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ABSTRACT

Traditional Basic Parameter Models (BPMs) for Common Cause Failure (CCF)

modeling has focused on the occlurence frequencies of CCF events. The Alpha-factor model

is the most widely adopted parametric model. Joint distributions for lumped parameters in the

alpha-factor model are determined by a set of possible causes. Each possible cause has innate

CCF{riggering ability and occurrence frequency. Cause-informed CCF modeling aims to

provide a quantitative assessment of the risk from the shared causes and coupling factors for a

system with redundant components. The purpose of this research is to investigate the

numerical relationship between common causes and CCF risk as well as to reduce the

uncertainty in the system-specific CCF parameter estimation.

This dissertation presents an approach which is named as the alpha-decomposition

method. A Hybrid Bayesian Network is adopted to demonstrate the relationship between

component failures and possible causes. The alpha factors in the alpha-factor model are

re-notated as global alpha factors and the CCF-triggering abilities of causes are notated as

decomposed alpha factors. A regression model is determined and proved by the theory of

conditional probability, in which the global alpha factors are represented by explanatory

variables (cause occurrence frequencies) and parameters (decomposed alpha factors). A

database combining with the CCF data and cause occuffence record is recommended to be

built. The features of the alpha-decomposition method and calculation process are illustrated

by a numerical example.

This dissertation demonstrates the analysis of modified system involving the

construction and degradation of defense barriers against dependent failures. An important

element in CCF analysis is the coupling factor. The coupling factor is the condition that

multiple components are affected by the same cause. The susceptibility of a certain system to

dependent failures will be changed if a defense mechanism is introduced to intemrpt the

coupling factor. After additional flood barriers are constructed, CCF parameters of the



Auxiliary Feedwater (AFW) Pump system are predicted according to the alpha-decomposition

method. Furthermore, the seismic event will initiate the failure of non-safety related water

supply systems and the degradation of additional flood barrier. A Markov model is introduced

to model the degradation process of flood barriers. It is illustrated by a numerical example

that the dynamic CCF risk analysis after the occuffence of seismically-induced internal flood

and the failure of flood barriers. The prediction of CCF parameters can be applied in the

estimation of basic events in nuclear Probabilistic Risk Assessment (PRA). This research

describes an approach which can be used to evaluate the plant- and system- specific CCF

parameters based on generic databases.
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Chapterl: INTRODUCTION

1.1. Common Cause Failure

1.1.1. Definition of common causefailure

As a conclusion form Probabilistic Risk/Safety Assessment (PRdPSA) for

commercial Nuclear Power Plants (NPPs), the identification and quantification of Common

Cause Failure (CCF) are of great importance. When safety analysts perform the plant-level

PRA or the system-level reliability analysis, the dependent failures of redundant safety

systems will be encountered. The term common cause failure refers to the dependent failures

of functionally similar systems, such as backup feedwater pumps or multiple coolant injection

systems. In the absence of dependent failures, the availability of safety systems or functions is

improved by the introduction of redundancy or diversity, which is regarded as independent

failures. Therefore, the effect of CCF is to increase the unavailability of redundant systems

compared with cases of independent failures.

The early efforts of CCF analysis can be traced back to 1960s and the formal

definition of CCF was preliminarily in one of the first publications in the nuclear industry,

WASH-1400 (1975). In WASH-1400, common mode failures are defined as multiple failures

that result from a single event or failure. The resulting multiple component failures can

likewise encompass a spectrum of possibilities, including, for example, system failure caused

by a common external event, multiple component failures caused by a common defective

manufacturing process, and a sequence of failures caused by a common human operator. It

should be noted that the term "common mode failure" is not precise for communicating the

main character of CCF events. The dependent failure resulting from a shared cause or another

component state should be distinguished.

Thereafter, several definitions of CCF have been suggested in literature. Mainly all the
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definitions of CCF events encompass the dependent failures. The distinction is the definition

of time duration during when dependent failures are classified as a group of CCF events.

Some definitions are broad and essentially cover the entire set of dependent failures. Some

definitions do not explain clearly about the duration of time interval. Other definitions focus

on the time duration in the context of a particular application, such as PRA mission.

In NUREG/CR-4780 (A. Mosleh, 1988), common cause events are defined as a subset

of dependent events in which two or more component fault states exist at the same time, or in

a short time interval, and are a direct result of a shared cause.

In NUREG/CR-5485 (A. Mosleh, 1998), a CCF event consists of component failures

that meet four criteria: (1) two or more individual components fail or are degraded, including

failures during demand, in-service testing, or deficiencies that would have resulted in a failure

if a demand signal had been received; (2) components fail within a selected period of time

such that success of the PRA mission would be uncertain; (3) component failures result from

a single shared cause and coupling mechanism; and (4) a component failure occurs within the

established component boundary.

1.1.2. Main elements of common causefailure analysis

Generally, there are three main elements of CCF events, the failure cause, coupling

factor and defense mechanism.

I) Failure cause: The cause of a failure event is a condition or a combination of

conditions to which a change in the state of a component can be attributed. To identify

the failure cause or the causal chain of conditions is important. The collection and

classification of CCF data rely on the identification of causes. Several types of causes

are applied in CCF analysis. A proximate cause associated with a component failure

event is a characteization of the condition that is readily identifiable as having led to

the failure. A root cause is the basic reason why components fail. Compared with root
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causes, proximate causes are more identifiable but do not necessarily reflect the

complete understanding of failure mechanism. Because it is difficult to determine the

root causes, current CCF database only codes the proximate cause. In current

dissertation, for the consideration of data collection, all causes simply refer to

proximate causes.

Coupling factor; A coupling factor is a characteristic of a group of components that

identifies them as susceptible to the same causal mechanisms of failure. After the

occurrence of a shared cause, the coupling factor is the conductive meaning of

simultaneous dependent failure. Coupling factors include the similarity in design,

location, environment, mission and operational, maintenance, and test procedures.

Therefore, the coupling factors are usually classified as (1) Quality based; (2) Design

based; (3) Maintenance based; (4) Operation based; (5) Environment based.

Defense mechanism: To protect redundant systems against CCF events, it is necessary

to understand and apply defense strategy. In engineering, the defense strategy is noted

as defense mechanism. The defense mechanism for CCF systems can be functional

barrier, physical barrier, monitoring and awareness, maintenance staffing and

scheduling, component identification, diversity and others. As introduced before, there

are two important elements related to the CCF occurrence mechanism, so two defense

strategies can be applied in engineering: (1) the defense strategy against the failure

causes; (2) defense strategy against coupling factors. Based on the seismic fragility

analysis, to enhance the seismic capacity of safety-related components can defend

against the earthquake. To construct flood barriers between compartments can

preclude the propagation of flood, and the coupling factor is intemrpted.

3)
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I. 1.3. Parametric modeling for common cause failure

The mathematical treatment of CCF in PRA and reliability studies is well established

in the literature and in practice. References have been published to introduce the basic

principles and guidance for CCF analysis. The basic quantitative screening and

parameterization of CCF event are simply introduced as follows.

Based on the qualitative analysis of redundant system, the system boundary can be

identified. The group of components in the qualitative process is named as the Common

Cause Component Group (CCCG). Generally, the functionally-identical components of a

redundant system are assigned to a CCCG. To consider the CCF risk of a CCCG, the

complete quantitative process is inevitable to be determined. The objective of quantitative

screening is to decide reasonable parameters to represent the potential failure risk in a

redundant system. The risk of independent dependent failure can be decided based on the

parametric model, and then the failure probability of the redundant system can be calculated.

The relationship between components failure and system failure can be displayed with fault

trees. Let us consider a CCCG composed of three redundant components A, B, and C. There

are three basic events in the fault tree, (1) A Fails; (2) B Fails; (3) C Fails. There two possible

failure scenarios for each component, independent failure or CCF. If only independent failure

and global CCF are considered, the basic events can be shown as Figure 1.1.

1.1 Fault trees for basic events

4

A Fails

Figure
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The simplest model of CCF basic events can be represented with a single parameter

model. Take the basic event of the component A as an example,

P(A,):(r- p).e(.e)

P(Cnur): F.r1,l1 Equation 1.1

Here, f(Z) is the total failure probability of the component A; p(,q,) is the independent

failure probability of the component A; P(C*r) t ttre CCF probability of components A, B

and C; B is the single parameter which represents the ratio of common cause failure.

The single parameter model provides a simple way to model the CCF risk. This

representative example shows the basic quantitative process of CCF modeling. More detailed

review of previous CCF modeling can be obtained in Chapter 2.

1.2. Bavesian Inference in Probabilistic Risk Assessment

1.2.1 . Hierarchical model in probabilistic risk ossessment

The term "inference" is defined as the process of obtaining a conclusion based on the

information available, e.g. operational data and expert experience, etc. The Bayesian

inference means the using of Bayes'theorem in which information is used to obtain the most

reasonable posterior distribution of a parameter. Probabilistic Risk Assessment (PRA) is a

mature technology that can provide a quantitative assessment of the risk from accidents in

nuclear power plants. In the process of PRA, it involves the development of models via tool

such as Fault Trees and Event Trees, etc. According to the occurrence of initiating events, the

response of safety-related systems can be delineated by PRA models. Therefore, the

estimation of risk can be obtained by propagating the uncertainty distributions of key

parameters through these models. The calculation of final integrated parameters is of great
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importance, e.g. Core Damage Frequency (CDF), Large Early Release Frequency (LERF), etc.

The PRA models are hierarchical and complex, so the integrated parameters are intractable by

traditional probabilistic methods.

In nuclear PRA, the values of observations x are initially uncertainty and described

through a probability distribution with probability density function f(Ae). Here, the

mathematical treatment is unified without differentiation between discrete and continuous

quantities. The quantity 0 is the index of the family of interested parameters. With the

consideration of important parameters, the observations can be predicted with reasonable

uncertainties. Therefore, the probability density function of d is of great interests. It is likely

PRA analysts has some knowledge about the density function of no(d), evetr though the

knowledge may not be precise. Hence, it is useful to incorporate the knowledge no(g) with

the observations x. Usually, is called prior distribution. Observational 1(xle) is

called likelihood function. The likelihood function provides the chances of each e leading

to observed value of x. The posterior distribution nr(?lx) of e can be obtained via Bayes'

theorem

r,(elr)= /01θレ。(θ) Equation 1.2

I r\le)",(eYe

Because the denominator is simply a constant, the Bayes' theorem can be written in a

more compact chain form

π10χ)∝ /01θ>。 (θ) Equation 1.3
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The target posterior distribution is not analytically tractable. ln the past, intractability

was avoided via the use of conjugate prior distributions. If the posterior distribution or(?V)

are in the same family as the prior distribution 
"o(0), 

the prior and posterior are then called

conjugated distributions, and the prior is called a conjugate prior for the likelihood. For

example, the gamma distribution is conjugate to itself, and for the binomial distribution, the

conjugate prior is abeta distribution. Different distributions can have the same conjugate prior

e.g. Poisson and Exponential distributions are conjugate to gamma distributions.

Prior distributions can be classified as either informative or noninformative.

Informative priors contain previous known information about the value of parameters.

Noninformative priors do not contain substantive information about the value of parameters.

Noninformative priors (such as Jeffreys noninformative prior) are widely used in nuclear PRA,

which allow the observation to speak for themselves. There is a compromise distribution

between an informative prior and the noninformative prior, which is called constrained

noninformative prior. For Poisson distribution, the constrained noninformative prior is a

gamma distribution with certain shape parameters.

Example 1.1 Poisson inference with conjugate prior

The Poisson distribution is widely used to model the Sampling Test in Quality Assurance. The

numbers of flows and failures in one test scheme are denotedby go' and goo, respectively.

Hence, the probability density distribution can be written as

gた ～んなsο″(ノ ),た∈檸,Fa} Equation 1.4

Here, )r't is the expected number of flaws; 7F" is the expected number of failures.

If there is no available information, the low-informative prior (e.g.

gammd0.01,0.0l)) can be used. During two testings, it is assumed that the record of flaws
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and g乃 =(2,1),sO thC

λЛlg～ gα″″<7.01,2.01)

λ乃lg～ gα″″く3.01,2.01)

The posterior distributions are shown in Figure

failures can be calculated as

posterior distribution

Equation 1.5

1.2. The mean value of flaws and

πlレぽ)Of

o(t"ls):3.488, E(10"1")= t .4s8 .

５
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Figure 1.2 Posterior distributions for conjugate example

However, not every aleatory model will have an associated conjugate prior. In the

practical PRA analysis, analysts may sometimes choose to use a nonconjugate prior even

when a conjugate prior exists. Under these scenarios, the integration will become intractable

and Monte Carlo integration will be necessary.
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′.2.3.β
`ッ`s,α
″″ブυ″″cC И万″ル物rbソ Cttα J″ ルゐ″た CαrJa

For many years, Bayesian theory was unable to be established as a well-accepted

quantitative approach for data analysis. The main reason is the intractable integration involved

in the calculation of the posterior distribution. Asymptotic methods had provided solutions to

specific problems, such as conjugate distributions, but no generalization was available. Since

the beginning of 21't century, the application of Bayesian statistics in science and engineering

has been becoming fashionable. The advent of Markov Chain Monte Carlo (MCMC)

sampling opened highways for statistical research. With the MCMC sampling, the Bayesian

inference works for simple and well-supported cases, but more importantly, it works

efficiently on complex and multi-dimensional problems.

With the development of MCMC algorithms, computational software appeared.

During the late 1990s, Bayesian inference Using Gibbs Sampling (BUGS) emerged in the

foreground. BUGS is a free software that fits complicated hierarchical models in a relatively

easy manner. Thereafter, the Window version of BUGS (WinBUGS) has earned gteat

popularity in various fields. Now, more recent advances leads the software to an open-source

version (OpenBUGS). The intractable integrations can now be solved with these software

packages.

Example 1.2 Poisson inference with nonconjugate prior

Take the Poisson distribution in Sampling Test as an example again. If a lognormal

distribution is assumed by PRA analysts as the prior for the lambda in the Poisson distribution,

the computation can be fulfilled with OpenBUGS. During two identical testing interval, the

observed data of flaws and failures is g.Fl:(1,4), and g.Fa:(2,1), respectively. The

nonconjugate prior distributions for parameters (lambda in Poisson distributions) are assumed

as lognormal distribution (with a median of I x 10-8 / tusting episode and a range factor of
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100). Hence, the posterior distributions for parameters can be obtained. The OpenBUGS

script is shown in Table 1.1. The summary of posterior distributions for parameters is shown

in Table I.2. The expected value of flaws and failures during one testing interval can be

calculated. The observed data and previous knowledge of testing results are credited. The

density curves of posterior probabilities are shown in Figure 1.3. Curves show different

attributes compared with the example of conjugate priors. It is important to find a minimally

informative prior distribution in Bayesian inference.

Table 1.1 OpenBUGS script for Poisson inference with nonconjugate prior

model {

for (i in I:2) {

g.Fl[i] - dpois(lambda.Fl)

g.Fa[i] - dpois(lambda.Fa)

l

lambda.Fl - dlnorm(mu.Fl, tau.Fl)

lambda.Fa - dlnorm(mu.Fa, tau.Fa)

mu.Fl <- log(prior.median.Fl)

mu.Fa <- log(prior.median.Fa)

tau.Fl <- pow(log(RF.Fl)/1.6 45, -2)

tau.Fa <- pow(1og(RF.Fa)/1.6 45, -2)

t
I

data

list(g.Fl : c(3,4), g.Fa: c(2,I), prior.median.Fl: 1.E-8,

prior.median.Fa: 1.E-8, RF.FI: 100, RF.Fa: 100)

# Poisson distribution for flaws

and failures

# Lognormal prior distribution for

lambda.Fl and lambda.Fa

# Calculate prior mu.Fl and

mu.Fa from lognormal mean

# Calculate prior tau.Fl and tau.Fa

from lognormal range factor

10



CHAPTER l

Tablc l.2 Summary ofposterior distribution for the noncottugate example

Parameter Mean ⅣIedian 950/O Interval

Lambda(Flaw)

Lambda(Failllrc)

2.285

0.407

2.122

0.275

(0.715,4.799)

(0.015,1.527)
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Figure 1.3 Posterior distributions for the nonconjugate example

Research Motivation

ln recent decades, great achievements have been obtained in the context of CCF

modeling. Basic parameter models for CCF analysis have been well established in the

literature and in practice. The lumped basic parameters reflect the CCF risk of targeted

redundant systems. The estimation of basic parameters is based on the generic operation data.

From the perspective of Bayesian inference, the posterior distributions for basic parameters

are updated according to the evidence of failure event data. Basic parameters are integrated

result of failure information and cause occurrence information. There are unknown

uncertainties in the probability or density distribution of parameters, which can result from

1) Scarce common cause failure data and imprecise CCF data.

11
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2) The generic operation database which is used to estimate the plant-specific and

system-specific CCF parameters.

3) Omission of valuable information, e.g. causal inference.

4) Dynamic operation conditions which are not reflected in the CCF parameters but

important in time-dependent reliability analysis.

5) Innate known uncertainty in the prediction of some common causes, which rarely

happen but are of significant risk.

Therefore, it is important to estimate CCF parameters from the viewpoint of

uncertainty analysis. The uncertainty sources in parameter estimation should be determined.

Previous parametric model cannot evaluate the uncertainty sources in basic parameters. It is

interesting to develop a method for further analysis of CCF.

The quantitative analysis procedure of plant-specific and system-specific CCF event

should be determined. In response to the lessons learned from the Fukushima-Daiichi nuclear

power station accident, the safety margins evaluation and safety enforcement of the NPPs are

necessary immediately. The defense strategies against the CCF are of great importance,

especially that against CCFs which are caused by external events. It is necessary to consider

the change of safety-related parameters in the procedure of PRA when modifications are

applied. However, the generic data based basic parameter models of CCF cannot take into

account the specific system-design. For instance, flood barriers are recommended to be built

in Turbine Building at the PWR NPP. The operation environment of Auxiliary Feedwater

(AFW) pumps is modified. The CCF parameters should be able to reflect certain

improvement and modification. Moreover, the happen of an earthquake will exacerbate the

operation environment of AFW pump. The conditional risk of intemal flood and flood barrier

failure will propagate. The CCF parameter estimation should be able to reflect the dynamic or

event-based scenario. Therefore, it is necessary to develop a method to update CCF

parameters based on possible modification of redundant system.

12



Chapter 2: LITERATURE REVIEW

ln recent decades, numerous parametric models have been proposed, and some have

been widely used in the nuclear PRA analysis. Parameters in models represent the CCF risk of

targeted redundant systems. In this chapter, the main characteristics of these useful models are

reviewed. Two major categories of parametric models are Nonshock Model and Shock

Model.

The nonshock model estimate CCF event probabilities without considering the failure

process. The Beta Factor Model, Multiple Greek Letter (MGL) Model and Alpha Model are

representative models of the nonshock category, which are also called Basic Parameter

Models (BPMs). The parameters of BPMs can be estimated based on a source of data, e.g.

generic operation database.

The shock model takes into account of failure mechanism. Causes are divided as

independent causes and common causes, so the shock model treated the causal analysis in a

rather simple way. The CCF event in shock model is considered as the shock-caused

consequence, and the conditional probability given the occurrence of shocks.

2.1.  Beta Factor PIodel

The beta factor model is a single parameter model. The factor ( B ) represents the ratio

of CCF probability in total failure probability. The beta factor model is the simplest BMP. It

is assumed that whenever a cofllmon cause event occurs, all components in a CCCG fail

simultaneously. Hence, as shown in Figure 2.I, the total failure probability (Q) of one

component is separated as the independent part ( Q,) andthe CCF Part(Qcce).

o=〔―βL
2CCF=κ

13
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Figure 2.1 F ault tree of component A failure

Using the beta factor model can simply model the CCF risk of a redundant system. Let

consider a 2-out-of-3 system as an example. It means that there are three redundant

components in the targeted system. If two of two components fail, the system will fail. The

fault tree of the system failure is shown in Figure 2.2. Therefore, there is no CCF event

involving two component with the beta factor model.

