,OH,F) ₄ (W=Na,Ca, X=Al,Fe,Li,Mg)
1821年	Seebeck	・異種の半導体で作られた回路の接合部を加熱すると、置かれたコンパスが針
		が動く
		・針の振れ幅と方向の関係を熱電系列として配列
1833年	Peltier	・2種類の導体に電流が流れるとその接合部で発熱、吸熱が起きる
		・ゼーベック効果との関係は明らかにせず
1838年	Lenz	・Bi-Sbを組み合わせた熱電対で、それの接合部で水を凍らせたり溶かせたりす
		ることを実証
		・ゼーベック効果とペルチェ効果の関係に気づく
1851年	Thomson	・ゼーベック電圧とペルチェ熱との間の関係を確立
		・温度差のある同一導体に電流が流れると、熱の放出、吸収が生じる(トムソン
		効果)
1885年	Rayleight	・変換効率を計算し、熱電発電の可能性を再提起
1909年	Altenkich	・ $Z = S^2 \sigma / \kappa c$ 導く
		・熱電材料を用いた冷却・加熱の研究

表11 熱雷変換の歴史[1]

2つ以上の異なる固体が回路を作り、接合点が互いに異なる温度におかれる際に起電力が生じる現象が 1762年**Ë**pinusによって発見され^[2]、約180年前からゼーベック効果として呼ばれ始めた。

ゼーベック効果を発電技術に応用する際に熱エネルギーを電気エネルギーに変換する材料の性能(変換効率ではない)を表す指数として性能指数と呼ばれるZTを用いる。ZTは以下のように表される。

$$ZT = \frac{S^2 \sigma}{\kappa} T \cdots (1-1)$$

ここでSはゼーベック係数(VK⁻¹)、 σ は電気伝導率($\Omega^{-1}m^{-1}$)、 κ は熱伝導率(Wm⁻¹K⁻¹)、Tは絶対温度(K) である。性能の優れた材料は大きなゼーベック係数と電気伝導率、小さい熱伝導率をもつ材料であることはこの 式から明らかである。金属の場合非常に高い電気伝導率をもつが次の2つの問題より性能指数は10⁻³程度の オーダーにしかならない:①数 μ VK⁻¹程度の非常に低いゼーベック係数を持つ②高い熱伝導率を持つ($\kappa = \kappa_e + \kappa_I = \sigma LT + \kappa_I$: κ_e 電気伝導による熱伝導率への寄与分、 κ_I 格子振動による熱伝導率への寄与分、Lローレンツ 定数、金属の場合 $\kappa_e > > \kappa_I$)。一方、半導体は金属ほどの電気伝導率は持たないが、性能指数に二乗で影 響を与えるゼーベック係数が数百 μ VK⁻¹程度の値となるため*ZT*=10⁻¹~1前後に達することができる。そのため、 熱電変換発電には一般的に半導体材料が用いられる。熱電変換においてはこれらの半導体材料は図1.2に 示すようにn型・p型半導体を π 型に配置したペアとして利用され、熱電変換素子ではこの π 型ペアが複数個組 み合わされた構造となっている。

図1.2.(a)π型ペア、(b)複数のπ型ペアを組み合わせて構成される熱電変換素子の概略^[3]

熱電変換材料の最大変換効率(ξ_{max})は最適接合抵抗の条件下で式によって表される。

$$\xi_{\max} = \frac{T_H - T_C}{T_H} \frac{M - 1}{M + T_C / T_H} \cdots \cdots (1-2)$$

$$M = \left[1 + Z / 2(T_H + T_C)\right]^{1/2} \quad and \quad Z = \frac{(S_1 - S_2)^2}{\left[(\rho_1 \kappa_1)^{1/2} + (\rho_2 \kappa_2)^{1/2}\right]^2} \dots \dots (1-3)$$

- ここで、S_{1,2}、ρ_{1,2}、κ_{1,2}はそれぞれの足のゼーベック係数、電気抵抗 熱伝導率を示す。

図1.3は上式から、低温部の温度を300 Kと固定し、 σ 、 κ 、Sが温度に依存しないと仮定した場合のZと最大変換効率(ξ_{max})の関係を示す。

図1.3.低温側と高温側の各温度比に対するZTと変換効率の関係 (T_{cj}=300 K、T_{hj}=高温側の温度)^[4]

熱電変換は熱機関の一種であるためカルノー限界を持ち、高温側と低温側の温度差が大きいほどエネルギー 変換の効率がよくなる。高温側を700~1000 Kと比較的に高い温度と設定し、熱電発電を実用化するため の最低限の条件といわれている10%程度のエネルギー変換効率を達成するためには、1.5程度の性能指数の n型・p型材料が必要となる。さらに、上で述べた「エネルギー密度の低い廃熱エネルギーの回収手法」として熱 電発電の利用を広めるためには、高温側の温度は300~500 Kであるために2.0程度の性能指数をもつn型・ p型材料が必要である。

図1.4に代表的な高性能熱電材料の性能指数の温度依存性を示す。

図1.4.代表的な高性能熱電変換材料の性能指数の温度依存性[4]

前述のように実用化のためには1.5~2.0の性能指数が必要であるが、どの材料も最高性能指数が1程度に とどまっていることがわかる。また、素子ではn型とp型の材料をに組み合わせてペアーとして使用するため、それぞ れの材料が同じ温度領域(作動する温度領域)で高い性能指数をもつ必要があるが、その条件を満たした材 料が少ない。全体的にp型の性能がn型の性能より高く、高性能のn型材料の開発が必要である。また、作動 温度が高温領域となる場合熱膨張の影響が顕著になり、p・nの材料の間の熱膨張率の差が大きければ素子 が破損されることが予想されるため、熱膨張率などの物性まで考慮しなければならない。

以上のことから、一つの材料で同じ温度において高い性能をもつp型・n型を作製することが望ましい。一般的 に半導体においては、キャリアのタイプが変わっても熱伝導率の変化は小さい。しかし、電気的な特性(電気伝 導率・ゼーベック係数)は電子またはホールの伝導系の特性に大きく影響を受けて変化するため、必ずしも優れ た性能を示すp型材料のキャリアタイプをn型に調整した場合にも高い性能を示すとは限らない。例えば、バンド 構造や状態密度は電気伝導率とゼーベック係数に大きく相関をもつ移動度や有効質量に直接影響を与える ため、価電子帯と伝導帯においてバンド構造や状態密度が異なっていると、どのタイプのキャリアが支配的である かによって同じキャリア濃度であるとしても電気伝導率とゼーベック係数の絶対値に大きな差が生じる。

1.1.3 性能向上に関する基礎理論

性能指数を決定する各物性は互いに独立ではなく、伝導電子(あるいはホール)の濃度(キャリア濃度)と相関がある。その依存性は定性的に図1.5のように示すことができる。

図1.5.熱電性能指数と、関係する各物性のキャリア濃度依存性[5]

電気伝導率はキャリアの濃度に比例し、ゼーベック係数はキャリア濃度が増加すると小さくなる。熱伝導率ょは 格子振動の寄与ょと電子の寄与ょ。(κe=σLT、Lはローレンツ数)からなる。一般的にょ」はキャリア濃度に依存 せず、κeはキャリア濃度に比例して増加する。図1.5からわかるように性能指数の分子の項であるS²σ(出力因 子)のグラフは極大値をもつことがわかる。出力因子が最大となるキャリア濃度(10¹⁹~10²⁰cm⁻³付近)は電子 系が縮退している範囲であるため、ヘビードープした半導体において大きい性能指数が期待できることがわかる。 ヘビードープした半導体において高い性能指数が期待できる理由がもう1つある。材料の伝導系において同程 度の濃度と移動度をもつ逆の符号の2つのキャリアが同時に存在する場合、温度差をつけると両方の効果に相 殺されゼロに近い起電力しか得られない。また、2種類のキャリアが再結合しながら熱を運ぶ両極性拡散による 熱伝導率への寄与が顕著に現れるため、全熱伝導率の大きさが増加することで性能指数が低下してしまう。そ のため1種類のキャリアが支配的になるようにヘビードープする必要がある。

最も簡単なシングルバンド伝導と放物線バンドを仮定した場合、半導体の電気特性は次の式で表すことができる。

$$n = \frac{4\pi \left(2m^* kT\right)^{3/2}}{h^3} F_{1/2}(\mu^*) \cdots \cdots (1-4)$$
$$S = \pm \frac{k}{e} \left[\frac{r+1}{r+2} \frac{F_{r+1}(\mu^*)}{F_r(\mu^*)} - \mu^*\right] \cdots \cdots (1-5)$$
$$\sigma = ne\mu \cdots \cdots (1-6)$$

ここでnはキャリア濃度、m*はキャリアの有効質量、 $F_r(\mu^*)$ はフェルミ積分、rは散乱因子、 μ^* は還元フェルミ エネルギー、eは電荷量、 μ はキャリアの移動度、kはボルツマン定数である。フェルミ積分は次式で表される。

$$F_r(\mu^*) = \int_0^\infty \frac{x^r}{\exp(x - \mu^*) + 1} dx \cdots (1-7)$$

一般的に半導体では格子熱伝導率が電子熱伝導率より大きな値を示すため、電子による熱伝導率の項を 無視できると仮定し、(1-4)~(1-8)より次式が導出できる。

$$ZT \propto \frac{m^{*3/2}\mu}{\kappa_l} \cdots \cdots (1-8)$$

この式は、性能指数が有効質量の3/2乗、キャリアの移動度に比例し、格子熱伝導率に反比例するとこを示 唆、材料の熱電性能を見積もる際によく用いられる。有効質量はフェルミエネルギー付近での状態密度と大き な相関がある。フェルミエネルギー付近での状態密度の傾きに比例する。しかし、フェルミエネルギー付近の状態 密度を調整することは難しく、様々な努力がなされてきたが確かな結果は今までほとんど得られていない。状態 密度の調整による性能向上に成功した数少ない例としては、不純物添加による共鳴準位の形成が挙げられる ^[6-8]。通常、不純物は価電子帯の上か伝導帯の下、つまりバンドギャップの中に不純物準位を形成する。しか し、価電子帯の中に準位を形成し、マトリックスの状態密度と形成された不純物の準位が重なって鋭い傾きの 状態密度を作り出す場合もある。フェルミエネルギー付近に不純物準位が形成されると、大きなゼーベック係数 が得られる。PbTelCTIをドープした研究において、実験的にこのような効果が報告がされている^[9]。

移動度は結晶の結合によって大きく変わる。共有結合化合物では、イオン結合性の結晶よりもキャリア移動 度は高い。共有結合性が高く、高移動度をもつダイヤモンド構造の元素半導体、閃亜鉛鉱型構造のIII-V、 II-VI化合物などがその例である。しかし、共有結合性化合物とイオン結合性化合物の間に厳密な境界はなく、 電子雲の重なりの程度によるものであるため、共有結合性化合物でも構成する元素の電子親和力の差が大 きければイオン結合性が大きくなり、逆も然りである。その例として、IV族およびV族のカルコゲン化合物(PbS, PbSe, PbTe, Sb₂Te₃, Bi₂Se₃等)はイオン結合性化合物でありながら、ほとんど共有的性格の結合であり、 比較的に大きい移動度をもつ高性能熱電材料である。また、一連の同形化合物、例えばPbS, PbSe, PbTe、 を比較すると、化合物の第二成分元素が同属のより重い元素に置き換えられるにつれて結合はイオン性から共 有結合性となり(テルルの電子親和力は硫黄の電子親和力よりはるかに小さい)移動度が増加するという法則 が見られる。しかし、これは一般的な法則ではなくイオン結合などがないダイヤモンド構造の材料においても類似 した法則が見られるため、必ずしもイオン結合性と共有結合性のみでは説明できない。化合物の第二成分元 素が重い元素になるほど移動度が増加する第2の原因としては、同じ族に属するが周期の異なっている原子の 分極率は原子番号の増加、つまり電子雲の広がりおよび電子の数の増加とともに増加することが挙げられる。つ まり、重い原子ほど電場によって強く分極する、例えばゲルマニウムの誘電率はダイヤモンドの約4倍である。分 極に関係するのは外部場ばかりでなく、結晶固有の周期ポテンシャルも関係する。その作用で、重い原子の原 子雲は可成変形し、その結果結晶の周期的ポテンシャル起状が起こる。共有結晶の構成原子が重いほど、共 有結合の方向性は少なくなり平均化され、共有に垂直な方向におけるポテンシャルの起状はそれだけ不明瞭に なる。以上を要約すると、大きな移動度は重い原子からなる共有結合的、あるいはほとんど共有結合的な結 晶に期待できるといえる[10]。

