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Preface

This dissertation presents my research on techniques for learning invari-
ant patterns from multivariate data using second order statistics. The
dissertation is the result of the research during the Ph.D. course at the
Department of Information and Communication Technology, Graduate
School of Engineering, Osaka University. The dissertation is organized
as follows.

Chapter 1 describes the background, the motivation, the purpose of
this research, and the outline of this dissertation. The key objective of
this dissertation is to construct methodologies for finding invariant pat-
terns underlying across multiple datasets sampled from different time
points or from several environments. Such techniques allow us to infer
the unknown data generating mechanism or to model the target data
with an efficient manner. For the purpose, we focus on the second order
statistics, one of the most basic parameters representing the properties
of multivariate data. In this chapter, we also describe two fundamen-
tal models based on the second order statistics, Principal Component
Analysis (PCA) model and Graphical Gaussian Model (GGM). These
two models form the basis of the dissertation, which we further extend
in the upcoming chapters.

Chapter 2 is devoted for the first algorithm that extracts an invari-
ant pattern from the multivariate data. The model we present in this
chapter is called Stationary Subspace Analysis (SSA) model and is a
specific example of linear source mixing models, that is, a variant of the
PCA model. The objective of the SSA problem is to find an invariant
pattern across multiple covariance matrices based on a source mixing
model. We build a new algorithm Analytic SSA for this problem, which
provides a solution by solving a generalized eigenvalue problem. This

framework is advantageous compared to an existing algorithm which re-



1

quires solving a gradient decent based non-convex optimization problem
since 1) it requires smaller computational cost, and 2) a global optimal
solution can be derived under a certain condition while the prior algo-
rithm guarantees only local optimality of the solution. We also provide
theoretical and numerical justifications of this point.

In Chapter 3-5, we describe the second algorithm for discovering an
invariant pattern. The major target in these chapters is a GGM, or a
conditional dependence structure among random variables. In Chapter
3, we work on convex optimization methods called Dual Augmented
Lagrangian (DAL) and Alternating Direction Method of Multipliers
(ADMM). We combine the basic idea of these two techniques and for-
mulate the DAL-ADMM algorithm for learning GGM from the data.
The advantage of the proposed algorithm is its flexibility. Most exist-
ing GGM learning algorithms assume the simplest problem based on
an {i-regularization. On the other hand, our algorithm can treat wider
variety of regularization terms including well-known group regulariza-
tions. This flexibility is essential for solving more complicated problems
arising in Chapter 4 and 5.

In Chapter 4, we consider finding an invariant pattern across mul-
tiple GGMs. We formalize the task as a convex optimization problem
using sparse regularization techniques, where the proposed formulation
can be casted as a generalization of existing GGM learning problems.
We also show that the problem can be solved by the DAL-ADMM algo-
rithm. The proposed algorithm is composed of iterative updating steps
with each step requiring only simple analytic operations. The validity
of the proposed method is verified through numerical simulations and
also on an application to an anomaly localization problem.

Chapter 5 describes an anomaly localization problem based on a
GGM learning technique. In this chapter, we consider a GGM learn-
ing algorithm specialized to this task. One basic finding is that, in an
anomaly localization, row/column-wise changes between two precision

matrices, or the inverse of covariance matrices, are important. We im-



port this idea and formalize the task as a convex optimization problem.
The proposed formulation is a variant of structured sparsity models and
requires specific considerations to construct an algorithm. We find that
some proper transformations of the problem allow us to treat the prob-
lem with DAL-ADMM. Hence, the proposed algorithm requires only
simple analytic updating steps. We verify the advantage of our new
formulation over existing techniques on an anomaly localization task
through a real world data simulation.

Chapter 6 concludes this dissertation.
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Chapter 1

Introduction

1.1 Background

Invariance of the data behavior is a cornerstone assumption in several fields, includ-
ing statistical learning (Quifionero-Candela, Sugiyama, Schwaighofer, & Lawrence,
2008), signal processing, and control theory. This allows us to model the target
problem with simpler formulations which we can manipulate easily. The most well
known example of this would be an independent and identically distributed (i.i.d.)
assumption in statistics. This removes complicated interactions among observations
and we can treat each observed sample individually. Another example is a station-
arity of a time series. Under the stationarity assumption, we can safely apply the
current knowledge to the future prediction. However, these are not always the case
in reality and there are several real-world data that changes their behaviors. In such
cases, a non-stationary data generating mechanism affects data to have different be-
haviors in each datasets collected under different conditions, for instance, datasets
from several time stamps or the ones sampled under multiple environments. Ex-
amples include biomedical measurements (Shenoy, Krauledat, Blankertz, Rao, &
Miiller, 2006; Blankertz et al., 2008), geophysical data (Mann, 2004; Kaufmann &
Stern, 2002), and econometric time series (Engle & Granger, 1987).

Dynamical effects are not just a nuisance for methodology. In fact, understand-
ing temporal changes in data is often the one major point of interest, so that dis-
covering and describing non-stationarities in high-dimensional datasets are a key
challenge in explorative data analysis. For instance, there are various approaches
to test (Priestley & Rao, 1969; Dickey & Fuller, 1979) and correct for (Quifionero-
Candela et al., 2008; Shimodaira, 2000; Heckman, 1979; Murata, Kawanabe, Ziehe,



Miiller, & Amari, 2002) non-stationarities in statistical model. A question arises,
however, when the observable data is composed of contributions from both invariant
and dynamical effects that are not directly accessible. One naive way is to treat the
data as a fully dynamical one since it includes effects from such factors. However,
this is not a convenient approach since we discard the fact there exists something
invariant in the data, which tends to require complicated modeling. This is unfa-
vorable not only from the methodological aspect, but also from the data analysis
perspective. Discerning invariant factors from dynamical ones in the data itself
can be one important goal of the analysis. For instance, in electroencephalography
(EEG) (Dornhege, Millan, Hinterberger, McFarland, & Miiller, 2007), measure-
ments on the scalp capture the activity of a multitude of sources located inside the
brain that we cannot measure directly, for technical, medical, or ethical reasons.
The observed signal is non-stationary due to the inherent non-stationary dynamics
in the brain. However, the EEG signal is not totally contaminated with the non-
stationary effects but also reflecting several systematic behaviors in the brain such
as kinematic signals. It is natural to assume such systematic behaviors result in
some fixed wave forms hidden in the non-stationary observations, which forms an
invariant factor across multiple EEG observations sampled under different environ-
ments. Finding this hidden wave form in the signal is an important step towards a
brain computer interfacing to reflect users intent to a computer control.

In practice, this kinds of underlying partial dynamics of data are captured in
several approaches. One way is to explicitly parametrize the invariant and dynam-
ical part in the model (Hamilton, 1994; Durbin & Koopman, 2001). However, this
approach tends to require detailed domain knowledge to construct a right model
that is scarcely available in most cases. Another way is to impose general and mild
assumption on the data. This kind of approach is especially common in multitask
learning literatures (Caruana, 1997; Turlach, Venables, & Wright, 2005). In the
multitask learning, we exchange the information of each dataset through an in-
variant factor among them. This allows us to combine multiple tasks into a single
problem which efficiently capture the nature of datasets. This dissertation espe-
cially focuses on the latter context where the invariant pattern among datasets itself

is the objective we want to analyze.



1.2 Main Issues

This dissertation aims to construct methodologies for finding invariant patterns un-
derlying across multiple datasets sampled from different time points or from several
environments. A key object for the purpose across the dissertation is the second
order statistics obtained from multiple datasets and related Gaussian expressions.
We focus on two representative models regarding the second order statistics and
introduce the notion of invariance for both of them.

First, we consider a linear mixture model and its relevant invariance. The main
problem is to recover latent sources from observations under the linear mixture
model. The most prominent example of this would be a Principal Component Anal-
ysis (PCA) (Jolliffe, 1986), which uses a sample covariance to derive the solution.
We treat an extension of PCA called Stationary Subspace Analysis (SSA) (von
Biinau, Meinecke, Kirdly, & Miiller, 2009a) where there are two kinds of latent
sources which are stationary and non-stationary. The objective of SSA is to re-
cover stationary sources from observations. This is the first invariance we seek for.

Next, we consider the second problem based on a Graphical Gaussian Model
(GGM) (Lauritzen, 1996). GGM is defined using an inverse of a covariance matrix,
which provides a different perspective to the second order statistics from PCA. The
objective of a GGM learning is to infer a graph structure that represents conditional
independence relations among random variables. We consider the case when some
topological patterns and edge weights are shared between multiple GGMs. We
search for this shared pattern in this problem.

We propose algorithms to solve these problems in this dissertation. In Chapter 2,
we consider the SSA problem. We propose an Analytic SSA algorithm which is very
efficient compared to an existing technique. We also provide detailed discussion
regarding the connection of Analytic SSA to well known Independent Component
Analysis (ICA) (Hyvérinen, Karhunen, & Oja, 2001) techniques. In Chapter 3-5,
we treat the second problem and describe algorithms for finding invariant patterns.
Chapter 3 is a preparation for the upcoming Chapter 4 and 5. In this chapter, we
work on convex optimization methods called Dual Augmented Lagrangian (DAL)

and Alternating Direction Method of Multipliers (ADMM). We combine the basic



idea of these two techniques and formulate the DAL-ADMM algorithm for learning
a graphical model. In Chapter 4, we consider the most basic invariant pattern in
multiple GGMs. We formulate the task as a convex optimization problem using an
¢, and a group regularization techniques, which we refer as Common Substructure
Learning (CSSL). We also show that CSSL can be solved by the DAL-ADMM
algorithm. In Chapter 5, we treat an invariant pattern different from the previous
chapter, an invariance specific to the anomaly localization problem in sensor signals.
Chapter 2-5 are based on (and extend) existing work. In particular, Chapter 2 is
based on Hara, Kawahara, Washio, and von Biinau (2010) and Hara, Kawahara,
Washio, von Biinau, Tokunaga, and Yumoto (2012), Chapter 3 is based on Hara and
Washio (2012b), Chapter 4 is based on Hara and Washio (2011, 2013), Chapter 5
is based on Hara and Washio (2012a).

In the remainder of this chapter, we introduce basic models used across this
dissertation. First, we review the second order statistics and the related Gaussian
expression of data. We also mention extending this Gaussian expression to multiple
datasets, especially for the case of a time series signal. In the sequential two sections,
we review two representative models regarding the second order statistics, one is
the Principal Component Analysis, the most well known linear mixture model, and
the other is the Graphical Gaussian Model, which is one of the most basic graphical
model. We also mention that these two expressions are in some sense dual to each

other. Finally, we conclude the chapter with a summary of contributions?.

1.3 Second Order Statistics and Gaussian Distri-

bution

1.3.1 Covariance and Inverse Covariance

In the analysis of multivariate data, the interaction of random variables is the one

biggest interest of users. Here, across the dissertation, we consider that a multi-

1Each chapter also have an appendix after the concluding section. Some additional remarks

and proofs of theorems are described in there.



. . . T . . .
dimensional random variable @ = (z1,3,...,24) is continuous and is defined on
a space R%. Hence, its distribution is expressed by p(x). The most basic property
of interactions among continuous random variables is captured by a covariance of

two variables z; and x; defined as
Cov(zi, z;) = E{(z: — E[z:]) (z; — E[z])],

where E denotes an expectation over p(x). This measurement is positive if two
variables are simultaneously increasing, that is, the greater value of one variable
corresponds with the greater value of the other. On the other hand, if one variable
gets larger and the other one gets smaller in the same time, the covariance is neg-
ative. The zero covariance case is intermediate between these two cases when two
variables do not show linear dependencies to each other. For general d-dimensional
variable x, there exists O(d?) combinations of variables and the resulting covari-

ances are represented conveniently in a single matrix ¥ € R%*¢ defined as
zEEkw—mﬂMm—mﬂf}

This matrix ¥ is called covariance matriz and its (z,j)th entry corresponds to
the covariance of z; and z;. Importantly, this matrix is symmetric and positive
semidefinite from its definition. Note that a variance of x;, or Var(z;), corresponds
to the covariance with its own Var(z;) = Cov(z;,z;). Hence, the diagonal entries
of X correspond to the variance of each variable.

Although the sign of covariance is instructive to see how two variables interact,
its magnitude heavily depends on the scaling of each variable and is not always
meaningful. Correlation is an useful alternative to interpret the magnitude of de-

pendencies, which is given by
Cov(z;, z;) By
\/ Var(z;)Var(z;) VEiZ

This is a scaled version of a covariance and its domain is [—1, 1]. As the magnitude

Corr(z;, z;) =

of the correlation grows, the linear dependency between two variables gets stronger.
Hence, the value 1 or -1, two extreme cases of a correlation, implies two variables

z; and z; are completely linearly dependent to each other: there exists a non-zero



constant ¢ and x; = cz; holds where the sign of ¢ corresponds to the sign of a
correlation.

Despite its usefulness, the drawback of covariance appears when there are more
than two variables. In this situation, covariance captures not only the interaction
of two variables but the effects from other variables indirectly. We introduce one
simple example describing this drawback through an elementary school children
data. Suppose we held examinations for all children in one school and collected
data containing three fields: children’s age; height; and their test scores. It is
obvious that, as children grows, they gets tall. But not only that, they learn more
and there test score gets well also. This results in a positive covariance between the
height and the score. However, the fact that taller students mark higher scores is
against our intuition. This happens because the effect of the age is involved in the
covariance between the height and the score. Therefore, we have to remove such
indirect effects to observe the essential dependency of two target variables. This
leads to the idea of partial correlation. Let @\(; ;) denote d —2 variables in @ except
z; and z;. In partial correlation, the effects of the third variable @\y; ;3 in z; and

z; are modeled as a linear function:

.
Ty =T+ W; T\{ij},

—_— . T . .
Tj =T;+ W; Ty\(i5),

with some w; and w;. Here, r; and r; are random variables and are statistically
independent of x\(; ;3. This r; and r; are essential part of z; and z; after removing
the effect of the third variable x\y; j;. We measure the essential dependency of two
variables z; and z; as a correlation of r; and r; since the effects of the third variable
are no longer involved. The following is the definition of a partial correlation

between z; and z;:

Cov(rs,rj) .
\/ Var(r;)Var(r;)

PCorr(z;, z;|a\f:,5)) = Corr(r;,7;) =

Hence, the next theorem tells the important connection of a partial correlation to

the inverse of a covariance matrix A = ¥ ~! which is also known as precision matriz.



Theorem 1 (Partial Correlation and Precision Matrix (Lauritzen, 1996)). A partial
correlation between z; and z; given remaining d — 2 variables x\(; ;y relates to each
entry of a precision matriz A by

Aij

From this result, we can interpret the precision matrix A as an unnormalized ver-

PCorr(z;, zj|@\(i5)) = — (1.1)

sion of the partial correlation analogous to the relationship between the covariance
and the correlation.

In the remainder of the dissertation, we call a covariance matrix ¥ and an
precision matrix A as second order statistics since both of them are defined on

the second order moment of the probability distribution.

1.3.2 Gaussian Distribution

In data analysis, we often convert observed data into some kind of probability dis-
tributions. This allows us to use powerful methods to analyze data more intensively.
Here, we assume the mean and the covariance of « is known as g = E[z] and ¥
respectively, which is quite realistic as we see later. The question is what is the
most appropriate probability distribution we can use for the data analysis under
this situation. One answer to this question is to pick up the distribution with the
highest uncertainty, which is also known as the mazimum entropy principle. This
result suggests that a Gaussian distribution is an useful representation of data when

the statistics up to second order moments are known.

Theorem 2 (Maximum Entropy Principle (Jaynes, 1957)). Given mean p and
covariance matriz Y, a probability distribution p(x) that mazimize the following

entropy

H(p) = / p(x) log p(x) da.

is a Guassian distribution given by

pla) = N, 5) = o m).

———————ex
(2m)ddet & p(



The remaining step is to derive the mean g and the covariance ¥ from the
dataset. Mazimum likelihood estimation is the well-known approach for this prob-
lem. We suppose n data points D = {x,})_, are i.i.d. samples from a Gaussian
distribution A (g, X)) with unknown parameters pu and . The log-likelihood func-
tion on the dataset D is then given by

log p(D; p, X) log{H \/m ( 1(w — p) T (e, —u))}

1 N

N Nd
= -3 (T — p) = N, — ) — 5 logdet 3 — - log 27.

n=1
We find parameters f& and 3 that maximize this log-likelihood, which are parame-

ters that best fit to the data. First, by setting the derivative over pu equal to zero,

we derive

ﬂ:%Zmn. (1.2)

=5 (@ - ). —a)" (13)

These two results are the maximum likelihood estimators of the mean and the
covariance matrix in a Gaussian distribution, which is also known as an empirical
or sample mean and covariance, respectively.

Similarly, we can conduct the maximum likelihood estimation of a precision
matrix A from a Gaussian distribution A (g, A='). Here, the covariance matrix of
the distribution is replaced with an inverse of A since A = £ 7! from its definition.
Again, writing down the log-likelihood function and maximizing it, we derive the

maximum likelihood estimators as (1.2) and

~

A=3"1 (1.4)

1.3.3 Gaussian Expression of Multiple Datasets

In the previous section, we considered how to approximate a single dataset with a

Gaussian distribution. Here, we extend it to a multiple datasets situation. This



extension naturally arises in several studies. For instance, in multitask learn-
ing (Caruana, 1997; Turlach et al.,, 2005), we face a problem of jointly solving
multiple tasks where each task has its own distribution. In other example, we
need to deal with datasets sampled from different time stamps for a source sepa-
ration (Matsuoka, Ohoya, & Kawamoto, 1995; Kawamoto, Matsuoka, & Ohnishi,
1998; Pham & Cardoso, 2001; Hyvarinen, 2002; Parra & Sajda, 2003) or for a
change point detection (Basseville & Nikiforov, 1993; Siegmund & Venkatraman,
1995; Kohlmorgen, Lemm, Miiller, Liehr, & Pawelzik, 1999).

Suppose there are K datasets each consists of i.i.d. data points sampled from
a Gaussian distribution N (p,, Xx) for £ = 1,2,..., K. If we know each dataset
have no relations to each other, then we can use an ordinal maximum likelihood
estimation for each dataset individually and derive its first and second order statis-
tics as (1.2), (1.3), and (1.4). This is the most simple and naive situation and no
special consideration is needed. However, in several real world applications, we
know that there exists some kinds of relations among datasets a priori. In such
cases, cooperating with user’s prior knowledge helps us to improve the data anal-
ysis performance. The important point is how to import such knowledge into the
naive formulation and improve it. This is the main point across this dissertation
and details are described in remaining chapters.

Amongst several applications, one important example of a multiple Gaussian
expression is the representation of a time series data. Formally, a time series data
is a sequence of data points indexed by a time stamp t and is expressed as D =
{x(t)}L,. Unlike i.i.d. samples, the distribution of a data point x(t) usually have
some dependencies on the past data x(1),x(2),...,x(t — 1). Another difference
is that a time series data can even be non-stationary: the distribution of data
itself may change over time. This prohibits us from modeling data as a simple
Gaussian distribution. A simple alternative to this problem is to represent a time
series as a set of Gaussian distributions. First, we partition a given time series into
a set of epochs D = {Dy}~ |, Dr = {@(t) }se7,. Here, Ty is a set of consecutive
indices and UE Tz = {1,2,...,T}. We then approximate each epoch D, with
a Gaussian distribution N (p, Xx). This corresponds to capturing the dynamics

of data as a set of local static distributions. The remaining problem is how to
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derive distribution parameters p, and X, from each epoch. In time series data,
an ordinary maximum likelihood estimation on i.i.d. samples are no longer useful
because of its time dependency structure. However, we can use time average as
its alternative under an ergodicity condition. An ergodicity is a condition that a

population statistic and a time average of a time series meets:

[ fe®w@) ) = jim 13 f0),

for a given function f2. See Hamilton (1994) for further detail. In the current case,
a function f is chosen to produce the mean and the covariance. Practically, we only
have finite number of samples and therefore we replace the right hand side with

their average:

7] 2

N 1 N .

Sk == > _(@(t) — fr)((t) — fir)
] &

Using this technique, we can treat a time series data as a set of Gaussian distribu-

tions.

1.4 Principal Component Analysis

In this and the next section, we present two most basic models regarding the
second order statistics. We first introduce a Principal Component Analysis, or
PCA (Jolliffe, 1986) in this section.

Before we present the detail of PCA, we assume that the data is centered, that
is, a random variable £ € R? has a zero vector 0, as its mean. Note that we can
always transform data to follow this assumption by subtracting sample mean (1.2)
from each data point. Therefore, the following discussion can be naturally extended
to non-zero mean situations, although we adopt this assumption for simplicity. It
also allows us to focus on the role of the second order statistics which is the central

target of our analysis in this dissertation.

2We assume that the right hand side of this condition exists.
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1.4.1 PCA

In the PCA model, or more generally in a linear source mixing model, an i.i.d.
observation x, is modeled as a linear superposition of a m-dimensional (m < d)

latent variable s,,:
x, = As,, (1.5)

with some matrix A € R¥™. It corresponds to assuming that all data points D =
{z,}Y_, are not fully distributed in R? but lie in some low-dimensional subspace in
R<?. The objective of PCA is to recover these unknown parameters A and {s,}\_;
from the data D. We note that there is a linear transformation invariance in this
model that the replacement A — A= AR and s, — 8, = Rs, with an arbitrary
non-singular matrix R € R™*™ produces the same model as (1.5). Therefore, we
can restrict ourselves to the orthonormal case AT A = I,,, without loss of generality
where I,, denotes an m X m identity matrix. This corresponds to limiting R to
control only the rotation of a coordinate but not the scaling of s,,. Hence, we have

an equation
x, = AA x,,

from the model (1.5).

In the above equation, we no longer need to consider the latent variable s,
and can focus only on finding a matrix A that satisfies this condition. Note that
however, in practice, data does not follow the model (1.5) exactly, and the above
equation holds only approximately. We therefore find a matrix A that minimizes
the discrepancy between the left and the right hand side of the above equation. To

that end, we adopt the following square metric:

1 1 X
=D [len = AdTaa ]y = > (Jlzall; - [[47241) (16)
n=1 n=1

where we used the orthonormality of A for the equality. Since the first term is

independent of A, the resulting optimization problem is summarized as follows:

N
1 2 R
X nEZI ||ATzr3nH2 = max tr [ATEA], (1.7)
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where ¥ is the sample covariance matrix given in (1.3).
The solution to the problem (1.7) can be derived using a method of Lagrange

multipliers. We rewrite the problem using a Lagrange multiplier I' € R™*™ as
max min tr [ATf]A] —tr [F(ATA - Im)] .
AT
By setting the derivative over A equal to zero, we obtain
SA — AT = Ogsm-

Recall that we can always transform A into AR~! with an arbitrary rotation matrix

R, we rewrite this equation as
A — ART'TR = Ogupm.

Hence, for any I', we can always choose a matrix R so that R™'T'R is a diagonal
matrix. Here, we define R™!T'R = diag(y1,72,.-.,7m) and A = [al, a, .. .,am].

The above equation can then be decomposed into m eigenvalue problems:
SYa; =va; (i=1,2,...,m).

Moreover, from the orthonormality of a;, we have v; = a; Ya; and the problem

reduces to finding v, 7s, . . . , Ym that maximizes the following objective function:

tr [ATZAIA} = Zm: i
i=1

while keeping the orthonormality of A. Obviously, the top m eigenvalues and their
corresponding eigenvalues are the solutions of v1,7%,...,%, and a;,a.,...,an,
respectively. Once the matrix A is estimated with the above procedure, we can

recover latent variables as
s, = A"z,

which follows from the model (1.5) using the orthonormality of A.
This result indicates that leading eigenvalues and eigenvectors of the sample co-
variance matrix are essential for approximating data points with a low-dimensional

expression (1.5). We note that (1.5) is a general model and we can construct
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some different models other than PCA. The fundamental differences are the objec-
tive function (1.6). For instance, if we introduce a maximum correlation criteria,
we derive a Canonical Correlation Analysis (Mardia, Kent, & Bibby, 1979), while
introducing an independence criteria leads to an Independent Component Anal-
ysis (Hyvéarinen et al., 2001). An extension of PCA into a supervised learning
literature produces the idea of a Linear Discriminant Analysis (Fisher, 1936; Fuku-
naga, 1990). In Chapter 2, we introduce a stationarity criteria and derive Stationary
Subspace Analysis (SSA) and an algorithm that finds an invariance in the second

order statistics.

1.4.2 PCA as Matrix Approximation

In the previous section, we derived a solution of PCA from a minimum projection
length criteria (1.6). Here, we derive the PCA solution from a matrix approximation
point of view. The objective of a matrix approximation is to derive a matrix
S € R that best describes the nature of 3 from some set of matrices S. A set S
can be usually a set of low-rank matrices (Srebro, Rennie, & Jaakkola, 2005) or a set
of sparse matrices (Zou, Hastie, & Tibshirani, 2006) depending on the application.
Here, we let S be a set of rank m matrices defined as S = {S € R%*¢; rank(S) = m}.
We then find a matrix S that is closest to 3:

5 sHi (1.8)

min
5es

where ||*||p denotes a Frobenius norm® of a matrix.
To solve the minimization problem above, we derive the lower bound of the
objective function (1.8). To begin with, we rewrite the Frobenius norm into the

following equivalent form:

N 2
-, -
F

l
M=
S
@>
[\]
I
[3)
=
g3
&,
_+_
N
2
5
\.l\')

3A Frobenius norm of a matrix A is given by || Allp = /3, ; A2



14

where Ji(i) and ¢,(S) denote the ith eigenvalues of 3 and S, respectively. Now,
we can apply the von Neumann’s trace theorem (Horn & Johnson, 1990) to the

second term and derive the lower bound as

Note that the equality holds when the eigenvectors of 3. and S are the same. Since
the rank of S is limited to m, we have to find the m non-zero eigenvalues of S that
minimizes this lower bound. It is obvious that choosing the top m eigenvalues and
setting remaining d — m values to be zeros minimizes the bound, which is the same

result as PCA derived in the previous section.

From this rank restricted matrix approximation problem, we find that leading
eigenvalues and eigenvectors are essential to approximate the matrix. Note that
the above discussion holds not only for a sample covariance but for general square

matrices?.

1.5 Graphical Gaussian Model

In the previous section, we observed that the larger eigenvalues of the sample covari-
ance matrix play an important role in PCA. Here, we introduce another important

model based on the second order statistics, a Graphical Gaussian Model (GGM).

A graphical model (Lauritzen, 1996) represents a dependency structure among
multiple random variables. There are two types of it, a directed model and an
undirected one. GGM belongs to one specific case of the latter one, a pairwise
undirected graphical model. Therefore, we briefly introduce a pairwise undirected

graphical model first and GGM in the next.

41t can also be generalized to rectangular matrices using a singular value decomposition.
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1.5.1 Pairwise Undirected Graphical Model

Undirected graphical model, which is also known as a Markov random field, rep-
resents conditional dependency structure among random variables using a graph.
Here, we focus on one specific case, a pairwise undirected graphical model. In the
pairwise undirected graphical model, a graph is composed of nodes corresponding
to each random variable z; and a set of edges F spanning between random vari-
ables. Using this edge set, a distribution of a random variable € R? is modeled

as a product of non-negative potential functions ¢;(z;) and ¢;;(z;, x;):

d
pe) = 5 [[oita) [] ouoia), (19)

(i,7)€E

where Z is a normalization constant defined as

d
ZE/H(]ﬁ,-(.’Ei) I ¢i(zi =) dao.
=1 (i.5)EE

This model is called pairwise since it is defined on each pair of variables and no
higher order effects exist. Here, we assume that a pairwise potential ¢;;(x;, ;)
cannot be expressed as the product of two unary functions. If this is not the
case, we can include such unary functions into ¢;(x;) and ¢;(z;) and remove the
corresponding index pairs from F without loss of generality. We also note that a
constant function ¢;;(z;, ;) = ¢ with some constant c is the special case of the
above discussion, so that the valid pairwise potential function is a non-constant,
non-decomposable one.

