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ABSTRACT

Traditional Basic Parameter Models (BPMs) for Common Cause Failure (CCF)
modeling has focused on the occurrence frequencies of CCF events. The Alpha-factor model
is the most widely adopted parametric model. Joint distributions for lumped parameters in the
alpha-factor model are determined by a set of possible causes. Each possible cause has innate
CCF-triggering ability and occurrence frequency. Cause-informed CCF modeling aims to
provide a quantitative assessment of the risk from the shared causes and coupling factors for a
system with redundant components. The purpose of this research is to investigate the
numerical relationship between common causes and CCF risk as well as to reduce the
uncertainty in the system-specific CCF parameter estimation.

This dissertation presents an approach which is named as the alpha-decomposition
method. A Hybrid Bayesian Network is adopted to demonstrate the relationship between
component failures and possible causes. The alpha factors in the alpha-factor model are
re-notated as global alpha factors and the CCF-triggering abilities of causes are notated as
decomposed alpha factors. A regression model is determined and proved by the theory of
conditional probability, in which the global alpha factors are represented by explanatory
variables (cause occurrence frequencies) and parameters (decomposed alpha factors). A
database combining with the CCF data and cause occurrence record is recommended to be
built. The features of the alpha-decomposition method and calculation process are illustrated
by a numerical example.

This dissertation demonstrates the analysis of modified system involving the
construction and degradation of defense barriers against dependent failures. An important
element in CCF analysis is the coupling factor. The coupling factor is the condition that
multiple components are affected by the same cause. The susceptibility of a certain system to
dependent failures will be changed if a defense mechanism is introduced to interrupt the

coupling factor. After additional flood barriers are constructed, CCF parameters of the
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Auxiliary Feedwater (AFW) Pump system are predicted according to the alpha-decomposition
method. Furthermore, the seismic event will initiate the failure of non-safety related water
supply systems and the degradation of additional flood barrier. A Markov model is introduced
to model the degradation process of flood barriers. It is illustrated by a numerical example
that the dynamic CCF risk analysis after the occurrence of seismically-induced internal flood
and the failure of flood barriers. The prediction of CCF parameters can be applied in the
estimation of basic events in nuclear Probabilistic Risk Assessment (PRA). This research
describes an approach which can be used to evaluate the plant- and system- specific CCF

parameters based on generic databases.
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Chapter 1: INTRODUCTION

1.1. Common Cause Failure

1.1.1. Definition of common cause failure

As a conclusion form Probabilistic Risk/Safety Assessment (PRA/PSA) for
commercial Nuclear Power Plants (NPPs), the identification and quantification of Common
Cause Failure (CCF) are of great importance. When safety analysts perform the plant-level
PRA or the system-level reliability analysis, the dependent failures of redundant safety
systems will be encountered. The term common cause failure refers to the dependent failures
of functionally similar systems, such as backup feedwater pumps or multiple coolant injection
systems. In the absence of dependent failures, the availability of safety systems or functions is
improved by the introduction of redundancy or diversity, which is regarded as independent
failures. Therefore, the effect of CCF is to increase the unavailability of redundant systems
compared with cases of independent failures.

The early efforts of CCF analysis can be traced back to 1960s and the formal
definition of CCF was preliminarily in one of the first publications in the nuclear industry,
WASH-1400 (1975). In WASH-1400, common mode failures are defined as multiple failures
that result from a single event or failure. The resulting multiple component failures can
likewise encompass a spectrum of possibilities, including, for example, system failure caused
by a common external event, multiple component failures caused by a common defective
manufacturing process, and a sequence of failures caused by a common human operator. It
should be noted that the term “common mode failure” is not precise for communicating the
main character of CCF events. The dependent failure resulting from a shared cause or another
component state should be distinguished.

Thereafter, several definitions of CCF have been suggested in literature. Mainly all the

1



CHAPTER 1

definitions of CCF events encompass the dependent failures. The distinction is the definition
of time duration during when dependent failures are classified as a group of CCF events.
Some definitions are broad and essentially cover the entire set of dependent failures. Some
definitions do not explain clearly about the duration of time interval. Other definitions focus
on the time duration in the context of a particular application, such as PRA mission.

In NUREG/CR-4780 (A. Mosleh, 1988), common cause events are defined as a subset
of dependent events in which two or more component fault states exist at the same time, or in
a short time interval, and are a direct result of a shared cause.

In NUREG/CR-5485 (A. Mosleh, 1998), a CCF event consists of component failures
that meet four criteria: (1) two or more individual components fail or are degraded, including
failures during demand, in-service testing, or deficiencies that would have resulted in a failure
if a demand signal had been received; (2) components fail within a selected period of time
such that success of the PRA mission would be uncertain; (3) component failures result from
a single shared cause and coupling mechanism; and (4) a component failure occurs within the

established component boundary.

1.1.2. Main elements of common cause failure analysis

Generally, there are three main elements of CCF events, the failure cause, coupling
factor and defense mechanism.

1) Failure cause: The cause of a failure event is a condition or a combination of
conditions to which a change in the state of a component can be attributed. To identify
the failure cause or the causal chain of conditions is important. The collection and
classification of CCF data rely on the identification of causes. Several types of causes
are applied in CCF analysis. A proximate cause associated with a component failure
event is a characterization of the condition that is readily identifiable as having led to

the failure. A root cause is the basic reason why components fail. Compared with root
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causes, proximate causes are more identifiable but do not necessarily reflect the
complete understanding of failure mechanism. Because it is difficult to determine the
root causes, current CCF database only codes the proximate cause. In current
dissertation, for the consideration of data collection, all causes simply refer to
proximate causes.

Coupling factor: A coupling factor is a characteristic of a group of components that
identifies them as susceptible to the same causal mechanisms of failure. After the
occurrence of a shared cause, the coupling factor is the conductive meaning of
simultaneous dependent failure. Coupling factors include the similarity in design,
location, environment, mission and operational, maintenance, and test procedures.
Therefore, the coupling factors are usually classified as (1) Quality based; (2) Design
based; (3) Maintenance based; (4) Operation based; (5) Environment based.

Defense mechanism: To protect redundant systems against CCF events, it is necessary
to understand and apply defense strategy. In engineering, the defense strategy is noted
as defense mechanism. The defense mechanism for CCF systems can be functional
barrier, physical barrier, monitoring and awareness, maintenance staffing and
scheduling, component identification, diversity and others. As introduced before, there
are two important elements related to the CCF occurrence mechanism, so two defense
strategies can be applied in engineering: (1) the defense strategy against the failure
causes; (2) defense strategy against coupling factors. Based on the seismic fragility
analysis, to enhance the seismic capacity of safety-related components can defend
against the earthquake. To construct flood barriers between compartments can

preclude the propagation of flood, and the coupling factor is interrupted.
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1.1.3. Parametric modeling for common cause failure

The mathematical treatment of CCF in PRA and reliability studies is well established
in the literature and in practice. References have been published to introduce the basic
principles and guidance for CCF analysis. The basic quantitative screening and
parameterization of CCF event are simply introduced as follows.

Based on the qualitative analysis of redundant system, the system boundary can be
identified. The group of components in the qualitative process is named as the Common
Cause Component Group (CCCG). Generally, the functionally-identical components of a
redundant system are assigned to a CCCG. To consider the CCF risk of a CCCQG, the
complete quantitative process is inevitable to be determined. The objective of quantitative
screening is to decide reasonable parameters to represent the potential failure risk in a
redundant system. The risk of independent dependent failure can be decided based on the
parametric model, and then the failure probability of the redundant system can be calculated.
The relationship between components failure and system failure can be displayed with fault
trees. Let us consider a CCCG composed of three redundant components A, B, and C. There
are three basic events in the fault tree, (1) A Fails; (2) B Fails; (3) C Fails. There two possible
failure scenarios for each component, independent failure or CCF. If only independent failure

and global CCF are considered, the basic events can be shown as Figure 1.1.

A Fails B Fails C Fails
@Q £0R1 ¢0R§
AI CABC Br CABC C[ CABC

o OO0 0O 0 O

Figure 1.1 Fault trees for basic events
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The simplest model of CCF basic events can be represented with a single parameter

model. Take the basic event of the component A as an example,

P(4,)=(1-5)-P(4)
P(C5c)=B-P(4) Equation 1.1

Here, P(A) is the total failure probability of the component A; P(4,) is the independent
failure probability of the component A; P(C ABC) is the CCF probability of components A, B
and C; g is the single parameter which represents the ratio of common cause failure.

The single parameter model provides a simple way to model the CCF risk. This
representative example shows the basic quantitative process of CCF modeling. More detailed

review of previous CCF modeling can be obtained in Chapter 2.
1.2. Bayesian Inference in Probabilistic Risk Assessment
1.2.1. Hierarchical model in probabilistic risk assessment

The term “inference” is defined as the process of obtaining a conclusion based on the
information available, e.g. operational data and expert experience, etc. The Bayesian
inference means the using of Bayes’ theorem in which information is used to obtain the most
reasonable posterior distribution of a parameter. Probabilistic Risk Assessment (PRA) is a
mature technology that can provide a quantitative assessment of the risk from accidents in
nuclear power plants. In the process of PRA, it involves the development of models via tool
such as Fault Trees and Event Trees, etc. According to the occurrence of initiating events, the
response of safety-related systems can be delineated by PRA models. Therefore, the
estimation of risk can be obtained by propagating the uncertainty distributions of key
parameters through these models. The calculation of final integrated parameters is of great

5
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importance, e.g. Core Damage Frequency (CDF), Large Early Release Frequency (LERF), etc.
The PRA models are hierarchical and complex, so the integrated parameters are intractable by

traditional probabilistic methods.
1.2.2. Bayesian inference with conjugate prior distribution

In nuclear PRA, the values of observations x are initially uncertainty and described
through a probability distribution with probability density function f (x|49). Here, the
mathematical treatment is unified without differentiation between discrete and continuous
quantities. The quantity @ is the index of the family of interested parameters. With the
consideration of important parameters, the observations can be predicted with reasonable
uncertainties. Therefore, the probability density function of € is of great interests. It is likely
PRA analysts has some knowledge about the density function of 7, (0), even though the
knowledge may not be precise. Hence, it is useful to incorporate the knowledge 7,(8) with
the observations x. Usually, is called prior distribution. Observational £ (x]é?) is
called likelihood function. The likelihood function provides the chances of each & leading

to observed value of x . The posterior distribution 7, (9|x) of @ can be obtained via Bayes’

theorem

7, (¢9|x) = f(x|0)fr0 ©) Equation 1.2

[ 7o), ()0

Because the denominator is simply a constant, the Bayes’ theorem can be written in a

more compact chain form

2 (0|x) < f (x]&)ﬂo ) Equation 1.3
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The target posterior distribution is not analytically tractable. In the past, intractability
was avoided via the use of conjugate prior distributions. If the posterior distribution 7, (H|x)
are in the same family as the prior distribution 7, (9), the prior and posterior are then called
conjugated distributions, and the prior is called a conjugate prior for the likelihood. For
example, the gamma distribution is conjugate to itself, and for the binomial distribution, the
conjugate prior is a beta distribution. Different distributions can have the same conjugate prior
e.g. Poisson and Exponential distributions are conjugate to gamma distributions.

Prior distributions can be classified as either informative or noninformative.
Informative priors contain previous known information about the value of parameters.
Noninformative priors do not contain substantive information about the value of parameters.
Noninformative priors (such as Jeffreys noninformative prior) are widely used in nuclear PRA,
which allow the observation to speak for themselves. There is a compromise distribution
between an informative prior and the noninformative prior, which is called constrained
noninformative prior. For Poisson distribution, the constrained noninformative prior is a

gamma distribution with certain shape parameters.

Example 1.1 Poisson inference with conjugate prior

The Poisson distribution is widely used to model the Sampling Test in Quality Assurance. The
numbers of flows and failures in one test scheme are denoted by g™ and g™, respectively.

Hence, the probability density distribution can be written as

g* ~ Poisson(A"),k e {FY , Fa} Equation 1.4

Here, A" is the expected number of flaws; A™ is the expected number of failures.
If there is no available information, the low-informative prior (e.g.
gamma(0.01,0.01)) can be used. During two testings, it is assumed that the record of flaws

7
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and failures is g” =(3,4) and g™ =(2,1), so the posterior distribution 7, (ﬂ"'g") of

parameters can be written as

AT |g ~ gamma(7.01,2.01)

A"\ g ~ gamma(3.01,2.01) Equation 1.5

The posterior distributions are shown in Figure 1.2. The mean value of flaws and

failures can be calculated as

E(17|g)=3.488, E(1™|g)=1498.
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Figure 1.2 Posterior distributions for conjugate example

However, not every aleatory model will have an associated conjugate prior. In the
practical PRA analysis, analysts may sometimes choose to use a nonconjugate prior even

when a conjugate prior exists. Under these scenarios, the integration will become intractable

and Monte Carlo integration will be necessary.
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1.2.3. Bayesian inference with Markov Chain Monte Carlo

For many years, Bayesian theory was unable to be established as a well-accepted
quantitative approach for data analysis. The main reason is the intractable integration involved
in the calculation of the posterior distribution. Asymptotic methods had provided solutions to
specific problems, such as conjugate distributions, but no generalization was available. Since
the beginning of 21% century, the application of Bayesian statistics in science and engineering
has been becoming fashionable. The advent of Markov Chain Monte Carlo (MCMC)
sampling opened highways for statistical research. With the MCMC sampling, the Bayesian
inference works for simple and well-supported cases, but more importantly, it works
efficiently on complex and multi-dimensional problems.

With the development of MCMC algorithms, computational software appeared.
During the late 1990s, Bayesian inference Using Gibbs Sampling (BUGS) emerged in the
foreground. BUGS is a free software that fits complicated hierarchical models in a relatively
easy manner. Thereafter, the Window version of BUGS (WinBUGS) has earned great
popularity in various fields. Now, more recent advances leads the software to an open-source
version (OpenBUGS). The intractable integrations can now be solved with these software

packages.

Example 1.2 Poisson inference with nonconjugate prior

Take the Poisson distribution in Sampling Test as an example again. If a lognormal
distribution is assumed by PRA analysts as the prior for the lambda in the Poisson distribution,
the computation can be fulfilled with OpenBUGS. During two identical testing interval, the
observed data of flaws and failures is g.F/=(3,4), and g.Fa=(2,1), respectively. The
nonconjugate prior distributions for parameters (lambda in Poisson distributions) are assumed

as lognormal distribution (with a median of 1x 107 / testing episode and a range factor of

9
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100). Hence, the posterior distributions for parameters can be obtained. The OpenBUGS
script is shown in Table 1.1. The summary of posterior distributions for parameters is shown
in Table 1.2. The expected value of flaws and failures during one testing interval can be
calculated. The observed data and previous knowledge of testing results are credited. The
density curves of posterior probabilities are shown in Figure 1.3. Curves show different
attributes compared with the example of conjugate priors. It is important to find a minimally

informative prior distribution in Bayesian inference.