しかし、移動度と有効質量を完全に分離して考えることはできない。一般的に高移動度を有する材料は小さい有効質量を示し、低移動度を有する材料は大きい有効質量をもつ。そのため、上で述べた共鳴準位の形成のような特殊な場合を除いてほとんどの場合、移動度と有効質量どちらかを保ったまま片方だけを改善して性能を大幅に向上することは一般的な方法では限界があると考えられる。

低い格子熱伝導率を有する物質は、複雑な構造を持ち単位胞の中に多数の原子を含む材料において見られる^[11-13]。また、構成原子の平均質量が重く、デバイ温度が低い材料においても系統的に見られる。このような特徴はSlackの公式^[14-15]によく現れている。移動度について述べたように重い元素を使うことより低い熱伝 導率と高い移動度の実現を同時に狙うことができるが、デバイ温度は結晶の結合力や格子の振動と関係があるパラメータであって、デバイ温度が低いとキャリア移動度まで低い場合が多い。 性能指数を決定する3つの物性は上で述べたように独立ではないため、全ての物性を性能が向上するように 調整することが難しく、互いに相反しているためいずれかに偏って性能が低くならないように、適切にバランスをとる ことで最大の性能に達することができる。

1.1.4 熱電変換の応用

熱電変換による発電の長所は、熱をエネルギー源として利用しながらも既存の発電方法と異なってタービンな どの稼働部がないことである。稼動部がないため振動や騒音がなく、シンプルな構造をもつ。既存の発電施設の 主なる故障の原因がタービン系であることを考えると、メンテナンスフリーであるとも言える。また、規模とエネルギー 変換効率の間に相関がないため、構造がシンプルである特徴と合わせると小型化に適しているといえる。総合的 にこれら特徴を考慮すると、熱電発電は限りなく多様な応用が期待できる。図1.6にこれら利点をまとめる。

図1.6.熱電変換のメリット

しかし、実用化のために解決しなければならない課題が残されている:実用化した場合にメリットがあるほどの 変換効率に達していない、量産化にするためのクリア条件である低コスト化ができていない、等である。例は少な いが以下にいくつか実用化された例をあげておく。

①パルチザンの飯盒

最も知られている熱電変換発電は、図1.7に示す焚き火の熱を用いた無線通信装置の電源としての利用である。旧ソ連の工業化課題に関連してIoffeによって提案され、ZnSb化合物半導体とコンスタンタン(CuNi合

金)が組み合わされた素子が用いられた。その変換効率は約4%であった。

図1.7.バルチザンの飯盒: 焚き火による熱電発電(ZnSbとコンスタンタンの組み合わせ)[16]

②宇宙探查用衛星

宇宙探査用衛星は熱電変換の長所を全て必要とする、特殊な場合である。精密機器の集合体である衛星 に振動や消音は致命的であり、従来のな発電技術では条件を満たせない。また、宇宙探査用衛星は打ち上 げてからは人の手が届かない場所で仕事を果たすためにメンテナンスが不可能であるが、熱電変換発電はその 条件も備えている。図1.8に実際1987年、NASAのプロジェクトとして作製された熱電電池を示す。

図1.8.熱電電池を搭載した宇宙探査用衛星の電源の概略[17]

③自動車

将来、熱電変換発電が広く実用化され利用されると期待されているのは自動車である。自動車は低い密度 の熱エネルギーを放出する。日本だけで、約750万台の車が使われており、また、ある統計によると2050年には 世界的に車の数が10億台になり得るという報告もある。その膨大な数の車から排熱として放出してしまうエネル ギーを熱電変換を用いて回収することで、化石燃料のより効果的な使用を実現しようとする研究が活発に行わ れている。その一例としてドイツの会社、BMW社において実際計画されている熱電発電による自動車の廃熱 回収システムの概略を図1.9に示す。

図1.9.BMW社の熱電変換による自動車の廃熱回収システムの概略図^[18]

自動車においてはエンジンから出る熱の温度が最も高く、比較的に熱エネルギーが高密度のまま存在する。そ のためそれを直接利用することが一番望ましいが、エンジンで燃焼を終えた直後の排気には多数の公害・有害 物質が含まれており触媒を使って廃棄ガスの浄化を施す必要がある。触媒の効率を上げるためにはある程度の 高温条件が必要であるためこのステップの熱を熱電発電に使用することは望ましくない。そのため、温度がやや落 ちるものの浄化を終えた排気が通るステップに熱電素子を設置して、廃熱を回収することが検討されている。今 の段階では自動車内部で電気を消耗するラジオや照明などへの利用が考えられている。

④腕時計

人間は生命を維持するために、常に体温が36~37度に保たれるようになっている。その面で人間も一つの放 熱体と言える。この体温を利用しようとする試みが、図1.10に示す熱電変換を利用した腕時計である。これは、 人体と大気の温度差を用いた熱電による発電である。

図1.10.(a)熱電素子を利用した腕時計、(b)内部構造^[19]

1.1.5 近年の熱電変換材料研究の傾向

前節で述べたような特徴をもつ熱電発電の利用をより広めるためには性能の改善が第一に解決すべき課題 である。そのため1990年度以前までは主に有望な高性能熱電材料を探し、キャリア調整による出力因子の最 適化や合金化散乱による熱伝導率の低減を行うことでZTの向上を図ってきた。しかし、実用化の目安といわれ たZT>1の性能は達成できず、これを越えた材料を開発・改善することができなかった。ZT>1の達成を妨げる 大きな原因は合金化散乱による熱伝導率低減の限界であり、これによって下げられた熱伝導率以下に熱伝 導率を低減させることが難しいことである^[20-22]。またゼーベック係数、電気伝導率、熱伝導率が互いに相関を もっため、独立的に制御することが容易ではないこともその原因の1つである。つまり、1つの物性を向上すると、 ZTが低減する方向に他の物性が変化してしまう。そこで1990年代から①量子閉じ込め効果を利用して、 各々の熱電特性の独立的な制御による電気的特性の向上②多数の境界面を利用した合金化散乱以上の 熱伝導率の低減、の2つを目標として、他の半導体の製造技術を用いて薄膜やナノワイヤー、超格子構造のよ うな低次元熱電材料が活発に研究され始めた。低次元材料は、熱を運ぶフォノンや電気を運ぶ電子の波長に 近い厚さを持つ薄膜や直径を持つナノワイヤの材料のことであり、これによって3次元のバルク材料で見られない 効果が期待できる。それによって3次元バルク材料では強い相関をもつ3つの熱電特性(σ、S、κ)が低次元では 相関が小さくなり、他の特性に影響を与えずにほぼ独立的に一つの特性だけを調整。この二つの手法について 簡単に説明する。

① 低次元化による性能向上

対象のシステムのサイズをナノメートルまで落とすとキャリアの状態密度の形が大きく変わる。その様子を図

1.11に示す。

図1.11.N次元(N=0~3)の材料における状態密度の変化[22]

これを利用すると同じキャリア濃度においてゼーベック係数を大きくすることが可能となり、電気伝導率や熱伝 導率に影響を及ぼすことなくゼーベック係数のみの変化が期待できる。また、系の次元が低くなると3次元では見 られなかった物理現象が現れ始める。例えばキャリア-ポケットエンジニアリング^[23]、エネルギーフィルタリング^[24]、 セミメタル-半導体転移(図1.12)^[25]などがあげられる。

Decreasing wire diameter

図1.12.ナノワイヤーの半径の変化ともなう半金属⇔半導体転移の概要[25]

② 多数の境界面構造による熱伝導率の低減効果

AllonらはElectroness etching(EE)で作製したシリコンのナノワイヤーの熱電特性を報告した^[26]。シリコン をナノワイヤーに加工する利点は、キャリアとフォノンの平均自由行程の差から得られる(110 nm: electron ^[27,28], 310 nm: phonon ^[29] at room temperature)。Allonらの研究において作製されたナノワイヤ ーの直径が300 nm以下であることを考慮すると、Siナノワイヤーにおいてはフォノンのみが積極的に散乱され、 電気的特徴には大きく影響を与えずに熱伝導率がバルク試料の熱伝導率より1/100まで減少させることに成 功したために、室温で0.5の性能指数が達成されたと考えられる。図1.13に報告されたナノワイヤーのTEM画 像、出力因子、性能指数を示す。

図1.13.EE法を用いて作製したSiナノワイヤの(a)、(b)走査型電子顕微鏡画像、 (c)直径52nmナノワイヤの出力因子と性能指数の温度依存性^[26]

次に、Venkatasubramaniaらがmetallorganic chemical vapor depositionで作製した Bi₂Te₃/Sb₂Te₃の人工超格子についての報告について述べる。フォノンの散乱と人工超格子構造の周期は緊 密な関係をもつことが明らかにされている^[30]。図1.14に作製された超格子構造のTEM画像、格子熱伝導率 とフォノンの平均自由行程と超格子の周期との関係を示す。

図1.14.(a)Bi₂Te₃-Sb₂Te₃の人工超格子の透過型電子顕微鏡画像(左)及び熱伝導率、 (b)格子熱伝導率、フォノン平均自由行程の超格子周期との関係^[30]

この結果は次の3つにまとめることができる:①超格子の最低格子熱伝導率は周期~50 Åにおいて現れ、 薄膜試料の値の1/2.2である0.22 WK⁻¹ m⁻¹を示した②それより長い周期の超格子においては格子熱伝導 率の加重平均に近づくことがわかった③50 Åより短い周期では周期が短くなると周期に反比例して熱伝導率 は増加し、固溶体の値に近づく。この結果より、特定の周期の超格子の境界面においてフォノン散乱が強まって フォノンの平均自由行程が減少したことを示唆する。

上のような報告によって合金化散乱以上に熱伝導率を低減させられる可能性が見出され、限界と考えられた ZT=1を超えられると期待された。しかし、低次元熱電材料は生産方式が複雑で量産が困難であるため実用 化に適していないことがわかる^[31]。

実用化のためにはバルクである必要がある。その中で、Hsuらがバルク状のAg_nPb_mSb_nTe_{2n+m}でn=1、 m=18の組成でナノレベルの析出物による性能向上がなされ、ZT~2の高い性能指数を報告した^[32]。この化 合物はNaCl構造をとるPbTeを基本マトリックスとし、カチオンサイトを占めるPb(2+)をAg(1+)とSb(3+)を同 じ比率で置換することでカチオンサイトの平均電荷数2+を保ちながら固溶体を作っている。つまり、n=0が PbTe、m=0がAgSbTe₂であり、nを1に固定してmを変化させるのが基本コンセプトである。図1.15にキャリア 調整を行ったm=18組成の試料の熱電特性とナノ析出物のTEM観察図を示す。

図1.15.Ag_nPb_mSb_nTe_{2n+m}(n=1, m=18)の

(a)電気的特性、(b)熱伝導率、(c)性能指数の温度依存性、(d)ナノ析出の透過型電子顕微鏡画像[32]

Ag_nPb_mSb_nTe_{2n+m}(n=1, m=18)は他の組成(m≠18)の試料に比べて大きい電気伝導率とゼーベック 係数を示し、出力因子が2.8 x10⁻³ Wm⁻¹K⁻²まで達した。また熱伝導率は~2.3 WK⁻¹m⁻¹まで低減されて 性能指数が800 Kにおいて2.1に達した。図1.15にm=18試料のTEM画像を示すが、Hseらは白い線で表 しているようなナノスケールでの特集的な構造がMolecular Beam Epitaxy法によって作られたPbSe/PbTe 薄膜材料において見られるQuantumナノドットと同様であり、そのためナノスケールでの効果がバルク材料にも 現れて大きい性能改善ができたと述べた。

フォノンとキャリアの平均自由行程の間に差があるため、ナノスケールで複数の境界面が構築できれば、フォノンのみ選択的に散乱させるためZTの改善ができる。近年、このコンセプトに基づいた多数の報告が次々になされている^[31,33,34]。

1.2 自然ナノ構造

前節で述べたように、バルク材料にナノ構造を導入することによって熱伝導率の効果的な低減に達成でき、熱 電性能が大きく向上した研究が数多く報告された。本研究でも同様にナノ構造材料、特に、自然ナノ構造を 有する材料に着目した。自然ナノ構造を有する材料とは、既存のナノ構造バルク材料では溶解度ギャップを用 いたナノスケールの析出、ボールミルを用いた機械的粉砕により出発物質のナノパウダー化などによってナノ構造 化を行ったが、そういった方法を用いなくても材料が本質的にナノ構造を有する材料を言う。

1.2.1 構造空孔を含む Diamond-like 構造材料

14族元素(C、Si、Ge)を構成元素とし、4配位をとるダイヤモンド構造(DM構造)(図1.16)を基礎として Partheらが確立させた価電子数則^[35]に従って図1.17に示すような化合物群の導出ができる^[36]。

図1.16.ダイヤモンド構造

図1.17.価電子数規則[35]によって定まる構造空孔を有する化合物の系列[36]