The model (1.9) implies that we can express the conditional distribution over z;

and z; given remaining d — 2 variables x\y; j; fixed as

p(x)
P(@\ij)
T be (@) T gyer i (wo, 230)
f ngl bir (Tir) H(i/,jf)eE Gurg (Tir, Tjr) dr;dz;
_ filmileagy) fi(es 1)) 96 (6, 75)
[ filwilegy) £ (x| gy) 9 (20, 25) didiy”

p(xs, Tj|2\ (i g}) =
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where

d
filzil®ngigy) = ¢ilzi) H bijr (i, Ty1),

oy
d
filasleigy) = oi(a;) || dei(@e, ),
i i
95 (T, T5) =
1 it (i, §) ¢ E.

If (¢,5) ¢ E, we can further transform the expression into

fi(ms|®gijy) fi(zsl\gy)
p(xl’ Z;[L iv j = ’ )
i \ J}) ffi($i|$\{i,j}) dz; ffj(xj|w\{i,j})dxj

= p(xi|®\i,51)P(T|®N (3,51 )

where the last equality follows from the model (1.9) and the definition of a condi-
tional distribution. This result is exactly the definition of a conditional indepen-
dence, and is one specific example of Hammersley-Clifford theorem (Clifford, 1990).
It suggests that as long as potential functions ¢;;(z;, z;) are not constants nor de-
composable, pairs of random variables indicated by an edge set E coincides with
a set of conditionally dependent variables pairs. Or alternatively, we can say that
the absence of an edge between two random variables implies these variables are
conditionally independent. Because of this property, a pairwise undirected model
is a useful tool to model the pairwise conditional independence between random
variables. As we mentioned before, GGM is one of the most well known example
of this model. Note that Ising model (Lauritzen, 1996), a well known distribution
on binary variables, also belongs to this class.

Two extreme cases of the model (1.9) are the fully connected graph and the fully
disjoint graph. The former one is the case when all variables are dependent to each
other while the latter one is the case when all variables are mutually independent.
Most models belong to the intermediate of these two cases that have some condi-
tionally dependent variable pairs connected by edges while some edges are absent

expressing corresponding variable pairs are conditionally independent.
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1.5.2 Graphical Gaussian Model and Precision Matrix

GGM is one specific example of a pairwise undirected graphical model where the
marginal distribution of a variable x is given by a Gaussian distribution. Again, as
the previous section, we assume that data points are centered and the distribution is
expressed as N (04, A~!). Here, we used a precision matrix A instead of a covariance
matrix 3 since A plays the central role in GGM. From the definition of a Gaussian

distribution, we can write the probability distribution as

p(x) =4/ ((j;:r)j}i exp (—%a:TA:n>

det A 1> 1
= W Hexp<—§An:r12) Hexp <—‘Aijl'i.’lfj) .
i=1

i<j

From this formulation, we find the potential functions in GGM are given by
1 2
¢z($z) = exp “iAiifL'i )
Gij (i, 5) = eXp(—AijiEiﬂUj)-

Recall the discussion on a general pairwise undirected graphical model, we know
that if ¢;;(x;, ;) is a constant function, then z; and z; are conditionally indepen-
dent. From the above function, it happens only when A;; = 0. Therefore, we can
conclude that the conditional independence in GGM and the precision matrix entry

have the following correspondence:
x; 1L Z; | T\ (5,5} =~ Aij = 0,

where Ll denotes statistical independence. Reflecting back this result into the basic
nature of a pairwise undirected graphical model, we find that the edge pattern of
the GGM corresponds to the zero pattern in the precision matrix since the absence
of edges implies conditional independence. See Figure 1.1 for an example.

In precision matrix, as like the case of PCA, leading eigenvalues and eigenvec-
tors are essential to approximate the matrix. Since a precision matrix A relates to
a covariance matrix ¥ through an inverse A = X7!, leading eigenvalues of A cor-

responds to minor eigenvalues of ¥. In this sense, discarded components in PCA
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Figure 1.1: An example of GGM. Zero/Non-zero patterns in a precision matrix A

corresponds to the presence/absence of each edge in GGM.

play the central role in a GGM context, which indicates that they have an opposite

nature even though both of them are defined on the second order statistics.

1.5.3 GGM Learning via /,-Regularization

An important problem when dealing a GGM is how to derive the model from the
data where the edge set E is not known a priori. To construct the model, we have
to find the proper edge set E by examining the conditional independence between
random variables. This problem originates with Dempster (1972) which is referred
as covariance selection. According to the discussion above, we know the conditional
independence structure of GGM is tightly connected to the entries of the precision
matrix A. Therefore, we can cast the task as estimating A from the dataset. The
most naive way would be to use the maximum likelihood estimator (1.4). From
the statistical perspective, this is the most appropriate estimator explaining the
data. However, from the law of large numbers, this estimator is a dense matrix
under a finite number of samples, that is, no matrix entries are exactly equal to
zero with probability one. It implies even if the (z,j)th entry of A is zero in
truth, the maximum likelihood estimation provides a non-zero estimator AU # 0.
This property is unfavorable for covariance selection since the objective is to find
conditionally independent pairs of variables, or equivalently, zero entries in A.

To overcome the problem, in classical studies, some entries of a precision matrix
are fixed as zeros and the remaining non-zero entries are estimated, where the
zero pattern is optimized in a combinatorial manner. However, this combinatorial

problem is not feasible for high-dimensional data. In recent studies, the use of
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an ¢;-regularization has been shown to be practical for covariance selection. The
first such study was conducted by Meinshausen and Biithlmann (2006). In their
approach, the solution is obtained by solving the Lasso (Tibshirani, 1996). Here,
let an N X d matrix X = [1131 Ty ... T N]T denote d-dimensional data with N
data points. We also define X; as the ith column and X\; as the remaining d — 1
columns of X. For each column, we solve the following Lasso:

1
win 21X~ X601+ o ] (110

where p > 0 is a regularization parameter and [|@|; = > ; |6;]. We then set zero pat-
terns of @ to be the ith column of A. Meinshausen and Bithlmann (2006) have also
showed the asymptotic convergence of their estimator to the true graph structure
under a proper condition. This approach was later reformulated as an ¢;-regularized
maximum likelihood problem (M. Yuan & Lin, 2007; Banerjee, El Ghaoui, &
d’Aspremont, 2008):

max ((A;3) = pljAll;, (1.11)

(A %) = logdet A — tr [m]

Here, £(A; %) is a log-likelihood of a Gaussian distribution (up to a constant), ST
is a set of symmetric positive definite matrices ST = {A € R4 A = 0}, and ||Al]
is an element-wise ¢;-norm ||Al|, = Zf j=11Mij|. We refer to this problem as Sparse
Inverse Covariance Selection (SICS) following Scheinberg, Ma, and Goldfarb (2010).
The resulting precision matrix of (1.11) has some zero entries owing to the effect of
an additional /;-regularization term. Several efficient optimization techniques are
available for solving this problem. Examples include GLasso (Friedman, Hastie,
& Tibshirani, 2008), PSM (Duchi, Gould, & Koller, 2008), IPM (Li & Toh, 2010),
SINCO (Scheinberg & Rish, 2010), ADMM (X. Yuan, 2009; Scheinberg et al., 2010),
and QUIC (Hsieh, Sustik, Dhillon, & Ravikumar, 2011).

1.6 Summary of Contributions

Below, we briefly summarize the contributions of each chapter:
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e Chapter 2: We consider a model called Stationary Subspace Analysis (SSA)

which is a variant model of PCA. The objective of SSA is to find an invariant
pattern across multiple covariance matrices based on a source mixing model.
We build a new algorithm Analytic SSA for this problem, which provides a
solution by solving one generalized eigenvalue problem. This simplicity is ad-
vantageous compared to an existing algorithm which requires solving a gradi-
ent decent based non-convex optimization problem since 1) it requires smaller
computational cost, and 2) a global optimal solution can be derived under a
certain condition while the prior algorithm guarantees only local optimality
of the solution. We also provide theoretical and numerical justifications of

this point.

Chapter 3: In this chapter, we work on convex optimization methods called
Dual Augmented Lagrangian (DAL) and Alternating Direction Method of
Multipliers (ADMM). We combine the basic idea of these two techniques
and formulate the DAL-ADMM algorithm for learning GGM from the data.
The advantage of the proposed algorithm is its flexibility. Most existing GGM
learning algorithms assume the simplest problem based on an £;-regularization.
On the other hand, our algorithm can treat wider variety of regularization
terms including well-known group regularizations. This flexibility is essential

for solving more complicated problems arising in Chapter 4 and 5.

Chapter 4: We consider finding an invariant pattern across multiple GGMs.
We formalize the task as a convex optimization problem using spare regular-
ization techniques, where the proposed formulation can be casted as a gen-
eralization of SICS (1.11) and other existing GGM learning techniques. We
also show the problem can be solved by DAL-ADMM algorithm presented in
Chapter 3 with each updating step requiring only simple analytic operations.
The validity of the proposed method is verified through numerical simulations

and also on an application to an anomaly localization problem.

Chapter 5: This chapter is devoted for extending the model in Chapter 4.

In this chapter, we focus on an anomaly localization problem and considers a
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GGM learning algorithm specialized to this task. One basic finding is that, in
an anomaly localization, row/column-wise changes between two precision ma-
trices are important. We import this idea and formalize the task as a convex
optimization problem. The proposed formulation is a variant of structured
sparsity models and requires specific considerations to construct an algorithm.
We find that some proper transformations of the problem allow us to treat
the problem with DAL-ADMM. Hence, the proposed algorithm requires only
simple analytic updating steps. We verify the advantage of our new formula-
tion over existing techniques on an anomaly localization task through a real

world data simulation.

1.7 Proofs of Theorems

1.7.1 Proof of Theorem 1

Let us recall the model for the partial correlation:

-
T; =T + Wi T\{i 5}

T;=T;+W, Ty
=T i “P\igb

where 7;,7; and @\(; ;) are statistically independent. Here, we define the expecta-

tions of x; and x\(; ;; as
Ty = /ﬂfip(xi) dr;,
T\{ij} = / T\ (5,52 (®\(3.5}) 42\ (1.5) -
We also denote the expectation of r; by 7;. From the independence, we then have
04s= / (ri = 73) (@ fi.y = Do) P(Tis @\ y) drid®y i 5y

= / {(zi — ) —w, (2\(igy — Brny) } (@ iy — Brgigy) P26 B figy) dzad@ g3 )

= a; — Bjw;
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where
a; = / (@ = %) (2\(ig) — Bgag)) P(2i, @\ (i) dmida gy,
Bi; = / (@) = Bria) (@ri) — Brin) P@gisy) A2 -
From the equation, we derive parameters w; and w; as

_ -1
w; = B'ij a;,

-1

w; = Bij

where a; is defined accordingly to a;. Hence, we have equations
ri = z; — a; B @\,
T -1
T = T — @ B ® (i gy
We now turn to explicitly writing down the formula of a partial correlation.
From the definition of a partial correlation, we have

Cov(r;,r;)

\/ Var(r;)Var(r;) '

PCorr(z;, z;|®\ (5 53) =

The numerator can be computed as
Cov(r;, ;) = Cov(z; — a,-TBi?a:\{i,j}, T — a;rBi;Ia:\{M})
= Jij — aiBi;Iaj,
where
gij = /(Cﬂl - T,-)(a:j - Tj)p(ﬂ?i,l’j) d.’L’id.’L'j.
Each component of the denominator can also be given by
Var(r;) = Var(z; — a;rBiglm\{M})
=04 — a,-TBi}Iai,
Var(r;) = 0;; — "B la.
ar(rj) = 0j; — a; B;; a;.
Using these results, we derive the partial correlation as
O35 — aiBiglaj

\/(U"" - a;B;'ai)(0j; — a;B;a;)

PCorr(z;, zj|T\(i.5y) =
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Next, we compute the right hand side of (1.1). From the definition of a covariance
matrix 3, it can be represented as

Bij a; Cl:j

— T
X=la; oy 0|,
T
a; 0Oji Ojj

where we rotated rows and columns simultaneously so that the original ¢th and jth

rows/columuns to be the last two rows/columns. From this expression, we first have

-1 -1
Bij a; aj
T
a; Oji Ojj
Tp-1
o —a; B a,;

J
(0= al By 00 (75— @] ') — (03— o B'a)”

Ay = (Z_l)‘. = | oy — [aiT Uii]

v

We also have

-1

Bij G,j
T

aj Ojj

Aii = (E_l)ii = | %u— [a? Uij]

Oj5 — ajTBi;laj

(00— a1 B;'a) (7 — o B, a5) = (75—l Bas)
O — aiTBi;lai

(04 - al B;'a:) (0;; - a] B'a;) — (05 — a] Bj'a;)”

Since the above three values have a common denominator, they cancels out and

Ay = (E_l)jj =

Aij . O35 — aiBiglaj
VAl \/ (05 — @iBj;'ai) (0;; — a; By a;)
holds, which is equal to the partial correlation. O

1.7.2 Proof of Theorem 2

The distribution p(x) has to satisfy the following three conditions:

1= / p(x) de,

u= [ el da.

5= / (@ — p)(@ — )T p() da.
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Using a method of Lagrange multipliers with u, v and W, we have the problem as
max min — /p(m) logp(x) de + u(/p(:z:) dx — 1>
r uOW
+v' (/ zp(x)de — p) + tr {WT (/(:c — )z — p) p(x) de — Z)} :
From the variational method, the optimal p(x) is given by
p(x) =exp{-1+u+v z+(x—p) Wk-p}

Substituting this result into the above three conditions, we derive the result. U
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Chapter 2

Finding Stationary Sources with a
Generalized Eigenvalue Problem

2.1 Introduction

In Section 1.4, we derived PCA from the linear mixing model (1.5). In the PCA
model, all data points in the dataset are assumed to be independent and identically
distributed. The main point of this chapter is to extend the idea of the linear mixing
model into a multiple datasets situation where the distributions in each dataset
may no longer be identical to each other. The objective is to find an invariance in
the second order statistics across datasets based on the source mixing model. In
particular, we focus on a time series data where the multiple datasets expression
in Section 1.3.3 captures the non-stationarity nature of the observation. However,
note that the i.i.d. assumption is involved as the specific case of a time dependency,
and thus the discussions in this chapter are naturally applicable to the ordinal
multiple datasets setting where each dataset is composed of i.i.d. observations.
The basic model we consider in this chapter is a mixture of stationary and non-
stationary sources that are not directly accessible. It is a plausible model when the
structure of the data generating system is less understood: there may exist sev-
eral latent factors affecting the observation, as in stock market analysis (Engle &
Granger, 1987) for instance. Some of these latent factors may be stationary while
others are non-stationary. The existence of stationary sources is not discernible
from the mixed signals since a single non-stationary source can render all variables
of a multivariate time series non-stationary and thus mask the presence of time-

invariant behavior. Conversely, non-stationary components with low signal power
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can remain hidden among strong stationary sources. It is therefore important to
discern the stationary and the non-stationary group of components in the mixed
signals. However, standard Blind Source Separation (BSS) methods (Hyvirinen
et al., 2001; Lee & Seung, 2001; Ziehe, Laskov, Nolte, & Miiller, 2004) are not
helpful in this respect since BSS algorithms such as Independent Component Anal-
ysis (ICA) (Hyvérinen et al., 2001) separate sources by independence but not by
stationarity or non-stationarity. In particular, the stationary and non-stationary
sources need not be independent.

To that end, the Stationary Subspace Analysis (SSA) paradigm (von Biinau et
al., 2009a) has been proposed. In the SSA model, the observed time series x(t) is
generated as a linear mixture of stationary sources s°(t) and non-stationary sources
s"(t) with a time-constant mixing matrix A,

z(t) = A ss(t)] ,

s"(t)

and the aim is to recover these two groups of underlying sources given only samples
from x(t). The separation of stationary and non-stationary sources is useful in
many circumstances. First of all, SSA can uncover stationary components in seem-
ingly non-stationary time series. Moreover, SSA allows to study the stationary
and the non-stationary part independently. For instance, in change-point detec-
tion (Basseville & Nikiforov, 1993; Siegmund & Venkatraman, 1995; Kohlmorgen
et al., 1999), contributions from the stationary sources are not informative and can
be removed to reduce the number of dimensions (Blythe, von Biinau, Meinecke, &
Miiller, 2012). Conversely, one may be interested in the estimated stationary sig-
nals that reflect constant relationships between variables (Engle & Granger, 1987;
Meinecke, von Biinau, Kawanabe, & Miiller, 2009). Moreover, if the channels of
the time series x(t) are spatially distributed, the estimated mixing matrix A can
be visualized to reveal the characteristic patterns of stationary and non-stationary
contributions, as in EEG analysis (Dornhege et al., 2007; von Biinau, Meinecke,
Scholler, & Miiller, 2010) for instance.

In this paper, we propose a novel SSA algorithm, Analytic SSA (ASSA), where

the solution is obtained by solving a generalized eigenvalue problem. The solution
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to ASSA is guaranteed to be optimal under the assumption that the covariance
between stationary and non-stationary sources is time-constant. Thanks to the
analytic form, the algorithm requires a much lower computational cost than the
state-of-the-art method KL-SSA (von Biinau et al., 2009a), does not require the
selection of algorithmic parameters such as step size and convergence criterion,
and is numerically stable. Moreover, ASSA finds a sequence of projections, or-
dered by their degree of stationarity, and therefore does not need to repeat the
procedure for different numbers of stationary sources. In our simulations on syn-
thetic data, we demonstrate that ASSA outperforms KL-SSA and ICA over a wide
range of settings, even when the covariance between stationary and non-stationary
sources changes over time. Moreover, we apply ASSA to geomagnetic data, namely
Pi2 pulsation time series (Yumoto & the CPMN Group, 2001; Tokunaga, Kohta,
Yoshikawa, Uozumi, & Yumoto, 2007), which are highly non-stationary and known
to involve several sources corresponding to the geophysical mechanisms. In this
case, the independence assumption of ICA is not suitable to recover the sources
of interest. ASSA successfully decomposes the signals into meaningful global and
local modes, which is in agreement with geophysical theory, and more plausible

than the decomposition obtained by ICA (Tokunaga et al., 2007).

The remainder of this chapter is organized as follows. First of all, we introduce
the SSA model and the state-of-the-art algorithm KL-SSA in Section 2.2. In Sec-
tion 2.3, we derive our novel method ASSA and study its theoretical properties.
The relationship to similar methods is discussed in Section 2.4. Section 2.5 contains
extensive numerical simulations to show its validity and a comparison to KL-SSA
and ICA. The application to geophysical data analysis is presented in Section 2.6.

Our conclusion and outlook are summarized in the last Section 2.7.

2.2 Stationary Subspace Analysis

Stationary Subspace Analysis (SSA) models the observed signal x(t) € R as a

linear superposition of stationary sources s°(t) € R™ and non-stationary sources
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Source Mixture x(t) = [AS An] [::(t)}

/\ (t)

Stationary/Non-stationary Sources Observed Signals

a(t)

(0) = W ol
\/

[:,S,gtt))} = [gz] x(t) Source Separation

Figure 2.1: An illustrative example of SSA with one-dimensional stationary and

non-stationary sources.

s"(t) € R™™ (von Biinau et al., 2009a):

z(t) = As = [4* 7]

ss(t)} , (2.1)

where A is a time-constant invertible mixing matrix. We refer to the span of
A5 € R™ and A" € R¥(@=m) a5 the stationary and the non-stationary subspace,
respectively. The aim of SSA is to factorize the observed time series x(t¢) into
stationary and non-stationary sources. That is, SSA estimates the inverse mixing
matrix A~! as B = [BST B"T]T such that §°(¢) = BSz(t) and 8"(t) = B"x(t)
are the estimated stationary and non-stationary sources, respectively. We refer to
the matrix B® € R™*? and B" € R(@™)*4 a5 the stationary and the non-stationary
projection, respectively. See Figure 2.1 for an example.

The demixing matrix B is not unique, because the factorization into a group of
stationary and a group of non-stationary sources is not unique (von Biinau et al.,
2009a; von Biinau, Meinecke, Kiraly, & Miiller, 2009b). First of all, any linear trans-
formation within the two groups of sources yields another valid demixing. Secondly,
adding stationary components to the estimated non-stationary sources leaves their
non-stationary nature intact, whereas the converse is not true. This means that we

cannot identify the true non-stationary sources s"(t¢) from the mixing. Formally, if
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we apply the demixing to the mixed sources,

°(t)

L”(t)

we sece that by the preceding argument, a solution to the SSA problem is fully

BsAs BSA
BrA® B"A"

w>

= BAs(t) = ()

ss(t)} (2.2)

characterized by the condition BSA" = 0y, (4—m), that is, a stationary projection B®
must eliminate all non-stationary contributions in the estimated stationary sources.
This is equivalent to the condition that the rows of the stationary projection are

orthogonal on the non-stationary subspace,
span(B°") L span(A"),

where span(x) denotes the column span of a matrix. In terms of subspaces, this
means that the orthogonal complement of the estimated stationary projection is
equal to the true non-stationary subspace. Thus we conclude that we can iden-
tify the true stationary sources s%(t) (up to the linear transformation B®A®) and,
equivalently, the true non-stationary subspace. On the other hand, the recov-
ered sources §"(t) are kept non-stationary for several different values of B"A® and
therefore the true non-stationary sources and the true stationary subspace are not
identifiable (von Biinau et al., 2009a, 2009b).

Note that the SSA model (2.1) itself does not specify a notion of stationarity.
Both the KL-SSA algorithm (von Biinau et al., 2009a) and our novel ASSA algo-
rithm are based on the so-called weak stationarity (Hamilton, 1994). A possible
extension would be to take time structure into account, for instance, the delayed
covariance or the autocorrelation (Hamilton, 1994). The notion of stationarity is

usually determined by the application domain and numerical considerations.

2.2.1 The KL-SSA Algorithm

The first SSA algorithm (von Biinau et al., 2009a), that we will refer to as KL-SSA!,

is based on the notion of weak stationarity (Hamilton, 1994) without time structure.

1KL stands for the Kullback-Leibler divergence (Kullback & Leibler, 1951), which is used to

measure the stationarity of the estimated sources by comparing epoch distributions.



30

That is, a time series u(t) is considered stationary if its mean and covariance remain

constant over time, or equivalently

E[u(?)] = E[u(t+7)],
E[u(t)u(t)] = E[u(t+ut+1)7],

for all t,7 € R.

To apply this criterion in practice, we first divide a time series into K epochs as
we discussed in Section 1.3.3. Here, we let 71,73, ..., Tk denote consecutive index
sets. We then consider the time series u(t) to be stationary if the corresponding
epoch means iy, Lo, ..., g and covariance matrices X1, X, ..., Xk are identical,

that is,
= b and Xp = Yy,

for all pairs of epochs k, k' = 1,2,..., K. Now this formulation involves O(K?)
equality conditions between epochs, which we can reduce to O(K) by using the
equivalent condition that each epoch’s mean and covariance matrix is equal to the

average,

pr=p and X, =% (k=1,2,...,K), (2.3)

where Ir and ¥ are the average epoch mean and covariance matrix, respectively:

1 & - 1 &
n= }(‘ZM@, Y= Ezzk-

k=1 k=1
Let us now turn to the algorithm which finds the stationary projection accord-
ing to this definition. We have observed samples from the time series x(t) = As(t)
which we have divided into K epochs along the time index. The choice of epochs
T1, T2, ..., Tk (for instance, non-overlapping consecutive blocks or sliding window)
is a model parameter that is selected by the user according to the specific appli-
cation. For example, the epoch length determines the time-scale on which non-
stationarities can be detected or it may be desirable to align the epochs to an
experimental paradigm. The number of epochs K needs to be large enough in or-
der to avoid spurious solutions. See Section 2.2.2 for lower bound that guarantees

this.
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The aim of KL-SSA is to find the stationary projection B® such that the es-
timated stationary sources §°(t) = B°z(t) are weakly stationary according to the
condition (2.3). Since the first two moments of the estimated stationary sources
§°(t) can be written as the projected moments of the input x(t), this means that

we aim to find B® such that
By, = B’ and B°Y, BT = BSSBY, (2.4)

for all epochs kK = 1,2,..., K. In order to find this projection B®, KL-SSA aims
to minimize the distance between each epoch mean and covariance matrix and
their respective averages. This distance is measured using the Kullback-Leibler
divergence Dy;, (Kullback & Leibler, 1951) between Gaussian distributions®. Since
stationary sources can only be determined up to a linear transformation, we can
require that BSSB%' = I,, without loss of generality. This constraint determines
the scaling, avoids degenerate solutions, and reduces the number of parameters in
the optimization problem. The KL-SSA optimization problem (von Biinau et al.,
2009a) is

min < ZDKL (B*py, BSS, B*T)||\N (B, B°EBT)]

2.
= min KZ{uBs e - logdet(BmpT)}, O

BscRmXxd
st. BSEB = I,.

This optimization problem is non-convex and a local solution is found using a
gradient-based method (Avriel, 2003; Amari, 1998; Plumbley, 2005). See Miiller,
von Biinau, Meinecke, Kiraly, and Miiller (2011) for an implementation.

Note that the population statistics in (2.5) are replaced with sample estimators
such as (1.2) and (1.3) in practice. In this context, advanced techniques such as
exponentially weighted moving average (Roberts, 1959; Montgomery, 2007) would
be helpful to obtain more accurate estimates, while we use naive estimators for
the simulation in Section 2.5 because we are primarily interested in comparing the

performance of SSA algorithms.

2 According to Theorem 2, this is the least restrictive distributional assumption.
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2.2.2 Spurious Stationarity in the KL-SSA Algorithm

The feasibility of SSA depends on the number of non-stationary sources d — m and
the number of epochs K. If the number of epochs with a distinct distribution of the
non-stationary sources is too small, there exist directions in the non-stationary sub-
space on which the projected moments match — these are called spurious stationary
projections. See Figure 2.2 for an example. The existence of spurious stationary
projections renders the solution to SSA unidentifiable. The following theorem (von
Biinau et al., 2009b) provides us how many distinct epochs are necessary, in order

to guarantee that there are no spurious stationary projections in the generic case.

Theorem 3 (Spurious Stationarity in KL-SSA). For the KL-SSA algorithm, given
a d-dimensional signal with m stationary sources, the number of distinct epochs K

required to avoid the existence of spurious stationary projections is

d—m

2

K > + 2. (2.6)

In the special case when the mean is known to be constant for all epochs, this becomes
K>d-—-m+1. (2.7)

Note that in practice, having more epochs of sufficient length is always desirable,
as we will see in the results of the simulations in Section 2.5. Unless the number
of samples in each epoch becomes too small, additional epochs provide more infor-
mation about the variation in the non-stationary subspace which makes it easier to

identify.

