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Chapter 1

Introduction

1.1 Purpose of the present study

The mechanical behavior of shape memory alloys (SMAs) exhibiting a thermoelastic
martensitic transformation (MT) has attracted considerable attention in several decades. This
behavior is mainly investigated in alloys showing a typical first-order MT, in which the lattice
parameters jump discontinuously at the transformation temperature and vary slightly in the
martensite phase as shown in Fig. 1.1(a). The typical alloys are Ti-Ni {1,2], Cu-based [3.4] and
Ni-Mn-X (X=@Ga, In, Sn) [5-7] alloys.

There are some materials exhibiting second-order-like thermoelastic FCC-FCT MTs such as
In-T1 alloys [8-10], Mn-Cu alloys [11,12], Fe;Pt alloys [13,14] and Fe-Pd alloys [15,16]. Here
FCT is a tetragonal structure with one axis extended or contracted slightly. Although the Bravais
lattice of FCT martensite is BCT (body center tetragonal), we use the term FCT for convenience
in this thesis. The martensite transformation in Al15 type Nb;Sn and V;Si is also
second-order-like transformation from a cubic structure to a tetragonal structure. In this class of
transformation, the lattice parameters show a small discontinuity at the transformation
temperature and then gradually change with decreasing temperature as schematically shown in
Fig. 1.1(b). Compared with Ti-Ni and Cu-based SMAs exhibiting clear first-order
transformation, the mechanical behavior of the alloys exhibiting a second-order-like

transformation is not well understood. So, in this study we investigate the mechanical behavior



and related phenomena in the alloy exhibiting a second-order-like FCC-FCT MT.
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Fig. 1.1. Sketch illustration showing temperature dependence of lattice parameters in a typical

first-order MT (a) and a second-order-like FCC-FCT MT (b).

1.1.1 Superelastic behavior

Superelasticity (or pseudoelasticity) in SMAs is widely used because it offers a large

recoverable strain before plastic deformation [17]. When a stress is applied above the reverse

transformation finish temperature (4;) in a typical first-order thermoelastic MT, a large

nonlinear reversible strain can be obtained as schematically illustrated in Fig. 1.2(a). This large
reversible strain primarily arises from the transformation strain Ae due to the discontinuous
structural change between the parent phase and the martensite phase during the loading and
unloading processes. The transformation strain is usually characterized by “plateaus” with a
significant stress hysteresis in the experimental stress-strain curve, and is uniquely determined
from the lattice parameters at the transformation temperature [3,18]. Typical values of
transformation strain are between 1% and 10% in conventional SMAs. Compared with the
transformation strain, the elastic strains in the parent phase and the martensite phase are usually

1% or smaller in SMAs such as Ti-Ni alloys [1,2] and Cu-Al-Ni alloys [3,4].
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Fig. 1.2. Schematic illustrations showing the superelastic behavior in (a) a typical first-order MT

and (b) a second-order-like FCC-FCT MT.

In a second-order-like FCC-FCT MT, the jump of lattice parameters at the transformation
temperature is small. This implies a small value of transformation strain. However, the
continuous change of lattice parameter in the martensite phase with temperature can be induced
by stress. This process should be an elastic deformation, but the lattice distortion is much larger
than that of conventional metals; in other words, a large elastic-like deformation should be

obtained. Furthermore, this kind of transformation is frequently accompanied with the lattice
softening in the parent phase. In particular, the elastic constant C'(=(C,,-C,,)/2) strongly
decreases with decreasing temperature, and its value is close to zero near the transformation

temperature [19-23]. The Young’s modulus in the [001] direction FEq,, is given by [24]

1 1 1
=—+—, 1.1
9K 3C' (4.0

E

o01]
where K =(C, +2C,,)/3 is the bulk modulus. In the case of C' is much smaller than K, the
Young’s modulus in the [001] direction can be approximated as

Egoy =3C". (1.2)

Consequently, a large elastic strain with low Young’s modulus is expected to be obtained in the

[001] direction as shown in Fig. 1.2(b), when C' is small.



1.1.2 Critical point in the stress-temperature phase diagram

In the alloy exhibiting a second-order-like FCC-FCT MT, when the FCC parent phase is
compressed in the [001] direction, it contracts in the [001] direction and expands in the
[100] and [010] directions. Consequently, the elastically deformed parent phase has
tetragonal symmetry, not cubic symmetry. This means that the martensitic transformation in
these alloys under a uniaxial stress is tetragonal to tetragonal transformation although it is
usually described as FCC to FCT transformation. When the two phases separated by a phase
boundary have the same symmetry, the phase boundary could terminate at a point termed as a
critical point. Beyond the critical point, there is no difference between the elastically deformed
parent phase and the martensite phase. This behavior in the case of the tetragonality being less
than unity is illustrated in Fig. 1.3.

The appearance of such a critical point is well know for gas-liquid transformation [25,26], in
which gas and liquid phases have the same symmetry (isotropy structure). The
pressure-temperature phase diagram of water is shown in Fig. 1.4. On approaching the critical

point, the liquid phase and the gas phase become indistinguishable.
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Fig. 1.4. The pressure-temperature phase diagram of water with a critical point [26].



The essentially important condition for the appearance of the critical point in the alloys
exhibiting a second-order-like FCC-FCT MT is that the parent and the martensite phases have
the same symmetry under a uniaxial stress. This condition is difficult to be satisfied in SMAs
showing a typical first-order MT. For example, in case of the B2-B19’ transformation in Ti-Ni
alloy [1.2], the martensite phase is monoclinic; there is no way to obtain a monoclinic symmetry
by applying a uniaxial stress on the cubic (B2) parent phase. The same conclusion is reached for
2H, 4H, 9R 18R, 10M, 14M transformations observed in Cu-based SMAs [3.4] and Ni-Mn-X
(X=Ga, In, Sn, Al) based magnetic SMAs [5-7]. The phase boundary in these alloys must be

terminated by intersecting the equilibrium curves of other phases or slip.

1.1.3 Elastocaloric effect

As mentioned in section 1.1.1, a characteristic feature of the alloys exhibiting a
second-order-like FCC-FCT MT is the lattice softening in the parent phase. The elastic constant
C" significantly depends on temperature [23] and can be simply expressed as linear

relationship

ac(T) _

k. 1.3
3T (1.3)

where £ is a constant positive value. Considering a simple elastic deformation, the strain in the

[001] direction & obeys Hooke’s law
e=Ed o, (1.4)
where o is the uniaxial stress in the [001] direction and E,, 1s the Young’s modulus in the

[001] direction which can be replaced by equation (1.2). So, & as a function of temperature
can be further expressed as
g= BC(T) o, (1.5)

and it simply illustrated in Fig. 1.5(a). It is found that the strain under a constant stress in the

[001] direction increase continuously with decreasing temperature. The absolute value of



derivative of strain by temperature can be expressed as

3
oT

ok

] ~ 3Ty (1.6)

For the alloys exhibiting a second-order-like MT, the value £ is large and elastic constant C' is

small, so the value is large.

By using the Maxwell relation, the isothermal entropy change AS,  induced by an uniaxial

stress O is expressed as [27]
e oT ),

A large elastocaloric effect (large entropy change) in a wide temperature range is expected to be
obtained in SMAs exhibiting a second-order-like FCC-FCT MT. In conventional SMAs with a
typical first-order MT, the large elastocaloric effect is limited to appear in the vicinity of the
transformation temperature (Fig. 1.5(b)); the temperature range of the large elastocaloric effect
is much shorter than that of the SMAs showing a second-order-like FCC-FCT MT. In addition,
the elastic deformation in the SMAs exhibiting a second-order-like FCC-FCT MT indicates a
quite small stress hysteresis; in other words, quite low energy dissipation will be realized. Due
to the large elastocaloric effect and low hysteresis loss in a wide temperature range, SMAs
exhibiting a second-order-like FCC-FCT MT can be a candidate material for an environmentally

friendly refrigerator system.
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Fig. 1.5. Schematic illustrations of the temperature range of a large elastocaloric effect in (a) a

stress-induced second-order-like FCC-FCT MT and (b) a typical stress-induced first-order MT.

1.1.4 Damping behavior

Usually, the internal friction (IF) spectrum during a typical first-order MT is decomposed

into three terms [28-30] as shown in Fig. 1.6(a):

IF=IF,, +IF,, +IF,, . (1.8)
The first term, IF, is the transitory term (or kinetic term), which shows a peak during the MT

and only appears at non-zero cooling/heating rate. The second term, IF,,, is the phase

transition term (or isothermal term), which origins from the phase transformation itself but is

independent of the cooling/heating rate. The third term, IF,, is intrinsic term, which arises

nt ?

from the microstructure of each phases. In conventional SMAs exhibiting a typical first-order

MT such as Ti-Ni-based [31-33] or Cu-based alloys [28,34,35], the high damping characteristic

is mainly caused by the first term IF; ; it appears in a narrow temperature range between M,

and M. The inherent internal damping values (IF,;+IF_) in these alloys is small under

nt

isothermal condition.

Due to the near continuous change in the lattice parameter at the transformation temperature



in the SMAs exhibiting a second-order-like FCC-FCT MT, the first term IF, can be small.

The twinning structure is always reported in the martensite phase of these alloys [9,11,14,36]. It
is well known that the energy dissipation during the movement of the twined boundaries is an
important source of high damping behaviors [34]. So a high sustainable damping behavior

obtained from internal damping value is expected to be obtained as shown in Fig. 1.6(b).

(a) (b)
II:Tr
2] [%°]
Mf IFPT IFInt T
| m "
II:Int l
Temperature Temperature

Fig. 1.6. Schematic representation of the internal friction during a typical first-order MT (a) and a

second-order-like MT (b).

On the other hand, the energy dissipation caused by stress hysteresis plays an important role
to determine the usefulness of a refrigeration system. Fortunately, dynamic mechanical analyzer
just provides a direct way to detect the energy dissipation. So, it is necessary to investigate the

dynamic mechanical properties of these alloys.

1.2 Second-order-like FCC-FCT MT in Fe-Pd alloys

Among the alloys exhibiting a second-order-like FCC-FCT MT, an Fe-Pd alloy is a promising
SMA owing to its high corrosion resistance, ductility and biocompatibility [37,38]. So, in this

thesis, we will investigate the related phenomena expected from a second-order-like martensitic



transformation in Fe-Pd alloys such as a large elastic deformation, a large elastocaloric effect
and a critical point in the stress-temperature phase diagram.

Figure 1.7 shows the equilibrium phase diagram of the Fe-Pd alloys [39]. Alloys with Pd
concentration near 30 at.% have liquid phase when the temperature above 1623 K. The liquid
phase solidifies into disordered FCC phase below 1623 K, and the disordered FCC structure
decomposes into a-Fe and y-phase when the temperature is between 878 K and 1023 K. Below
878 K, the equilibrium phase contains a-Fe and ordered L1, FePd. But, through quickly cooling,
the disordered FCC phase can be retained, and this FCC phase exhibits a martensitic
transformation.

It has been reported that the MT in Fe-Pd alloys strongly depends on their Pd content [15,40].
The alloys with low Pd content transform from the FCC parent phase to the BCC martensite phase.
The transformation product changes to the BCT martensite as the Pd content increases, and alloys
with Pd content of approximately 30 at.% and more transform to the so-called FCT martensite.
However, there are few systematic studies on Pd content dependence of the FCC-FCT
transformation temperature. The most well referred phase diagram for martensitic
transformation in the Fe-Pd system is that reported by Sugiyama et al. [36] as shown in Fig. 1.8.
However, the transformation temperatures they reported are lower than recently examined
transformation temperatures [36,41]. One possibility of this deviation is that Sugiyama et al.
determined the transformation temperature by optical microscope observation. In addition, they
did not examine transformation below 77 K. In chapter 2, we investigate the FCC-FCT MT
temperature by magnetic susceptibility which is more sensitive than the method employed by

Sugiyama et al.

10
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The thermally-induced FCC-FCT MT in an Fe-Pd alloy has been extensively investigated
especially in 1980s [15,36,40]. During this transformation, the cubic structure undergoes
contraction in the c-axis and expansion in the a-axes. Three variants are introduced in the
martensite phase; and a simple sketch of the transformation is shown in Fig. 1.9(a). Below the
transformation temperature, the lattice distortion (I1-c/a) increases gradually with decreasing
temperature. Figs. 1.9(b) and (c) show the lattice parameters and the lattice distortion of an

Fe-30.0Pd (at.%) alloy as a function of temperature [40], respectively.

FCC

ao — [010]

(b)

£ 0.39
£ a .‘.‘.\'\I a
= 038 N 0
‘6 L .\.—.\.
g 0.37
5 -
a 3
8 o3t —
e
035 L " 1 1 M 1 1 L
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( ) 0081 .\.\-\
0.06 + "
@ | ™~
-~
Q o004t
—
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000}, . , . . , w—n—_=m
50 100 150 200 250 300

Temperature (K)
Fig. 1.9. (a) A schematic illustration of FCC structure and FCT structures with three variants.
Temperature dependence on the lattice parameters (b) and the lattice distortion value (c) of an

Fe-30.0Pd (at.%) alloy [40].
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The lattice softening in the parent phase of Fe-Pd alloys is also reported, and the elastic
constant C' [=(C,,-C,,)/2] is found to show quite a low value near the transformation
temperature due to the band Jahn-Teller effect [42]. Temperature dependence on the elastic

constants of an Fe-30.0Pd (at.%) alloy [23] is shown in Fig. 1.10. It is found that the elastic

constant C' decreases significantly on approaching the transformation temperature.
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Fig. 1.10. Temperature dependence of the elastic constants of an Fe-30.0Pd (at.%) alloy [23].