1 種類の 14 族元素からなる DM 構造に対して 1:1 の比で 2 種類の構成元素から DM 構造をとる構造を 閃亜鉛鉱型構造(ZB 構造)と言う。 13 族と 15 族元素からなるものを III-V 族 ZB 構造材料、 さらに 12 族 と 16 族元素からなるものを II-VI 族 ZB 構造材料と言う。 III-V 族、 II-VI 族 ZB 構造について陰イオン数 を固定し、総価電子数を保ったまま陽イオンの構成を変えることで図 1.17 が得られる。□と表記されているの は空孔を意味する。 一般的な空孔あるいは欠陥の場合は、結晶の中に不安定な状態で存在する。 しかし、 価 電子則に従って導出できた図 1.17 に羅列されている空孔は結晶の電気的な中性を保つため必然的なもので あり、結晶内で安定した状態で存在する。 そのため、他の空孔と区別するため構造空孔と呼ぶ^[37]。

1.2.2 欠陥型閃亜鉛鉱型構造を有する Ga₂Se₃、Ga₂Te₃、In₂Te₃のナノ構造

本研究では前節の図1.17に示した系列の中で赤い矢印で示している2:3の比でIII族とVI族の元素からなるGa₂Se₃、Ga₂Te₃、In₂Te₃に注目した。これらの化合物は1/3の陽イオンサイトが構造空孔となった欠陥型 関亜鉛鉱型構造である。3つの材料に注目した理由は全ての1/3の陽イオンサイトといった極めて高い濃度で 存在する構造空孔を持ち、自然に特徴的な微細構造を示すからである。過去にこれらの化合物の特徴的な 構造を調べる研究が多数行われている^[38-42]。近年、中村らによって報告されたGa₂Se₃とGa₂Te₃の透過型 電子顕微鏡の観察結果^[43,44]を図1.18と図1.19に示す。

図1.18.中村らによって報告された透過型電子顕微鏡の観察図1^[43] (a)空孔が点状に存在するGa₂Se₃、(b)空孔が面状に存在するGa₂Se₃

図1.19.中村らによって報告された透過型電子顕微鏡の観察図2(入射方向: <110>)^[44] (a)空孔が面状に存在するGa₂Te₃、(b)空孔が面状に存在するGa₂Se₃

Ga₂Te₃では溶解せた後、融点の直下で2週間熱処理を施して水に急冷することで規則的に並ぶ面状空孔 (10格子間隔(3.5 nm))を含む相を得られることが知られている。Ga₂Se₃では①溶解した後、1173 Kで1 週間熱処理を施して水に急冷することで面状空孔を含む相、②溶解後、873 Kで4週間熱処理を施して水 に急冷することで点状空孔を含む相が得られることが知られている^[44]。最後に、In₂Te₃では面状空孔は見ら れず、規則的な点状空孔と不規則な点状空孔を含む、2種類の相が存在することが知られている。表1.4にこ れら3つの材料の空孔分布状態をまとめて示す。

表1.2.Ga₂Se₃、Ga₂Te₃、In₂Te₃がとる構造空孔の分布状態

化合物	空孔の分布状態	文献
α -Ga ₂ Se ₃	面状	[45]
β -Ga ₂ Se ₃	規則·点状	[46]
Ga ₂ Te ₃	面状	[47]
α-In ₂ Te ₃	規則・点状	[48]
β -In ₂ Te ₃	不規則·点状	[49]

上で述べたように構造空孔より特徴的な構造を持つGa2Se3、Ga2Te3、In2Te3は、その構造的特徴が材料の物性にも大きく影響を与えることが予測でき、構造空孔と物性を結びつける研究が求められる。近年、熱電変換材料の性能向上に関して"ナノ構造化による熱伝導率の効果的な低減"が注目されており、構造空孔の分布によるナノ構造が熱電特性の向上への利用が期待できる。

1.2.3.自然ナノ構造を有するGa2Te3の熱伝導率

Kurosakiらより過去に報告された Ga_2Te_3 と In_2Te_3 の熱伝導率の温度依存性を図1.20に示す^[50]。

図1.20.Ga2Te3とIn2Te3の熱伝導率(点)、計算により求められた最低熱伝導率(実践)の温度依存性[50]

2つの材料は基本的に閃亜鉛鉱型構造に属する。閃亜鉛鉱型構造は単純な構造であり、基本格子内に 含む原子の数も少ない。こういった特徴の材料は通常、高い熱伝導率を示す。しかし、Ga2Te3とIn2Te3は比 較的に低い熱伝導率を示し、構造内に含まれる高い濃度の構造空孔がその理由であると述べられた。また、 InはGaより2倍近く重い(Gaの原子量:69.723、Inの原子量:114.818)ため、In2Te3の熱伝導率がより 低いと予測されるが、Ga2Te3の熱伝導率がより低い。黒崎らはこの結果について2つの材料の中に存在する構 造空孔の分布状態が異なることが理由であると述べている。これらの結果は構造空孔の存在が熱伝導率の低 減に効果的であり、熱電変換材料への応用に関する研究が必要であることを示唆している。

1.3 研究の目的と内容

無駄に捨てられる廃熱を有効な電気エネルギーに回収できる技術として熱電変換が注目されている。しかし、 広く利用できる程度の性能を持つ材料がないため、熱電変換材料の性能向上に関する研究が盛んで行われ てきた。1990年代から、材料の低次元化による熱電特性の大幅な向上が報告されたが、低次元材料は生 産方式が複雑であるため実用化に適していない。近年、ナノスケールの析出物を含むナノ構造バルク材料にお いて大きな熱伝導率の低減による熱電特性の向上が報告されてから、ナノ構造を含む材料が注目され始めた。 そこで、本研究では構造空孔を含む III₂VI₃ 化合物に注目し、その構造空孔の分布状態によって自然に現れ るナノ構造に着目した。特に、Ga₂Te₃ や Ga₂Se₃ が持つ面状空孔はフォノンを効果的に散乱させ、熱伝導率 を大きく低減させると知られているため、面状空孔や空孔制御などによる熱電変換材料への応用を図ることを 目的とした。その目的を達成するためには以下の2つを課題項目と設定した。

①構造空孔の分布状態と熱伝導率の相関

②構造空孔の他の材料への応用方法

本章に続く第2章は Ga2Te3、Ga2Se3 について構造空孔の制御を行い、構造空孔の分布状態と熱伝導率の相関について議論する。

第3章では面状空孔や空孔制御などによる熱電変換材料への応用の方法として、他の材料と Ga2Te3の 固溶による空孔面の導入を試みた結果について述べる。

第 4 章は欠陥を含まない通常の閃亜鉛鉱型構造を有する GaSb のキャリア濃度の調整し、熱電特性の評価を行う。

最後に、5章は、各章のまとめを総括して述べる。

『参考文献』

- 1. 熱電変換-基礎と応用、裳華房、坂田亮、2005年
- 2. T. J. Seebeck, Abhandlugen der Deutschen Akademie der Akademie der Wissensc haften zu, 265 (1822).
- 3. http://www.kelk.co.jp/useful/netsuden2.html
- 4. 熱電変換技術ハンドブック、NTS、監修・梶川武信、2008年
- http://www1.eere.energy.gov/vehiclesandfuels/pdfs/thermoelectrics_app_2011/we dnesday/snyder.pdf
- 6. C. M. Jaworski, V. Kulbachinskii, J. P. Heremans, Phys. Rev. B 80, 233201 (2009).
- 7. H. J. Goldsmid, J. Electron. Mater. 41, 2126 (2012).
- 8. J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).
- 9. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).

10. サーモエネメント、日刊工業新聞社、訳・坂田民雄、1962年

- 11. G. J. Snyder, and E. S. Toberer, Nat. Mater. 7, 105 (2008).
- E. S. Toberer, A. Zevalkink, N. Crisosto, and G. J. Snyder, Adv. Funct. Mater. 20, 4375 (2010).
- 13. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).
- 14. G. A. Slack, Solid State Phys. 34, 1 (1979).
- 15. R. Bruls, H. T. Hintzen, and R. Metselaar, J. Appl. Phys. 98, 126101 (2005).
- 16. http://www.kelk.co.jp/useful/netsuden3.html
- 17. http://www.osti.gov/accomplishments/rtg.html
- http://www1.eere.energy.gov/vehiclesandfuels/pdfs/thermoelectrics_app_2011/ monday/eder.pdf
- 19. http://www.seikowatches.com/heritage/worlds_first.html
- 20. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar,

Phys. Rev. Lett. 96, 045901 (2006).

- 21. J. C. Duda, T. S. English, D. A. Jordan, P. M. Norrls, and W. A. Soffa, J. Phys. Condens. Matter. 23, 205401 (2011).
- 22. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. Fleurial, and P. Gogna, Adv. Matter. 19, 1043 (2007).
- 23. T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, Appl. Phys. Lett. 77, 1490 (2000).
- 24. Y. I. Ravich, B. A. Efimova, V. I. Tamarchenko, Phys. Status Solidi B 48, 453 (1971).
- 25. L. D. Hicks, T. C. Harman, M. S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).
- 26. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
- 27. N. W. Ashcroft and N. D. Mermin, "Solid State Physics", Sauders College Publishing (Fort Worth, 1976).
- S. M. Sze, "Physics of Semiconductor Devices", John Wiley & Sons (New York, 1981).
- 29. Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74, 3005 (1999)
- 30. R. Venkatasubramanian, Phy. Rev. B 61, 3091 (2000).
- 31. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).
- K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K.
 Polychroniadis, M. G. Kanatzidis, Science 303, 818 (2004).
- 33. Y. Pei, J. L. Falk, E. S. Toberer, D. L. Medlin, and G. J. Synder, Adv. Funct. Mater. 21, 241 (2011).
- 34. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).
- 35. E. Parthe, Acta Cryst. B29, 2808 (1973).
- 36. J. M. Delgado, Proc. 11th ICTMC 152, 45 (1998).
- 37. C. Lubbers and D. Leute, J. Solid State CHem. 43, 339 (1982).
- 38. E. Finkman, and J. Tauc, Phys. Rev. Lett. 31, 890 (1973).

序論

- 39. H. Hahn, and W. Klinger, Z. Anorg. Chem. 260, 97 (1949).
- 40. H. Inuzuka, and S. Sugaike, Proc. Jap. Acad. 30, 383 (1954).
- 41. J. C. Wooley, B. R. Pamplin, and P. J. Holmes, J. Less-Common Metals 1, 362 (1959).
- 42. A. I. Zaslavskii, N. F. Kartenko, and Z. A. Karachentseva, Sov. Phys. Solid State 13, 2152 (1972).
- 43、中村吉男、花田剛、まてりあ 37、993 (1998).
- 44. 中村吉男、花田剛、電子顕微鏡 32、150 (1997).
- 45. H. Hahn, W. Klinger, A. Anorg. Chem. 259, 135 (1949).
- 46. M. Y. Khan, J. Appl Crystallogr. 10, 70 (1977).
- 47. G. G. Burlaku, M. M. Markus, V. G. Tyrzin, Izv. Akad. Nauk SSSR, Neorg. Mater. 13, 820 (1977).
- 48. T. Karakostas, N. A. Economou, Phys. Status Solidi (a) 31, 89 (1975).
- 49. H. Hahn, W. Klinger, A. Anorg. Chem. 260, 97 (1949).