2.3 Analytic SSA

The KL-SSA optimization problem (2.5) is not convex and a local minimum is
found by a gradient-based search procedure. Therefore the solution depends on
the choice of initial values and algorithmic parameters. Moreover, our stability
analysis in Section 2.8.1.3 reveals that the objective function is very flat in the
neighborhood of the global solution. This leads to a slow convergence and adds to

the computational cost, which is magnified by the need to repeat the optimization to
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| W

(a) K =2 (b) K =3

Figure 2.2: Illustrative example of spurious stationarity in d = 2. (a) Given two
Gaussians with equal means (two ellipsoids), there may exist more than one projec-
tion direction on which projected distributions are equal. (b) For three Gaussians

(three ellipsoids), this is no longer the case.

avoid local minima. In a fixed-point formulation in Section 2.8.1.2, KL-SSA requires
O(rKm(m? +md+ d?)) operations to solve (2.5) where r is a number of iterations.
This computational complexity limits the algorithm’s practical utility on large and
high-dimensional dataset. In particular, since KL-SSA requires to prespecify the
number of stationary sources m, so that it needs to be run repeatedly in order to
explore the results for a range of values.

In order to overcome these limitations, we propose a novel SSA algorithm called
Analytic SSA (ASSA). Based on an approximate upper bound of the KL-SSA ob-
jective function (2.5), it is formulated as a generalized eigenvalue problem, which
can be solved efficiently. As such, ASSA does not require any initializations nor
algorithmic parameters. In particular, we can show that the solution is optimal
when stationary and non-stationary sources have time-constant group-wise covari-
ance. Even when this is not the case, our numerical simulations show that ASSA

yields very good results (see Section 2.5).

2.3.1 Analytic SSA Objective Function

The ASSA objective function is based on the following approximate upper bound
of the log-term in the KL-SSA objective function (2.5).
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Theorem 4 (Approximate Upper Bound of KL-SSA). 3 Let f(B®) denote the un-
constrained log-term in the KL-SSA objective function (2.5),

3 Z det (BsZeB°T)
K det (BsZBsT)’

and B%* is one of the true stationary projections that satisfies (2.4) and the ad-
ditional constraint B¥*SB**" = I,,. Then the second order Taylor approximation
of f(B®) in the neighborhood of the solution B%* is upper bounded by the function
9(B®) defined as

- % i tr [BS (B -D)E (5 - ) BST], (2:8)

under the constraint that BB = 1I,,.

Using this bound, we formulate the following ASSA objective function by re-
placing the log-term in (2.5),

min %f{ 1B~ W)y + 2t | B (S ~ DT (5 - T) B[}

BscRmXxd
= min tr [BSSBST] (2.9)
BscRmXxd
st. BSSB = I,
where the matrix S is given by
1 & =-1 =
= =3 (sl + 205 7'5) - - 25 (2.10)

k=1
This objective function can be interpreted as the variance of the mean and covari-

ance across all epochs. The next result ensures the optimality of our approach.

Theorem 5 (Optimality of ASSA). Let BS, denote the minimizer of (2.9). BS is
then guaranteed to be optimal, that is, span(BZT) = span(Bs*T), when the covari-

ance between stationary and non-stationary sources is time-constant.

3Note that Theorem 4 and 5 are valid only when true epoch population means and covariances
are available. In practice, we replace those statistics with sample estimators which might lead to
a biased result. Nonetheless, as we see in Section 2.5, ASSA shows significant improvement of the

resulting errors over KL-SSA.
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Moreover, it can be shown that the case of time-constant covariance between
stationary and non-stationary sources can be reduced to the equivalent SSA model
with group-wise uncorrelated sources. See Lemma 2 in Section 2.8.5.2. This result
suggests a canonical choice for the estimated non-stationary projection, which is
not identifiable in general (see Section 2.2): the non-stationary projection B™ is
chosen such that the estimated sources are group-wise uncorrelated, or B"X.B%" =

O(d—m)xm. From (2.2), we see that this is equivalent to the condition
span(B™") L span(A°®). (2.11)

Thus we conclude that if the stationary and non-stationary sources have time-
constant covariance, we can identify the non-stationary sources s"(t) in the equiv-
alent group-wise uncorrelated model (up to the linear transformation B*A®) and
from (2.11), it follows that under this condition, the stationary subspace span(A®)
can also be identified.

In Section 2.8.4, we provide further discussions about the case when the time-
constant covariance assumption is not fulfilled and how the optimality of the ASSA

solution is skewed.

2.3.2 ASSA as a Generalized Eigenvalue Problem

The optimization problem (2.9) is known to be equivalent to the minimization of the
generalized Rayleigh quotient tr [(BSSBST)_:l (BSS BST)] which appears in several
other BSS problems (Jolliffe, 1986; Mardia et al., 1979). The solution is found
efficiently by solving the corresponding generalized eigenvalue problem.

The Lagrangian of the ASSA problem (2.9) is given by
L(BT) = tr[BSB*"]| - tr[[(BTB*" — I,)],

where I' € R™*™ is the matrix of Lagrange multipliers. By setting its derivative

equal to zero, we obtain the following generalized eigenvalue problem:

S =vZep.

The solution to this problem is a set of generalized eigenvalues +; and generalized

eigenvectors ¢, {7i,;}%,. The generalized eigenvectors are Y-orthonormal to



36

each other, that is, ¢, icpj = 1if ¢ = j and 0 otherwise. This 3-orthogonality is
equivalent to the uncorrelatedness among recovered sources 8;(t) = ¢, z(t). Hence,
each generalized eigenvalue corresponds to the value of the ASSA objective function
v = @] Sp;/ei T, Let 71 < v, < ... < 74 be the generalized eigenvalues in
ascending order. The estimated stationary projection BZ is then given by the m

eigenvectors with m smallest eigenvalues,

N T
BZZ[% Py - som] )

and the non-stationary projection B} consists of the remainings,

. T
By = [‘Pd Pa-1 --- ‘Pm+1] :

This solution can be interpreted from a deflation point of view (Hyvirinen et al.,
2001), where the ASSA objective function values (eigenvalues) ; are interpreted as
a non-stationarity score. In the deflation approach, the stationary projections are
determined incrementally. In the first step, we select the direction with minimum
non-stationarity score y;. The (¢ + 1)-th stationary projection is then found in
the S-orthogonal complement of the previously determined stationary projections
©1, P9, .., ;. Thus, in each step, the dimensionality of the input space is deflated
by projecting out the newly found stationary projection ¢, ;. In particular, note
that the ASSA solution is uniquely determined if all eigenvalues v; are different

whereas the KL-SSA solution is unique only up to linear transformations.

2.3.3 Spurious Stationarity in ASSA

As in KL-SSA, we need a certain number of distinct epochs in order to avoid the
existence of spurious stationary projection, which renders the solution unidentifiable
(see Section 2.2.2). We show that this minimum number of epochs is smaller for

ASSA, which is useful in practice where data tends to be scarce.

Theorem 6 (Spurious Stationarity in ASSA). If the covariance between stationary
and non-stationary sources is time-constant, the number of epochs K required to

guarantee that there exist no spurious stationary projections in d dimensions with
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m stationary sources is
2(d—m+1)
v—+1

K>

, (2.12)

where v = S 1 rank(X, — 3)/K. In the special case where the mean is constant

over all epochs, this bound becomes
2(d—m)+1
o

The requirement of ASSA (2.12) is looser than KL-SSA (2.6) when v > 3 —

12/(d — m + 4). Since v is the average number of non-stationary sources with

K> (2.13)

different variances among epochs, we can assume v = d — m in practice and the
inequality holds. Again, note that this theorem merely indicates the minimum
number of distinct epochs that are necessary to guarantee determinacy. Having

more epochs is always desirable to improve the accuracy of the solution.

2.3.4 Computational Complexity

The ASSA algorithm consists of three steps, 1) estimating the K epoch mean vectors
and covariance matrices, 2) computing the matrix S, and 3) solving the generalized
eigenvalue problem. Let N be the total number of samples N = Zszl |7%|- Then
the first step is in O(Nd?), the second step is in O(Kd?), and we require O(d?) op-
erations to solve the generalized eigenvalue problem, so that the overall complexity
is O(Nd? + Kd®).

The overall computational complexity of KL-SSA, when formulated as a fixed
point algorithm, is of the order O(Nd? + Kd® + rKm(m? + md + d?)) (see Section
2.8.1.2), where r is the number of optimization steps which is expected to be large
(for instance, 7 > 100) since KL-SSA converges slowly due to its flatness around the
true solution. ASSA is clearly computationally advantageous, which is an important
property for an algorithm that is used in the context of explorative data analysis,

where results need to be obtained quickly and for different settings.

2.3.5 Choosing the Number of Stationary Sources

In practice, the number of stationary sources m may be unknown and needs to be

chosen from the available data. Whereas the KL-SSA algorithm requires to specify
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the number m, so that testing every value m = 1,2,...,d — 1 would require d — 1
independent runs of the algorithm, ASSA finds all possible stationary projections in
a single step, ordered by their stationarity score. We can then treat the evaluation of
each projection in a post-processing stage independently from the source separation.

Since the ASSA objective function (2.9) takes zero for truly stationary sources,
one would expect to see a significant jump of the eigenvalue at some level. However,
in our empirical studies, we have found that small errors in the estimation of the
stationary projections accumulate in the eigenvalues, which make this jump less
pronounced.

Apart from the visual inspection of eigenvalues, there exist a wide range of
different procedures for testing stationarity (Dickey & Fuller, 1979; Priestley &
Rao, 1969) for various types of signals and applications, which is the more suitable

approach in practice.

2.4 Relation to Previous Work

2.4.1 Independent Component Analysis

Independent Component Analysis (ICA) (Hyvérinen et al., 2001) finds indepen-
dent sources from a linear mixture, whereas SSA separates sources by stationarity
or non-stationarity. That is, in the ICA mixing model x(t) = As(t), the sources
s(t) are assumed to be independent whereas the general SSA model (2.1) merely
presupposes that there exists a group of stationary and a group of non-stationary
sources, which may have arbitrary dependence structure among and between them-
selves.

In order to solve the ICA problem, three major properties of sources are used
(Hyvérinen et al., 2001) which are non-Gaussianity (Comon, 1994; Cardoso &
Souloumiac, 1993; Hyvarinen, 1999), autocorrelation (Tong, Liu, Soon, & Huang,
1991; Molgedey & Schuster, 1994; Congedo, Gouy-Pailler, & Jutten, 2008), and
non-stationarity of the variance (Matsuoka et al., 1995; Kawamoto et al., 1998;
Pham & Cardoso, 2001; Hyvarinen, 2002; Parra & Sajda, 2003). The third cri-
terion, the non-stationarity, has some resemblance to the ASSA and the KL-SSA
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approach. However, these algorithms impose independence on the sources and do
not consider changes of the mean. Moreover, for ASSA, we have shown that it is op-
timal in the case of time-constant group-wise covariance, which is a less restrictive
assumption than the pair-wise independence of the ICA model. We further show
the practical distinction of the non-stationarity based ICA to the SSA problem on
the simulated experiment in Section 2.5.

Apart from the differences of underlying models, there are some prior works
close to ASSA in the ICA context. For example, Parra and Sajda (2003) have for-
mulated the non-stationarity based ICA as a generalized eigenvalue problem. They
divide samples into two epochs and diagonalize sample covariance matrices from
each epoch simultaneously by solving a generalized eigenvalue problem. The major
difference of their approach to ASSA is that the generalized version, joint diago-
nalization of K covariance matrices from K epochs (Cardoso & Souloumiac, 1993;
Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997; E. Moreau, 2001; Pham &
Cardoso, 2001; Choi & Cichocki, 2000), cannot be solved by a generalized eigenvalue
problem and requires solving much computationally expensive non-convex optimiza-
tion problems. Here, we point out that ASSA can be interpreted as a modified ver-
sion of the above algorithm to the SSA model. In the ASSA context, non-stationary
independent sources in ICA are replaced with stationary and non-stationary sources
with time-constant group-wise covariance. This difference changes the problem
from the joint diagonalization to the joint block-diagonalization (Flury & Neuen-
schwander, 1994; Belouchrani, Amin, & Abed-Meraim, 1997; Theis & Inouye, 2006;
Abed-Meraim & Belouchrani, 2004), which results in the ASSA algorithm when all

epoch means are constant. We present the further detail in Section 2.8.3.

2.4.2 Supervised Dimensionality Reduction

The aim of supervised dimensionality reduction, or feature selection, is to find
components that are informative for solving a classification or regression task. A
common approach is to maximize the difference between the distributions of each
class (Blankertz et al., 2008; Blankertz, Tomioka, Lemm, Kawanabe, & Muller,
2007; Fisher, 1936; Fukunaga, 1990) where the most prominent method is Linear
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Discriminant Analysis (LDA) (Fisher, 1936; Fukunaga, 1990). LDA finds the direc-
tion on which the distance between the class means are maximal under the metric in-
duced by the common covariance matrix. Common Spatial Patterns (CSP) (Koles,
1991; Blankertz et al., 2008, 2007; Grosse-Wentrup & Buss, 2008), a well-known
method in EEG analysis (Dornhege et al., 2007), finds the projections such that
the difference in variance between two classes is maximized.

If we interpret each epoch 71,75, ..., Tk of the data x(t) in ASSA as samples
from different classes, finding the most non-stationary components is similar to
maximizing the difference among class distributions as in LDA and CSP. ASSA
can therefore be understood as a generalization of LDA and CSP because it takes
both the mean and the variance into account. In particular, LDA is included as a

special case of ASSA where all epoch covariances are equal.

2.5 Simulation

2.5.1 Dataset Description

In this section, we investigate the performance of the proposed ASSA algorithm and
some existing methods using artificial data generated according to the SSA mixing
model (2.1). In order to evaluate the behavior of the algorithms in a realistic
setting, we use several types of different sources; see Figure 2.3 for an overview.
For the stationary sources, we consider (a) the i.i.d. Gaussian M (u®, £%) and (b) the
ARMA (Autoregressive Moving Average) (Hamilton, 1994) model of order (3, 3).
The parameters of these two models are chosen as follows. Each element of the
mean p® and the factors L® € R%*? of the covariance matrix ¥° = L5 L% are
sampled from the standard normal distribution A(0,1). The ARMA coefficients
are also randomly drawn from Gaussian distributions, where if the resulting set of
parameters are producing an unstable process, we discard them and regenerate from
the Gaussian till the resulting process gets stable. For the non-stationary sources,
we consider (c) an i.i.d. Gaussian model with 6 to 20 change points M (u}, £%) with
parameters determined as before, (d) the chaotic Lorenz95 (Lorenz & Emanuel,

1998) process plus white noise, and (e) nine different kinds of real recordings of
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Figure 2.3: Examples for candidate processes. (a) and (b) are candidates for station-
ary sources and (c), (d) and (e) are candidates for non-stationary sources. When
(e) is chosen, one of nine recordings is assigned randomly. (b), (d) and (f) are
candidates for the time-varying covariance structure (see Section 2.8.2 for further

detail).

environment sounds, musics and voices?. The initial values of the Lorenz95 process
and the nine real recordings are also selected at random.

We also investigate the effect of time-varying covariance between the stationary
and non-stationary sources. This is the case when the optimality of ASSA is not
guaranteed. For this purpose, we introduce the following model on non-stationary

s'(t) = s"(t) + C(t)s(2), (2.14)

where s"(t) are non-stationary sources that are uncorrelated with the stationary
sources 8%(t). A time-varying covariance structure between the stationary and
the non-stationary sources is induced by the matrix C(t) € RU@™*™ which is
parametrized by a correlation parameter c¢. It bounds the amplitude of canonical

correlations (Mardia et al., 1979) between the two groups of sources and ranges

4available here : http://research.ics.tkk.fi/ica/demos.shtml
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from zero (correlation is constant) to one (correlation varies from -1 to 1). The
details of the data generation can be found in Section 2.8.2.

We set the dimensionality of the observed signal to be d = 10, the number
of stationary sources to be m = 5, and the total number of available samples to
be 5000, which are divided into non-overlapping consecutive epochs 77,75, ..., Tk

where we vary their number K in the simulations.

2.5.2 Baseline Methods and Error Measurement

In this simulation, we introduce two baseline methods to contrast with ASSA. The
first one is the KL-SSA algorithm, which is implemented as a fixed point algorithm
(see Section 2.8.1.1). Since KL-SSA finds only local solutions, we choose the so-
lution with the smallest objective function value among five restarts with random
initialization®. The second baseline is a non-stationarity based ICA algorithm dis-
cussed in Section 2.4.1. Here, we adopt the method proposed by Pham and Cardoso
(2001) since it measures the non-stationarity of sources using epoch covariances,
which is similar to the approaches by ASSA and KL-SSA. It also suffers from local
optima and we therefore choose the best solution among five random restarts as
KL-SSA. We then construct the stationary projection BS., in the following manner.
Let W = [’w1 wy ... 'wd] ! be a d x d demixing matrix derived by ICA where
each row vector corresponds to the source recovering projection 3;(t) = w, z(t).
For each vector w;, we heuristically measure the non-stationarity of the recovered

source §;(t) using the score:

K
n—score(w;) = Z(U“ —-5)°,
k=1
where o0 ; denotes the standard deviation of §;(¢) in the kth epoch and &; is their
average across epochs o; = Zszl ok,i/ K. This criterion achieves the minimum zero
for perfectly stationary sources, that is, oy ; = op ; for all k # £/, and we choose the

resulting projection ch A as a span of m row vectors with top m smallest scores.

T 1
5The initial values are generated as [BsT BnT] = 05(M-MT)T" % where each element of

M € R4*4 s uniformly random in [-10,10] and e denotes the matrix exponential of A.
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In order to evaluate the performance of algorithms, we adopt the smallest canon-
ical angle (Chatelin, 1993) between subspaces € (in degrees) to measure the differ-
ence between the estimated stationary projection B® and the true non-stationary
subspace A". We report the number 90 — H(B’ST, A™), which is zero for a perfect

demixing where stationary projection is orthogonal to the non-stationary subspace.

2.5.3 Result

The results are shown in Figure 2.4. When the number of epochs is small, we observe
the effect of spurious stationarity: the true solution cannot be found reliably because
it is masked by the presence of spurious stationary projections. In this setting, the
minimum required number of epochs K given by the bounds (2.6) and (2.12) are
5 and 3 for KL-SSA and ASSA, respectively. Though we have not analyzed the
spurious stationarity condition for the ICA method by Pham and Cardoso (2001),
it seems that it is intermediate between the conditions of ASSA and KL-SSA. For
any methods, when the number of epochs K is small, there exists spurious solutions
which results in the observed median errors above 45°. Moreover, a larger number
of epochs is clearly preferable to obtain more accurate solutions. However, note
that when the number of samples per epoch gets too small (around K > 250 in
this case), the effect of estimation errors in the epoch mean and covariance matrix
leads to deteriorating performance.

Figure 2.4(a) shows the result for the case ¢ = 0 (time-constant covariance),
in which ASSA is guaranteed to be optimal. We can see that ASSA outperforms
both baseline methods. While the median ICA result is achieving the competitive
performance with ASSA around K = 50 to 100, we can also see its instability
from the 75% error quantiles, nearly 90 degree errors meaning totally collapsed
solutions. Even for time-varying covariances (¢ > 0), where ASSA is not guaranteed
to be optimal, Figure 2.4(b), 2.4(c), and 2.4(d) show that ASSA is consistently
outperforming on average (median performance) for all numbers of epochs K. In
these cases, the independence assumption of the ICA model is also not fulfilled since
the underlying stationary and non-stationary sources are correlated. The figures

clearly show that ICA cannot reliably recover the two groups of sources, because
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Figure 2.4: Median errors of ASSA, KL-SSA, and non-stationarity based ICA over
1000 random realizations of the data for different correlation parameters c. The
dimensionality of the observed signals, the number of stationary sources, and the
signal length are set to be 10, 5, and 5000, respectively. The observations are
divided into non-overlapping consecutive epochs. The horizontal axis denotes the
number of epochs K and is in a logarithmic scale. The vertical axis denotes a

subspace error and the error bars extend from the 25% to the 75% quantile.

its assumption is violated. The ICA results for correlated sources seem to be quite
distorted and appropriate stationary projections are found only by chance. We
conjecture that the relatively poor performance of KL-SSA is due to its numerical

instability (see Section 2.8.1.3).
We further conducted two extensive comparisons of ASSA and KL-SSA. In Ta-
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Table 2.1: The median runtime in seconds for ASSA and KL-SSA in the simulation
depicted in Figure 2.4(a). We used a Matlab implementation under 64bit Windows7
with a Intel Xeon W3565 CPU. ”Prel” denotes the computation of means and
covariances from data. ”Pre2” is an individual pre-processing, the computation of
the matrix S in ASSA and the whitening in KL-SSA. "Main” is an optimization
process, solving the generalized eigenvalue problem in ASSA and the one updating
step in KL-SSA. ”Step” denotes the median number of updating steps in KL-SSA

with five random initializations. ” Total” is the overall runtime.

K Prel Pre2 Main Step Total

ASSA 10 .0014 .0002 .0002 - .0020
KL-SSA || 10 .0014 .0002 .0005 340 .1930
ASSA 50 .0049 .0004 .0002 - .0059
KL-SSA || 50 .0049 .0004 .0023 372 .9086
ASSA || 100 .0092 .0007 .0002 - .0107
KL-SSA | 100 .0091 .0007 .0046 560 2.6569
ASSA || 200 .0178 .0013 .0002 - .0202
KL-SSA || 200 .0178 .0012 .0091 556 5.2513

ble 2.1, we have summarized the computational advantage of ASSA over KL-SSA.
Here, we find that ASSA has achieved more than 100 times faster speed than KL-
SSA by avoiding an iterative optimization, which is a practical bottleneck of KL-
SSA due to its flatness of the objective function (see Section 2.8.1.3). The results
of an exhaustive comparison over different degrees of correlation parameter are also
shown in Figure 2.5. Here, the median error of ASSA is significantly lower than
that of KL-SSA even though the error of KL-SSA slightly improves as a correlation
parameter gets larger. However, despite its good median performance of ASSA, we
also observe the gradual growth of its 75% error quantile. We conjecture that this
is due to the violated assumption. It seems that even though ASSA is performing
well on average, its result is distorted for certain cases, and the probability of facing

such cases increases as a degree of assumption violation grows®. Even so, the result

6See Section 2.8.4 for further discussion about this point.
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Figure 2.5: Comparison of ASSA and KL-SSA for varying correlation parameter
c. In this simulation, the number of epochs K is set to be 100. The vertical axis
shows the error measured as the subspace angle to the true solution. The horizontal
axis shows the correlation parameter. The median error of ASSA and KL-SSA over
1000 random realizations of the data is plotted along with error bars that extend

from the 25% to the 75% quantile.

shows that ASSA is not sensitive to the assumption violation as ICA and is out-
performing KL-SSA in terms of the 75% error quantile for correlation parameters

smaller than 0.6.

2.6 Application to the Geomagnetic Data Anal-
ysis

We now apply ASSA to the investigation of the dynamics of the earth’s mag-
netic field using ground magnetometer data. The geomagnetic phenomenon called
Pi2 pulsation (Jacobs, Kato, Matsushita, & Troitskaya, 1964; Saito, 1969) has
been studied to reveal the connection to the substorm (Saito, Yumoto, & Koyama,
1976) or the propagation mechanism of magnetohydrodynamic waves in the mag-
netosphere (Uozumi et al., 2004). However, the observations of Pi2 pulsations on
the ground involve several components reflecting 1) propagations of fast and shear
Alfvén wave, 2) resonances of plasmaspheric or magnetospheric cavity and mag-

netic field lines, and 3) transformations to ionospheric current systems (Yumoto
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& the CPMN Group, 2001; Sutcliffe & Yumoto, 1991; Yeoman & Orr, 1989; Ol-
son & Rostoker, 1977; Kuwashima & Saito, 1981). It is unclear how they couple
with each other and how their signals are distributed at different latitudes. Thus,
in order to extract the global system of Pi2 pulsations from the superpositions of
several effects, the use of ICA had been proposed (Tokunaga et al., 2007). The
result of ICA suggests the existence of two major components in an isolated Pi2
event. One is the global oscillation that is common for all latitudes and the other
is the local pulsation that is observed only in some specific latitudes. However, the
source-wise independency assumption underlying ICA is too restrictive for this spe-
cific problem. From a geophysical point of view, one expects that there are several
factors behind each source that interact with each other and thus lead to dependent
sources. We have also observed in Section 2.5 that ICA results for such sources can
be highly distorted. On the other hand, the components that are closely related
to the Pi2 event are those that exhibit strong non-stationary behavior over the
selected time window. Therefore, in order to obtain meaningful results, extracting
the non-stationary sources seems more plausible than factorizing into independent
sources.

The ground magnetometer data was obtained from CPMN stations at the 210°
magnetic meridian chain and South America chain (Yumoto & the CPMN Group,
2001). Figure 2.6(a) shows the horizontal direction component of each station’,
which is bandpass-filtered (25 — 250s) amplitude-time recording of Pi2 pulsation
observed during the time window 13:35-13:55 UT on February 17, 1995 at 400
points in time. Note that the top four signals have larger powers: KTN (115nT),
TIK (71nT), CHD (36nT), and ZYK (11nT), the other signals have power around
3nT. The periodic wave in channel ZYK is environmental noise that is not related
to the Pi2 event. As shown in Figure 2.6(a), most signals, especially those in low
latitude, have similar highly non-stationary waveforms. We therefore expect that
a common non-stationary source can be recovered from the signals. Moreover, the
most stationary sources would correspond to observation noise and the sources with

medium non-stationarity score are probably related to local phenomena. In order to

"The names of the stations are abbreviated by three letter codes. See Yumoto and the
CPMN Group (2001).
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Figure 2.6: (a) Original signals: horizontal direction component of Pi2 pulsations
observed on February 17, 1995 at CPMN stations. The bandpass filter range is
25 — 250s. The plots are aligned in the descending order of station’s latitude from
the top. Stations above and below dashed line are the 210° magnetic meridian
chain and the South America chain, respectively. The scaling of the vertical axis is
around 3nT except for top 4 stations. (b) Separated Pi2 component A as a linear
combination of N1, N2, and N3 (see Figure 2.7). (¢) Separated Pi2 component B

as a linear combination of N4 and Nb.

suppress the effect of noise, we first extract the seven Principal Components (Jolliffe,

1986) from the data to which we then apply ASSA.

Figure 2.7 shows the waveforms of the non-stationary sources (Ns) estimated
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Figure 2.7: Estimated non-stationary sources (Ns) by means of ASSA. The observed
signals are divided into K = 20 non-overlapping consecutive epochs. The estimated
sources are classified into three groups based on their ASSA scores 7. N1, N2, and

N3 are classified into Group A. N4 and N5 are classified into Group B. N6 and N7

are noise sources.

by ASSA (using a consecutive partitioning into K = 20 epochs) in descending
order by their non-stationarity score 7;. We categorize the seven sources according
to their relative non-stationarity into group A (highly non-stationary), group B
(medium non-stationarity), and a noise group (virtually stationary). We conjecture
that the sources in group A and B are related to the Pi2 event. Figure 2.6(b)
and 2.6(c) show the Pi2 components A and B plotted as a linear combination
of the sources in group A and group B, respectively. We can see that the Pi2
component A, the global mode, is distributed globally to all latitudes whereas
the Pi2 component B, the local mode, occurs only in some specific stations (KTN,
CHD), mainly at nightside high latitudes. In past studies, the plasmashperic cavity
mode is deemed to be one of the dominant mechanism of Pi2 pulsations at low and
middle latitudes (Sutcliffe & Yumoto, 1991; Yeoman & Orr, 1989; Takahashi, Lee,
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Nosé, Anderson, & Hughes, 2003). This finding coincides with our Pi2 component
A. The KTN station, whose signal does not show contributions from component A,
is located in very high latitude, so that one would not expect that it is affected by
the plasmapause. The plasmapause is also known to cause a polarization reversal
of the substorm associated to Pi2 pulsations (Fukunishi, 1975; Takahashi et al.,
2003). In this particular Pi2 event, its location is estimated between the stations
CHD and ZYK. Hence the phase reversal of the Pi2 component A between CHD
and ZYK is probably related to the polarization reversal.