When a single crystal is compressed in the [001] direction, a single variant with its c-axis in
the compressive axis should be formed for the tetragonality is less than unity (c/a<1). Owing to

the continuous change in lattice parameter and the lattice softening, we can expect that a large

elastic-like strain with low Young’s modulus in the [001] direction is obtained in this alloy. In

chapter 3, we investigate the superelastic behavior in an Fe-31.2Pd (at.%) single crystal

compressed in the [001] direction. It is also found that the elastic constant C,, is not so

13



sensitive to temperature. Considering that elastic constants depend strongly on temperature and
orientation, the limit of the elastic strain in Fe-Pd alloys could significantly depend on these
factors. In chapter 4, we consider the influence of various conditions on the limit of elastic
deformation in Fe-Pd alloys. When an Fe-Pd single crystal is compressed in the [001]
direction, the symmetry of the elastically deformed parent phase is the same as the martensite
phase. In chapter 5, the existence of the critical point in Fe-Pd alloys is checked by compressive
tests. The large elastocaloric effect caused by temperature significantly dependence of elastic
constant C' is also confirmed in chapter 6. The dynamic mechanical behavior in Fe-Pd alloy is

presented in chapter 7.

1.3 Outline of the thesis

In this thesis, we investigate the elastic behavior in Fe-Pd alloys exhibiting lattice softening
and a second-order-like FCC-FCT MT. In chapter 1, the motivations and purposes of this
research work are described. In chapter 2, influence of Pd content on FCC-FCT MT temperature
of Fe-Pd alloys is studied. In chapter 3, the large elastic-like deformation of an Fe-31.2Pd (at.%)
single crystal by compressing in the [001] direction is studied. In addition, the structural
change in the elastically deformed specimen and defects in the plastically deformed specimen
are studied in details. In chapter 4, the limit of the elastic deformation under different conditions
such as temperature, compressive direction and grain boundary are considered. In chapter 5, the
stress-temperature phase diagram of Fe-30.8 and 31.2Pd (at.%) single crystals is constructed,
and the existence of the critical point (end point of the equilibrium phase curve) is confirmed. In
chapter 6, the elastocaloric effect in an Fe-31.2Pd (at.%) single crystal due to the significant
temperature dependence on the elastic constant C' is studied. In chapter 7, the dynamic
mechanical behavior and energy dissipation in the loading and unloading processes are also

studied. In chapter 8, the results of the present study are summarized.

14
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Chapter 2

Concentration dependence of FCC to FCT

martensitic transformation in Fe-Pd alloys

2.1 Introduction

As mentioned in chapter 1, the FCC-FCT transformation temperature in Fe-Pd alloy is an
important factor to investigate superelastic behaviors and related phenomena. In this chapter,
therefore, the Pd concentration dependence of FCC-FCT MT temperature in Fe-Pd alloys is

investigated, and the structural change and latent heat during the transformation are also studied.

2.2 Experiments

Ingots of Fe-30.0~33.6Pd (at.%) were prepared by arc melting from with high purity Fe rod
(99.998%) and Pd sheet (99.9%) starting materials. The ingots were homogenized at 1373 K for
24 h followed by quenching in ice water to keep the disordered parent phase. The Pd
concentration of Fe-Pd alloys is measured by an Inductively Coupled Plasma (ICP) method, and
the results are listed in Table. 2.1. It is found that the detected Pd concentration deviates from

the nominal concentration less than 0.1%.
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Table. 2.1. The results of the ICP measurements.

Nominal Pd 31.6 320 | 324 | 326 | 32.8 33 33.1 | 332 | 336

content (at.%)

Pd content by 31.59 32.02 | 32.32 | 32.47 | 32.82 | 33.08 | 33.16 | 33.25 | 33.52

ICP analysis

Deviation -0.01 +0.02 | -0.08 | -0.13 | +0.02 | +0.08 | +0.06 | +0.05 | -0.08

The FCC-FCT martensitic transformation temperature was determined by a magnetic
susceptibility measurement under the magnetic field of 0.05 T with a constant cooling and
heating rate of 2 K/min by using a Superconducting Quantum Interference Device (SQUID)
magnetometer. Latent heat measurements were performed by a Differential Scanning
Calorimeter (DSC) NETZSCH model 200F3 at a cooling and heating rate of 10 K/min. An
Fe-33.2Pd (at.%) single crystal was made by the floating zone method at a growth rate of
3 mm/h. Plate-shaped specimens composed of (100)p, (010)p and (001)p planes (the subscript
“P” represents parent phase) were cut from this single crystals. After homogenization at 1373 K,
the Fe-33.2Pd (at.%) single crystal was quenched in ice water. Temperature dependence of the
lattice parameters of the Fe-Pd single crystal was obtained by an in-situ X-ray diffraction using

Cu-K, radiation.

2.3 Results and discussion

Figure 2.1 shows magnetic susceptibilities of Fe-Pd alloys measured under the magnetic field
of 0.05 T. The magnetization measured in the cooling process exhibits a sudden decrease in
alloys with Pd content of 33.0 at.% and less, which is caused by the FCC—FCT transformation.
The correspondence between the decrease in magnetic susceptibility and phase transformation

has been confirmed in an Fe-31.2Pd (at.%) alloy by X-ray diffraction [1]. It is found that the
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temperature hysteresis in the MT is quite small due to the characteristic of the second-order-like
MT. The sudden decrease in magnetization does not appear in alloys with Pd content of

33.1 at.% and more. Probably, these alloys do not show any MT.
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Fig. 2.1. Temperature dependence of the magnetic susceptibility of Fe-Pd alloys.

In order to confirm that MT does not occur in alloys with Pd content 33.1 at.% and more, we
have made an in-situ X-ray experiment for the Fe-33.2Pd (at.%) single crystal. Figure 2.2 shows
the change in the profile of (400) X-ray spectra measured in the cooling process from 290 K to

10 K. There is no peak separation at any temperature examined, which confirms that there is no
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FCC—FCT martensitic transformation in an Fe-33.2Pd (at.%) alloy. This result is consistent
with the result obtained by magnetic susceptibility measurement. The lattice parameter of the
Fe-33.2Pd (at.%) alloy obtained by the diffraction pattern is plotted as a function of temperature
in Fig. 2.3 together with the results of an Fe-31.2Pd (at.%) alloy, which shows the FCC-FCT

martensitic transformation, previously reported [1].

(400)
,/M
250K

200K

150K

A 100K
A 60K

10K

Intensity (a.u.)

110.0 110.2 110.4 110.6 110.8
2 Theta

Fig. 2.2. The change of (400) X-ray spectra of an Fe-33.2Pd (at.%) single crystal with decreasing

temperature. K, reflections are removed by a software.

The lattice parameter of the Fe-33.2Pd (at.%) alloy increases gradually with increasing
temperature. The corresponding thermal expansion coefficient « of the Fe-33.2Pd (at.%) alloy
is 1010° K™ from 10K to 60 K; it is 90 10 K™' from 60 K to 290 K. This value is significantly
smaller than that of pure iron (12010°K™) [2], but is much larger than that of the Invar alloy
Fe-36.0Ni (at.%) (1.20 10°K™) [3]. The thermal expansion coefficient a of the Fe-33.2Pd (at.%)
alloy in our work is consistent with the result of an Fe-32.0Pd (at.%) alloy reported by M.
Matsui et al. [4]. The Full-Width Half-Maximum (FWHM) of the diffraction peaks in Fig. 2.2 is
evaluated; it increases with decreasing temperature below 90 K as shown in Fig. 2.4. The

broadening of the diffraction peaks might be attributed to the pre-transformation.
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Fig. 2.3. Temperature dependence of the lattice parameters of (a) an Fe-33.2Pd (at.%) alloy and (b)

an Fe-31.2Pd (at.%) alloy [1].
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Fig. 2.4. The change of Full-Width Half-Maximum (FWHM) in (400) diffraction peaks of an

Fe-33.2Pd (at.%) single crystal with decreasing temperature.

The transformation start temperature obtained by a magnetic susceptibility measurement is

plotted as a function of Pd content in Fig. 2.5 (triangle). It is noted in the figure that the

transformation temperature decreases by approximately 10 K per 0.1 at.% of Pd, which means

the transformation temperature is very sensitive to the Pd concentration. The transformation

temperatures in our work are slightly higher than those reported by Sugiyama et al. [5] with the

same composition. The reason may be attributed to the different methods of determining the
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transformation temperatures. The method used by Sugiyama et al. was optical microscope
observation. Presumably, magnetic susceptibility measurement is more sensitive to detect the

initiation of structure change than optical microscope observation.
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Fig. 2.5 FCC-FCT martensitic transformation temperature of Fe-Pd alloys obtained by magnetic

susceptibility and DSC measurements.

Figure 2.6 shows the DSC heat flow of Fe-Pd alloys with Pd concentrations of 30.0 at.%,
30.8 at.%, 31.2 at.% and 31.6 at.%. The DSC cooling curve shows one exothermic peak
corresponding to the FCC—FCT martensitic transformation. Also, the DSC heating curve
shows one endothermic peak corresponding to the FCT—FCC reverse martensitic
transformation. No obvious latent heat is detected when the palladium concentration is
32.0 at.%Pd and more. The FCC—FCT martensitic transformation start temperature A
obtained from Fig. 2.6 are summarized in Table 2.2. Also Ms is plotted as a function of
temperature in Fig. 2.6. The transformation temperatures obtained by DSC method coincide
well with those obtained by magnetic susceptibility measurements. The electrical resistivity is
another method to determine the martensitic transformation temperature with high sensitivity.
Unfortunately, there is no obvious change in electrical resistivity during the transformation in

the presented alloys [5].

24



240 260 280 300 200 240 280 320

- o] _

[0_05 wg Fe-30.0Pd (at%) { ooswsg Fe-308Pd (at%)

T J\ Cooling
< L T — -«
.Q TM TMS
£ > .
Q V Heating -—>
% 10 K/min
X
w
= [o.oz wig Fe-31.2Pd (at.%) [0.01 wig Fe-31.6Pd (at.%)
K
U=
- A < — <
8 tmMg tm,
I v 3 s 3
200 220 240 160 180 200 220

Temperature (K)
Fig. 2.6 DSC curves of Fe-Pd alloys with Pd concentration of 30.0 at.%, 30.8 at.%, 31.2 at.% and

31.6 at.%.

Table 2.2 FCC-FCT martensitic transformation temperatures and latent heat obtained by DSC

measurements.
M (K) AH (J-mol™)
Fe-30.0Pd (at.%) 280 70
Fe-30.8Pd (at.%) 264 38
Fe-31.2Pd (at.%) 234 21
Fe-31.6Pd (at.%) 199 5
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The latent heat (AH) is obtained as the average area of the DSC peak during heating and
cooling, which is also shown in Table 2.2. The value of the latent heat in Fe-Pd alloys is quite
small compared with that in other shape memory alloys such as Ti-Ni (995 J/mol [6]) and
Cu-Al-Ni (395 J/mol [7]). Such small latent heat in Fe-Pd alloy could be attributed to the

characteristic of the second-order-like FCC-FCT martensitic transformation.

2.4 Conclusions

The FCC-FCT martensitic transformation temperature of Fe-Pd alloys decreases with
increasing Pd content up to 33.0 at.%Pd and the transformation is suppressed in alloys including
33.1 at.%Pd and more. The latent heat of Fe-Pd alloy decreases with increasing Pd content, and
is much lower than that in other shape memory alloys, which could be attributed to the

characteristic of the second-order-like FCC-FCT martensitic transformation.
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Chapter 3

Large elastic-like deformation in the Fe-31.2Pd
(at.%) single crystals

3.1 Introduction

As introduced in chapter 1, a large elastic-like deformation with low Young’s modulus is
expected to be obtained in an Fe-Pd single crystal because of the lattice softening in the parent

phase and continuous change of lattice parameter in the martensite phase. In this chapter, we

check this behavior by compressing the Fe-31.2Pd (at.%) single crystals in the [001], direction.

The structure change under stress is studied. The largest elastic strain and defects in the

plastically deformed specimens are also investigated.

3.2. Experiments

3.2.1 Specimen preparation

Fe-31.2Pd (at.%) single crystals were prepared by the method mentioned in chapter 2.
Parallelepiped specimen composed of (100),, (010), and (001), planes with a size of

34mmx34mmxl1.4mm and 24 mmx23 mmx66mm were cut from the single crystals.
After homogenization at 1375 K for 24 h, the specimens for compressive testing were quenched

in ice water to keep the disordered parent phase. The FCC-FCT MT temperature of the present
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31.2Pd (at.%) specimen was approximately 230 K, being the same temperature as mentioned in

chapter 2.