• •

第2章 Ga2Te3とGa2Se3において見られる構造空孔の分布状態が熱伝導率に与える影響

2.1 研究背景

第1章で述べたように構造空孔より特徴的な構造を持つGa2Se3、Ga2Te3、In2Te3は、その構造的特徴が 材料の物性にも大きく影響を与えることが予測でき、構造空孔と物性を結びつける研究が求められる。近年、 熱電変換材料の性能向上に関して"ナノ構造化による熱伝導率の効果的な低減"が注目されており、構造空 孔の分布によるナノ構造が熱電特性の向上への利用が期待できる。

2.2 本章の目標

・目的1:空孔面の分布状態と熱伝導率の関係

Ga2Te3で構造空孔は面状のみで存在する。熱処理を施すことによってその面状になった空孔面の配列状態を変えることを試み、空孔面の配列状態が異なる試料の熱伝導率を比較することで空孔面の分布状態が熱伝導率に与える影響を調べることを目標とする。

・目的2:空孔の点状分布・面状分布時の熱伝導率

構造空孔が面状と点状でどちらの分布状態も取りうるGa2Se3において、それぞれの空孔分布を持つ試料を 異なる熱処理条件によって作製し、熱伝導率を比較することで点状に存在する場合と面状に存在する場合、 構造空孔が熱伝導率に与える影響の違いについて調べることを目標とする。 2.3 実験方法

2.3.1 試料作製

空孔面の分布に関する研究においては購入したGa2Te3(99.99%)をそれぞれ二つの石英間に真空封入した後、表2.1に示しているような条件で熱処理を施した。得られたインゴットを乳鉢を用いて粉砕し、その粉末をホットプレスによって焼結をした。焼結は873 K、圧力62 MPaのもとで3時間、アルゴン雰囲気の条件で行った

表 2.1.Ga2Te3の熱処理条件及び試料の名称

試料の名称	GT-IP	GT-RP
	673	973
熱処理時間 (day)	14	14
冷却方法	炉冷	急冷

また、構造空孔の点分布・面分布に関する研究のためには、購入したGa2Se3(99.99%)を石英管に真空 封入した後、1273 Kで12時間いったん溶解、その後冷却を行って得られたインゴットを乳鉢を用いて粉砕し、 粉末を放電プラズマ焼結することで高密度の試料を作製した。焼結で得られたバルク試料を熱伝導率の測定 に適した二つの試料に加工して、それぞれを別の石英管に真空封入して表2.2に示した条件で熱処理を施し た。

試料の名称	GS-VA	GS-IP
熱処理温度 (K)	873	1173
熱処理時間 (day)	30	7
冷却方法	急冷	急冷

表2.2. Ga2Se3の熱処理条件及び試料の名称

2.3.2 試料同定

試料同定はX線回折(XRD: X-ray diffraction)パターンの結果から行った。はX線の回折現象を用いて 結晶の情報を得ることができる分析方法である。X線は真空状態の X線管の陰極から放出された電子が 30~50 kVの高電圧で加速され、その電子がターゲットに衝突するとき発生する。発生されたX線を試料に照 射すると、Braggの条件を満たすとき回折が起きる。図2.1にXRD装置の概略とBraggの回折条件を示す。

図2.1.X線回折装置の原理と概略
面間隔dの結晶構造に波長λのX線がその結晶構造と角度のなして入射されるとき、反射角が入射角に等 しければ、各反射X線はの位相はそろっており、波は干渉し互いに強め合う。図2.1の格子面1と2からの反射X 線の位相がそろうのは、図中の赤い線、つまり2dsinのが波長の整数倍になるときであり、Braggの回折条件 (2dsinθ=nλ)が満たされるときである。X線は、結晶により特定方法のみに回折されつため、それによって間接 的に面間隔d値を求めることができ、結晶構造の情報を得ることができる。また、試料の微細構造を高解像度 透過型電子顕微鏡(HRTEM、JEOL JEM-3000F入射電子のエネルギー 300 kV)を用いて観察を行った。

2.3.3 物性測定

熱伝導率はレーザフラッシュ法を用いて拡散係数を測定し、次式を用いて計算した。

$$\kappa = DC_p \alpha \cdots (2-1)$$

Dは試料の密度、 C_p は比熱、 α は熱拡散率である。式で使われた比熱はデュロン=プティの法則より決定した。

測定原理としては、平版試料をレーザーフラッシュ法熱定数測定装置中に設置し、試料にレーザー光を照射 する。これによって、試料の裏面までの温度の裏面から出てくる熱量)を測定するこにより熱拡散率を求めること ができる。図2.2に測定原理を示す。

図2.2.レーザフラッシュ法の原理と概略

熱拡散率を求める方法として、ハーフタイム法と対数法がある。物質の比熱 $C_p[Jmol^1K^{-1}]$ と求められた熱拡散率 $\alpha[cm^2s^{-1}]$ 、さらに試料の密度 $\rho[gcm^{-3}]$ を用いて、次式によって熱伝導率 $\kappa[Wm^{-1}K^{-1}]$ を導き出すことができる。

測定を性格に行うためには次にあげる条件を満たす必要がある。

1) レーザー光のパルス幅が裏面の温度上昇時間に対して十分に短いこと

2) レーザー光が試料に均一に照射されること

c) 試料からの熱損失が小さいこと

d) 試料自体がほとんど熱膨張しないこと

装置は真空理工株式会社製TC7000型レーザーフラッシュ法熱定数測定装置を用い、出力約 6J、波長 6943 Åのルビーレーザーを使用し、測定は真空下で行った。得られた熱拡散率をと次の式を用いてして熱伝 導率を計算した。

<ハーフタイム法>

断熱状態にある平版資料の表面にレーザーパルスで瞬間的に熱を与えた時の温度分布をT(x,0)とすると、 t時間後の温度分布T(x,t)は次式で表される。但し、熱拡散率を α 、試料の暑さをLとする。

$$T(x,t) = \frac{1}{L} \int_0^L T(x,0) dx + \frac{2}{L} \sum_{n=1}^{\infty} \left\{ \exp\left(-\frac{n^2 \pi^2 \alpha t}{L^2}\right) x \cos\frac{n\pi x}{L} \int_0^L T(x,0) \cos\frac{n\pi x}{L} dx \right\} \dots (2-2)$$

この式を次の条件を満たす初期条件、境界条件の下に解く

I、輻射、熱伝達などによる試料からの熱損失を無視する

Ⅱ、試料に照射された熱パルス幅 j が試料の裏面の温度上昇に用する時間に比べて小さい

Ⅲ、試料に照射された熱パルスは試料の裏面に一様に照射し、かつ表面での熱吸収が一様である
 Ⅳ、試料は均質で熱的定数が熱パルス照射による照射の温度上昇範囲で変化せず一定である
 すると、以下の式が得られる

$$T(x,t) = \frac{Q}{\rho C_P L} \left\{ 1 + 2\sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{L}\right) \exp\left(-\frac{n^2 \pi^2 \alpha t}{L^2}\right) \right\} \dots (2-3)$$

ここで、Qは熱パルス照射による試料の表面に吸収された熱エネルギー密度である。熱パルス照射後の試料 表面(x=L)の温度上昇の最大値T_{max}は一般的に次のように表せる。

$$\Delta T_{\max} = \frac{Q}{\rho C_P L} \cdots (2-4)$$

よって、

$$\frac{T(L,t)}{\Delta T_{\max}} = 1 + 2\sum_{n=1}^{\infty} (-1)^n \exp(-n^2 t^2) \cdots (2-5)$$
$$t' = \frac{t^2}{L^2} \cdots (2-6)$$

ここで、 $T(x,t)/T_{max} = 1/2$ のときt' = 1.37であるので、熱拡散率は次式で与えられる。

$$\alpha = 1.37 \frac{L^2}{\pi^2 t_{1/2}} = 0.1388 \frac{L^2}{t_{1/2}} \cdots (2-7)$$

T_{1/2}は熱パルス照射後、試料の裏面の温度が最大上昇温度の1/2に達するまでに要する時間であり、試料の 裏面温度の時間変化曲線から読み取ることができる。

.

٩

.

2.4 結果と考察

2.4.1 試料同定

作製した二つのGa2Te3について図2.3に粉末XRDパターンを示す。

図2.3.Ga₂Te₃のGT-IPとGT-RPのXRDパターン

(サテライトピークの比較のために(111)面に相当するピークの周辺を拡大したものをともに示す)

基本的にすべてのピークは閃亜鉛鉱型構造に起因したピークである。ただし、GT-RPとGT-IPの両方の試料 において (111)ピークの左右にその構造に起因しないピークが現れていることがわかる。これは空孔面によるサテ ライトピークであり、周期性を持ち正しく配列しているGT-RPにおいてこのピークは鋭く、第1反射と第2反射まで 確認できることに対して、GT-IPの試料ではブロードに現れている。これは空孔面の周期性が乱された結果であ る。(111)面の方向に高い周期性を持つ長周期構造の周期をサテライトピーク位置から次式を用いて求めるこ とができ^[1]、その周期は約3.5 nmであることが算出される。

$$\Lambda = \frac{(i-j)\lambda}{2(\sin\theta_i - \sin\theta_i)} \cdots (2-8)$$

ここでΛは長周期の周期、iとjはサテライトピークのオーダー、λは入射X線の波長(Cu-Kα:0.15418 nm)、θ はサテライトピークの散乱角度の半値である。

次に二つの試料の微細構造を直接観察するために行ったHRTEMの画像を図2.4に示す。これらは[110]方向からの入射によって撮られた画像である。GT-RPにおいて明るい線のように現れているのが空孔面であり、結晶全体において4つの等価な{111}面上に規則正しく約10格子間隔(約3.5 nm)で配列していることがこの図より明瞭にわかる。この間隔はXRDパターンより算出した[111]方向へ現れた新しい周期と一致する。

図2.4.(a)GT-IPと(b)GT-RPのHRTEM画像及び電子線回折パターン(電子線入射方向:[110])[2]

36

GT-IPにおいても空孔面が確認でき、同様に結晶全体において存在することがわかる。しかし、その周期性は GT-RPと異なって大きく乱れている。この空孔面の周期性に関する情報は電子回折パターンからも得ることがで きる。規則的に現れている明るい反射点はすべて等価であって{111}面を示す。まず、GT-RPにおいて {111}面反射点の間に明るい線ようなもので繋がっているように見えるが、これを拡大してみると九つの小さい 反射点があることがわかる。これは10格子間隔の空孔面によるサテライトピークであり、鮮明な点として現れてい ることから規則性をもって配列していることがわかる。それに対してGT-IPの試料においてこのサテライトピークはに 対応する反射点は鮮明でない。これらHRTEM画像と電子線回折パターンの結果はXRDパターンで見られた 傾向とよく一致していると言える。

これらの結果より本研究において目的とした規則正しく並んだ空孔面を有する試料と周期性が乱された試料 の作製に成功したことがわかる。

次に、試料同定のために行ったGa2Se3のXRDパターンの測定結果を図2.5に示す。

図2.5.(a)GS-IPと(b)GS-VAのXRDパターン

いずれの試料でも基本的に閃亜鉛鉱型構造に起因したピークが観察されている。GS-VAにおいては閃亜 鉛鉱型構造に起因するピーク以外に構造空孔の規則配列によるピークも見られ、またメインピークである(111) 面に対応するピークが一番大きく鋭く現れている。しかし、GS-IPの場合はメインピークである(111)面のピーク 強度が低下し、セカンダリピークの強度とその大小関係が逆転していることがわかる。また、(111)面反射がGS-VAの結果と比べてブロードになっていることがわかる。この結果より、GS-IPの場合結晶中の(111)面の方向に 周期性を乱すような何かが起きていることが推測できる。 XRD パターンの結果より予想される空孔の配列の仕方の変化を直接見るために HRTEM 観察を行った。その結果を図 2.6 に示す。

図 2.6. (a)GS-IPと(b)GS-VAのHRTEM 画像及び電子線回折パターン

(電子線入射方向:(a)[110]、(b)[001])^[2]

GS-VAの試料において空孔は面状に分布せずに独立して点状で存在していることがわかる。構造分析結果、 空間群 Cc (No. 9)、a=0.6608 nm、b=1.16516 nm、c=0.66491 nm、 α = γ =90°、 β =108.8 4°、Ga1: (0, 0,0.5798)、Ga2:(0.9699,0.9967,0.2432)、Se1:(0.3589,0.1073,0.2572)、 Se2: (0.3688,0.1368,0.5793)、Se3:(0.3322,0.1116,0.9182)の単斜晶であることがわかった。し かし、この構造の基本構造は関亜鉛鉱型構造で、構造空孔が1/3の陽イオンサイトの1つの[112]方向に規 則的にジグザグ配列すると考えることができる。また、個々の原子位置としては理想的な四面体結合構造位置 からSe-Ga-SeあるいはGa-Se-Gaの3原子間の角度が103~117.5°の範囲を維持しながら、構造空孔に 相当する空間を埋めるように統計的に変異し、平均格子は正方晶と見なすことができる^[3]。

GS-IPにおいてはGa2Te3で見られたような面状に集合した空孔面が見られる。また、電子回折パターンにおいてもGa2Te3での結果と同じくメイン反射の間に明るい線状が現れていることが確認できる。XRDパターンにおいて(111)ピークの強度が弱く・ブロードに表れた原因は、この面状空孔によるものと考えられる。これらの結果より目標とした二つの試料①「空孔が点として分布」②「空孔が面状に分布」の作製に成功したと考えられる。ただし、GS-IPはGS-VAが得られた温度で同じく30日間熱処理を施してもGS-VAにならずに空孔は面状のまま存在し、GS-VAは高温で熱処理を施すとGS-IPになることをXRDパターンから確認しており、このことからGS-VAは低温で存在する準安定相と考えられる。

これらの化合物の構造空孔の点状・面状、2 つの分布状態をとる理由については明らかではない。しかし、第 一原理計算によるトータルエネルギーの比較によって議論できると考える。計算は CAmbride Serial Total Energy Package(CASTEP)を用いて次のような手順で行いました。空孔がそれぞれ点状と面状にのみ分布 する In-Te と Ga-Te 系についてそれぞれ関亜鉛鉱型構造の基本格子を 3x1x1 に拡張させたスーパーセル で図 2.7 に示すように設定した(面状 Ga₂Te₃、点状 Ga₂Te₃、面状 In₂Te₃、点状 In₂Te₃)。空孔導入によ る構造の緩和を考慮するため、構造最適化を行って得られた構造でトータルエネルギーの計算を行った。