Table 1.1 OpenBUGS script for Poisson inference with nonconjugate prior

model {

for (11n 1:2) {

g.FI[1] ~ dpois(lambda.Fl) # Poisson distribution for flaws
g.Fa[i] ~ dpois(lambda.Fa) and failures

}

lambda.F1 ~ dlnorm(mu.Fl, tau.F1) # Lognormal prior distribution for
lambda.Fa ~ dlnorm(mu.Fa, tau.Fa) lambda.F] and lambda.Fa

mu.Fl <- log(prior.median.F1) # Calculate prior mu.F] and
mu.Fa <- log(prior.median.Fa) mu.Fa from lognormal mean
tau.F1 <- pow(log(RF.F1)/1.645, -2) # Calculate prior tau.F1 and tau.Fa
tau.Fa <- pow(log(RF.Fa)/1.645, -2) from lognormal range factor

}

data

list(g.F1 = ¢(3,4), g.Fa = c¢(2,1), prior.median.F1 = 1.E-§,

prior.median.Fa = 1.E-8, RF.F1 =100, RF.Fa = 100)

10
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Table 1.2 Summary of posterior distribution for the nonconjugate example

Parameter Mean Median 95% Interval
Lambda (Flaw) 2.285 2.122 (0.715, 4.799)
Lambda (Failure) 0.407 0.275 (0.015, 1.527)
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Figure 1.3 Posterior distributions for the nonconjugate example

1.3. Research Motivation

In recent decades, great achievements have been obtained in the context of CCF
modeling. Basic parameter models for CCF analysis have been well established in the
literature and in practice. The lumped basic parameters reflect the CCF risk of targeted
redundant systems. The estimation of basic parameters is based on the generic operation data.
From the perspective of Bayesian inference, the posterior distributions for basic parameters
are updated according to the evidence of failure event data. Basic parameters are integrated
result of failure information and cause occurrence information. There are unknown
uncertainties in the probability or density distribution of parameters, which can result from

1) Scarce common cause failure data and imprecise CCF data.

11
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2) The generic operation database which is used to estimate the plant-specific and
system-specific CCF parameters.

3) Omission of valuable information, e.g. causal inference.

4) Dynamic operation conditions which are not reflected in the CCF parameters but
important in time-dependent reliability analysis.

5) Innate known uncertainty in the prediction of some common causes, which rarely
happen but are of significant risk.

Therefore, it is important to estimate CCF parameters from the viewpoint of
uncertainty analysis. The uncertainty sources in parameter estimation should be determined.
Previous parametric model cannot evaluate the uncertainty sources in basic parameters. It is
interesting to develop a method for further analysis of CCF.

The quantitative analysis procedure of plant-specific and system-specific CCF event
should be determined. In response to the lessons learned from the Fukushima-Daiichi nuclear
power station accident, the safety margins evaluation and safety enforcement of the NPPs are
necessary immediately. The defense strategies against the CCF are of great importance,
especially that against CCFs which are caused by external events. It is necessary to consider
the change of safety-related parameters in the procedure of PRA when modifications are
applied. However, the generic data based basic parameter models of CCF cannot take into
account the specific system-design. For instance, flood barriers are recommended to be built
in Turbine Building at the PWR NPP. The operation environment of Auxiliary Feedwater
(AFW) pumps is modified. The CCF parameters should be able to reflect certain
improvement and modification. Moreover, the happen of an earthquake will exacerbate the
operation environment of AFW pump. The conditional risk of internal flood and flood barrier
failure will propagate. The CCF parameter estimation should be able to reflect the dynamic or
event-based scenario. Therefore, it is necessary to develop a method to update CCF

parameters based on possible modification of redundant system.

12



Chapter 2: LITERATURE REVIEW

In recent decades, numerous parametric models have been proposed, and some have
been widely used in the nuclear PRA analysis. Parameters in models represent the CCF risk of
targeted redundant systems. In this chapter, the main characteristics of these useful models are
reviewed. Two major categories of parametric models are Nonshock Model and Shock
Model.

The nonshock model estimate CCF event probabilities without considering the failure
process. The Beta Factor Model, Multiple Greek Letter (MGL) Model and Alpha Model are
representative models of the nonshock category, which are also called Basic Parameter
Models (BPMs). The parameters of BPMs can be estimated based on a source of data, e.g.
generic operation database.

The shock model takes into account of failure mechanism. Causes are divided as
independent causes and common causes, so the shock model treated the causal analysis in a
rather simple way. The CCF event in shock model is considered as the shock-caused

consequence, and the conditional probability given the occurrence of shocks.

2.1. Beta Factor Model

The beta factor model is a single parameter model. The factor ( ) represents the ratio
of CCF probability in total failure probability. The beta factor model is the simplest BMP. It

is assumed that whenever a common cause event occurs, all components in a CCCG fail

simultaneously. Hence, as shown in Figure 2.1, the total failure probability ({,) of one

component is separated as the independent part (Q, ) and the CCF part (Q.cr ).

QI = (1 - ﬂ )Qt
Occr = PO, Equation 2.1
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A Fails

@

A, CCF,

O O

Figure 2.1 Fault tree of component A failure

Using the beta factor model can simply model the CCF risk of a redundant system. Let
consider a 2-out-of-3 system as an example. It means that there are three redundant
components in the targeted system. If two of two components fail, the system will fail. The
fault tree of the system failure is shown in Figure 2.2. Therefore, there is no CCF event

involving two component with the beta factor model.

System Fails
{ OR !
AB, A BC, Casc

o O O O

Figure 2.2 Fault tree of 2-out-of-3 system with the beta factor model

The mathematical form of beta factor can be obtained by

ﬂ _ QCCF — QCCF

= Equation 2.2
QI + QCCF Q!

14
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Therefore, the estimation of the beta factor can be conducted by Bayesian inference.
The proper prior distribution and likelihood function should be well defined. According to the

observed CCF data, the posterior distribution of the beta factor can be calculated.

Example 2.1 Bayesian inference for Beta Factor estimation

The binomial can be used as the aleatory model for failure states of components in the
beta factor model. When a failure is observed, the failure is either an independent failure or

global dependent failure. A conjugate prior of binomial distribution is the beta distribution.

Two parameters (a and b__ ) are required to specify the prior beta distribution. The

prior prior

posterior distribution is also a beta distribution with parameters (a and b _ ). If n

post post
failures are observed and x failures are CCFs, so n—x failures are independent failures.

The parameters of posterior beta distribution can be written by

a +x Equation 2.3

post = aprior

b

post

b

prior

+n—x Equation 2.4

Therefore, the mean values of prior and posterior beta factors are given by

a

_ prior :
Borior = b Equation 2.5
aprior + prior
a a . +Xx
t .
ﬂpost _ posb _ prtobr Equatlon 26
apost + post aprior + prior +hn

The noninformative beta prior is the beta distribution with all parameters equaling 0.
The calculation of the posterior beta factor can be conducted with BETAINV() function in a
spreadsheet or by OpenBUGS. The script of OpenBUGS for the beta factor estimation is

15



shown in Table 2.1. An informative beta distribution is assumed as the prior distribution.
Prior parameters and observed data are assumed as a,,,, =2,b,,,, =18x=19,n=115. The
probability density functions of prior and posterior distributions for beta factor are shown in
Figure 2.3. The posterior distribution of beta factor is the integrated result of the informative
prior distribution and the observed data. The estimate based on more observed information is

of less uncertainty. The posterior beta factor is attributed with the mean value of 0.156 and the

CHAPTER 2

95% credible interval of (0.099, 0.221).

Table 2.1 OpenBUGS script for the beta factor estimation

model {

x ~ dbin(beta, n) # Binomial aleatory model

beta ~ dbeta(a.prior, b.prior)

beta.0 ~ dbeta(a.prior, b.prior)

}

data

list(a.prior =2, b.prior=18,x =19, n = 115)

# Prior distribution for comparison

# Conjugate beta prior for beta factor

# Observed failure data and prior parameters

15
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Value of the beta factor

Figure 2.3 Prior and posterior distributions for the beta factor model
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For a redundant system of multiple components, the beta factor model generally
generates conservative. Because of the limitation of single parameter model, multi-parameter

model are recommended to be used.

2.2. Multiple Greek Letter Model

The MGL model is the most general extension of the beta factor model. Except for the
beta factor, more parameters are introduced to account for higher order redundancies. In other
words, not only the independent failure and global dependent failure, but also the partial
dependent failure can be expressed by the MGL model.

The total failure probability of one component is denoted as (,. The total failure
probability includes all types of failure for one component, such as independent, partial and
total dependent failures. Take the 2-out-of-3 system as an example, the total failure

probability can be written as

0, =0 +20,+0, Equation 2.7

Here, O, (k = 1,2,3) is the failure including & components.

Therefore, the MGL parameters can be given by the failure probabilities of single
component. For the 2-out-of-3 components, two parameters ( § and y ) are used to represent

the risk of CCF event. The parameter ( §) is the conditional probability that the cause of a

component failure will be shared by one or two additional components, given that a specific

component has failed. The parameter ( ) is the conditional probability that the cause of a
component failure that is share by one or more components will be shared by two or some

additional components, given that two specific components have failed.
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po_20:%0,
©0,+20,+0,

0,

=— Equation 2.8
20, + 0,

4

Estimates for the MGL parameters are relatively difficult to obtain, but the calculation
process can be simplified via another BPM (the alpha factor model). The calculation example
of the MGL model by Bayesian inference will be introduced in next section. The conversion

formulae between the MGL model and the alpha factor model are given in related references.
2.3. Alpha Factor Model

The alpha factor model is most widely used BPM in nuclear PRA. The calculation
process is much easier than the MGL model. The alpha factor model is a multi-parameter
model. Parameters in the alpha factor model are event-based, which can be obtained from
generic operation database. The estimation of alpha factors are affected by the specific testing
scheme applied in actual analysis. The alpha factor model is the basis of this dissertation. The
fault tree on component level of 2-out-of-3 system is shown in Figure 2.4. Three identical

components, A, B, and C, are assumed in the redundant system.

System Fails
2

A B C

O o O

Figure 2.4 Fault tree on component level
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From Figure 2.3, the basic events of this redundant system can be written as

{4,B}{4,C},{B,C}{4,B,C}

Here, the first three events compose of the minimal cutsets of the redundant system. Generally,
the theory of minimal cutset is used in reliability analysis, but the separation of minimal
cutsets will neglect the global common cause failure of three redundant components.

The fault tree on component level can be expanded to learn the failure mechanism of
one component. The expansion of the fault tree for component A is displayed in Figure 2.5.
There are three failure types of component A including independent failure, partial CCF and
global CCF. Therefore, the basic events of system failure can be given by the failure types of

components.

{AI B, }; {AI ,C; }; {BI ,C; }; {CAB }; {CAC }; {CBC }; {CABC };

Here, X, is the failure of component X from independent causes; C,, is the failure of

components X and Y from common causes; C . is the failure of components A, B, and

C from common causes.

A Fails

@%

AI C CAC CABC

O O O O

Figure 2.5 Fault tree of component A failure
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Using the rare event approximation, the system failure probability of the 2-out-of-3

system is given by

P(S)=P(4,)P(B, )+ P(4;)P(C; )+ P(B, JP(C, )+ PC 15 )+ P(C 1)+ P(Cpc )+ P(C )

Equation 2.9

The total failure probability of component A is denoted as Q,. It is the same to the

MGL model that the total failure probability (Q,) can be expressed by

0 =0+20,+0, Equation 2.10

Therefore, the definition of alpha factors can be obtained based on certain testing
schemes. Different testing schemes affect the collection of CCF data and the estimates of CCF
parameters are different. Usually, there two testing schemes: staggered testing scheme and
non-staggered testing scheme. In the case of staggered testing scheme, only one component is
tested in a test episode. If the result is a failure, the rest of components will be tested. In the
case of non-staggered testing scheme, all components in the CCCG are tested in a test episode.
Regarding the way systems in the databases are tested, it is necessary to select different
parameter models reasonably.

For a staggered testing scheme, the alpha factors of the 2-out-of-3 system are written

as

02
Q,

a, = 2% Equation 2.11
Q
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9
Q

a3=

For a non-staggered testing scheme, the alpha factors of the 2-out-of-3 system are

written as

al :gxat

Q,
a, = %x—(;—’ Equation 2.12
a, =Q§-x il

o 3

Here, «, =a, +2a, +3a,.

In this dissertation, the staggered testing scheme is selected to introduce current
research. The alpha factors represent the CCF risk involving respective number of
components. The estimation of alpha factors can be conducted by the Bayesian inference.

When the alpha factor model is applied, there are multiple possible outcomes and the
CCF probabilities are constant alpha factors. The aleatory model for CCF events is generally
assumed as multinomial distribution. For the system with three redundant components, the
vector X = (x1 ,xz,x3) follows a multinomial distribution with parameters a = (0(1 0y, 0y ).
The x; ( j= 1,2,3) is the CCF event including ; components and the respective
a, ( j= 1,2,3) represents the probability of the CCF event including j components.
Because the sum of all alpha factors equals 1 (as shown in Equation 2.13), the vector of alpha
factors can be well established as Dirichlet distribution. The conjugate prior of multinomial
distribution is the Dirichlet distribution. A noninformative prior for the multinomial
distirubion is the Dririchlet with 6, =1(k =1,2,3).
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Zaj =1 Equation 2.13

Example 2.2 Bayesian inference for the alpha factor model and MGL model

The redundant have a CCCG of three components. According the observed data, it has
suffered 50 failures. 40 of these are independent failures, 7 are partial dependent failures, and
3 are global dependent failures. So the vector of CCF events is X = (40,7,3), which follows
multinomial distribution. Alpha factors are inferred based on this operation data. The

informative prior of Dirichlet distribution is assumed.

X ~ Multinomial(a,,a,,c;) Equation 2.14

Prior a ~ Dirichlet(1,1,1) Equation 2.15

The parameters in the MGL model are given according to the conversion formulae
from alpha factors to MGL parameters. The OpenBUGS script for estimation CCF parameters

is shown in Table 2.2.