3.2.2 Compressive tests

Compressive tests of Fe-Pd single crystals were performed using a SHIMADZU AG-I 50kN
MODEL M1 at a strain rate of 5x10° s, This strain rate is selected to ensure isothermal

conditions. During the compressive tests, the specimen was mounted in a dice and stress was

applied to the specimen through a piston as shown in Fig. 3.1(a). The longitudinal strain &,

in the [001], direction and transverse strain ¢, in the [100], (or [010],) direction were

measured by strain gages (KYOWA, KFL-02-120-C1-11) as shown in Fig. 3.1(b). The strain

gages were stuck on the surface of the specimen by a PC-6 glue.

(a’) Stress (b) [oo1], TEM
4 | ]

1 Piston

Stress U
L
e
«+ Dice [010]
— [010
> / ¥
A4 . 100],“~
1 Specimen [100], N
A &
X-ray ~ X-ray
ﬁ Stress

Stress

Fig. 3.1. Arrangement of the specimen in (a) compressive tests and (b) in-situ XRD and TEM.

The strain gage is connected with a DB-120P bridge box through a Wheatstone bridge circuit
as shown in Fig. 3.2. The strain & can be evaluated from the electric resistance change of the

strain gage AR :



g=_ 2R 3.1)
I, K-R

where [, is the length of the specimen, Alis the length change of specimen, K is the constant
factor and R is the electric resistance of the strain gage. The small change of electric resistance
is indicated by an amplified output voltage by a DYNAMIC STRAIN AMPLIFIER
(DPM-711B). The strain ¢ and the output voltage e, have a relationship as:

e, =%K€E =%8E , (3.2)

where E is the bridge voltage (input), B is the calibration coefficient when the bridge voltage
E=1V and output voltage e, =1pV . In the present study, the coefficient is 5x10”. Due to the

limitation of the strain gage, the strain over 4% was obtained by calibrating the crosshead

displacement.

specimen :
i R R(constant)
5
& £
e
L]
4_/
R
™ Y
- E >

(input)

Fig. 3.2 Wheatstone bridge for the measurement of a strain by one-gage method.

3.2.3 Structural investigation

The change in crystal structure under stress was monitored by an in-situ XRD using Cu- K,

radiation. The compressive direction is [001], and the reflection plane of the X-ray is (200),
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(or (020), ) as shown in Fig. 3.1(b). After a plastic deformation, the surface relief was observed

under an optical microscope. The structure of the specimen after the plastic deformation was
also measured by XRD at 300 K. Defects in the plastically deformed specimen were studied by

a transmission electron microscope (TEM). Disks for TEM observation were spark cut from the

plastically deformed specimen such that the face normal was close to the [001], direction.

Thin foils were then prepared by jet-polished in an electrolyte composed of 85% acetic acid and
15% perchloric acid at 280 K. TEM observations were made at room temperature using a

HITACHI H-800. The operation was made at an accelerating voltage of 200 kV.

3.3. Results

3.3.1 Elastic-like deformation

Figure 3.3 shows stress-strain curves of the Fe-31.2Pd (at.%) single crystal compressed in

the [001], direction up to 100 MPa at the fixed temperatures indicated in the figure. The
uniaxial stress o,; are plotted as a function of the longitudinal strain &, in the [001],
direction (Fig. 3.3(a)) and the transverse strain ¢, in the [100], (or [010],) direction (Fig.
3.3(b)). Noted that o,, and ¢,, are negative values, while &, is a positive value in

compressive tests. The strains &;, and ¢, are reversible and exhibit quite small stress

hysteresis (less than 4 MPa), and the strains increase with decreasing temperature. The small

stress hysteresis may have been caused by the friction between the dice and piston used for
measurement. At 240 K (near the transformation temperature), the strains |£33| and &, under

stress of 100 MPa reach 3.7% and 1.6%, respectively. At 240 K, relatively flat “plateau” appear

in the stress-strain curves in the region from 4 MPa to 12 MPa extending across a strain of 1.2%
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in |e;| and that with a strain of 0.7% in &, as indicated by dashed lines in the figure. These
strains are regarded as transformation strains, which we further described in section 3.4.2.

Poisson’s ratios (Ig11 / 833| ) was calculated to be approximately 0.4 at all temperatures.

~

- (MPa) £

s o » B B
o o o o o

Stress, ~o
b

ocE . . 1 !
0.0 05 | 1.0 15
0.7% Strain, €, (%)

Fig. 3.3. Stress-strain curves of the Fe-31.2Pd (at.%) single crystal compressed in the [001],
direction at different fixed temperatures: (a) longitudinal strain —g&,, versus the applied stress

-o,, and (b) transverse strain g, versus the applied stress —o,,. The ranges of dashed lines

indicate the transformation strains at 240 K. The square marks in (b) represent the strains

calculated from in-situ XRD.
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Figure 3.4 presents the stress-strain curves of the Fe-31.2Pd (at.%) single crystal compressed

in the [001], direction up to 100 MPa at 226 K (a) and 126 K (b) (below the transformation

temperature 230 K). The solid line presents loading and unloading processes of the fist cycle,
and the dashed line is that of the second cycle. It is found that there is unrecovered strain after
the first cycle. This is attributed to the difference in the fractions of three martensite variants
between loading and unloading processes. It should be noted that, in the first cycle, the
stress-strain in the unloading process is different from that of the conventional SMAs where
the strain decreases almost linearly with decreasing the applied stress. The large recoverable
strain in the Fe-Pd single crystal in the loading process may be attributed to the rotation of the
magnetic domain accompanied with structural change or the experimental error of strain gages.
In the second cycle, the strain becomes almost recoverable due to the single martensite variant
in both processes. This behavior will be further discussed in section 3.3.2. The reversible stains
at 226 K and 126 K under stress of 100 MPa in the second cycle reach approximately 3% and

2.2%, respectively.
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Fig. 3.4. Stress-strain curves of the Fe-31.2Pd (at.%) single crystal compressed in the [001],

direction at 226 K (a) and 126 K (b), where the solid line is the first cycle of loading and

unloading process and the dash line is the second cycle.

From the results in Fig. 3.3(a) and 3.4, the Young’s modulus in the [001], direction Eg,,

is evaluated as a function of temperature as shown in Fig. 3.5. It should be noted that the
Young’s modulus above the transformation temperature is evaluated at the start point of the

stress-strain curves, and that below the transformation temperature is evaluated from the linear

part at the high stress region of the stress-strain curves. The E,, in the parent phase

significantly decreases with decreasing temperature, where its value is approximately 12.6 GPa
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at 300 K and 1.5 GPa at 240 K. This behavior is consistent with the temperature dependence of

the elastic constant C’ [1]. In addition, the Ey, at 240K is nearly two orders in

magnitude lower than that of conventional metals such as copper (180 GPa) [2] and even one

order in magnitude lower than that of polymer materials such as nylon (3 to 10 GPa) [3].
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Fig. 3.5. The Young’s modulus of the Fe-31.2Pd (at.%) single crystal in the [001], direction
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3.3.2 Crystal structure under a uniaxial stress

The results of XRD measurements under various different compressive stresses at
300 K, 240 K and 226 K using the method described in section 3.2.2 are shown in Figs. 3.6(a),

(b) and (c). Peaks in the profiles correspond to (200) of the Fe-Pd single crystal.
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Fig. 3.6. The change of XRD spectra of the Fe-31.2Pd (at.%) single crystal under compressive

stress in the [001], direction at 300 K (a), 240 K (b) and 226 K (¢).

At 300 K (Fig. 3.6(a)), the peak position gradually shifts to a lower angle with increasing the

applied stress and no other peak appears. This result implies that no first-order MT occurs at

300 K under the stress up to 70 MPa. This shift of peak is attributed to the expansion of the

specimen in the [100], and [010], directions, which are perpendicular to the compressive

direction. The corresponding lattice parameter, a, calculated from the peak position is plotted as

solid triangles in Fig. 3.7 with solid square.The lattice parameter increases almost linearly

with increasing the applied stress. In terms of symmetry, however, the specimen changes

from a cubic structure to a tetragonal structure and the lattice distortion gradually increases with

increasing the applied stress, as further discussed in section 3.4.1.

At 240 K (Fig. 3.6(b)), the peak position also gradually shifts to a lower angle with
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increasing the applied stress. The corresponding lattice parameter, a, calculated from the XRD
profile is plotted as solid triangles in Fig.3.7. The increase in the lattice parameter is
particularly large below 20 MPa, where the stress-induced MT should occur. However, the peak
separation expected from the coexistence of the parent phase and the martensite phase is not
clearly observed in this range possibly due to the broadness of the peak. When the applied stress
is 20 MPa and higher, the lattice parameter increases almost linearly with increasing applied
stress, which is caused by the elastic deformation in a single martensite variant. Incidentally, a
small peak appearing near 26=49.3° under applied stress of 40 MPa is thought to originate from
other martensite variants, and may have been caused by inhomogeneous stress in the specimen

during the XRD measurement.
Values of g, were calculated from the change in the lattice parameter under uniaxial stress
at 300 K and 240 K shown in Fig. 3.7 and are plotted in Fig. 3.3(b) square marks. The good

agreement between the values obtained by X-ray measurement and the results of compressive

tests confirms that the strains in Fig. 3.3 are essentially due to the continuous change in the

lattice parameter.

E 7 —-::A:

; S G :::9::-:===---

[ b"O‘ —A‘_“-_-

£ 0378} -—
.--1

o . L

iu —_—‘_____,

8 Y _—--.“"‘l

= 0375} ’.—mm

3 A 240K

) o z6k |

0o 20 40 60 80
Stress, -0, (MPa)

Fig. 3.7. The lattice parameter, a, of the Fe-31.2Pd (at.%) single crystal as a function of the

compressive stress in the [001], direction at 300 K, 240 K and 226 K.
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At 226 K (Fig. 3.6(c)), two peaks appears under zero applied stress due to the multi
martensite variants below the transformation temperature (230 K). The peak in the right hand
corresponds to the (020)/(002) of the martensite variants with the long-axis in the compressive
direction, and that in the left hand is the (200) of the martensite variant with the short axis along
the compressive direction. With increasing the applied stress, the (020)/(002) peak gradually
disappears due to the reduction of variants responsible for the peak. This behavior explains the
unrecoverable strain in the first cycle of Fig. 3.4(a). The position of (200) peak shifts to a lower
angle with increasing the applied stress, and gradually returns back to the origin position in the
unloading process. In the second loading process, there is only a single martensite variant,
which is similar to that above the transformation temperature. The corresponding lattice
parameter, a, calculated from the XRD profile in the first loading process is also marked in
Fig. 3.7 as a circle. The lattice parameter a increases almost linearly after 10 MPa, which

explains the elastic-like deformation in the second cycle shown in Fig. 3.4(a).

3.3.3 Largest reversible strain and plastic deformation

In order to investigate the largest reversible strain in the Fe-Pd single crystal in the [001],

direction, higher stress is applied at 240 K. At a stress of 250 MPa, the reversible strain was
6.5% with a quite small stress hysteresis as seen in Fig. 3.8(a). The yield point appears at
285 MPa at a strain of 7.3% as shown in Fig. 3.8(b), with residual strain of approximately 2.7%
obtained after removing the stress. This was not recovered by heating back to 300 K which is
70 K above the transformation temperature. However, when the specimen is annealed at 1273 K
for 12 h, the residual strain reduced to 1.4%. In other words, part of the residual stress (1.3% )
was recovered by annealing. In order to understand this behavior, the structure of the plastically
deformed specimen is studied by an XRD. The X-ray reflection plane is (200) (or (020)) and
measurement temperature is 300 K. The results are shown in Fig. 3.9 with the processes applied

to the specimens shown beside each figure.
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Fig. 3.8. The stress-strain curve of the Fe-31.2Pd (at.%) single crystal under compressive stress in

the [001], direction at 240 K up to 250 MPa (a) and 300 MPa (b). The arrow in (b) indicates the

recovery strain (1.3%) by annealing at 1273 K for 12 h.

The structure of the specimen before the deformation at 300K is the parent phase (FCC
structure) as shown in Fig. 3.9(a). After the loading and unloading processes at a compressive
stress of 300 MPa at 240 K, the structure of the specimen was measured again at 300 K. The
peak was found to shift to a lower angle as shown in Fig. 3.9(b). This means that the FCT
structure remains at 300 K even though this is 70 K higher than the transformation temperature.

The remaining FCT structure is probably due to stabilization of the FCT phase by residual
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internal stress in the plastically deformed specimen. After annealing at 1273 K for 12 h, the FCT

structure returns back to the FCC structure as shown in Fig. 3.9(c). From the shift in the peak
position between Figs. 3.9(b) and (c), the recovered strain in the [100], (or [010],) direction
is calculated to be approximately 0.6%. Taking Poisson’s ratio (0.4) into account, the recovered
strain in the [001], direction is estimated to be approximately 1.5%, which is consistent with
the actual recovered strain of 1.3% shown in Fig. 3.8(b). From the peak position in Fig. 3.9(b)

and the stress-strain curves at 300 K in Fig. 3.3(b), the typical value of residual internal stress

after plastic deformation is estimated to be approximately 40 MPa at room temperature.
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Fig. 3.9. XRD profile of the Fe-31.2Pd (at.%) single crystal at 300 K: (a) before compressive test;
(b) after plastic deformation at 240 K; (c) after annealing the plastically deformed specimen at

1273 K for 12 h.

Figure 3.10 shows the stress-strain curve compressed in the [001], direction up to 450 MPa

at 300 K. A yield point appears at approximately 310 MPa at a strain approximately 4.6%. The
defects in these plastically deformed specimens at 240 K and 300 K are further investigated in

section 3.3 .4.
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Fig. 3.10. The stress-strain curves of the Fe-31.2Pd (at.%) single crystals compressed in the

[001], direction at 300 K.