Figure 2.2Fadt tree of 2-out-of-3 system with the beta factor model

The mathematical form of beta factor can be obtained bv

β=百
ftti「
=
2cσ

2

System Fails

14
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Therefore, the estimation of the beta factor can be conducted by Bayesian inference.

The proper prior distribution and likelihood function should be well defined. According to the

observed CCF data, the posterior distribution of the beta factor can be calculated.

Example 2.1 Bayesian inference for Beta Factor estimation

The binomial can be used as the aleatory model for failure states of components in the

beta factor model. When a failure is observed, the failure is either an independent failure or

global dependent failure. A conjugate prior of binomial distribution is the beta distribution.

Two parameters (oo,,o, and bp,,o,) are required to specify the prior beta distribution. The

posterior distribution is also a beta distribution with parameters ( ctoo", and b0,,,). If n

failures are observed and x failures are CCFs, so n -x failures are independent failures.

The parameters of posterior beta distribution can be written by

a po"t : a prior+ X

boorr: borior* n- x

Therefore, the mean values of prior and posterior beta factors are given by

ん″。′=
αρ″。″+b′′′。″

α
′′′。″
+χ

aprior+bprior+n

Equation 2.3

Equation 2.4

Equation 2.5

Equation 2.6鳥″=れ =

The noninformative beta prior is the beta distribution with all parameters equaling 0.

The calculation of the posterior beta factor can be conducted with BETAINVQ function in a

spreadsheet or by OpenBUGS. The script of OpenBUGS for the beta factor estimation is

15
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shown in Table 2.1. An informative beta distribution is assumed as the prior distribution.

Prior parameters and observed data are assumed as ap,io,:2,bp,io,: l8;x :19,n = 115 . The

probability density functions of prior and posterior distributions for beta factor are shown in

Figure 2.3.The posterior distribution of beta factor is the integrated result of the informative

prior distribution and the observed data. The estimate based on more observed information is

of less uncertainty. The posterior beta factor is attributed with the mean value of 0. 156 and the

95Yo credlble interval of (0.099, 0.221).

Table 2.1 OpenBUGS script for the beta factor estimation

model {

x - dbin(beta, n)

beta - dbeta(a.prior, b.prior)

beta.O - dbeta(a.prior, b.prior)

)

data

list(a.prior : 2,b.pior : 18, x : 19, n : 1 15)

# Binomial aleatory model

# Conjugate beta prior for beta factor

# Prior distribution for comparison

# Observed failure data and prior parameters
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For a redundant system of multiple components, the beta factor model generally

generates conservative. Because of the limitation of single parameter model, multi-parameter

model are recommended to be used.

2.2. Multiple Greek Letter Model

The MGL model is the most general extension of the beta factor model. Except for the

beta factor, more parameters are introduced to account for higher order redundancies. In other

words, not only the independent failure and global dependent failure, but also the partial

dependent failure can be expressed by the MGL model.

The total failure probability of one component is denoted as Q,. The total failure

probability includes all types of failure for one component, such as independent, partial and

total dependent failures. Take the 2-out-of-3 system as an example, the total failure

probability can be written as

gr=21+222+α Equation2.T

Here, Qo (k:1,23) is the failure including ft components.

Therefore, the MGL parameters can be given by the failure probabilities of single

component. For the 2-out-of-3 components, two parameters (Bandy) are used to represent

the risk of CCF event. The parameter ( f ) is the conditional probability that the cause of a

component failure will be shared by one or two additional components, given that a specific

component has failed. The parameter ( f ) is the conditional probability that the cause of a

component failure that is share by one or more components will be shared by two or some

additional components, given that two specific components have failed.

17
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β=

/=222+23 Equation 2.8

2.3.

Estimates for the MGL parameters are relatively difficult to obtain, but the calculation

process can be simplified via another BPM (the alpha factor model). The calculation example

of the MGL model by Bayesian inference will be introduced in next section. The conversion

formulae between the MGL model and the alpha factor model are given in related references.

Alpha Factor Model

The alpha factor model is most widely used BPM in nuclear PRA. The calculation

process is much easier than the MGL model. The alpha factor model is a multi-parameter

model. Parameters in the alpha factor model are event-based, which can be obtained from

generic operation database. The estimation of alpha factors are affected by the specific testing

scheme applied in actual analysis. The alpha factor model is the basis of this dissertation. The

fault tree on component level of 2-out-of-3 system is shown in Figure 2.4. Three identical

components, A, B, and C, are assumed in the redundant system.

Figure 2.4 Fadt tree on component level

Svstem Fails

18
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From Figure 2.3, the basic events of this redundant system can be written as

レ,3)レ,CL伸,C)レ,3,C}

Here, the first three events compose of the minimal cutsets of the redundant system. Generally,

the theory of minimal cutset is used in reliability analysis, but the separation of minimal

cutsets will neglect the global common cause failure of three redundant components.

The fault tree on component level can be expanded to learn the failure mechanism of

one component. The expansion of the fault tree for component A is displayed in Figure 2.5.

There are three failure types of component A including independent failure, partial CCF and

global CCF. Therefore, the basic events of system failure can be given by the failure types of

components.

秘r鳥 )に,o)L,c){C″ )ac){cκ ){cκ )

Here, X r is the failure of component X from independent causes; C n is the failure of

components X and Y from common causes; C *, is the failure of components A, B, and

C from common causes.

Figure 2.5 Fault tree of component A failure
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Using the rare event approximation, the system failure probability of the 2-out-of-3

system is given by

PIS)=P141PIBr)+P(И ′ンく(み )+PI跨 lPlc)十 P《1慇 )+P(CLc)+P《 1℃ )+P01響 c)

Equation 2.9

The total failure probability of component A is denoted as Q,. It is the same to the

MGL model that the total failure probability (Q,) canbe expressed by

o=21+2o+α Equation 2.10

Therefore, the definition of alpha factors can be obtained based on certain testing

schemes. Different testing schemes affect the collection of CCF data and the estimates of CCF

parameters are different. Usually, there two testing schemes: staggered testing scheme and

non-staggered testing scheme. tn the case of staggered testing scheme, only one component is

tested in a test episode. If the result is a failure, the rest of components will be tested. tn the

case of non-staggered testing scheme, all components in the CCCG are tested in a test episode.

Regarding the way systems in the databases are tested, it is necessary to select different

parameter models reasonably.

For a staggered testing scheme, the alpha factors of the 2-out-of-3 system are wriffen

AS

(フι
l

Ｇ
一２

　

筏
一２

一一　

　

　

　

　

〓α 2
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For a non-staggered testing scheme, the alpha factors of the 2-out-of-3 system are

written as

Ｑ
一２
〓α

αl=多×α′

α2= Equation2.I2

α3=

Here, d, = dt +2a, +3ar.

In this dissertation, the staggered testing scheme is selected to introduce current

research. The alpha factors represent the CCF risk involving respective number of

components. The estimation of alpha factors can be conducted by the Bayesian inference.

When the alpha factor model is applied, there are multiple possible outcomes and the

CCF probabilities are constant alpha factors. The aleatory model for CCF events is generally

assumed as multinomial distribution. For the system with three redundant components, the

vector X =(*r,x2,x3) foilo*r a multinomial distribution with parameters a =(a,a2,d3).

The *,(j=1,23) is the CCF event including i components and the respective

o,(j=1,23) represents the probability of the CCF event including i components.

Because the sum of all alpha factors equals 1 (as shown in Equation 2.I3), the vector of alpha

factors can be well established as Dirichlet distribution. The conjugate prior of multinomial

distribution is the Dirichlet distribution. A noninformative prior for the multinomial

distirubion is the Dririchlet with 0* =l(k =t,Z,Z).

α
′
一
２

　

　

α
′
一
３

×
　
　
　
　
　
　
　
　
×

２
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２
一２
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Example 2.2 Bayesian inference for the alpha factor model and MGL model

The redundant have a CCCG of three components. According the observed data, it has

suffered 50 failures.40 of these are independent failures, 7 arepartial dependent failures, and

3 are global dependent failures. So the vector of CCF events is X :(40,7,3), which follows

multinomial distribution. Alpha factors are inferred based on this operation data. The

informative prior of Dirichlet distribution is assumed.

CHAPTER 2

Zo, =l
j=l

X - Multinomia l(ar, d 2, a,3)

Prior a - Dirichlet(t,t,t)

B=dr*d,

a1

d2+d3

Equation 2.13

Equation 2.14

Equation 2.15

Equation 2.16

The parameters in the MGL model are given according to the conversion formulae

from alpha factors to MGL parameters. The OpenBUGS script for estimation CCF parameters

is shown inTable2.2.

The summary of posterior distributions for CCF parameters is shown in Table 2.3.The

probability density functions are shown in Figures 2.6 and2.7. Alpha and MGL factors reflect

the CCF risk including certain number of components. According to the curves in Figure 2.6,

prior alpha factors are of great uncertainty. The posterior distributions integrate the observed

data information and prior judgment, so these are of less uncertainty. The estimation of CCF
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parameters providcs lnore accurate PRA results.

Table 2.2 OpenBUGS script for the estimation of the alpha and MGL factors

modcl{

x[1:3]～ dmulti(alpha[1:3],X)

X<― sum(x[1:3])

alpha[1:3]～ ddi五 Ch(theta□ )

alpha.0[1:3]～ ddiriCh(thCta[])

beta<― alpha[2]+alpha[3]

# Aleatory model with multibinomial

likelihood function

# Total of failure events

# The noninformative prior for alpha

# Prior for comparison

# Conversion from the alpha factor model

gamma<― alpha[3]/(alpha[2]+alpha[3])     tothe MGL modcl

beta.0<¨ alpha.0[2]+alpha.o[3]            # P五 or fOr compaHson

gamma.0<― alpha.0[3]/(alpha.o[2]+alpha.o[3])

}

data

liSt(X=C(40,7,3),thcta=c(1,1,1))

Table 2.3 Summary of posterior distribution for alpha and MGL factors

Parameter Mean Median          950/O Interval

Alpha-1

Llpha-2

Alpha-3

Beta

Gamma

0.774

0.151

0.075

0.226

0.331

0.778           (0.652,0.872)

0.147           (0.070,0.256)

0.069           (0.021,0.161)

0.223           (0.128,0.348)

0.319           (0.109,0.613)
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Figure 2.6 Prior and posterior distributions for alpha factors
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Figure 2.7 Pnor and posterior distributions for MGL factors

2.4. Binomial Failure Rate Model

The Binomial Failure Rate (BFR) model is a shock model. The same to previous

introduced nonshock models, the BFR model includes two types of failures. One is

independent failures and the other is dependent failures caused by shocks. Shocks are

“ ""~~T~｀
｀

こ
~~… ~~― ‐ 、



CHAPTER 2

classified as lethal shock and nonlethal shock. The probability of independent failure is

assumed as a constant. The lethal shock leads to a global CCF event. The nonlethal shock

leads to a failure of one component following a binomial distribution. Therefore, the

occunence frequency of shocks and the conditional probability given a shock are important

elements in the BFR model. The assumptions of constant independent failure probability and

conditional CCF risk restrict the application of the BFR model. Both of aleatory models are

assumed as binomial distribution.

The failure probability of CCF event involving j components for a system with n

redundant components is given as

0→ =

0+″ (1-ρ )″・ ノ=1
μρ
ノ
ll_ρ )″
′  2≦ブ≦η-1 Equation 2.17

μノ +ω ノ=″

Here, Q, is the independent failure probability of each component; p is the occulrence

frequency of nonlethal shocks; p is the conditional probability of each component given a

nonlethal shock; a is the occurrence frequency of lethal shocks. It can be seen from

Equation 2.I7 that all the CCF risk significance from nonlethal shocks are treated as same.

The dual separation of shocks is too rough to estimate a system of high redundancy. In other

words, the failure probability will be underestimated for highly redundant system. The

estimation process of conditional failure probability is similar to that of the beta factor model.

2.5. EventAssessment and Dana Kelly Causal Inference Framework

Event assessment is an application of PRA in which observed equipment failures and

outages are mapped on to the risk model to obtain a numerical estimation of the event's risk

significance. ln an event assessment, the failure probability is considered given the event or
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conditions that exist, for instance, a redundant component fails or goes to out of service. The

availability of the redundant system is changed after the occurence of these events. The CCF

probability is accounted given on certain scenarios to avoid underestimating important

safety-related parameters. The main mathematical theory used in event assessment of CCF is

conditional probability.

Dana Kelly et al. proposed a preliminary framework for CCF analysis, which uses a

Bayesian network to model underlying causes of failure, and which has the potential to

overcome the limitations of the basic parameters models with respect to event assessment.

The risk significance of degraded conditions can be evaluated by the causal inference

framework.

Consider a CCCG consisting of two redundant Emergency Diesel Generators (EDGs).

During a surveillance test, EDG A fails to run. There is a root cause of the failure of EDG A.

The risk evaluation of this scenario requires an estimate of the failure probability of EDG B

given the failure of EDG A and the investigated root cause. This framework can provide an

analysis of CCF from the perspective of Bayesian network based causality and conditional

probability.
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Chapter 3: THE ALPHA-DECOMPOSITION METHOD

3.1. The Concept of Decomposition in Parameter Estimation

During the last decades, the nuclear industry has recognized the PRA has evolved to

the point where it can be used in a variety of applications including as a tool in the regulatory

decision-making process. One requirement for PRA analysis used to develop risk-specific

application is to determine the important parameter distributions. For instance, in the severe

accident analysis, an accident sequence's possibility of damaging reactor fuel, Core Damage

Frequency (CDF), Large Early Release Frequency (LERF) or latent cancer fatality are used as

surrogates for risk. These risk surrogated are most distinct representatives of accident risk or

consequence. Tremendous effort and knowledge should be relied on to learn these risk

surrogates. Efforts include determination of both plant-specific and generic estimates for

initiating event frequencies, important safety-related system failure rates and unavailability,

and component and equipment failure or non-recovery probabilities.

Because the important risk surrogates (CDF, LERF) are affected by the parameters,

the relationship between risk surrogates and parameters should be determined by PRA

methods. Event Trees (ET) and Fault Trees (FTs) are used to do the inference. It is called the

decomposition of final states on system and component level in this dissertation, which means

that the accident risk is an integrated reflection of multiple independent or partially dependent

elements. Figure 3.1 shows the PRA analysis of Pressurized Thermal Shock (PTS), which is a

severe transient in a PWR NPP. The risk of PTS and Core Damage (CD) are affected by the

states of secondary feedwater systems. In order to quantitatively estimate the risk surrogates,

the failure probabilities of feedwater systems should be well established. The ET in Figure 3.1

shows the relationship between interested end states and parameters on system level (failure

probabilities of feedwater systems). The status of secondary pressure influences the pressure

and temperature in the Reactor Coolant System (RCS), since the RCS and the secondary side
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of the PWR are thermally-hydraulically coupled in most scenarios. Moreover, the status of

secondary feedwater systems influences the pressure and temperafure in the RCS. To

calculate the failure probability of each system, the FT tool is used. For instance, the

availability of Auxiliary Feedwater systems is affected by the status of three AFW pumps.

This is called the decomposition on component level. Based on the failure probabilities of

components, the unavailability of the targeted system can be obtained. Therefore, the

complicated estimates of PTS and CD can be expressed by parameters on system- and

component-level via the tools of ET/FT.

Potential TPS or
CD

CD

Potential TPS or
CD

Potential TPS or
CD

Potential TPS or
CD

Figure 3.1 Simplified event tree for PTS PRA analysis
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This characteristic of risk surrogates is denoted as decomposability on system level.

The ET can be used to exploit this representation of integrated risk surrogates. Assumed the

end state is affect by three systems, hence, based on the theory of structure inference and

conditional probability, the end states can be expressed as

)
r (co) =le (col&", : Failure)P (,S/s- : Failure)

i=1

Equation 3.1

Here, the failure probabilities are important explanatory variables to influence the estimate of

end states. The condition probabilities of end states given system failures are important

parameters that determine the relationship between the end state and each system.

The failure probability of each safety-related system can be repressed by

sub-parameters. This characteristic of system failure probabilities is called decomposability

on component level. lntegrated failure probability of can be decomposed by the tool of FT.

Based on the theory of structure inference and conditional probability, the failure probability

can be expressed as

P(耽 )=Σ P(机 IF)P(r)+Σ P(SyS,に″ ン

"α

)
Equation 3.2

A,B,C A,B,C

Here, IF is the independent failure and CCF is the common cause failure. The probabilities of

independent failure and CCF are explanatory variables of system failure probability, which

can be calculated by CCF modeling (beta-factor or alpha-factor, etc.). The conditional

probability of system given each failure mechanism is the parameters that determine the

relationship between the system failure and component failure.

Based on the concept of decomposition, at first we proposed the framework of

parameter estimation on cause level, which is under the system level and component. The

causal inference and decomposition can be used to estimate CCF parameters. Table 3.1 shows
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the conceptual framework of dccomposition.

From Table 3.1, it can be seen that by the process of decomposition, the important

parameters are distinguished. The next step is to determine how the important parameters on

Table 3.1 The framework of decomposition

Tools Important parameters

Accident risk

&

System level

lnitiator I System A lCore S

「YES→レ

NO
十

Good

Damage

e(nit)
P(sys.A)

e(co/nit)
r(colsys.,a)

System level

&

Component

level

P(Compt.A)

P(Compt.B)

P(Compt.C)

d1rd2rd3

Component

level

&

Cause level

Component A fails:
AI&CCF P(41CI),P(Cσ lCl),P(q)

P(41Q),P(C″la),P(a)
P(41q),P(Cσ lQ),P(Q)
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cause level influence the CCF parameters. This dissertation focuses on the inference on the

cause level so that the CCF parameters can be learned.

3.2. RiskAnalysis of Common Causes

In the context of the present discussion, the cause of a failure event is a condition or

combination of conditions to which a change in the state of a component can be attributed.

Usually, the failure mechanism of a CCF event is complicated and a causal chain will be

inferred, so the causes have been classified as proximate causes and root causes. A proximate

cause associated with a component failure event is a characteization of the condition that is

readily identifiable as having to the failure. A root cause is the basic reason why the

component fails. For instance, a component failed because of flood. However, to recognize

the risk of common cause failure, it is necessary to identify what triggered the flood. The

failure frequency of pipe break or a seismic shock should be quantified. tn this dissertation, to

describe a failure in terms of a single cause is a simplification of failure mechanism. We focus

on the mathematical illustration of the alpha-decomposition method. So the causes in the

process of alpha decomposition are referred to the most identifiable proximate causes.

Therefore, causes should be classified for further analysis. The classification of causes

is referred to the standards and guidance published by U.S. NRC for collecting, classifying

and coding CCF events. Figure 3.2 shows the classification of causes. It is subdivided as

seven categories.

1 ) Design/Construction/Manufacture Inadequacy.

It encompasses actions and decisions taken during design, manufactures, or

installation of components both before and after the plant is operational.

2) Operations/Human Error (Plant Stuff Error).

It represents causes related to errors of omission and commission on the part of plant

staff. An example is a failure to follow the standard procedure.
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Figure 3.2 Potential causes classification
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3) External Environment.

It represents causes related to a harsh extemal environment that is not within

component design specifications. For example, the earthquake and tsunami are the

extemal events that occurred in Fukushima Daiichi nuclear station. External events are

always hard to predict.

4) lntemal to Component.

It results from phenomena such as wear or other intrinsic failure mechanism. These

are malfunctions intemal to the component.

5) State of other component.