B=a,+a,
y= % Equation 2.16
a, +a,

The summary of posterior distributions for CCF parameters is shown in Table 2.3. The
probability density functions are shown in Figures 2.6 and 2.7. Alpha and MGL factors reflect
the CCF risk including certain number of components. According to the curves in Figure 2.6,
prior alpha factors are of great uncertainty. The posterior distributions integrate the observed

data information and prior judgment, so these are of less uncertainty. The estimation of CCF
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parameters provides more accurate PRA results.

Table 2.2 OpenBUGS script for the estimation of the alpha and MGL factors

model {

x[1:3] ~ dmulti(alpha[1:3], X) # Aleatory model with multibinomial
likelihood function

X <- sum(x[1:3]) # Total of failure events

alpha[1:3] ~ ddirich(theta[]) # The noninformative prior for alpha

alpha.0[1:3] ~ ddirich(theta[]) # Prior for comparison

beta <- alpha[2] + alpha[3] # Conversion from the alpha factor model

gamma <- alpha[3]/(alpha[2] + alpha[3]) to the MGL model

beta.0 <- alpha.0[2] + alpha.0[3] # Prior for comparison

gamma.0 <- alpha.0[3]/(alpha.0[2] + alpha.O[3])
}
data

list(x=c(40,7,3), theta=c(1,1,1))

Table 2.3 Summary of posterior distribution for alpha and MGL factors

Parameter Mean Median 95% Interval
Alpha-1 0.774 0.778 (0.652, 0.872)
Alpha-2 0.151 0.147 (0.070, 0.256)
Alpha-3 0.075 0.069 (0.021, 0.161)

Beta 0.226 0.223 (0.128, 0.348)
Gamma 0.331 0.319 (0.109, 0.613)
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Figure 2.6 Prior and posterior distributions for alpha factors
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Figure 2.7 Prior and posterior distributions for MGL factors

2.4. Binomial Failure Rate Model

The Binomial Failure Rate (BFR) model is a shock model. The same to previous
introduced nonshock models, the BFR model includes two types of failures. One is

independent failures and the other is dependent failures caused by shocks. Shocks are
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classified as lethal shock and nonlethal shock. The probability of independent failure is
assumed as a constant. The lethal shock leads to a global CCF event. The nonlethal shock
leads to a failure of one component following a binomial distribution. Therefore, the
occurrence frequency of shocks and the conditional probability given a shock are important
elements in the BFR model. The assumptions of constant independent failure probability and
conditional CCF risk restrict the application of the BFR model. Both of aleatory models are
assumed as binomial distribution.

The failure probability of CCF event involving j components for a system with n

redundant components is given as

0, +up(l-p) j=1
o = up’(l=p)~ 2<j<n-1 Equation 2.17

Hp" + @ j=n

Here, Q, is the independent failure probability of each component; 4 is the occurrence
frequency.of nonlethal shocks; o is the conditional probability of each component given a
nonlethal shock; @ is the occurrence frequency of lethal shocks. It can be seen from
Equation 2.17 that all the CCF risk significance from nonlethal shocks are treated as same.
The dual separation of shocks is too rough to estimate a system of high redundancy. In other
words, the failure probability will be underestimated for highly redundant system. The

estimation process of conditional failure probability is similar to that of the beta factor model.
2.5. Event Assessment and Dana Kelly Causal Inference Framework

Event assessment is an application of PRA in which observed equipment failures and
outages are mapped on to the risk model to obtain a numerical estimation of the event’s risk

significance. In an event assessment, the failure probability is considered given the event or
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conditions that exist, for instance, a redundant component fails or goes to out of service. The
availability of the redundant system is changed after the occurrence of these events. The CCF
probability is accounted given on certain scenarios to avoid underestimating important
safety-related parameters. The main mathematical theory used in event assessment of CCF is
conditional probability.

Dana Kelly et al. proposed a preliminary framework for CCF analysis, which uses a
Bayesian network to model underlying causes of failure, and which has the potential to
overcome the limitations of the basic parameters models with respect to event assessment.
The risk significance of degraded conditions can be evaluated by the causal inference
framework.

Consider a CCCG consisting of two redundant Emergency Diesel Generators (EDGs).
During a surveillance test, EDG A fails to run. There is a root cause of the failure of EDG A.
The risk evaluation of this scenario requires an estimate of the failure probability of EDG B
given the failure of EDG A and the investigated root cause. This framework can provide an
analysis of CCF from the perspective of Bayesian network based causality and conditional

probability.
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Chapter 3: THE ALPHA-DECOMPOSITION METHOD

3.1. The Concept of Decomposition in Parameter Estimation

During the last decades, the nuclear industry has recognized the PRA has evolved to
the point where it can be used in a variety of applications including as a tool in the regulatory
decision-making process. One requirement for PRA analysis used to develop risk-specific
application is to determine the important parameter distributions. For instance, in the severe
accident analysis, an accident sequence’s possibility of damaging reactor fuel, Core Damage
Frequency (CDF), Large Early Release Frequency (LERF) or latent cancer fatality are used as
surrogates for risk. These risk surrogated are most distinct representatives of accident risk or
consequence. Tremendous effort and knowledge should be relied on to learn these risk
surrogates. Efforts include determination of both plant-specific and generic estimates for
initiating event frequencies, important safety-related system failure rates and unavailability,
and component and equipment failure or non-recovery probabilities.

Because the important risk surrogates (CDF, LERF) are affected by the parameters,
the relationship between risk surrogates and parameters should be determined by PRA
methods. Event Trees (ET) and Fault Trees (FTs) are used to do the inference. It is called the
decomposition of final states on system and component level in this dissertation, which means
that the accident risk is an integrated reflection of multiple independent or partially dependent
elements. Figure 3.1 shows the PRA analysis of Pressurized Thermal Shock (PTS), which is a
severe transient in a PWR NPP. The risk of PTS and Core Damage (CD) are affected by the
states of secondary feedwater systems. In order to quantitatively estimate the risk surrogates,
the failure probabilities of feedwater systems should be well established. The ET in Figure 3.1
shows the relationship between interested end states and parameters on system level (failure
probabilities of feedwater systems). The status of secondary pressure influences the pressure
and temperature in the Reactor Coolant System (RCS), since the RCS and the secondary side
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of the PWR are thermally-hydraulically coupled in most scenarios. Moreover, the status of

secondary feedwater systems influences the pressure and temperature in the RCS. To

calculate the failure probability of each system, the FT tool is used. For instance, the

availability of Auxiliary Feedwater systems is affected by the status of three AFW pumps.
This is called the decomposition on component level. Based on the failure probabilities of

components, the unavailability of the targeted system can be obtained. Therefore, the

complicated estimates of PTS and CD can be expressed by parameters on system- and

component-level via the tools of ET/FT.
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Figure 3.1 Simplified event tree for PTS PRA analysis
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This characteristic of risk surrogates is denoted as decomposability on system level.
The ET can be used to exploit this representation of integrated risk surrogates. Assumed the
end state is affect by three systems, hence, based on the theory of structure inference and

conditional probability, the end states can be expressed as

3
P(CD)=>P (CD|Sys,. = Failure)P(Sys,. = Failure) Equation 3.1

i=1

Here, the failure probabilities are important explanatory variables to influence the estimate of
end states. The condition probabilities of end states given system failures are important
parameters that determine the relationship between the end state and each system.

The failure probability of each safety-related system can be repressed by
sub-parameters. This characteristic of system failure probabilities is called decomposability
on component level. Integrated failure probability of can be decomposed by the tool of FT.
Based on the theory of structure inference and conditional probability, the failure probability

can be expressed as

P(Sys;)= > P(Sys,|IF)P(IF)+ Y. P(Sys,|CCF)P(CCF)  Equation 3.2

4,8,C 4,8,C

Here, IF is the independent failure and CCF is the common cause failure. The probabilities of
independent failure and CCF are explanatory variables of system failure probability, which
can be calculated by CCF modeling (beta-factor or alpha-factor, etc.). The conditional
probability of system given each failure mechanism is the parameters that determine the
relationship between the system failure and component failure.

Based on the concept of decomposition, at first we proposed the framework of
parameter estimation on cause level, which is under the system level and component. The

causal inference and decomposition can be used to estimate CCF parameters. Table 3.1 shows
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Table 3.1 The framework of decomposition

Tools

Important parameters

Initiator | System A |Core State :
Accident risk Y PEImt) )
P(Sys.A
Good
& [YES > P(CD|Init)
System level NO —— Damage P(CD|Sys.4)
System A
System level é/i P(Compt.A)
& P(Compt.B)
Component P(Compt.C)
A B C a,a,,a,
T T O O
Component
ol P(4,|C,),P(CCF|C,),P(C)
P(4,|C,),P(CCF|C,),P(C,)
&

Cause level

P(4,|c,),P(CCF|C,),P(C,)

From Table 3.1, it can be seen that by the process of decomposition, the important

parameters are distinguished. The next step is to determine how the important parameters on
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cause level influence the CCF parameters. This dissertation focuses on the inference on the

cause level so that the CCF parameters can be learned.

3.2. Risk Analysis of Common Causes

In the context of the present discussion, the cause of a failure event is a condition or
combination of conditions to which a change in the state of a component can be attributed.
Usually, the failure mechanism of a CCF event is complicated and a causal chain will be
inferred, so the causes have been classified as proximate causes and root causes. A proximate
cause associated with a component failure event is a characterization of the condition that is
readily identifiable as having to the failure. A root cause is the basic reason why the
component fails. For instance, a component failed because of flood. However, to recognize
the risk of common cause failure, it is necessary to identify what triggered the flood. The
failure frequency of pipe break or a seismic shock should be quantified. In this dissertation, to
describe a failure in terms of a single cause is a simplification of failure mechanism. We focus
on the mathematical illustration of the alpha-decomposition method. So the causes in the
process of alpha decomposition are referred to the most identifiable proximate causes.

Therefore, causes should be classified for further analysis. The classification of causes
is referred to the standards and guidance published by U.S. NRC for collecting, classifying
and coding CCF events. Figure 3.2 shows the classification of causes. It is subdivided as
seven categories.

1) Design/Construction/Manufacture Inadequacy.
It encompasses actions and decisions taken during design, manufactures, or
installation of components both before and after the plant is operational.

2) Operations/Human Error (Plant Stuff Error).
It represents causes related to errors of omission and commission on the part of plant

staff. An example is a failure to follow the standard procedure.
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FAILURE CAUSE

—— Other

—— Design/Construction/Manufacture

Design Error
Manufacturing Error
Installation/Construction Error

Design Modification Error

—— Operations/Human Error

Accidental Action
Inadequate/Incorrect Procedure
Failure to Follow Procedure
Inadequate Training
Inadequate Maintenance

—— External Environment

Fire/Smoke
Humidity/Moisture
High/Low Temperature
Electromagnetic Field
Radiation
Bio-organisms
Contamination/Dust/Dirt
Acts of Nature

— Internal to Component

Normal Wear
Internal Environment

Early Failure

—— State of Other Component

Supporting System

Inter-connection

—— Unknown

Figure 3.2 Potential causes classification

32




CHAPTER 3

3) External Environment.

It represents causes related to a harsh external environment that is not within

component design specifications. For example, the earthquake and tsunami are the

external events that occurred in Fukushima Daiichi nuclear station. External events are
always hard to predict.

4) Internal to Component.
It results from phenomena such as wear or other intrinsic failure mechanism. These
are malfunctions internal to the component.

5) State of other component.

The component is functionally unavailable because of failure of a supporting

component or system. For example, an air supply line to a valve breaks or a fuse in a

control circuit blows. It is important in the nuclear PRA analysis.

6) Unknown.
Sometimes the cause of failure state cannot be identified.
7) Others.

Used when the cause cannot be attributed to any of the previous causes categories.

This category is most frequently used for causes of setpoint drift.

There are two aspects should be considered for the CCF risk analysis of causes. One is
the occurrence frequencies of potential causes. The other is the CCF triggering ability of each
cause. Table 3.2 contains the occurrence information of CCF events in the engine sub-system
of the EDG system, which is a record of EDG CCF database made by U.S. NRC. There are
totally 21 CCF events are collected in the database. The
Design/Construction/Installation/Manufacture Inadequacy cause group has 10 events (48
percent) of which one is Complete and non are Almost Complete. The Internal to Component
cause group has 8 CCF events (38 percent) of which two are Complete and two are Almost
Complete. The Operational/Human Error cause group contains three CCF events (14 percent)

of which none are Complete and Almost Complete. There no CCF event results from other
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cause groups. It can be judged from Table 3.2 that each cause group has difference occurrence
frequencies and results in different amounts of CCF events. Therefore, these two elements

influence the CCF risk of each cause group for the targeted system.

Table 3.2 CCF events in engine sub-system of EDG system

Cause Group Complete Almost Partial Total Percent
Complete
Design/Construction/Installation/ 1 0 9 10 47 6%
Manufacture Inadequacy
~ Internal to Component 2 2 4 8 38.1%
Operational/Human 0 0 3 3 14.3%
External Environment 0 0 0 0 0.0%
Other 0 0 0 0 0.0%
Total 3 2 16 21 100.0%

For the simplest consideration, it is assumed that there are three potential common
causes. As shown in Table 3.3, three causes have innate occurrence frequencies and CCF
triggering abilities. Similar to the actual common causes database, there are three potential
causes denoted as Cause 1, Cause 2 and Cause 3. The Cause 1 is labeled as a black diamond
(#) which is of high occurrence frequency and relatively low CCF triggering ability. The risk
of Cause 1 can be read from Figure 3.3, so the CCF risk is medium. The Cause 2 is labeled as
a black triangle (A) which is of relatively low occurrence frequency and high CCF triggering
ability, so the risk of Cause 2 is high based on Figure 3.3. The Cause 3 is labeled as a black
circle (@) which is of extremely low occurrence frequency and extremely high CCF triggering
ability, so the CCF risk is high based on Figure 3.3. Table 3.3 and Figure 3.3 demonstrate the
conceptual evaluation of common causes. Two important elements are found and explained.

The basic function can be given as
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Here, o ;

Cause 1; Tr, is the triggering ability of Cause i. This conceptual equation roughly shows the
alpha factors are the integrated reflection of potential common causes’ CCF risk. The next

step is to find and prove the relationship among these two elements and CCF parameters

(alpha factors).