However, the interpretation of the Pi2 component B is unclear. Potential causes
are substorm current systems such as the westward auroral electrojets and oscilla-
tions of the current wedge. In this Pi2 event, the estimated location of the aurora
break up spot is in between the stations KTN and TIK. This would imply that the
signals from the KTN and TIK stations both show large local modes, which is not
the case for the component B. The effect of current systems is highly complex and
only partly understood. Further analysis will require satellite observations and the
investigation of other aspects of the magnetometer data, which is beyond the scope
of this study.

The components extracted by ASSA suggest that there are two major sources
behind the Pi2 pulsations. Our Pi2 component A corresponds directly to geo-
physical theory and the findings of other empirical studies. The component B
suggests that there are other mechanisms whose understanding requires further in-
vestigation of current systems and the auroral breakup. In comparison to the ICA
result (Tokunaga et al., 2007), the global mode found by ASSA is more plausible
because it has smaller power at the KT'N station, which locates north of the auroral

breakup and less effects from the plasmapause is expected.

2.7 Conclusion and Future Work

In this chapter, we have proposed the first SSA algorithm, ASSA, whose solution
can be obtained in closed form, and we have shown that it is optimal in the case
of time-constant group-wise covariance. Thanks to its formulation as a generalized

eigenvalue problem, it is more than 100 times faster than the state-of-the-art KL-
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SSA and it does not require tuning any algorithmic parameters. We also proved
that ASSA has a looser condition for avoiding spurious solutions. Moreover, unlike
KL-SSA, we do not need to run ASSA multiple times to derive solutions for dif-
ferent numbers of sources: we can derive a set of solutions in one step. We have
demonstrated the performance of ASSA in a realistic set of experiments and applied
it to geomagnetic measurements Pi2 pulsations, where it successfully factorizes the
observed time series into meaningful components.

A number of open questions remain. First of all, to date there exists no system-
atic approach for selecting the number of stationary sources m from data. Even
though ASSA’s eigenvalue spectrum and subsequent hypothesis testing can offer
some guidance, a principled model selection technique, such as Information Crite-
rion (Akaike, 1974; Schwarz, 1978), still needs to be developed. Similarly, apart
from the lower bound on the number of epochs K, their choice 71,7z, ..., Tk is so
far determined heuristically, based, for instance, on the number of samples in each
epoch. Most importantly, both KL-SSA and ASSA hinge on the limited notion of
weak stationarity, which is a good pragmatic choice for many scenarios. However,
an extension towards separating sources by non-stationarities with respect to the
time structure would open up a wide field of new applications, where temporal

changes in the frequency domain are the main point of interest.

2.8 Appendix

2.8.1 Computational Issues of KL-SSA
2.8.1.1 KL-SSA with Fixed Point Algorithm

To solve the optimization problem (2.5), the combination of natural gradient (Amari,
1998; Plumbley, 2005) and conjugate gradient (Avriel, 2003) had been proposed by
von Biinau et al. (2009a). Here, we introduce the use of the fixed point algo-
rithm (Hyvéarinen et al., 2001). The fixed point algorithm is simpler since it does
not require the tuning of step size as the gradient descent method. It therefore
allows us to compare ASSA and KL-SSA more objectively.

In the pre-processing stage, each epoch mean and covariance are centered and
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whitened as
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1
for k=1,2,..., K. We also factorize the stationary projection B® as BS = WX 2,
W € R™*? and derive the alternative problem of (2.5):

1 1 . w2 w
W2 72 AW Tl — log der(WEEWT) ) st WWT ~ .

The fixed point algorithm is based on the fact that solutions to the optimiza-
tion problem miny f(W) with a constraint WWT = I, has the following prop-
erty (Hyvérinen et al., 2001):

span(W ) = span(dW "),

where dW denotes the gradient dW = 9f(W)/0W. It indicates that the optimal
W is proportional to the gradient dWW. Therefore, in the fixed point algorithm, we
update W by substituting dW and rescaling it so that WW T = I,, is kept. The
overall procedure is summarized in Algorithm 1. Note that in KL-SSA, the gradient
dW is given by

K
dW = %Z{Wuyguf - (WzngT)‘IWE‘,:} :
k=1

In the synthetic experiment in Section 2.5, we stopped the updating iteration when
1 — tr [WhewWolq] /m < 1075

2.8.1.2 Computational Complexity

In this section, we derive the computational complexity of KL-SSA in the fixed
point formulation (Algorithm 1). In the pre-processing stage, we compute the
sample means and covariance matrices which is O(Nd?) where N is the total size
of epochs N = 3°K |7i|. The computation of the whitening matrix % isin
O(d?) and the whitening of all epochs is of the order O(Kd?). In the optimization
stage, there appears an inverse of WEXFW T which requires O(md(m + d)) for the
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Algorithm 1 : KL-SSA with a fixed point algorithm

Input: samples {x(¢)}L,, index sets {T;}X_,, number of stationary sources m

Output: stationary projection B%L

1: divide samples into epochs by {7z} ;

2: center and whiten the means and the covariances {p}, S¥ H< ;
3: initialize W € R™*? 5o that WW T = I,;

4: repeat

5:  compute the gradient dW;

6: update W « dW,

7. normalize W so that WW T = I,.;

8 until W converges

9: set By Wf_%;

matrix multiplication and O(m?) for the inverse. The cost for all epochs is thus
O(Km(m? + md + d?)) and the overall complexity is O(Nd? + Kd® + rKm(m? +

md + d?)) where 7 is the number of updating steps till convergence.

2.8.1.3 Stability

When solving an optimization problem minq, f(u) by an iterative method, its nu-
merical stability is governed by the condition number of the Hessian matrix V2 f(u),
where the condition number x(C) for a matrix C is defined as a ratio of its largest
singular value to the smallest singular value. If K(V?f(u)) is large, the contour of
f forms a long ellipsoid with large eccentricity. In that case, the optimization pro-
cedure tends to require a large number of steps and the solution gets numerically
instable (Boyd & Vandenberghe, 2004).

Here, we see the Hessian matrix of KL-SSA (2.5) for the case of m = 1, that
is, B =b' € R4 for simplicity. The unconstrained KL-SSA objective function

f(b) is

K T — |2
1 b' (u, — ) b' b
0= %2 (” 3 ”2‘1"%—%2)-
=1
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Let b* € R? be a true SSA solution satisfying (2.4). We then derive

_v2

B Z b b S, — b S

~ K b Sb* :
Moreover, we can see from (2.18) that this Hessian matrix gets zero when the co-
variance between stationary and non-stationary sources is time-constant. It implies
that f is very flat in the neighborhood of the true solution b*, and the gradient
based method may stop far before. When the covariance between the two groups
of sources is time-varying, we can express X;b* as

Sb* = [AS An] AT

ns
Zk

where 35 € R™*™ is a covariance matrix of stationary sources, which is constant
across epochs, and X5 € RE-™X™ ig a covariance matrix between non-stationary

and stationary sources in the kth epoch. We then derive

K
}1{_ Z ESASTb*b*TAS (EES _ EHS)T — Omx(d—m)a
k=1

where the equality holds from the definition of ¥. The Hessian matrix is

Om m Om —m
lv?f(b*) — A X x(d ) AT,
4 O(d—m)xm zZ"
where Z" is defined as
g L i‘: (2 - %) A Th b T A5 (5 - %)
K b*'Tb '

It is obvious that the Hessian matrix is rank deficient and thus the condition number
is infinite, which again implies that KL-SSA is instable around b*. Note that this
result is irrelevant to the parametrization of b. Even if we parametrize b as b = b(0)
with some other parameter 8 € R?, the Hessian matrix of f over 8, V2£(b(0)), is

expressed as
Vif(b(9)) = V2 f(b)Jy

with a Jacobian matrix Jy € R??, and again it is rank deficient.
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2.8.2 Data Generation

From the model (2.14), we can see that the correlation between s°(t) and s"(t)
gets C(t) after a proper scaling. In this simulation, we set C(t) = R;diag(c(t))R;
where R; and Ry are m x m and (d — m) x (d — m) orthogonal matrices and
diag(c(t)) € R™*(@=m) is 5 matrix with ¢(t) € R™™md4=m) on its diagonal. Each
component of ¢(t) is limited to [—1,1] from the definition of correlation. The
process c¢(t) is also chosen from several different sources in Figure 2.3 which are
(b) ARMA(3, 3), (d) Lorenz95, and (f) constant with 6 to 20 change points. The
chosen process is scaled so that each component of ¢(t) belongs to [—c, ¢] for a given
correlation parameter ¢ € [0,1]. When ¢ = 0, the covariance between stationary
and non-stationary sources is zero and thus time constant, in which the optimality
of ASSA is guaranteed while the ASSA assumption is violated for ¢ > 0. The
overall data generating procedure is as follows: 1) randomly generate A, R; and Ra,
2) randomly assign m processes to stationary sources from two candidates and d—m
processes to non-stationary sources from three candidates, 3) generate s°(t) and
8™ (t) from each assigned processes, 4) randomly assign one from three candidates
to c(t) and generate non-stationary sources s"(t) according to the model (2.14),

and 5) generate the observed signal (t) from the SSA mixture (2.1).

2.8.3 ASSA and Joint Block-Diagonalization

Here, we briefly introduce how the joint block-diagonalization (Flury & Neuen-
schwander, 1994; Belouchrani, Amin, & Abed-Meraim, 1997; Theis & Inouye, 2006;
Abed-Meraim & Belouchrani, 2004) approach can be applied to the SSA problem.
As have shown in (2.17), the essential covariance structure of stationary and non-
stationary sources is in the block-diagonal form when two sources are group-wise
uncorrelated. Therefore, the source recovery can be interpreted as the problem
of finding a matrix B € R%*¢ that makes BX;B' to be block-diagonal for all K
matrices in one time, which is achieved by solving

BeRdxd

K
min Z ||block-0ff—diag(BZkBT)“12,, st. BEB = I, (2.15)
k=
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where block-off-diag(*) denotes block-off-diagonal elements of a matrix. The equiv-

alence of ASSA to (2.15) is summarized in the next theorem.

Theorem 7 (ASSA and Joint Block-Diagonalization). The problem (2.15) coin-
cides with the ASSA problem (2.9) with a condition p) = py = ... = py.

2.8.4 Assumption Violation and ASSA Solution

In Section 2.3, we have constructed the ASSA algorithm based on the assumption
that stationary and non-stationary sources have a time-constant covariance. More-
over, even when this assumption is not fulfilled, we have observed that ASSA is
quite robust against the violation through simulations in Section 2.5. Here, we
provide one theoretical result that gives an insight how the assumption violation
affects the ASSA solution.

In the analysis, we consider the simplest case when stationary and non-stationary
sources are group-wise uncorrelated. The reason is that we can always construct
such a model in a time-constant situation without loss of generality from Lemma 2
(Section 2.8.5.2). Under such a model, we study how the following small perturba-
tion on a covariance between the two groups of sources affects the resulting ASSA

solution,

S enm

AT
GanT s !
k k

Yp=A

where 3% € R™™ is a covariance matrix of stationary sources, which is common
across epochs, ¥} € R(d-m)x(d=m) i5 5 covariance of non-stationary sources in the
kth epoch, and ¥3* € R™*(¢=™) ig 5 covariance between the two groups. Here, we
let O(33") = O(1) and explicitly impose a parameter 0 < ¢ < 1 to express that the
assumption violation is sufficiently small. Our main result is based on the fact that
under this small perturbation, we can also express the matrix S defined in (2.10)

as

06’2;" Eg} AT+ 0(), (2.16)

with some @ € R™? and P € R(¢-"™)x(@=m) We then have the following theorem.

S=A
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Theorem 8 (Effect of the Assumption Violation). For a sufficiently small pertur-
bation 0 < € < 1, the ASSA solution B, is not orthogonal to the n-space span(A®)

and its error is in the following order:
O(B5A") = O(eQP™).

From the definition of the matrix S, we can interpret matrices ¢ and P as the
non-stationarity degree of the covariance between the two groups and the covariance
within non-stationary sources, respectively. The above result shows that even for
small €, the assumption violation might cause larger error if QP! is large. It
occurs when @ has larger values in the directions where P has smaller values. The
smaller values of P imply that the sources in these directions are non-stationary
only slightly, while the larger @} stands that two sources are strongly correlated.
We can therefore interpret the above result as that sources with only slight non-
stationarity tend to be mixed up with truly stationary sources under the assumption
violation. On the other hand, the effects of small correlations with highly non-
stationary sources can be negligible in practice. It is in line with our intuition that
the significant non-stationarity could be easier to distinguish even when there are
some correlations between the two groups.

The above theorem can partly explain the simulation result in Section 2.5. In
Figure 2.5, the median error gradually grows along a correlation parameter ¢ while
the 75% quantile is rapidly increasing. Note that the parameter ¢ corresponds to
the perturbation ¢ in the theorem. The theorem indicates that the assumption
violation is not always fatal. There are some cases that has small errors even under
large ¢ if QP! is small. We conjecture this is the reason why the ASSA solution is
not entirely collapsed even for large c, but only for some specific cases as observed

in the 75% error quantile.

2.8.5 Proofs of Theorems
2.8.5.1 Proof of Theorem 4

Since f(B®) takes its minimum zero at B® = B®*, its first order derivative vanishes.

Therefore the second order Taylor approximation f (B®; B%*) depends only on the
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second order derivative of f(B®):
_ 1 K m d
i) =330 S

k
1(%(B% %)  0%(BY)
_ BS. — BS* BS/ L, — .s/*./
2 ( 6stan,j, 8Bisjan'j/ ( ij 1,]) ( i B” ),
Bs=PBs*
where £(B% X) = —logdet(B*£B*") and
LoUBS )
2 0B;;0B;, o

—(BEBT) Ty + (BEBT) 5, BT (B BT) T By,
+(B°2B*T), B°S,(B°SB*) B°S,.

Here, C;. and C'; denote the ith row and jth column vectors of a matrix C, respec-
tively. From the assumption BS*Y,Bs*" = Bs*SB**T = I,,, we derive the following

simpler expression:

Z O(B% %) 9%(B%T)
K 0B;0B;, 0B0B:,
Bs—Bs*

1 K

> * * 3 sx | Ds*xT
= ?(— (_Im,iilzk,jj’+Im,ii12jj/ +Im7ii/2k,j.Bs TBS Ek,-j’—Im,ii’Z]ﬂB B E~j’
k=1

+ I B Sy o I B S — I s B S Lo . B j>

I
==
(]~

{Im,ii’ (Ze — i)j,BS*TBS*(Zk - %) »

b
Il

1

+ I B (k= 5)  Ino B (% - T},

where the last equality holds from ¥ = Eszl Yx/K. By using ), it g Cir Djp Xig Xy =
tr [C’TX DX T] and BS*Y.B*" = B**SB* " we obtain the resulting second order
Taylor approximation f (B®; B*) as

K
F(B% B™) = %Z {tr [Bs (S - 5) BT B (5, - ) BS*T]
=1

+tr| B (2 - D) BT B (% - D) B}

Then, we first derive the following upper bound:

F(B%; B*™) Ztr |8 (5 - )BT B (% - ) B
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from the Cauchy-Schwarz inequality

[(Ce, O] < (i CO(CT ) = (G G,

where (C, D) = tr [C’DT] is an inner product of matrices C' and D, and Cy =
B(%, —T)B*.

Here, let B™* € R@™*d denote a %-orthonormal complement of B%*, that is,
BvEBsT = 0(d—m)xm> BY¥YB™T = [, . We then derive the following further
upper bound from the fact that tr [BS (Ek —i]_)B“*TB“*(Z;C — f) BST] > 0 holds
for any BS:

F(B% B

i::{tr [B(5 - £) BB (% - ) BT

+tr[ B (S~ 5) BB (5 - T) BT}

N |

K
2 — —
— =Y u|B (= -%) BB (T - 2B,
k=1
T — —
where B* = [BS*T B“*T] . Moreover, B*"B* =% ! follows from B*SB*T = Iy
and we derive (2.8). O

2.8.5.2 Proof of Theorem 5

The theorem is obvious from following lemmas.

Lemma 1 (ASSA and Uncorrelated SSA). The ASSA solution B3, is optimal when
stationary and non-stationary sources are group-wise uncorrelated, that is, the co-

variance between the two groups is zero.

(proof) 1f stationary and non-stationary sources are group-wise uncorrelated, 3y

is in the following block-diagonal form:

T = [AS A“] 2 Oniaom [AS A“]T, (2.17)

O(d—m)xm EI];

where ¥° is a covariance matrix of stationary sources, which is constant across

epochs, and X} is a covariance of non-stationary sources in the kth epoch. From
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this block-diagonal structure and the orthogonality between B%* and A", B**Y, =
B> AsY A" holds. Since this is independent of the epoch index k, we derive the

relations on B®*:
B¥*u, = B and B¥*Y, = BS*Y, (2.18)

for k = 1,2,...,K. It is obvious that the ASSA objective function (2.9) gets
zero at B® = B®*. Since the ASSA objective function is non-negative, B%* is a

minimizer. ]

Lemma 2 (Equivalent Class of Uncorrelated SSA). Any SSA model (2.1) with
a time-constant covariance between stationary and non-stationary sources can be

reduced to the equivalent model with group-wise uncorrelated sources.

(proof) Let £ € R™*(¢=™) be a time-constant covariance matrix between sta-
tionary and non-stationary sources. The equivalent uncorrelated SSA model is then
given by

s°(t)

z(t)= |[A+ Br»ys! B
( ) [ ] Sn(t) _ EsnTzs—lss(t)

’

where ¥° € R™*™ is a covariance matrix of stationary sources and thus time-

constant. , O

2.8.5.3 Proof of Theorem 6

From the Lemma 2, it is sufficient to prove for the case of group-wise uncorrelated
sources. Under the uncorrelated model, the conditions (2.4) is replaced by (2.18).
Let B denote a set of the ASSA solutions that satisfies (2.18) and the constraint
BSYB*" = I,,. The uniqueness of the ASSA solution is guaranteed (up to linear
transformation) if span(B*T) = span(B*') holds for any solutions B%, B¥ € B,
It holds when b € | Jg.cp span(B®") has degrees of freedom equal to or less than
m — 1 where the —1 stems from the constraint. The conditions (2.18) impose the

following K (d + 1) constraints:

(ke —B) =0, (2.19)
(Zx —Z)b=0g, (2.20)
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where k = 1,2,..., K. However, note that not all of them are independent. Since
at most rank(X; — X) equations are independent in (2.20), the expected number of
independent constraints is K (v +1). Conditions (2.19) and (2.20) also include d —
m + 1 dependent equations since their sums are obviously zeros from the definition

of ;t and X, that is,

K T K
(Zuk - Kﬁ) b=0 and (ZE’C — Kf)b = 0,.

k=1 k=1
Therefore, the total number of independent constraints is K(v + 1) — (d — m + 1)
and b has d— K(v+1) + (d+m — 1) degrees of freedom. Since this has to be equal
to or less than m — 1, (2.12) follows. In the special case when the mean is constant,
the condition (2.19) vanishes and we have Kv — (d — m) independent constraints.
The degrees of freedom on b is d — Kv + (d — m) and (2.13) holds. O

2.8.5.4 Proof of Theorem 7

-
Let a matrix B = [BST B“T] . The block-off-diagonal element of BX;B" is
then BSY,B"'. Therefore, the objective function of (2.15) satisfies the following

inequality:
K
3t [BSEkB“TB“EkBST]
=1

< {tr [BSZkB“TB“ZkBST] Ftr [BsszsTBsz:kBsT]}

M= 10>

tr [Bszki‘lszsT] , (2.21)

b
I
—

where the last equality follows from B®' B+ B*'B* = B"B and BXB" = I;. The
equivalence of (2.21) to the ASSA objective function (2.9) can be checked with some
algebra with a condition g, = py = ... = py. Hence, BY BT = BSYBs' =1,
is a necessary condition for a minimizer of (2.21) to coincide with the minimizer

of (2.15), which is guaranteed by Lemma 1. O
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2.8.5.5 Proof of Theorem 8

We first show that the matrix S is given in a form (2.16). From the definition, we

have the average covariance X as

- DS Vi
r=A =snT 6——11 AT’
€2 b

where & = ZkK=1 ¥ /K and 3 = Zle ¥r/K. Hence, its inverse is given by

[ s— s—1580 7=on T g s—15=sn
s1_ 47|E '+ €% _:ZT JE T T —emsIS 4
I —eJE Tt J
[ ys! —exsIETE
= AT e 1—en ~ A7+ O(2),

where J = (fn - GQE—SHTES_lfsn)_ =3  +0O(e?). Using this expression, we can

write down the product ;% "5 as

3 EQk

=-1
ey 2 =A 1
Qp TiX X}

AT +0(é%),

where Q) = 25" + ZEEH—I(E?J‘ — ‘an), and the matrix S takes a form (2.16) with
() and P defined as

K
0= 25 ) (1 i),
1 k‘;l
P= > (u};ugT + 22;;5“"122) —ErEt - 2%

o
I
—

Here, we used notations g, = A[HZT “ET] ! and I = A[ﬁST ﬁ“T] T.

Now, we turn to proving the main claim. Let BZ,E denote the ASSA solution
under some fixed € > 0. Note that BXO = B** holds from the Theorem 5. Here,
we assume that B> satisfies BS*SB**" = I,,. Hence, from the continuity of B’Z‘e
over ¢, there exists some 0 < n < 1 and C € R™*¢ guch that O(C) = O(1) and

32’6 = B%* 4+ nC for 0 < e <« 1. With this expression, we can write down products
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BZ,GEBZTE and BKESE/SJE as follows:

BIS\,SEBZ-; = [m + n(CASZSASTBS*T + BS*ASZSASTCT)

=sn |

+en (CAnE AsTBs*T + Bs*AsisnAnTcT)
+ 17 (CATATCT +CAT ATCT) + O,
B SBy . =en (C‘A‘“QTASTBS*T + BS*ASQA“TCT)
+n?CA"PA* CT + O(en).
Hence, we have

; [(B‘S*’EBZT*) ) (33,6537\1” = 2entr [CA“QTAST BS*T]

+n’tr {CA“PA“TCT] + O(en?),

A a1
because (Bz,ezBZl) = I, + O(n). As we have discussed in Section 2.3, the
ASSA solution Bgzye is a minimizer of the above. Note that the problem further
reduces to finding an optimal nC' since B®* is a constant matrix. By setting the

derivative over nC' A" equal to zero, we obtain
nCA™ = —eB**A*QP~' + O(en).

This is equivalent to BXEA“ = (B®* 4+ nC) A" since B¥* A" = Op,x(d—m), and we have
the claim. O
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Chapter 3

Sparse Inverse Covariance
Selection with a Dual Augmented

Lagrangian Method

In Chapter 3-5, we consider a Graphical Gaussian Model (GGM) learning prob-
lem introduced in Section 1.5, and extend it by introducing a notion of invariance
into the model. Across chapters, the Sparse Inverse Covariance Selection (SICS)
problem (1.11) is the basis of our framework. In this chapter, before we go into the
techniques for finding some invariance in GGM, we construct a technical founda-
tion used in upcoming chapters, which is a general convex optimization method for

GGM learning problems.

3.1 Introduction

SICS is the maximum likelihood estimation problem of a precision matrix A under a
sparsity constraint. In (1.11), an element-wise #;-norm is used as the regularization
term. Although this is the most basic formulation considered by a number of
authors (Meinshausen & Bithlmann, 2006; M. Yuan & Lin, 2007; Banerjee et al.,
2008), it is not the unique regularization term used in several problems. The SICS
problem (1.11) can be expressed more generally in the following form:

max £(A; %) —p,(A), (3.1)

U(A;3) = logdet A — tr [ZA]A],
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where ¢,(A) is an arbitrary regularization term parametrized by p. In most cases,
some sparsity inducing norms are used as ¢,(A). For instance, Duchi, Gould, and
Koller (2008) and Schmidt, Van Den Berg, Friedlander, and Murphy (2009) consid-
ered a grouped feature case and introduced a group regularization term instead of
an {1-norm, while Honorio, Ortiz, Samaras, Paragios, and Goldstein (2009) consid-
ered a spatial structure in a precision matrix and introduced a fused regularization
to promote common constant entries in the estimator. Note that the problem (3.1)
is a convex problem as long as ¢,(A) is a convex function, and a global solution can
be derived with some proper optimization methods!. The objective of this chapter
is to provide one such algorithm. For the SICS problem (1.11), several optimization
procedures have been proposed (Scheinberg et al., 2010; Duchi, Gould, & Koller,
2008; Friedman et al., 2008; X. Yuan, 2009; Scheinberg & Rish, 2010; Hsieh et
al., 2011). Amongst these methods, QUIC (Hsieh et al., 2011) would be the most
practical state-of-the-art method with some theoretical guarantees. However, the
efficiency of QUIC heavily depends on the specific property of the ¢;-norm and it
is not applicable to the general regularization term. In this chapter, we consider
the case when the regularization term ¢,(A) is convex and the proximity opera-
tor (Rockafellar, 1996) defined on the convex conjugate of ¢,(A) can be efficiently
computed. This assumption involves p,(A) = p||A], as its special case, that is, an
algorithm proposed in this chapter, which we call DAL-ADMM, has wider flexibility
on the regularization term compared to algorithms specific to the ¢,-regularization

such as QUIC.

The main scope of this chapter is to propose a new algorithm for the general-
ized SICS problem (3.1), which can treat general regularization terms other than
the ¢;-norm. The proposed method relies on the Dual Augmented Lagrangian
(DAL) method (Tomioka, Suzuki, & Sugiyama, 2011) which provides an efficient
algorithm for convex and sparse regularization problems. We further update the
DAL framework by combining the Alternating Direction Method of Multipliers
(ADMM) (Scheinberg et al., 2010; X. Yuan, 2009; Boyd, Parikh, Chu, Peleato, &

!Some authors also considered non-convex regularization terms, see J. Guo, Levina, Michailidis,
and Zhu (2011) for instance. In such cases, the global optimality of the solution is no longer

guaranteed in general.
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Eckstein, 2011) and propose a DAL-ADMM algorithm. This update makes the en-
tire procedure dramatically simple and helps reducing the practical computational
cost.

The remainder of this chapter is organized as follows. In Section 3.2, we review
the extended SICS problem with a group structure as a specific example of (3.1).
In Section 3.3, we introduce the DAL based optimization method, and then up-
date it by combining ADMM and propose DAL-ADMM algorithm in Section 3.4.
The validity of the proposed method is presented through synthetic experiments in

Section 3.5. Finally, we conclude the chapter in Section 3.6.