The component is functionally unavailable because of failure of a supporting

component or system. For example, an air supply line to a valve breaks or a fuse in a

control circuit blows. It is important in the nuclear PRA analysis.

6) Unknown.

Sometimes the cause of failure state cannot be identified.

7) Others.

Used when the cause cannot be attributed to any of the previous causes categories.

This category is most frequently used for causes of setpoint drift.

There are two aspects should be considered for the CCF risk analysis of causes. One is

the occurrence frequencies of potential causes. The other is the CCF triggering ability of each

cause. Table 3.2 contains the occurrence information of CCF events in the engine sub-system

of the EDG system, which is a record of EDG CCF database made by U.S. NRC. There are

totallv 2I CCF events are collected in the database. The

Design/Construction/Installation/IVlanufacture Inadequacy cause group has 10 events (48

percent) of which one is Complete and non are Almost Complete. The Internal to Component

cause group has 8 CCF events (38 percent) of which two are Complete and two are Almost

Complete. The OperationaVHuman Error cause group contains three CCF events (14 percent)

of which none are Complete and Almost Complete. There no CCF event results from other
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cause groups. [t can be judged from Table 3.2 that each cause group has difference occurrence

frequencies and results in different amounts of CCF events. Therefore, these two elements

influence the CCF risk of each cause group for the targeted system.

Table 3.2 CCF events in engine sub-system of EDG system

Cause Group Commplete  ci111:le   Partial    Total Percent

D esi grrlC onstruction/lnstallation/
Manufacture lnadequacy

Intemal to Component

Operational/Human

Extemal Environment

Other

1

2

0

0

0

0

2

0

0

0

9

4

3

0

0

10

8

3

0

0

47.6%

38.1%

14.30/。

0.0%

0.0%

Total 21 100.0%

For the simplest consideration, it is assumed that there are three potential common

causes. As shown in Table 3.3, three causes have innate occurrence frequencies and CCF

triggering abilities. Similar to the actual common causes database, there are three potential

causes denoted as Cause 1, Cause 2 md Cause 3. The Cause 1 is labeled as a black diamond

(r) which is of high occrurence frequency and relatively low CCF triggering ability. The risk

of Cause 1 can be read from Figure 3.3, so the CCF risk is medium. The Cause 2 is labeled as

a black triangle (A) which is of relatively low occurrence frequency and high CCF triggering

ability, so the risk of Cause 2 is high based on Figure 3.3. The Cause 3 is labeled as a black

circle (o) which is of extremely low occurrence frequency and extremely high CCF triggering

ability, so the CCF risk is high based on Figure 3.3. Table 3.3 and Figure 3.3 demonstrate the

conceptual evaluation of common causes. Two important elements are found and explained.

The basic function can be given as

16
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Equation 3.3

Here, dj is the alpha factor involving j components fail for common causes, Ci is the

Cause i; Tr, is the triggering ability of Cause i. This conceptual equation roughly shows the

alpha factors are the integrated reflection of potential common causes' CCF risk. The next

step is to find and prove the relationship among these two elements and CCF parameters

(alpha factors).

Table 3.3 Assumed causes for CCF risk comparison
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Figure 3.3 CCF risk map of potential causes
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CHAPTER 3

Proposed theAlpha Decomposition Method via Hybrid Bayesian Network

Based on the previous discussion, the lumped alpha factors are the integrated

reflection of cause and failure information, so these are decomposable. This section focuses

on the derivation of the mathematical function. For distinction, the alpha factors in the alpha

factor model is denoted as global alpha factors (ar) and the CCF triggering abilities of causes

are denoted as decomposed alpha factors (o? ).This section aims to determine the specific

form of Equation 3.3.

Definition 1 Alpha Decomposition

Since the global alphas are lumped parameters which are the integrated reflection of

failure and cause information in the common cause failure system. The global alpha factors

are decomposed according to a function of two types of elements. These explanatory

variables include occurrence frequencies and CCF triggering abilities (denoted as

decomposed alpha factors).

The process of decomposition can be well explained via the tool of Hybrid Bayesian

Network (HBN). The hybrid network includes the Fault Tree (FT) and Bayesian Network.

The FT is used to represent the relationship between component failures and system failure.

The Bayesian Network is used to represent the process of causal inference. By the

combination of two tools, the analysis of CCF event on system level, component level and

cause level can be established, and the relationship of parameters can be discussed. Figure 3.4

shows the HBN of a redundant system with three components (A, B, and C) and three

potential common causes (Cv Cz, and Cl). As discussed in the context, different causes are of

different abilities to result in CCF events and of difference occrurence frequencies. According

to the process of classification, the causes in this model are assumed as independent.

Therefore, the failure probability of components can be given by conditional
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3

P(A) =lr(\c,)p(c, )
i=l

3

P(B) =lr(nlc,)p(c, )
j=l

3

P(c) =lr(clc,)"(q )
i=l

Equation 3.4

It shows that if the occurrence frequencies and hazard of independent causes can be

determined, the failure probability of the targeted components and system can be decided.

Figure 3.4 Hybrid Bayesian Network of causal inference for system
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Figure 3.5 Hybrid Bayesian Network of causal inference for Component A

Figure 3.5 shows the HBN for the modeling of Component A. The independent failure,

partial CCF and complete CCF can be explained by the theory of conditional probability. It is

easier for the deduction of CCF parameters to focus on one component.

Equation 3.5

Here, Ar is the independent failure of Component A; Cn, and Cn, are the partial

CCF events involving Component A and one other componenti Cenc is the complete CCF

event involving all three components. It is given the relationship that the Cause 1 results in

the failure of Component A by the law of total probability.

４

の

の

の

Ｐ

Ｐ

Ｐ

Ｐ
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Therefore, the CCF risk of Causel is decomposed as three parts. These are f (,n,lCr),

P(C*lcr)+e(c^rlCr),and P(Cn*lc,), which have physical meaning. The e(41c,)

represents the hazard of Cause 1 which triggers independent failure of Component A; the

P(C*IC;* P(CnrlC, ) r.pr"rents the hazard of Cause I which triggering partial CCF event

involving Component A; the P(Co"rlC,) r.pr.rents the complete CCF event involving

ComponentA. Divide the Equation 3.6 by f (/Cr)

CHAPTER 3

P(И lq)=P(41q)十 P(QBlq)十 P(Cclq)+P(の Bclq)

ト

Equation 3.6

Equation 3.7

Equation 3.8

According the Equation 3.6 and Equation 3."/, the definition of decomposed alpha

factors can be given

αF=
P(41q)

P(И lq)

α夕=」
]I;i:;|十
三
:1:i:;|

″ =

Here, similarly to the definition of global alpha factors, all decomposed alpha factors have

practical meaning. The af' is the ratio of independent failure in total failure probability

given the occurrence of Cause 1. If a cause of high quantity of af', this cause is more

possible to result in an independent failure. The al' is the ratio of partial CCF in total failure

probability given Cause 1. If a cause of high quantity of af', this cause is more possible to

result in a partial CCF event.The al' is the ratio of complete CCF in total failure probability
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given Cause 1. If a cause of high quantity of al', this cause is more possible to result in a

complete CCF event.

The sum of decomposed alpha factors of Cause 1 is 1. The constraint of Sum-to-One

makes it reasonable that the prior distribution of a set of decompose alpha factors can be

assumed as Dirichlet distribution.

αF+α′十α∫=1 Equation 3.9

Similarly, the relationship that the Cause 2 and Cause 3 result in the failure

ComponentA can be given by

Pレに2)=ズ4に2)+P“/Br2)+P“′cr2)+P(摯

騰 I Equ“
on■ Ю

P(И lq)=P(41C3)+P(の BIC3)+P(Cclq)+P((

The decomposed alpha factors of Cause 2 canbe wriffen as

αル=:]::|:す
α夕=J]lli:;|十

αξ2=三
:iり千当;立

P(Ccla)

P(И IC2)

Equation 3.11

The Sum-to-One constraint for decomposed alpha factors of Cause 2 can be given by

af'+a? +af'=I

40
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The decomposed alpha factors ofCausc 3 can be written as

αF=P(И
IC3)

α:3=三
:1;fI:;主
+需

               EquatiOn 3.13

α:3=辮

The Sum-to-One constraint for decomposed alpha factors of Cause 3 can be given by

αF+α夕+7,=l               Equation 3.14

Moreover, according to the Equation 3.5, the independent failure probability of

Component A can be represented by the total failure probability law.

P(4)=P(41q)P(Cl)キ P(4にあ)P(a)+P(4に L)P(a) Equation 3.15

Based on Equation 3.8, Equation 3.15 can be replaced by decomposed alpha factors

and conditional probability of Component A.

P(4)=イ P(И lq)P(q)+矛 P(И Iり P(C)+イ P(И Iり Pに )

Equation 3.16

If the Equation 3.16 is divided by e(e), the global alpha factors and decomposed

alpha factors can be connected.
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需=イ」場器協P三十器+千三十器
Equation 3.17

According to the definition of alpha factors (Equation 2.ll), the left side of Equation

3.17 canbe given by

Equation 3.18

The element on the right side of Equation 3.17 is the ratios of failure that are caused

bv Cause i. It can be written as

P(∠ ICl)P(q)
rl=

P(И
)

P(∠ IQ)P(0) Equation 3.19

%=P1/1

ム =′2~   P(∠
)

r3=P(И
IC3)P(C3)

Here, rt is the occrurence frequency of Cause I among the failure events of Component A;

rz is the occrurence frequency of Cause 2 among the failure events of Component A; \ is

the occurrence frequency of Cause 3 among the failure events of Component A.

The sum ofoccurrence frequencies ofcauses also equals 1.

rrlrrlr,=l
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Thus, Equation 3.I7 can be written as a very simple regression function.

at : al'\ + af'r, + af'r, Equation 3.21

Similarly, the partial and complete CCF events can be written as

p(Cu, &c*) = p(cnu &cn"lC;r1c, )+ r(c* &Cn"lc,)r(c,)+ e(c* &cu,lc,)r(c,)
p (c u",) : p (C n," lc,) e (c,) + e (c u,, lc,) r (c,) + r (c *" I 

c, 
) 
p ( c, )

Eqtation3.22

Then the regression functions of global alpha factors (a, and ar) can be given by

ar:af'rr+af'rr+af'r, D_--_a: -,-. ^.
d,r: dl.,rr+ al,rr+ al,r, 

Equation 3'2r

As a conclusion, for system with n components and m potential common causes, the

general decomposition form of alpha factors can be given by

m\-r
a , : )' a,\'r, Equation 3.24

ttL/lr
l=l

Here, dj represents the CCF risk involvingT components; af' represents the CCF risk of

Cause I involvingT components; 4 represents the occulrence frequency of Cause i.
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3.4. Summary

Each common cause is of different ability to result in independent or dependent

failures. Causes are classified according to innate failure mechanism and other characteristics.

The lumped alpha factors are recognized as decomposable based on causal inference. In

Section 3.3, the alpha-decomposition method is proposed to quantitatively evaluate CCF

parameters. The global alpha factors are decomposed according to a function of two types of

elements. These explanatory variables include occurrence frequencies and CCF triggering

abilities (denoted as decomposed alpha factors). The regression model of the alpha

decomposition method is established and proved by the theory of conditional probability as

well as hybrid Bayesian Network.
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Chapter 4: BUILDING OF DATABASE  AND  BAYESIAN INFERENCE

PROCEDURES

This chapter illustrates the procedure of Bayesian inference for the alpha

decomposition method as well as the building of corresponding databases. An example of

parameter estimation is discussed with hypothetical databases. Posterior distributions for CCF

parameters are obtained. The uncertainty in the estimation CCF parameters is discussed.

4.1. Building of recommended database

Usually, there are two types of data sources can be used to produce the various

parameter estimates in PRA. These are plant-generic data sources and plant-specifrc data

sources. Because of the rarity of CCF event on a plant- or system-specific basis, the

plant-specific PRA has to rely heavily on the industry experience to develop a statistically

significant data bases. The alpha decomposition method is a quantitative assessment to

interpret generic CCF data and to translate them for plant-specific (or system-specific, or

design-specifi c) applications.

The database including the CCF events information and cause information for target

system should be collected. The classification of possible causes is shown in Figure 3.2.

Hence, records of two causes should be independent in the database, and the occurrence

frequency can be given by

P(Cttθ  f∩ Cttsθ 2)=P((レ堺θf)・P(Cmι 2) Equation 4.1

Cause i's occcurrence

乃″′
4=
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Based on the whether the CCF data is rare, two types of databases are recommended

to be built. One is the recommended database and the other is the so-called alternative

database. There is only rough information of cause occurence in the generic database. The

system assumed in this chapter is a redundant system with three components and there are

three potential causes.

4,1. l. Recommended database

The generic database means the collection of cause information and CCF event are not

specifically related. There is no detailed record of the cause's hazard, but only the occurrence

frequency is collected. This generic database is used when the cause information is rare. The

correlation between decomposed alpha factors with global alpha factors is a latent property

which can be predicted by the process of Bayesian inference. The recommended database has

advantage that different data sources can be combined. If there is no system-specific data

collected, the cause occurrence data from other industry or from plant-generic database can be

used.

Table 4.1 is the hypothetical database proposed to collect the data of cause occurrence.

It can be obtained from the Table 4.1that the occurrence information of each cause. Based on

Equation 4.2, the occurrence frequency can be calculated. Cause data of 16 systems are

collected. The System #1 has I27 CCF events occurred of which 25.20% is the result of

Cause I,22.05yo is Cause 2 and 52.76% is Cause 3. The Cause 3 happens most frequently in

System #1. System 2has totally 106 CCF events of which 16.04% is the result of Cause 1,

73.58% is Cause 2 and 10.38% is Cause 3. The Cause 2 happens most frequently in System 2.

As the analysis of CCF risk of causes, the causes have different occurrence

frequencies and different CCF hazard. All the hazard of a cause to a system is affected by the

property of the system as well. The CCF events of each system can be obtained from

Table.4.2.
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Table 4.1]Iypothetical CCF database including cause info...latiOn

Common Causes

Cause I Cause 2 Cause 3

Occurrence frequency

Cause 1 Cause 2 Cause 3

Total

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

32

17

18

29

7

15

12

2

7

10

3

7

3

5

4

1

28

78

19

6

33

9

15

22

4

8

6

3

5

3

5

6

67

11

50

31

10

17

7

7

11

3

10

6

7

7

2

2

‐２７

‐０６

８７

６６

５０

４‐

３４

３‐

２２

２‐

１９

‐６

‐５

‐５

Ｈ

９

25.20%   22.05%   52.76%

16.04%   73.580/0    10.38%

20.69%   21.84%   57.47%

43.940/0    9.090/0    46.97%

14.00%   66.00%   20.00%

36.59%   21.95%   41.46%

35.29%   44.12%   20.59%

6.450/0    70.97%   22.58%

31.820/0    18.18%   50.00%

47.62%   38.10%    14.29%

15.79%   31.58%   52.63%

43.750/0    18.75%   37.50%

20.00%   33.33%   46.67%

33.33%   20.00%   46.67%

36.36%   45.450/0    18.18%

11.11%   66.67%   22.22%

Table 4.2 is the database proposed to collect the data of CCF events. Three types of

CCF events are recorded that is single failure, partial common cause failure and complete

common cause failure. For instance, System has a total number of 127 CCF events of which

113 are single failure, 11 are partial CCF events and 3 complete CCF events. It is

recommended to build a database including not only CCF events but single failures. The data

of single failure is important to evaluate the alpha factor involving single component failure.
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Table 4.2Hypothetical CCF database including failure information

System
Single & Common Cause Failure

Single (1/3) Pntial (213) Complete (3/3)
Total

#T

#2

#3

#4

#5

#6

1+1frl

#8

#9

#10

#tl
#t2

#13

#14

#15

#16

113

98

n1
IJ

53

45

JJ

32

29

20

20

16

t4

13

T2

9

u

7

9

5

4

aJ

2

2

2

I

2

1

I

1

I

1

I

5

0

0

0

0

1

I

１

　

　

２

　

　

１

r27

106

87

66

50

4T

34

31

22

2L

t9

I6

15

15

1l

9

イ.f.2. Иルθ
“
α′′ソθグレ赫

To use the plant-specific and detailed data in the PRA procedures will reflect the

actual plant risk performance. If there is enough CCF data can be collected in the PRA

procedure, the more detailed database is recommended to be used. The database is named as

alternative database in this dissertation. In this database, all failure types and causes are well

defined which can provide more reliable estimates.

48



CHAPTER 4

Table 4.3 11ypothetical speciflc CCF database for Systein#1

Cause Group
Single & Common Cause Failure

Single (1/3) Partial (213) Complete (3/3)
Total Percent

Cause 1

Cause 2

Cause 3

24

24

65

２

　

　

８

　

　

７

３

　

　

２

　

　

６

１

　

　

０

３

　

　

２

25.20%

22.05%

52.76%

Total 113 11 127 100.0%

Because in the actual plant-specific PRA analysis, there are rare CCF events available

for one certain system, this database is called alternative database.

Table 4.3 shows the specific CCF database for System #1 including the cause and

failure events. Only the CCF events happened in the boundary of System #1 is collected. The

cause of each failure is well recorded. There are three types of failures: single failure, partial

common cause failure and complete common cause failure. The occurrence of three potential

causes is collected including the occurrence frequencies and the hazard of cause. There are

totally 32 failures triggered by Cause 1 of which 24 are single failures, 6 are partial CCF and

2 are complete CCF. Cause I has different possibility to result in different failure types, in

which single failures most frequently happen. The Cause I triggered 2 complete CCF events,

Cause 2 tiggered 1 complete CCF event, and Cause 3 triggered 0 complete CCF event. It can

be seen that three causes are of different CCF hazard. There are totally I27 fallure events

occurred of which 25.20% is the result of Cause l, 22.05yo is the result of Cause 2, and

52.16% is the result of Cause 3. Causes have innate occurence frequency which is an

important point to analyze the caused-informed CCF modeling. It should be noticed that the

data of single failure should be record since it directly affect the estimate of the alpha factor

involving one single component.

The calculation procedures of Bayesian inference on basis of two databases are

slightly different. It will be discussed separately by examples in the rest of this chapter.
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Hierarchical Bayesian Modeling

This section introduces the evaluation process of the alpha decomposition method.

This process includes the prediction of unknown parameters (decomposed alpha factors) and

the update of important variables (global alpha factors). The hierarchical Bayes method

embodies a complete Bayesian approach to the problem of estimating the unknown

probability distributions based on the available data, information or knowledge. The

hierarchical Bayesian approach expresses the initial uncertainty (that is, the uncertainty before

the data are considered) about the unknown hl,perparameters using another prior, a so-called

hyperprior distribution.

Therefore, the definition of hierarchical Bayesian model can be well explained. At

first, in the full Bayesian model all the unknown parameters (including prior distribution,

hyperprior distributions and hyperparameters) are assigned probability distributions that

express the analyst's initial uncertainty about these parameters. Secondly, the observed data

are used to solve the model and the required posterior distributions for the interested

parameters can be obtained. As introduced in the previous sections, the solution can be done

using the MCMC algorithm.

イ.2.f. Stmdanダ 乃Jθrακ力Jεα′
“
οJθ′

Bayesian models have an inherently hierarchical structure. Figure 4.1 shows the

typical procedure of Bayesian inference which is used in Examples 1.1 and 1.2. Squared

nodes refer to constant parameters, and oval nodes refer to stochastic components of the

model. The solid arows indicate stochastic dependence between parameters and variables.

The posterior distributions of parameters theta can be obtained based on the observations and

prior distributions, so the mathematical form of Figure 4.1 is the same as Equation 1.3, which

can be written as
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■(θ lχ)∝ /(χ lθ )衡 (θ ,α )∝ /(χ lθ )衡 (θレ) Equation 4.3

Here, tr,(elx) is the posterior distribution of parameter theta; rr(0,a) is the

distribution of theta which is represented by the set of constant parameters a; f (xle)

likelihood function.