CHAPTER 3

is the alpha factor involving j components fail for common causes, C, is the

Table 3.3 Assumed causes for CCF risk comparison

Cause Group Occurrence CCF Tr.lggermg Label
Frequency Ability
Cause 1 High Relatively Low ¢
Cause 2 Relatively Low High A
Cause 3 Extremely Low Extremely High o
\
Mechanism Defense
]
I
]
g? 5 Medium <:; High risk
Qo =
5 ¢ |
“::‘) —————————————————— :—-———-‘— - - Cause Defense
& l
[
E |
2
3 B Lowrisk  <«o—  Medium
|
[}
: o
Low High
CCEF triggering ability

Figure 3.3 CCF risk map of potential causes
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3.3. Proposed the Alpha Decomposition Method via Hybrid Bayesian Network

Based on the previous discussion, the lumped alpha factors are the integrated
reflection of cause and failure information, so these are decomposable. This section focuses

on the derivation of the mathematical function. For distinction, the alpha factors in the alpha

factor model is denoted as global alpha factors («;, ) and the CCF triggering abilities of causes
are denoted as decomposed alpha factors (ajc" ). This section aims to determine the specific

form of Equation 3.3.

Definition 1 Alpha Decomposition

Since the global alphas are lumped parameters which are the integrated reflection of
failure and cause information in the common cause failure system. The global alpha factors
are decomposed according to a function of two types of elements. These explanatory
variables include occurrence frequencies and CCF triggering abilities (denoted as

decomposed alpha factors).

The process of decomposition can be well explained via the tool of Hybrid Bayesian
Network (HBN). The hybrid network includes the Fault Tree (FT) and Bayesian Network.
The FT is used to represent the relationship between component failures and system failure.
The Bayesian Network is used to represent the process of causal inference. By the
combination of two tools, the analysis of CCF event on system level, component level and
cause level can be established, and the relationship of parameters can be discussed. Figure 3.4
shows the HBN of a redundant system with three components (A, B, and C) and three
potential common causes (C;, C,, and Cs). As discussed in the context, different causes are of
different abilities to result in CCF events and of difference occurrence frequencies. According
to the process of classification, the causes in this model are assumed as independent.

Therefore, the failure probability of components can be given by conditional
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probability.

M-

P(4)=2P(4|C)P(C)

i=1

I
M

P(B)=Y P(B|C,)P(C) Equation 3.4

i=1

I
Mw

P(C)=2 P(Clc)P(C)

1

1]
—

It shows that if the occurrence frequencies and hazard of independent causes can be

determined, the failure probability of the targeted components and system can be decided.

System Fails

2

Figure 3.4 Hybrid Bayesian Network of causal inference for system
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A Fails

Figure 3.5 Hybrid Bayesian Network of causal inference for Component A

Figure 3.5 shows the HBN for the modeling of Component A. The independent failure,
partial CCF and complete CCF can be explained by the theory of conditional probability. It is

easier for the deduction of CCF parameters to focus on one component.

P(4,)= Y P(4C)P(C)

i=]

3
P(C,)= ZP(CAB IC,)P(C))
= Equation 3.5

P(CAC) - ZP(CAC |Ci)P(Ci)

P(CABC)=iz:1:P(CABC|Ci)P(Ci)

Here, 4, is the independent failure of Component A; C,, and C,. are the partial
CCF events involving Component A and one other component; C ;. 1s the complete CCF
event involving all three components. It is given the relationship that the Cause 1 results in

the failure of Component A by the law of total probability.
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P(A|C))=P(4,|C)+P(Cu|C)+P(Cyc|C)+P(Csc|C,)  Equation 3.6

Therefore, the CCF risk of Causel is decomposed as three parts. These are P (A, [ ) ,
P(CAB|C1)+P(CAC|C1), and P(CABC|C1), which have physical meaning. The P(A,|C1)
represents the hazard of Cause 1 which triggers independent failure of Component A; the
P(C B |C1)+P(C ' |C,) represents the hazard of Cause 1 which triggering partial CCF event
involving Component A; the P(C ABC|C1) represents the complete CCF event involving

Component A. Divide the Equation 3.6 by P(4|C,)

| P(41C)+ P(Cua|C )+ P(Coc|C )+ P(Coanc |C) Equation 3.7
P(4|C)

According the Equation 3.6 and Equation 3.7, the definition of decomposed alpha

factors can be given

_P(4]q)
- P(4lc)

Equation 3.8

Here, similarly to the definition of global alpha factors, all decomposed alpha factors have
practical meaning. The « is the ratio of independent failure in total failure probability
given the occurrence of Cause 1. If a cause of high quantity of o', this cause is more
possible to result in an independent failure. The «a;' is the ratio of partial CCF in total failure
probability given Cause 1. If a cause of high quantity of «,', this cause is more possible to
result in a partial CCF event. The a;' is the ratio of complete CCF in total failure probability
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given Cause 1. If a cause of high quantity of @', this cause is more possible to result in a
complete CCF event.

The sum of decomposed alpha factors of Cause 1 is 1. The constraint of Sum-to-One
makes it reasonable that the prior distribution of a set of decompose alpha factors can be

assumed as Dirichlet distribution.

af +as +aft =1 Equation 3.9

Similarly, the relationship that the Cause 2 and Cause 3 result in the failure

Component A can be given by

P(A4|C,)=P(4,|C,)+P(C|C,)+P(Cyc IC,)+P(C5c|C)

Equation 3.10
P(A4|C,)=P(4,|C,)+P(C4|C;)+ P(Cic|Cs)+ P(Copc|Cy)

The decomposed alpha factors of Cause 2 can be written as

_P(4]c)
“ P(4]C,)
s = P( ABIC )+ P(CAC |C2) Equation 3.11
* P(4lc,)  P(4]c)
acz - P(CABC1C2)
’ P(4|c,)

The Sum-to-One constraint for decomposed alpha factors of Cause 2 can be given by

Cz —

al +al +a Equation 3.12
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The decomposed alpha factors of Cause 3 can be written as

Equation 3.13

The Sum-to-One constraint for decomposed alpha factors of Cause 3 can be given by

al +oy +ad = Equation 3.14

Moreover, according to the Equation 3.5, the independent failure probability of

Component A can be represented by the total failure probability law.

P(4,)=P(4,|C)P(C)+P(4,|C,)P(C,)+P(4,|C,)P(C;) Equation3.15

Based on Equation 3.8, Equation 3.15 can be replaced by decomposed alpha factors

and conditional probability of Component A.

P(4,)=al'P(4|C,)P(C))+a™P(4|C,)P(C,)+a” P(4|C,)P(C,)

Equation 3.16

If the Equation 3.16 is divided by P(A), the global alpha factors and decomposed

alpha factors can be connected.
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P(4) CIP(AICI)P(CI) CZP(A|C2)P(C2) C}P(A|C3)P(C3)
- P(4) T P(4) T P(4)

Equation 3.17

According to the definition of alpha factors (Equation 2.11), the left side of Equation

3.17 can be given by

Equation 3.18

The element on the right side of Equation 3.17 is the ratios of failure that are caused

by Cause i. It can be written as

P(4IC)P(C)
TR
r = P(A|IC)'2(LI)’(C2) Equation 3.19
P(4|C,)P(C,)
R

Here, 7, is the occurrence frequency of Cause 1 among the failure events of Component A;
r, is the occurrence frequency of Cause 2 among the failure events of Component A; r, is
the occurrence frequency of Cause 3 among the failure events of Component A.

The sum of occurrence frequencies of causes also equals 1.

Ktr+r =1 Equation 3.20
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Thus, Equation 3.17 can be written as a very simple regression function.
a, =a 'y +a’rn +a’r, Equation 3.21
Similarly, the partial and complete CCF events can be written as

P(Cs &Co)=P(C 1 &C 1 [C)P(C,)+ P(C 5 &C i |C,) P(C, )+ P(C s & C,c|C ) P(C;)
P(C 150)=P(Csc [C) P(C,)+ P(C e |Cy ) P(Cy) + P(C o |C3 ) P(C)

Equation 3.22

Then the regression functions of global alpha factors (o, and ;) can be given by

C C. C
a, =a,'r + 'y, + o,
2 271 2 72 2 73 -
- - - Equation 3.23
—_— 1 2
a, =a;'h+a’n +an

As a conclusion, for system with #» components and m potential common causes, the

general decomposition form of alpha factors can be given by

I

a, = ar, Equation 3.24
i=1

C

Here, a; represents the CCF risk involving j components; «;" represents the CCF risk of

Cause i involving j components; r, represents the occurrence frequency of Cause i.
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3.4. Summary

Each common cause is of different ability to result in independent or dependent
failures. Causes are classified according to innate failure mechanism and other characteristics.
The lumped alpha factors are recognized as decomposable based on causal inference. In
Section 3.3, the alpha-decomposition method is proposed to quantitatively evaluate CCF
parameters. The global alpha factors are decomposed according to a function of two types of
elements. These explanatory variables include occurrence frequencies and CCF triggering
abilities (denoted as decomposed alpha factors). The regression model of the alpha
decomposition method is established and proved by the theory of conditional probability as

well as hybrid Bayesian Network.
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Chapter 4: BUILDING OF DATABASE AND BAYESIAN INFERENCE

PROCEDURES

This chapter illustrates the procedure of Bayesian inference for the alpha
decomposition method as well as the building of corresponding databases. An example of
parameter estimation is discussed with hypothetical databases. Posterior distributions for CCF

parameters are obtained. The uncertainty in the estimation CCF parameters is discussed.

4.1. Building of recommended database

Usually, there are two types of data sources can be used to produce the various
parameter estimates in PRA. These are plant-generic data sources and plant-specific data
sources. Because of the rarity of CCF event on a plant- or system-specific basis, the
plant-specific PRA has to rely heavily on the industry experience to develop a statistically
significant data bases. The alpha decomposition method is a quantitative assessment to
interpret generic CCF data and to translate them for plant-specific (or system-specific, or
design-specific) applications.

The database including the CCF events information and cause information for target
system should be collected. The classification of possible causes is shown in Figure 3.2.
Hence, records of two causes should be independent in the database, and the occurrence

frequency can be given by

P(Cause 1 Cause 2)= P(Cause 1)-P(Cause 2) Equation 4.1

Cause i's occcurrence
v =
! Total

Equation 4.2
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Based on the whether the CCF data is rare, two types of databases are recommended
to be built. One is the recommended database and the other is the so-called alternative
database. There 1s only rough information of cause occurrence in the generic database. The
system assumed in this chapter is a redundant system with three components and there are

three potential causes.

4.1.1. Recommended database

The generic database means the collection of cause information and CCF event are not
specifically related. There is no detailed record of the cause’s hazard, but only the occurrence
frequency is collected. This generic database is used when the cause information is rare. The
correlation between decomposed alpha factors with global alpha factors is a latent property
which can be predicted by the process of Bayesian inference. The recommended database has
advantage that different data sources can be combined. If there is no system-specific data
collected, the cause occurrence data from other industry or from plant-generic database can be
used.

Table 4.1 is the hypothetical database proposed to collect the data of cause occurrence.
It can be obtained from the Table 4.1 that the occurrence information of each cause. Based on
Equation 4.2, the occurrence frequency can be calculated. Cause data of 16 systems are
collected. The System #1 has 127 CCF events occurred of which 25.20% is the result of
Cause 1, 22.05% is Cause 2 and 52.76% is Cause 3. The Cause 3 happens most frequently in
System #1. System 2 has totally 106 CCF events of which 16.04% is the result of Cause 1,
73.58% is Cause 2 and 10.38% is Cause 3. The Cause 2 happens most frequently in System 2.

As the analysis of CCF risk of causes, the causes have different occurrence
frequencies and different CCF hazard. All the hazard of a cause to a system is affected by the
property of the system as well. The CCF events of each system can be obtained from
Table.4.2.
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Table 4.1 Hypothetical CCF database including cause information

Common Causes Occurrence frequency
System Total

Cause 1 Cause2  Cause 3 Cause 1 Cause2  Cause 3
#1 32 28 67 127 25.20%  22.05% 52.76%
#2 17 78 11 106 16.04%  73.58% 10.38%
#3 18 19 50 87 20.69%  21.84% 57.47%
#4 29 6 31 66 43.94% 9.09% 46.97%
#5 7 33 10 50 14.00%  66.00%  20.00%
#6 15 9 17 41 36.59%  21.95%  41.46%
#7 12 15 7 34 3529%  44.12%  20.59%
#8 2 22 7 31 6.45% 70.97%  22.58%
#9 7 4 11 22 31.82% 18.18% 50.00%
#10 10 8 3 21 47.62%  38.10% 14.29%
#11 3 6 10 19 15.79%  31.58% 52.63%
#12 7 3 6 16 43.75% 18.75%  37.50%
#13 3 5 7 15 20.00%  3333%  46.67%
#14 5 3 7 15 33.33%  20.00%  46.67%
#15 4 5 2 11 36.36%  45.45% 18.18%
#16 1 6 2 9 11.11%  66.67%  22.22%

Table 4.2 is the database proposed to collect the data of CCF events. Three types of
CCF events are recorded that is single failure, partial common cause failure and complete
common cause failure. For instance, System has a total number of 127 CCF events of which
113 are single failure, 11 are partial CCF events and 3 complete CCF events. It is
recommended to build a database including not only CCF events but single failures. The data

of single failure is important to evaluate the alpha factor involving single component failure.
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Table 4.2 Hypothetical CCF database including failure information

Single & Common Cause Failure

System Total
Single (1/3) Partial (2/3) Complete (3/3)
#1 113 11 3 127
#2 98 7 1 106
#3 73 9 5 87
#4 53 5 8 66
#5 45 4 1 50
#6 33 3 5 41
#7 32 2 0 34
#8 29 2 0 31
#9 20 2 0 22
#10 20 1 0 21
#11 16 2 1 19
#12 14 1 1 16
#13 13 1 1 15
#14 12 1 2 15
#15 9 1 1 11
#16 7 1 1 9

4.1.2. Alternative database

To use the plant-specific and detailed data in the PRA procedures will reflect the
actual plant risk performance. If there is enough CCF data can be collected in the PRA
procedure, the more detailed database is recommended to be used. The database is named as
alternative database in this dissertation. In this database, all failure types and causes are well

defined which can provide more reliable estimates.
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Table 4.3 Hypothetical specific CCF database for System #1

Single & Common Cause Failure
Cause Group Total Percent
Single (1/3) Partial (2/3)  Complete (3/3)

Cause 1 24 6 2 32 25.20%
Cause 2 24 3 1 28 22.05%
Cause 3 65 2 0 67 52.76%

Total 113 11 3 127 100.0%

Because in the actual plant-specific PRA analysis, there are rare CCF events available
for one certain system, this database is called alternative database.