3.2 Sparse Inverse Covariance Selection and Its

Group Extension

In this section, we briefly review the extension of SICS into its grouped vari-
ant (Duchi, Gould, & Koller, 2008; Schmidt et al., 2009) as one specific example of
a generalized formulation (3.1). This extended group SICS model is helpful when
we aim to find the dependency between the set of variables.

In group SICS, all d? entries in a precision matrix A are partitioned into M
disjoint groups. Here, let Z be a set of all d? indices in A, that is, Z = {(¢,7);%,j =
1,2,...,d}. Each of M groups G,,(m = 1,2,...,M) is then represented as a
subset of Z where G,, N G = ¢ for m # m' and UM_,G,, = Z. We also use
a notation Ag_ to represent a vector composed of entries in A specified by G,
that is, Ag,, = (Aij)(ij)eg.- While the objective of the ordinal SICS is to identify
whether each (4, j)th entry of A is zero or not, the objective of group SICS is to infer
which of Ag_, gets simultaneously zeros among M groups. For example, this setting
is relevant to the identification of dependencies between two sets of genes. In such a
case, we partition the entries of A into four disjoint groups; two of them corresponds
to the block-diagonal entries representing inner group interactions while the other
twos specify block-off-diagonal entries related to the interaction between the groups.
If latter two entries are simultaneously zeros, it implies that two sets of genes do

not involve any interactions between them.
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Duchi, Gould, and Koller (2008) and Schmidt et al. (2009) formulated this prob-
lem as follows using group regularization techniques (Turlach et al., 2005; M. Yuan
& Lin, 2006):

M
max £(A;3) = Y pm [[Ag,ll,,, - (3.2)
m=1

AeS+

Here, ||Ag,l,,. is an £, -norm? of Ag,, with p, € [1,00] and parameters p,, and
Pm are assigned individually to each group. Note that this is one specific variant of
the problem (3.1) with p,(A) = "M pp, IAg,.1l,,. and p = (p1,p2,- .., pum)". This
can be also seen as a generalization of SICS since setting p,, = p and p,, = 1 results
in (1.11). For p, > 1, a set of parameters Ag, shrinks to zeros simultaneously
owing to the group effect. Hence, the optimal solution A* has a group-wise sparse
structure. A parameter p,, is typically set to be 2 or oo due to computational
considerations.

More generally, in what follows, we assume ¢,(A) is a convex possibly non-
differentiable function. Therefore we cannot merely apply ordinal gradient ascent
based methods to solve the problem (3.1). In addition, we assume that for all
B >0, np,(A) = ¢ps(A), that is, a multiplication of 8 to the regularization term
is equivalent to the regularization term parameterized by pS. Note that this is
the generalization of a multiplicative form ¢,(A) = pf(A). Another important
assumption is that the following proximity operator (Rockafellar, 1996) can be

computed efficiently:
o 1
prox; (B) = argmin ¢;(¥) + 5 |V = Bz,

where 7 is a convex conjugate® of @,. An ¢;-regularization ¢,(A) = p||A||, and
a group regularization ¢,(A) = Zf‘:{:l P |Ag,l,,, With pr, = 2 are the examples
that this proximity operator can be computed analytically. For instance, the convex
conjugate of ¢,(A) = ||A]), is an indicator function defined as

0 if Y]l <p,

pp(Y) =
oo otherwise,

2An £,-norm of a vector  is given by lzl, = (32, |mi|p)% for p € [1,00), and |||, = max; |z;|.
3A convex conjugate of a function f(z) is defined as f*(y) =supp y' = — f(x).
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where ||Y||,, is the dual of an ¢;-norm and is given by ||Y'|| ., = max;;|Yi;|. The
computation of a proximity operator can be casted as an Euclidian projection of B
onto the set 4 = {Y;||Y||, < p}. This problem can be factorized into element-wise

subproblems:

1
min—(y —b)°, st. —p<y<p,
Yy

for each (7, j)th entry y = Y;; and b = B;;. The solution to this problem is ana-
lytically given by y = min(1, p/|b|)b, and the proximity operator can be expressed

. p
proxwz(B) = (mm(l, @T)Bw>

The proximity operator for the group regularization with p,, = 2 is derived in the

as

i,j=1,2,...,d
similar manner and is given by
prox.(B) = min(l, p—m)Bgm
’ 1Bg.. Il

3.3 Dual Augmented Lagrangian for SICS

m=1,2,....M

Now, we derive the algorithm for generalized SICS (3.1) using Dual Augmented
Lagrangian (DAL) (Tomioka et al., 2011). DAL is an algorithm applying an Aug-
mented Lagrangian technique (Boyd et al., 2011) to the dual of the target problem.
It is known that DAL is super-linearly convergent, hence it is well suited for sparse
regularization problems (Tomioka et al., 2011).

The dual of generalized SICS (3.1) is given by

min_—logdet W + ©3(Y), st. W +Y — X = Oguq, (3.3)

WestYy
following the Fenchel duality theorem (Rockafellar, 1996). Here, W € R%*¢ is a
dual parameter, which satisfies W* = A*~! at its optimal from the duality. We have
also introduced the additional parameter Y for the sake of compatibility with the
latter discussion. In DAL, we first formulate the following Augmented Lagrangian

function:
2

3

1 .
Ls(W,Y,Z) = —logdet W + ¢3(Y) + g HW +Y+5Z-%
F
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where 8 > 0 is an algorithm parameter and Z € R%*? is a Lagrange multiplier.
Note that an Augmented Lagrangian function with 8 — 0 corresponds to the
ordinal Lagrangian function. The basic approach of DAL is to relax the equality
constraint in (3.3) in the intermediate steps of the algorithm and make it fulfilled
at the termination. In DAL, we repeat the following two updating steps till the
convergence:
WD Yy t+) ¢ argmin Lg(W,Y, Z20),
Wes+y

ZE+) =z 4 ﬂ(W(tH) LYy g) .

In every steps, a value of g is also gradually increased so that the super-linear
convergence is achieved (Tomioka et al., 2011). For the cases of an £; and a group
regularization with p,, = 2, we can analytically write down Y1) ag a function
of W1, By plugging-in this analytic expression, we can further reduce the first
problem into the following unified form (Tomioka et al., 2011) using Moreau’s de-
composition (J. J. Moreau, 1965):

2

1 N
WD ¢ argmin —logdet W + — Hproxw 5 (=BW — Z® 4 BZ)H
Wwest 25 P

.
See Sra, Nowozin, and Wright (2011, Section 9.4.1 and 9.8.2) for the detail. This is
a smooth convex optimization problem and is solvable with some proper methods

such as a quasi-Newton method.

3.4 SICS via DAL-ADMM

The DAL algorithm derived in the preceding section has a super-linear convergence
property. This property is based on the simultaneous update of W and Y and a
gradual increase of 3 in every steps. However, SICS involves O(d?) free parameters
to be optimized and hence the computation of the gradient over W requires O(d?)
complexity owing to the log-determinant term. This can be too demanding even for
middle sized d. Therefore, we need to reduce the number of gradient evaluations so
that the entire procedure to become much more efficient. In this section, we tackle

this problem by introducing an idea of Alternating Direction Method of Multipliers
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(ADMM) (Scheinberg et al., 2010; X. Yuan, 2009; Boyd et al., 2011) and propose
a DAL-ADMM algorithm.
In ADMM, we decouple the minimization of W and Y into sequential steps,

WD ¢ argmin L5(W, Y, Z®),
wes+

YD € argmin La(WED Y, Z(®),
Y

It means that the optimization of Lz(W,Y, Z )Y over W and Y is solved only in an
approximate manner. Under this relaxation, as we see later, we can construct an
analytic update procedure for W which requires only one eigenvalue decomposition
in every update steps. This modification has another advantage that the second
step, an update of Y, is exactly the same as the computation of the proximity
operator on 3. Unlike DAL, we do not need to plug-in this result into the larger
optimization problem. This allows us to use wider classes of regularizations; for
instance, a group regularization with p,, = co (Schmidt et al., 2009) which was dif-
ficult to treat with DAL. On the other hand, only a linear convergence is guaranteed
for DAL-ADMM (He & Yuan, 2012). However, as we see in numerical experiments,
a reduction of the number of gradient evaluation overwhelms this drawback and
results in the faster computation. In the next subsection, we detail the above two

update procedures.

3.4.1 Solutions to Inner Optimization Problems

The inner optimization problem over W is given by

1 ~
min — log det W + Bl +Y®O 4+ =20 %
wes+ 2 B

By setting the derivative over W equal to zero, we derive the first order optimality

2

F

condition:
W — (—Y(t) _lzoy 2) s Odxd-
5 B
Here, we consider the eigenvalue decomposition of the second term:

1 .
_y® _ BZ(t) + 3 = Udiag(oi, 09, - . -’Ud)UT-
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The solution W** is then given by

WD = Udiag(y, 65, ...,52)U 7,

p 1 + 2+ 4
2 a. 0'1’

See X. Yuan (2009) for the detail. Note that the positive definiteness of W+

directly follows from this result.

As we already mentioned, an optimization of Y under a fixed W can be casted

as the computation of a proximity operator on w0y

2

1 N
argmin go;‘,(Y) + g HY - (—W(t“) _ BZ(t) + 2)
Y

F

1 2

= argmin ¢}5(5Y) + ; HﬂY - B(—W(t“) - 529+ z)

F

1 .
= Eproxy,;ﬂ(—BW(tH) — Z® 4 %).

Hence, this update step is efficiently computed as long as the proximity operator

on g, is computationally cheap.

3.4.2 Convergence

Here, we list two convergence properties of DAL-ADMM under a fixed 8 > 0.
1. A sequence {ZW}2®, converges to the optimal parameter Z* = A*.

2. A function value §g(W,Y) = —logdet W + ¢%(Y) converges linearly to its
global minimum g(W*,Y*).

These results can be shown as follows. We first get the optimality condition Z* =
W*~! by setting the derivative of Lo(W,Y, Z) equal to zero. Then, by applying the
general theorem for ADMM (Boyd et al.,, 2011; He & Yuan, 2012) and recalling
W* = A*"! the claims follow.
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3.4.3 Implementation Details

In our implementation of DAL-ADMM, we use following two gaps presented by
Boyd et al. (2011) for the termination criteria:

primal-gap = HW““) +Y®D 2“ ,
F

dual-gap = 3 HY(t+1) -Y®
F

When both of them are under a given threshold ¢, we regard that the process has
converged and stop the iteration. Here, two gaps measure how much the equality
constraint in (3.3) and the optimality of parameters are fulfilled, respectively.

The choice of an algorithm parameter 5 also needs some consideration in prac-
tice. Unlike DAL, we can not merely increase [ in every steps since it may lead
to a non-optimal solution. In the proposed algorithm, we introduce the following

heuristic from Boyd et al. (2011):

24®  if primal-gap > 10 dual-gap,
BEHY = 0.58% if dual-gap > 10 primal-gap,

B otherwise.

This heuristic balances two gaps and makes them small simultaneously.

3.5 Simulation

In this section, we demonstrate the validity of DAL-ADMM through synthetic
experiments. All simulations in this section have been conducted on Windows 7
(64bit), Intel Xeon W365 CPU machines with a 6GB RAM.

3.5.1 Data Description

In our simulations, we considered a group regularization problem with p,, = 2, that
is, w,(A) = Z%:l pmllAg,. |l2- We have generated data in the following manner.
First, we give a number of Gaussian variables d and its partition d;, ds, . . ., dx where

le dy = d. For each dj, we generate elements of a random matrix U, € R%*5d
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independently from a standard normal distribution A'(0,1). We then generate a
positive definite matrix Cy = L] and set the resulting precision matrix A € R%*¢
to be a block-diagonal matrix with C1, Cs, . .., Ck on its block-diagonal. Here, each
group G, corresponds to a pair of dy and dy variables with k, k' =1,2,..., K and
the total number of groups is M = K?2. In the simulation, we consider 3 cases
with d = 20,60, and 100. For each case, the number of partition K and a value
dy =dy = ... = dg = r are set to be (K,r) = (2,10),(3,20), and (4,25). After
a precision matrix A is derived, we generate n = 5d independent samples from a

normal distribution A'(04, A71).

3.5.2 Baseline Methods

In the simulation, we adopt a PQN algorithm (Schmidt et al., 2009), an algorithm
constructed for group SICS, to contrast with DAL-ADMM. We also introduce DAL
to compare with DAL-ADMM aiming to observe the advantage of an ADMM re-
laxation. DAL-ADMM, DAL, and PQN are implemented using MATLAB and C.
We used a DAL package* and implemented a DAL procedure for group SICS. We
have also modified a PQN package® and used for our simulation. In the simulation,
we set p = dpy where pg varies in 13 different values ranging from 1072 to 10° in a

logarithmic-scale.

3.5.3 Result

We randomly generated datasets 1000 times for each setting and compared the
running time of DAL-ADMM, DAL, and PQN. The results are summarized in
Figure 3.1. In the figure, we plot median times that each method achieves a relative
error (g(A®)) — g(A*))/g(A*) under tolerance parameters ez, = 10~2 and 1075
where g(A) = —¢(A; ) + Zfr/{:l pm |Ag,.||,,.- The vertical bars extend from the
25% to the 75% quantiles of the running time. Note that PQN did not achieve a

relative error under €g,, = 107° for larger py and thus omitted from the graph.

“available at http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/
Savailable at http://www.di.ens.fr/~mschmidt/Software/PQN.html
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Figure 3.1: Median running time until achieving a relative error under €z, = 1072

and 107> with vertical bars extending from the 25% to the 75% quantiles.

In all experimental settings, we observe that DAL-ADMM outperformes other
twos. In particular, we can see the gradual decrease of the DAL-ADMM running
time for larger pg. We conjecture this property is what original DAL has as an effi-
cient optimization method for sparse regularization problems, and is also inherited
to DAL-ADMM. Through simulations, we observe that the inner optimization pro-
cess in DAL gets a practical bottleneck and it is resolved by an ADMM relaxation
resulting in a dramatic improvement. A solution sequence in PQN approaches to
the optimal solution in a relatively small running time. However, at some point,
this speed drastically decreases and the improvement of the solution seems to be

bounded afterward.

3.6 Conclusion

In this chapter, we treated a generalized SICS problem (3.1) where the state-of-
the-art method for SICS (1.11) is no longer applicable. Our proposed DAL-ADMM
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algorithm is based on DAL and we relaxed it by introducing an ADMM approxima-
tion. In synthetic experiments with a group regularization term, we observed that
this relaxation dramatically improved the running time against naively applying
DAL. A comparison of DAL-ADMM against PQN also showed favorable results
that DAL-ADMM is faster and hence works well for larger p where PQN tends to
require a longer running time.

Several future works have been indicated. The optimal choice of an algorithm
parameter 8 remains as an open problem. In our algorithm, we used a heuristic
update which works practically well but does not have any theoretical guarantees.
An introduction of a skipping technique proposed by Scheinberg et al. (2010) would

be a promising extension of DAL-ADMM to further improve its performance.
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Chapter 4

Learning a Common Substructure
of Multiple Graphical Gaussian
Models

4.1 Introduction

In this chapter, we address the problem of finding an invariant pattern from a set of
GGMs obtained from multiple datasets. We provide a technique for finding constant
interactions, or dependencies, among variables across several different conditions.
An illustrative example of this problem is an engineering system where system
errors are observed as dependency anomalies in sensor values (Idé, Lozano, Abe,
& Liu, 2009), which are usually caused by a fault in a subsystem. The invariance,
which in this example is the remaining healthy subsystems, is captured by a steady
dependency over the multiple datasets sampled before and after the error onset.
Hence, we can use such information as a clue for finding erroneous subsystems.
Unlike the basic GGM learning problem (1.11) which focuses on recovering the
topology of a dependency structure from a single dataset, our objective is to de-
compose the resulting GGMs from several datasets into common and individual
substructures. Hence, this common pattern is the invariance we aim to detect. See
Figure 4.1 for an illustration. There are some prior studies on learning a set of
GGMs from multiple datasets. Varoquaux, Gramfort, Poline, and Thirion (2010)
and Honorio and Samaras (2010) imported the idea of Group-Lasso (M. Yuan &
Lin, 2006; Bach, 2008) and Multitask-Lasso (Turlach et al., 2005; Liu, Palatucci,
& Zhang, 2009) and extended the framework of a single GGM setting. In both
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2 Environments

@ @ @

Common Substructure Individual Substructures

Figure 4.1: A decomposition of multiple GGMs into common and individual sub-
structures. The main objective of this chapter is to propose a methodology that

achieves this.

cases, the problem is formulated under the assumption that all precision matrices
share the same zero patterns. J. Guo et al. (2011) considered a method to avoid
this additional assumption, although the problem then loses convexity. Though
these approaches achieved some success in improving the estimation accuracy of
graphical models, this does not necessarily mean that they are suitable for finding
commonness across datasets as we will see in the simulation. In the context of
common substructure detection, Zhang and Wang (2010) proposed using a Fused-
Lasso (Tibshirani, Saunders, Rosset, Zhu, & Knight, 2005) type of technique to
find an invariant pattern between two datasets. As a general framework for K
datasets situations, Chiquet, Grandvalet, and Ambroise (2011) considered impos-
ing sign coherence on the resulting structures. In the opposite context where the
target is dynamics rather than invariance, Zhou, Lafferty, and Wasserman (2010)
proposed using weighted statistics to trace the evolution of a GGM. We note that
there are also several related studies in the binary Markov random field litera-
tures (F. Guo, Hanneke, Fu, & Xing, 2007; Ahmed & Xing, 2009). They also use
(1-regularization (Wainwright, Ravikumar, & Lafferty, 2007) and Fused-Lasso type
techniques (Ahmed & Xing, 2009) for recovering temporal dependency structures,
which are technically quite close to the methodologies developed on GGM.
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The contribution of this chapter is twofold. First, we introduce the novel Com-
mon Substructure Learning (CSSL) framework that is applicable to a general case
of K datasets. Second, we show that the target problem can be solved by the
DAL-ADMM algorithm introduced in Chapter 3. In the proposed algorithm, the
inner problems for each iterative update are simple and can be solved efficiently
which results in fast computation. We confirm the validity of the CSSL approach
through simulations on synthetic datasets and on an anomaly localization task in
real-world data.

The remainder of the chapter is organized as follows. In Section 4.2, we briefly
review some existing GGM learning techniques. In Section 4.3, we present the
proposed framework and its theoretical properties. The optimization algorithm
based on DAL-ADMM is introduced in Section 4.4. The validity of the proposed
method is presented through synthetic experiments in Section 4.5. In Section 4.6,
we apply the proposed method to an anomaly localization task on a real world data.

Finally, we conclude the chapter in Section 4.7.

4.2 Structure Learning of Graphical Gaussian

Model

In this section, we review some prior extension of SICS problem (1.11) into multiple
datasets situations (Varoquaux et al., 2010; Honorio & Samaras, 2010; Zhang &
Wang, 2010).

4.2.1 Learning a Set of GGMs with Same Topological Pat-

terns

The ordinary SICS problem (1.11) aims to learn one GGM from a single dataset.
The extension of this framework to multiple datasets has been studied by Varoquaux
et al. (2010) and Honorio and Samaras (2010). The task is to estimate K precision
matrices Ay, Ay, ..., Ax from K datasets where the sample covariance matrices

for each dataset are il, 22, e, Y k. The objective of this multitask extension is
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to improve the estimation accuracy of each GGM by incorporating the similarity
among datasets. In the framework of the above studies, GGMs from each dataset
are assumed to have the same topological patterns, that is, the same edge connection
structures while the edge weights might be different among GGMs. They both

introduced the following £; ,-norm of a set of K precision matrices {Ax}&_;:

i /K 5
1AL, =Y (Z 1Ak,z'j|p> ;
k=1

ij=1 \ k=
as a regularization term analogous to the Group-Lasso (M. Yuan & Lin, 2006; Bach,
2008) and Multitask-Lasso (Turlach et al., 2005; Liu et al., 2009) with p € [1, o0].
Varoquaux et al. (2010) has considered the case p = 2 while Honorio and Samaras
(2010) used p = oo. These two choices are commonly adopted in many scenarios

owing to the computational efficiency. The entire estimation problem is defined as

K
max Ml (Ak; k) = p Al (4.1)
{ArAreSHHE, kzz; '
with non-negative weights 11,7, ...,nx. Without loss of generality, we can limit

ourselves to the normalized case Zszl M = 1 since the unnormalized version is just
a scaled objective function for some constant. The typical choice of parameters
would be n, = N/ Z,’;l Ny where Nj is the number of data points in the kth
dataset. We refer to the problem (4.1) as Multitask Sparse Inverse Covariance
Selection (MSICS) in the remainder of the chapter.

Note that the MSICS problem (4.1) involves the ordinary SICS (1.11) as a special
case when p = 1 where the /; j-regularization term completely decouples into K
individual £;-norms. In the extended case for p > 1, the regularization term enforces
the joint structure /~\ij = (Zszl |Ak,ij |”) ? to be sparse, with /~\ij = ( indicating that

the corresponding (i, j)th entries are zeros across all K precision matrices.

4.2.2 Learning Structural Changes between Two GGMs

Although taking advantage of situations with multiple datasets using the above-
mentioned techniques is useful for improving the estimation performances of the

resulting GGMs, it only imposes joint zero patterns and does not indicate anything
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about the commonness of the non-zero entries. It is therefore not helpful when
comparing GGMs representing similar models where we expect that there may
exist some common edges whose weights are close to each other. Zhang and Wang
(2010) considered the two datasets case and constructed an algorithm using a Fused-
Lasso type regularization (Tibshirani et al., 2005) to round these similar values to be
exactly the same allowing only significantly different edges between two GGMs to be
extracted. Their approach follows the ideas of Meinshausen and Bithlmann (2006)
by connecting the update procedure (1.10) for two datasets X; and X, through a

new regularization term for the variation between two parameters ||@; — 65|,,
2

. 1 2
min {— HXi,j —le\J9,||2+p||91111} +’Y||91 —02”1, (42)
01,02 i=1 2

where v > 0 is a regularization parameter for the variation. The new term enforces
the variation of some elements in two parameters to shrink to zeros. They also

provided a coordinate descent-based optimization procedure for the above problem.

4.3 Learning Common Patterns in Multiple

GGMs

The above-mentioned work by Zhang and Wang (2010) adopted the idea of the
Fused-Lasso type technique using the specific formulation of the two datasets sit-
uation. In this section, we address our new framework, a Common Substructure
Learning (CSSL), for finding invariant patterns in multiple dependency structures

that is applicable to the general case of K datasets.

4.3.1 Common Substructure Learning Problem

We first formalize what invariance we are aiming to detect in multiple dependency
structures. To begin with, we assume that the number of variables in each dataset
is the same, so that they are all d-dimensional. Also, the identity of each variable
are the same. For instance, a realization of z; is always a value from the same
sensor while its behavior may change across datasets. We then define a common

substructure of multiple GGMs as follows.
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Definition 1 (Common Substructure of Multiple GGMs). Let Ay (k= 1,2,..., K)
be a precision matriz corresponding to the kth GGM. The common substructure of

the GGMs is then expressed by an adjacency matriz © € R¥>*? defined as

0,=4 " n TR o (4.3)
0 otherwise.

Note that this is a natural extension of the invariance notion adopted in the prior
work by Zhang and Wang (2010) for the case of two datasets. With an ordinary
sparsity assumption for GGMs, this definition leads the precision matrices to have

sparseness and commonness simultaneously. More specifically,
e Sparseness: Ag;; =0 for some k=1,2,..., K andi,7=1,2,...,d,
e Commonness: Ay;; = Ay = ... = Agy; for some 4,5 =1,2,...,d.

Under the above commonness, the basic idea of our framework is to parametrize
each precision matrix A; using two components, a common substructure © and an

individual substructure ) € R%*¢:
Ae= O+ (4.4)

Here, each individual substructure matrix €2 is composed of non-zero entries that
are not common across the K precision matrices.

In the formulation (4.2), some entries in the two precision matrices are shrunk
to the same value owing to the effect of the term |6, — 65||;. In the proposed
parameterization, such commonness corresponds to the case when some entries of
the individual substructures are simultaneously zero, that is, Q;,; = Qg = ... =
QUk,:; = 0. Hence, the non-zero common value is expressed by a common substruc-
ture matrix ©. These facts motivate us to regularize the individual substructures
through the group regularization [|Q2[|; ,. On the other hand, we expect a common
substructure © to be sparse so that we can interpret it easily. To that end, we

adopt an ordinary ¢;-regularization [|©||, and the overall problem is summarized as
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follows:

K
max (O + s Bx) — plION, — Y19l »
e,{nk}kK:l,; )= p 18l b (4.5)

st. 0+, €St (k=1,2,...,K),

with regularization parameters p > 0 and v > 0. Since —£(© + Q; ), ||©]|, and
|€2[|, ,, are all convex, the entire formulation is again a convex optimization problem.
We refer to this problem as Common Substructure Learning (CSSL). Note that
in the above formulation, we have slightly relaxed the condition of commonness
to allow ©;; and ;; to simultaneously become non-zeros which is contrary to
Definition (4.3). We correct this point by applying the criterion (4.3) to the resulting
precision matrices f&l, f\g, . ,[\ K in the post processing stage to extract only truly
common entries.

Here, we list two important properties of the CSSL problem (4.5), a dual problem
and the bound on eigenvalues. We first present the dual problem, which is essential

when we aim to solve the problem through DAL-ADMM.

Proposition 1 (Dual of CSSL). The dual problem of CSSL (4.5) is

K
min — i logdet Wi — d,
{Wi;WieStHE | kz___; k
K
sto |3 m(Was — S| S p (5 =1,2....d), (4.6)
k=1

1
K 7
<Z Ml Wiyij — Zk,z‘qu) <y (4,7=12,...,d),

k=1
where q denotes a parameter satisfying p~! + q~! = 1. The resulting matrices of

the dual problem W}t are related to the optimal precision matrices A} through the

inverse, Ay = Wi

In both the primal and the dual formulations (4.5), (4.6), we enforced the positive
definiteness constraints, Ay = © + Q. € St and W;, € 87 so that the matrices are
valid precision or covariance matrices. Here, we show that they can be tightened

according to the next theorem.
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Theorem 9 (Bounds on Eigenvalues). The optimal precision matrices for the
CSSL (4.5) A3 A%, ... A3 with 0 < p < K%fy < 00 have bounded eigenvalues

Apingy < Af X AP™], where the bounding parameters AP and AR are given by

)\}?in — - le :
M ||k 's +dy

1
K3 d?
apex = 212

Here, ||x||g denotes a spectral norm of a matriz and is given by ||Allg = max; 0;(A)

where 0;(A) is an ith singular value of A.

Using this result, we can replace the constraint Ay € St with the tighter one
A e St = {A € R4 A = \Min[,} and similarly Wy, € {4 € R¥X?; A = \max—11 1
Note that this update is practically important when constructing an optimization
algorithm. Since the new constraint set S,j is closed, we can project points out of

the constraint set onto the boundary, which is not possible for the open set S*.