40

第2章

関亜鉛鉱型構造の基本格子を 3x1x1 に拡張させたス 関亜鉛鉱型構造の基本格子を 3x1x1 に拡張させたス ーパーセルの(111)面状に空孔面を入れた場合 ーパーセルに面にならないように 空孔を入れた場合 図 2.7.設定した空孔の面状、点状分布

得られた結果を表 2.3 に示す。

	Ga ₂ Te ₃	In ₂ Te ₃		
面状	-19094.02	-15146.13		
点状	-19092.75	-15148.52		
差分(面状-点状)	-1.27	2.39		

表 2.3.それぞれの組成、空孔の分布状態に対して行った計算の結果

(単位:eV/cell)

この結果からGa₂Te₃の場合、空孔が面状に存在した方がよりエネルギー的に低く安定で、In₂Te₃は点状に存在した方が安定であることがわかる。そのため、Ga₂Te₃は面状空孔を有する相を、In₂Te₃は点状空孔を含む相が安定相であることが示唆される。このように構成する元素に依存したエネルギーの違いで空孔分布が決まるものと考えられる。

2.4.2 構造空孔の分布状態と熱伝導率の相関

図2.8.GT-RPとGT-IPの熱伝導率の温度依存性

Ga₂Te₃の場合の電気伝導率が低く(0.42 Ω^{-1} m⁻¹ at 338 K、 $\kappa_e = L\sigma T$ 、ここでLはローレンツ数: 2.45 x 10⁻⁸ Ω WK⁻²である)、得られた熱伝導率はほとんど格子振動によるものだと考えてよい。GT-RPとGT-IP、どち らも0.5 Wm⁻¹K⁻¹程度の低い熱伝導率を示しており、その温度依存性や大きさにおいては互いに大きい違い は見られなかった。この結果より、構造空孔の集合体である空孔面によるフォノンの散乱はその周期性に大きく 影響されることなく、空孔面の存在自体が低い熱伝導率をもたらすことが示唆された。

42

第2章

次に、空孔の分布状態が異なるGS-IPとGS-VAの熱伝導率を測定した結果を図2.9に示す。

図2.9.GS-IPとGS-VAの熱伝導率の温度依存性

空孔が点として分布した GS-VA において熱伝導率は半導体で一般的に見られるように概ね T⁻¹に比例して 減少していることが確認できた。それに対して空孔が面状に集合して分布した GS-IP において熱伝導率は GS-VA より半分以下(@室温)に減少し、温度に対する依存性もほとんどなくなっていることがわかる。この熱伝 導率の差は、次のように考察することができる。過去の報告^[4]より面状空孔を含む Ga₂Te₃ は点状空孔を含む In₂Te₃ のり室温において 1/3 のほどの熱伝導率を有する。両者は低い電気伝導率を有するため電子熱伝導率は 無視でき、すべての熱伝導率は格子振動によるものと考えてもよい。格子熱伝導率は(2-9)のように表せる。

$$\kappa_l = \frac{1}{3} \bar{Cv\Lambda} \cdots (2-9)$$

ここでκ/は格子熱伝導率、C は比熱、νはフォノンの平均速度(音速)、Λはフォノンの平均自由行程である。そして、 音速とデバイ温度の間には(2-10)で表されるように比例関係がある。

$$\theta_D = \frac{h}{k} \left[\frac{9\rho_0}{4\pi} \frac{1}{\left(\frac{1}{C_l}\right)^3} + \left(\frac{2}{C_l}\right)^3} \right]^{1/3} \dots (2-10)$$

ここで θ_0 はデバイ温度、h はプランク定数、k はボルツマン定数、 ρ_0 は数密度、C_/は縦波の音速、C_t は横波の音速 である。(2-9)と(2-10)より、空孔面が Ga₂Te₃の音速を下げる効果を持つなら Ga₂Te₃のデバイ温度は In₂Te₃の 値より低くなっていなければならない。しかし、それぞれのデバイ温度は 245 K、159 K であり、Ga₂Te₃のデバイ温度 の方が大きく、この結果は面状空孔がフォノンの平均自由行程を短くして熱伝導率を低減させると言える。つまり、 GS-IP と GS-VA が示す熱伝導率の差は面状に存在する構造空孔がフォノンの平均自由行程をより短くした結果 であると言える。

化学的組成と基本結晶構造が等しいにも関わらず、構造空孔の分布状態の変化によって熱伝導率が大きく 変化することは興味深く、構造空孔が面状に分布した場合に点として分布するより効果的にフォノンを散乱させ ることが改めて確認できた。本知見は、空孔制御による熱伝導率制御の可能性を示し、熱電特性の向上に寄 与するものと考えられる。 2.5 結論

本章では欠陥型閃亜鉛鉱型構造のIII₂VI₃化合物が含む構造空孔の分布状態が熱伝導率にどのような 影響を与えるかを調べるための実験を行った。その結果、Ga₂Te₃において面状に分布する構造空孔が①周期 的に分布②ランダムに分布する試料作製に成功し、Ga₂Se₃において構造空孔が①面状に分布②点状に分 布する試料作製に成功した。それぞれの熱伝導率を比較することより空孔が面状に集合体として分布したほう が点状に分布することによりフォノンを効果的に散乱させることが確認できた。また、面状であればそれの周期性 は熱伝導率と大きく関係を持たないことがわかった。本結果は空孔分布が熱伝導率に大きく影響することを示し、 空孔制御による熱電特性の向上において重要な知見となるものである。

.

『参考文献』

1. P. F. Fewster, "X-ray scattering from semiconductors", Imperial College Press (London,

2003).

.

- 2. 2章にある全てのHRTEM画像と電子線回折パターンは大阪大学産業科学研究所の石丸学准教授に撮影して頂いたものである
- 3. 中村吉男、花田剛、電子顕微鏡 32、150 (1997).
- 4. K. Kurosaki, H. Matsumoto, A. Charoenphakdee, S. Yamanaka, M. Ishimaru, and Y. Hirotsu, Appl. Phys. Lett. 93, 012101 (2008).

第3章 GaSb-Ga2Te3固溶体作製による構造空孔の導入及び熱電特性の評価

3.1 研究背景

第2章ではIII2VI3化合物がもつ高濃度の空孔の分布状態と熱伝導率の関係について述べた。特に Ga2Te3と熱処理したGa2Se3において、空孔が面状に存在することでフォノン散乱を増加させて極端に低い熱 伝導率を示すことを明らかにした。熱電材料の研究において低い熱伝導率の達成は性能向上のための必要不 可欠な課題であり、この構造空孔を他材料へ応用できれば熱電性能の大幅な改善が期待できると考えられる。

3.1.1 構造空孔の熱電性能向上への手法としての応用 [1-3]

性能指数と反比例関係をもつ熱伝導率を効果的に低減させる方法として本研究において注目している構造 空孔を用いる試みとしては、2007年中国のCuiらより既存高性能熱電材料であるSb₂Te₃の熱伝導率を低減 させるためにGa₂Te₃との固溶体を作製した報告がある。しかし、2章で述べたような我々によって行われた構造 空孔が熱伝導率に与える影響に関する基礎研究が行われる前の報告であったため、単に合金化散乱の考え のもと高濃度の欠陥を導入することを目的とした研究である。また、この系においてはそもそもSb₂Te₃(space group: *R*3*m*, No. 166)とGa₂Te₃の結晶構造が異なっており、擬2元系固溶体とは考えることができない。 つまり、Ga₂Te₃において電気的に中性の、質量と体積がゼロである副格子として数えられる構造空孔を結晶構 造から異なる材料系に導入させることはできない。その根拠としてゼーベック係数と電気伝導率の温度依存性 からキャリア濃度に変化が見られたことが挙げられる。次にSnTeにIn₂Te₃を固溶させた報告も同じく中国のHan らによってされているが前述したものと同じ理由によって構造空孔の導入はなされていないと考えられる。最後に、 2009年アメリカのD. T. MorelliのグループによってInSbとIn₂Te₃の固溶体を作製することによってInSbの格 子熱伝導率を効果的に低減させたという報告について述べたい。彼らは本研究と同じアイデアに基づいて構造 空孔を有するIn₂Te₃と同じく閃亜鉛鉱型構造を有するInSbを対象の材料として選択し、低減されたInSbの 熱伝導率について報告した。しかし、固溶体の電気伝導率やゼーベック係数に関しては詳しく述べられておらず、 本当に空孔導入に成功したかについてははっきりしない。 3.1.2 構造空孔の導入方法および対象の選択

構造空孔の特徴は、一般的な欠陥として分類されずに結晶の成すためのカチオンサイトの副格子として見な されることである。そのため、我々は構造空孔を置換によって導入できると仮定し、III₂VI₃化合物についてある 材料との固溶体を作製することで対象材料の中に導入できると考えた。まず、Ga₂Te₃を空孔導入体とした。そ の理由は、2章において空孔が面状に存在した場合にフォノンをより効果的に散乱させることを確かめており、面 状の空孔が安定に存在するためである。対象材料としてはGaSbとした。GaSbは表3.1に示すようにGa₂Te₃と 同じく閃亜鉛鉱型構造に属し、Ga₂Te₃に近い格子定数を持つ。

表3.1.GaSbとGa2Te3の概要

	結晶構造	格子定数 (nm)	_
GaSb	閃亜鉛鉱型	0.6095 ^[4]	_
Ga ₂ Te ₃	(欠陥を含む)閃亜鉛鉱型	0.5832 ^[5]	

また、カチオンサイトの元素が同じくGaであって、アニオンサイトの元素もTeと化学的性質が近いSbで構成されていて固溶体を作製しやすいと考えたからである。

全体的なイメージを図3.1に示す。

図3.1.固溶による構造空孔導入のイメージ

3.2 実験方法

3.2.1 試料作製

購入したGa(99.999%), Sb(99.9%), Te(99.999%)を(GaSb)_{3(1-x)}(Ga₂Te₃)_x (x= 0, 0.01, 0.02, 0.05, 0.1)になるように秤量して石英管に真空封入した。すべての試料は1273 Kにて24時間溶融 させて857 Kまで冷却し12時間維持した。得られたインゴットをボールミルを用いて粉砕したあと、一部の粉末を 試料同定のためXRDパターン測定に、残りを各物性値の測定のためのバルク試料の作製に用いた。焼結はホッ トプレスを用いて、GaSbの融点直下の温度で80 MPaの圧力の条件で3時間アルゴン雰囲気で行った。

3.2.2 試料同定

試料同定のためXRDパターンを2章と同様に測定を行った。得られたパターンから以下のCohenの方法に従って格子定数を算出した。

<Cohenの方法>

Cohenは精密な格子定数の計算のために最小自乗法の導入を提案した。立方結晶系に対しては以下のような過程で格子定数aが求められる。

$$\sin^2 \theta = \frac{\lambda^2}{4a_0^2} \left(h^2 + k^2 + l^2 \right) \cdots \cdots (3-1)$$

$$\sin^2 \theta - \frac{\lambda^2}{4a_0^2} (h^2 + k^2 + l^2) = D\sin^2 2\theta \cdots (3-2)$$

この式を書き換え、新たに符号を導入すれば、次のようになる。

$$\sin^2\theta = C\alpha + A\delta \cdots (3-3)$$

ここで

$$C = \frac{\lambda^2}{4a_0^2}, \qquad \alpha = (h^2 + k^2 + l^2), \qquad A = \frac{D}{10}, \qquad \delta = 10\sin^2 2\theta$$

が成り立つ。ここで未知の定数はCとAであり、それはおのおのの反射回折線について求められる $\sin^2\theta$, α , δ などの実測値でなす次に示す2本の標準方程式から得られる。

$$\sum \alpha \sin^2 \theta = C \sum \alpha^2 + A \sum \alpha \delta$$
$$\sum \delta \sin^2 \theta = C \sum \alpha \delta + A \sum \delta^2 \qquad (3-4)$$

また、単斜結晶系に対しては以下のような過程で格子定数a,b,c,βが求められる。

$$\sin^2 \theta = \frac{\lambda}{4\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k\sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl\cos\beta}{ac} \right) \cdots (3-5)$$
$$\sin^2 \theta - \frac{\lambda}{4\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k\sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl\cos\beta}{ac} \right) = D\sin^2 d\theta \cdots (3-6)$$

この式を書き換え、新たに符号を導入すれば、次のようになる。

.

$$\sin^2\theta = E\alpha + D\gamma + C\delta + B\varepsilon + A\xi \cdots (3-7)$$