Table 4.3 shows the specific CCF database for System #1 including the cause and
failure events. Only the CCF events happened in the boundary of System #1 is collected. The
cause of each failure is well recorded. There are three types of failures: single failure, partial
common cause failure and complete common cause failure. The occurrence of three potential
causes is collected including the occurrence frequencies and the hazard of cause. There are
totally 32 failures triggered by Cause 1 of which 24 are single failures, 6 are partial CCF and
2 are complete CCF. Cause 1 has different possibility to result in different failure types, in
which single failures most frequently happen. The Cause 1 triggered 2 complete CCF events,
Cause 2 triggered 1 complete CCF event, and Cause 3 triggered 0 complete CCF event. It can
be seen that three causes are of different CCF hazard. There are totally 127 failure events
occurred of which 25.20% is the result of Cause 1, 22.05% is the result of Cause 2, and
52.76% 1is the result of Cause 3. Causes have innate occurrence frequency which is an
important point to analyze the caused-informed CCF modeling. It should be noticed that the
data of single failure should be record since it directly affect the estimate of the alpha factor
involving one single component.

The calculation procedures of Bayesian inference on basis of two databases are

slightly different. It will be discussed separately by examples in the rest of this chapter.
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4.2. Hierarchical Bayesian Modeling

This section introduces the evaluation process of the alpha decomposition method.
This process includes the prediction of unknown parameters (decomposed alpha factors) and
the update of important variables (global alpha factors). The hierarchical Bayes method
embodies a complete Bayesian approach to the problem of estimating the unknown
probability distributions based on the available data, information or knowledge. The
hierarchical Bayesian approach expresses the initial uncertainty (that is, the uncertainty before
the data are considered) about the unknown hyperparameters using another prior, a so-called
hyperprior distribution.

Therefore, the definition of hierarchical Bayesian model can be well explained. At
first, in the full Bayesian model all the unknown parameters (including prior distribution,
hyperprior distributions and hyperparameters) are assigned probability distributions that
express the analyst’s initial uncertainty about these parameters. Secondly, the observed data
are used to solve the model and the required posterior distributions for the interested
parameters can be obtained. As introduced in the previous sections, the solution can be done

using the MCMC algorithm.

4.2.1. Standard hierarchical model

Bayesian models have an inherently hierarchical structure. Figure 4.1 shows the
typical procedure of Bayesian inference which is used in Examples 1.1 and 1.2. Squared
nodes refer to constant parameters, and oval nodes refer to stochastic components of the
model. The solid arrows indicate stochastic dependence between parameters and variables.
The posterior distributions of parameters theta can be obtained based on the observations and
prior distributions, so the mathematical form of Figure 4.1 is the same as Equation 1.3, which

can be written as

50



CHAPTER 4

m, (0]x) < 1 (x|0) 7, (6,a) < f(x|0)7, (0]a) Equation 4.3

Here, 7, (0|x) is the posterior distribution of parameter theta; x,(6,a) is the prior
distribution of theta which is represented by the set of constant parameters a; f (x|0) is the

likelihood function.

Prior parameters a

Prior o
Data likelihood -

Figure 4.1 Graphical representation of standard one-stage Bayesian model

The one-stage Bayesian model has a simple structure. The one stage refers to that only
one prior is assumed. Parameters of the prior distribution are constant. Based on the
observation, the parameters of the posterior distribution will be changed, so the process is also
called Bayesian Update.

To capture the complicated structure of some estimates, the prior is frequently
structured using a series of conditional distributions. Hence, a more complicated hierarchical
Bayesian model is defined when a prior distribution is also assigned on the prior parameters a
associated with the likelihood parameters €. The graphical structure is shown in Figure 3.2. A
two-stage hierarchical Bayesian model is depicted. In this two-stage model, one so-called
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hyperprior distribution is assigned on the previous node a. This hyperprior has constant
parameters which are named as hyperparameters, so the hyperprior is no longer constant. The

hyperprior will be updated with the prior when observed data is obtained.

Hyperparameter

nd
Hyperprior (2 level)

Prior (1St level)

Data likelihood

Figure 4.2 Graphical representation of standard two-stage Bayesian model

Similar to the Equation 4.3, the mathematical form of two-stage hierarchical Bayesian

model can be given by
7, (0|x) < £ (x|0) 7, (6.a) 7, (a,b) < f(x|0)7,(0]a)x,,(ab) Equation 4.4

Here, 7, (a‘b) is the hyperprior distribution of the node a. Hence, two levels of prior
distributions can be defined. 7,(8]a) is the first level and 7,,(a|b) is the second level.

Prior distributions of the upper levels of a hierarchical prior are called hyperpriors and the
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corresponding parameters are called hyperparameters. In Figure 3.7, =z, (Hla) is the
hyperprior and the set of b are the hyperparameters the hyperprior.

As a conclusion, hierarchical models describe efficiently complex datasets
incorporating correlation or including other properties in PRA models. The relationship
between parameters can be well reflected in the hierarchical Bayesian models. These models
imply a random calculation of conditional probabilities by MCMC model. Either conjugate
distributions or nonconjugate distributions can be calculated in an easy way.

In the some PRA analysis, the double-counting of operation data should be avoided in
the two-stage hierarchical Bayesian model. There are only one type of data is used in the early

PRA. For instance, the generic data is used to estimate the hyperparameters and to obtain the

estimate of f (0

a,b). Then one specific data is used to estimate posterior distributions

combining with the obtained prior f (0

a,b). Because the specific data is one part of the
generic database, the data are double counted.

However, the two-stage hierarchical Bayesian model is useful when there are new
correlation and data sources.

1) When new correlation or properties can be included in the upper level of two-stage
model, the two-stage model should be applied to reach more reliable results.

2) When there are reliable corresponding data (other data source) can be used as
hyperparameters, the two-stage Bayesian model should be efficient to combine
different data sources.

The correlation between global alpha factors and decomposed alpha factors are
discovered and the cause information can be integrated in the estimation of CCF parameters.
Therefore, the alpha decomposition method is considered to use the two-stage hierarchical

Bayesian model.
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4.2.2. Hierarchical model of the alpha decomposition method

The estimation of global alpha factors based and only based on observed failure data is
a one-stage hierarchical Bayesian model. The script of modeling using OpenBUGS is shown
in Example 2.2. The estimation of global alpha factors and decomposed alpha factors based
on failure and cause information is a two-stage hierarchical Bayesian model. We illustrate the
graphical modeling of the alpha factor model in this section, and then introduce the Bayesian
inference procedure of the alpha decomposition method.

The one-stage modeling for the alpha factor model is shown in Figure 4.3. As
introduced previously, the squared nodes refer to the constant prior parameters. The oval
nodes refer to stochastic components of the model. The solid arrows refer to stochastic
dependence and the hollow arrows are logical dependence by arithmetic functions. As
introduced in Example 2.2, the estimates of MGL parameters can be obtained by the
conversion function between the alpha factor model and the MGL model, so there is a logical

dependence between two nodes.

6[1:3]

Prior parameters

MGL Parameters

Prior

Data likelihood

Figure 4.3 Graphical representation of previous Bayesian modeling for the alpha factor model
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In Figure 4.3, the node (x[l : 3]) refers to the observed data of CCF events. Usually,
the likelihood function of the node (x[1:3]) is assumed as a multinomial distribution. The
node (a[l :3]) refers to the alpha factors. The alpha factors are assumed as a Dirichlet
distribution, which is conjugate to the multinomial distribution. The node (&[1:3]) is the set
of constant prior parameters. If the equation H[k] =1 (k=1,2,3) is assumed, it is a
noninformative prior distribution. The node (MGL Parameters) refers to CCF parameters of
the MGL model which can be obtained via the Equation 2.16. The MGL model does not have
a well-defined likelihood function, so it is hard to do direct Bayesian inference. This
conversion is the easiest way to estimate MGL parameters.

The posterior distribution of global alpha factors in the one-stage model can be

deduced based on the theory of conditional probability.

Discrete form:

P(a,x) _ P(xla)P(a)

P(a|x) = P(x) P(x) Equation 4.5
Continuous Form:
7, (a|x)= S (x]a)7, (a)
1 I(x|a)7ro (a)da Equation 4.6
b4 (a’x) oC f(x|a)7r0 (a)

Here, =, (a]x) is the posterior distribution for global alpha factors given observed CCF data;
f (x|a) is the likelihood function of observed CCF data given prior distributions; 7,(a)

are the prior distributions for global alpha factors.
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The two-stage hierarchical Bayesian modeling for the alpha decomposition method is
shown in Figure 4.4. The prior parameters in the one-stage model are no longer constant. The
node (6[1:3]) is an oval rather than a rectangle. The node (a1 [1:3]) is the set of
decomposed alpha factors of three potential causes. The node (4, o) represents the prior
parameters of the hyper prior node which is constant. Since the decomposed alpha factor of
one cause can be summed to one, the hyperprior can be assumed as Dirichlet distribution. The
noninformative hyperprior is a Dirichlet distribution with all parameters equaling 1. The node

(r[l : 3]) refers to the occurrence frequencies of causes.

Hyperparameters

Hypervariables

nd
Hyperprior (2 level)

Prior (1St level) MGL Parameters

Data likelihood

Figure 4.4 Graphical representation of current Bayesian modeling for the alpha decomposition
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Generally, if the joint prior in a Bayesian model is decomposed to a series of
conditional probability, the Bayesian model can be written in a hierarchical structure with
more stages. The hyperprior can be represented by decomposed alpha factors and causes’
occurrence frequencies. This correlation combines the cause information into the Bayesian
inference for CCF parameters. The CCF risk of potential causes can be quantified and the
estimates of global alpha factors are more reliable.

The procedure of Bayesian inference for the alpha decomposition method is illustrated
in this section. The necessary database and detailed calculation are discussed via a example in
the next chapter.

Similarly to Equations 4.5 and 4.6, the posterior distribution of decomposed alpha

factors in the two-stage model can be deduced based on the theory of conditional probability.

Discrete form:

P(ac,x,r,a) _ P(x,r,a’aC)P(aC)
P(x,r,a) - P(x,r,a)

P(ac Equation 4.7

x,r,a)z

Continuous form:

.y r): fx(x’a)fa (a|0)f9(0‘ac,r)7r0 (ac)
S Iﬂ(x|a)fa (a|0)f0 (Blac,r)n'o (ac)dac Equation 4.8
x,a,@,r) oc fx(x|a)fa (a’0)f0(0|ac,r)7r0 (aC)

c
7, (a

T, (ac

The posterior distribution of global alpha factors in the two-stage model can be

obtained similarly.
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4.3. Examples for the alpha decomposition method

The targeted system is a redundant system with three component and three potential
causes. The hierarchical Bayesian model for the procedure of the alpha decomposition method
is shown in Figure 4.4.

The likelihood function of CCF events is assumed as a multinomial distribution.
x[1:3]~ dmulti(a[l : 3],X) Equation 4.9
The prior distribution is assumed as a Dirichlet distribution.
a[1:3]~ ddirich(4[1:3]) Equation 4.10

The hyperprior can be expressed by decomposed alpha factors and occurrence

frequencies.

3
G .
A Q;'sr, J-X Equation 4.11

The decomposed alpha factors of Cause i are assumed as a noninformative prior that is

the Dirichlet distribution with all parameters (5 [1:3]) equaling to 1.
a“[1:3]~ ddirich(é'c" [1: 3]) Equation 4.12

Based on Equations 4.7 and 4.8, the posterior distributions for global alpha factors and
decomposed alpha factors can be calculated. Two examples are provided to illustrate the

application of the alpha decomposition method in the estimation of CCF parameters. The
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Example 4.1 is based on the recommended database without detailed system-specific data.

The Example 4.2 is based on the specific database with detailed system-specific data.

Example 4.1 Bayesian inference based on the recommended database (Section 4.1.1)

The recommended database introduced in 4.1.1 is used in this example. There is
failure data of 16 systems considered. Occurrence data of three potential causes are collected.
The procedure of parameter estimation is introduced in Figure 4.5. The parameter group.size
equals 3, and the parameter case.number equals 16. Two plates represent two repeated loops.
Oval nodes are stochastic components and squared nodes are constant components. Lined

arrows are stochastic dependence and hollow arrows are logical dependence.

for (j in 1:group.size)

i

for (k in 1:case.number)

Figure 4.5 The alpha decomposition process for targeted systems with recommended database
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Table 4.4 OpenBUGS script for Example 4.1 based on recommended database

model{

for(k in 1:case.number){

x[k, 1:group.size] ~ dmulti(alpha[k,
1:group.size], X[k])

X[k] <- sum(x[k, 1:group.size])

alpha[k, 1:group.size] ~ ddirich(theta[k, ])

for (j in 1:group.size){

theta[k, j] <- (alpha.c[1, j]*r[k, 1] + alpha.c[2,
j1*rlk, 2] + alpha.c[3, j]*r[k, 3])*X[k]

}

}

for (i in 1:cause.number){
alpha.c[i, 1:3] ~ ddirich (delta[i, ])
deltafi, 1] <- 1

delta[i, 2] <- 1

delta[i, 3] <- 1

}

}

DATA
list(x=structure(.Data=c(...),.Dim=c(16,3)),
r=structure(.Data=c(...), .Dim=c(16,3)),
group.size=3, case.number=16,

cause.number=3)

#

#

#

Model's likelihood

Stochastic model with multinomial
likelihood function

X is the total number of "group failure
events"

Transition variable

Predicted function for the alpha

decomposition

A noninformative prior distributions for
decomposed alpha factors with each
parameter in dirichlet distributions

equaling 1

Observed data and parameters
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The OpenBUGS script for the alpha decomposition process based on recommended
database is provided in Table 4.4. The result of Bayesian inference can be obtained based on
the alpha-decomposition method and recommended database. Table 4.5 shows the summary
of posterior distributions for decomposed alpha factors. Figures (4.6 - 4.8) show the
probability density curves of posterior decomposed alpha factors. It can be concluded that
causes are of different CCF risk significance, which can be given by the ranking of
decomposed alpha factors. The Cause 2 is of the largest quantity of decomposed Alpha 1, and
of the smallest quantity of decomposed Alpha 2 and 3. Cause 2 is the cause of least CCF risk
among three possible causes. Cause 1 tends to result in complete CCF events more frequently

than Cause 3, but Cause 3 tends to result in partial CCF events more frequently.

af <a’ <a’

c G c,
o, <a, <a,

CZ C3 Cl
o’ <oy <a

Table 4.5 Summary of posterior distribution for decomposed alpha factors

Parameter Mean Median 95% Interval
al 0.8170 0.8233 (0.6208, 0.9647)
Cause 1 as! 0.1009 0.0872 (0.0043, 0.2681)
ay 0.0821 0.0750 (0.0040, 0.2006)
at 0.9086 0.9118 (0.8194, 0.9765)
Cause 2 ay 0.0738 0.0706 (0.0109, 0.1554)
o 0.0175 0.0137 (0.0005, 0.0552)
o’ 0.8206 0.8244 (0.6815, 0.9375)
Cause 3 ay 0.1073 0.1053 (0.0138, 0.2151)
ad 0.0721 0.0703 (0.0061, 0.1533)
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The specific posterior probability density curves are provided in Figures 4.6 — 4.8.
Figure 4.6 shows the result of decomposed Alpha-1 which represents the ability of respective
cause triggering an independent failure. In the figure, Alpha[C1,1] refers to the decomposed
alpha factor (&) of Cause 1 involving the failure of one component. All other terms refer to
respective decomposed alpha factors. Figure 4.7 shows the result of decomposed Alpha-2
which represents the ability of respective cause triggering a partial CCF event. Figure 4.8
shows the results of decomposed Alpha-3 which represent the ability of respective cause
triggering a complete CCF event.