Prior parameters

Prior

Data likclihood

Figure 4.1 Graphical representation of standard one-stage Bayesian model

The one-stage Bayesian model has a simple structure. The one stage refers to that only

one prior is assumed. Parameters of the prior distribution are constant. Based on the

observation, the parameters of the posterior distribution will be changed, so the process is also

called Bayesian Update.

To capture the complicated structure of some estimates, the prior is frequently

structured using a series of conditional distributions. Hence, a more complicated hierarchical

Bayesian model is defined when a prior distribution is also assigned on the prior parameters a

associated with the likelihood parameters 0.The graphical structure is shown in Figure 3.2. A

two-stage hierarchical Bayesian model is depicted. In this two-stage model, one so-called
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hyperprior distribution is assigned on the previous node a. This hyperprior has constant

parameters which are named as hyperparameters, so the hyperprior is no longer constant. The

hyperprior will be updated with the prior when observed data is obtained.

Hyperparameter

nd
Hyperprior (2 level)

st
Prior (1 level)

Data likclihood

ル

α

θ

χ

Figure 4.2 Graphical representation of standard two-stage Bayesian model

Similar to the Equation 4.3,the mathematical form of two-stage hierarchical Bayesian

model can be given by

r,(elx) a 7 (xll) r,(0,a) noo @,b) a 7 (xlo) n,(ola) r^, (aln) Equation 4.4

Here, rrr(aln) is the hyperprior distribution of the node a. Hence, two levels of prior

distributions can be defined. "r(?V) is the first level and roo(alb) is the second level.

Prior distributions of the upper levels of a hierarchical prior are called hyperpriors and the
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corresponding parameters are called hyperparameters. In Figure 3.7, "r(|V) is the

hyperprior and the set of D are the hyperparameters the hyperprior.

As a conclusion, hierarchical models describe efficiently complex datasets

incorporating correlation or including other properties in PRA models. The relationship

between parameters can be well reflected in the hierarchical Bayesian models. These models

imply a random calculation of conditional probabilities by MCMC model. Either conjugate

distributions or nonconjugate distributions can be calculated in an easy way.

In the some PRA analysis, the double-counting of operation data should be avoided in

the two-stage hierarchical Bayesian model. There are only one type of data is used in the early

PRA. For instance, the generic data is used to estimate the hyperparameters and to obtain the

estimate of f(ela,f). Then one specific data is used to estimate posterior distributions

combining with the obtained prior f (Ola,n). Because the specific data is one part of the

generic database, the data are double counted.

However, the two-stage hierarchical Bayesian model is useful when there are new

correlation and data sources.

1) When new correlation or properties can be included in the upper level of two-stage

model, the two-stage model should be applied to reach more reliable results.

2) When there are reliable corresponding data (other data source) can be used as

hyperparameters, the two-stage Bayesian model should be efficient to combine

different data sources.

The correlation between global alpha factors and decomposed alpha factors are

discovered and the cause information can be integrated in the estimation of CCF parameters.

Therefore, the alpha decomposition method is considered to use the two-stage hierarchical

Bayesian model.
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4.2.2. Hierarchical model of the alpha decomposition method

The estimation of global alpha factors based and only based on observed failure data is

a one-stage hierarchical Bayesian model. The script of modeling using OpenBUGS is shown

in Example 2.2. The estimation of global alpha factors and decomposed alpha factors based

on failure and cause information is a two-stage hierarchical Bayesian model. We illustrate the

graphical modeling of the alpha factor model in this section, and then introduce the Bayesian

inference procedure of the alpha decomposition method.

The one-stage modeling for the alpha factor model is shown in Figure 4.3. As

introduced previously, the squared nodes refer to the constant prior parameters. The oval

nodes refer to stochastic components of the model. The solid arrows refer to stochastic

dependence and the hollow arrows are logical dependence by arithmetic functions. As

introduced in Example 2.2, the estimates of MGL parameters can be obtained by the

conversion function between the alpha factor model and the MGL model, so there is a logical

dependence between two nodes.

Prior parameters

Prior

Data likclihood

el:t]

χ卜:鋼

Figure 4.3 Graphical representation of previous Bayesian modeling for the alpha factor model
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In Figure 4.3,the node (x[t:f]) refers to the observed data of CCF events. Usually,

the likelihood function of the node (x[t::]) is assumed as a multinomial distribution. The

node (a[t::]) refers to the alpha factors. The alpha factors are assumed as a Dirichlet

distribution, which is conjugate to the multinomial distribution. The node ( el:l]) is the set

of constant prior parameters. If the equation 0[k]:l (k:1,23) is assumed, it is a

noninformative prior distribution. The node (MGL Parameters) refers to CCF parameters of

the MGL model which can be obtained via the Equation 2.16.The MGL model does not have

a well-defined likelihood function. so it is hard to do direct Bavesian inference. This

conversion is the easiest way to estimate MGL parameters.

The posterior distribution of global alpha factors in the one-stage model can be

deduced based on the theory of conditional probability.

Discrete form:

P(α
lχ)=f∫

[ぅ,=

r(xla)r(a)
Equation 4.5

P(χ
)

Continuous Form:

■ (α lχ )=
Equation 4.6

■ (α lχ )∝ /(χ lα )πO(α )

Here, "r(alx) is the posterior distribution for global alpha factors given observed CCF data;

f (xla) is the likelihood function of observed CCF data given prior distributions; or(")

are the prior distributions for global alpha factors.
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The two-stage hierarchical Bayesian modeling for the alpha decomposition method is

shown in Figure 4.4. The prior parameters in the one-stage model are no longer constant. The

node ( e|:zl) is an oval rather than a rectangle. The node (qclt'tl[f :l]) is the set of

decomposed alpha factors of three potential causes. The node (p, o) represents the prior

parameters of the hyper prior node which is constant. Since the decomposed alpha factor of

one cause can be summed to one, the hyperprior can be assumed as Dirichlet distribution. The

noninformative hyperprior is a Dirichlet distribution with all parameters equaling 1. The node

(r[t: f]) refers to the occurrence frequencies ofcauses.

Hyperparameters

Hypervariables

nd
Hyperprior (2 level)

Prior (1 level)

Data likelihood

α
C[13][1:3]

el:tl

Figure 4.4 Graphical representation of current Bayesian modeling for the alpha decomposition
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Generally, if the joint prior in a Bayesian model is decomposed to a series of

conditional probability, the Bayesian model can be written in a hierarchical structure with

more stages. The hyperprior can be represented by decomposed alpha factors and causes'

occurrence frequencies. This correlation combines the cause information into the Bayesian

inference for CCF parameters. The CCF risk of potential causes can be quantified and the

estimates of global alpha factors are more reliable.

The procedure of Bayesian inference for the alpha decomposition method is illustrated

in this section. The necessary database and detailed calculation are discussed via a example in

the next chapter.

Similarly to Equations 4.5 and 4.6, the posterior distribution of decomposed alpha

factors in the two-stage model can be deduced based on the theory of conditional probability.

Discrete form:

P(o'l*,r,o)=ffi= P(χ ,ノ ,Cχ lα
C)P(α C)

氏(χ lα )ん (α lθ )ん (θ lα
C,r)衡

(α

C)

P(x,r,a)
Eqnation4.T

Equation 4.8

Continuous form:

,r(o'lx,a,o,r)=

,r(o'lx,a,o,r)n

″
Ｃ
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4.3. Examples for the alpha decomposition method

The targeted system is a redundant system with three component and three potential

causes. The hierarchical Bayesian model for the procedure of the alpha decomposition method

is shown in Figure 4.4.

The likelihood function of CCF events is assumed as a multinomial distribution.

χ[1:3]～ `滋
γ″
(α [1:3],χ )

Equation 4.9

The prior distribution is assumed as a Dirichlet distribution.

α[1:3]～ ddtriC乃 (al:3]) Equation 4.10

The hyperprior can be expressed by decomposed alpha factors and occurrence

frequencies.

Equation 4.11

The decomposed alpha factors of Cause i are assumed as a noninformative prior that is

the Dirichlet distribution with all parameters ( dq [t : :]) equaling to 1.

a'' lr:t]- datrtcn(aq [t ::]) Equation 4.12

Based on Equations 4.7 and 4.8, the posterior distributions for global alpha factors and

decomposed alpha factors can be calculated. Two examples are provided to illustrate the

application of the alpha decomposition method in the estimation of CCF parameters. The

χ

、
―
―
―
ノ

ｒ
′
イ３Σ

Ｈ

／１ヨ‐、

．

ノθ
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Example 4.1 is based on the recommended database without detailed system-specific data.

The Example 4.2 is based on the specific database with detailed system-specific data.

Example 4.1 Bayesian inference based on the recommended database (Section 4.LI)

The recommended database introduced in 4.1.1 is used in this example. There is

failure data of 16 systems considered. Occurrence data of three potential causes are collected.

The procedure of parameter estimation is introduced in Figure 4.5. The parameter group.size

equals 3, and the parameter case.number equals 16. Two plates represent two repeated loops.

Oval nodes are stochastic components and squared nodes are constant components. Lined

arrows are stochastic dependence and hollow arrows are logical dependence.

Figure 4.5 The alpha decomposition process for targeted systems with recommended database

in l:cose.number

k,l: group.size
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Table 4.4 OpenBUGS script for Example 4.1 based on recommended database

x[k, 1:group.size] - dmulti(alpha[k, # Stochastic model with multinomial

model{

for(k in 1 :case.number) {

1:group.sizel, X[k])

X[k] <- sum(x[k, 1:group.size])

deltali, 1] <- I

deltali, 2] <- |

delta[i,3] <- I

)

)

# Model's likelihood

likelihood function

# X is the total number of "group failure

# A noninformative prior distributions for

decomposed alpha factors with each

parameter in dirichlet distributions

equaling 1

events"

alpha[k, 1:group.size] - ddirich(theta[k, ]) # Transition variable

for ( in 1:group.size){

theta[k, j] <- (alpha.c[ I , j] *r[k , lf + alpha.cf2, # Predicted function for the alpha

jl*r[k, 2]+ alpha.c[3, j]*r[k, 3])*X[k] decomposition

)

)

for (i in 1:cause.number) {

alpha.c[i, 1:3] - ddirich (delta[i, ])

DATA

list(x:structure(.Data:c(. . . ),.Dim:c( 1 6,3 )),

r:structure(.Data:c(...),.Dim:c(l6,3)), # Observeddataandparameters

gtoup.size:3, case.number: 1 6,

cause.number:3)
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The OpenBUGS script for the alpha decomposition process based on recommended

database is provided in Table 4.4. The result of Bayesian inference can be obtained based on

the alpha-decomposition method and recommended database. Table 4.5 shows the summary

of posterior distributions for decomposed alpha factors. Figures (4.6 - 4.8) show the

probability density curves of posterior decomposed alpha factors. It can be concluded that

causes are of different CCF risk significance, which can be given by the ranking of

decomposed alpha factors. The Cause 2 is of the largest quantity of decomposed Alpha 1, and

of the smallest quantity of decomposed Alpha 2 and 3. Cause 2 is the cause of least CCF risk

among three possible causes. Cause 1 tends to result in complete CCF events more frequently

than Cause 3, but Cause 3 tends to result in partial CCF events more frequently.

af'<al'<al'
al'<o|<o?
df'<ol'.ol'

Table 4.5 Summary of posterior distribution for decomposed alpha factors

Parameter Mean Median 950/O Intewal

Cause I

イ

″

イ

0.8170

0.1009

0.0821

0.8233

0.0872

0.0750

(0.6208,0.9647)

(0.0043,0.2681)

(0.0040,0.2006)

Cause 2

矛

け

矛

0.9086

0.0738

0.0175

0.9118

0.0706

0.0137

(0.8194,0.9765)

(0.0109,0.1554)

(0.0005,0.0552)

矛

冴

冴

0.8206

0.1073

0.0721

0.8244

0.1053

0.0703

(0.6815,0.9375)

(0.0138,0.2151)

(0.0061,0.1533)

Cause 3
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The specific posterior probability density curves are provided in Figures 4.6 - 4.8.

Figure 4.6 shows the result of decomposed Alpha-1 which represents the ability of respective

cause triggering an independent failure. In the figure, Alpha[C1,1] refers to the decomposed

alpha factor @l') of Cause I involving the failure of one component. All other terms refer to

respective decomposed alpha factors. Figure 4.7 shows the result of decomposed Alpha-2

which represents the ability of respective cause triggering a partial CCF event. Figure 4.8

shows the results of decomposed Alpha-3 which represent the ability of respective cause

triggering a complete CCF event.

The positions of curves suggest the risk significances of causes and ranges suggest the

uncertainty in the estimates. One important topic in PRA is to evaluate the source of

uncertainty in the estimates. The alpha decomposition method can provide away to determine

the source of uncertainty in the CCF parameter estimation. For instance, Figure 4.8 shows the

posterior distributions for decomposed alpha factors of complete CCF. The estimate of al'

(Alpha[C2,3]) is of the least uncertainty among three causes. It means the uncertainty in the

estimate ofAlpha 3 is mainly from Cause I and Cause 3.

1     15 ¬
|  口   | ―――Alpha[Cl,1]―――Alpha[C2,1]―――Alpha[C3,1]
|  .9    1

1 E.ハ
|

3101
●
0
0

言 5
鸞
つ
〇

ヽ

0

0.7 0.8       0.9

Value of decomposed alpha factors

Figure 4.6 Posterior distributions for decomposed alpha-l
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Figure 4.7 Posterior distributions for decomposed alpha-2

0.2 0.3

Value of decomposed alpha factors

Figure 4.8 Posterior distributions for decomposed alpha-3

Table 4.6 shows the summary of posterior distributions for global alpha factors of

System #1. Figure 4.9 shows the probability density curves of posterior global alpha factors of

System #1. This estimation of global alpha factors via the alpha decomposition method can

combine the system-specific and system-generic data together to provide more reliable results.

At first, the CCF risk significance of the same cause has correlation between different causes

０２

●
０
一一０●
ど

、
一一∽●
０
０
ｒゝ
●
一Ｏ
ｃ
Ｏ
ｏ
】』

一
Alpha[Cl,3]一 Alpha[C2,3]‐……Alpha[C3,3]

63



CHAPTER 4

which can be utilized. The previous Bayesian inference based on failure data cannot utilize

cause information reasonably, and it is difficult to combine generic and specific database

together. The comparison of previous method and the Bayesian inference with cause

information is provided in Section 4.4.

Table 4.6 Summary of posterior distribution for global alpha factors (System #1)

Parameter Mean ⅣIedian 950/O Interval

Alpha-1

Alpha-2

Alpha-3

0.8648

0.0921

0.0431

0.8661

0.0911

0.0416

(0.8142,0.9097)

(0.0560,0.1351)

(0.0190,0.0761)

Value of Alpha-2 and Alpha-3
0.1 0.2 0.3 0.40

一
Alpha[1]一 Alpha[2]一 Alpha[3]

0.8

Valuc ofAlpha-1

Figure 4.9 Posterior distributions for global alpha factors (System #1)

Example 4.2 Yalidation of the alpha decomposition method based on the alternative database

(Section 4.1.2)

This example is provided to validate the alpha decomposition method when

system-specific database is proposed with sufficient CCF information. The database

64
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introduced in Table 4.3 with the occurrence information of causes as well as failure for one

targeted system.

Figure 4.10 depicts the procedure of validation for System #1. The meaning of nodes

is same to Figure 4.5. There are two type of global alpha factors one is predicted by the alpha

decomposition process, and the other is the result by the failure information. Based on the

specific CCF database, the risk of each cause can be directly established, so the prediction of

global alpha factors can be obtained. The prediction is more reliable than the two-stage

hierarchical Bayesian structure which is reduced to one stage in this example. This database

has advantages and disadvantages. The advantage is that the calculation procedure will be

simplified and the estimation of cause risk will be more reliable. The disadvantages are that

there is always not enough data for one specific system and it is hard to combine generic CCF

data and causal information of other systems as some properties of causes are shared by

different svstems.

Figure 4.10 The alpha decomposition process for System #1 with specific database
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Table 4.7 OpenBUGS script for Example 4.2 based on alternative database

model{

x[ 1 :group.size] - dmulti(alpha.dash[1 :group.size], X) # Stochastic model with multinomial

X <- sum(x[1 :group.size])

likelihood function (validation

model)

alpha.dash[l:group.size] - ddirich(theta.dash[ ]) # Prior for global alpha factors

thetafi] <- (alpha.c[1j]*r[1] + alpha.cl2jl*r[2] + # Predicted tunction for the

alpha[ 1 :group.size] - ddirich(theta[ ])

for (j in 1:group.size) {

x[] <-x.c[1 , j] + x.cf2,jl + x.c[3, j]

alpha.c[3 j]*r[3])*X

theta.dashff] <- I

)

# Prediction of global alpha factors

(alpha decomposition model)

# Event number of each failure

parameters

# A noninformative prior for

validation model

for (i in 1:cause.number) {

x.c[i,1:group.size] - dmulti (alpha.c[i, ],X.c[i]) # Likelihood for causality inference

alpha.c[i,1:group.size] - ddirich(delta[i,]) # Prior for decomposed alpha factors

delta[i,l] <- I # A noninformative prior for

delta[i,2] <- I decomposed alpha factors

delta[i,3] <- I

X.c[i] <- sum(x.c[i,1:group.size]) # Number of each cause group

)

)

DATA # Observed data and parameters

li s t(x. c: structure( .D ata: c(24,6,2,2 4,3, I,6 5,2,0), .D i

m:c (3, 3 ) ), r: c(0 .2 5 20,0 .220 5,0 . 5 27 6), gr olp . size:3,

cause.number3)
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There are two parts of calculation in the Figure 4.10.

1) The prediction of global alpha factors is obtained based on the estimates of

decomposed alpha factors as well as the data of causes' occurrence frequencies. The

estimation of decomposed alpha factors are based on the system-specific database via

a one-stage hierarchical Bayesian model.

2) The estimation of global alpha factors is obtained based on the CCF events, and no

causal information is used in this part.

If two groups of results are roughly same with acceptable uncertainty, it is proved that

the alpha decomposition method can suitably utilize the causal information in the estimation

of CCF parameters. It can be foreseen that the first prediction will of more uncertainty as no

failure information is directly use to estimate the alpha factors and the innate uncertainty of

Dirichlet will propagate to the predicted results. The uncertainty brought by the Dirichlet

distribution is acceptable.

Table 4.7 shows the OpenBUGS script for the process of validation. The summary of

results is shown in Table 4.8. Two groups of estimates are obtained. One is the estimation of

global alpha factors totally based on the causal risk significance (decomposed alpha factors)

and causes' occurrence frequencies. The other estimation of global alpha factors is totally

based on the failure data, which use to decide the reliability of the alpha decomposition

method. The respective predicted alpha factors are mainly same, and there are different

uncertainties in the distribution. These uncertainties might be from the innate uncertainty of

the Dirichlet distribution. Because there are multiple combinations given same quantity of

CCF events, this specific is only one case of them. The estimation will be different from the

results only according to failure data. The Figure 4.1 I also shows this conclusion. The

positions of respective curves are almost same. The range of curves shows the acceptable

uncertainties.

It is concluded that all the global alpha factors are decomposable. The

decomposability of alpha factors can be proved by the theory of Hybrid Bayesian Network or
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by the numerical computation based on system-specific database. This decomposability

shows that the lumped alpha factors are the integrated reflection of the risk of common causes

to the redundant systems. The alternative database applied in this example is a very important

form of CCF database. If enough plant- or system-specific data can be obtained, it is

recommended to do the one-stage Bayesian inference to analyze the risk of common causes

directly. The shared properties of common cause to different systems can be deduced via

more complicated hierarchical Bayesian models.