ここで

$$E = \frac{\lambda}{4\sin^2 \beta a^2}, \qquad \alpha = h^2, \qquad D = \frac{\sin^2 \beta}{4\sin^2 \beta b^2}, \qquad \gamma = k^2$$
$$C = \frac{\lambda}{4\sin^2 \beta c^2}, \qquad \delta = l^2, \qquad B = \frac{2\lambda \cos \beta}{4\sin^2 \beta ac}, \qquad \varepsilon = hl$$
$$A = \frac{D}{10}, \qquad \xi = 10\sin^2 2\theta$$

が成り立つ。ここで未知の定数はCとAであり、それはおのおのの反射回折線について求められるsin²θ,δなどの 実測地でなす次に示す5本の標準方程式から得られる。

$$\sum \alpha \frac{\lambda_{k\alpha 1}^{2}}{\lambda^{2}} = A \sum \alpha^{2} + B \sum \alpha \gamma + C \sum \alpha \delta + D \sum \alpha \varepsilon + E \sum \alpha \xi$$

$$\sum \gamma \frac{\lambda_{k\alpha 1}^{2}}{\lambda^{2}} = A \sum \alpha \gamma + B \sum \gamma^{2} + C \sum \gamma \delta + D \sum \gamma \varepsilon + E \sum \gamma \xi$$

$$\sum \delta \frac{\lambda_{k\alpha 1}^{2}}{\lambda^{2}} = A \sum \alpha \delta + B \sum \gamma \delta + C \sum \delta^{2} + D \sum \delta \varepsilon + E \sum \delta \xi \quad \dots (3-8)$$

$$\sum \varepsilon \frac{\lambda_{k\alpha 1}^{2}}{\lambda^{2}} = A \sum \alpha \varepsilon + B \sum \gamma \varepsilon + C \sum \delta \varepsilon + D \sum \varepsilon^{2} + E \sum \varepsilon \xi$$

$$\sum \xi \frac{\lambda_{k\alpha 1}^{2}}{\lambda^{2}} = A \sum \alpha \xi + B \sum \gamma \xi + C \sum \delta \xi + D \sum \varepsilon \xi + E \sum \xi^{2}$$

3.2.3 物性測定

ゼーベック係数、電気伝導率はアルバック理工株式会社製のZEM-1を用いてそれぞれ定常法と四端子法で 測定を行った。この測定装置の概略を図3.2に示す。

図3.2.電気的特性測定装置の原理と概略

試料を上下に電極で挟んで電流を流しながら下部の電極に備えてある小型ヒーターで鉛直方向に温度差

ΔΤを与える。そして、側面に実際測定に使われるK型熱電対が付いており、これにより試料の高温側の温度 T_H[K]、低温側の温度T_C[K]、さらにその2点間の電位差V_{AB}[V]の測定を行うことで、以下のような式により 伝導率σ[Ω⁻¹cm⁻¹]、ゼーベック係数 S[VK⁻¹]を測定した。

$$\sigma = \frac{1}{\rho} = \frac{V_{ref}}{V_{AB}} \rho_{ref} \frac{s}{L} \cdots (3-9)$$
$$S = \frac{V_{AB}}{T_H - T_C} \cdots (3-10)$$

ここで ρ_{ref} は参照抵抗の抵抗値、 V_{ref} は参照抵抗両端の電位差、 $s[cm^2]$ は試料の短面積、L[cm]は試料 側部の熱電対接点2点間距離である。また、2つの熱電対の温度付近を測定対象温度とし、測定は各温度 で温度差が20 K, 30 K, 40 Kの3回ずつ行い、その平均を用いた。本研究ではHe雰囲気下で円柱状の試 料形状で各試料の測定を行った。

熱伝導率は2章に示した方法と同様に測定を行った。

対象固溶体を(GaSb)_{3(1-x)}(Ga₂Te₃)_xと表した際にxの値に対する導入される空孔の量を表3.2に示す。

	0.05	0.1
構造空孔の童 (at. %) 0 0.3 0.7	1.7	3.3

表3.2.(GaSb)3(1-x)(Ga2Te3)xの構造空孔の導入量(計算値)

3.3 結果と考察

3.3.1 試料同定

作製した試料について図3.3に粉末XRDパターンを示す。

図3.3. (GaSb)_{3(1-x)}(Ga₂Te₃)_xのXRDパターン(算出した格子定数をともに示す)

すべてのピークは閃亜鉛鉱型構造に起因しており、不純物は析出せず各組成の固溶体作製に成功したと考えられる。XRDパターンの結果から格子定数を算出した。固溶量xとの関係を図3.3にともに示す。固溶量の

増加とともに格子定数が線形的に減少していることが確認できる。また、全組成について同じ条件で試料作成を2回行い、XRDパターンの測定結果が一致したことより試料作成の再現性を確かめた。

3.3.2 電気的特性

図3.4に各試料の電気伝導率の温度依存性を示す。

図3.4.(GaSb)_{3(1-x)}(Ga₂Te₃)_xの電気伝導率の温度依存性

すべての試料は、電気伝導率が温度上昇と伴い増加する半導体的な挙動を示した。500 Kまでは弱い温度依存性を示すがその以上の温度領域において上昇が見られ、これはGaSbのバンドギャップに起因した価電子帯から励起される電子の影響だと考えられる。電気伝導率はGa2Te3の固溶量(x)の増加とともに減少していることが確認できた。

図3.5にゼーベック係数の温度依存性を示す。

図3.5. (GaSb)_{3(1-x)}(Ga₂Te₃)_xのゼーベック係数の温度依存性

全ての試料において半導体的な挙動を示しており、電気伝導率の結果と一致していることがわかる。

これの結果についてキャリア濃度や移動度などを測定し、Ga2Te3の固溶により導入される構造空孔の影響を 調べることを試みたが、測定結果にノイズや方向依存性が大きく、信頼性が低いため精密な考察ができなかった。 しかし、Sbサイトに価電子数の1個多いTeが1個置換されてドーナとして働くことと同時にGaサイトへは価電子 数が3個少ない構造空孔が1/3個置換されるため、2つの影響が相殺されキャリア濃度には変化がないと考えら れる。それに対して置換された空孔とTe原子は母相のポテンシャルの周期性を乱すため散乱中心として働き、 ホールや高温側において影響が堅調に現れる電子の移動度を下げると考えられる。、その結果電気伝導率の 減少が生じたと考えられる。特にホールより電子と強く相互作用を起こして電子の移動度をホールに比べて大き く下げてしまい、その結果固溶体のゼーベック係数が正の方向に大きく増加した可能性が考えられる。

3.3.3 熱伝導率

図3.6に各試料の熱伝導率の温度依存性を示す。

図3.6.(GaSb)3(1-x)(Ga2Te3)x熱伝導率の温度依存性

純粋なGaSbの熱伝導率は温度上昇とともにT⁻¹の関係で減少した。他の試料においてもT⁻¹の関係を示 すが固溶量の増加とともにその依存性が弱くなることが確認できた。また、x=0.1試料において室温で3.28 Wm⁻¹K⁻¹まで低減されたことが確認できた。これは純粋なGaSbの熱伝導率より80%低減された値である。こ のような熱伝導率の低減は一般的に固溶による合金化散乱によって解析することができる。合金化散乱による 熱伝導率の低減の具合は次の散乱因子の式(3-1)より表される。

$$A = \frac{\Omega_0}{4\pi v^2} x \left(1 - x\right) \left\{ \left(\frac{\Delta M}{M_{aver}}\right)^2 + \delta \left(\frac{\Delta R}{R_{aver}}\right)^2 \right\} \dots (3-11)$$

第3章

ここでΩ₀は単位胞の体積、vは材料の音速、xは固溶比、M_{aver}は単位胞内の原子の平均重さ、ΔM は ホスト原子とゲスト原子の重さの差、δはフィッティングパラメータ、R_{aver}は単位胞内の平均原子半径、ΔR は ホストの共有結合半径とゲストの原子半径の差である。つまり、固溶によるフォノン散乱への影響はホストとゲス トの間の質量差や原子半径の差が大きく働くことを意味する。ここでSbサイトに置換されるTe(dSbと原子半径、 原子量が近いため、合金化散乱による影響は極めて小さいと考えられる。したがって、GaSbに導入される空孔 が熱伝導率の低減の原因だと考えられる。しかし、表3.2に示したように最も多く空孔を導入させたx=0.1の試 料においても空孔の量は3.3%に過ぎないため、固溶比に比例する合金化散乱のみによって純GaSbの熱伝 導率を80%ほど低減させたとは説明ができない。2章において空孔は点状に存在するより面状になった場合に フォノンをより効果的に散乱させることを確かめた。したがって、導入された空孔が面状に存在し、少量の固溶比 であっても大幅に熱伝導率を低減させた可能性が考えられる。本結果は固溶によって構造空孔の導入が可能 であり、熱伝導率を効果的に低減させるものであることを確かめた重要な知見となるものである。

3.3.4 性能指数

図3.7に各試料の性能指数の温度依存性を示す。

図3.7.(GaSb)_{3(1-x)}(Ga₂Te₃)_xの性能指数の温度依存性

純粋なGaSbは550 Kで一旦ピークをもち、700 Kから再び増加した。これは電子の励起によってゼーベック 係数が正の値からゼロを通って負になることと電気伝導率が増加することに起因する。それ以外の試料に関して は600 K付近でピークを持ち、x=0.02の試料においてZTの最大値(0.013 @623 K)が確認された。

3.4 結論

本章ではGaSbにGa2Te3を固溶させることによって構造空孔を導入し、熱伝導率を低減させることを目標とした。空孔を最大量導入したx=0.1試料において純粋なGaSbと比べて80%程度小さい3.28 Wm⁻¹K⁻¹ (@室温)まで低減させることに成功した。また、固溶による熱伝導率の低減を考慮する際に一般的に用いられる 合金化散乱だけでは熱伝導率の大幅な低減は説明できず、導入された空孔が面状に存在して効果的にフォ ノンを散乱させたものである可能性を示唆した。 『参考文献』

- 1. J. L. Cui, H. F. Xue, and W. J. Xiu, Intermetallics 15, 1466 (2007).
- 2. Y. Han, T. Wang, and S. Zhou, Mater. Sci. Forum 650, 126 (2010).
- 3. Y. Pei and D. T. Morelli, Appl. Phys. Lett. 94, 122112 (2009).
- 4. P. J. Reddy, Y. Syamalamba, and B. S. Naidu, Nucl. Phys. Solid State Phys. Symp. Proc. 24C, 515 (1982).
- 5. L. S. Palatnik and E. K. Belova, Sov. Phys. Crystallogr. 10, 717 (1965).

,

第4章 GaSbのキャリア濃度調整及び熱電特性の評価

4.1 研究背景

第2章で自然ナノ構造を有するIII2VI3化合物が含む構造空孔の分布状態と熱伝導率の相関について、面 状に存在する空孔が熱伝導率の低減に有利であることについて述べた。第3章では面状の空孔を導入して他 の材料への応用を試み、GaSb-Ga2Te3固溶体において面状空孔の導入による熱伝導率の大幅な低減に成 功し、他材料への適用可能性を示唆した。閃亜鉛鉱型構造系の材料は高い移動度を持つため優れた電気 的特性が期待できるが、同時にそれを相殺するほどの高い熱伝導率を有するため熱電材料として注目されてな かった。しかし、2~3章において構造空孔の制御・導入することで熱伝導率を十分下げられることが確認できた ため、閃亜鉛鉱型構造を有する材料について熱電材料として注目しなければならない。

4.1.1 高移動度を有する閃亜鉛鉱型構造材料

材料の熱電性能を見積もる際に式(4-1)がよく用いられる。

$$ZT \approx \frac{\mu m^{*^{3/2}}}{\kappa_l} \cdots \cdots (4-1)$$

ここで μ はキャリアの移動度、m*は有効質量、 κ は格子熱伝導率である。キャリアの移動度は性能指数と比 例関係を持ち、序論において述べたように代表的な高性能熱電材料は比較的に高移動度を持つ。移動度は 主に「結晶ポテンシャルの均一さ」、結合する元素間の電気陰性度の違い、つまり電子雲の重なりの具合や方 向性と強い相関をもつ「イオン性や共有結合性」に起因してその大小が決まり、共有結合性が高いほどキャリア の移動度が高くなる傾向がある。閃亜鉛鉱型構造(space group F43m, No.216)はカチオンとアニオンが 互いに4配位で sp^3 混成軌道の共有結合し、高い移動度をもつことが知られている。図4.1に閃亜鉛鉱型構 造を示す。

図4.1.閃亜鉛鉱型構造

関亜鉛鉱型構造を有する材料系にはZnS、ZnTe、CdTeなどが含まれるII-VI半導体化合物と呼ばれるグ ループとGaAs、GaSb、InAs, InSbなどが含まれるIII-V半導体化合物と呼ばれるグループなど、多数の化合 物が存在する。 関亜鉛鉱型構造材料の熱電特性に関する報告例を表4.1に示す。

表4.1. 閃亜鉛鉱型構造の熱電特性に関する報告例(@300 K)[1-4]

	InSb	ZnTe	CdTe	GaSb
出力因子 (10 ⁻³ Wm ⁻¹ K ⁻²)	0.1(NW) 1.4(SC) 4.6(B)	0.37(C,B) 6.7(C,NW)	0.8(C,B) 8(C,NW)	?
性能指数	0.005(NW) 0.04(SC) 0.06(B) ^{*373 K}	0.006(C,B) 5.4(C,NW)	0.031(C,B) 6.3(C,NW)	?