The positions of curves suggest the risk significances of causes and ranges suggest the
uncertainty in the estimates. One important topic in PRA is to evaluate the source of
uncertainty in the estimates. The alpha decomposition method can provide a way to determine
the source of uncertainty in the CCF parameter estimation. For instance, Figure 4.8 shows the
posterior distributions for decomposed alpha factors of complete CCF. The estimate of a5
(Alpha[C2,3]) is of the least uncertainty among three causes. It means the uncertainty in the

estimate of Alpha 3 is mainly from Cause 1 and Cause 3.

15
g = Alpha[C1,1] = Alpha[C2,1] = Alpha[C3,1]
k>
=
;10
&
[}
<
2
= 35
£
<
O
:
-

0

0.5 0.6 0.7 0.8 0.9 1

Value of decomposed alpha factors

Figure 4.6 Posterior distributions for decomposed alpha-1
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IS 1 ——Alpha[C1,2] ——Alpha[C2,2] —— Alpha[C3,2]

Probability density function

0 0.1 0.2 0.3 0.4 0.5
Value of decomposed alpha factors

Figure 4.7 Posterior distributions for decomposed alpha-2

40 1 ——Alpha[C1,3] = Alpha[C2,3] —— Alpha[C3,3]

Probability density function
(3]
(]

0 0.1 0.2 0.3 0.4 0.5
Value of decomposed alpha factors

Figure 4.8 Posterior distributions for decomposed alpha-3

Table 4.6 shows the summary of posterior distributions for global alpha factors of
System #1. Figure 4.9 shows the probability density curves of posterior global alpha factors of
System #1. This estimation of global alpha factors via the alpha decomposition method can
combine the system-specific and system-generic data together to provide more reliable results.

At first, the CCF risk significance of the same cause has correlation between different causes
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which can be utilized. The previous Bayesian inference based on failure data cannot utilize
cause information reasonably, and it is difficult to combine generic and specific database
together. The comparison of previous method and the Bayesian inference with cause

information is provided in Section 4.4.

Table 4.6 Summary of posterior distribution for global alpha factors (System #1)

Parameter Mean Median 95% Interval
Alpha-1 0.8648 0.8661 (0.8142, 0.9097)
Alpha-2 0.0921 0.0911 (0.0560, 0.1351)
Alpha-3 0.0431 0.0416 (0.0190, 0.0761)

Value of Alpha-2 and Alpha-3

0 0.1 0.2 0.3 0.4
» 40
S —Alpha[l] ——Alpha[2] -——Alpha[3]
S
= 30
=
2
= 20
5
o
210
%
= 0
& 0.6 0.7 0.8 0.9 1

Value of Alpha-1

Figure 4.9 Posterior distributions for global alpha factors (System #1)

Example 4.2 Validation of the alpha decomposition method based on the alternative database

(Section 4.1.2)

This example is provided to validate the alpha decomposition method when a

system-specific database is proposed with sufficient CCF information. The database 1is

64



CHAPTER 4

introduced in Table 4.3 with the occurrence information of causes as well as failure for one
targeted system.

Figure 4.10 depicts the procedure of validation for System #1. The meaning of nodes
is same to Figure 4.5. There are two type of global alpha factors one is predicted by the alpha
decomposition process, and the other is the result by the failure information. Based on the
specific CCF database, the risk of each cause can be directly established, so the prediction of
global alpha factors can be obtained. The prediction is more reliable than the two-stage
hierarchical Bayesian structure which is reduced to one stage in this example. This database
has advantages and disadvantages. The advantage is that the calculation procedure will be
simplified and the estimation of cause risk will be more reliable. The disadvantages are that
there is always not enough data for one specific system and it is hard to combine generic CCF
data and causal information of other systems as some properties of causes are shared by

different systems.

(1]
r(2]
r[3]

for (j in 1:group.size)

Figure 4.10 The alpha decomposition process for System #1 with specific database
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Table 4.7 OpenBUGS script for Example 4.2 based on alternative database

model{

x[1:group.size] ~ dmulti(alpha.dash[1:group.size], X) #

X <- sum(x[1:group.size])
alpha.dash[1:group.size] ~ ddirich(theta.dash{ ])
alpha[1:group.size] ~ ddirich(theta[ ])

for (j in 1:group.size){

x[j] <-x.c[1, j] + x.c[2, j] + x.c[3, j]

theta[j] <- (alpha.c[1,j]*r[1] + alpha.c[2,j]*1[2] +
alpha.c[3j]*[3D*X

theta.dash[j] <- 1

}

for (i in 1:cause.number){

x.c[1,1:group.size] ~ dmulti (alpha.c[i, ],X.c[1])
alpha.c[i,1:group.size] ~ ddirich(delta[1,])
delta[i,1] <- 1

delta[1,2] <- 1

delta[1,3] <- 1

X.c[1] <- sum(x.c[i,1:group.size])

}

}
DATA

list(x.c=structure( .Data=c(24,6,2,24,3,1,65,2,0), .Di

m=c(3,3)), r=c¢(0.2520,0.2205,0.5276), group.size=3,

cause.number=3)

Stochastic model with multinomial
likelihood function (validation
model)

Prior for global alpha factors
Prediction of global alpha factors
(alpha decomposition model)
Event number of each failure
Predicted function for the
parameters

A noninformative prior for

validation model

Likelihood for causality inference
Prior for decomposed alpha factors
A noninformative prior for

decomposed alpha factors

Number of each cause group

Observed data and parameters
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There are two parts of calculation in the Figure 4.10.

1) The prediction of global alpha factors is obtained based on the estimates of
decomposed alpha factors as well as the data of causes’ occurrence frequencies. The
estimation of decomposed alpha factors are based on the system-specific database via
a one-stage hierarchical Bayesian model.

2) The estimation of global alpha factors is obtained based on the CCF events, and no
causal information is used in this part.

If two groups of results are roughly same with acceptable uncertainty, it is proved that
the alpha decomposition method can suitably utilize the causal information in the estimation
of CCF parameters. It can be foreseen that the first prediction will of more uncertainty as no
failure information is directly use to estimate the alpha factors and the innate uncertainty of
Dirichlet will propagate to the predicted results. The uncertainty brought by the Dirichlet
distribution is acceptable.

Table 4.7 shows the OpenBUGS script for the process of validation. The summary of
results is shown in Table 4.8. Two groups of estimates are obtained. One is the estimation of
global alpha factors totally based on the causal risk significance (decomposed alpha factors)
and causes’ occurrence frequencies. The other estimation of global alpha factors is totally
based on the failure data, which use to decide the reliability of the alpha decomposition
method. The respective predicted alpha factors are mainly same, and there are different
uncertainties in the distribution. These uncertainties might be from the innate uncertainty of
the Dirichlet distribution. Because there are multiple combinations given same quantity of
CCF events, this specific is only one case of them. The estimation will be different from the
results only according to failure data. The Figure 4.11 also shows this conclusion. The
positions of respective curves are almost same. The range of curves shows the acceptable
uncertainties.

It is concluded that all the global alpha factors are decomposable. The
decomposability of alpha factors can be proved by the theory of Hybrid Bayesian Network or
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by the numerical computation based on system-specific database. This decomposability
shows that the lumped alpha factors are the integrated reflection of the risk of common causes
to the redundant systems. The alternative database applied in this example is a very important
form of CCF database. If enough plant- or system-specific data can be obtained, it is
recommended to do the one-stage Bayesian inference to analyze the risk of common causes
directly. The shared properties of common cause to different systems can be deduced via

more complicated hierarchical Bayesian models.

Table 4.8 Validation of the alpha decomposition method

Parameter Mean Median 95% Interval
Alpha-1 0.8552 0.8578 (0.7646, 0.9286)
Estimates
with causal Alpha-2 0.1013 0.0980 (0.0403, 0.1803)
risk only
Alpha-3 0.0435 0.0395 (0.0073, 0.1032)
Alpha dash-1 0.8772 0.8794 (0.8162, 0.9283)
Estimates
with failure Alpha_dash-2 0.0921 0.0898 (0.0487, 0.1481)
data only
Alpha_dash-3 0.0307 0.0284 (0.0084, 0.0666)

Value of Alpha-2 and Alpha-3

0 0.1 0.2 0.3 0.4
40 + —— Alpha[1] — — Alpha dash[1]
- Alpha[2] = = Alpha dash[2]
30 —— Alpha[3] — = Alpha dash[3]

Probability density function

0.6 0.7 0.8 0.9 1
Value Alpha-1

Figure 4.11 Comparison of estimates based on causal risk and failure data
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Considering the rarity of CCF information and cause information, the first
recommended database (Section 4.1.1) is used in this dissertation. The generic databases
include the causal information and failure information. The share properties of common
causes to different redundant systems can be used to estimate the CCF parameters. The
application of these latently share properties can reduce the uncertainty in the estimates which

will be discussed in next section.

4.4. Uncertainty Analysis

The uncertainty in the estimates of CCF parameters is analyzed in this section. Two
methods are compared. One is the alpha decomposition method based on the recommended
database of cause and failure information (Table 4.1 and Table 4.2), and the other is the
traditional alpha factor model with failure data (Table 4.2).

The Figure 4.12 shows the uncertainty comparison for the results of System #1. Solid
curves are the estimates based on the alpha decomposition method and dashed curves are the
estimates based on the alpha factor model. The ranges of solid curves are narrower than the
dashed curves. The tendency is also demonstrated in the Table 4.9 where the 95% internal of
estimates (the alpha decomposition method) is narrower than that of estimates (the alpha
factor model). The alpha factor model only uses the failure data of System #1, while the alpha
decomposition process combines the shared properties of common causes. It can provide a
more reliable prediction of CCF risk especially when the CCF data is rare and the generic
database must be used. For instance, to estimate a newly modified system, there is no
operation data and the recorded generic CCF data cannot reflect the modified characteristics
of the new system. Therefore, the specific inference of causal mechanism and coupling factor
can provide reliable evidences. The alpha decomposition method as well as recommended
databases is recommended to be applied in the PRA analysis to estimate the failure

probabilities of initiating events.
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Table 4.9 Comparison of uncertainty between the alpha decomposition method and the alpha

factor model for System #1

Parameter Mean Median 95% Interval

Alpha-1 0.8648 0.8661 (0.8142, 0.9097)

The alpha
decomposition Alpha-2 0.0921 0.0911 (0.0560, 0.1351)

method
Alpha-3 0.0431 0.0416 (0.0190, 0.0761)
Alpha dash-1 0.8772 0.8794 (0.8162, 0.9283)
TR Alpha dash-2 0.0921 0.0898 (0.0487, 0.1481)
factor model

Alpha_dash-3 0.0307 0.0284 (0.0084, 0.0666)

Value Alpha-2 and Apha-3
0 0.1 0.2 0.3 0.4
— Alpha[1] — = Alpha dash[1]

— Alpha[2] — = Alpha dash[2]
= Alpha|[3] = = Alpha_dash[3]

N
(e

O8]
(=

(\®]
[ o}

0.8 : 1
Value of Alpha-1

Probability density function

Figure 4.12 Comparison of uncertainty between the alpha decomposition method and

previous alpha factor model for System #1

Figure 4.13 show the uncertainty analysis for all 16 redundant systems in the
recommended databases. The solid lines are the estimates based on the alpha decomposition
method and the dashed lines are the estimates based on the alpha factor model. Three aspects
of uncertainty analysis are discussed.

1) Compared with results of the alpha factor model, the uncertainties in the posterior
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distributions of the alpha decomposition method are reduced. It is concluded that the
current method can combine valuable information from cause level to reduce the
uncertainties in the PRA parameter estimation.

2) In the recommended databases, systems are listed according to the number of CCF
events for largest to smallest. Usually, the scarcity of CCF data is a major source of
uncertainty. In Figure 4.13, all lines have the same trend that uncertainties increase
with the decreasing of CCF data.

3) Since it is a stochastic modeling of CCF events, there are innate uncertainties in the

estimates. The uncertainties in the parameter estimation can be reduced but cannot be

diminished.