3.3.4 Observation of defects

Figure 3.11 shows a sketch of a plastically deformed specimen (after compression of
300 MPa at 240 K) and images of the surface reliefs observed by optical microscope at room
temperature. Parallel traces are apparent on the surface of the plastically deformed specimen. A

two-surface trace analysis suggests that the plastic deformation occurs on {111} planes. The
result of the plastically deformed specimen (after compression of 450 MPa at 300 K) is similar

to that at 240 K shown in Fig. 3.11.
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Fig. 3.11. A simple sketch of the plastically deformed Fe-31.2Pd (at.%) single crystal (after

compression of 300 MPa at 240 K) and the surface reliefs observed by an optical microscope.

To study details of the defects, the plastically deformed specimen (at 240 K) was
investigated by TEM. Figure 3.12(a) shows a typical bright-field image of a deformed region,
with (b) and (c) showing diffraction patterns taken in the vicinity of the regions indicated by B

and C, respectively. The selected-area diffraction (SAD) pattern in Fig. 3.12(b) indicates that the
matrix area (B) has a FCC structure for the beam direction of [114],. Near the band area (C),
the twin pattern for the beam direction of [110]; appears overlapped with the pattern of the

matrix as shown in Fig. 3.12(c), which is identical to the simulated electron diffraction pattern

of (111) twin in FCC crystal structure [4]. The dark-field image shown in Fig. 3.12(d) taken by
using the (111), reflection confirms the twinned structure in the band area. The thickness of
the twinned band is approximately 200 to 300 nm with twin boundary (111),, which is

consistent with the trace observed by optical microscope shown in Fig. 3.11. Although the XRD
profile after the plastic deformation exhibits a FCT profile (Fig. 3.9(b)), most part of the

specimen is FCC in the TEM specimen. The reason for the disappearance of the FCT structure
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in the TEM specimen is probably because the internal stress was relieved through the process of
preparing the TEM specimen, with the FCT structure relaxing back to the FCC structure. In
addition to the twinned structure, perfect dislocations are also observed as shown in Fig. 3.13(a).

The Burgers vector of the dislocation was determined to be a/2<110> by a contrast analysis.

The contrast obtained by exciting (220), is shown in Fig.3.13(b) as an example. This

a/2<110> is a conventional Burgers vector for FCC materials.

Fig. 3.12. TEM micrograph of a typical plastically deformed (after compression at 240 K) area: (a)
bright field image; (b) selected-area diffraction pattern from matrix area B; (c) selected-area

diffraction pattern from twinned band area C; (d) dark image of the twinned region taken by using

(11 1), reflection marked by a circle.
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Fig. 3.13. Dislocations near the twinned bands (plastically deformed at 240 K). (a) is taken by

exciting (200), reflection, and (b) is taken by exciting (220), reflection.

Figure 3.14(a) shows TEM results for a heavily deformed area. Two characteristic regions
indicated by B and C can be seen with region B characterized by parallel bands and the region C

by zigzag bands. The SAD pattern of region B shown in Fig. 3.14(b) is indexed as the FCT

structure for the beam direction of [121].., . In the tetragonal structure, the angle between

(202),.; and (111),c, reflections is given by

1-(c/a)’

: 3.3
Ja+(c/a))2+(c/a)) e

cosO =

where @ and ¢ are the lattice parameters of the martensite phase. In the present case, the angle ¢
is approximately 92°. Using the equation (3.3), the tetragonality c/a is calculated to be

approximately 0.96, which is consistent with the XRD results in Fig. 3.9(b).

Incidentally, the SAD pattern from the region C (zigzag bands) in Fig. 3.14(c) is indexed by

the BCC structure with the beam direction of [111],... However, the BCC structure is not

detected in the deformed specimen by XRD (Fig. 3.9(b)). This may be attributed the BCC

region having a small volume fraction.
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Fig. 3.14. TEM observation of a heavily plastically deformed (at 240 K) area: (a) bright-field

image; (b) selected-area diffraction pattern of FCT structure from the area B; (c) selected-area

diffraction pattern of BCC structure from the area C.

The main defect in the deformed specimen (at 300 K) is also the mechanical twinning

{111 }/%<l 12> . Figure 3.15(a) is a typical bright-field image of a deformed region, and (b) and

(¢) are diffraction patterns taken in the vicinity of the regions indicated by B and C, respectively.

The selected-area diffraction (SAD) pattern in Fig. 3.15(b) indicates that the matrix area (B) has

FCC structure for the beam direction of [114],. Near the band area (C), the twin pattern for the

beam direction of [110], appears overlapped with the pattern of the matrix as shown in

Fig. 3.15(c). The dark-field image in Fig.3.15(d) taken by using (111), reflection confirms

the twinned structure in the band area. The perfect dislocation is also observed as shown in Fig.
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3.16. The Burgers vector of the dislocation is determined to be a/2<110>, which is similar to

the results of the plastically deformed specimen (after compression at 240 K).

Fig. 3.15. TEM micrograph of a typical plastically deformed (after compression at 300 K) area: (a)
bright field image; (b) selected-area diffraction pattern from matrix area B: (c) selected-area

diffraction pattern from twinned band area C; (d) dark image of the twinned region taken by using

(111), reflection marked by a circle.
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Fig. 3.16. Dislocations near the twinned bands (after the plastically deformed at 300 K).

3.4. Discussion

3.4.1 Transformation strain and elastic strain

In most metals, the elastic deformation persists up to a strain of only approximately 0.5% [5].
In an Fe-31.2Pd (at.%) single crystal, however, a large elastic-like strain of more than 6% was
observed in the present study. To understand this behavior, the stress-strain curves in Fig. 3.3(a)
were further analyzed. Young’s modulus (or the modulus of elasticity) is usually determined

from the initial slope of a stress-strain curve. However, since the slope varies significantly with

stress in an Fe-Pd single crystal the values of do,, /de,, inFig.3.3(a) at 300 K and 240 K are

evaluated as a function of the applied stress —o ;. Calculations are made on the loading process

with the results shown in Fig. 3.17.
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Fig. 3.17. The value of do,, / de,, calculated from Fig. 3.2(a) as a function of the applied stress

~o,, at300K and 240 K.

The initial value of do,,/de,, can be regarded as the Young’s modulus in the [001],
direction E,, , which has been discussed in section 3.31. At 240 K, the value of do,, /dée,,
initially decreases with increasing applied stress, then exhibits a minimum near 4 MPa, and
begins increaseing. The decrease in do, / de,, has also been reported in Cu-Al-Ni SMAs [6],
and this behavior was interpreted as the stress-induced lattice softening of the parent phase. The
increase in do,, / de,, after the minimum is a property of the stress-induced martensite phase.
Although it is not easy to exactly determine the start stress for inducing MT, the value is

expected to be a little lower than the stress where do,, / ds,, exhibits the minimum (4 MPa).

This critical stress is much lower than that of conventional SMAs. For example, the stress for
that induces MT in a Ni-Ti alloy is approximately 100 to 300 MPa (at 10 K above 4y) [7.8],
which is much higher than the present result. At 300 K, the value of do,,/de,, decreases
monotonically with increasing applied stress. This result implies that no stress-induced MT
occurs at this temperature, but that softening of the parent phase does occurs. Consequently, the

tetragonal structure at 300 K under compressive stress up to 100 MPa should be regarded as the

elastically deformed parent phase. The agreement between the elastic strain obtained from the
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strain gage (Fig. 3.3(b)) and from in-situ XRD (Fig. 3.6(a)) also supports the elastic deformation

of the parent phase.

Considering the dependence of do,, /de,, on applied stress, we can classify the large
elastic-like strains at 240 K in Figs. 3.3 and 3.8(a) into three parts: (I) the elastic strain of the
parent phase, (II) the transformation strain and (III) the elastic strain of the martensite phase.

From the start point (|0'33| = 0 MPa) to the starting stress for inducing MT (|0'33| = 4 MPa), the

specimen undergoes the elastic deformation in the parent phase. Due to the quite low value of

the critical stress for inducing MT at 240 K, the elastic strain in the parent phase is small

(|833|:0.2% and &,=0.1%) despite the small value of Young’s modulus in the [001],

direction.
When the applied stress exceeds the start stress for inducing MT, the stress-induced

martensite phase appears. The coexistence of two phases detected by an in-situ XRD confirms

the stress-induced MT. The transformation strains |A833| and |A£”| evaluated from Fig. 3.3

was approximately 1.2% and 0.7%, respectively. The transformation strains can also be

calculated from the change in the lattice parameters at the transformation temperature as
|agss|=(a,-c)a, and |ag,|=(a-a,)a,, (3.4)

where aj is the lattice parameter in the parent phase, and a and c are the lattice parameters in the
martensite phase. Temperature dependence of the lattice parameters of an Fe-31.2Pd (at.%)

alloy [9] is shown in Fig. 3.18. Near the transformation temperature, the lattice parameter

a=0.3787nm, ¢=0.3709 nm and a,=10.3759 nm, and the calculated result of IA833| and

|A8”| are approximately 1.3% and 0.8%, respectively. These values are consistent with the

ranges of the relatively flat “plateaus” in the stress-strain curves in Fig. 3.3.
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Fig. 3.18. Temperature dependence of the lattice parameter of an Fe-31.2Pd (at.%) alloy [9].

After the transformation strains, the large reversible strains with negligible stress hysteresis
appears. They are caused by the elastic deformation in the martensite phase. The agreement
between the elastic strains obtained from the strain gage (Fig. 3.3(b)) and from an ir;-situ XRD
(Fig. 3.6(b)) confirms the elastic deformation of a single martensite variant. The continuous
increase in lattice distortion (1-c/a) with increasing the applied stress in the single martensite
variant is essential for the large elastic-like strain. As the applied stress increases the elastic
strain of the martensite phase reaches approximately 5% as shown in Fig. 3.8(a).

In conventional SMAs that have a typical first order MT, the reversible strain mainly comes
from the transformation strain (II). In the present case, however, the large reversible strain
mainly comes from the elastic strain in the martensite phase (II). In addition, compared with
other SMAs such as Ti-Ni [7,10] and Fe-Ni-Co-Al-Ta-B alloys [11] exhibiting a typical
first-order MT, the stress hysteresis in the stress-strain curves of Fe-Pd single crystal is
negligibly small. This means the energy dissipation during the loading and unloading process is

extremely small, which is characteristic to an elastic deformation.

3.4.2 Near-ideal shear strength
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TEM observation (Fig. 3.11 and 3.15) of the plastically deformed Fe-Pd single crystals has

revealed that the plastic deformation is mainly caused by the mechanical twinning with the
{111}/%<112> deformation system. Mechanical twinning is frequently observed in FCC

metals at cryogenic temperatures and low strain rates [12,13]. However, this kind of large
elastic-like strain is rarely observed in metallic materials except for some whiskers [14,15] or
nanoscale materials [16]. In these materials, the shear strengths are reported to be close to the
ideal values. In the following, we compare the shear strength of the Fe-31.2Pd (at.%) single

crystal with the ideal shear strength.

The critical resolved shear stress 7., is given by the Schmid’s law
Terss =0y COs@cos A, (3.5
where o, is the yield stress and cosgcosA is Schmid factor. The yield stress of an

Fe-31.2Pd (at.%) single crystal in the [001], direction at 240 K and 300K is 285 MPa and

310 MPa, respectively. In the present study, the plastically deformed specimen is tetragonal

structure, and the Schmid factor for the {111}/ %<1 12> deformation system is given by

V2(c/a)

Qc/a)+1)’ 3.6)

cosgcosd =

where the tetragonality c/a of the plastically deformed Fe-31.2Pd (at.%) single crystal at 240 K
and 300 K is evaluated to be approximately 0.89 and 0.93, respectively. Then 7., at 240K
and 300 K is calculated to be 139 MPa and 149 MPa, respectively.