NW:ナノワイヤー、B:バルク、SC:単結晶、C:理論計算

(注意)それぞれの試料のキャリア濃度は異なる

InSbは実験報告があり、バルク材料において既存の高性能熱電材料の出力因子に匹敵する高い出力因子を示す。しかし、InSb以外の閃亜鉛鉱型構造の材料に関しては高い出力因子が予測されていることに対して研究例が数少なく、GaSbについてはまったく研究例がない。

4.1.2 熱電材料としてのGaSb

高い出力因子が予測されるにも関わらず研究報告が少ない理由の1つにそれらが有する高い熱伝導率が挙 げられる。低い熱伝導率は複雑な構造から由来する傾向があるが、閃亜鉛鉱型構造は非常に単純である。そ のため、熱伝導率と出力因子が互いに相殺し、ZTは低い値にとどまる。二つ目の理由はそれら一連の化合物 が互いによく似たバンド構造、状態密度を持ち、系統的に予測できる物性を示すことである。例えば、①InSbと GaSbを比べるとメインとなるバンド構造はほとんど同じいこと、②格子定数が大きくなるととバンドギャップが小さく なる一般的な傾向にしたがって、Gaより共有結合半径が大きいInが含まれるInSbのバンドギャップが小さいこと、 ③序論で述べたように重い原子が同じ属にある元素が含まれる場合、重い元素が構成元素となるほどキャリア の移動度が大きくなる一般的な傾向にしたがっていること、④より重い原子が入っているInSbの熱伝導率が低 いことなどが挙げられる。そのため、今までは上の系統的な予測から、より大きい性能指数が期待できるInSbの み注目さえたと考えられる。しかし、3章でGaSbにGa2Te3を固溶させることで面状の構造空孔を導入して純 GaSbの熱伝導率の20%まで低減されたことを確認でき、GaSbも新しい熱電材料の候補となりうることを示し た。そのため、実際にGaSbを作製し熱電特性を評価する必要性は十分あると考えられる。そのため、本章にお いてZnをドープ元素として用いてGaSbのキャリア濃度を調整し、熱電特性の評価を図る。 4.2 実験方法

4.2.1 試料作製

購入した高純度Ga(99.999%), Sb(99.9%), Zn(99.5%)をそれぞれGa_{1-x}Zn_xSb (x= 0.001, 0.002, 0.005, 0.01)になるように秤量し、石英管に真空封入した。図4.2に示すGa-Sb二元系の状態図 を参考し、1123 Kにて24時間溶融して冷却し943 Kで12時間均質化処理を施した。

図4.2.Ga-Sb二元系の状態図^[5]

焼結は放電プラズマ焼結装置を用いてGaSbの融点近傍、圧力80 MPa、アルゴン雰囲気の条件で行った。

.

4.2.2 試料同定

試料同定は2章に示した方法と同様に測定を行った。
4.2.3 物性測定

電気伝導率、ゼーベック係数、熱伝導率は2章、3章に示した方法と同様に測定を行った。

キャリア濃度と移動度を調べるために東洋テクニカ製のResiTest8300を用いてVan Der Pauw法でホール 測定を行った。

・ ホール係数測定(Van Der Pauw法)

ホール効果を用いてホール係数測定することでキャリア濃度・キャリアタイプ・ホール移動度の算出ができる。ホ ール効果とは荷電粒子と電磁波の相互作用によってローレンツ力が生じることによる効果である。注目する荷電 粒子とはキャリア(ホールまたは電子)であり、ローレンツ力を受けたキャリアは電流の方向と磁場の方向と垂直な 方向に偏ることにあり、微小な電圧が生じる。この電圧をホール電圧といい、これを測定することによってホール係 数が求まる。また、キャリアの符号によって受けるローレンツ力の方向が逆転するためホール係数の符号よりキャリ アのタイプも判断ができる。図4.3にホール効果の概略を示す。

図4.3.ホール効果の原理を表す概略

ホール係数測定にはVan Der Pauw法を用いる。図4.4に測定の概略を示す。

図4.4.ホール測定の試料設置の概略

磁場Bを印加、安定状態に達するまで待つ。試料の一対角(a→c)を電流印加端子とし、その直行対角(d →b)を電圧測定端子として、基本単位測定を行う。得られたホール抵抗値 R_m を R_0 とする。この作業を電流印 加端子と電圧測定端子を入れ替えて測定を行い R_2 を得る。この2つの手順を磁場を逆転させてもう一回行い、 R_1 、 R_3 を得る。得られたデータを次のように処理して再定義する。

$$R_{C} = \frac{1}{2} (R_{0} - R_{1}) \cdots (4-2)$$
$$R_{d} = \frac{1}{2} (R_{2} - R_{3}) \cdots (4-3)$$

次に、ホール抵抗の全平均値(加算)Rcdとそのばらつきの範囲(根自乗平均)SDcdを求める。

.

$$R_{cd} = \frac{R_c + R_d}{2} \cdots \cdots (4-4)$$

最後に得られたホール抵抗値からホール係数R_H、キャリア濃度n、ホール移動度µ_Hを算出する。

$$R_{H} = \frac{t}{B} \frac{V_{HALL}}{I_{S}} \times 10^{4} = \frac{t}{B} |R_{cd}| \times 10^{4} \cdots (4-5)$$
$$n = \frac{1}{R_{H}e} = \frac{B}{t|R_{cd}|} \frac{1}{1.6 \times 10^{-15}} \cdots (4-6)$$
$$\mu_{H} = R_{H}\sigma = \frac{|R_{cd}|}{R_{Sheet}B} \times 10^{4} \qquad , R_{Sheet} = \frac{1}{\sigma t} \cdots (4-7)$$

ここでtは試料の厚み、eは電子の電荷量である。

第4章

4.3 結果と考察

4.3.1 試料同定

図4.5に各試料のXRDパターンを示す。

Diffraction angle, 2θ (Cu K α , degree)

図4.5. Ga1-xZnxSbのXRDパターンの結果

全試料においてすべてのピークは閃亜鉛鉱型構造に起因することが確認され、目標した組成の試料作製に 成功したと考えられる。x=0.01で44°付近に炭素のピークが現れているが、これは焼結の際に用いたカーボン シートの一部がXRD測定用の粉末に混ざり込んだためであり、作製された試料には問題ないと考えあれる。

4.3.2 電気的特性

図4.6に各試料の電気伝導率、ゼーベック係数、出力因子の温度依存性を示した。

図4.6. Ga1-xZnxSbの電気伝導率、ゼーベック係数、出力因子の温度依存性

電気伝導率は温度上昇とともに緩やかに減少し、縮退半導体的な挙動を示した。最大の電気伝導率は

x=0.01の試料で1.64 x 10⁵ Ω⁻¹m⁻¹ に達した。 ゼーベック係数は亜鉛のドープ量の増加とともに減少し、 こ れはドープよりキャリア濃度が増加したためと考えられる。 これは電気伝導率での挙動と一致している。 しかし、 x=0.001組成の試料において700 K以上の温度領域において若干値減少する傾向を示している。 純粋な GaSbでは室温においてゼーベック係数は正の値を示すが、 700 Kより価電子帯から伝導体へ電子の励起が 生じて負の値へ変わる。 x=0.001の試料において亜鉛の濃度はそれほど高くなく、 そのためこの700 Kより励起 される電子の影響が比較的に低温から現れるためだと考えられる。 出力因子を実験より得られた電気伝導率と ゼーベック係数より計算した。 最大値のピークが亜鉛のドープ量の増加とともに高温側へシフトすることが確認で

きた。これはキャリア亜鉛添加によるキャリア濃度の変化がフェルミ順位を移動させたことが原因であると考えられる。計算より得られたパワーファクターの値2x10⁻³ Wm⁻¹K⁻²と比較的に高く、既存の高性能熱電材料と比べて同程度かそれ以上であった。

キャリアの輸送特性を調べるためにホール効果測定を行った。得られたホール係数からp=-1/(R_He)の関係 式よりキャリア濃度、μ_H=σR_Hの関係式より移動度を計算した(p: キャリア濃度、R_H:ホール係数、e:電子の電 荷量、μ_H:ホール移動度移動度)。キャリア濃度の温度依存性を図4.7に示す。

図4.7. Ga1-xZnxSbのキャリア濃度の温度依存性

キャリア濃度は弱い温度依存性を示し、亜鉛のドープ量の増加とともに上昇した。この傾向は電気伝導率や ゼーベック係数において見られた縮退半導体の傾向と一致していると言える。最も高いパワーファクターは x=0.002試料において得られ、この結果より亜鉛によるキャリア調整はx=0.002(3.45 x 10¹⁹ cm⁻³@ 300 K)にて最適化されたと考えられる。有効質量(*m**)を求めるためボルツマン方程式から導かれる以下の二 つの式を用いた。

$$p = 4\pi \left(\frac{2m^*kT}{h^2}\right)^{3/2} F_{1/2}(\eta^*) \cdots (4-8)$$
$$S = \frac{k}{e} \left\{\frac{2F_1(\eta^*)}{F_0(\eta^*)} - \eta^*\right\} \cdots (4-9)$$

ここで $F_r(\eta^*)$ は式(4-19)で表されるフェルミ積分項である。

$$F_r(\mu^*) = \int_0^\infty \frac{x^r}{\exp(x-\mu^*)+1} dx \cdots (4-10)$$

ここで $F_r(\mu^*)$ はフェルミ積分、rは散乱因子、 μ^* は還元フェルミエネルギー、kはボルツマン定数、eは電荷量である。計算より得られた有効質量、ホール移動度を熱電材料の評価によく用いられる重み付き移動度とともに表4.2に示す。

キャリア濃度	ホール移動度	有効質量	重み付き移動度
[cm ⁻³]	$[cm^2V^{-1}s^{-1}]$	(m*/m ₀ *)	$\mu_{\rm H}({\rm m}^*/{\rm m}_0^*)^{3/2}$
2.05 x 10 ¹⁹	159	0.89	135
3.45 x 10 ¹⁹	125	0.94	147
7.98 x 10 ¹⁹	100	0.98	123
1.04×10^{20}	93.3	0.94	85.2

表4.2.各試料のホール移動度、有効質量、重み付き移動度

ホール移動度はキャリア濃度の増加とともに減少し、有効質量はキャリア濃度に対して大きな変化は見られなかった。重み付き移動度は比較的に高く、最大値はx=0.002の試料において得られた。これはx=0.002の試料の出力因子が一番大きかった結果と一致しており、適切な評価ができたと考えられる。

4.3.3 熱伝導率

図4.8に全熱伝導率(格子振動寄与分+電子寄与分)と電子熱伝導率を差し引いた格子熱伝導率の温 度依存性を示す。

図4.8. Ga1-xZnxSbの全熱伝導率及び格子熱伝導率の温度依存性

格子熱伝導率はヴィーデマン・フランツの法則を用いたが、その際に必要となるローレンツ定数は以下の式を用いて計算した。

$$L = \left(\frac{k}{e}\right)^2 \frac{3F_2(\eta *)F_0(\eta *) - F_1^2(\eta *)}{F_0^2(\eta *)} \dots \dots (4-11)$$

フェルミ準位の値としては有効質量を求めるとき途中計算で得られるものを使った。いずれの試料もほとんど同様

な大きさの熱伝導率を示している。これは亜鉛の固溶量が少なく、合金化散乱の影響が少ないことと、電子に よる熱伝導率が現れるほどキャリアドープが行われてないことが原因だと考えられる。最も高かった格子熱伝導率 は x=0.002に試料におて24.3 Wm⁻¹K⁻¹であり、これは熱電材料としては非常に高い値である。格子熱伝 導率の低減によりさらなる熱電性能の向上が見込める。

4.3.4 性能指数

最後に図4.9に性能指数の温度依存性を示す。

図4.9. Ga1-xZnxSbの性能指数の温度依存性

性能指数は温度上昇とともに緩やかに増加し、これは出力因子の温度依存性より熱伝導率の温度上昇に よる低下比率が大きく、熱伝導率の温度依存性が影響をしているからである。すべての試料は同程度の出力 因子、熱伝導率を有することから予測できるように、ほぼ同じ性能指数を示している。最大性能指数は

.

x=0.01試料において0.23 @873 Kが得られた。既存の高性能熱電変換材料に匹敵する出力を示すが最 大の性能指数が低いままである理由は高い熱伝導率であり、熱伝導率を低減させることによって性能指数の 向上が可能であると考えられる。

.