Table 4.8 Validation of the alpha decomposition method

Parameter Mean Median 950/O Interval

Estimates

with causal

risk only

Alpha-1

Alpha-2

Alpha-3

0.8552

0.1013

0.0435

0.8578

0.0980

0.0395

(0,7646,0.9286)

(0.0403,0.1803)

(0.0073,0.1032)

Estimates

with failure

data only

Alpha_dash… 1

Alpha_dash-2

Alpha_dash_3

0.8772

0.0921

0.0307

0.8794

0.0898

0.0284

(0.8162,0.9283)

(0.0487,0.1481)

(0.0084,0.0666)

Value of Alpha-2 and Alpha-3
0        0.1 0.2 0.3 0.4

=1    =会BI鋼  =二 会BI暮:::圏
|  ′

0.8

Value Alpha-1

Figure 4.11 Comparison of estimates based on causal risk and failure data
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Considering the raity of CCF information and cause information, the first

recommended database (Section 4.1.1) is used in this dissertation. The generic databases

include the causal information and failure information. The share properties of common

causes to different redundant systems can be used to estimate the CCF parameters. The

application of these latently share properties can reduce the uncertainty in the estimates which

will be discussed in next section.

Uncertaintv Analvsis

The uncertainty in the estimates of CCF parameters is analyzed in this section. Two

methods are compared. One is the alpha decomposition method based on the recommended

database of cause and failure information (Table 4.I and Table 4.2), and the other is the

traditional alpha factor model with failure data (Table 4.2).

The Figure 4.12 shows the uncertainty comparison for the results of System #1. Solid

curves are the estimates based on the alpha decomposition method and dashed curves are the

estimates based on the alpha factor model. The ranges of solid curves are nuurower than the

dashed curves. The tendency is also demonstrated in the Table 4.9 where the 95oh internal of

estimates (the alpha decomposition method) is narrower than that of estimates (the alpha

factor model). The alpha factor model only uses the failure data of System #1, while the alpha

decomposition process combines the shared properties of common causes. It can provide a

more reliable prediction of CCF risk especially when the CCF data is rare and the generic

database must be used. For instance, to estimate a newly modified system, there is no

operation data and the recorded generic CCF data cannot reflect the modified characteristics

of the new system. Therefore, the specific inference of causal mechanism and coupling factor

can provide reliable evidences. The alpha decomposition method as well as recommended

databases is recommended to be applied in the PRA analysis to estimate the failure

probabilities of initiating events.
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Table 4.9 Comparison of uncertainty between the alpha decomposition method and the alpha

factor model for Svstem #1

Parameter Mean Median 950/O Interval

The alpha

decomposition
method

Alpha-1

Alpha-2

Alpha-3

0.8648

0.0921

0.0431

0.8661

0.0911

0.0416

(0.8142,0.9097)

(0.0560,0.1351)

(0.0190,0.0761)

The alpha

factor model

Alph。_dash-1

Alph。_dash-2

Alpha_dash_3

0.8772

0.0921

0.0307

0.8794

0.0898

0.0284

(0.8162,0.9283)

(0.0487,0.1481)

(0.0084,0.0666)

Value Alpha-2 and Apha-3
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Figure 4.12 Comparison of uncertainty between the alpha decomposition method and

previous alpha factor model for System #l

Figure 4.13 show the uncertainty analysis for all 16 redundant systems in the

recommended databases. The solid lines are the estimates based on the alpha decomposition

method and the dashed lines are the estimates based on the alpha factor model. Three aspects

of uncertainty analysis are discussed.

1) Compared with results of the alpha factor model, the uncertainties in the posterior
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distributions of the alpha decomposition method are reduced. It is concluded that the

current method can combine valuable information from cause level to reduce the

uncertainties in the PRA parameter estimation.

In the recommended databases, systems are listed according to the number of CCF

events for largest to smallest. Usually, the scarcity of CCF data is a major source of

uncertainty. In Figure 4.13, all lines have the same trend that uncertainties increase

with the decreasing of CCF data.

Since it is a stochastic modeling of CCF events, there are innate uncertainties in the

estimates. The uncertainties in the parameter estimation can be reduced but cannot be

diminished.
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Figure 4.13 Comparison of uncertainty between the alpha decomposition method and

previous alpha factor model for all redundant systems
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4.5. Summary and Results

In Section 4.1, two types of databases are recommended to be built for the estimation

of CCF parameters including global alpha factors and decomposed alpha factors. Based on the

recommended databases, the numerical approach by hierarchical Bayesian modeling has been

schematically discussed in Section 4.2.ln Section 4.3, numerical examples are demonstrated

to show the computation process of the alpha decomposition method. Posterior distributions

of CCF parameters have been obtained. Decomposed alpha factors can represent the CCF risk

of causes. Results for different databases are compared and discussed. Moreover, by the

hypothetical system-specific database, the alpha decomposition can be numerically validated.

The sources of uncertainty in the estimates of alpha factors can be evaluated by decomposed

alpha factors as well. [n Section 4.4,when causal information is applied to the estimation of

CCF parameters, the results are shown with less uncertainty.
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Chapter 5: PROBABILISTIC  PIODELING OF FL00DING RISK FOR

AU刈LIARY FEEDWATER SYSTEM PROTECTED BY FL00D

BARRIERS

This chapter discusses the application of the alpha decomposition method to modified

Auxiliary Feedwater (AFW) system when no historical operation data can be used. There is

safety-related equipment (American Nuclear Society Safety Class I) in PWR safeguards alley

compartments which is affected by the failure of non-Class I systems in the turbine building.

It includes AFW pumps, emergency diesel generators and safe shutdown panel, etc. Previous

inspection found that there was inadequate design control to ensure Class I equipment protect

against intemal flood. The internal flood results from the failures of Non-safety water system

piping and equipment. For instance, water sources include circulating water system, fire water

pipes, feedwater pipes and reactor makeup storage tanks, etc. The random or

seismically-induced ruptures of these non-Class I systems will results in severe flooding or

excessive steam release. Flood water will flow into the area where systems of Safety Class I

located. Especially, the AFW pumps' function will be impaired which is an initiating event of

the loss of secondary feedwater. The AFW pump system is a redundant system with three

redundant pumps. The flood is an important common cause for the AFW pump system.

Additional flood barriers are introduced to be built to defend against the potential

intemal flood. The CCF risk of AFW pump system will be changed after the construction of

flood barriers. Usually, the available CCF parameter database is a generic database without

consideration of the modified design of one redundant system. Because the internal flood risk

depends on the state of flood barriers and it affects the global alpha factors, the dynamic CCF

analysis of the AFW pump system can be quantitatively estimated based on hypothetical

databases and Bayesian approaches. Two major topics are discussed in this chapter, one is the

change of CCF risk after the construction of flood barriers, and the other is the change of CCF

risk when the flood barriers degrade because of an earthquake and a flood.
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Additional Flood Barriers in Thrbine Building

Potential failures of non-Class I water system piping and equipment are investigated.

Systems with sufficient inventory and flow rates to failure AFW pumps in the safeguard alley

are determined to be: (1) Circulating water, (2) Service water, (3) Fire waters, (4) Feedwater,

(5) Condensate; (6) Condensate and reactor makeup water storage tanks. The initiating events

of internal flood include nine types of random failures, tornado-induced failure,

turbine-missile induced failure, and seismic-induced failure. This dissertation analyzes the

risk of seismic-induced internal flood and flood barriers failure as an example.

Figure 5.1 shows the conceptual layout in the turbine building. For the simplest

consideration, three AFW pumps (A, B and C) are assumed as identical pumps which actually

are two motor-driven AFW pumps and one turbine-driven AFW pump. Potential water

sources are represented by the blue rectangle. After the occurrence of an external event or a

random failure, the flood will flow through entrance gates and then impair the safety-related

components.

Figure 5.1 Turbine building without flood barriers

Turbine Building

Entrance Gate

σ.
σ.
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To protect the AFW pump system from the risk of internal flood, additional barriers

are recommended to be constructed at the entrance gates. Figure 5.2 shows the location of

additional barriers. The green circles refer to the flood barriers. The flood barriers physically

separate the flood sources and other redundant components. Therefore, if a random failure

happens at one flood barrier, only the respective pump is affected by the internal flood. Such

sort of physical separation is an effective means to intemrpt the coupling factor of the flood.

Let us compare Figure 5.1 and Figure 5.2, it is obvious that the CCF risk of the

redundant AFW system is different. Moreover, if flood barriers fail for as a result of shared

causes, the CCF risk of the degraded AFW pump system will change. [n the following

sections, the quantitative analysis of CCF risk based on the alpha factor method will be

discussed.
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Flood Defense Barriers

Turbine Buildin Feedwater Pumps Drain

Figure 5.2 Additional flood barriers recommended to be built in the turbine building
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Probabilistic CCF Modeling for AFW Pump System after the Construction of

Flood Barriers

5.2.1. Causal inferencefor modified AFW pump system via HBN

The Hybrid Bayesian Network (HBN) for modified AFW pump system is shown in

Figure 5.3. Three redundant pumps (A, B, and C) are assumed in the system. There three

possible causes and Cause 1 is assumed as the internal flood that is of interest. When the flood

barriers are constructed in the turbine building, the flood flow paths are blocked and three

redundant pumps are physically separated. Two dashed lines mean the physical separation of

redundant pumps. When there is no serious external disaster happens, only random failures

happen in flood barriers. Hence, all three redundant are well separated.

Flood Cause 2  Flood'    Cause 3  Flood"

Figure 5.3 Causal inference for the system with flood barrier

In Figure 5.3, the flood is an independent cause when three flood

functionally available. Causes (Cr', Cz' and C3') are independent flood. The

76

barriers are

C1 induced

System Fails



CHAPTER 5

failures of Pump B and C are diminished. Since there is no defense mechanism introduced to

protect the system against Cause 2 and Cause 3, these two causes are still common causes.

Figure 5.4 shows the HBN modeling for the Pump A. The same to the previous

introduced models, there are three types of failures involving Pump A: (1) lndependent failure

(AD, (2) Partial common cause failure (Cen and Cec), (3) Complete common cause failure

(Cenc). Based on the system analysis, the flood with random barrier failure only generates

independent failure of Pump A.

Flood Cause 2 Cause 3

Figure 5.4 Causal inference for Pump A after the construction of flood barrier

5.2.2. Flood induced CCF risk analysis via the alpha decomposition method

The updated decomposed alpha factor for the modified AFW pump system is analyzed

in this chapter. As shown in the Figure 5.4, with the construction of flood barriers, the CCF

risk induced by the flood changes. The CCF risk induced by Cause 2 and Cause 3 does not

change. The change of CCF risk can be expressed by the update of decomposed alpha factors

for the Cause 1 (Flood). This process can be wriffen by conditional probability.
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The Equation 5.1 demonstrates the degradation of CCF events to independent failures.

From the perspective of conditional probability, it shows that the flood coupling with failure

of flood barrier #1 (Figure 5.2) only results in independent failures. The flood barrier #2 and

#3 are still available. The success law of redundant svstem is assumed as 2-out-of-3, so the

AFW pump system is still available.

It is proved previously that the decomposed alpha factors represent the CCF figgering

abilities of causes. Thus, the updated decomposed alpha factors of the flood can be given by

CHAPTER 5

P(のB∪ Cc∪ CBclFJaοグ)→ P(イ IFJaοグ)

ηあたグαF*=1

ηあたグ″
+=0

ηあたグαF*=0

Equation 5.1

Equation 5.2

Here, a,q. refers to the updated ability of the internal flood to cause an independent failure;

al'. refers to the constrained ability of the internal flood to cause a partial CCF involving

two pumps; dl'. refers to the constrained ability of the intemal flood to cause a complete

CCF involving all three pumps. Equation 5.2 numerically demonstrates that the flood only

generate independent failure.

5.2.3. Bayesian inference with the alpha decomposition method

According to the alpha decomposition method introduced in the last chapter, the

estimation of CCF parameters of modified safety-related systems can be obtained by the

Bayesian inference. The estimates of CCF parameters can be applied to the calculation of

failure probability of basic events as well as systems, which are important in the PRA

procedures. The uncertainty in the estimation on component-level and system-level will be
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propagated along with fault trees and event trees. The overestimation and underestimation of

safety-related parameters should be considered. The uncertainty in the CCF parameters

partially results from the rough utilization of CCF database without the consideration of the

difference in the targeted system. As introduced previously, for the AFW systems with and

without flood barriers, the CCF risk of flood is different. Bayesian inference is a useful

method to solve the problem even if limited CCF databases are available.

Example 5.1 CCF parameters estimation of the modifiedAFw system

A numerical example is provided to illustrate the calculation process of Bayesian

inference with the alpha decomposition method for the modified AFW system. There are

three redundant pumps in the targeted AFW system. The multinomial distributions serve as

the aleatory model for CCF events. The prior distributions for global alpha factors are

assumed as Dirichlet distributions. Moreover, the noninformative prior for decomposed alpha

factors of one cause is assumed as Dirichlet distribution with all parameters dQ [t : f] : [1,1,1] .

All of the equations for the prior and posterior distributions are shown in Chapter 4, as

Equation 4.9 - Equation 4.I2. Therefore, the CCF risk of internal flood can be expressed by

the decomposed alpha factors. Based on the causal inference in Section 5.2.I, the new

decomposed alpha factors of internal flood can be confirmed via Equation 5.2. Hence, the

updated global alpha factors should show the change of modification based on the new

decomposed alpha factors.

Figure 5.5 shows the graphical model of parameter estimation for modified system by

the alpha decomposition process. There are mainly two routes: one is the estimation of

decomposed alpha factors by two-stage hierarchical Bayesian inference; the other is the

prediction of updated global alpha factors by the updated decomposed alpha factors as well as

other unchanged decomposed alpha factors.
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At first, it is shown that global alpha factors (o[t , jD and decomposed alpha factors

1a''fil) are obtained based on the failure data (xlk,l:group.size]) and causes' occurrence

frequency (rltc,t:3]). Here, there are totally 16 candidate systems are considered, so

case.number =16 . There are three redundant components in the targeted system, so

group.size=3.

Secondly, after the construction of flood barriers, the CCF risk generated by the flood

is changed. The updated decomposed alpha factors of the intemal flood (aq[t::].) and

updated occurrence frequencies 1rlk,t:3].) are used to predict the global alpha factors

laltc,t:3].).The predicted alpha factors show the changed CCF risk of the modified AFW

system after the construction of additional flood barriers. Parameters with the asterisk mark

(*) are the CCF-related parameters for the modified system.

Figure 5.5 The CCF parameter estimation for modified system with flood barriers

in I:case.number

k,I: group.size
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Table 5.1 Hypothetical database forAFW pump system without flood barrier

Common causes' occurrence Single & Common cause failureAFW

Pump

System

Cause I

(Flood)
Cause 2 Cause 3

Single Partial Complete

(r/3) (2t3) (3/3)

#T

J1 a

#3

#4

#5

#6

trI

#8

#9

#10

#11

#12

#13

#14

32(2s.20%)

17(16.04%)

18(20.6e%)

2e(43.e4%)

7(r4.00%)

rs(36,60%)

r2(3s,2e%)

2(6.45%)

7(3r.82%)

10(47.62%)

3(rs.7e%)

7(43.7s%)

3(20.00%)

s(33.33%)

4(36.36%)

\Lr.rr%)

28(22.0s%)

78(7358%)

re(2r.84%)

6(e.0e%)

33(66.00%)

e(22.00%)

rs(44.r2%)

22(70.e7%)

4(18.18%)

8(38.10%)

6(31.58%)

3(r8.7s%)

s(33.33%)

3(20.00%)

s(4s.4s%)

6(66.67%)

67(s2.76%)

11(10.38%)

s0(s7.47%)

3r(46.e7%)

10(20.00%)

17(4r.40%)

7(20.se%)

7(22.s8%)

11(50.00%)

3(r4.2e%)

r0(s2.63%)

6(37.s0%)

7(46.67%)

7(46.67%)

2(r8.r8%)

2(22.22%)

113

98

73

53

45

JJ

32

29

20

20

16

t4

13

t2

9

7

Ｈ
　
　
７

9

5

4

J

2

2

2

t

2

1

I

I

1

1

3

I

5

8

I

5

0

0

0

0

I

1

I

２

　

　

１５

　

　

６

＃

　

＃

As shown in Table 5.1, the hypothetical generic CCF database for Pump A is assumed

to demonstrate the data need for the Bayesian inference. After the construction of flood

barriers, the failures caused by the flood in databases will be reduced. In this example, the

random failure probability of flood barriers is assumed as 0.1 and it is assumed that only

random independent failure happens for the flood barriers. The common cause failure of flood
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barriers will be discussed in next sections. Two sets of important CCF data are collected: one

is the record of CCF events and the other is the occurrence information of common causes.

Three causes and three types of failure are recorded. Usually, there is no plant-specific CCF

database. so this database is useful to evaluate the causes' CCF hazard.

Table 5.2 Hypothetical database for causes'occurrence frequency

Causest occurrence Updated causes' occurrenceAFW

Pump

System

Cause I

(Flood)
Cause 2 Cause 3

Cause 1

Cause 2 Cause 3
(Flood)

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

25.20%

16.04%

20.69%

43.94%

14.00%

36.59%

35.29%

6.45%

31.82%

47.62%

15.79%

43.750/0

20.00%

33.33%

36.36%

11.110/0

22.05%

73.58%

21.84%

9.09%

66.00%

21.95%

44.12%

70.97%

18.18%

38.10%

31.58%

18.75%

33.330/0

20.00%

45.45%

66.67%

52.76%

10.38%

57.47%

46.97%

20.00%

41.46%

20.59%

22.58%

50.00%

14.29%

52.630/0

37.50%

46.67%

46.67%

18.18%

22.22%

3.26%

1.87%

2.54%

7.27%

1.60%

5.46%

5.17%

0.68%

4.46%

8.33%

1.84%

7.22%

2.44%

4.76%

5.41%

1.230/0

28.51%

85.99%

26.84%

15.04%

75.510/0

32.73%

64.66%

75.34%

25.48%

66.66%

36.81%

30.93%

40.65%

28.57%

67.57%

74.08%

68.23%

12.13%

70.62%

77.70%

22.88%

61.82%

30.17%

23.97%

70.07%

25.00%

61.35%

61.86%

56.91%

66.67%

27.03%

24.69%
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Table 5.2 shows the predicted common causes occurrencc data.

cquation is given by

イ=

づ=

イ=

The calculation

Equation 5.3

Here, ,,(j:1,2,3) refers to the original occurrence frequency of three common causes.

,;(j:1,2,3) refers to the updated occurrence frequency of the three causes. 0.1 is the

random failure probability of flood barriers, which is assumed before. The random failure

probability of flood barriers will affect the collection of CCF events in the databases. If the

flood occurs without any component failure, this failure with causal information is usually not

recorded in the CCF database. Therefore, the flood barriers will defend a great number of

internal flood events. Only when the barrier fails for a random cause, the respective pump will

fail independently. The other extreme case is an earthquake will trigger the occurrence of

flood and the failure of flood barriers, which will be discussed later. Here, the factor (0.1)

means that90Yo flood will be defended by the flood barrier.