0.14 " —m— Alpha[1] —a— Alpha[2] —e— Alpha[3]
0.12 - —® Alpha dash[l1] =& Alpha dash[2] —® Alpha dash[3] ‘/

0.1

=
S
o)

Uncertainty
o
S
(@)

&
(]
X

0.02

0
e

* D S N o5 & /B D & N
c:ﬁ% cﬁ% ‘;f’% %ﬁ% ‘\Oﬁ% %Q’% %4’% ‘54’% CO%% %ﬁé\ ‘%?\% cﬁ% cﬁ% co*\c" c‘,ﬂ% cai%

Redundant systems

Figure 4.13 Comparison of uncertainty between the alpha decomposition method and

previous alpha factor model for all redundant systems
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4.5. Summary and Results

In Section 4.1, two types of databases are recommended to be built for the estimation
of CCF parameters including global alpha factors and decomposed alpha factors. Based on the
recommended databases, the numerical approach by hierarchical Bayesian modeling has been
schematically discussed in Section 4.2. In Section 4.3, numerical examples are demonstrated
to show the computation process of the alpha decomposition method. Posterior distributions
of CCF parameters have been obtained. Decomposed alpha factors can represent the CCF risk
of causes. Results for different databases are compared and discussed. Moreover, by the
hypothetical system-specific database, the alpha decomposition can be numerically validated.
The sources of uncertainty in the estimates of alpha factors can be evaluated by decomposed
alpha factors as well. In Section 4.4, when causal information is applied to the estimation of

CCF parameters, the results are shown with less uncertainty.
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Chapter 5: PROBABILISTIC MODELING OF FLOODING RISK FOR
AUXILIARY FEEDWATER SYSTEM PROTECTED BY FLOOD

BARRIERS

This chapter discusses the application of the alpha decomposition method to modified
Auxiliary Feedwater (AFW) system when no historical operation data can be used. There is
safety-related equipment (American Nuclear Society Safety Class I) in PWR safeguards alley
compartments which is affected by the failure of non-Class I systems in the turbine building.
It includes AFW pumps, emergency diesel generators and safe shutdown panel, etc. Previous
inspection found that there was inadequate design control to ensure Class [ equipment protect
against internal flood. The internal flood results from the failures of Non-safety water system
piping and equipment. For instance, water sources include circulating water system, fire water
pipes, feedwater pipes and reactor makeup storage tanks, etc. The random or
seismically-induced ruptures of these non-Class I systems will results in severe flooding or
excessive steam release. Flood water will flow into the area where systems of Safety Class I
located. Especially, the AFW pumps’ function will be impaired which is an initiating event of
the loss of secondary feedwater. The AFW pump system is a redundant system with three
redundant pumps. The flood is an important common cause for the AFW pump system.

Additional flood barriers are introduced to be built to defend against the potential
internal flood. The CCF risk of AFW pump system will be changed after the construction of
flood barriers. Usually, the available CCF parameter database is a generic database without
consideration of the modified design of one redundant system. Because the internal flood risk
depends on the state of flood barriers and it affects the global alpha factors, the dynamic CCF
analysis of the AFW pump system can be quantitatively estimated based on hypothetical
databases and Bayesian approaches. Two major topics are discussed in this chapter, one is the
change of CCF risk after the construction of flood barriers, and the other is the change of CCF
risk when the flood barriers degrade because of an earthquake and a flood.
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5.1. Additional Flood Barriers in Turbine Building

Potential failures of non-Class I water system piping and equipment are investigated.
Systems with sufficient inventory and flow rates to failure AFW pumps in the safeguard alley
are determined to be: (1) Circulating water, (2) Service water, (3) Fire waters, (4) Feedwater,
(5) Condensate; (6) Condensate and reactor makeup water storage tanks. The initiating events
of internal flood include nine types of random failures, tornado-induced failure,
turbine-missile induced failure, and seismic-induced failure. This dissertation analyzes the
risk of seismic-induced internal flood and flood barriers failure as an example.

Figure 5.1 shows the conceptual layout in the turbine building. For the simplest
consideration, three AFW pumps (A, B and C) are assumed as identical pumps which actually
are two motor-driven AFW pumps and one turbine-driven AFW pump. Potential water
sources are represented by the blue rectangle. After the occurrence of an external event or a
random failure, the flood will flow through entrance gates and then impair the safety-related

components.

r—' Turbine Building Feedwater Pumps Drain

' ° @‘

/
/

Entrance Gate

Figure 5.1 Turbine building without flood barriers
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To protect the AFW pump system from the risk of internal flood, additional barriers
are recommended to be constructed at the entrance gates. Figure 5.2 shows the location of
additional barriers. The green circles refer to the flood barriers. The flood barriers physically
separate the flood sources and other redundant components. Therefore, if a random failure
happens at one flood barrier, only the respective pump is affected by the internal flood. Such
sort of physical separation is an effective means to interrupt the coupling factor of the flood.

Let us compare Figure 5.1 and Figure 5.2, it is obvious that the CCF risk of the
redundant AFW system is different. Moreover, if flood barriers fail for as a result of shared
causes, the CCF risk of the degraded AFW pump system will change. In the following
sections, the quantitative analysis of CCF risk based on the alpha factor method will be

discussed.

'— Turbine Building Feedwater Pumps — Drain

* ®

e 2 an &
&

Flood Defense Barriers

Figure 5.2 Additional flood barriers recommended to be built in the turbine building
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5.2. Probabilistic CCF Modeling for AFW Pump System after the Construction of

Flood Barriers

5.2.1. Causal inference for modified AFW pump system via HBN

The Hybrid Bayesian Network (HBN) for modified AFW pump system is shown in
Figure 5.3. Three redundant pumps (A, B, and C) are assumed in the system. There three
possible causes and Cause 1 is assumed as the internal flood that is of interest. When the flood
barriers are constructed in the turbine building, the flood flow paths are blocked and three
redundant pumps are physically separated. Two dashed lines mean the physical separation of
redundant pumps. When there is no serious external disaster happens, only random failures

happen in flood barriers. Hence, all three redundant are well separated.

System Fails

A

Flood Cause 2 Flood’ Cause 3 Flood”

Figure 5.3 Causal inference for the system with flood barrier

In Figure 5.3, the flood is an independent cause when three flood barriers are
functionally available. Causes (C,’, C;’ and Cj’) are independent flood. The C; induced
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failures of Pump B and C are diminished. Since there is no defense mechanism introduced to
protect the system against Cause 2 and Cause 3, these two causes are still common causes.
Figure 5.4 shows the HBN modeling for the Pump A. The same to the previous
introduced models, there are three types of failures involving Pump A: (1) Independent failure
(A)), (2) Partial common cause failure (Cag and Cac), (3) Complete common cause failure
(Canc). Based on the system analysis, the flood with random barrier failure only generates

independent failure of Pump A.

A Fails

Flood Cause 2 Cause 3

Figure 5.4 Causal inference for Pump A after the construction of flood barrier

5.2.2. Flood induced CCF risk analysis via the alpha decomposition method

The updated decomposed alpha factor for the modified AFW pump system is analyzed
in this chapter. As shown in the Figure 5.4, with the construction of flood barriers, the CCF
risk induced by the flood changes. The CCF risk induced by Cause 2 and Cause 3 does not
change. The change of CCF risk can be expressed by the update of decomposed alpha factors
for the Cause 1 (Flood). This process can be written by conditional probability.
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P(C 5 UC, i UC 5 |Flood) — P( 4; |Flood) Equation 5.1

The Equation 5.1 demonstrates the degradation of CCF events to independent failures.
From the perspective of conditional probability, it shows that the flood coupling with failure
of flood barrier #1 (Figure 5.2) only results in independent failures. The flood barrier #2 and
#3 are still available. The success law of redundant system is assumed as 2-out-of-3, so the
AFW pump system is still available.

It is proved previously that the decomposed alpha factors represent the CCF triggering

abilities of causes. Thus, the updated decomposed alpha factors of the flood can be given by

updated " =1

Cl* —

updated a," = Equation 5.2
updated ai” =0

Here, ot refers to the updated ability of the internal flood to cause an independent failure;
ay” refers to the constrained ability of the internal flood to cause a partial CCF involving
two pumps; a,' refers to the constrained ability of the internal flood to cause a complete
CCF involving all three pumps. Equation 5.2 numerically demonstrates that the flood only

generate independent failure.
5.2.3. Bayesian inference with the alpha decomposition method

According to the alpha decomposition method introduced in the last chapter, the
estimation of CCF parameters of modified safety-related systems can be obtained by the
Bayesian inference. The estimates of CCF parameters can be applied to the calculation of
failure probability of basic events as well as systems, which are important in the PRA

procedures. The uncertainty in the estimation on component-level and system-level will be
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propagated along with fault trees and event trees. The overestimation and underestimation of
safety-related parameters should be considered. The uncertainty in the CCF parameters
partially results from the rough utilization of CCF database without the consideration of the
difference in the targeted system. As introduced previously, for the AFW systems with and
without flood barriers, the CCF risk of flood is different. Bayesian inference is a useful

method to solve the problem even if limited CCF databases are available.

Example 5.1 CCF parameters estimation of the modified AFW system

A numerical example is provided to illustrate the calculation process of Bayesian
inference with the alpha decomposition method for the modified AFW system. There are
three redundant pumps in the targeted AFW system. The multinomial distributions serve as
the aleatory model for CCF events. The prior distributions for global alpha factors are
assumed as Dirichlet distributions. Moreover, the noninformative prior for decomposed alpha
factors of one cause is assumed as Dirichlet distribution with all parameters &< [1 : 3] =[11,1].
All of the equations for the prior and posterior distributions are shown in Chapter 4, as
Equation 4.9 ~ Equation 4.12. Therefore, the CCF risk of internal flood can be expressed by
the decomposed alpha factors. Based on the causal inference in Section 5.2.1, the new
decomposed alpha factors of internal flood can be confirmed via Equation 5.2. Hence, the
updated global alpha factors should show the change of modification based on the new
decomposed alpha factors.

Figure 5.5 shows the graphical model of parameter estimation for modified system by
the alpha decomposition process. There are mainly two routes: one is the estimation of
decomposed alpha factors by two-stage hierarchical Bayesian inference; the other is the
prediction of updated global alpha factors by the updated decomposed alpha factors as well as

other unchanged decomposed alpha factors.
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At first, it is shown that global alpha factors (a[k, J ]) and decomposed alpha factors
(a“[j]) are obtained based on the failure data (x[k,1: group.size]) and causes’ occurrence
frequency (r[k,l : 3] ). Here, there are totally 16 candidate systems are considered, so
casenumber =16 . There are three redundant components in the targeted system, so
group.size=3.

Secondly, after the construction of flood barriers, the CCF risk generated by the flood
is changed. The updated decomposed alpha factors of the internal flood (a“ [1:3]*) and
updated occurrence frequencies (r[k,1:3]*) are used to predict the global alpha factors
(a[k,l : 3]*). The predicted alpha factors show the changed CCF risk of the modified AFW
system after the construction of additional flood barriers. Parameters with the asterisk mark

(*) are the CCF-related parameters for the modified system.

r[k,1:3]

a“[1:3]

r[k,l : 3]*

o

for (k in 1:case.number)

Figure 5.5 The CCF parameter estimation for modified system with flood barriers
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Table 5.1 Hypothetical database for AFW pump system without flood barrier

AFW Common causes’ occurrence Single & Common cause failure
Pump Cause 1 Single Partial  Complete
Cause 2 Cause 3
System (Flood) (1/3) (2/3) 373)

#1 32(25.20%) 28(22.05%) 67(52.76%) 113 11 3

#2 17(16.04%) 78(73.58%) 11(10.38%) 98 7 1

#3 18(20.69%) 19(21.84%) 50(57.47%) 73 9 5

#4 29(43.94%) 6(9.09%) 31(46.97%) 53 5 8

#5 7(14.00%)  33(66.00%) 10(20.00%) 45 4 1

#6 15(36.60%)  9(22.00%)  17(41.40%) 33 3 5

#7 12(35.29%) 15(44.12%)  7(20.59%) 32 2 0

#8 2(6.45%)  22(70.97%)  7(22.58%) 29 2 0

#9 7(31.82%)  4(18.18%)  11(50.00%) 20 2 0
#10 10(47.62%)  8(38.10%) 3(14.29%) 20 1 0
#11 3(15.79%) 6(31.58%)  10(52.63%) 16 2 1
#12 7(43.75%) 3(18.75%) 6(37.50%) 14 1 1
#13 3(20.00%) 5(33.33%) 7(46.67%) 13 1 1
#14 5(33.33%) 3(20.00%) 7(46.67%) 12 1 2
#15 4(36.36%) 5(45.45%) 2(18.18%) 9 1 1
#16 1(11.11%) 6(66.67%)  2(22.22%) 7 1 1

As shown in Table 5.1, the hypothetical generic CCF database for Pump A is assumed

to demonstrate the data need for the Bayesian inference. After the construction of flood

barriers, the failures caused by the flood in databases will be reduced. In this example, the

random failure probability of flood barriers is assumed as 0.1 and it is assumed that only

random independent failure happens for the flood barriers. The common cause failure of flood
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barriers will be discussed in next sections. Two sets of important CCF data are collected: one
is the record of CCF events and the other is the occurrence information of common causes.
Three causes and three types of failure are recorded. Usually, there is no plant-specific CCF

database, so this database is useful to evaluate the causes’ CCF hazard.

Table 5.2 Hypothetical database for causes’ occurrence frequency

AFW Causes’ occurrence Updated causes’ occurrence
Pump Cause 1 Cause 1
Cause 2 Cause 3 Cause 2 Cause 3
System (Flood) (Flood)

#1 25.20% 22.05% 52.76% 3.26% 28.51% 68.23%
#2 16.04% 73.58% 10.38% 1.87% 85.99% 12.13%
#3 20.69% 21.84% 57.47% 2.54% 26.84% 70.62%
#4 43.94% 9.09% 46.97% 7.27% 15.04% 77.70%
#5 14.00% 66.00% 20.00% 1.60% 75.51% 22.88%
#6 36.59% 21.95% 41.46% 5.46% 32.73% 61.82%
#7 35.29% 44.12% 20.59% 5.17% 64.66% 30.17%
#38 6.45% 70.97% 22.58% 0.68% 75.34% 23.97%
#9 31.82% 18.18% 50.00% 4.46% 25.48% 70.07%
#10 47.62% 38.10% 14.29% 8.33% 66.66% 25.00%
#11 15.79% 31.58% 52.63% 1.84% 36.81% 61.35%
#12 43.75% 18.75% 37.50% 7.22% 30.93% 61.86%
#13 20.00% 33.33% 46.67% 2.44% 40.65% 56.91%
#14 33.33% 20.00% 46.67% 4.76% 28.57% 66.67%
#15 36.36% 45.45% 18.18% 5.41% 67.57% 27.03%
#16 11.11% 66.67% 22.22% 1.23% 74.08% 24.69%
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Table 5.2 shows the predicted common causes occurrence data. The calculation

equation is given by

r* _ O. 1"i
S 1
0.1r; +7, +1,
. v, :
7 = ———— Equation 5.3
0.l1er,+r,+r,
. ,
3
£

0.1er; +1, +r,

Here, rj( j=1,2,3) refers to the original occurrence frequency of three common causes.
r; ( J=1,2,3) refers to the updated occurrence frequency of the three causes. 0.1 is the
random failure probability of flood barriers, which is assumed before. The random failure
probability of flood barriers will affect the collection of CCF events in the databases. If the
flood occurs without any component failure, this failure with causal information is usually not
recorded in the CCF database. Therefore, the flood barriers will defend a great number of
internal flood events. Only when the barrier fails for a random cause, the respective pump will
fail independently. The other extreme case is an earthquake will trigger the occurrence of
flood and the failure of flood barriers, which will be discussed later. Here, the factor (0.1)
means that 90% flood will be defended by the flood barrier.