4.4 結論

本章では高移動度を有していることより高い性能指数が予想されるGaSbに亜鉛をドープしてキャリア最適化し、熱電性能を調べた。x=0.02の試料において2.02 Wm⁻¹K⁻² @573 Kの高いパワーファクターが確認できたが、非常に高い熱伝導率のため性能指数はx=0.01の試料において0.23 @873 Kにとどまった。本結果は今まで注目されなかったGaSbの新しい高性能熱電材料の候補として期待できることを示唆するものである。

•

第4章

『参考文献』

- 1. S. Yamaguchi, T. Matsumoto, J. Yamazaki, N. Kaiwa, and A. Yamamoto, Appl. Phys. Lett. 87, 201902 (2005).
- 2. R. Bowers, R. W. Ure, J. E. Bauerle, and A. J. Cornish, J. Appl. Phys. 30, 930 (1959).
- 3. F. Zhou, A. L. Moore, M. T. Pettes, Y. Lee, J. H. Seol, Q. L. Ye, L. Rabenberg, and L. Shi, J. Phys. D. 43, 025406 (2010).
- 4. N. Mingo, Appl. Phys. Lett. 85, 5986 (2004).
- 5. The Materials Information SocietyのBinary Alloy Phase Diagramsのデータベースより抜粋

.

80

.

第5章 総括

本研究では、閃亜鉛鉱型構造を有する Ga 関連化合物の熱電特性に関して研究を行った。また、Ga サ イトに構造空孔を有する欠陥型閃亜鉛鉱型構造において構造空孔が熱電特性に与える影響について実 験的に評価を行った。本研究で概要をまとめると以下の通りである。

第1章では、本研究の背景として熱伝導率の基礎知識、応用例、最近の熱電研究の傾向、それぞれの 章の概要と背景 について紹介した。

第2章では、Ga2Te3とGa2Se3それぞれにおける構造空孔の配列状態が熱伝導率に与える影響について、試料に熱処理を施して配列状態を変えて、直接熱伝導率を比較することより明らかにした。Ga2Te3については次の2つの成果を得た。

1. Ga₂Te₃において熱処理を施すことより構造空孔面が規則的に配列している相と構造空孔面がランダムに存在する相の作製に成功した。透過型電子顕微鏡(TEM)を用いて2つの試料の微細構造を確認し、X線回折(XRD)パターンにおいて高温相で鮮明に確認できるサテライトピークが低温相においてはほとんど消えており、2つの試料同定結果が一致することを確認した

2. 両者の熱伝導率を測定して比較した結果、顕著な差は見られなかったことより構造 空孔面の周期性は熱伝導率に大きく影響を与えないことを明らかにした

次に、Ga2Se3について以下の2つの成果を得た。

1. Ga₂Se₃において熱処理を施すことより構造空孔が面状に分布し、その面がランダム に存在する相と構造空孔が面状にならずに点として存在する相の作製に成功した。TEM を用いて2つの試料の微細構造を確認し、XRD パターンにおいても明らかに空孔の分布 状態が異なっていることが確認でき、2つの試料同定結果が一致することを確認した

2. 両者の熱伝導率を測定して比較した結果、空孔が点分布する試料よりも面状に存在したものの熱伝導率の絶対値が半分程度に低かった

以上の Ga_2Te_3 と Ga_2Se_3 の実験結果より次のことが示唆される。

化学組成が同じであるにも関わらず、構造空孔が点状に存在するか面状に存在するかに よって、熱伝導率の大きさや温度依存性に顕著な違いが見られる。つまり、同じ濃度の構 造空孔であっても集合体になって面状に分布するとフォノンの散乱が極めて強くなり、低い 熱伝導率が現れる。一方、空孔面の分布状態と熱伝導率は大きく相関を持たず、面状 になることが熱伝導率の低減に大きく影響を与える

第3章では、副格子として数えられる構造空孔を他の化合物にし、熱伝導率の低減させる試みとして Ga2Te3と GaSb の固溶体を作製し、熱電特性の測定を行い、次の結果を得た。

1. (GaSb)_{3(1-x)}(Ga₂Te₃)_x x=0, 0.01, 0.02, 0.05, 0.1 の試料を作製し、XRD パターンから不純物が確認されなかったことより x=0.1 まで固溶させることができたことを確認 した。XRD パターンの結果より第二相は確認されず、並びに電気伝導率、ゼーベック係数の 測定結果からも元素置換によるキャリア濃度の変化が見られなかったことより、GaSb 母相へ 構造空孔が副格子として導入させることに成功したと考えられる

2. GaSb の熱伝導率は Ga₂Te₃を固溶させることで顕著に減少した。最大、x=0.1 の試料において純 GaSb の熱伝導率が約 80%減少され、合金化散乱による熱伝導率の低減効果だけでは説明ができない程の低減が見られた

以上の 結果より次のことが示唆される。

総括

高い性能指数とともに非常に高い熱伝導率も有するため、新規熱電材料の候補として注目 されなかった閃亜鉛鉱型構造の材料において III₂VI₃ 化合物と固溶体を作製することより構 造空孔を導入することは熱伝導率を低減させる有効な手法であることを明らかにした。また、 合金化散乱の影響だけでは説明ができない程の熱伝導率の低減は、2 章で明らかにした内 容と考慮すると導入された構造空孔が面状に存在すると考えられる

第4章では、高移動度化合物半導体である GaSb を新規熱電材料候補として選択し、Zn を Ga サイトへ置換することによってキャリア濃度の最適化を行い、次のような結果を得た。

1. Ga_{1-x}Zn_xSb x=0.001, 0.002, 0.005, 0.01 の試料を作製し、XRD パターンの結果から全試料において不純物は確認できず、単相の試料作製に成功した

2. Zn ドープ量の増加とともにキャリア濃度が増加し、電気伝導率とゼーベック係数において矛盾のない結果が得られたことより Zn がアクセプターとしてドープできたことを確認した。 1 at. %以下の Zn ドープで理想的なキャリア濃度に達し、*x*=0.002の試料において最大の出力因子を示し (約 2.08 x 10⁻³ Wm⁻¹K⁻²)、GaSb が既存の高性能熱電材料 に匹敵する値をもつことを確認した

3. 最大 ZT は x=0.01 試料において 0.23 @873 K が得られたが実用化のためには 更なる改善が必要であり、高い熱伝導率を低減させることより大幅な向上が期待できると 考えられる

以上の研究より、これまで注目されていなかった閃亜鉛鉱型構造を有する Ga 系材料の熱電特性を明ら かにし、その熱電材料としての可能性を示した。また、構造空孔の制御・導入により熱伝導率を大幅下げる ことに成功したことは新しい性能向上手法となりうる可能性を示したものであり、電子・フォノンの輸送特性に 関する良い知見となると考えられる。 本研究を通じて、実用化がすぐできるほどの高いZTを示す材料を開発することには達成できなかったが、 閃亜鉛鉱型化合物の熱電材料としての可能性を示し、また性能改善のための新たな手法を提案することが できたと考えられる。

•

85

•

謝辞

謝辞

本研究を遂行するにあたり、御指導、御鞭撻はもちろん、いつも暖かい言葉で励まして頂きました大阪大学工学研究科環境・エネルギー工学専攻山中伸介教授に心より謝意を申し上げます。

本論文作成にあたり、有益な御指導と御助言を頂きました大阪大学工学研究科 環境・エネルギー工学 専攻 下田吉之教授に心より謝意を申し上げます。

本論文作成にあたり、有益な御指導と御助言を頂きました大阪大学工学研究科 ビジネスエンジニアリン グ専攻 中川貴准教授に心より謝意を申し上げます。

研究生活を始めたときから今までずっと直接御指導、御鞭撻を頂きました大阪大学工学研究科 環境・エ ネルギー工学専攻 黒﨑健准教授に心より謝意を申し上げます。

本研究の遂行と本論文作成にあたり、有益な御指導と御助言を頂きました大阪大学工学研究科環境・エネルギー工学専攻 牟田浩明助教、大石佑治助教に心より謝意を申し上げます。

本論文の2章に用いたGa2Te3とGa2Se3のTEM画像のご協力と微細構造についての議論をして頂いた大阪大学産業科学研究所石丸学准教授に心より謝意を申し上げます。

本論文作成にあたり、有益な御指導と御助言を頂きました大阪大学工学研究科 環境・エネルギー工 学専攻 宮崎吉宣特任研究員に心より謝意を申し上げます

本研究を進めるにあたり、学会やセミナで出会った数々の研究者の皆様に心より謝意を申し上げます。

最後に、今まで支えて下さった家族、大阪大学韓国人留学生会の皆様、元電子情報エネルギー工学専 攻の同期達、同じ研究室の Jung Do-young, Kim Dong-hun, Li Guang-he と後輩・先輩皆様に 心より感謝を申し上げます。

研究業績リスト

【本論文に関わる研究成績】

1.学術論文(査読有り)

[1] <u>Chang-eun Kim</u>, Ken Kurosaki, Manabu Ishimaru, Do-young Jung, Hiroaki Muta, and Shinsuke Yamanaka, "Effect of periodicity of the two-dimensional vacancy planes on the thermal conductivity of bulk Ga₂Te₃", Phys. Status Solidi RRL 3, 221 (2009).

[2] <u>Chang-eun Kim</u>, Ken Kurosaki, Manabu Ishimaru, Hiroaki Muta, and Shinsuke Yamanaka, "Effect of vacancy distribution on the thermal conductivity of Ga_2Te_3 and Ga_2Se_3 ", J. Electron. Mater. 40, 999 (2010).

 [3] <u>Chang-eun Kim</u>, Ken Kurosaki, Hiroaki Muta, Yuji Ohishi, and Shinsuke Yamanaka, "Thermoelectric properties of Zn-doped GaSb", J. Appl. Phys. 111, 043704 (2012).

2.国際会議発表

[1] <u>**Chang-eun Kim**</u>, Ken Kurosaki, Manabu Ishimaru, Do-young Jung, Hiroaki Muta, and Shinsuke Yamanaka, "Effect of vacancy distribution on the thermal conductivity of Ga_2Te_3 and Ga_2Se_3 ", International Conference on Thermoelectrics, July 26-30, Freiburg Germany, (2009).

[2] <u>Chang-eun Kim</u>, Ken Kurosaki, Yuto Usui, Hiroaki Muta, and Shinsuke Yamanaka, "Thermoelectric properties of GaSb-Ga₂Te₃ and InSb-In₂Te₃ solid solutions", International Conference on Thermoelectrics, May 30- June 3, Shanghai China, (2010).

[3] **<u>Chang-eun Kim</u>**, Ken Kurosaki, Yuto Usui, Manabu Ishimaru, Hiroaki Muta, and Shinsuke Yamanaka, "Thermoelectric properties of GaSb-Ga₂Te₃ and InSb-In₂Te₃ alloys", International Congress on Ceramics, November 14-18 Osaka Japan, (2010).

[4] **Chang-eun Kim**, Ken Kurosaki, Hiroaki Muta, Yuji Ohishi, and Shinsuke Yamanaka, "Thermoelectric properties of Zn-doped GaSb", International Conference on Thermoelectrics, July 17-21, Traverse City Michigan USA, (2011).

3.国内会議発表

[1] 金昶恩, 黒﨑健, 石丸学、牟田浩明, 山中伸介, "Ga₂Se₃における構造空孔と熱電特性の相関", 日本熱電学会学術講演会(TSJ), 8月 10-11日, 東北大学青葉山キャンパス, (2009).

[2] 金昶恩, 黒﨑健, 臼井祐人, 石丸学, 牟田浩明, 山中伸介, "GaSb-Ga₂Te₃ 固溶体におけ る構造空孔が熱電特性におよぼす効果", 日本熱電学会学術講演会(TSJ), 8月 19-20日, 東京大 学弥生講堂, (2010).

[3] 金昶恩, 黒﨑健, 牟田浩明, 大石佑治, 山中伸介, "p型 GaSb の熱電特性", 日本熱電学 会学術講演会(TSJ), 8月 8-9日, 北海道大学学術交流会館, (2011).

【その他の研究成績】

[1] Do-young, Jung, Ken Kurosaki, <u>**Chang-eun Kim**</u>, Hiroaki Muta, and Shinsuke Yamanaka, "Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M=Ti, Zr, Hf)", J. Alloy. Compd. 482, 328 (2010).