4.3.2 Interpretations of CSSL

The proposed CSSL problem (4.5) can be interpreted as a generalization of the
ordinary SICS problem (1.11) and its multitask extension MSICS (4.1). In the case
that v — oo, the solution to CSSL is 1 = Qy = ... = Qg = 0gxq, Which means
that all precision matrices are equal and are represented by a single matrix ©. We
can obtain such a © by solving the SICS problem (1.11) with £ = Zle MmeSk. On
the other hand, if p > K %'y, the common substructure © becomes zero. This fact

follows from the relationship between £,-norms:

1
e + Qk||1,p < K@v|Of; +7v ”Q”m
<vrloll, +7“Q”1,p'

Suppose that the common substructure is non-zero, that is, © # 04x4. The above
inequality then implies that the update Q; + © + Q; and © « 044y improves
the objective function value (4.5) without changing the resulting precision matrix

Ay = O+ Q4, and thus the solution must be © = 04.4. In this situation, the CSSL
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problem (4.5) coincides with MSICS (4.1). For proper parameters p < K%'y < 00,
the CSSL problem (4.5) is intermediate between those two problems.

The CSSL problem can also be interpreted from a distributional perspective.
From the relationship between the Lagrangian expression and the constrained op-
timization problem, the CSSL problem (4.5) is equivalent to solving a set of K

maximum likelihood estimation problems under the additional constraints
1ell, <6, 119, <47, (4.7)

for some properly chosen positive constants  and é’. Moreover, we have

d
T I = el < D (1l + 1)
1‘7]:

< 21900 < 211921155

where the second inequality comes from the fact that exchanging the order of
maXy x'=1.2,.,k and Zf j=1 produces the upper bound. The last inequality is an or-
dinary relationship between £,-norms. These relations and the fact that Ay — Ay =
Qr — Qp lead to the bound

AL — A < 24
Mggmﬂk wllp <

Hence, from the result of Honorio (2011, Lemma 23) and general matrix norm rules,
the left-hand side of this inequality can be interpreted as the upper bound of the KL
divergence between two distributions p(z) = N(04, A, ') and pr () = N (04, AL).
With these properties, we can interpret the second constraint in (4.7) as a constraint
on the similarity among distributions:

’ < ! -1
k ko1 B K Dxulpx () |lpw ()] < 26 bl X 1A% s

where Dy [pr()||pw ()] denotes a KL divergence between two distributions pi(x)
and py (). From Theorem 9, the optimal parameters A7, A3, ..., A} have bounded
spectral norms for a finite 7, and thus this upper bound on the KL divergence is
always valid. Moreover, we can further extend this bound into the extreme case

~v — oo and & — 0. As we have discussed before, this is the case ; = () =
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... = Qg = Ogxq and the problem is equivalent to solving a single SICS problem
for © with © = "5 3. Hence, from Banerjee et al. (2008, Theorem 1), we
can see that the resulting precision matrices still have finite eigenvalues for p > 0,
and the right hand side of the above inequality goes to zero. This implies that the
resulting distributions represented by precision matrices derived from CSSL (4.5)
have to be similar to one another at some level and they can be even identical in
the extreme case. Note that MSICS (4.1) is a special case of CSSL when © = 04,4
and thus the same upper bound holds, although there is the significant distinction
that the parameter ¢’ in MSICS (4.1) also affects the sparsity of the resulting
precision matrices while CSSL (4.5) can control the sparsity through the other

hyper-parameter p.

4.3.3 Connection to Additive Sparsity Models

In this section, we discuss some connections of the CSSL problem (4.5) to addi-
tive sparsity models (Jalali, Ravikumar, Sanghavi, & Ruan, 2010; Chandrasekaran,
Parrilo, & Willsky, 2012; Agarwal, Negahban, & Wainwright, 2011; Candes, Li,
Ma, & Wright, 2011; Obozinski, Jacob, & Vert, 2011). In general additive sparsity
models, the objective parameter we want to estimate is modeled as the sum of two
components, as in (4.4). Hence, these two parameters are estimated using sparsity
inducing norms such as an ¢;-norm and a trace-norm. In this sense, CSSL can
be interpreted as a specific example of additive sparsity models where we use the
combination of an ¢;-regularization and a group regularization.

Here, we point out two close works from Jalali et al. (2010) and Chandrasekaran
et al. (2012). The former considers the multitask least squares regression problem
under the combination of ¢; and group regularizations. Their basic idea is quite
close to ours in that some regression parameters can be close to each other across
datasets. They also proved the advantage of combining two regularizations over us-
ing only one both theoretically and numerically. The latter study is on GGMs but
with different sparsity assumptions from ours. They show that the additive sparsity
model naturally appears in GGM when there are latent variables. In such a situa-

tion, the first component in the additive sparsity model corresponds to the precision
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matrix between observed variables while the latter component is an interaction be-
tween latent variables. This insight is also helpful for interpreting our model (4.4),
that is, a common interaction among observed variables is contaminated by the

effect of latent variables whose distributions are different across datasets.

4.4 Optimization via DAL-ADMM

In this section, we present the optimization algorithm for solving the CSSL problem
(4.6). In a prior study, Tomioka et al. (2011) have shown that DAL is preferable
for the case when the primal loss is badly conditioned. See Tomioka et al. (2011,
Table 3) and the discussion therein. This is actually the case we are faced with, as

summarized in the next theorem.

Theorem 10. The Hessian matriz of the CSSL primal loss function Zszl YAGGES
Qg ik) is rank-deficient while the Hessian matriz of the CSSL dual loss function
— Zle nx log det Wy, is always full rank for 0 < p < K%’y < 00.

This fact motivates us to solve the problem with DAL, which we modify into
DAL-ADMM in Chapter 3 for a computational consideration.

4.4.1 Optimization via DAL-ADMM

To begin with, we rewrite the CSSL dual problem (4.6) in the following equivalent

form:

K
min . Z Nk log det Wy,

{Wi, Y WeS+h =1

s.t. Uka—FYk—’I]kZA:k:O (k= 1,2,...,K),

K
> Y
k=1
1
K q
<Z |Yk,ij|q) S7 (Za]=17271d)
k=1

Although this formulation is slightly different from (3.1), it is still in the scope of
DAL-ADMM. Based on the above expression, we define the following Augmented

<p (,i=12...,d),
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Lagrangian function:

2

K
1
qmuxmz—E}w%&mn+¢gwyﬁiHW+Y+—Z—HS
k=1 ’ 2 ﬁ

?

F

(4.9)

where [ is a nonnegative parameter, S, W, Y and Z are the concatenated matrices

given by S = [21 Sy ... f]K]T, W = [Wl Wy, ... WK]T, Y = [Yl Y,

T T
YK] , and Z = [Zl Zy ... ZK] , and H is the matrix constructed as
H = diag(m, m2,...,nx) ® I where ® denotes the Kronecker product. A function

¢p~(Y) is a convex conjugate of a regularization term p ||©||, +7 |||, , and is given
by

DoY) = 0,(Y) +84(Y),

0 if |, Yey

Sp (2.7]':172,“'7d))

5P(Y) =
oo otherwise,
X 1
I AV <Ay (4,5 =
Sg(y) _ 0 if (Zk:l Y5 ) <% (4,5=1,2,...,d),

oo otherwise.

In the Augmented Lagrangian function (4.9), the optimal precision matrix A} is rep-
resented by the optimal Lagrange multipliers Z;. This can be verified through a sim-
ple calculation. We set the derivative of the unaugmented Lagrangian Lo(W,Y, Z)

over W equal to zero and find that
WI: = lea

which implies that A} = Z} from Proposition 1. This follows from the fact that the
solution to (4.8) must be the saddle point of the unaugmented Lagrangian function

Lo(W,Y, Z).

We solve problem (4.8) using ADMM by iteratively applying the following three
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steps until convergence:

(
WD ¢ argmin  Lz(W, YO, Z®)
{WiiWieeSHHE

YD € argmin L(W DY, Z0),
Y

Ze+) — 7@ 4 B(HW(”” + Y@ HS) )

\

Hence, using ADMM, convergence of the Lagrange multiplier Z to the optimal
parameter Z* is guaranteed as the number of iterations tends to infinity (Boyd
et al., 2011, Section 3.2). Therefore, we can find the optimal precision matrices
A}, A3, ..., A% using DAL-ADMM. In the following two subsections, we give the
update procedures of W and Y.

4.4.2 Inner Optimization Problem: Update of W

The update of W can be factorized into K independent problems where each prob-

lem defines an update of W:
1 2
Wi+ Y + 22 — 05,

min —7 logdet Wy + g

Wiest B F
By setting the derivative over W}, equal to zero, we obtain
Low_ 1 0,5 Lo
Wy — (——Y( — 7+ %) — =—W_. " = 04xa-
m o B B " i
Now, we write the eigenvalue decomposition of the second term as

1 1 R
——Yk(t) — —Z,(ct) + 3 = Udiag(o,, o9, . . Lo U,
Mk Bk

The above matrix equation then has a solution of the form
Wy = Udiag(é1, 64, ...,54)U".
The equation on each eigenvalue is
i —0;———0a;, =0,

fori=1,2,...,d, which has the analytic solution

i)
o =—|0o; o2+ —).
2 Bk

Note that the positive definiteness of W}, is automatically fulfilled since &; > 0 for
B> 0.
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4.4.3 Inner Optimization Problem: Update of Y

The update of Y is formulated as
2

I

- 1
min d,(Y) + 85(Y) + g HHW““’ +Y+-2Z9 —HS
F

B
or equivalently, the Euclidean projection of a point Yy = —HW ) — z() /31 HS:

1
Y = proj(Yy, A) = argmin = ||V — Yy,
Ved 2

<

-
where the constraint set is given by A = {Y = [Yl Y, ... YK] ; ‘Zle Yiis

1
P, (Zszl |Yk7ij|q)q <~ (,j =1,2,.. .,d)}. Note that in the current case, as
we discussed in Section 3.4.1, the projection function proj(Ys,.A) corresponds to
computing the proximity operator. We can further decompose this problem into

O(d?) problems over y = (Y155, Ya45,- - -, Yk4;) " for each (i, j)th entry. Hence, each

problem is

y = proj(y,, C), (4.10)
where y, is a K-dimensional vector with the kth component equal to —nkW,g,tgl) —
Z,ﬁf,).j/ﬁ + kS and the constraint set is C = {u € R¥; |1} u| < p, ], < fy}

with 1x denoting a vector of all ones.

For any ¢ € [1, o], problem (4.10) has a trivial solution y = y, if y, € C. In the
remaining cases, that is, |1y,| > p or ||yl ¢ > 7 the solution is on the boundary
of the constraint set 9C = {u; 1iul = p, (ul, < 7}ﬂ{u; 11xu| < p, |lull, = 'y}
owing to the convexity of the objective function. Thus, the problem can be reduced
to a search on the boundary. However, even though the constraint set C is convex, it
Is an intersection of two sets and the shape of the boundary OC is rather complicated.
Therefore, we do not search on the boundary 9C directly, but solve a set of simpler
problems instead. The basic approach is to classify the boundary into three parts,

namely
8¢ = {w; [ 1iul = p, Ilull, # 7} .
ACy = {u; 11xul # p, Jlull, = ’y} ,

8Cs = {ws|1ful = p, |lull, =~}
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The problems we solve here are modified versions of (4.10), replacing the constraint

with y € dC,, for each m € {1,2,3}:

y = proj(y,, Cn)- (4.11)

Note that dC; and AC, involve infeasible solutions to the problem (4.10). For
example, a point y with ||y[|, > 7 is infeasible even if y € 0Cy, while these three
regions covers the entire boundary of the constraint set C C U2,_,;0C,,. This
guarantees that we can search on the entire boundary JC indirectly by searching
on the sets 9C,, (m = 1,2,3) instead. Hence, if neither of the solutions to (4.11)
for y € 8C; and y € 9C, are involved in C, the solution to (4.10) is in 9C5. We can
take advantage of this property to construct an efficient solution procedure. We
first solve problems (4.11) for y € dC; and y € 9Cs, respectively, and if neither of
solutions are in C, we then solve (4.11) for y € 9Cs. In this chapter, we focus on the
specific cases ¢ = 1,2, and oo, since efficient solution procedures are available. In
Table 4.1, we summarized the solutions to the problem (4.10). For further details,

see Section 4.8.1.

4.4.4 Convergence Criteria

In Section 3.4.3, we introduced two gaps as stopping criteria, namely a primal-gap

which measures how much the equality constraints in (4.8) is fulfilled,
primal-gap = HHW(t) +Y® — HSHF ,

and a dual-gap which is a degree of the feasibility condition of the solution, defined

as
dual-gap = HH(Y(tH) — Y(t))“F )

Here, we consider another criterion called duality-gap which is the difference be-
tween the primal and the dual objective function values. Let f(WW) be the objective
function in (4.6) and let g(©, Q) be the one in (4.5). The duality-gap at the tth

iteration is then defined as

duality—gap = f(W(t)) — max g(é(t,), Q(t/))7

1<P'<t
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Table 4.1: Solutions to problem (4.10) for ¢ = 1,2, and oo: see corresponding
sections for the detail. An operator T,,(*) in y € 0Cs for ¢ = oo is a thresholding
for each o, that is, y; = sgn(yo,;)min(|yo|, )

g=1 qg=2 q= 00

Yy el Y=Y

11T<'yo - p sgn(l}yo)

y € 0C, Y=1y,— 1x (Section 4.8.1.1)

K
Continuous Quadratic __7 B
y € 8Cy Knapsack Problem y "ol 2y0 g y= Ttl(?;ol) )
(Section 4.8.1.2) (Section 4.8.1.3) (Section 4.8.1.4)

Continuous Quadratic
Knapsack Problem
(Section 4.8.1.7)

Continuous Quadratic
y € 0Cs Knapsack Problem
(Section 4.8.1.5)

Analytic Solution
(Section 4.8.1.6)

where W®_ ©® and Q® denote parameters estimated in the ¢th step after proper
projections and transformations. We need these modifications of variables since
the estimators in intermediate steps are not necessarily feasible. For example,
W® does not need to satisfy the constraints in (4.6) since they are imposed only
on a variable Y in the DAL-ADMM setting (4.8). The projected variable W®
is WO = —H-'Y® 4+ § where Y® = proj(¥y”, 4) and Y = —~H(W® - §).
The same goes for A® = Z®. An estimator A,(:) is not necessarily positive def-
inite, and thus we project them as 1~\,(:) = proj(A,(:),S’,;" ). This projection is con-
ducted in the following manner. We first compute an eigenvalue decomposition
A;ct) = Udiag(o1,09,...,04)U". The projected matrix is then given by 1~\,(ct) =
Udiag(d1,62,...,54)U" where each eigenvalue is given by &; = max(o;, A").
For computing the value of g((:)(t),fl(t)), we need to further factorize A® into
O® and O®. This can be computed in an element-wise manner. Let 6 = ég),

Qg)” = 11;:13 —0,and A = (]\ﬁ], Aétzj, . ,[\ﬁQij)T. The problem we need to solve is
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then given by
min p|f] + |A — 1|, -

For p = 1 and oo, this function is piecewise linear with breakpoints given by
{0, A1, A2, ..., Ak} and {0, (ming Ay + maxy Axr)/2}, respectively. Hence, the opti-
mal @ is one of these breakpoints and can be found by searching over the candidates.

For the case p = 2, there exists an analytic solution

1 2
6= - q LiA - sgn(1}>\)\/(1;>\)2 e

(LxA)? = P IAll5
VK —p?

In our simulations in Sections 4.5 and 4.6, we have evaluated both criteria. We

set two threshold parameters €pqgap and €gap, and evaluate the conditions

max(primal-gap, dual-gap) < €pdgap,

duality-gap < €gap,

in each iteration. If one of two conditions is fulfilled, we regard the iteration as
converged and output the result. In the simulations in Sections 4.5 and 4.6, we set

€pdgap = 10~° and €gap = 10754.

4.4.5 Computational Complexity

In this section, we summarize the computational complexity of the proposed algo-
rithm. In the W update step, the computational cost is dominated by the eigenvalue
decomposition of a d x d matrix, which requires O(d?) operations, so that the overall
complexity is O(Kd?) for the update of K matrices. In the Y update step, we need
a projection proj(Yp,.A) which is divided into O(d?) subproblems. For both ¢ =1
and g = oo, the most computationally expensive procedure is solving the contin-
uous quadratic knapsack problem which requires sorting O(K) elements and has
complexity O(K In K)!. In the case ¢ = 2, the update is analytically available with
O(K) complexity. The overall complexity for the Y update is thus O((K In K')d?)
for ¢ = 1,00 and O(Kd?) for g = 2. The complexity for the Z update is O(Kd?).
1See Section 4.8.1.2, 4.8.1.5, and 4.8.1.7.
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In the convergence check, we need to calculate the projection proj(AE:), 5‘,: ) which
has O(d®) complexity or O(Kd*) for K matrices. We also need the projection
proj(YO(t),A) which is again O((K ln K)d?) for ¢ = 1,00 and O(Kd?) for ¢ = 2.
Summarizing the above results, we conclude that the computational complexity of
one update in DAL-ADMM is O(Kd® + (K In K)d?) for ¢ = 1,00 and O(Kd?) for
g = 2. In many practical situations, the number of datasets K is in the tens, while
the dimensionality of the data d can be a few hundred. In such cases, In K <« d
holds, and the entire complexity is approximately O(Kd?®). We note that this is the
least necessary complexity in general. For an unregularized setting, the solution
A} is a maximum likelihood estimator f),;l, which requires O(d®) complexity for a

matrix inverse and O(Kd?) for K matrices.

4.4.6 Heuristic Choice of Hyper—parameters

In the CSSL problem (4.5), the choice of hyper-parameters p and v affects the
resulting precision matrices. There are several approaches for choosing these, such
as cross-validation (M. Yuan & Lin, 2007; J. Guo et al., 2011) and the Bayesian
information criterion (J. Guo et al., 2011). Apart from selection techniques, the
following result gives us some insight into p and <, and is helpful in analyzing the

data more intensively.

Proposition 2. Let the bivariate common substructure © and individual substruc-
U W

Wg Vg
CSSL problem with regqularizations only on off-diagonal entries:

0 0
tures €y, be in the forms © = !9 0} and ), =

] , and consider the following

K
max el(© + u; Si) — 2p16] — 27 ||,
o {uM, ; ? (4.12)

st. O+ eST (k=1,2,...,K),

where w = (wy,ws,...,wk) . Then the off-diagonal entries of the resulting preci-
sion matrices 0, w have the following property:

K

anﬁc

k=1

maxK|rk|§’y and <p = 0=0, w=0g,

k=12,...,
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where 1y is the off-diagonal entry of Sk

Although the result is specific to the bivariate case, we can use this as a guideline
for choosing the hyper-parameters p and . It also shows that p and - are not inde-
pendent of each other, but rather they should change simultaneously proportional
to max;<g<x |rx| and ‘Zszl nkrk‘, respectively. In particular, if each matrix 3y is
multiplied by some positive constant ¢, the above condition indicates that p and ~
also need to be multiplied by c¢. Such scale invariance is maintained only by a linear
model between p and . Therefore, we construct the following heuristic based on

this linear model.

. K .
1. Let u;; = maxg—12.. x Lk and vi; = [D 1 MeXg,i;|- We then assume that

the linear relation
Vi = U551 + So,
holds for all entries i, = 1,2, ..., d for some sqg, s; € R.

2. Estimate sp and s; from the tuples {w;;,v;;} 4 using a least squares

5,5=1,2,..
regression.

3. Parameterize p and v as p = max(as; + so,0) and v = «a using a parameter

.

This procedure provides an efficient way of tuning p and ~ simultaneously through

a single parameter a.

4.5 Simulation

In this section, we investigate the performance of the proposed CSSL approach on

finding common substructures among datasets through numerical simulations.

4.5.1 Generation of Synthetic Data

Here, we briefly summarize the data generation procedure for our simulation. For
the synthetic data, we need K precision matrices with sparseness and common-

ness. We tackle this problem in a two-stage approach. We first generate a single
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sparse precision matrix, and then add some non-zero entries to make K matrices
where the additional patterns are independent of each other?. After K precision
matrices Ay, Ay, ..., Ak have been constructed, we generate K datasets from the

corresponding Gaussian distributions N (04, A;') for k =1,2,..., K.

4.5.2 Baseline Methods and Evaluation Measurements

In the simulation, we adopt SICS (1.11) and MSICS (4.1) as baseline methods
to compare with CSSL. Since neither method is designed for finding a common
substructure, we apply a heuristic to extract the substructure © from the estimated
precision matrices Al,f\z, ...,Ax. Note that, in SICS, each A is estimated by
solving (1.11) individually while the set of matrices is estimated simultaneously in

MSICS (4.1). The following is the heuristic criterion used:

A O;  if maxg w190, K |Akij — Awijl <,
ij =
0  otherwise,
where € is some given threshold. Here, to avoid selecting zero edges as parts of
a common substructure, we set 6;; to be zero if Aj;; = Ay;; = ... = Ag;; =0
and one otherwise. In our simulation, we select the threshold ¢ from the resulting
precision matrices. Specifically, we compute variations of estimators for each entry

{man,k/:Lg’"_7K lf\kw — ./A\k:ﬂ-j|} and then set € as the 100¢o% quantile. This

1,5=1,2,...,d
corresponds to considering the lower 100¢0% varied entries as common.

In our simulation, we evaluate the common substructure detection performance
through precision, recall, and the F-measure. While these values are defined based
on the number of true positive, false positive, and false negative detections, we
slightly modify these measurements. The reason is that finding common depen-
dencies with higher amplitudes is much more important than finding very small
dependencies which can be approximated as zero in practice. To that end, we

adopt following weighted measurements, namely WTP (weighted true positive),

2See Section 4.8.2 for further details.
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WFP (weighted false positive), and WFN (weighted false negative):

77777

1<j

WFP = Z jc,ijjp,ij (1 — JCJ]') :manK lAk,ijla
e

WEN = Z{jc’ij (1 — jpﬂ'j) + (1 - jc,ij) }Jc,ij k:11n2aXK ‘Ak,ij|7
i<j T

where J.;;, Jpi; and J.;; are defined as
Jeij =I( max |Agy — Awyj| <e
c,ij (k,k’=1,2 .... K | k,ij k JJl )7

Joij = 1(_max _|Aiyl > 0),

Jc,ij = I( max K |Ak,ij - Ak’,ijl = O)

kk'=12,...,
Here, I(P) is an indicator function that returns 1 for a true statement P and 0

otherwise. The modified measurements in the simulation are defined using these

values as
Precision — WTP
FECION = WTP + WP’
WTP
Recall = WTP + WEN TWEN

Precision * Recall

F- =9 .
measure Precision + Recall

In the simulation, we also observe whether the zero pattern in the precision ma-
trices is properly recovered through CSSL, SICS, and MSICS. We use the following
F-measure for this evaluation, which we refer to the ”Fo-measure” to distinguish it

from the one above:

Fy-measure = 2TP
0-MeASIe = TP + FP + FN’
K

TP =) ) I(Agi; = 0)I(Axsy = 0),
k=1 i<j
K ~

FP =) > I(Aky # 0)I(Ags; = 0),
k=1 i<j

K
FN =) ) I(Agi; = 0)I(Arsi; #0).

k=1 i<j
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4.5.3 Result

We conduct simulations for three cases with data dimensionality d = 25, 50, and 100
where the number of datasets is fixed at K = 5. For each case, we generate precision
matrices Ay, Ag, ..., A to have 15% non-zero entries on average. In the simulation,
we randomly generate datasets 100 times and apply CSSL, SICS, and MSICS using
several different hyper-parameters, where in each run, we set the number of data
points in each dataset to be 5d. For CSSL, we use the heuristic with a parameter
a varying from 1072 to 1070 over 41 values. We also evaluate results for p = a
and 7 = 0o to see the effect of y in an extreme case. As discussed in Section 4.3.2,
this corresponds to solving a single SICS problem with 3 = Zszl nkik and setting
theresult to Ay = Ay = ... = Agx = A. For SICS and MSICS, we set the value of
p to be a. For each method, we adopt the resulting precision matrices with 15%
non-zero entries among these 41 values of a. In SICS and MSICS, we also vary the

thresholding parameter ¢y among 0.5,0.7, and 0.9.

We summarize the results in Table 4.2. From the table, we can see the clear
advantage of CSSL with p = 2 and oo over the other methods. These two methods
show higher F-measures, which are from their higher precision. This contrasts with
SICS and MSICS, which achieve high recall but have relatively poor precision. This
implies that structures detected by those methods involve not only true common
substructure but also many false detections. This shows the drawback of estimated
precision matrices derived through SICS and MSICS, that is, their estimators tend
to be highly varied even for true common entries while this is not the case for
CSSL. This phenomenon is especially significant in SICS, which can hardly find
common substructures owing to its highly varied estimators. The results for MSICS
under p = oo and ¢ = 0.9 are still better than the others, although ¢, = 0.9
means that 90% of estimated non-zero entries are considered common, which is
too optimistic. Moreover, we can see that the improvement of the F-measure is
achieved by the growth of recall by contrasting the results with ¢; = 0.5 and 0.9.
This implies that variations on the true common substructure mostly happen in
between 50% and 90% of the entire variations of the estimated precision matrices,

which are highly varied and can hardly be considered common. Note that despite
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Table 4.2: Simulation results for three cases (d = 25,50, and 100) with K = 5
datasets evaluated by weighted precision, recall, F-measure, and Fy-measure. The
measurements are averaged over 100 random realization of datasets. The numbers
in brackets are standard deviations of each measurement. Each of the three rows
in SICS and MSICS corresponds to results with g = 0.5,0.7, and 0.9 from the top.

Top three results are highlighted in each measurement.

(a) d =25
CSSL  CSSL  CSSL  CSSL MSICS  MSICS
(p=1) (p=2) (p=o0) (y=00) (p=2) (p=o0)
_ 14 (14) .38 (21) .54 (.23)
E .84 (.19) .70 (.16) .56 (.19) .48 (.20) .20 (.16) .43 (.21) .49 (.21)
33 (.16) .41 (.19) .45 (.19)
. 07 (.07) .48 (.24) .60 (.24)
Ell 45 (32) 82 (14) .84 (.12) .86 (.11) .23 (.18) .74 (19) .74 (.19)
80 (.20) .83 (.13) .86 (.11)
.09 (.08) .41 (.21) .55 (.23)
& || .56 (.22) .75 (.14) .66 (.17) .60 (.19) .21 (.16) .53 (.21) .58 (.20)
45 ((18) .53 (.19) .58 (.18)
B | .92 (02) .92 (.02) .92 (.02) .92 (.02) .92(.02) .93(.02) .92 (.02)
(b) d = 50
CSSL  CSSL  CSSL  OSSL MSICS  MSICS
(p=1) (p=2) (p=o0) (y=00) (p=2) (p=o00)
, 10 (.13) .24 (.20) .58 (.19)
£ .87 (11) .69 (14) 56 (17) 47(17) 13(14) 37(20) .52 (19)
27 (119) .42 (.18) .47 (.18)
. .04 (04) .18 (.19) .60 (.19)
gg 41 (.20) .83 (.11) .85 (.10) .91 (.05) .10 (.11) .51 (.21) .72 (.16)
50 (22) .81 (.12) .86 (.08)
.05 (.06) .20 (.19) .58 (.19)
|| .53 (.20) .75 (.12) .66 (.15) .61 (.15) .10 (.11) .42 (.20) .59 (.18)
34 (.20) .54 (.17) .60 (.16)
= | .90 (.03) .90 (.02) .89 (.02) .89 (.03) .89 (.03) .90 (.02) .90 (.03)
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(c) d =100
CSSL  CSSL  CSSL  CSSL S0 MSICS  MSICS
(p=1) (=2) (p=o00) (y=00) (p=2) (p=o0)
. 09 ((11) .17 (.14) .68 (.15)
£ [-91 (.07) .78 (.10) .64 (.14) .53 (.15) .10 (.12) .33 (:21) .62 (.16)
22 (17) .46 (.18) .55 (.16)
_ 03 (.10) .06 (.10) .59 (.17)
323 37 (.18) .81 (.11) .83 (.11) .95 (.02) .06 (.10) .25 (.21) .67 (.15)
24 (19) .67 (.16) .82 (.09)
.05 (.10) .08 (.11) .63 (.16)
& | .51 (.19) .79 (.10) .72 (.12) .67 (.12) .07 (.10) .28 (.21) .64 (.15)
22 (18) .54 (.17) .65 (.14)
& || .87 (.04) .87 (.04) .87 (.03) .87 (.03) .87 (.03) .88 (.04) .87 (.03)

the significant difference in the common entry detection performances, all methods
achieve comparable zero pattern identification performances as shown by the Fy-
measure. This shows that finding common entries is a different problem from the
ordinary graphical model selection, and that only CSSL works well for both tasks.