Table 5.3 is the OpenBUGS script which shows the prediction process of updated
global alpha factors. The same to introduction of calculation in Figure 5.5, there are mainly
two parts, the first part is used to evaluate the decomposed alpha factors and the second part
aims to obtain the updated CCF-related parameters by using the estimates and the result of
system analysis. Therefore, based on the Bayesian inference with MCMC Gibbs Sampling, it

is obtained that the posterior distributions for CCF parameters.
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Table 5.3 OpenBUGS script for Example 5.1 based on two databases

model{

for(k in 1:case.number){

x[k, 1:group.size] ~ dmulti(alpha[k, 1:group.size],
X[k])

X[k] <- sum(x[k, 1:group.size])

alpha[k, 1:group.size] ~ ddirich(theta[k, 1)

for (j in 1:group.size){

theta[k, j] <- (alpha.c[1, j]*r[k, 1]

+ alpha.c[2, j]*r[k, 2] + alpha.c[3, j]*r[k, 3])*X[k]
}

¥

for (1 in 1:cause.number){

alpha.c[i, 1:3] ~ ddirich (delta[i, ])

delta[i, 1] <- 1

deltafi, 2] <- 1

delta[i, 3] <- 1

}

for(k in 1:case.number){

new.alpha[k, 1:group.size] ~ ddirich(new.theta[k, ])
new.X[Kk] <- X[k]*(r[k, 1]*ran.failure + r[k, 2]
+1[k, 3])

new.r[k, 1] <- r[k, 1]*ran.failure/(r[k, 1]*ran.failure
+rfk, 2] + [k, 3])

new.r[k, 2] <- r{k, 2]/(r[k, 1]*ran.failure + r[k, 2]

model's likelithood

Stochastic model with multinomial

likelihood function
X is the total number of "group
failure events"

Transition variable

Predicted function for the alpha

decomposition

A noninformative prior
distributions for decomposed

alpha-factors with each parameter

in dirichlet distributions equaling 1

Predict the alpha factors of the
modified AFW system

The updated occurrence of CCF
events

The updated occurrence rates of

common causcs
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+1[k, 3])

new.r[k, 3] <- r[k, 3]/(r[k, 1]*ran.failure + r[k, 2]

+1k, 3])
for(j in 1:group.size) { # The updated parameters of
new.theta[k, j] <- (new.alpha.cl[j]*new.r[k, 1] decomposed alpha factors

+ alpha.c[2, j]*new.r[k, 2]

+ alpha.c[3, j]*new.r[k, 3])*new.X[k]
}

}

}
DATA

list(x=structure(.Data=c(...), .Dim=c(16,3)),
r=structure(.Data=c(...), .Dim=c(16,3)),
group.size=3, case.number=16, cause.number=3,

ran.failure=0.1, new.alpha.cl=c(1, 0, 0))

The posterior decomposed alpha factors are same to the result of Example 4.1, which
is shown in Figure 4.6 ~ Figure 4.8. These estimates are not changed in this example, but the
decomposed alpha factors of Cause 1 (flood) are updated according to the Equation 5.2.
Because the database in the current article is for illustration only, the posterior distributions
for CCF parameters of some systems do not show apparent change and some results show
different changes. It results from the hypothetical random database.

The System #16 has been chosen to show the update of CCF parameters as the result
shows significant change. The summary of posterior distributions for global alpha factors of
AFW Pump System #16 is shown in Table 5.4 and the updated global alpha factors of other
systems can be obtained similarly. Two groups of posterior distributions are shown in Table

5.4. One is the CCF parameters of AFW System #16 before flood barriers are constructed.
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The other is the CCF parameters of the system after flood barriers are constructed. It is
demonstrated that the building of flood barriers in System #16 will reduce the CCF risk. The
mean values of Alpha-2* and Alpha-3* are smaller than that of Alpha-2 and Alpha-3.
Successful flood barriers will protect pumps from CCF events by physically separating

redundant pumps.

Table 5.4 Summary of posterior distributions for AFW Pump System #16

Parameter Mean Median 95% Interval
) Alpha-1 8.28E-01 8.40E-01 (6.26E-01, 9.59E-01)
Without
Flood Alpha-2 9.84E-02 8.39E-02 (9.76E-03, 2.72E-01)
Barriers
Alpha-3 7.38E-02 5.83E-02 (4.35E-03, 2.28E-01)
Alpha-1* 8.85E-01 9.18E-01 (6.02E-01, 9.99E-01)
With
Flood Alpha-2* 8.34E-02 4.82E-02 (8.23E-05, 3.46E-01)
Barriers
Alpha-3* 3.18E-02 4.76E-03 (3.25E-13, 2.20E-01)

Figure 5.6 demonstrates the process of updating for global alpha factors of System #16.
With the construction of flood barriers in System #16, the Alpha-3 is significantly reduced.
The curves of Alpha-2 and Alpha-3 move leftward, and by contrast the curve of Alpha-1
moves rightward. The CCF risk of System #16 is reduced. However, the uncertainties in the
estimates are relatively increased. It shows the application of the alpha decomposition method
in the evaluation of modified systems. The prediction of updated alpha factor is based on the
generic operation data without flood barriers. The uncertainty has been propagated through
the process of prediction. The estimates of decomposed alpha factors can provide a reliable
means of prediction. The modification of system will change the PRA parameters, for
instance design, diversity, layout, etc. The hierarchical Bayesian inference can complement
the prediction. The occurrence of unobvious or difference changes in the estimates will be

explained in the next section.
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— = Alpha[l] = = Alpha[2] = = Alpha[3]
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Figure 5.6 Posterior distributions for AFW Pump System #16

5.2.4. Misleading of alpha factors in the evaluation of failure risk

Besides, the global alpha factors are already proved as the integrated illustration of
CCF risk, the defense against causes (for example, flood) will reduce the CCF risk and the
global alpha factors will decrease. However, other issues are still needed to be discussed. For
instance,
1) Defenses against causes of low CCF risk cause but high occurrence frequency will
increase the value of alpha factors.
2) Multiple defense strategies are applied to improve the redundant systems.

Example 5.2 is proposed to illustrate the misleading of the alpha factor model in the

evaluation of failure risk.
Example 5.2 The misleading of alpha factors from the perspective of risk representation
According to the issues provided before, the calculation with system-specific database

1s given to prove the misleading of alpha factors from the perspective of representing failure
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risk. Defense mechanism against the cause of low CCF risk but high occurrence frequency is
constructed. A hypothetical database for the explanation is assumed which contains enough
cause and failure information. It is shown in Table 5.5. The data is listed before the defense
strategy is introduced. The prevention of defense strategy is of a percentage of 10%, so the
data for the system with defense can be obtained which is shown in Table 5.5 as well.
Moreover, all the CCF risk of Cause 1 is degraded as independent failure. Let us compare the
CCF parameters of the previous system and modified system after the construction of failure

defense mechanism.

Table 5.5 Hypothetical system-specific database for Case 1

Single failure & CCF
Cause group Total
1/3 2/3 3/3

Cause 1 65 2 0 67

Without Cause 2 24 3 1 28
defense Cause 3 24 6 2 32
Total 113 11 3 127

Cause 1 7 0 0 7

With Cause 2 24 3 1 28
defense Cause 3 24 6 2 32
Total 55 9 3 67

The global alpha factors for the system can be obtained by the method and Openbugs
script introduced in Section 4.2. The posterior distributions for global alpha factors are shown
in Figure 5.7. The result shows that after the introduction of defense mechanism, the CCF risk
increases. The curve of Alpha-1 moves leftward but the curves of Alpha-2 and Alpha-3 move
rightward. It means that the independent failures reduce but CCF events increase. The

building of defense mechanism will not certainly reduce the alpha factors involving many

88



CHAPTER 5

components. Because Cause 1 triggers more independent failures but less dependent failure

than other two causes, the alpha factors involving two and three components increase.

— = Alpha[l] = = Alpha[2] = = Alpha[3]
= Alpha[1]* Alpha[2]* Alpha[3]*
= 30
§ 25
2 20
515
=
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4 /
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2 0 £ >
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Value of alpha factors

Figure 5.7 Posterior distributions for alpha factors of Case 1

Table 5.6 Summary of alpha factors for Case 1

Parameter Mean Median 95% Interval
Alpha-1 0.8774 0.8792 (0.8145, 0.9277)
Without
Flood Alpha-2 0.0920 0.0901 (0.0490, 0.1481)
Barriers
Alpha-3 0.0306 0.0283 (0.0084, 0.0651)
. Alpha-1* 0.7999 0.8027 (0.7017, 0.8831)
With
Flood Alpha-2* 0.1429 0.1398 (0.0716, 0.2332)
Barriers
Alpha-3* 0.0572 0.0532 (0.0161, 0.1223)

As a conclusion, the defense against causes of low CCF risk but high occurrence
frequency will not reduce the alpha factors which represent low CCF risk (for instance,
Alpha-1, etc.). In the PRA analysis, it cannot judge the CCF risk of two systems only by the

value of alpha factors, which is the misleading of alpha factors. For instance, in Talbe 5.6 the
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alpha factors of the system without flood barriers shows less CCF risk. However, under actual
scenario, the system with flood barrier successfully prevents a great number of failures. This

property is impossible to be explained by the lumped global alpha factors.

5.3. Qualitative analysis of seismic-induced flood hazard for AFW pump systems

As discussed previously, the estimates of CCF risk should reflect issues including
failures, causes and system-specific design etc. Diversity or physical separation of redundant
system will reduce the occurrence possibility of CCF events. Flood barriers can prevent the
random flood from the safeguards alley, which is caused by the random failure of water
system. However, when a severe earthquake happens, it will result in the deformation of flood
barriers as well as internal flood. The CCF risk should be well analyzed for the modified
AFW system. This section shows the conceptual flood hazard analysis.

Flood risk of two AFW Pump systems with different layouts is compared. The Layout
#1 is a parallel placement of doors with barriers. It is simply called as barriers. All flood
barriers in Layout #1 directly contact flood water. The Layout #2 is a sequential placement of
doors with barriers. Only Barrier #1 directly contacts the flood water but Barrier #2 and #3 are
separated from the flood from Turbine Building. When the Barrier #1 starts to leak severely,

Barrier #2 will suffer the damage from flood, and finally Barrier #3.

5.3.1. Flood sources

Failures of nonsafety-related water system piping and equipment will flood the turbine
building and subsequently impact safety-related components and systems in the safeguards
alley. Three most credible flood sources are considered: Circulating Water (CW), Service
Water (SW), and Fire Protection Water (FPW). In this section, the maximum flood water flow

rate through one door is assumed as 2 m’/min, which is larger than the drainage ability of
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each AFW pump room. The drainage ability of each room is assumed as 0.5 m’/min. The

detailed occurrence probability of each flood scenario will be discussed following sections.

5.3.2. Flood propagation

The random flood water will be obstructed by the barriers and the AFW pumps can be
protected. According to the seismic classification of Structures, systems and components in
NPPs, the waters system in the turbine building and flood barriers are nonsafety-related but
the AFW pumps are safety-related. Therefore, it is probable that water system and flood
barrier fail for a severe earthquake. There are two failure mechanisms of barriers. One is the
flood barrier fails because of a seismic shock. The other is that the flood barrier is flawed for
the seismic shock and finally degraded to failure for the flood water. Thus, if the barrier is not
flawed by the earthquake, it can prevent the ingression of flood water for a long term. To
compare these two different layouts from the perspective of flood risk, three scenarios of
seismic-induced flood involving the failure of barriers are considered, which is classified by
the number of failed barriers. The probability for the occurrence of three scenarios is assumed
in Table 5.7. This data will be integrated in the result of flood risk analysis.

1) Seismic-induced one-barrier-failure coupling with flood
2) Seismic-induced two-barrier-failure coupling with flood

3) Seismic-induced three-barrier-failure coupling with flood

Table 5.7 Probability of three seismic scenarios

Scenario Percentage of probability
1) Seismic-induced one-barrier-failure 0.2
2) Seismic-induced two-barrier-failure 0.2
3) Seismic-induced three-barrier-failure 0.6
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Layout #1 Parallel flood barriers

All three barriers in Layout #1 directly contact the flood water. If the severest flood

happens, the seismically flawed barriers start to degrade.
1) Seismic-induced one-barrier-failure coupling with flood
The schematic diagram for the seismic-induced one-barrier-failure coupling with flood
is shown in Figure 5.8. In this case, only Barrier #1 is flawed by the earthquake and at last
fails for the flood. The seismically induced severest flood and barrier failure will result in the

failure of Pump A. There is only an independent failure occurs. Pump B and C are protected

by the successful Barriers #2 and #3.

Turbine Building Feedwater Pumps — Drain
|
* ‘Q® J

Flood Defense Barriers

Figure 5.8 Seismic-induced one-barrier-failure coupling with flood (Layout #1)
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2) Seismic-induced two-barrier-failure coupling with flood
The second scenario is the seismic-induced two-barrier-failure, which is shown in

Figure 5.9. It is the same to the scenario 1 that Pump A and B fail because the function-loss of

Barrier #1 and #2. A partial CCF occurs as Pump C is protected by the successful Barrier #3.

’— Turbine Building Feedwater Pumps — Drain

* ®

>

Flood Defense Barriers

Figure 5.9 Seismic-induced two-barrier-failure coupling with flood (Layout #1)

3) Seismic-induced three-barrier-failure coupling with flood

The third scenario will be discussed in detail with the demonstration of the water flow
rate through barriers. The schematic diagram for the Scenario 3 is shown in Figure 5.10. All
three barriers are identical in the environment of flood. This is a shortcoming of the Layout #1
which cannot provide the defense in depth. Even though there is a possibility assigned to the
Scenario #1 and #2, all the three barriers are likely to be deformed for an earthquake. The
maximum flow rate through one barrier is assumed as 2 m’/min and the drainage ability is

assumed as 0.5 m’/min. Therefore, the increasing of the leakage of the barrier will accumulate
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water in the AFW Pump room until the water height reaches the Critical Water Height (CWH).

If the water height reaches the CWH, the pump will be functionally covered with water.

,—Turbine Building Feedwater Pumps — Drain

* ®

>

Flood Defense Barriers

Figure 5.10 Seismic-induced three-barrier-failure coupling with flood (Layout #1)

The conceptual water flow rate and CCF events are shown in Figure 5.11. The red line
refers to the drainage ability of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>