Table 5.3 is the OpenBUGS script which shows the prediction process of updated

global alpha factors. The same to introduction of calculation in Figure 5.5, there are mainly

two parts, the first part is used to evaluate the decomposed alpha factors and the second part

aims to obtain the updated CCF-related parameters by using the estimates and the result of

system analysis. Therefore, based on the Bayesian inference with MCMC Gibbs Sampling, it

is obtained that the posterior distributions for CCF parameters.
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Table 5.3 0penBUGS scHpt for Exalnple 5.l based on two databases

x[k, 1:group.size] - dmulti(alpha[k, 1:group.size], # Stochastic model with multinomial

model{

for(k in 1 :case.number) {

X[k])

X[k]<― Sum(X[k,1:3TOup.size])

dclta[i,1]く…1

delta[i,2]<… 1

dclta[i,3]<… 1

}

fOr(kin l:case.numbe→ {

+r[k,2]+r[k,3])

new.r[k,2]<¨ r[k,2]/(r[k,1]*ran.failllre+r[k,2]

# model's likelihood

# A noninformative prior

distributions for decomposed

alpha-factors with each parameter

in dirichlet distributions equaling I

# Predict the alpha factors of the

alpha[k, 1:group.size] - ddirich(theta[k, ])

for ( in 1:group.size){

theta[k, j] <- (alpha.c[1, j]*r[k, 1]

likelihood function

# X is the total number of "group

failure events"

# Transition variable

# Predicted function for the alpha

+ alpha.cf2, jl*r[k,2] + alpha.c[3, j]*r[k, 3])*X[k] decomposition

)

I(

for (i in l:cause.number) {

alpha.c[i, 1:3] - ddirich (delta[i, ])

new.alpha[k,1:group.size]～ ddiHch(neW.theta[k,])   mOdifled AFW system

new.X[k]<¨ X[k]*(r[k,1]*ran.failure+r[k,2]     #Thc updated occllrrence ofCCF

+r[k,3])                                    eventS

new.r[k,1]<¨ r[k,1]*ran.failllre/(r[k,1]*ran.failurc  #The updated occurrence ratcs of
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+ r[k, 3])

new.r[k, 3] <- r[k, 3]/(r[k, 1]*ran.failure + r[k, 2]

+ r[k, 3])

for( in 1:group.size) {

new.theta[k, j] <- (new.alpha.cl []*new.r[k, 1]

+ alpha.c[2, j ] 
*new.r[k, 2]

+ alpha.c[3, j] *new.r[k, 3])*new.X[k]

)

)

)

DATA

list(x:structure(.Data:c(. . . ), .Dim:c( I 6,3 )),

r:structure(.Data:c(. . . ), .Dim:c( I 6,3)),

group.size:3, case.numb erl 6, cause.number:3,

ran.failure:0. 1, new.alpha.cl:c(1, 0, 0))

The updated parameters of

decomposed alpha factors

The posterior decomposed alpha factors are same to the result of Example 4.1, which

is shown in Figure 4.6 - Figure 4.8. These estimates are not changed in this example, but the

decomposed alpha factors of Cause 1 (flood) are updated according to the Equation 5.2.

Because the database in the current article is for illustration only, the posterior distributions

for CCF parameters of some systems do not show apparent change and some results show

different changes. It results from the hypothetical random database.

The System #16 has been chosen to show the update of CCF parameters as the result

shows significant change. The summary of posterior distributions for global alpha factors of

AFW Pump System #16 is shown in Table 5.4 and the updated global alpha factors of other

systems can be obtained similarly. Two groups of posterior distributions are shown in Table

5.4. One is the CCF parameters of AFW System #16 before flood barriers are constructed.
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The other is the CCF parameters of the system after flood barriers are constructed. It is

demonstrated that the building of flood barriers in System #16 will reduce the CCF risk. The

mean values of Alpha-2* and Alpha-3* are smaller than that of Alpha-2 and Alpha-3.

Successful flood barriers will protect pumps from CCF events by physically separating

redundant pumps.

Table 5.4 Summary of posterior distributions forAFW Pump System #16

Parameter Mean Median 950/O Interval

Without
Flood

Barriers

Alpha-1

Alpha-2

Alpha… 3

8.28E-01

9.84E-02

7.38E¨02

8.40E-01   (6.26E-01,9.59E-01)

8.39E¨ 02   (9.76E-03,2.72E-01)

5.83E-02   (4.35E-03,2.28E-01)

With

Flood

Barrlcrs

Alpha-1*

Alpha-2*

Alpha-3*

8.85E¨ 01

8.34E¨02

3.18E¨02

9。 18E-01   (6.02E¨01,9.99E-01)

4.82E-02   (8.23E-05,3.46E-01)

4.76E-03   (3.25E-13,2.20E-01)

Figure 5.6 demonstrates the process of updating for global alpha factors of System #16.

With the construction of flood barriers in System #16, the Alpha-3 is significantly reduced.

The curves of Alpha-2 and Alpha-3 move leftward, and by contrast the curve of Alpha-l

moves rightrvard. The CCF risk of System #16 is reduced. However, the uncertainties in the

estimates are relatively increased. It shows the application of the alpha decomposition method

in the evaluation of modified systems. The prediction of updated alpha factor is based on the

generic operation data without flood barriers. The uncertainty has been propagated through

the process of prediction. The estimates of decomposed alpha factors can provide a reliable

means of prediction. The modification of system will change the PRA parameters, for

instance design, diversity, layout, etc. The hierarchical Bayesian inference can complement

the prediction. The occurrence of unobvious or difference changes in the estimates will be

explained in the next section.
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― ― Alpha[1]― ― Alpha[2]― ― Alpha[3]
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Figure 5.6 Poste五 or distributions for AFW Pump Systenl#16

5.2.4. Misleading of alphofactors in the evaluation offailure risk

Besides, the global alpha factors are already proved as the integrated illustration of

CCF risk, the defense against causes (for example, flood) will reduce the CCF risk and the

global alpha factors will decrease. However, other issues are still needed to be discussed. For

instance,

1) Defenses against causes of low CCF risk cause but high occurrence frequency will

increase the value of alpha factors.

2) Multiple defense strategies are applied to improve the redundant systems.

Example 5.2 is proposed to illustrate the misleading of the alpha factor model in the

evaluation of failure risk.

Example 5.2 The misleading of alpha factors from the perspective of risk representation

According to the issues provided before, the calculation with system-specific database

is given to prove the misleading of alpha factors from the perspective of representing failure
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risk. Defense mechanism against the cause of low CCF risk but high occurrence frequency is

constructed. A hypothetical database for the explanation is assumed which contains enough

cause and failure information. It is shown in Table 5.5. The data is listed before the defense

strategy is introduced. The prevention of defense strategy is of a percentage of l0Yo, so the

data for the system with defense can be obtained which is shown in Table 5.5 as well.

Moreover, all the CCF risk of Cause 1 is degraded as independent failure. Let us compare the

CCF parameters of the previous system and modified system after the construction of failure

defense mechanism.

Table 5.5 Hypothetical system-specific database for Case I

Cause group
Single failure&CCF

1/3         2/3         3/3

Total

Without

defcnsc

Cause 1

Cause 2

Cause 3

５

　

　

４

　

　

４

６

　

　

２

　

　

２

７

　

　

８

　

　

２

６

　

２

　

３

０

　

　

１

　

　

２

２

　

　

３

　

　

６

127113Total

with

defense

Cause I

Cause 2

Cause 3

7

24

24

７

　

２８

　

３２

０

　

　

１

　

　

２

０

　

　

３

　

　

６

Total

The global alpha factors for the system can be obtained by the method and Openbugs

script introduced in Section 4.2.The posterior distributions for global alpha factors are shown

in Figure 5.7. The result shows that after the introduction of defense mechanism, the CCF risk

increases. The curve of Alpha-l moves leftward but the curves of Alpha-2 and Alpha-3 move

rightward. It means that the independent failures reduce but CCF events increase. The

building of defense mechanism will not certainly reduce the alpha factors involving many

6755
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components.Becausc Cause l triggers more independent failures but less dcpcndent failure

than othcr two causes,the alpha factors involving two and threc components increase.
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Figure 5.7 Posterior distributions for alpha factors of Case I

Table 5.6 Summary of alpha factors for Case I

Parameter Mean Median 950/O Interval

Without
Flood

Barriers

Alpha-1

Alpha… 2

Alpha… 3

0.8774

0.0920

0.0306

0.8792

0.0901

0.0283

(0.8145,0.9277)

(0.0490,0.1481)

(0.0084,0.0651)

with
Flood

Barriers

Alpha-1*

Alpha-2*

Alpha-3*

0.7999

0.1429

0.0572

0.8027

0.1398

0.0532

(0.7017,0.8831)

(0.0716,0.2332)

(0.0161,0.1223)

As a conclusion, the defense against causes of low CCF risk but high occurrence

frequency will not reduce the alpha factors which represent low CCF risk (for instance,

Alpha-l, etc.). In the PRA analysis, it cannot judge the CCF risk of two systems only by the

value of alpha factors, which is the misleading of alpha factors. For instance, in Talbe 5.6 the
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alpha factors of the system without flood barriers shows less CCF risk. However, under actual

scenario, the system with flood barrier successfully prevents a great number of failures. This

property is impossible to be explained by the lumped global alpha factors.

5.3. Qualitative analysis of seismic-induced flood hazard for AFW pump systems

As discussed previously, the estimates of CCF risk should reflect issues including

failures, causes and system-specific design etc. Diversity or physical separation of redundant

system will reduce the occurrence possibility of CCF events. Flood barriers can prevent the

random flood from the safeguards alley, which is caused by the random failure of water

system. However, when a severe earthquake happens, it will result in the deformation of flood

barriers as well as internal flood. The CCF risk should be well analyzed for the modified

AFW system. This section shows the conceptual flood hazard analysis.

Flood risk of two AFW Pump systems with different layouts is compared. The Layout

#1 is a parallel placement of doors with barriers. It is simply called as barriers. All flood

barriers in Layout #1 directly contact flood water. The Layout #2 is a sequential placement of

doors with barriers. Only Barrier #1 directly contacts the flood water but Barrier #2 and#3 are

separated from the flood from Turbine Building. When the Barrier #1 starts to leak severely,

Barrier #2 will suffer the damage from flood, and finally Barrier #3.

5.3.1. Flood sources

Failures of nonsafety-related water system piping and equipment will flood the turbine

building and subsequently impact safety-related components and systems in the safeguards

alley. Three most credible flood sources are considered: Circulating Water (CW), Service

Water (SW), and Fire Protection Water (FPW). In this section, the maximum flood water flow

rate through one door is assumed as 2 m3lmin, which is larger than the drainage ability of
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each AFW pump room. The drainage ability of each room is assumed as 0.5 m'/min. The

detailed occurrence probability of each flood scenario will be discussed following sections.

5.3.2. Flood propagation

The random flood water will be obstructed by the barriers and the AFW pumps can be

protected. According to the seismic classification of Structures, systems and components in

NPPs, the waters system in the turbine building and flood barriers are nonsafety-related but

the AFW pumps are safety-related. Therefore, it is probable that water system and flood

barrier fail for a severe earthquake. There are two failure mechanisms of barriers. One is the

flood barrier fails because of a seismic shock. The other is that the flood barrier is flawed for

the seismic shock and finally degraded to failure for the flood water. Thus, if the barrier is not

flawed by the earthquake, it can prevent the ingression of flood water for a long term. To

compare these two different layouts from the perspective of flood risk, three scenarios of

seismic-induced flood involving the failure of barriers are considered, which is classified by

the number of failed barriers. The probability for the occurrence of three scenarios is assumed

in Table 5.7. This data will be integrated in the result of flood risk analysis.

1) Seismic-induced one-barrier-failure coupling with flood

2) Seismic-induced two-barrier-failure coupling with flood

3) Seismic-induced three-barrier-failure coupling with flood

Table 5.7 Probabilitv of three seismic scenanos

Scenario Percentage of probability

1 ) S eismic-induced one-barrier-failure

2) Seismic-induced two-barrier-failure

3 ) Seismic-induced three-barrier-failure

0.2

0.2

0.6
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Layout #1 Parallel flood barriers

All three barriers in Layout #1 directly contact the flood water. If the severest flood

happens, the seismically flawed barriers start to degrade.

1) Seismic-induced one-barrier-failure coupling with flood

The schematic diagram for the seismic-induced one-barrier-failure coupling with flood

is shown in Figure 5.8. In this case, only Barrier #1 is flawed by the earthquake and at last

fails for the flood. The seismically induced severest flood and barrier failure will result in the

failure of Pump A. There is only an independent failure occurs. Pump B and C are protected

by the successful Barriers #2 and#3.
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Figure 5.8 Seismic-induced one-barrier-failure coupling with flood (Layout #1)
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2)SeismiC― induced椰′o―barrier―failure coupling with flood

The second scenario is the seismic-induced two-barrier-failure, which is shown in

Figure 5.9. It is the same to the scenario I that Pump A and B fail because the function-loss of

Barrier #1 and #2. A partial CCF occurs as Pump C is protected by the successful Barrier #3.

nc ln

● Ｌ

Ｆ
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,σ.

Flood Defense Barriers

Turbine Building Feedwater Pumps Drain

Figure 5.9 Seismic-induced two-barrier-failure coupling with flood (Layout #1)

3) Seismic-induced three-barrier-failure coupling with flood

The third scenario will be discussed in detail with the demonstration of the water flow

rate through barriers. The schematic diagram for the Scenario 3 is shown in Figure 5.10. All

three barriers are identical in the environment of flood. This is a shortcoming of the Layout #1

which cannot provide the defense in depth. Even though there is a possibility assigned to the

Scenario #1 and #2, all the three barriers are likely to be deformed for an earthquake. The

maximum flow rate through one barrier is assumed as 2 m3/min and the drainage ability is

assumed as 0.5 m'lmin. Therefore, the increasing of the leakage of the barrier will accumulate
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water in the AFW Pump room until the water height reaches the Critical Water Height (CWH).

If the water height reaches the CWH, the pump will be functionally covered with water.

ing water

●

Dσ.
ｈ
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Ｉ σ .

Flood Defense Barriers

Turbinc Buildi Feed Pumps Drain

Figure 5.10 Seismic-induced three-barrier-failure coupling with flood (Layout #1)

The conceptual water flow rate and CCF events are shown in Figure 5.1 1. The red line

refers to the drainage ability of one room and the black line refers to the water flow rate. The

water flow rate will increase for the degradation of flood barriers. When it keeps increasing

and exceeds the drainage ability, the water starts accumulating. After certain time duration,

the accumulated water height will be more than the CWH while CCF events involving three

components occur. The green line shows the time when all redundant AFW pumps fail for the

flood water.

It is demonstrated that there is process of the increasing of water flow rate to one

AFW pump room. The water flow rate depends on the water source and the state of the flood

barrier. If the flood is of the most credible and severest volume. the state of flood barrier will

determine whether and when the pump will fail.
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Random independent failure

Figure 5.11 Conceptual water flow rate and flood hazard (Layout #1)

Layout #2 Sequential flood barriers

Layout #2 is of different placement of doors with barriers. The water flowing into the

location of Pump B must go through Barrier #1 and #2, and the flowing into the location of

Pump C must go through all three barriers. It provides a time extension even if all barrier are

broken by a seismic shock. There are three scenarios the same to Layout #1 but the location of

failed barriers is necessary to be discussed respectively.

l) Seismic-induced one-barrier-failure coupling with flood

There two types of locations are considered under this scenario. One is the seismically

flawed barrier does not contact the flood water which is shown in Figure 5.12. The other is the

seismically flawed barrier directly contact the flood water which is shown in Figure 5.12. In

Figure 5.12, the flawed Barriers #2 or #3 are protected by the successful Barrier #1, so it can

provide a long-term protection against flood. ln Figure 5.13, the flawed Barrier #1 will

髯
“
』
≧
２
』

Reach critical water heisht
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degrade under the pressure of flood. As a result, if the single failure of a barrier is uniformly

distributed, the independent failure probability can be reduced to Il3 of the Layout #1.

Turbine B ilding Feed Pumps Drain

Figure 5.12 Seismic-induced failure of Barrier #2 or #3 coupling with flood (Layofi#2)
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Figure 5.13 Seismic-induced failure of Barrier #1 coupling with flood (Layott#2)
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2) Seismic-induced two-barrier-failure coupling with fl ood

There are three types of locations are considered under this scenario.

o Barrier #1 successes but #2 and#3 fail, as shown in Figure 5.14;

o Barrier #2 successes but #1 and #3 fail, as shown in Figure 5.15;

o Barrier #3 successes but #1 and #2 fall, as shown in Figure 5.16.

These three failure types will affect the availability of AFW Pump system. The flood

is assumed as the severest with the maximum water flow rate through one barrier.

As shown in Figure 5.14, the successful Barrier #1 will provide a long-term protection

for the AFW pump system. Even if Barriers #2 and #3 are flawed by the seismic shock, the

flood risk will be screened out.
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Figure 5.14 Seismic-induced failure of Barrier #2 and#3 coupling with flood (Layout#2)

As shown in Figure 5.15, Barrier #1 is flawed by the seismic shock, so Pump A is

probable to fail for the flood water. However, since Barrier #2 is not flawed by the seismic

shock, it can provide a long-term protection for Pumps B and C. Thus, it is an independent
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failure happens under this scenario.
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Figure 5.15 Seismic-induced failure of Barrier #1 and #3 coupling with flood (Layout#2)

Turbine Buildi Feedwater Pu Drain

Figure 5.16 Seismic-induced failure of Barrier #1 and #2 coupling with flood (Layout#2)

As shown in Figure 5.16, Barrier #l and #2 are flawed by the seismic shock but the
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Barrier #3 is functionally successful. Under the severest situation, Pumps A and B will fail for

the high water level in the room but Pump C is protected by the successful Barrier #3. Thus,

the probable CCF event happens as a partial CCF event. 2/3 possibility of Layout #2 under

Scenario 2 has been degraded to no failure or single failure. Only 1/3 possibility under

Scenario 2 is the same to Layout #L,that partial CCF happens. It is one advantage of Layout

#2 over Layout #1.

3) Seismic-induced three-barrier-failure coupling with flood

According to Table 5.7, the most probable scenario is that all three barriers fail

because of the earthquake, which is demonstrated in Figure 5.17. Barriers #1, #2 and#3 fail

and the severe flood water flow into the AFW Pump system. Pumps A, B, and C will fail for

the water in the room. However, there is a difference for Layout#2 compared with Layout #1.

The failed time for each pump is different that of respective pump in Layout #1.
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Figure 5.17 Seismic-induced failure of all barriers coupling with flood (Layout#2)
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The flow rate through each barrier and the number of failed components are shown in

Figure 5.18. First of all, a seismic shock occurs so that all three barriers are flawed. The

internal flood water flows from the turbine building to the AFW Pump system. Secondly, the

flow water contacts Barrier #1, and then the water pressure and force will damage the flawed

flood barrier. The water starts to leak through the Barrier 1 With the propagation of

mechanical damage, the leak rate increases until more than the drainage ability in the room of

Pump A. Water starts to accumulate in the room and after certain time duration, accumulated

water level will be higher that the Critical Water Height (CWH). The failure of Pump A

occurs which is named as single failure (l/3) in the picture. At the same time, the accumulated

water will cause Barrier #2 starting propagation of mechanical damage. When the water leak

rate through Barrier #2 is higher than the drainage ability, the water starts accumulating in the

room when Pump B is located and it will reach the CWH. The failure of Pump B happens

which is called as partial CCF in the picture (213). At last, the leaked water through Barrier #3

results in the failure of Pump C when all three pumps fail as the complete CCF (313).

Compared with Figure 5.1 1, the saved time for the availability of AFW system is significantly

postponed.
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Figure 5. I 8 Conceptual water flow rate and flood hazard (Layout #2)
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Markov Model for the Degradation of Flood Barriers

The degradation of flood barrier under the seismic shock and flood water is discussed

in this section. The failure process of flood barriers is treated as a stochastic process in the

current article. The current methodology aims to apply the Markov model for a quantitative

degradation modeling. The Markov model is used to set up a set of linear coupled differential

equations whose solution provides the time dependent probabilities of occupying states of the

model. The input evidence to quantify the Markov model includes the occurrence frequency

of necessary states with assumed experiments. With the repeated vibration and water

experiment, the damage data for a barrier can be obtained.