The ideal shear stress 7., of a perfect Fe-Pd single crystal is give by the Frenkel model as

[17]

Gb
TipEAL = % >

where G is the shear modulus on the slip plane, b is the slip distance and d is the spacing

(3.7)

distance between the slip planes. In the case of the {111}/ —;—<1 12> twinning system, b and d

52



are a/\J6 and al\3, respectively, where a is the lattice parameter of the FCC structure. The

shear modulus G on the {111} plane is expressed as (2C'+C,,)/3 regardless of the shear

direction [18], where C' is the shear modulus in the <I110> direction on the {110} planes
and C,, is the shear modulus in the <010> direction on the {001} plane. In a cubic system,
the relationship between the elastic constant C' and Young’s modulus in certain direction E is
[18]:

Lo Dememn e ny, (3.8)
E 9K 3C' C, C'

where K =(C,,+2C,,)/3 is the bulk modulus and /, m, n are the direction cosines of the

uniaxial stress. In the case of compression in the [001], direction, the elastic constant C' can

be further expressed as:

3 3E 0, K

-1k (3.9)
9K — E o,y

2

where the bulk modulus K of the Fe-30.0Pd (at.%) alloy is reported to be approximately

120 GPa [1]. We regard this value is the same with that of the Fe-31.2Pd (at.%) alloy. Using the

average value of Young’s modulus E,, ~6 GPa in the stress region above 100 MPa at

240 K as shown in Fig. 3.11, the elastic constant C' at 240 K is calculated to be approximately

2 GPa. The elastic constant C' at 300 K is calculated to be approximately 3.4 GPa, with the

Young’s modulus E,, ~10 GPa in the beginning region.
Using the Voigt approximation, the elastic constant C,, can be expressed by in terms of the

Young’s modulus of polycrystal E,, ., and the elastic constant C' [19,20]:

_ SEpy, K + Epy 13 -3KC" G10)

“ 9K - E

Poly

We measured Young’s modulus of an Fe-31.2Pd (at.%) polycrystal at 240 K and 300 K, and the
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value is approximately 25.1 GPa and 40 GPa (see chapter 4), respectively. From the obtained

elastic constant C' mentioned above and the bulk modulus K (=120 GPa [1]), the elastic

constant C,, at 240K and 300 K is calculated to be 14.1 GPa and 21.9 GPa, respectively. So,
the shear modulus (2C'+C,,)/3 in the {111}/—;—<1 12> shear system at 240 K and 300K is

approximately 6 GPa and 9.6 GPa, respectively. Then the ideal shear strength 7., of a

perfect Fe-31.2Pd (at.%) single crystal at 240 K and 300 K is evaluated to be approximately

660 MPa and 1 GPa. From above calculations for the Fe-31.2Pd (at.%) single crystal, we find

that the ideal shear stress 7., (660 MPa) is nearly five times as large as the critical resolved
shear stress (139 MPa) at 240 K; the ideal shear stress 7., (1 GPa) is nearly seven times as
large as the critical resolved shear stress (149 MPa) at 300 K.

In most bulk metals, the experimentally measured critical resolved shear stress (7 ) is far

below the ideal shear stress (7,, ) with the ratio 7, /7 ranging from 10% to 10° [21].

Low 74 in bulk materials mainly arises from the movement of dislocations in the specimen.

Near-ideal strength could be obtained when there are no initial dislocations in a specimen, such
as whiskers and nanoscale materials. However, bulk materials without dislocations are
extremely hard to manufacture. To the best of our knowledge, the only reported bulk material
with near-ideal strength is Gum Metals which has a BCC structure [20,22]. The Fe-31.2Pd (at.%)
single crystals in this work is the first reported bulk metal with FCC structure exhibiting a

near-ideal shear strength.

3.5. Conclusions

The deformation behavior in the Fe-31.2Pd (at.%) single crystals exhibiting a

second-order-like FCC-FCT MT is investigated by compressive tests in the [001], direction.
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From the results, the following conclusions have been reached:

(1) A large elastic-like strain of more than 6.5% with quite small stress hysteresis appears
slightly above the transformation temperature (240 K) under stress of 250 MPa. Most of the
large elastic-like strain is caused by the continuous change of structure in a single variant
martensite variant.

(2) A yield point appears when the strain exceeds 7.3% compressed at 240 K under stress of
285MPa, and the residual strain did not recover by heating to 300 K. A similar yield point
appear under 310 MPa at a strain approximately 4.6% compressed at 300 K. Introduction of
mechanical twinning with twin boundary {111} is the main reason of the residual strain for
both the plastically deformed specimens at 240 K and 300 K. Stress-induced BCC structure
also appears in heavily deformed area. The shear strength of the Fe-31.2Pd (at.%) single
crystal is close to the ideal value, which is first reported in bulk materials with FCC

structure.
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Chapter 4

Influence of various conditions on the limit of

elastic strain in Fe-Pd alloys

4.1. Introduction

As described in chapter 3, more than 6.5% elastic-like strain is obtained in the Fe-31.2Pd
(at.%) single crystals in the [001], direction at 240 K. Considering that Young’s modulus
strongly depends on temperature and compressive direction, we can expect that the limit of the
elastic strain in Fe-Pd alloys also significantly depends on these factors. Therefore, in this

chapter, we examine the influence of temperature, compressive direction and grain boundary on

the limit of the elastic strain in the Fe-Pd alloys.

4.2. Experiments

In this chapter, we use two alloys, Fe-31.2Pd (at.%) and 30.8Pd (at.%). The polycrystalline
and single crystal specimens were prepared as described in chapter 2. The details of the
specimens and compressive direction are listed in Table 4.1. The FCC-FCT MT temperature of
the present Fe-31.2 (at.%) and 30.8Pd (at.%) alloys are approximately 230 K and 250 K, being

the same temperature as mentioned in chapter 2. The grain size of the polycrystalline specimens
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is approximately 150 to 350 um. The compressive tests were conducted under the same

condition mentioned in chapter 3.

Table 4.1. Details of the specimens for the compressive tests.

Composition Size of the specimen Compressive
(at.%) direction
Fe-31.2Pd 3.4 [100], mmx3.4 [010], mmx11.4 [001] mm [001],
Fe-31.2Pd 2.4[100], mmx2.3{010], mmx 6.6[001], mm [001],
Fe-31.2Pd 27mmx2.7mmx13.9 mm (polycrystal) —
Fe-30.8Pd 3.3[100], mmx3.4 [010], mmx11.0 [001], mm [001],
Fe-30.8Pd 2.7 [100], mmx2.7 [010], mmx 7.0 [001], mm [011],

4.3. Results and discussion

4.3.1 The influence of temperature on the limit of the elastic strain

Figure 4.1 shows the stress-strain curves of the Fe-31.2Pd (at.%) single crystals compressed
in the [001], direction at 240 K (a) and 300 K (b), respectively. The dashed lines indicate the
elastic deformation, and solid lines are the plastic deformation. A clear yield point appears in the

stress-strain curve of single crystal. The yield stress in the [001], direction is 285 MPa at

240K and that is 310 MPa at 300 K; the corresponding elastic strains are 7.3% and 4.6%,

respectively. As mentioned in chapter 3, the plastic deformation of the Fe-31.2Pd (at.%) single

crystals compressed in the [001], direction at 240 K and 300K is mainly caused by the
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Fig. 4.1. The stress-strain curves of the Fe-31.2Pd (at.%) single crystals compressed in the [001],

direction at 240 K (a) and 300 K (b). The dashed lines indicate the elastic deformation.

4.3.2 Influence of orientation on the limit of the elastic strain

Figures 4.2(a) and (b) present the stress-strain curves of the Fe-30.8Pd (at.%) single crystals

compressed in the (a) [001], and (b) [011], directions at different fixed temperatures (above

the transformation temperature) indicated in the figures. The elastic-like strain in the [001],
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direction also reaches approximately 3.7% under 100 MPa at 255 K. Owing to the similar Pd

concentration, the elastic-like strain of the Fe-30.8Pd (at.%) single crystal in the [001],

direction is almost same as that of the Fe-31.2Pd (at.%) single crystal shown in chapter 3.

However, the elastic strain in the [011], direction is much smaller than the value in the [001],

direction at the same temperature and stress. The corresponding Young’s modulus of the

Fe-30.8Pd (at.%) single crystals in the [001], and [011], directions are evaluated in Fig.

4.2(c). Comparing with these two Young’s modulus, we found that the Young’s modulus in the

[001], direction is approximately eight times as large as that in the [011], direction.
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Fig. 4.2. The stress-strain curves of the Fe-30.8Pd (at.%) single crystals compressed in the (a)

[001], and (b) [011], directions at different fixed temperatures indicated in the figures. (c) The

temperature dependence of Young’s modulus in the [001], and [011], directions.
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Figure 4.3 shows the limit of the elastic strains of the Fe-30.8Pd (at.%) single crystals in the

(a) [001], and (b) [011], directions at 255 K obtained by applying a larger stress. The dashed

lines indicate the elastic deformation, and the solid lines are the plastic deformation. A clear

yield point also appears in the stress-strain curve of single crystal. The yield stress in the [001],
direction is 270 MPa and that in the [011], direction is 295 MPa; the corresponding elastic

strains are 7.5% and 1.6%, respectively. The limit of the elastic strain in the [001], direction of

the Fe-30.8Pd (at.%) single crystal reaches approximately 7.5%, which is almost the same as

that of the Fe-31.2Pd (at.%) single crystal. However, the limit of the elastic deformation in the

[011], direction is much shorter than that in the [001], direction. This means that the limit of

the elastic strain of the Fe-Pd single crystal significantly depends on the compressive direction.
This behavior should be attributed to the large elastic anisotropy in Fe-Pd alloy, which will be

further described in section 4.3.3.

The deformation system of the Fe-30.8Pd (at.%) single crystal compressed in the [001],

direction at 255 K should be the mechanical twinning {111}/ %<1 12>, being the same as that
of the plastically deformed Fe-31.2Pd (at.%) single crystal at 240 K. The critical resolved shear

stress 7.pgs 1S calculated to be 131 MPa. In the case of the Fe-30.8Pd (at.%) single crystal
compressed in the [011], direction at 255K, the 7., in the mechanical twinning system
{111}Y/ %<1 12> is calculated by a modified Schmid factor:

cosgeosAd =~2(c/a)/ (2c/a)* +1), 4.2)
where the tetragonality ¢/a in this case is approximately 0.98. The corresponding 7 pg is
evaluated to be 140 MPa. It is also found that the 7, under compressive stress in the [011],
direction is close to that in the [001], direction. This means plastic deformation may occurs in

the mechanical twinning system {111}/ %<112> when compressed in the [011], direction.
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Further TEM experiments are needed to confirm the plastic deformation system in the [011],

direction.
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= 300t |
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300 295MPa —
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T=255K

1 2
Strain, =& (%)

Fig. 4.3. The stress-strain curves of the Fe-30.8Pd (at.%) single crystals compressed in the (a)

[001], and (b) [011], directions at 255 K. The dash lines indicate elastic deformation.

4.3.3 Influence of grain boundary on the limit of the elastic strain

Figure 4.4 shows the stress-strain curves of the Fe-31.2Pd (at.%) polycrystal compressed up

to 50 MPa at different fixed temperatures as indicated in the figure.
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Fig. 4.4. The stress-strain curves of the Fe-31.2Pd (at.%) polycrystal compressed up to 50 MPa at

different fixed temperatures indicated in the figure.

The corresponding Young’s modulus is evaluated in Fig. 4.5(a). It is found that the Young’s

modulus of the polycrystal is much higher than that of the single crystal in the [001], direction.
Based on the Young’s modulus in the [001], direction and of polycrystal, the elastic constant
C' and C,, of an Fe-31.2Pd (at.%) alloy can be evaluated. As mentioned in chapter 3, the

elastic constant C' can be expressed as [1]:

' 3E'[001]P K

- 4.3)
9K — Eo,

*

where the bulk modulus X is assumed to be approximately 120 GPa [2] in present study. Using

the Young’s modulus in the [001], direction shown in Fig. 4.5(a), the elastic constant C' is
evaluated in Fig. 4.5(b). The elastic constant C,, can also be expressed by the Young’s

modulus of polycrystal E,,, and the elastic constant C' [3.4]:

_ S, K + By, CY3-3KC' @)

C
# 9K - E

Poly

Using this formula, the elastic constant C,, is also evaluated in Fig. 4.5(b), which is much
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higher than the elastic constant C'.
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Fig. 4.5. (a) The Young’s modulus of the Fe-31.2Pd (at.%) polycrystal compared with the values

in the [001], direction. (b) Temperature dependence of the calculated elastic constants C' and
C,.

The limit of the elastic strain of poly crystal at 240 K is also examined, and the result is
presented in Fig. 4.6. The yield stress is approximately 150 MPa, and corresponding elastic
strain is approximately 0.75%. These values are consistent with those reported in an Fe-30.5Pd

(at.%) polycrystal [5]. If we assume the largest Schmid factor (0.5), the critical resolved shear
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Stress Tipgs turns out to be 75 MPa. It is found that the limit of elastic strain and the 7., are

both much lower than that of the single crystals, especially the limit of elastic strain. This is
mainly attributed to the large elastic anisotropy (C,,/C'~28 for an Fe-31.2Pd (at.%) alloy at
240 K). Due to this large elastic anisotropy, the elastic strains generated in the grains with
different orientations are quite different, and the imcompatibility of these elastic strains leads to

high stress concentration at grain boundary. So, the plastic deformation occurs at relative low

stress with small strain. This behavior is also reported in Cu-based SMAs with the large elastic
anisotropy (e.g. C,,/C'~13 [6] for Cu-Al-Ni alloy and C,,/C'~15 [7] for Cu-Zn-Al alloy).

However, the polycrystalline Ti-Ni SMAs exhibiting a low elastic anisotropy (approximately 2)

show well superelastic behaviors [8,9].

0L T=240K

0.75%

|

b %01 150MPa—

0.25%
—_

Strain, -¢ (%)
Fig. 4.6 The stress-strain curves of an Fe-31.2Pd (at.%) polycrystal at 240 K.