We note that CSSL with p = 1 and v = oo give two extreme results. In the
former setting, the resulting precision matrices achieve higher precision with lower
recall, while it is the opposite in the latter setting. The first result is caused by
the difference between the term [Q[|, , with p =1 and p > 1. For p = 1, |||,
completely decouples into ordinary ¢;-regularizations and the resulting precision
matrices do not necessarily have common zero entries in individual substructures.
Intuitively speaking, the results for p = 1 have common zero entries only when it
is strongly confident, which results in a very conservative performance compared
with p > 1. On the other hand, if 7 = oo, the entire structures are considered to

be common, which results in fewer false negatives and more false positives.

4.6 Application to Anomaly Localization

In this section, we apply CSSL to an anomaly localization problem. The task is to

identify contributions of each variable to the difference between two datasets. Cor-
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relation anomalies (Idé et al., 2009), or errors on dependencies between variables,
are known to be difficult to detect using existing approaches, especially with noisy
data. To overcome this problem, the use of sparse precision matrices was proposed
by Idé et al. (2009) since the sparse approach reasonably suppresses the pseudo-
correlation among variables caused by noise and improves the detection rate. Here,
we propose using CSSL. There is a clear indication that the proposed method can
further suppress the variation in the estimated matrices. In particular, we expect
that dependency structures among healthy variables are estimated to be common,
which reduces the risk that such variables are mis-detected and only anomalies are

enhanced.

4.6.1 Anomaly Score

We adopt the measurement for correlation anomalies proposed by Idé et al. (2009).
This score is based on the KL-divergence between two conditional distributions.
Formally, let & be a Gaussian random variable which follows A (04, A7') before
the error onset and N(04, A;!) afterward. We measure the degree of anomaly on
the sth variable z; using the KL-divergence between conditional distributions from
before and after the error, which are p;(z;|x\;) and ps(z;|x\;), respectively, where
x\; is the remaining d — 1 variables except for z;. To compute the score, we first
divide the precision matrix A; and its inverse Wi into a (d—1) x (d—1) dimensional

matrix, a d — 1 dimensional vector, and a scalar,

L, 1 Vi
Al _ T} 1 ’ W1 = Al—l — _T— Vi1 ’
ll )\1 v, o0

where we have rotated the rows and columns of A; and W) simultaneously so that
their original ith rows and columns are located at the last rows and columns of the
matrices. The matrix Ay and its inverse Wy are also divided in a same manner.

The score is then given by

d,m = /DKL [P1($i|m\i)||P2($i|$\i)]171(93\i) dzy;

1/, 1w 1 A
:'U;_r(ll—l2)+_2.<2A:2_l)\;.1>+§{ln)\_;+0-1()\1_)\2)}.
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Here, the KL-divergence is averaged over the remaining d — 1 variables ;. Since
the KL-divergence is not symmetric and d;? # d?! holds in general, the resulting
anomaly score a; is defined as their maximum:

a; = max(d}?, d?*). (4.13)

17"

4.6.2 Simulation Setting

We evaluate the anomaly localization performance using sensor error data (Idé et
al., 2009). The dataset comprised 42 sensor values collected from a real car in 79
normal states and 20 faulty states. The fault is caused by mis-wiring of the 24th and
25th sensors, resulting in correlation anomalies. Since sample covariances are rank-
deficient in some datasets, we added 1072 on their diagonal to avoid singularities.

For simulation, we randomly sample K, datasets from the normal states and K;
datasets from the faulty states, and then estimate sparse precision matrices using
six methods, CSSL with p = 1,2, and oo, SICS (1.11), and MSICS (4.1) with p = 2
and oo. For CSSL, we adopt the heuristic and set p = max(as; + $¢,0) and v = «
for a given «, and for SICS and MSICS, we set p = a. We test each method for
11 different values of & ranging from 1071 to 107%5. The weight parameters 7 in
CSSL and MSICS are set to be n;, = 1/2K,, for normal datasets and 7, = 1/2K;
for faulty datasets to balance the effects from the two states. Since the anomaly
score is designed only for a pair of datasets, we calculate anomaly scores for each

of K, x K; pairs of datasets.

4.6.3 Result

We repeat the above procedure 100 times for 4 different settings, [K,, K] = [4, 1],
[12,3], [20,5], and [40, 10]. For each run, we evaluate the localization performance
of each method by drawing an receiver operating characteristic (ROC) curve and
measuring the area under the curve (AUC). In Table 4.3, we summarize the best
median results for each method and setting. The table shows that CSSL with
p = 2,00 and MSICS with p = oo achieve better localization performances than

the others. In particular, CSSL with p = 2 and oo achieve AUC = 1 as their
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Table 4.3: Anomaly localization results under 4 different settings, [K,, Kf| =
[4,1],[12,3],[20,5], and [40,10]. For each method, we compute precision matri-
ces for 11 different values of a ranging from 107! to 107%%. The table shows the
median of the best AUCs among these 11 results over 100 random realizations of

datasets. The numbers in brackets are the 25% and the 75% quantiles. The bold

font represents the top three results.

[Kn, K¢] = [4,1] [Kn, Ki] = [12, 3]
best AUC e best AUC a
CSSL (p=1) | .975(.950 /.987) |10°°| .975(.950 / 1.00) |10-0°
CSSL (p=2) || .987 (.963 / 1.00) | 10~°° || .987 (.963 / 1.00) | 1009
CSSL (p = co) || .987 (.963 / 1.00) |10~°¢ | 1.00 (.987 / 1.00) | 1009
SICS 975 (.938 / .987) |10-°5| .975 (.938 / .987) |107°5
MSICS (p=2) || .975 (.950 / .987) |10-%%| .975 (.950 / .987) |10707
MSICS (p = co) | .987 (.963 / 1.00) [10~11| .987 (.975 / 1.00) | 1012
[Ky, Ki] = [20, 5] [Ka, K] = [40,10]
best AUC e best AUC a
CSSL (p=1) | .975 (.950 / 1.00) |107°9| 975 (.963 / 1.00) |1070°
CSSL (p=2) || 1.00 (.975 / 1.00) | 10-°8 ] .987 (.963 / 1.00) | 1002
CSSL (p = co) || 1.00 (.987 / 1.00) | 10~°° | 1.00 (.987 / 1.00) | 1009
SICS 975 (.950 / .987) |107%5| 975 (.950 / .987) [1070®
MSICS (p=2) || .975 (.950 / .987) |10-1°| 975 (.950 / .987) [10-1°
MSICS (p = c0) || .987 (.975 / 1.00) [10~11|| .987 (.975 / 1.00) [107°°

median performance in some cases. This means that they detect faulty sensors
perfectly for more than half of the simulation. To see further differences, we plot
the median anomaly scores derived from each method for [K,, Kf] = [20,5] in
Figure 4.2. From these graphs, we observe a clear distinction between successful
methods and others on the significance of healthy sensors. The 22nd and the 28th
sensors are relatively highly enhanced in SICS and MSICS with p = 2, but are not
in CSSL and MSICS with p = oco. We conjecture that this is the major cause of

performance differences. Interestingly, not only the 22nd and the 28th sensors but
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Figure 4.2: Median anomaly scores for each method under [K,, K] = [20, 5] with

best AUCs. Each plot is normalized so that the maximum is the same. Dotted

lines denote true faulty sensors.

most of other healthy sensors also have the same tendencies. That is, CSSL and
MSICS with p = oo reasonably suppress their significance while keeping erroneous
sensors enhanced. Moreover, although the differences are subtle, we can see that
CSSL with p = 2 and oo more successfully suppress the significance of sensors 1
to 21 and 33 to 42 than does MSICS with p = oo. Thus, as we expected in the
beginning, CSSL reduces the nuisance effects and highlights only variables with
correlation anomalies. The remaining peaks at some healthy variables are caused
by the effect of the two faulty sensors since their effects may propagate to other

healthy yet highly related sensors.

4.7 Conclusion

In this chapter, we formulated the CSSL problem for multiple GGMs. We further
showed that the problem can be solved using DAL-ADMM with each updating
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step computed efficiently. Numerical results on synthetic datasets indicate the clear
advantage of the CSSL approach, in that it can achieve high precision and recall at
the same time, which existing GGM structure learning methods can not achieve.
We also applied the proposed CSSL technique to the anomaly localization task in
sensor error data. Through the simulation, we observed that CSSL could efficiently
suppress nuisance effects among variables in noisy sensors and successfully enhanced
target faulty sensors.

Several future research topics have been indicated, including analyzing the asymp-
totic property of the CSSL problem (4.5) and extending the current formulation to
the Adaptive-Lasso (Zou, 2006; Fan, Feng, & Wu, 2009) type one to guarantee the
oracle property (Zou, 2006) of the estimator. Applying the notion of commonness
to more general dependency models, such as those with non-linear relations and

commonness based on higher-order moment statistics, is also important.

4.8 Appendix

4.8.1 Solutions to (4.10) for ¢ = 1,2, and oo

Here, we provide detailed derivations of Table 4.1.

4.8.1.1 The solution is in 9C;

Problem (4.11) for y € 0C; is formulated as follows:
1
min 5y — voll3, st [1xyl = p. (4.14)

Note that we ignored the constraint ||y||, # v because it holds for general y, and v
with probability one. Hence, our interest is whether the solution to (4.14) satisfies
llyl| ; <y or not. The additional constraint is not important in this respect.

The problem (4.14) has two possible cases as its solution, 15y = p and 1y =

—p. For each case, we can solve the problem using a method of Lagrange multipliers:

. 1 2 T
mpin max - ly — yoll; + (Lxy — (),
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where ( € {p,—p}. By setting the derivative over y equal to zero, we obtain
Yy = yo — plg. Moreover, by substituting this result into the above, we derive
the optimal y as u = (1I(y0 —( ) /K, and the resulting objective function value is
(11T<y0 — §)2/2K. The constraint ( = p or { = —p is chosen so that this objective
function value is minimized. Obviously, { = p is optimal for the case when 1}y, >
0, while ¢ = —p for 1y, < 0. Thus, the overall solution to problem (4.14) is

15y, — psgn(1xyo)
K

Y=Yy — 1x

4.8.1.2 The solution is in 9C; for ¢ =1
When the solution is in 0Cy, the problem is formulated as

min 5 Iy - ol st gl =7 (4.15)

Here, the shape of the constraint boundary changes according to the value of q. For

general g € [1,00], there exists several algorithms to solve this problem (Boyd &

Vandenberghe, 2004; Sra, 2011). In particular, for ¢ = 1,2, and oo, we can derive
solutions in very efficient manners.

For ¢ = 1, Honorio and Samaras (2010) showed that the problem is equivalent

to the following continuous quadratic knapsack problem:
K1
mzinkz—; 5 (2 = lyor)?, st. z2>0, 1z =7, (4.16)

which relates to y by yx = sgn(yox)zx. Honorio and Samaras (2010) also provided
a solution technique for this problem. From the KKT condition, the solution to
(4.16) is zx(v) = max(|yox| — v,0) for some constant v. Moreover, the optimal
v satisfies 152(v) = 7. Since 1}2(v) is a decreasing piecewise linear function
with breakpoints {|yox|}5_,, we can find the minimum breakpoint v, that satisfies

15z(vp) < 7 by sorting the K breakpoints. The optimal v is then given by

_ Zkelo |yo,e| —
Zo| ’

where Zy = {k;|yox] — o > 0}. Note that the complexity of this algorithm is

O(K log K) since we conduct a sorting of K values®.

3We can further reduce this to expected linear time complexity by introducing a randomized
algorithm (Duchi, Shalev-Shwartz, Singer, & Chandra, 2008).
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4.8.1.3 The solution is in 9C, for ¢ = 2

We can derive the solution to the problem (4.15) for ¢ = 2 analytically. We solve

the problem using a method of Lagrange multipliers:
. 1 2 A 2 2
min max o [y = yoll, + 5 (lyll; =7°)

By setting the derivative over y equal to zero, we derive y = y,/(1+ A). Moreover,

from the constraint ||y||, = 7, the solution is

Y
Y=1—"7Yp
||.7Jo”2 0

4.8.1.4 The solution is in 9C, for ¢ = ©

The solution of (4.15) for the case ¢ = oo is much simpler. The problem is just a

box-constrained least squares with a solution given by

v o ifyor >,
e = yor i —7v<wyor<n,

-y ifyor < -7,

which is equivalent to yx = sgn(yo x)min{|yox|,7)-

4.8.1.5 The solution is in 9C; for ¢ =1

We provide the solution procedure for (4.11) when y € 8C3 and ¢ = 1 based on the

next theorem.

Theorem 11. Let 4 be the solution to problem (4.11) for y € 8Cy and suppose it
is infeasible in the original problem (4.10). Then the solution to (4.11) for y € 0Cs
has same signs with g, that is, Jryx >0 fork=1,2,..., K.

From this result, we can factorize the variable indices into two parts, 7, =

{k;9x > 0} and ZT_ = {k;Jx < 0}. Using this factorization, we can rewrite the
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problem as

1
mln— Z Yk ~ yok 5 Z(yk —yo,k)za

2 keT-
Do+ D> w=¢
keZy kez-

Z Ye — Z Ye =7,
keZ, keZ-

where ¢ € {p, —p}. This can be divided into two independent problems defined on
two sets of variables {y};k € Z,} and {y; ; k € Z_}, respectively, given by

! 2 _ts + C
ol + _ +
n:l}1+n 5 Z (yk yo,k) , st.ym >0, Z
keI, kel
_ ~_7r=¢
mlniz yk+y0k , sty >0, Zyk_T
keZ_ kel_

The solutions to these problems relate to y in that yx = y; for k € 7, and y, = —y;
for k € Z_. These problems are continuous quadratic knapsack problems and the
solution can be found by using the same algorithm as in problem (4.16). We derive
the final solution by solving these problems for the two cases ( = p and ( = —p,

and choosing the one with the smaller objective function value in (4.11).

4.8.1.6 The solution is in 0C; for ¢ = 2

We can derive the solution to the case y € 0C3 and ¢ = 2 analytically. We use a

method of Lagrange multipliers:
: 1 2 T A 2_ .2
2y — 1Ty — Z _
winmax 3 |y ~ yoll, + 1(1xy = ¢) + S (llwll; = 7).
where ( € {p,—p}. By setting the derivative over y equal to zero, we derive
¥ = (Yo — ulx)/(1+ XA). If p = 0, we have p = 1}y,/K from the constraint

1y = 0. Hence, from ||y||, = 7, we obtain the optimal y as

___hr
lyo — ulkll,

For the case of p > 0, we have 1/(1 + \) = (/(1}y, — Ku) from the constraint
2
2

(y — plk).

1%y = (. Hence, we have a quadratic equation in y from the constraint |jy||5 =

2
P2 llyo — ,ulKH; = ’72(1}90 - KN) .
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Solving this equation gives the optimal y as

¢

= (Yo — 1lx),
1ryo — Kp °

Yy

where

1
Y(1%Y0)" = 2 [|woll3
VK — p? '

2
T= (ILyO) - K
By substituting this result into ||y — y0||§, we obtain

1 K 2 (17,2
ly — ol = ?(C—1}y0)2+ Hyo”zKT(leo) (C:t\/F)Q.

Since K ||y, |5 — (1xy,)? > 0, the minimum of this value is achieved by choosing ¢
and a sign in p as ¢ = sgn(1 %y, ) and —sgn(1y,), respectively. Thus, the overall

result is given by

p
y= Sgn(l};yo)ﬁ—(yo ~ plk),
kYo — Kp

1
k=T (11-2'!/0 - sgn(ll—l;yo)\/ﬂ :

4.8.1.7 The solution is in 0C; for ¢ = oo

The solution for (4.11) with y € dC3 and ¢ = oo has two possible cases, l,y=rp

and 1,y = —p, where for each case the problem is given by
X1
mg}nz i(yk — o), st 1y =, —71k <y < ylk, (4.17)
k=1

with ¢ € {p, —p}. Here, the constraint ||y||,, = - is relaxed to ||y||, < . However,
if the solution to (4.17) satisfies ||y||,, < p, it has to be already found as a solution
to (4.11) for y € 9C; and therefore this relaxation does not affect the overall
procedure.

Since problem (4.17) is a variant of the continuous quadratic knapsack problem,
we can take a strategy similar to (4.16). From the KKT condition, the solution

to (4.17) is of the form y(v) = sgn(yox — v)min(|yor — v|,y) for some constant
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v. Moreover, the optimal v satisfies 1;y(v) = (. Since 1L y(v) is a decreasing
piecewise linear function with breakpoints {yox — 7, yox + 7} ,, we can find the
minimum breakpoint v, that satisfies 15y(vy) < ¢ by sorting the 2K breakpoints.
The optimal v is then given by

+~v(|Z1| — |Z5]) —
Zkel’z Yor + V(1 Z1| — |1Zs]) — ¢ it T, # 6,
v= |Z2|

4! if I2 = ¢7

where 7) = {k;yor—v0 > 7}, Io = {k; —y < yor —vo < v}, and Z3 = {k; yor — 1o <
-7}

4.8.2 Generation of Synthetic Precision Matrices

Here, we present the detailed procedure used to generate sparse precision matrices
with a common substructure in Section 4.5. The procedure is composed of two
sequential steps. We first generate a single precision matrix, which is the common
substructure in the resulting K matrices. We then add some non-zero entries to get
a matrix Agx. This additional pattern is chosen to be unique for each matrix so that
the resultant matrices A, Ay, ..., Ak satisfy the additive model assumption (4.4).

In the following two subsections, we explain the above steps.

4.8.2.1 Generation of a Sparse Precision Matrix

In several previous studies, synthetic sparse precision matrices are generated in a
naive manner, that is, just adding a properly scaled identity matrix to a sparse sym-
metric matrix so that the resulting matrix is sparse and positive definite (Banerjee
et al., 2008; Wang, Sun, & Toh, 2009; Li & Toh, 2010). In our simulations, we take
a different approach to generating a sparse precision matrix for compatibility with
the next step.

Our approach is based on an eigenvalue decomposition A = UDU", where D
is a matrix with eigenvalues on its diagonal and U is an orthonormal matrix such
that UTU = UUT = I;. Here, we use the fact that A is sparse if U is sufficiently
sparse and the problem can be reduced to generating a sparse orthonormal matrix

U. This can be done easily by applying a Givens rotation (Golub & Van Loan,
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1996) to an identity matrix I;. Formally, we let U®) = I, and apply the following

procedure repeatedly until the desired sparsity is achieved.
1. Randomly pick two indices 3, j from {1,2,...,d}.
2. Randomly generate 6 from a uniform distribution from 0 to 2.

3. Update the (i,4), (4,7), (,4) and (4, j)th entries of U® as

(t+1)  7(t41)

Ut Ul
(t+1)  py(e+D)

Uity Ul

1) (t)
Ui U ij
o o

J

_ {cos@ —siné

sinf cos@

4. Keep the remaining entries Uy, = U, for (¢, ') ¢ {(3,4), (i, 5), (3, 4), (. 4)}-

In our simulations, we generated each eigenvalue from a uniform distribution from
0 to 1.

4.8.2.2 Generation of Sparse Precision Matrices with a Common Sub-

structure

Here, we turn to imposing commonness on the resulting precision matrices. To
begin with, we generate small sparse precision matrices ¥y, Uy, ..., ¥, in the above-
mentioned manner and construct a sparse block-diagonal precision matrix as Ag =
block-diag(¥q, ¥a, ..., ¥,). We then add some non-zero entries to Ay and generate
K precision matrices Ay, Ag, ..., Ax. At this stage, we keep the original non-zero
entries Ay unchanged so that they form a common substructure at the end. Note
that the addition of non-zero entries can not be done randomly since this might
destroy the positive definiteness of matrices.

We describe the procedure for the case a = 2. Let the eigenvalue decompositions
of ¥; and ¥, be ¥ = U1D1U1T and ¥y = UQDQUZT. Note that U; and U, are sparse

since they are generated to be so. Now, let matrix Ay be of the form

U, @

Ae=| -
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The objective is to generate a sparse non-zero matrix ®; while keeping the positive
definiteness of Ax. This corresponds to keeping a determinant of A, positive. Here,

we choose ®;, of the form
o, = U=, 027,
where Z; is a b x b diagonal matrix and U? and U! are matrices composed of b

columns in U; and Uy, respectively. Specifically, we let U; = [u1,1 Uro ... ul’dl]

and U = [uzyl Ugo ... 'U,gydz:l , where d; and ds denote the dimensionality of each

matrix. Matrices U? and U are then given by

0t =
1= |Uim,; Ulg, --- Uiy o
Ut =
2 = |U2my, U2mpp - u2,7f2,b ’
for some index sets {my1,m2,..., 715} C {1,2,...,d1}, {mo1,m22,..., M2} C
{1,2,...,d2}. Then, from a general matrix property, we can express the deter-

minant of A as

det Ay = det(¥; — ®, U5 ' D)
= det(D, — U{ ®U,D;'U, @, U,)

b 2
_ §s
- H 0-1,7l‘11,' - o ’

i=1 2,ma;
where Dl = diag(am, 012, Ul,dl), D2 = diag(ag,l, 022, ., Uz,dz), and Ek =
diag(&k1,€k.2, - - -, Ekp). Hence, the positive definiteness of Ay, is guaranteed if 6,371. <
O1m,.,02,m,,; 15 satisfied for ¢ = 1,2,...,b. Moreover, this inequality provides us a

guideline on choosing index sets. Since we want non-zero entries of ®; to be larger,
which can be achieved by larger | |, we choose index sets so that O1m:02,m,, 8etS
large. This corresponds to choosing leading eigenvalues and eigenvectors of ¥; and
;. In our simulations, we pick b = 2 indices at random from those with eigenvalues
in the top 1/3. We also generate & ; as & ; = §o,k,i/O1,m1 ,02,m5,, Where o = KU
and « takes a value 1 or -1 with equally likely, and v follows a uniform distribution
from 0.5 to 0.8.

For general a > 2 cases, we first construct a matrix A;cl) from ¥; and ¥,. We

then iteratively apply the above procedure to generate A,(f) from A,(cl) and U3, AS')
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from A;f) and Wy, until Ay = A;ca_l) is derived. In the simulation in Section 4.5, we
set the number of modules to be a = 2 for d = 25, a = 3 for d = 50, and a = 4 for
d = 100.

4.8.3 Proofs of Theorems
4.8.3.1 Proof of Proposition 1

Let E and Fj be non-negative d x d matrices satisfying —E;; < ©;; < E;; and
—Frij < Qij < Fyij, respectively, for all k = 1,2,...,K and 4,5 = 1,2,...,d.
Then, using Lagrange multipliers I', 'y, and {Ag, Ao }X_,, the CSSL problem (4.5)

is expressed as

K
max min {lo det(© + —tr[f] O+0 ]}
G),E,{Qk,Fk}szl F‘Fo’{AbAO,k}szl ; TI’C g ( k) k;( k:)

d K ;
- 1PEy +’7<Z F,f”)

i,j=1 k=1

— tr[I'©] + tr[abs(I') E] + tr[[o E]

— Z{tr [Aka] —tr [abS(Ak)Fk] —tr [Ao,ka]} )

k=1
s.t. PO,ij 20, Ao,k’ijZO (k:1,2,...,K, Z,]:1,2,,d)

By changing the order of maximization and minimization above, we derive the
dual problem. Now, we optimize each variable ©, E, 4, and Fj by setting each

derivative equal to zero:

K
Z"?k{(@ + Q)7 - 2k} —I' = Oaxa,

k=1

—plgl] + abs(T) + [y = Ogxa ,
nk{(@ O - ik} — Ap=Ogea (E=1,2,...,K),

%

K
—7<ZF,§ij> Frij+ [Dris] + Doki; =0 (k=1,2,..., K, 5,5 =1,2,...,d).
k=1
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As the result of these equations, we obtain
Ak = T]k{(@ =+ Qk)_l —_ 2k} y

K
> Ak
k=1
1
K q
(ZlAk,ijlq> S'Y (iaj:172a-"7d)v
k=1

and the dual problem is given by (4.6) where we set Wy = (© + Q)7 = Ap /i +
Sk [

<p (G,j=12...,4d),

4.8.3.2 Proof of Theorem 9

We first prove the lower-bound. Let Wy = A /m + 3 in the dual problem (4.6).

1
We then have 'Zszl Agij| < p and (Zszl |Ak7ij|q) * <+, and hence

1 ~
— Ay + 2
Mk

IA

1 A

o o A
Nk S 8
d

S — max ‘Ak,ijl + "i}k"
Nk 4,3=1,2,....d S

S

S Bl + |5

M k=I11}2?7l~)-(~,Ki,j£,a2§.,dl kagl + || 2 g

<9y
Nk

S

where the last inequality comes from the general relationship between ¢,-norms
maXg—12, .k |Ari;| < (Zle ’Ak,ij'q)%- Since W = A} /me + Y = Az_l holds at
the optimum, we have the lower-bound.

We now turn to proving the upper-bound. From strong duality, the duality-gap
is zero at the optimal solution to the primal and the dual problems (4.5) and (4.6),

and therefore we have

K
POl + 711, = d = D et [Su(07 + 25)].
k=1

Moreover, from 0 < p < K%V < 00, tr [i)k(@* + Q,’;)] > 0, and the general £)-norm
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=

rule (Zszl |Q,*c,ij|p)p > maXg=12,. K |Q}:7,-]-|,

L,
1©%[1, + K7 [|7]]; o <

bl

o &

holds. Since K» > 1 for p > 1, we obtain

3=

K

" . d
10711y + [127]]1 00 < -

We use this inequality to derive the upper-bound. From the definition, the precision

matrix is given by A; = ©* 4 ()}, and hence we have
1Aklls < 110715 + 1%

-----

<[ ls + I

< d (11©"fls + 1211,

<a (1€l + 19210
Krd?