This Markov modeling technique represents the failure process in a set of discrete and

mutually exclusive states. The states refer to various degrees of flood barrier degradation, i.e.

success, leak, deformation and failure. At the state of success, there is no water leaking

through a barrier. At the state of leak, there is limited water leaking through the barrier which

can be drained out by the drainage system. At the state of deformation, the water flow rate

through the barrier is larger than the drainage ability, so the water will accumulate in the room.

At the state of failure, it means that the water flow rate through the door is same to the

situation without the flood barrier.

If there is flood water accumulated at the barrier, it can be confirmed that the state

change will happen. The transition time and probability is important to be considered in the

flood PRA analysis. At different time nodes, the state probability will affect the flow rate and

the availability of AFW Pump system as well. Finally, the evaluation of basic events in the

PRA can be adjusted according to the result of flood PRA. Let as discuss the four state

Markov model for the barrier deeradation.
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The schematic diagram of four states Markov model is described in Figure 5.19. This

model is applied to simulate the degradation process of flood barriers under the situation of

seismic shock as well as flood water. Transition parameters between states are assigned to

model the degradation mechanism under the flood environment. As a Markov model, the

transition parameters are assumed as constant. The development of physics-based barrier

degradation investigation is not provided in current article, in which the transition parameters

are not time-constant but physics- and scenario-dependent. There are four discrete and

mutually exclusive states (S, L, D and F) in current Markov model. The definition of four

states is provided in Table 5.8. Besides, four transition parameters (fiy,Ln,PLr and pro)

are assumed between states. The definition of four transition parameters is provided in Table

5.9.
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Figure 5.19 Four state Markov model for the degradation of flood barriers
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Table 5.8 Description of four Markov states

State Description

S Success; no water leakage

L !eak; the leakage rate is less than the drainage ability

D Deformation; the possible water flow rate is larger than the drainage

ability but not reaching maximum

F Eailure; the possible water flow rate is the same to doors without flood

barrier

Table 5.9 Description of four transition parameters

Transition parameters Description

Q* Leak occurrence probability given the state of $uccess

)"n Deformation occurrence probability given the state of Leak

PLr Failure occurrence probability given the state of Leak

Por Failure occurrence probability given the state of Deformation

As introduced previously, the four transition parameters are unknown and needed to

be estimated. Therefore, the Bayesian inference can be applied to estimate them. First of all,

the prior distribution and likelihood functions should be given. Two failure mechanisms are

described as

. Seismic-induced barrier degradation;

. Flood-induced barrier degradation.

When a seismic shock occurs, the barrier will be damaged. The state of barrier after

the occurrence of shock is a stochastic result. The likelihood function of the four states is
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assumed as a multinomial distribution. The noninformative conjugate prior for the

multinomial distribution is the Dirichlet distribution with all parameters equaling one.

Here, init.sei refers to the initial probability for the Markov model after the occurrence of an

earthquake; init.p is the set of parameters in the mutinomial distribution; dmulti refers to

the likelihood function of four states which means a multinomial distribution; ddirich refers

to the noninformative conjugate prior distribution which means a Dirichlet distribution with

all parameters equaling 1.

The flood-induced barrier degradation depends on the flood water volume and the

water height in the room. Since the water situation is complicated and currently unpredictable,

it is also assumed as stochastic process. A11 the transition parameters are defined with

uncertaintv distributions as follows.

l) Leak occuffence probability given the state of Success, r/r,

A number of hypothetical experiments are assumed being conducted, so the

occurrence of leaks is assumed to be described as independent Poisson process with the

parameter )".L . The lognormal prior for Poisson distribution is applied. The posterior

distribution can be obtained by the assumptions and obtainable data.

init.s eifl : 4f - dmulti (init. plt : 4l)

init.plr:+f - ddtrtch(a" [t ' 
4]),0,[t: +]= [t,t,t,l]

″.Z～ ″οお(え・Z・′・Z)

λ.五 ～ル θη (μ .五,σ・五)

亀 =え。二

Equation 5.4
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Here, n.L refers the data of leaks; )..L is the expected occurrence frequency of leaks; t.L

is the experimental time; dpois is the likelihood function of the number of leaks which

means Possion distribution; dlnorm is the prior distribution as lognormal.

2) Deformation occurrence probability given the state of Leak, )"-

The occurrence of deformation is assumed as a binomial distribution given the number

of leak. The occurring possibility of a deformation given a leak ( p.D) is the parameter in the

binomial distribution. The likelihood function and prior distribution are given by

χ.D～ あ J″ (′.D,′・D)

p.D - dlnorm(p.D,o.D) Equation 5.6

場 =′・D

Here, x.D is the experimental data of deformation; p.D is the expected occrurence

frequency of deformations given a leak; n.D refers to the number of leaks that are going to

degrade to deformations; dbin is the likelihood function of the number of deformations

which is a binomial distribution.

3) Failure occrurence probability given the state of Leak, p*

The occurrence of failures given leaks is assumed as a binomial distribution. The

occurring possibility of a failure given a leak ( p.FL ) is the parameter in the binomial

distribution. The likelihood function and prior distribution are given by
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Here, x.FL is the experimental data of failures given leaks; p.FL is the expected

occrurence frequency of a failure given a leak; n.FL is the number of leaks that are going to

degrade to failures.

4)二ailure Occurrcnce probability g市en thc statc of⊇ efO・・・.ation,pDF

The occurrence of failures given deformation is assumed as a binomial distribution.

The occurring possibility of a failure ( p.FD) given a leak is the parameter in the binomial

distribution. The likelihood function and prior distribution are given by

CHAPTER 5

x.FL - dbin(p,FL,n.FL)

p.FL - dlnorm(U.FL, o.FL)
pm = p,FL

x.FD - dbin(p.FD,n.FD)

p.FD - dlnorm(p.FD, o.FD)

Ppr = P'FD

Equation 5.7

Equation 5.8

Here, x.FD is the experimentaldata of failures given deformations; p.FD is the expected

occurrence probability of a failure given a deformation; n.FD is the number of deformations

that are going to degrade to failures.

The summary of all aleatory models is provided in Table 5.10. All transition

parameter can be calculated based on the experimental evidence and the assumption of

aleatory models. Besides, the probability of each state is decided by the initiating states and

the transition probability. The Ordinary Differential Equations (ODEs) can be used to express

the relationship between parameters and states. The discussion and solution of ODEs are

provided in next section.
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Table 5。 10 Uncertainty distHbution assumption for l√ arkov parameters

Uncertainty Treatment
Parameter symbol

Likclihood inction           Prior distribution

lnitiating states

Leak

Deformation

Failure given Leak

Failure given deformation

Multinomial

Poisson

Binomial

Binomial

Binomial

Dirichlet

Lognormal

Lognormal

Lognormal

Lognormal

5.4.3. Ordinary dffirential equations

According to the applied Markov model, the probability of states is time dependent.

The Markov model can be described by a set of four coupled linear first-order Ordinary

Differential Equations (ODEs). The initial condition necessary for the solution of the ODEs is

decided by the seismic shock which results in the occurence of food and barrier degradation.

The initial condition can be written as Equation 5.9 and it can be calculated by Equation 5.4

based on Bayesian inference.

Equation 5.9

The ODEs are given by

鳥=(毛.),見。,鳥 (D),毛 (F))

争
=―亀長s) Equation 5. 10

写
=¢%長s)一 (たD+ριF)長.)             Equation 5.11
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Equation 5.12

ら
７

= lrr\r1+ Por\oy Equation 5.13

The sum of probabilities of four states remains one at any time r.

弓(0+■0+41Dl+長 Fl=1 Equation 5.14

There are two methods to solve the ODEs (Equations 5.10 - 5.13). One it the direct

solution (exact solution) and the other is numerical solution (Bayesian inference with MCMC).

If all the transition parameters are already known or can be exactly defined, the direct solution

can be used. The Markov solution is remained unknown in current article, so the Bayesian

with MCMC is used to obtain the numerical solution. Therefore, the time dependent states of

flood barrier can be obtained. The flow rate is decided by sates of flood barriers, so the flow

rate can be eValuated as well. The failure state of pumps can be evaluated by the flow rate and

water height in the room. Finally, the time- and scenario-dependent CCF parameters can be

obtained.

5.5. Quantitative CCF Modeling for the AF.W Pump System Involving the

Degradation of Flood Barriers

The update of CCF parameters after the construction of flood barriers in the AFW

Pump system has already been discussed in Section 5.1 and 5.2. ln reverse, the degradation of

flood barriers will affect the CCF parameters as well. [n Section 5.3, it has been demonstrated

how the flood barrier qualitatively affect the occurrence of CCF events. In Section 5.4, the

quantitative modeling of flood barrier after the occurring of seismic induced flood. In this
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section, it is discussed how the functional state of flood barriers affects the probability

distributions of CCF parameters (including global alpha factors and decomposed alpha

factors).

The solution of ODEs of Markov model is computed by Bayesian inference with

hypothetical databases. The probability each Markov state will decide the flow rate through

barriers, which is the key point to determine whether the AFW pump will fail or not.

5.5 . 1 . Numerical solution of Markov model

This section shows the numerical calculation of ODEs (Equation 5.10 - 5.13) for a

single flood barrier. It is needed the data of Success, Leak, Deformation and Failure to decide

the estimation of transition parameters. The hypothetical experimental data is assumed in

Table 5.11. There are two parts in the experimental database. One is the state data after the

occrurence of a seismic shock, and the other is the state data after a certain period of flood

propagation. The seismic data is used to determine the initiating states and the flood data is

used to estimate the transition parameters for the flood hazard. The hansition parameters will

be the average value of three equivalent experiments. The likelihood functions and prior

distribution for Bayesian inference are given by Equations 5.4 - 5.8. The OpenBUGS script is

shown in the Appendix A.

Table 5. I I Hypothetical database for the estimation of transition parameters

Seismic shock Flood propagation

States DD

Experiment (1)

Experiment (2)

Experiment (3)
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The summary of estimates is shown in Table 5.12. The curves of probability density

functions are shown in Figure 5.20. Based on the Bayesian calculation with MCMC, the

magnitude and uncertainty of all Markov transition parameters can be well evaluated. Based

on current hypothetical database, the transition rate from Deformation to Failure is of the

largest uncertainty, which is described by the green curve in Figure 5.20. The transition rate

from Success to Leak is of the largest value but that from Leak to Failure is of the smallest

value.

Table 5.12 Summary of posterior distributions for transition parameters

Transition Parameter Mean ⅣIedian 950/O Interval
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Figure 5.20 Probability density functions for four transition parameters
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The solution of ODEs at each time node is shown in Figure 5.21. There are also

uncertainties in the solutions. In Figure 5.21, only the mean value is used to show the trend of

degradation of the flood barrier. The probability of Success will reduce because of the

transition from Success to Leak under the scenario of flood. The probabilities of Leak and

Deformation increase at first as aresult of Qrr>)"ro and )"ro) por. With the reduction of

Success, the probability of Leak and Deformation will decrease after certain time duration.

The probability of Failure keeps increasing as it is the final state in Markov model. Finally,

the degradation continues until the barrier fails.
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Figure 5.21 Time dependent probabilities of Markov states

In Figure 5.22, the uncertainty expression of Failure state is demonstrated. Since the

numerical solutions of Markov states are obtained by MCMC method, at each time node,

there are enough samples to generate a probability distribution for an interested state. The

mean, median value and the interval of (2.5o/o,97.5%) are shown in Figure 5.22. The

uncertainty diagrams of other three states are omitted in current article.
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Figure 5.22Uncertainty curves of probability of the failure state

5.5.2. Flood waterflow rate through barriers

The flood water flow rate through one barrier is decided by the volume of flood water

source and the leak rate of the barrier. The time dependent state of flood barrier has been

analyzed in the last section. It will be discussed the time dependent flow rate through a flood

barrier. Under actual flood scenario, the flow rate is continuously changed. For the simplest

consideration, the flow rate through a barrier is assumed in Table 5.13 according to the state

of the barrier in this article. If there is a severe flood with maximum water volume, the

expected water flow rate through a barrier is given by

Flowrate: F.{rl.{") +F{r). n4+ F.\D).\o1+ F.14.P(r) Equation 5.15

Here, F.\n*"1is the water flow rate through the barrier at one Markov state. To use the data

listed in Table 5.13,it can be written as

Flowrate : 0.{") + 0.25.P14+ l.{oy + 2.P1ry

112
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Therefore, the time dependent water flow rate at each time node I can be given by

F I owr at e, : 0.P4s; + 0.25. 4 @) 
+ l. P, (o) + 2. P, (" )

Equation 5.17

Table 5.13 Assumed water flow rate through barriers for each Markov state

States Flow rate(m3/mi⇒

Success

Leak

Deformation

Failure

0

0.25

I

2

There are two layouts for the three water-proof barriers. Especially, for the Layout#2,

the water flow rate through a barrier is different from other two barriers. The quantitative

estimation of water flow rate is obtained with the Bayesian inference by the OpenBUGS as

well. The calculation script is integrated in Appendix A.

Layout #l Parallel flood barriers (Scenario 3)

The Scenario No.3 of seismic-induced three-barrier-failure coupling with flood is

evaluated for Layout #1. The results of other two scenarios can be deduced by the result of

Scenario No.3. The schematic diagram refers to Figure 5.10. Time dependent Markov states

are obtained by the solution of ODEs and the water follow rate is determined by Equation

5.1,7.

The assumptions of calculation are listed in Table 5.14. For instance, the minimal time

to reach the Critical Water Height (CWH) can be calculated as Equation 5.18. All the

parameters in Equation 5.18 can be referred in Table 5.14.
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∠rθα×C″7 80× 0.15 :8min Equation 5.18Time^,,
(Flowrate^* - Drainage) Z-O.S

Table 5.14 Calculation assumptions for water flow rate through a barrier

Parameters Measurements

Single AFW pump room

Critical water height (CWH)

Drainage ability

Flood severity (per barrier at Turbine Building)

Minimal time to reach CWH (No flood barrier)

80 m2

0.15 m

0.5 m3lmin

2 m3lmin

8 min

Figure 5.23 shows the estimation of water flow rate through a barrier in Layout #I.lt

takes 29 minutes for the water to be accumulated in a room until it reaches the CWH.

Compared with the minimal time to reach CWH (No flood barrier) in Table 5.14, the time is

postponed to 29 minutes. The reason is because the existence of flood barrier block the

propagation of flood temporarily, but the barrier degrades for the seismic shock and flood.

Finally, the leakage is larger than the drainage ability and then the accumulated water will fail

the AFW pumps. The time dependent water flow rate and height is shown in Figure 5.23.To

illustrate the uncertainty analysis of water flow rate, the mean value as well as interval (2.5yo,

97.5%) is described in Table 5.15 and Figure 5.23.

Table 5.15 Time for critical water flow rate and water height (Layout #1)

Time (min)
Criteria

Mean Median 950/O hterval

Flowrate> Drainage

Water height > CWH

８

　

２９

８

　

２９

(6,11)

(24,38)
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Figure 5.23 Water flow rate through barriers (Layout #1)

As a result, the number failed pumps and percentage for three scenarios (Figures 5.8 -
5.10) of Layout #1 can be concluded in Table 5.17.

Table 5.16 Failure types of each scenario of flood barriers (Layout #1)
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Percentage of probability Failure types

Scenario I

Scenario 2

Scenario 3

0。 2

0.2

0.6

Single failllrc(1/3)

Partial CCF(2/3)

Complete CCF(3/3)

Layout #2 Sequential flood barriers (Scenario 3)

The Scenario No.3 of seismic-induced three-barrier-failure coupling with flood is

evaluated for Layout #2. The results of other two scenarios can be deduced by the result of

Scenario No.3. The schematic diagram refers to Figure 5.17. The calculation assumption is

the same to the Lavout #1 which is shown in Table 5.14.
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The water flow rate through each barrier in Layout #2 is calculated in the most

conservative way. Because it is difficult to distinguish whether the flood water is accumulated

or flow to the next room, both of accumulated rate and flow rate (to next room) are assumed

as maximum expected value.

The water flow rate via Barrier #I in Lavout #2 is the same to that of barriers in

Layout #1, which is written as

月ο vr∝e、B″″→=0・長0+0・ 25o孔 )+1°ら)+2o長∋ Equation 5.19

The degradation process

water sonrce through Barier #2

is conservatively assumed as the Barrier #1. Thus, maximum

from Room A is given by

a t(Banier#2) = Uo* lftowrate,rr*ru*t1 - Drainage,0l Equation 5.20

Ifthc■ .←物
"α
#2)>° attime l+1

accumulated water will cause Bamcr#2

, it means that the water starts to accumulate and

starting to degrade. It is mathematically writtenｅ■
　
　
ａｓ

tf arr:0 and e,r*rl0, b, =FJa″rα′ら_4(β
"″
#1)        Equation 5.21

The water flow rate through Barrier #2 canbe given by

FJοwrαにぃ″″#っ
Equation5.22
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Therefore,the water flow rate through Barrier#3 can be calculated siinilarly bascd on

the accumulatcd watcrin Rooln B,which is given by

負B″″o=ル 憾 {FJOW″負 励 αげ D″加ば '1

√t=Oα″グ■2・ >0'4=FJO″ rα名ち(Bα″′″#2)

FJaWrα′
c(3ar77″#3)={И′|),4};:ち

Equation 5.23

The critical time of that the flow rate reaches the drainage ability and the water height

reaches the CWH is shown in Table 5.17. Besides, the 97.5% interval of critical time is

described. It can be judged that the failure time of AFW pumps has been well postponed even

based on the most conservative assumption.

Table 5。 17 Time for critical water■ ow rate and water height(Layout#2)

Time (min)
Criteria

NIlean NIledian     950/O Interval

Pump A
Flowrate> Drainage

Water height > CWH

８

　

２９

8            (6, 11)

29         (24,38)

Pump B
Flowrate> Drainage

Water height > CWH

７

　

４

１

　

４

17          (12,17)

43          (35,62)

Pump C

The water flow rate through each barrier in Layout #2 is shown in Figure 5.24. The

water height in each room in Layout #2 is shown in Figure 5.25. There is a significant

difference from the result for Layout #1. It is different that the time when the flow rates

through barriers reach the drainage ability. Equivalently, it is also different that the time when

Flowrate> Drainage

Water height > CWH

３

　

　

７

１

　

　

３

３

　

　

７

(20,53)

(58,120)
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the water height in rooms differs from each other. The flood environment around each barrier

is different from other. However, in Layout #I, all barriers directly contact the severe flood

water from the turbine building. When the maximum through one barrier is less than three

times of drainage ability but more than one time of drainage ability, it is impossible to occur

that the complete CCF. Reversely, the complete CCF will occur in Layout #1.

―――‐Mean(Bl)・・・¨-25%(Bl)

― - 97.5%(B2)――――MCan(B3)

― - 97.5%(Bl)―――‐Mcan(B2)・ ……… 2.5%(B2)
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i

Figurc 5.24 Water flow ratc through each flood barrler
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Figure 5.25 Water height in each AFW pump room
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According to the possible water height in each room, the failure state of each pump

can be evaluated. As a result, the failure types and related probability given the occurrence of

a seismic induced flood are shown in Table 5.18. Under the situation of severest flood, the

risk flood is reduced regarding to the number of failed pumps. From the perspective of

Scenario (1), the half probability can be screened out since there is failure event happens. In

the Layout #1 (Table 5.16), there is an absolute single failure happens under the Scenario (1).

The failure risk is reduced. Equivalently, from the perspective from Scenario (2), two third of

the partial CCF events is degraded to no failure or single failure. If all three barriers are

flawed or failed by the seismic shock, all pumps will fail finally, but the time duration of

complete CCF is longer than that of Layout #1.