4.4. Conclusions

The influence of various conditions on the limit of the elastic strain in Fe-Pd alloys is

investigated. The limit of the elastic strain of Fe-Pd alloys significantly depends on temperature,
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which is probably attributed to the strong temperature dependence of elastic constant C°. The
limit of the elastic strain is also significantly influenced by compressive direction and grain
boundary because of the large elastic anisotropy in Fe-Pd alloy. On the other hand, the critical
resolved shear stress is not significantly influenced by temperature and compressive direction;

however, it is largely decreased by the existence of grain boundaries.

69



References

[1]S.S. Brenner, J. Appl. Phys., 27 (1956) 1484.

[2] S. Muto, R. Oshima and F. E. Fujita, Acta. Metall., 38 (1990) 685.

[3] S. S. Brenner, Science, 128 (1958) 569.

[4] G. Richter, K. Hillerich, D. S. Gianola, R. Monig, O. Kraft and C. A. Volkert, Nano Lett., 9
(2009) 3048.

[5] H. Kato, Y. C. Liang and M. Taya, Scr. Mater., 46 (2002) 471.

[6] M. Suezawa and K. Sumino, Scr. Metall. 10 (1976) 789.

[7] G. Guénin, M. Morin. P. F. Gobin, W. Dejonghe and L. Delaey, Scr: Metall., 11 (1977) 1071.
[8] S. Miyazaki, Y. Ohmi, K. Otsuka and Y. Suzuki, J. Phys., 43 (1982) C4-255.

[9] T. Saburi, S. Nenno, Y. Nishimoto and M. Zeniya, J. Iron and Steel Inst. Japan, 72 (1986)

571.

70



Chapter 5

Stress-temperature phase diagram of Fe-Pd

single crystals with a critical point

5.1 Introduction

As introduced in chapter 1, a critical point is expected to be obtained in an Fe-Pd single
crystal by compressing in the [001], direction. We can expect the critical point because the
symmetry of the elastically deformed parent phase is the same as that of the martensite phase.
In addition, the tetragonality of an elastically deformed Fe-31.2Pd (at.%) single crystal
reaches approximately 0.98~0.93 under compressive stress of 100 to 300 MPa in the [001],
direction, which reaches the tetragonality of the martensite phase with 0.98 to 0.94 at 220 to
77 K, as described in chapter 3 and 4. Such critical point has been reported in the liquid-gas

phase diagram of water due to the same symmetry of these phases [1,2]. So, in this chapter,

the stress-temperature phase diagrams of Fe-30.8 and 31.2Pd (at.%) single crystals are

constructed by compressive tests in the [001], direction, and the corresponding critical

~

points are checked. The related behaviors are analyzed in the frame work of the Landau

theory.

5.2 Experiments

The single crystals of Fe-30.8 and 31.2Pd (at.%) were prepared as described in chapter 2.
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Parallelepiped specimens composed of (100),, (010), and (001), planes with size of

33mmx33 mmx11.0 mm (30.8 at.%Pd) and 3.4 mmx3.4 mmx11.4mm (31.2 at.%Pd)
were cut from the single crystals. The FCC-FCT MT temperatures of the present single
crystals are the same as the temperature mentioned in chapter 2. The compressive tests were
conducted under the same condition mentioned in chapter 3. The strain-temperature curves
were obtained by thermal cycle tests in the temperature range between 150 K and 360 K with

the cooling and heating rate of 1 K/min under constant compressive stresses 0 to 80 MPa in

the [001], direction.

5.3 Results

5.3.1 Stress-strain curves

Figure 5.1(a) shows stress-strain curves of an Fe-31.2Pd (at.%) single crystal compressed
up to 100 MPa in the [001], direction at fixed temperatures indicated in the figure. As
confirmed in chapter 3, the stress-induced MT occurs at 240 K, and the stress for inducing
MT can be determined by the minimum in the curve of do,, /de,, as a function of the
applied stress. In order to investigate the stress for inducing MT at different temperatures, the

stress-strain curves in the loading process are further analyzed by the curve of do,, /de,, as

a function of the applied stress —o,, shown in Fig. 5.1(b). It is found that a minimum

appears in the temperature range between 240 K and 290 K. This minimum corresponds to the
stress for inducing the MT which is between the start and finish stresses for inducing MT.
However, the stress-induced MT does not occur when the temperature above 280K, which
will be further described in section 5.4. From the minimums in Fig. 5.1(b), the stress for
inducing MT as a function of temperature is drawn in Fig. 5.1(c)

According to the Clausius-Clapeyron relationship, the equilibrium stress at temperature 7'
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between the parent and martensite phases is given as:
do _ AS _ AH
dl Ae The’

where o is the stress for inducing MT, AS is the change of the entropy, AH is the latent

6.1

heat from MT, T is the transformation temperature, Ae is the transformation strain in the

[001], direction at the MT temperature. For the Fe-31.2Pd (at.%) single crystal, AH at

230 K is approximately 25 J/mol, which is obtained from DSC measurement in chapter 2. The
transformation strain Ae at 230 K is approximately 1.3% as calculated in chapter 3. By
substituting the above values into eq. (5.1), the do/dT is calculated to be approximately
1.1 MPa/K. This result is consistent with the slope 1.2 MPa/K in Fig. 5.1(c). Therefore, we

may regard the minimum in Fig. 5.1(b) as the stress for inducing MT.
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Fig. 5.1. (a) The stress-strain curves of Fe-31.2Pd (at.%) single crystal compressed in the
[001], direction at different fixed temperatures indicated in the figure. (b) The do,, /de,,
calculated from (a) as a function of the applied stress -o,, at different temperatures. (c)
Temperature dependence of the stress for inducing MT (between the start and finish stresses for
inducing MT).
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5.3.2 Strain-temperature curves

The strain-temperature curves of an Fe-31.2Pd (at.%) single crystal are obtained by thermal

cycling tests under different constant stresses as shown in Fig. 5.2(a). The stress-induced MT
temperature M and A7 are determined by a tangent method, and the transformation strain
Ag is determined from the difference in strain between the cooling and heating processes at

M, . These methods are illustrated in a magnified figure in Fig. 5.2(b). Dependence of the
applied stress in the [001], direction on the stress-induced transformation temperatures

M and A% is shown in Fig. 5.2 (c). M? and A7 linearly increase with increasing the
applied stress, and the points are fitted in lines with slopes of 1.2 and 1.0 K/MPa, respectively.
The slope of M curve is almost consistent with that obtained from stress-strain curves
shown in Fig. 5.1(c). With increasing the applied stress, the temperature hysteresis between
M? and A7 decreases, and disappear under 36 MPa.

With extending these two lines, a crossing point appears at (36 MPa, 280 K). At this stress,
M is expected to coincide with A7. The agreement between M7 and A7 implies that

the point (36 MPa, 280 K) could be a critical point. On the other hand, the transformation

strain Ag dependence of the applied stress —o,, is shown in Fig. 5.2(d). It is found that

Ag decreases with increasing the applied stress. The points in Fig. 5.2(d) are also fitted in a
line with a slope of -0.04 %/MPa. With extending the line, the transformation strain becomes

zero under 37 MPa, which is consistent with the critical stress in Fig. 5.2(c).
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Fig. 5.2. (a) The strain-temperature curves of an Fe-31.2Pd (at.%) single crystal under different

constant stresses in the temperature range between 150 K and 320 K, (b) the methods of

determining stress-induced MT temperatures M7 and A7 and the transformation strain Ae ,

(c) the stress-induced MT temperatures M7 and A7 as a function of the applied stress —o, .

(d) the transformation strain Ae as a function of the applied stress —a, .
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The similar strain-temperature curves are also measured in an Fe-30.8Pd (at.%) single

crystal, and the results are presented in Fig. 5.3. With extending the transformation
temperature M and A7 curves, a crossing point appears at (100 MPa, 330 K). The

corresponding transformation strain Ag also decreases with increasing the applied stress
with a slop of -0.02 %/MPa. With extending the line, Ae becomes zero under approximately

100 MPa, which is consistent with the critical stress in Fig. 5.3(b).
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Fig. 5.3. (a) The strain-temperature curves of an Fe-30.8Pd (at.%) single crystal under different

constant stresses in the temperature range between 200 K and 360 K, (b) the stress-induced MT
temperatures M7 and A7 as a function of the applied stress —o,,, (¢) the transformation

strain A¢ as a function of the applied stress —o, .
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5.4 Discussion

5.4.1 Landau theory for SMAs

The reversibility between the high symmetrical structure (the parent phase) and the low
symmetrical structure (the martensite phase) indicates that this transformation could be
analyzed in the framework of the Landau theory. In theory, the Gibbs free energy of SMAs
could be expanded as a power series of spontaneous strain (order parameter). The difference

in the Gibbs free energy between the phases can be given by [3-6]:
AG=%OL(T—7;)£2+§BE3+%C84—0'8, (5.2)

where o>0, C >0 and B <0, o is the external uniaxial stress, ¢ is the corresponding
spontaneous strain. The difference in Gibbs free energy AG as a function of the spontaneous
strain & is drawn in Fig. 5.4. The minimum of the Gibbs free energy at the original point
represents the parent phase, and additional minimum of the Gibbs free energy corresponds to
the martensite phase. The spontaneous strain & of the stable or metastable phase is
determined by the minimization of AG with respect to the strain:

9AG _ O*AG

0 and pe

>0. 5.3
oe £ (3-3)

When the external uniaxial stress is o =0, the AG as a function of the spontaneous

strain & at different temperature can be drawn as Fig. 5.4(a). In the high temperature range

2
T>T, (T,=T, +4B—C ), there only exists the parent phase with minimization of AG at the
a

.. . . . B’
origin point. With decreasing temperature to the range of T,>7T>T, (T,=1I, +9—5 ), another
o

N 2B . .
minimization appears at ¢ =_§E which corresponds to the metastable martensite phase.
When the temperature is above T, the parent phase is the stable phase with relative lower

Gibbs free energy. With further decreasing the temperature to the range of 7,>7>T,, the

parent phase becomes the metastable phase and the martensite phase becomes the stable phase.

It is should noted that there is always energy barrier between the parent and the martensite

phases in the temperature range between 7, and 7, as indicated in a magnified figure in
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Fig. 5.4(a). When the temperature is below 7], the parent phase becomes unstable and there

only exists the martensite phase. Fig. 5.4(b) to (d) shows the AG as a function of the
spontaneous strain ¢ under different external uniaxial stresses o . It is found that the
energy barrier between the parent phase and the martensite phase decreases with increasing

the applied stress, and it disappears when the applied stress is above the critical stress

B}
o (=- =)
279C
A A
AG
O'<O'C
""""""" 8‘ &
. —_—T, —_T,
AG ==l =
. / — 15 —T,
(a) é;\/evgy[;rr;r\ ,/ & T>T2 (b) T>T2
‘ AG AG
o':o'C O'>O'C
8‘ 8‘
—To =15
— 15 — Ty
(C) T, | (d) T,

Fig. 5.4. The difference Gibbs free energy AG between the parent phase and the martensite
phase as a function of spontaneous strain € under different external uniaxial stress o =0 (a),

oc<o. (b), o=0. (¢), o>0. (d).

The uniaxial stress o is defined as derivative of the Gibbs free energy with respect to the

spontaneous strain & :
o=a(T-T)e+Be’+C¢’. (5.4)

Figure 5.5(a) shows the calculated stress-strain curves under compressive stress at different
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temperatures. The transformation strain Ag and stress hysteresis are the characteristics of a

first-order MT. With increasing the temperature, these characteristics gradually decrease and

2

3alC

disappear when the temperature reaches the critical temperature 7T, (=7, + ). It should
be noted that the inflexion point exists in the stress-strain curves even at temperatures above

T. . This can explain the appearance of minimum in the do,, /de&,, curve above the critical

temperature (280 K) in Fig. 5.1(b).
From the stress-strain curves in Fig. 5.5(a), the strain-temperature curves under different

constant stresses are also evaluated in Fig. 5.5(b). The discontinuous strain Ag
(transformation strain) at M. and the corresponding hysteresis also gradually disappear
when the external uniaxial stress reaches o, at 7, . At this critical point, the first-order MT

changes into second-order MT. Above this critical point, there is no transformation and no

difference between the parent and martensite phase.
The transformation strain Ag and corresponding stress-induced MT temperatures M?

and A7 as a function of the applied stress are shown in Fig. 5.5(c) and (d), respectively. The

transformation strain decrease with increasing the applied stress, and a critical point (o,,T.)

appears at the crossed point of two transformation temperature curves. It is found that the
experimental results of the Fe-30.8 and 31.2Pd (at.%) single crystals are consistent with the

model simulated by the Landau theory.
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5.4.2 The stress-temperature phase diagram

From the experimental results, the stress-temperature phase diagram of Fe-30.8 and 31.2Pd

(at.%) single crystals can be drawn as Fig. 5.6. The parent phase with FCC structure only

appears when the temperature is above the transformation temperature 7,, without external

stress. Under external stress, the parent phase with FCC structure changes into the elastically

deformed parent phase with a FCT structure. When the compressive temperature is between

the transformation temperature 7,, and the critical temperature 7;.. the elastically deformed

parent phase exhibits a stress-induced first-order MT. These behaviors were confirmed by

in-situ X-ray experiments mentioned in chapter 3. But at the critical temperature, the parent

phase continuously changes into the martensite phase, and the first-order transformation

become second-order type. Above the critical point, there is no difference between the parent

and martensite phase.
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Fig. 5.6. The stress-temperature phase diagram of the Fe-30.8 and 31.2at.%Pd single crystal

with the critical point at (330 K, 100 MPa) and (280 K, 40 MPa).
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The essentially important condition for the appearance of the critical point in the Fe-Pd

alloys is that the parent and the martensite phases have the same symmetry under a

compressive stress in the [001], direction. This situation is difficult to achieve in other

tensile or compressive conditions. For example, in the case of tensile in the [001], direction,

the tetragonality of the elastically deformed parent phase is large than unity which is different

from that of the martensite phase (less than unity). Also, when the Fe-Pd single crystal is

compressed in the [011], direction, the elastically deformed parent phase is orthorhombic

and the elastically deformed martensite phase is monoclinic. The different symmetry between
the elastically deformed parent phase and the martensite phase indicates that there is no
critical point in these conditions.