< .
p

Here, we have used the relationship ||©*||g < ||©*||, < [|©%|;- O

4.8.3.3 Proof of Theorem 10

The Hessian matrix of the CSSL primal loss Zle mel(© + Q; 3) is given by

-Zle mQr M1 M2 ... Nk Qx|
@1 m@Q1 Ogxa .- Ogexa
Hprimal = — n2Q2 Opzxaz 7202 : ,
: : ' 042 x g2
mkQx  Oexaz .. Oexaz MkQ@k |

where Q; = (0 + Q)1 ® (0 + Q). It is easy to verify that [—Ig, 1, ®14)" spans

a null space of Hprimar and thus Hprimal is always rank-deficient.
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On the other hand, the matrix of the CSSL dual loss — Zle Nk log det Wy, is the

block-diagonal matrix

Haual = block-diag(mQ1,72Q2, . . ., 1k Qx),

where Q = W, ' W, !. From Theorem 9, we know that the CSSL solution has
bounded eigenvalues and thus the above Hessian matrix is always strictly positive

definite for any feasible W. O

4.8.3.4 Proof of the Proposition 2

ar Tk

Let 3 be the covariance matrix S = ! ] We then have an upper-bound

Tk bk
of (4.12) given by

K

an{log(ukv,C — (0 + wk)2) — (axug + brvg + 2rf + 2rkw,-)} —2p|6] — 2 ||w||p
k=1

K
S Z nk{log(ukvk —_ (9 + wk)Z) —_ (akuk + bkvk) -2 (rkwk —+ 'y|wk|)}
k=1

K
—2 (Z Nerkd + P|9|> :

k=1
from the relationship ", mi|wi| < |wll < llwll,- Moreover, this upper-bound
coincides with the original problem when w = Og. Therefore, if w = O is a
maximizer of this upper-bound, it is also a maximizer of (4.12). From the derivative
of the upper-bound over wy, we get that wy = 0 is a maximizer if the following
condition holds:

— < —— < — .
(47 € —— < (r-m)
This is a sufficient condition for the original problem (4.12) to have w; = 0 as its

solution. Under this condition, problem (4.12) can be expressed as

, ax log(ad — ¢%) — (aii + bi) — 2(70 + pl6)|)
UV, U,V
s.t. 4 — 6% >0,

0
— (v + < — 0 (= =1,2,....K
(’7 Tk) = Upvp 92 = (7 Tk) (k ]-’ ) 3 ),
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for some properly chosen a,b, and 7 = EkK:N?ka- Hence, since the additional
condition involves § = 0 irrelevant to the value of u;, and vy if maxg_12,. . x |7%| <

holds, we have § = 0 when || < p from Idé et al. (2009, Proposition 1). O

4.8.3.5 Proof of Theorem 11

Let h(y) = |ly — yoll2/2 and ¥’ be one of the feasible solutions to the original
problem (4.10). Moreover, since ¥ is infeasible for the original problem (4.10),
|9l, > 7 holds. Then, for y” =y’ +¢e(§ — y') with 0 < e <1, h(y") < h(y') holds
from the convexity of h. Therefore, y” is a better solution to the problem (4.10) as

long as the following two constraints are fulfilled:
115y < p,
ly"ll, <7
The first condition always holds because

1xy"| < 1= )1xy'| + e[l < p.

1
On the other hand, the latter condition [|y"||, = (Zszl |y§€'|q) * < « is no longer
valid if ||y'[l, = v and sgn(y;) = sgn(Jx — yi) which results in gry; > 0. This is a
necessary condition for the solution to (4.10). Otherwise, we can always improve

the solution by the above procedure, which contradicts its optimality. a






119

Chapter 5

Structure Learning for Anomaly
Localization

5.1 Introduction

The main scope of this chapter is an anomaly localization problem which we consid-
ered in Section 4.6 as a benchmark application. This is the one important technical
field of data mining; related topics involve a change-point detection of time se-
ries (Basseville & Nikiforov, 1993; Siegmund & Venkatraman, 1995; Kohlmorgen
et al., 1999) and an outlier detection (Hodge & Austin, 2004). A localization of
anomalous variables is a key task toward characterizing the cause of the change (Idé,
Papadimitriou, & Vlachos, 2007; Idé et al., 2009; Hirose, Yamanishi, Nakata, & Fu-
jimaki, 2009; Jiang, Fei, & Huan, 2011). This is an essential technology for finding
erroneous sensors automatically, for instance. The importance of anomaly localiza-
tion techniques is especially high in engineering systems (Idé et al., 2009) and on
sensor networks (Hirose et al., 2009), where the number of possible faulty sensors
can be large. In such situations, the localization of errors requires professional in-
vestigations and tends to be costly. There are two fundamental directions on the
study of anomaly localization; one is a graph based approach (Idé et al., 2007, 2009;
Sun, Qu, Chakrabarti, & Faloutsos, 2005; Papadimitriou, Sun, & Yu, 2006; Sun,
Xie, Zhang, & Faloutsos, 2007) as we considered in Section 4.6 and the other is a
PCA based approach (Hirose et al., 2009; Jiang et al., 2011) which seeks a subspace
where anomalies occur.

As in Section 4.6, the graph based approach consists of two stages, 1) estimat-

ing GGMs from datasets sampled before and after the error onset, and 2) finding
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anomalous variables by contrasting these GGMs using a KL divergence based met-
ric (4.13). The most important part in this method is an estimation of GGMs where
the estimation error in this stage may mask faulty variables and lead to higher false
detection rates. The aim of this chapter is to improve the anomaly localization
performance by providing good estimates of GGMs. To that end, we consider an
invariance specific to this task. The proposed method is based on this newly de-
fined pattern; we introduce a new regularization term that penalizes a difference of
precision matrices in a row/column-wise manner, which we show in the simulation
that it is more suitable to the anomaly localization than the one we considered in
Chapter 4.

The major challenge of this study is how to deal with the new regularization
term and solve the estimation problem. The difficulty lies in two fundamental parts,
that is, 1) the new term is the sum of group regularization terms with overlapping
supports between the groups, and 2) the penalty is symmetric up to a matrix
transpose. In particular, the first difficulty makes the computation of the proximity
operator on our new regularization term inefficient and thus DAL-ADMM is not
directly applicable to the problem. However, we show that these two difficulties can
be avoided by formulating the problem properly. Hence, we can apply DAL-ADMM
after the transformation. The resulting algorithm requires only analytic operations
in each updating step.

The remainder of this chapter is organized as follows. In Section 5.2, we for-
malize the GGM based anomaly localization problem. In Section 5.3, we present
the proposed invariant pattern and formulate the GGM learning problem. The
algorithm with DAL-ADMM is also described in this section. The validity of the
proposed method is presented through an experiment using sensor error data in

Section 5.4. Finally, we conclude the chapter in Section 5.5.

5.2 Anomaly Localization with GGMs

In this section, we revisit the GGM based anomaly localization problem and provide
its detailed formalization. In an anomaly localization task, we have two datasets,

where one is sampled before the error onset and the other after that. The goal is
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to identify contributions of each of d random variables x = (z;, 2o, ..., 1) € R?
to the difference between these two datasets. In the following, we assume the next

two points on the dataset.

e The number of variables in each dataset is the same and they are all d-

dimensional.

e The identity of each variable are the same, for instance, a realization of z; is

always a value from the same sensor.

Under this condition, Idé et al. (2009) proposed to represent data with GGMs
and score the degree of anomaly for each variable using a KL divergence!. The

underlying assumption on GGM in this approach is as follows (Idé et al., 2009).

Assumption 1 (Neighborhood Preservation). If the system is working normally,
the neighborhood graph of each node (variables) is almost invariant against the

fluctuations of experimental conditions.

Formally, let Ay, As € R¥*? be precision matrices from two datasets and their

Ly I

I, M

original ith row/column of matrices after permuting rows and columns of matrices

partitions be Ay = [ :| with k& = 1,2 where I; and )\, correspond to the

simultaneously. The above assumption indicates that if there are no errors occurring
on the ith variable z; between two datasets, the pairs {l;, A\;} and {l5, Ay} are
almost identical. The comparison of these two pairs corresponds to contrasting
two conditional distributions and an anomaly score (4.13) arises as its metric. The
score (4.13) marks higher values when the neighborhood structure on x; changes
along the error.

From the definition of the anomaly score (4.13), it is obvious that providing
good estimates of A; and A from data is an essential step to estimate the anomaly
score accurately. The use of SICS (1.11) for this purpose was firstly introduced by
Idé et al. (2009). In Section 4.6, we show that the CSSL estimator provides better

localization performance than the one of SICS. Note that when there are only two

1See Section 4.6.1 for the detail.
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datasets, the CSSL problem can be simplified as follows under slight modifications:

2

AE\lzae}fer E(Ak; Zk) — p |A1 — A2“1 ) (5.1)

where 3; and Y, are sample covariance matrices obtained from each dataset.

5.3 Anomalous Neighborhood Selection

Now, we turn to providing the proposed formulation using a row/column-wise reg-
ularization. We also show that, with a proper transformation, the problem can be
solved through DAL-ADMM.

5.3.1 Row/Column-wise Regularization

In the CSSL formulation (5.1), we regularized the difference of two matrices in
an element-wise manner. However, the neighborhood preservation assumption in-
dicates that if no error is occurring on a variable z;, its neighborhood graphs on
two GGMs may be kept almost constant across two datasets. Or alternatively, an
error on z; causes some changes on its neighborhood graphs. In a precision ma-
trix literature, this corresponds that two matrices have row/column-wise changes
before and after the error onset. Therefore, it is much more appropriate to find
row/column-wise differences between matrices rather than element-wise changes.
We formalize this problem by introducing a row/column-wise regularization
term. Specifically, we model the difference of A; and Ay as the sum of d com-

ponents Q1,Qy, ..., Q4 € R4 given by

d
A=A =3
i=1

where each 2; has a support supp(£%;) = {(4,7'); 7 = ¢V’ = ¢}, that is, the (J, j')th
entry of (); is zero for any (7, j') ¢ supp(£2;). See Figure 5.1 for an illustrative image.
In this parametrization, each 2; corresponds to the row/column-wise change caused

by an error on the variable z;. The condition §2; # 0444 implies that the difference
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A1—A2=2Qi

=1

(951 Qo Q; Q4

Figure 5.1: Row/column-wise parametrization of a difference between two precision
matrices. Each matrix ; has a support on the ith row/column denoted by colored

regions.

A; — As has a non-zero ith row/column and therefore the ith variable is anomalous,
while Q; = 0444 indicates that the 7th variable is healthy.

To make the estimators to have this group-wise zero/non-zero structures, we
penalize each ; in a group-wise manner using a group regularization term (M. Yuan

& Lin, 2006):

d
H)=) 200+ Y 03y
=1

(4,5")€off ()
where €, j; denotes the (j, j')th entry of €, off(Q;) = supp(€2;)\{(4,7)} is an off-
diagonal support, and we halved the effect of a diagonal term to make the optimiza-
tion process simple. With this term, we define the following convex optimization

problem:

2 d
max . Z g(Ak Zk) s qu(Q), s.t. A1 = Az = Z Qi, (52)
|

A, AeST {4} o1

which we call Anomalous Neighborhood Selection (ANS).

5.3.2 Optimization via DAL-ADMM

In solving ANS (5.2), there are two fundamental difficulties both owing to the term
(). The first difficulty is that each support of €2; overlaps to one another which
promotes some redundancies in the model. Suppose A; and A, are both composed

of non-zero diagonal entires with one non-zero off-diagonal value on the (z,')th
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entry. Identifying whether this off-diagonal non-zero entry is induced by a term ;
or {2y is not always possible (Obozinski et al., 2011). This kind of model is known
as Latent-Group-Lasso and its properties are analyzed by Obozinski et al. (2011).
The second difficulty is that A;, Ay as well as @y, Qy, ..., Q4 are all symmetric
matrices. Explicitly imposing symmetricity constraints in the problem will make the
entire optimization process complicated and might even harm the computational
efficiency. If there is only the first constraint, the problem (5.2) is one specific
example of Latent-Group-Lasso, and a covariate duplication technique (Obozinski
et al., 2011) will be a possible approach to solve the problem while the additional
second constraint makes the problem more difficult.

We tackle this problem by using DAL-ADMM. To begin with, we derive the dual
problem of ANS (5.2).

Proposition 3 (Dual Problem of ANS). The dual problem of ANS (5.2) is given

by
min — log det(3; — Y) — log det(, + Y),
y=yT
s.t. 22+ YZ <p® (i=1,2,...,d).
(JVJI)EOH(Q’L)

(5.3)

Here, Y € R%¥*? is a dual variable and its optimal value Y* relates to the optimal
primal solutions A} and A} through A} = (£, — Y*)™! and A3 = (£, + V)L,

To deal this problem with DAL-ADMM, we need to compute a proximity op-
erator. Let C = {Y € R¥%2Y? + Z(j’j,)eoﬁ(gi) Yﬁ, <p* (i=12,...,d)}. The
proximity operator defined on the convex conjugate of ¢,(A) = pp(Q) is then given
by

prox,. (B) = proj(B,C).
This is a convex optimization problem and the solution can be found using some
proper algorithms. The question is whether that computation can be conducted
efficiently or not. Unfortunately, the shape of a set C is quite complicated because

of some variable overlaps between inequalities, which makes the computation of

2We explicitly included the constraint Y =Y " to show the symmetricity.
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this projection less obvious. We tackle this problem not directly, but with some
modifications, where the resulting problem requires much simpler operations only.

In DAL-ADMM, or more generally in ADMM, the problem is composed of two
convex functions and some linear constraints defined between two groups of vari-
ables (Boyd et al., 2011). Our basic idea is to design these functions and constraints
so that the resulting algorithm becomes simple. We first introduce two additional
parameters Wy, Wy € R%*? that satisfy W, = $,—Y and Wy = 5,47, respectively.
We then combine the symmetricity constraint into these two equations and derive
two additional equations W; = .- YT and W, = 3 + Y7. Note that one of
the above four equations is redundant but we deal them equally to make the entire
expression symmetric. Since these four new equations now involve the symmetric-
ity constraint, we no longer need to impose the symmetricity on Y explicitly. This

allows us to rewrite the inequality constraint into the following form:

d 2
Y Vi< ) (i=1,2,...,4d).
j=1

Note that this new constraint no longer have any parameter overlaps and hence it
is not symmetric over Y. Together with the above four equalities, we can derive

the equivalent dual problem with (5.3) but with simpler constraints as

2
min  — Z log det W,
k=1

W1, WaesSt)Yy
s.t. R1 = R2 = R3 = R4 = deda (54)
d p2
Sv<? (=12,
j=1

where

Ri=W,+Y -3,
Ry=W,+YT -3,
Ry=W,—Y — 3,
Ri=W,—-YT -3,
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Now, we turn to solving the problem (5.4) with ADMM. First, we introduce the

following Augmented Lagrangian function:

Ls(W,Y,Z) = Zlogdeth—HS R+ = Z

k=1

N)IQ

3

F

where Z,, is a Lagrange multiplier and /3 is a non-negative parameter. The function

4(Y') is an indicator function on Y, which is defined as

0 if Y Y2<pY2 (i=1,2,...,d),

oo otherwise.

5(Y) =

Using this Augmented Lagrangian, we repeat the following three steps:

)
WD Wit ¢ argmin La(W,Y®, Z®),
Wy, Waest

. YY) € argmin Lz(WEHD Y, Z®),
Y

W) = 70 4 BREY (m=1,2,3,4),

\

where RS is an R,, with WD and YD, In the next three subsections, we
show that the above update processes on W and Y can be solved analytically, and
the optimal solutions of ANS (5.2) can be derived as the result of ADMM.

5.3.2.1 Update of W

Here, we detail the update process for W; as an example. The update of W, can
be done in the same manner.

First, the optimization problem about W; is given by3

min — logdet W; + 8(|W; — 4|2, (5.5)

WieSt
1
Ar=%-3 (y(t) " y(t)T) ( 20 4 Zét)) _

28

Here, we note that once we initialize Z§O) + Zéo) to be a symmetric matrix, a matrix

th) + Zét) is also symmetric for any £ > 0. It can be verified easily by the induction.

3We use Ay = 35 + (Y® + Y(t)T)/2 - (Zét) + Zit))/2,3 instead of A; for the update of Wj.
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From the ADMM updating rules on Z; and Z,, we have
th‘{'l) + Z§t+1) — Z}t) + Zét) + /B(Y(t) + Y(t)T) _ 2/621’

which is symmetric if th) + Zét) is symmetric.
Under the symmetric initialization on Zfo) + Zéo), the matrix A, is also guaran-
teed to be symmetric from its definition. Hence, the first order optimality condition

of (5.5) is given by the following matrix equation:

1

W1 - %Wl_l - A1 = ded-
Here, let an eigenvalue decomposition of A; be A, = Udiag(oy,03,...,04)U". The
solution to the matrix equation is then Wl(tH) = Udiag(61,59,...,54)U" where &;

is a solution to the quadratic equation &; — &;'/28 — 0; = 0 and is given by

- 1 2
0'1'25 Ui+ O'i-l-E .

5.3.2.2 Update of Y

We first define a matrix B as

Lire S 1 T T
B={(5-w) - (S - i)} - I (20 +2 -2 -2,

The optimization problem over Y is then defined as follows:
1 d p
. 2 2 L
min > [[Y = Bl st. Zlyﬁ <5 (=124
J:

This problem can be further decomposed into individual problems defined on each

column of matrices. Here, let Y = {yl Ys .- yd] and B = [bl b, ... bd]-
Each subproblem is then defined as
1 2
min s [ly, — bl st il < 5 (56)

This problem has two possible cases as its solution. First, when ||b;||5 < p2/2 holds,

the solution is y; = b;. On the other hand, if ||b;||2 > p?/2, the solution is on the
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boundary and ||y;||> = p?/2 holds from the convexity of the quadratic objective

function. This time, we use a method of Lagrange multipliers and solve

. 1 2 12 p2
s - 2+ 4 (Il - 2 ).

From this problem, we have that the optimal y, is in the form of y, = b;/(1 + p).

Hence, together with the constraint ||y;||> = p?/2, we derive the solution as

P
Y, = ———0b,.
V2| |bill,

Thus, the overall solution to the problem (5.6) is given by

. P
y;,=min| 1, ———— | b;.
( \/illbillz)

5.3.2.3 Convergence

Here, we note a convergence property of the ADMM iterative update. First, it is
guaranteed that a sequence {Z,(,’,c )},;“;1 converges to the optimal parameter Z, (Boyd
et al., 2011). Second, we have two conditions on optimal parameters Wy, W5 and
21,245,723, 7% as

Wit = 2+ 23,

Wit =73+ 7,
which follows from the first order optimality conditions of W; and W, on an unaug-
mented Lagrangian function Lo(W,Y, Z). Together with the primal-dual optimal-

ity AT = (2, —Y*)™1, A} = (55 + Y*)L, and linear constraints W} = 3, — Y*,

W5 = Sy + Y™, we derive the optimal primal parameters as

A =77+ Z3,

N =27+ Z;.
It indicates that we can derive the optimal precision matrices to the problem (5.2)
by using the resulting Lagrange multipliers Z;, from the ADMM iterative update.

Note that only precision matrices A; and A, are derived from ADMM while the

difference parameters ); are not.
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5.4 Simulation

In this section, we verify the validity of ANS (5.2) through an anomaly localization

simulation using a real world data.

5.4.1 Simulation Setting

In the simulation, we use the same sensor error data (Idé et al., 2009) as in Sec-
tion 4.6. The dataset comprised 42 sensor values collected from a real car in 79
normal states and 20 faulty states. The fault is caused by mis-wiring of the 24th and
25th sensors, resulting in erroneous behaviors. In the simulation, we transform each
dataset into a sample covariance matrix, so that we have 79 and 20 matrices from
normal and faulty states, respectively. Since sample covariances are rank-deficient
in some datasets, we added 1073 on their diagonal to avoid singularities.

We adopt SICS (1.11) and CSSL (5.1) as baseline methods to contrast with
ANS. In this simulation, we consider the two datasets case different from Section 4.6
since ANS is designed under such a situation. Therefore, the result here cannot be
directly compared with those in Section 4.6 where we considered a general multiple

datasets situation.

5.4.2 Result

We conducted the simulation for all 79 x 20 normal-faulty pairs of datasets. In
each run, we have datasets from two different states and estimated two precision
matrices A; and A, with three different methods, which are SICS (1.11), CSSL
(5.1), and ANS (5.2). After precision matrices are estimated, we calculated the
anomaly score (4.13) for each variable using estimated matrices from each of three
methods. The anomaly localization performance is evaluated by drawing an ROC
curve and measuring the AUC, which achieves the best result 1 if two erroneous
sensors mark top two anomaly scores. The overall performance for each of three
matrix estimation methods is measured as the median AUC of all 79 x 20 runs of
the simulation.

We summarize the best median AUC results for each method among 41 different
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Table 5.1: Anomaly localization results for SICS, CSSL, and ANS. For each method,
we compute precision matrices for 41 different values of p ranging from 10=2 to 10°.
The table shows the median of the best AUCs among these 41 results over all 79 x 20
pairs of normal-faulty datasets. The numbers in brackets are the 25% and the 75%

quantiles.

best median AUC
(25% / 75% quantiles) | optimal p

SICS || 0.9875 (0.9500 / 1.0000) | 107959
CSSL || 0.9875 (0.9500 / 1.0000) | 10~
ANS | 1.0000 (0.9750 / 1.0000) | 10—005

values of p ranging from 1072 to 10° in Table 5.1. The result shows the significant
success of ANS that achieves AUC = 1 as its median performance. It means
that ANS could detect faulty sensors perfectly for more than half of the 79 x 20
cases. To see further differences, we plot the median anomaly scores derived from
each method in Figure 5.2. It is obvious that ANS successfully extract only faulty
variables while the anomaly scores on other healthy variables kept almost zero.
This makes sharp contrast to other methods whose scores have some peaks on
some healthy sensors. The results in Figure 5.3 also support this tendency that
only ANS could successfully highlight matrix entries related to anomalous sensors.
In other two methods, it is hard to observe such clear evidence of errors in estimated
matrices. From these results, we can conclude that ANS is the superior method to
others both on anomaly localization performances and also on an interpretability

of the result.

5.4.3 Discussion

Through the simulation, we observed the advantage of ANS over other two existing
precision matrix learning methods. This advantage is caused by our new regular-
ization term on the row/column-wise difference between two matrices. From the
definition of an anomaly score (4.13), we can see that the score gets small when
{l1, A1} and {l3, A\;} are similar to each other. Hence, the equivalence of these two

pairs results in the zero anomaly score. In the SICS problem (1.11), this kind of
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Figure 5.2: Median anomaly scores for each method with best AUCs. Dotted lines

denote true faulty sensors.
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Figure 5.3: An example of the difference between two estimated precision matrix

entries. Darker/Lighter means lower/higher discrepancies.

properties on precision matrices are not considered, which results in high variations
between two matrix entries even on healthy sensors (Figure 5.3(a)). Such variations
produce higher anomaly scores not only on truly faulty sensors as we can observe
in Figure 5.2(a). This would be the reason why the SICS estimators have inferior
anomaly localization performances. On the other hand, the CSSL problem (5.1)
considers the variation between two precision matrices. Compared to the result of
SICS (Figure 5.3(a)), we can observe that the resulting matrices derived through
CSSL have less variations (Figure 5.3(b)). However, the regularization is applied
in an element-wise manner on the variation and seems not be sufficient to extract
only error related changes as we can see on some peaks in Figure 5.2(b). In the

result of ANS (Figure 5.3(c)), some healthy sensor related rows/columns are also
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extracted as candidates of anomalies, though their magnitude are sufficiently small
and their effects are almost negligible in the anomaly score (Figure 5.2(c)). This

would be the cause of the significant success of ANS.

5.5 Conclusion

In this chapter, we proposed a precision matrix estimation technique ANS (5.2)
for an anomaly localization task. We focused on the neighborhood preservation
assumption and considered that a row/column-wise similarity would be an appro-
priate invariant pattern representing healthy variables. Based on this idea, we in-
troduced a row/column-wise regularization on the difference of two matrices, which
is much more effective than existing element-wise regularization techniques for this
specific task. The new regularization term has overlapping support structures and
hence it is symmetric up to a matrix transpose. These difficulties can be efficiently
avoided by modifying the dual problem which can be solved through DAL-ADMM.
We showed that each updating step of ADMM can be computed analytically and
the iterative update steps converge to the optimal parameter. We also verified
the effectiveness of ANS through a real world data simulation, which shows higher

anomaly localization performances and a higher interpretability.

5.6 Proofs of Theorems

5.6.1 Proof of Proposition 3
We first introduce matrices ['; € R4 (5 = 1,2,...,d) satisfying
Fi,jj' Z 0 and _Fi,jj’ S Qi,jj’ S Fi,jj’ (i,j, j/ = 1, 2, ceey d) (57)

Using these matrices, we can rewrite the problem (5.2) as

2 d
ma O(Ag; S) — I'), s.t. (5.7) and Ay — Ay = Q;.
Al,A2es+y{§i7Fi}g:1kz:; (Aw; X)) — pg(T) (5.7) 1 2 ;
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We further introduce Lagrange multipliers P and @; (i = 1,2,...,d) and rewrite
the problem as
2

max min Zé(Ak; ) — po(I)

ArAr€S* {0 T}, PQRY 1=

+y (Pijy gy — |PrijgrTigy — QigyTigy)
i=1 (

j7jl)€0ﬁ(Qi)

d
' <A1 — Ay — 291)

1=1

O

+tr

bl

s.t. Qi,jj’ Z 0 (’i,j, jl = 1, 2, cee ,d)

By exchanging the order of the maximization and the minimization, we derive the
dual problem. First, we optimize the above over A; and A; by setting the derivatives

equal to zero and derive

Al_l — 21 +Y = Odxd,

Secondly, from the optimization over €2 and I', we have the condition

Wi+ Y YhsA
(jij/)GOH(Qi)

Finally, by substituting these results into the above dual problem, we derive the
result (5.3). |
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Chapter 6

Conclusion

This dissertation investigated methodologies for learning invariant patterns hid-
den across multiple datasets. For the purpose, we focused on the second order
statistics, one of the most primitive parameters representing natures of multivari-
ate random variables. In particular, we considered two models, a linear mixing
model and a graphical model, as the basis of our framework.

First, we worked on a model called Stationary Subspace Analysis (SSA), which
is a variant of linear mixing models. This model assumes that the observation
is a linear mixture of two kinds of latent sources, which are stationary and non-
stationary. We built up the proposed algorithm, Analytic SSA (ASSA), which
recovers these latent sources from the data based on the fact that the problem
can be formulated as a generalized eigenvalue problem under proper conditions.
The advantages of ASSA over other existing algorithms have been verified both
theoretically and numerically.

Next, we considered finding invariant patterns across multiple Graphical Gaus-
sian Models (GGMs). We first derived a general convex optimization algorithm
DAL-ADMM to solve GGM learning problems. This algorithm allows us to work
on a wider class of problems where existing methods could not treat. We then
considered two invariant patterns on multiple GGMs, or corresponding precision
matrices; the first one is an element-wise commonness across multiple precision
matrices, while the latter one is a row/column-wise heterogenisity, a specific pat-
tern for an anomaly localization task. Each of these two patterns are incorporated
with a GGM learning problem by introducing new regularization terms. Hence,

these problems can be solved by DAL-ADMM procedure.

Apart from the remaining problems raised in each chapter, we point out two
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general issues as the further improvement directions of this study. The first one is an
establishment of the general framework for an invariant pattern learning. Currently,
two fundamental models, SSA and GGMs, are introduced based on the second order
statistics. However, these two problems are defined on quite different principles.
Introduction of a general model that unifies these problems would be needed to
further improve the invariant pattern learning problem. The second issue is on the
practical aspect, an introduction of task specific invariant patterns. One of this
problem is already considered in Chapter 5 where we observed that the algorithm
specific to the target task is superior to general methodologies. Investigations of
practical invariant patterns and their learning algorithms would be a possible future

direction.
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