Table 5.18 Failure types of each scenario of flood barriers (Layout#2)

Percentage of probability Failure types

Scenario I
Figurc 5.12

Figurc 5.13

0.133

0.067

No failure(0/3)

Single failure(1/3)

Scenario 2

Figure 5.14

Figure 5。 15

Figure 5.16

0.067

0.067

0.067

No failurc(0/3)

Singlc failure(1/3)

Partial CCF(2/3)

Scenario 3 Figure 5.17 0.6 Complete CCF (3/3)

5.5.3. The estimation of decomposed alphafactors of internalflood

Because the number of failed AFW pumps can be decided by the water height, it

provides a means to evaluate the CCF hazard of internal flood. As introduced in previous

chapter, the decomposed alpha factors represent the CCF triggering abilities of potential

causes. The estimation of decomposed alpha factors aims to provide a reliable result for the
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update of global alpha factors, so the updated alpha factors can reflect the specific

system-related coupling factors and defense mechanisms.

The water height in the room determines whether a pump failure happens. In other

words, it is the criteria to distinguish a state of success or failure, which can be described as

Equation 5.24

Here, SC is the acronym of state criteria; Exp(WH) is the expected water height.

As shown in Table 5.13, if the state of the barrier is Deformation or Failure, the water

flow rate will be larger than the drainage ability. [n contrast, if the state of the barrier is

Success or Leak, the water flow rate will be less than the drainage ability. Combined with the

pump state criteria, the decomposed alpha factors can be calculated based on the state of

barrier. Here, the Scenario (3) is taken as an example for both layouts. Other scenarios can be

obtained similarly.

Layout #1 Parallel flood barriers (Scenario 3)

If all three barriers are flawed by the earthquake, the water height in three rooms is

treated as identical. Therefore, when the expected water height is larger than the CWH value,

the complete CCF will occur with the probability of Deformation and Failure. The

decomposed alpha factor at time t canbe written by

df',poyou, tt1= (4,r, + 4,., )'sc

SC=ll斃
1箱に:算
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Here, df't1toyo,t*r1 refers the decomposed alpha factor at time node I of internal flood

involving three components; 4Ol and P,rr, are probabilities of states Deformation and

Failure at time node l; SC is the criteria whether the states AFW pump is success or failure.

Because all three barriers and pumps are treated identically in Layout #1, it is differentiated

for each component that the SC as well as the probability of Deformation and Failure.

The time dependent decomposed alpha factors for Layout #L are shown in Figure 5.26.

After the expected water level is higher than the CWH, the CCF risk will start to increase

significantly. Moreover, it reaches the stable value of 1 in a short term. Because there is no

risk of partial CCF event involving two components, the af' is always 0.
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Figure 5.26 Time dcpcndcnt decomposcd alpha factor ofintemal flood(Layout#1)

Layout #2 Sequential flood barriers (Scenario 3)

All three barriers are flawed by the seismic shock, and then degrade as a result of the

propagation of flood. The time of a pump failure is different from other two pumps, so there

are different distributions for alpha factors depended on time. The mathematical forms of

decomposed alpha factors are given by
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df',1t o,,*zy: (41ry, + P,1ryr)'(4,r,, + P,1ryr.)'tq<t-Sq) Equation 5.26

df'4uyout*zy: (4,r,, * P,try)'("ur,, + P,1ryr)'("ur, +r,,",r)'SC, Equation 5'27

イ〈ι
“
″0=1-イ (秒″切―冴〈ιψ″切 Equation 5.28

Here, df',1toyo,t*z:1 refers the decomposed alpha factor at time node I of internal flood

involving j components; 4p1, and 1111, are probabilities of states Deformation and Failure

for Barrier i at time node /; SC, is the criteria for the failure involvingT components.

The time dependent decomposed alpha factors for Layout #2 is shown in Figure 5.27.

Compared with Figwe 5.26, the decomposed alpha factors involving two and three

components are significantly pos@oned. Because the flood is assumed as the severest, the

decomposed alpha factors of complete CCF will finally reach 1.

Figure 5.27 Tillne dependcnt decomposcd alpha factor ofintemal flood(Layout#1)
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5.5.イ.″ ′Jεα′jοηグ ルθノοοグrJSた わ ら偲たθνθ″おα″αJysお J″ PM

The estimation of time dependent alpha factors is of practical meaning. The

decomposed alpha factors after a long term replace the most serious situation that the internal

flood will result in. There are three water sources considered in this article. They are

Circulating Water (CW), Service Water (SW) and Fire Protection Water (FPW), which are

shown in Figure 5.28. It is possible that all three water systems break after the occurrence of

seismic shock, so the CCF of three water systems is assumed. Each water source has

respective water flow rate and occurrence rate which is described in Table 5.19. This is used

to estimate the flood risk which will be used to update the global alpha factors.

Figure 5.28 Fault tree for water sources break

Table 5.19 Hypothetical flow rate of water sources break

Water sources
Flow rate through barrier #l

(m3/min)

Probability

Circulating Water (CW)

Service Water (SW)

Fire Protection Water (FPW)

Three water sources (CCF)

1.2

0。75

0.5

2

1.30E-04

1.80E¨ 05

5.10E¨04

1.40E¨ 05
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The flow rate through barriers determines the number of AFW pumps. Based on the

previous, it can be decided the probability of failure scenario of barrier for two layouts. Take

the circulating water system as an example. The flow rate (I.2 m'lmin; is larger than the

drainage ability (0.5 m3/min). In the Layout, Scenario t happens with the possibility

percentage of 0.2 and there is a single failure. Scenario 2 happens with the possibility

percentage of 0.2, there is apartial CCF. Scenario 3 happens with the possibility percentage

of 0.6, there is a partial CCF.

Therefore, the summary of each flood and failed pumps is shown in Table 5.20.It can

be judged that the CCF risk is significantly degraded from Layout #1 to Layout #2. For

instance, when the Barrier #1 is luckily successful, there is no failure occurred. InLayott#2,

only the severe flood will cause a complete failure.

Table 5.20 Probabilty of each failure type for different scenano

Probability
Failure types

CW SW FPW CCF

Layout

#l

0/3

1.t3

213

)t)

0

0.2 (2.60E-0s)

0.2 (2.60E-0s)

0.6 (7.80E-05)

0

0.2 (3.60E-06)

0.2 (3.60E-06)

0.6 (1.08E-05)

1(5.10E-04)

0

0

0

0

0.2 (2.80E-06)

0.2 (2.80E-06)

0.6 (8.40E-06)

Layout

t11

0/3

U3

2t3

ala
JIJ

0.2 (2.608-0s)

0.133 (1.73E-os)

0.667 (8.67E-0s)

0.2 (3.60E-06)

0.8 (1.44E-0s)

0

0

r (s.10E-04)

0

0

0

0.2 (2.80E-06)

0.133 (1.86E-06)

0.067 (e.38E-07)

0.6 (8.40E-06)

The calculated decomposed alpha factors are shown in Table 5.21. Usually, the flood

scenarios will be screened out that causes no failure, this phenomena has been discussed in

the misleading of alpha factors. This information can be reflected in the collection of causes
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occurrence rate but will not be reflected in the alpha factors. The estimates of decomposed

alpha factors of intemal flood can be used to update the global alpha factors.

Table 5.21 The estimated decomposed alpha factors for internal flood

Failure types Probability Percentage Decomposed alpha factors

0/3        5.10E-04        Screened out

Layout     1/3        3.24E-05          20.00%

#1       2/3        3.24E-05          20.00%

3/3        9.72E…05          60.00%
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Figure 5.29The prediction of global alpha factors
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For instance, based on the estimates of decomposed alpha factors of internal flood, the

prediction of global alpha factor is demonstrated on Figure 5.29.The global alpha factors of

the AFW pump system of Layout #2 is of less complete CCF than the system of Layout #1.

This application shows the alpha factors are affected by the CCF risk of causes. If more causal

information can be used in the evaluation of CCF risk, the results will represent the

system-specific design and the innate risk of common causes.

Summary and Results

Advantages of the alpha decomposition method on the prediction of CCF parameters

have been specifically described. The AFW pump system has been taken as an example to

illustrate how to evaluate the system- and design- specific CCF parameters. In Section 5.1,

flood barrier are recommended to be built in the turbine building to protect the safety-related

components from the risk of internal flood. The construction of such flood defense measures

will change the distributions for CCF parameters. The decomposed alpha factors of internal

flood are reasonably obtained which is used to update the global alpha factors. The misleading

of alpha factors in evaluation of failure risk is discovered and discussed. From Section 5.2 to

5.4, the degradation of flood barrier under the scenario of seismic-induced internal flood has

been taken into account. The state of flood barrier will affect the water flow rate to the AFW

pump rooms and finally, it will affect the number of failed redundant pumps. Two different

layouts are compared to prove the CCF parameters are not only component number related

but also system-specific design related. Markov model and ordinary differential equations are

used to evaluate the time dependent water flow rate and decomposed alpha factors. At last, the

global alpha factors are updated by the obtained decomposed alpha factors of internal flood

for two layouts.

The current research only considers the Markov transition parameters as time

independent which can be obtained by the process of Bayesian inference. In actual flood PRA,
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the transition rate between two Markov states is decided by the flood environment. It is very

conservative and of large uncertainty to consider the degradation of flood barrier with

constant transition parameters. The physics-based Markov model should be built in future

research. The dynamic flood scenario and flow rate should be better established.
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Chapter 6: CONCLUSIONS

Common causes are of different abilities to trigger independent or dependent failures.

Traditional alpha factor model uses the ratio of failure types to describe the CCF risk of

redundant systems. However, the estimates of CCF parameters should reflect issues including

failure data, cause information, coupling factor and system-specific design etc. Based on the

alpha factor model and causal inference, the alpha decomposition method is proposed to

quantitatively evaluate CCF parameters. Global alpha factors are decomposed according to a

function of two types of elements. Explanatory variables include occrurence frequencies and

CCF triggering abilities (denoted as decomposed alpha factors). The regression model of the

alpha decomposition method is established and proved by the theory of conditional

probability as well as Hybrid Bayesian Network. Moreover, it is demonstrated the alpha

decomposition method can be validated by the hypothetical system-specific database.

Based on the evidence of generic failure data, causal information and design

information, etc., Bayesian approaches are applied to numerically compute the posterior

distributions for CCF parameters. Databases are recommended to be built, which combine the

CCF events recording and causes occurrence information. Hierarchical Bayesian models are

used to solve the regression model (the alpha decomposition method). Numerical examples

show the calculation process of two-stage Bayesian inference with the MCMC method.

Decomposed alpha factors are risk characteristics of potential causes. This research can assist

analysts to rank CCF risk significance of causes. The uncertainty analysis in the estimation of

alpha factors is able to be conducted by decomposed alpha factors as well. The uncertainty in

the estimates of CCF parameter can be reduced.

The quantitative estimation of CCF parameters involving specific defense barriers has

been discussed. The AFW pump system has been analyzed to illustrate how the specific

design and defense strategy affect CCF parameters. First of all, flood barrier are

recommended to be built in the turbine building to protect safety-related components from the
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risk of intemal flood. Usually, there is no operation database for AFW pump system with the

recommended flood barrier. However, the construction or degradation of flood defense

measures will change the distributions for CCF parameters. The decomposed alpha factors of

internal flood are reasonably obtained which is used to update the global alpha factors. The

misleading characteristic of alpha factors regarding risk evaluation is discovered and

discussed. It is found that the defense against causes of high occurence rate but low CCF risk

will increase the alpha factors which represent partial or complete CCF.

On the other side of the coin, the degradation of flood barrier will increase the CCF

risk of the AFW pump system. Under the scenario of seismic-induced intemal flood, the CCF

risk has been investigated. The state of flood barrier will affect the water flow rate to the

AFW pump rooms and finally, it will affect the number of failed redundant pumps. Two

different layouts are compared to prove the CCF parameters are not only component number

related but also system-specific design related. Markov model and ordinary differential

equations are used to evaluate the time dependent water flow rate and decomposed alpha

factors. The application of this research explains that even if not enough plant-specific

operation databases are available, the well-established estimates of common causes' risk can

be used to predict the CCF parameters.

As a shortcoming of current research, the transition parameters in the Markov model

are treated as time-constant. In future research, it should be included that the physic-based

investigation of flood barrier degradation. More accurate calculation of dynamic flow rate and

degradation rate should be established as the internal PRA analysis is an important contributor

to the external events initiated severe accident.
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APPENDIX A

OpenBUGS script for the degradation of flood barrier and decomposed alpha factors

model{

for(k in 1:case.number){ # model's likelihood

x[k, 1:group.size] - dmulti(alpha[k, 1:group.size], # Stochastic model with multinomial

Xtkl) likelihood tunction

X[k] <- sum(x[k, 1:group.size]) # X is the total number of "group

failure events"

alpha[k, 1:group.size] - ddirich(theta[k, ]) # Transition variable

for ( in 1:group.size) {

theta[k, j] <- (alpha.c[1, j]*r[k, 1] + alpha.c[2, j]*r[k, # Predicted function for the alpha

2l + alpha.c[3, j]*r[k, 3])*X[k] decomposition

\
t

)

for (i in 1:cause.number) { # A noninformative prior

alpha.c[i, 1:3] - ddirich (delta[i, ]) distributions for decomposed

delta[i, 1] <- I alpha-factors

delta[i, 2] <- I # Each parameter in dirichlet

deltali, 3] <- I distributions is 1

)

for(i in 1:exp.round)

{

sei.F [i, I : state.number] - dmulti(p. state[i,

1 :state.numberl, N[i])

N[i] <- sum(sei.F[i, I :state.number])

# The harzard of seismic shock
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p. state[i, 1 : state.number] - ddirich(eta[i, ])

for (j in 1:state.number){

eta[i, j] <- 1

)

)

for(i in l:state.number){ # Calculate the initiating states

init[i] <- sum(p.state[, i])/exp.round

)

for(i in l:exp.round) { # Stochastic models for of Leaks

n.L[i] - dpois(mean.L[i]) # Number of Leaks

mean.L[i] <- lambda[i] *time.L[i]

lambda[i] - dlnorm(mu.L[i], tau.L[i]) # Distribution for leak rate

mu.L[i] <- log(prior.mean.L[i]) - pow(sigma.L[i],

2)t2

sigma.L[i] <- log(M.Ll1l)/ r.64s

tau.L[i] <- pow(sigma.L[I], -2)

n.L[i] <- sei.F[i, 1] -flood.F[i, 1]

\
I

for(i in 1:exp.round){ # Stochastic model for the numbers

x.D[i] - dbin(p.D[i], n.D[i]) of Deformation

p.Dlil - dlnorm(mu.D[i], tau.D[i])

mu.D[i] <- log(prior.mean.D[i]) - pow(sigma.D[i],

2)t2

sigma.D[i] <- log(RF.DUl)l r.64s

tau.D[i] <- pow(sigma.D[i], -2)

n.D[i] <- sei.F[i,2] + sei.F[i, 1] - flood.Fli, 1]
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x.D[i] <- flood.F[i, 3] - sei.F[i, 3] + x.F2[i]

)

for(h in l:exp.round) { # Stochastic models for the numbers

of Failures given Leaks

x.Fl[h] - dbin(p.F1[h], n.Fl[h]) # Number of Failures

p.Fl[h] - dlnorm(mu.Fl[h], tau.Fl[h]) # Conditional probability of failure

mu.Fl[h] <- log(prior.mean.Fl[h]) - given leak

Pow(sigma.Fllhl,2)12

sigma.F I [h] <- log(RF.F I [h]yl.645

tau.Fl[h] <- pow(sigma.F1[h], -2)

n.F1[h] <- sei.F[h, 2] + sei.F[h, l] - flood.F[h, 1]

)

for(h in 1:exp.round){ # Stochastic models for the numbers

x.F2[h] - dbin(p.F2[h], n.F2[h]) of Failures given Deformations

p.F2[h] - dlnorm(mu.F2[h], tau.F2[h]) # Conditional probability of failure

mu.F2[h] <- log(prior.mean.F2[h]) - given leak

pow(sigma.Fz[h],2)12

sigma.F2[h] <- log(RF .F2[h])l | .64s

tau.F2[h] <- pow(sigma.F2fhl, -2)

n.F2[h] <- x.D[h]

x.F2[h] <- flood.F[h,4] - sei.F[h, a] - x.F1[h]

)(

phi. Sl<-sum(lambda[] )/exp.round

lambda.LD <- sum(p.D[])/exp.round

rho.LF <- sum(p.F I [])/exp.round

rho.DF <- sum(p.F2[])/exp.round

# Transitionparameters
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# Markov ordinary differentialsolution[1:n.grid,1:dim]<― Ode(init[1:dim],

equationstimes[1:n.grid],D(P[1:dim],t),OHgin,tol)

D(P[1],0<― ―phi.SL*P[1]

D(P[2],oく p̈hioSL*P[1]-lambda.LD*P[2]―

rho.LF*P[2]

D(P[3],t)<… lambda.LD*P[2]― rho.DF*P[3]

D(P[4],t)<― rhO.LF*P[2]+rho.DF*P[3]

# Flow rate fbr flood barrierrfOrG in l:n.grid){

flowrate.lli]<-0*S01utionli,1]+0.25*solutionli,2]+    degradation

l*solutionli,3]+2*solutionli,4]

flowrate.2D]<― f10Wrate.lD]-0・ 5

accum.ratel□ ]<― ■OWrate.lD]-0.5

flowrate.3D]<― f10Wrate.2□ ]-0.5

accum.ratc2□ ]<― f10Wrate.2D]-0.5

accum.ratc3D]<― f10Wratc.3D]-0.5

}

init.flowratc<-0*init[1]+0.25*init[2]+1*init[3]→

2*init[4]

#fOrG in 8:n.gHd){

#watcrheight.lD]<― Sum(accum.ratel[8j])/area

≠|}

#fOrO in 17:n.grid){

抑 aterheight.2□ ]<― sum(acCum.rate2[17j])/area

≠:}

#fOrG in 31:n.grid){

#waterheight.3o]<― sum(acCum.rate3[31j])/area
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J+lffa

#for ( in 1:43){

#new.alpha.cl[,1] <-l

#\

#for (j in44:72){

#new.alpha .cll1,2l <- (solutionli,3] +

solutionff,4])*(solutionb-43,31 + solutionff -43,4])

#new.alpha.c1[,1] <- 1- (solution[,3] +

solutionff,4])*(solution]-43,31 + solution[i -43,4])

)

#for (i in 73:n.grid){

#new.alpha.cl [,3] <- (solutionli,3] +

solutionff,4])*(solutionfl-43,31 +

solution[-43,4])*(solutionf -7 2,31 + solution[ -7 2,4])

#new.alpha.cIf,2l <- 1 - new.alpha.cl [,1] -

new.alpha.cl [,3]

#new.alpha.c1[,1] <- 1- (solution[,3] +

solutionff,4])*(solutionlJ-43,31 + solution[i -43,4])

J+'lfra

)

DATA

list(x:structure(. Data:c(. . . ), . Dim:c( 1 6,3 )),

r:structure(.Data:c(. . . ), .Dim:c( 1 6,3)),

group. size:3, case.number: 1 6, cause.number3,

sei.F:structure(.Data:c(...), .Dim:c(3, 4)),

flood.F:structure(.Data:c(. . .), .Dim:c(3, 4)),
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state.number=4,exp.round=3,n.gHd=300,dilln=4,

o五gin=0,tol=1.OE-8,pHor.mean.L=

C(0.0001,0.0001,0.0001),RF.L=c(100,100,100),

time.L=c(60,60,60),p五 〇r.mean.Fl=c(0.1,0.1,0.1),

V.Fl=c(10,10,10),priOr.mean.F2=c(0.1,0.1,0.1),

V.F2=c(10,10,10),priOr.mean.D=c(0.1,0.1,0.1),

V.D=c(10,10,10),x.Fl=c(0,0,0),timcs=c(… .))
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