On the other hand, it should be noted that the critical stresses of Fe-Pd single crystals are
much lower than yield stress, which is mainly attributed to the large elastic anisotropy of
Fe-Pd alloy mentioned in chapter 4. This is another reason that we can detect the critical point

in the stress-temperature phase diagram of Fe-Pd alloys avoiding the plastic deformation.

5.5. Conclusions

The critical point in the stress-temperature phase diagram of SMAs is theoretically analyzed

by the Landau theory and its existence has been confirmed in the Fe-30.8 and 31.2Pd (at.%)

single crystals by compressed in the [001], direction. The stress-temperature phase diagram

of the Fe-Pd single crystals is constructed. The critical points appearing at (330 K, 100 MPa)
for an Fe-30.8Pd (at.%) single crystal and at (280 K, 40 MPa) for an Fe-31.2Pd (at.%) single

crystal are indicated in the stress-temperature phase diagram.
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Chapter 6

Large elastocaloric effect in an Fe-31.2Pd (at.%)
single crystal

6.1 Introduction

As mentioned in chapter 1, a large elastocaloric effect in a wide temperature range is
expected to be obtained in Fe-Pd alloys due to the significant temperature dependence of the

elastic constant C' . Large elastic-like deformation and the significant temperature
dependence of the Young’s modulus in the [001], direction are obtained in an Fe-31.2Pd
(at.%) single crystal as mentioned in chapter 3. In this chapter, we check the elastocaloric

effect in an Fe-31.2Pd (at.%) single crystal by compressive tests in the [001], direction.

6.2 Experiments

Fe-31.2Pd (at.%) single crystal was prepared as mentioned in chapter 2. A parallelepiped
specimen composed of (100), , (010), and (001), planes with a size of
33 mmx33 mmx6.9 mm was cut from the single crystal. The compressive method is the
same as the method introduced in chapter 3. The elastocaloric effect was examined by loading
and unloading with a high strain rate of 0.13 s' to realize an adiabatic condition. The

temperature change of the specimen induced by the adiabatic stress change was monitored by

a T-type thermocouple welded on the surface of the specimen.
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6.3 Results and discussion

Figure 6.1(a) shows the stress-strain curves of the Fe-Pd single crystal compressed up to

100 MPa in the [001], direction, which is also shown in chapter 3. Figure 6.1(b) presents the

strain-temperature curves under some fixed stresses in the unloading process reproduced from
Fig. 6.1(a). It is found that the strain under constant stress continuously increases with
decreasing temperature in a wide temperature range. This behavior is also confirmed by the
strain-temperature curves mentioned in chapter 5. So, we can calculate the isothermal entropy

change and the adiabatic temperature change from the results of Fig. 6.1 as follows.

©
o
=3
lbeso
S 40
]
=
b

204/

-

I / p
| 20MPa /

40MPa & /

-3} 60MPa v /f/

. 80MPa f:i;/

Strain ¢ (%)

w

100MPa <

250 2;0 ‘ 260 2éo . 360 350 . 3;0 .
Temperature (K)

Fig. 6.1. (a) The stress-strain curves of the Fe-31.2Pd (at.%) single crystal compressed in the

[001], direction under 100 MPa at the fixed temperatures indicated in the figure, (b) the

strain-temperature curves under different constant stresses during the unloading process

reproduced from (a).
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The isothermal entropy change AS,_ induced by an uniaxial stress o is given by [1]

AS,(0>0)=[ (%l do . (6.1)
Using the generalized Maxell’s relationship (g%] = [g%) , the isothermal entropy change
T o
is further given by
AS,(0>0)=[ (‘;—;l do | (6.2)

where & is the strain induced by the applied stress ¢ . Meanwhile, the temperature change

AT, caused by adiabatic stress application is given as

T ( oe
AT, =- f c_p(é—f) do, (6.3)

where C, is heat capacity which is roughly approximately equal to 3R (R=8.314 J/(mol-K))

in the present study. The isothermal entropy change and adiabatic temperature change are

simply illustrated in Fig. 6.2.

A
O =
a ASiso
O AT .
[t adi
= ¢ x0
L o
iy
Temperature

Fig. 6.2. An illustration showing the isothermal entropy change AS, and adiabatic temperature

change AT, in an elastocaloric effect.
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Using the value of (ai;—j in Fig. 6.1(b), the isothermal entropy change AS,  and the

adiabatic temperature change AT, of the Fe-Pd single crystal with the applied stress of
100 MPa are evaluated, and the results are presented in Fig. 6.3. We notice that AS,_ is

larger than 0.1 J/(mol-K) and lAY;di

is larger than 1 K in a wide temperature range (below

300 K). It should be noted that the temperature change |AI‘;Q|i of 2 K is a thousand times

larger than that in a pure Fe under the same condition [2].
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Fig. 6.3. The calculated isothermal entropy changes (a) and the calculated adiabatic temperature
changes (b) of the Fe-31.2Pd (at.%) single crystal with the compressive stress of 100 MP in the

[010], direction based on the stress-strain curves in Fig. 6.1(a). The solid points in (b)
represent the experimental temperature change induced by the adiabatic stress change up to

100 MP at different temperatures.
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In order to certify the temperature change, we have made the compressive tests of the
Fe-Pd single crystal with a high strain rate. Figure 6.4(a) shows the applied compressive
stress as a function of time at 240 K (furnace temperature), and the corresponding temperature
change of the specimen as a function of time is shown in Fig. 6.4(b). The temperature
increases by 1.9K in the loading process up to 100 MPa, and decreases by 2.3 K in the
unloading process. The same experiments were made at other temperatures, and the results
are drawn in Fig. 6.3(b). From 240K to 290 K, the experimental temperature decrease
induced by the adiabatic stress removal is approximately 2 K, which is the same order as the
calculated values. The deviation between the experimental and the calculated values is
possibly caused by the insufficient adiabatic condition. It should be noted that the temperature
range of the large elastocaloric effect in the Fe-Pd single crystal (over 50 K) is much larger
than that reported in Cu-based SMAs (approximately 15 K [1]) with a first-order MT and that
of magnetocaloric effect in Gd-based or Mn-based compounds (approximately 20 to 30 K

[3-5]) with a first-order magnetostructural transformation.
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Fig. 6.4. The experimental temperature change in the Fe-31.2Pd (at.%) single crystal by the

adiabatic compressive in the [010], direction at 240 K: the applied stress (a) and the

corresponding temperature change (b) as a function of time.

As mentioned in chapter 4, the yield stress of an Fe-31.2Pd (at.%) single crystal in the

[001], direction at 240 K is approximately 285 MPa, and that at 300 K is approximately
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310 MPa. This means that we can apply the stress up to approximately 280 MPa, and higher
temperature change can be obtained. So, the adiabatic temperature changes under different
stresses at 240 K are examined, and the results are present in Fig. 6.5. With increasing the
applied stress, the temperature change induced by adiabatic stress change increases almost

linearly, and the temperature decrease under 200 MPa is over 3 K.

4
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2+ [ ]
] n
N % Stress MPa)  (©)
= 0 50 100 150 200
v T= 240K
2k
v
v
v
4L

Fig. 6.5.The compressive stress in the [010], direction dependence of the experimental

temperature change.

Beside the maximum temperature decrease induced by adiabatic stress removal, the
refrigerant capacity (RC) and the energy dissipation are important factors to be considered [4].

The RC is frequently used as a key value of refrigerant materials. It is defined as [6,7]

150

RC = L AS(T)dT (6.4)
where AT is the useful working temperature range, which is usually defined as the range

where AS,  is larger than the half of its maximum. As seen in Fig. 6.3(a), this range

corresponds to between 240 K and 290 K in the present work. Putting the values shown in Fig.
2(a) into eq. (6.4), the RC value of the Fe-Pd single crystal in the unloading process from
100 MPa is calculated to be approximately 2 MJ/m’. This value is comparable with materials
exhibiting magnetocaloric effect such as La(Fe;,Mn,)Sil; 3 or GdsGe,Si, compounds [4,6].

With increasing the applied stress, the RC value can be double or even triple. The energy
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dissipation of the Fe-Pd single crystal can be evaluated from the stress hysteresis in the
stress-strain curves (Fig. 6.1(a)), and the average hysteretic loss is approximately 0.04 MJ/m’
in the temperature range between 240 K and 290 K. The energy dissipation of the Fe-Pd
single crystal is much smaller than that of conventional SMAs with a typical first-order MT (e.g.
approximately 20 MJ/m’ for NiTi alloys [8,9]). Because of the large elastocaloric effect and the
low hysteretic loss in a wide temperature range, Fe-Pd single crystal is a candidate material

for an environmentally friendly refrigerator system.

6.4 Conclusions

Large elastocaloric effect has been detected in the Fe-31.2Pd (at.%) single crystal by

applying a compressive stress in the [001], direction in the temperature range between
240K and 290 K. The temperature decrease caused by an adiabatic stress removal is
approximately 2 K when the applied stress is 100 MPa. With increasing the applied stress up
to 200 MPa, the temperature decrease increases to over 3 K. The refrigeration capacity is
expected to be 2 MJ/m® when the stress maximum is 100 MPa. Such large elastocaloric effect

in a wide temperature range is essentially due to a significant temperature dependence of

Young’s modulus in the [001], direction.
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Chapter 7

Damping property of the Fe-31.2Pd (at.%) alloy

7.1 Introduction

Large elastic-like strains with a low static strain rate (5x 107 ™) are obtained in Fe-Pd alloy in
chapter 3 and 4; and a large elastocaloric effect is also obtained in Fe-Pd alloy with a high static
strain rate (0.13 s™') in chapter 6. It is noted that the mechanical behavior of Fe-Pd alloy under
different strain rates exhibits different properties. Meanwhile, the energy dissipation caused by
stress hysteresis is an important factor for a refrigeration system mentioned in chapter 6. The
damping characteristic in Fe-Pd alloy is also important for the technological applications [1-3].

As mentioned in chapter 1, the internal friction (IF) spectrum during a typical first-order

martensitic transformation is decomposed into three terms [2,4,5]: (1) IE,, , the transitory term

(or kinetic term); (2) IF,;, phase transition term (or isothermal term); (3) IE, , intrinsic term

nt >

as shown in Fig. 7.1(a). In conventional SMAs exhibiting a typical first-order MT such as

Ti-Ni-based [6-8] or Cu-based alloys [1,2,9], the high damping characteristic is mainly caused

by the first term IF, ; it appears in a narrow temperature range between M and M. The
inherent internal damping values (IF,,+IF, ) in these alloys is small under isothermal condition.
An example of the internal friction in Ti-Ni SMA [6] is presented in Fig. 7.1(b). In the
heterothermal cooling process, high damping peaks caused by IF, appear at B2-R and R-B19’
transformation temperature. In the isothermal cooling process, the high damping peaks disappear and

the remained damping is mainly caused by IF, +IF . However, the damping behavior in Fe-Pd

Int *
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alloy exhibiting a second-order-like MT could be quite different. So, in this chapter, we
investigate the dynamic mechanical behavior and the energy dissipation of the Fe-31.2Pd (at.%)

alloy.
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Fig. 7.1. (a) Schematic representation of the internal friction during a typical first-order
martensitic transformation and its three contributions [3]. (b) The internal friction of Ti-Ni SMA

under isothermal and heterothermal conditions [6].
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7.2 Experiments

The polycrystals and single crystals of Fe-31.2Pd (at.%) were prepared as described in

chapter 3. A parallelepiped specimen composed of (100),, (010),and (001), planes with a

size of 33mmx1.2mmx17.5mm was cut from the single crystal, and a polycrystal
specimen with the same size was cut from the polycrystal. The FCC-FCT MT temperature of
the specimens were measured by a magnetic susceptibility measurement under the magnetic
field of 0.05 T with a constant cooling and heating rate of 2 K/min by using a Superconducting
Quantum Interference Device (SQUID) magnetometer. The dynamic mechanical analyzers
(DMA) experiments were performed on TA Q800 DMA equipment with single cantilever
constant-strain mode by a multifrequency method, which is illustrated in Fig. 7.2. The strain
amplitudes and the frequency were in the range of 15 to 90 pm and 0.2 to 10 Hz, respectively.
Measurements were made under three different cooling/heating rates, which were 1 K/min,
2 K/min and 0 K/min. The final rate was realized by a step cooling/heating with keeping the
specimen at every measuring temperature for 5 min [10]. The mechanism of the DMA is

explained in the appendix.
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Fig. 7.2. Sketch of dynamic mechanical analyzers (DMA) with a single cantilever

constant-strain mode.
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7.3 Results and discussion

7.3.1 Different cooling/heating rates

Figure 7.3 presents temperature dependence of the internal friction in the Fe-31.2Pd (at.%)
polycrystalline specimen (a-c) and single crystal specimen (d-f) at different cooling/heating
rates. The damping behaviors are measured under constant strain amplitude 15 pm at 1 Hz. It is

found that the internal friction increases slightly with increasing the cooling/heating rate. This

means that the transitory term IE  of the Fe-Pd alloy is small, and the high damping value

mainly comes from IF,; and IF . It is also found that the temperature hysteresis in the

cooling and heating processes significantly increases with increasing the cooling/heating rate.
Here the temperature of the furnace is used for the horizontal axis. Consequently, the hysteresis
is probably due to the difference between the temperature of the specimen and that of the
furnace. The negligible temperature hysteresis is obtained by step cooling/heating, which is
consistent with that of the magnetic susceptibility dependence on temperature mentioned in
chapter 2. It is found that the behaviors mentioned above are almost same for the polycrystalline
and single crystal specimens. In order to obtain thermal equilibrium condition, the step

cooling/heating method is employed in the further study.
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Fig. 7.3. Temperature dependence of the internal faction in the Fe-31.2Pd (at.%) polycrystal (a-c)

and single crystal (d-f)
cooling/heating rate (a, d),

rate (c, f).
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7.3.2 Different frequencies

Figure 7.4 shows temperature dependence of the internal friction, the storage modulus and

the magnetic susceptibility in Fe-Pd polycrystalline specimen (a-c) and single crystal specimen

(d-f) in the cooling process. The damping behaviors are measured under constant strain

amplitude 15 pm with different fixed frequencies. As confirmed in chapter 2, the bend in the
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magnetic susceptibility curve corresponds to the FCC-FCT MT in Fe-Pd alloy. The
transformation temperature of polycrystal and single crystal specimens are 225 K, which are
consistent with the value reported in chapter 2. Above the transformation temperature, the
storage modulus decreases with decreasing temperature, which is attributed to the lattice
softening in the parent phase [11]. Then, the storage modulus increases with further decreasing
temperature below the transformation temperature due to the appearance of the martensite phase.

These behaviors are consistent with the trend of temperature dependence of the Young’s

modulus in the [001], direction as mentioned in chapter 3. On the other hand, the internal

friction keeps almost constant near-zero value above the transformation temperature, and a
broad damping peak appears in the internal friction curves when the temperature is below
transformation temperature. The near-zero damping value confirms the quite small stress
hysteresis in the stress-strain curves and low energy dissipation mentioned in chapter 6. The
high damping value below the transformation temperature is mainly attributed to the twined
structure in the martensite phase which will be further discussed later. The height of the
damping peak increases slightly with increasing the frequency in the polycrystal specimen, and
that of the single crystal specimen is almost independence of frequency. In the temperature
range between 140 K and 200 K, the average internal friction of the polycrystalline and single

crystal specimens reaches approximately 0.08 and 0.07 at 10 Hz, respectively.
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Fig. 7.4. Internal friction (a, d), storage modulus (b, €¢) and magnetic susceptibility (c, f) of the
Fe-31.2Pd (at.%) polycrystalline specimen (a-c) and single crystal specimen (d-f) as a function of
temperature in the cooling process. The damping behaviors are measured under constant strain

amplitude 15 pm with frequency from 0.1 to 10 Hz.

7.3.3 Different strain amplitudes

Figure 7.5 presents the internal friction and the storage modulus of the polycrystalline (a,b)

and single crystal (c¢,d) specimens under different fixed strain amplitude at 1Hz. It is found that,
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above T, the storage modulus is independence of strain amplitude. But below T,,, it

decreases with increasing the strain amplitude. This behavior may be caused by the movement
of the martensite variants under the stress. On the other hand, the internal friction increases with
increasing the strain amplitude in the martensite phase, in particular below 190 K. When the
strain amplitude is 90 pm, the maximum internal friction of the polycrystalline and single

crystal specimen reaches approximately 0.13 and 0.16, respectively.
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Fig. 7.5. Internal friction and storage modulus of the Fe-31.2Pd (at.%) polycrystalline (a,b) and

single crystal (c,d) specimen as a function of temperature at different fixed strain amplitudes.
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7.3.4 Stable damping behavior

As reported in previous papers [12,13], fine twined structures with {011} traces were
frequently observed in the so-called FCT martensite phase. It is well known that the energy
dissipation during the movement of the twined boundaries is an important source of high
damping behaviors [1]. So, the high damping behavior is obtained in the Fe-Pd alloy under
isothermal condition. Moreover, the density of the twined structures increases with decreasing
temperature [12]. This could explain the continuous increase of the internal friction with
decreasing temperature.

In order to further confirm the sustainability of this damping behavior, the holding tests are
conducted. Figure 7.6 presents the results of the holding tests of the polycrystalline (a) and
single crystal (¢) specimen. The temperature change of the polycrystalline and single crystal
specimens during the holding tests are indicated in Fig. 7.6(b) and (d), respectively. The holding
tests are conducted at four different temperatures 223 K, 213 K, 193 K and 173 K under
constant strain amplitude 15 um at 1 Hz, and the holding time is one hour. It is found that the
internal friction at these temperature have little change in the holding tests, which means the
high damping behavior in the Fe-Pd alloy is quite stable. Through changing the Pd composition
or adding other element [14-16], the MT temperature of an Fe-Pd alloy can be increased to
room temperature or more, in other words, the stable high damping behavior can exist in a
wider temperature range. Moreover, the ductility, high corrosion resistance, biocompatibility
and weldability [17,18] of the Fe-Pd alloy enable it as a promising stable high damping

material.
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7.4 Conclusions

indicated in the figure.

The dynamic mechanical behavior is investigated in the Fe-31.2Pd alloy by a dynamic

mechanical analyzer (DMA). It is found that the elastic modulus is independence of frequency.

Also, small energy dissipation in the stress-strain curves is confirmed by low internal friction
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value. A stable high damping behavior in a wide temperature range is also observed in the

martensite phase.



Appendix

Dynamic mechanical properties refer to the response of a material as it is subjected to a
periodic stress (or strain) [19,20]. In the present study, the stress resulting from a sinusoidal

strain is considered. The sinusoidal strain can be expressed as

£(t) = g,sin(ot) , (A.1)
where &, is the amplitude, and @ is the angular frequency. For an ideal solid material, the stress
and strain obey Hooke’s law: o(¢) =ke(¢). So, the resulting stress will be proportional to the

amplitude of the applied strain with a phase lag §=0°:

o(t) =xsg,sin(@?) . (A2)

It is found that the stress amplitude o, has a linear relationship with the strain amplitude:

0, = k&, . For an ideal fluid which obeys Newton’s law, the resulting stress is proportional to the
strain rate: o (f) =nde / dt . The resulting stress is given by

o(t) =ne,w cos(wt)= neyw sin(mt + 7 /2). (A3)

It is found that the stress is liner in the stain amplitude: o, =ne,w depending on the angle

frequency, and the phase lag between strain and stress is & =90°. For a viscoelastic material, the

resulting stress is given by
o(t) =o,sin(@t + ), (A4)

where the phase lag & will lie somewhere between 0° and 90°. These behaviors are presented

in Fig. Al(a), (b) and (c), respectively.
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For the engineering application, it is common to use complex variable to describe the

sinusoidal response of viscoelastic material. Thus the complex strain uses the form as:

e*=¢g, exp(imt), (A.5)
and the resulting complex stress o * is expressed by
o*=c exp(i(@t +9)) . (A.6)

As the modulus is defined as the ratio of stress to strain (stress/strain), the complex modulus
E* is given by

E*=c*/e* = L exp(i6) = 22 cos(8) + i Z2sin(8) . (A7)

0 80 6‘0
The complex modulus E* is a measure of the materials resistance to deformation. It

encompasses elastic modulus E' (or storage modulus) and viscous modulus E" (or loss
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modulus). The storage modulus is the real part of the complex modulus: E '=—G—°—cos(6) (a
80

measure of energy stored and recovered per cycle); and the viscous modulus is the imaginary part of

the complex modus: E"= &sin(é) (a characterization of the energy dissipated in the material by
80

internal damping). The relationship between the complex modulus, storage modulus and loss
modulus is given by

E*=E'+iE", (A.8)
and this relationship is drawn in Fig. A.2. It can be seen from this figure that the tangent of the
phase angle is the ratio of the loss modulus to storage modulus ( tand=EYE' or

tand = G"/ G'). This ratio is a measure of the damping ability of a material.
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Fig. A.2. Relationship between complex modulus E*, storage modulus E' and loss modulus E".
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Chapter 8

Summary

In the present study, the mechanical properties and related phenomena in Fe-Pd alloys, which
exhibit a second-order-like martensitic transformation (MT), have been investigated. Following
conclusions are derived.

In chapter 1, background, motivations, and purposes of this research work have been
described.

In chapter 2, the Pd content dependence on the second-order-like FCC-FCT MT temperature
in Fe-Pd alloys has been studied. The FCC-FCT MT temperature of Fe-Pd alloys decreases with
increasing Pd content up to 33.0 at.%Pd and the transformation is suppressed in alloys including
33.1 at.%Pd and more. The latent heat of Fe-Pd alloy decreases with increasing Pd content, and
is much lower than that in other shape memory alloys (SMAs), which could be attributed to the
characteristic of the second-order-like FCC-FCT martensitic transformation.

In chapter 3, the deformation behavior in the Fe-31.2Pd (at.%) single crystals exhibiting a
second-order-like FCC-FCT MT has been investigated by compressive tests in the [001],
direction. A large elastic-like strain of more than 6.5% with quite small stress hysteresis appears
slightly above the transformation temperature (240 K) under 250 MPa. Most of the large
elastic-like strain is caused by the continuous change of structure in a single variant martensite
variant. A yield point appears at the strain of 7.3% and the stress of 285 MPa at 240 K, and the
residual strain did not recover by heating to 300 K. Similar yield point appears at the strain of
4.6% under the stress of 310 MPa at 300 K. Introduction of mechanical twining with twin
boundary {111} is the main reason of the residual strain for the plastically deformed specimens
at 240 K and 300 K. The shear strength of the Fe-31.2Pd (at.%) single crystal is close to the
ideal value at both temperatures, which is first reported in bulk materials with a FCC structure.

In chapter 4, the influence of various conditions on the limit of the elastic strain in Fe-Pd
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alloys has been investigated. The limit of the elastic strain of Fe-Pd alloys significantly depends
on temperature, which is probably attributed to the strong temperature dependence of elastic
constant C'. The limit of the elastic strain is also significantly influenced by compressive
direction and grain boundary because of the large elastic anisotropy in Fe-Pd alloy. On the other
hand, the critical resolved shear stress is not significantly influenced by temperature and
compressive direction; however, it is largely decreased by the existence of grain boundaries.

In chapter 5, the existence of a critical point in the stress-temperature phase diagram has been
confirmed in Fe-30.8 and 31.2Pd (at.%) single crystals. From the stress-strain and
strain-temperature curves in the [001], direction, the critical point is determined to be
(330K, 100 MPa) for the Fe-30.8Pd (at.%) single crystal and (280K, 40 MPa) for the

Fe-31.2Pd (at.%) single crystal.

In chapter 6, a large elastocaloric effect in a wide temperature range between 240 K and

290 K has been detected in an Fe-31.2Pd (at.%) single crystal by applying a compressive stress

in the [001], direction. The temperature decrease caused by an adiabatic stress removal is

approximately 2 K when the applied stress is 100 MPa. When the applied stress is 200 MPa, the
temperature decrease is approximately 3 K. The refrigeration capacity is expected to be 2 MJ/m’
when the stress maximum is 100MPa. Such large elastocaloric effect with a wide temperature

range is essentially due to a significant temperature dependence of Young’s modulus in the
[001], direction.

In chapter 7, the small energy dissipation of Fe-Pd alloy in the loading and unloading
processes above its transformation temperature is confirmed by DMA measurements. It is also
found that there is almost no frequency dependence of damping in the range between 0.1 Hz and
10 Hz. In addition, a stable high damping behavior is obtained in the Fe-31.2Pd (at.%) alloy in
the temperature range between 150 K and 200 K. This high damping value is time independent,

and probably originates from the high density of twinned structure in the martensitic phase.

In this study, we confirm large elastic strains, the existence of critical point in

stress-temperature phase diagram, a large elastocaloric effect and stable high damping behavior
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in Fe-Pd alloys exhibiting a second-order-like FCC-FCT martensitic transformation. Owing to
their high corrosion resistance, ductility and biocompatibility, Fe-Pd alloy is a promising SMA

to be widely applied in many fields.
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