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Preface
This dissertation presents my research on techniques for learning invar!

ant patterns from multivariate data using second order statistics. The

dissertation is the result of the research during the Ph.D. course at the

Department of Information and Communication Technology, Graduate

School of Engineering, Osaka University. The dissertation is organized

as follows.

Chapter 1 describes the background, the motivation, the purpose of

this research, and the outline of this dissertation. The key objective of

this dissertation is to construct methodologies for finding invariant pat-

terns underlying across multiple datasets sampled from different time

points or from several environments. Such techniques allow us to infer

the unknown data generating mechanism or to model the target data

with an efficient manner. For the purpose, we focus on the second order

statistics, one of the most basic parameters representing the properties

of multivariate data. In this chapter, we also describe two fundamen-

tal models based on the second order statistics, Principal Component

Analysis (PCA) model and Graphical Gaussian Model (GGM). These

two models form the basis of the dissertation, which we further extend

in the upcoming chapters.

Chapter 2 is devoted for the first algorithm that extracts an invari-

ant pattern from the multivariate data. The model we present in this

chapter is called Stationary Subspace Analysis (SSA) model and is a

specific example of Iinear source mixing models, that is, a variant of the

PCA model. The objective of the SSA problem is to find an invariant

pattern across multiple covariance matrices based on a source mixing

model. We build a new algorithm Analytic SSA for this problem, which

provides a solution by solving a generalized eigenvalue problem. This

framework is advantageous compared to an existing algorithm which re-



quires solving a gradient decent based non-convex optimization problem

since 1) it requires smaller computational cost, and 2) a global optimal

solution can be derived under a certain condition while the prior algo-

rithm guarantees only local optimality of the solution. We also provide

theoretical and numerical justifications of this point.

In Chapter 3-5, we describe the second algorithm for discovering an

invariant pattern. The major target in these chapters is a GGM, or a

conditional dependence structure among random variables. In Chapter

3, we work on convex optimization methods called Dual Augmented

Lagrangian (DAL) and Alternating Direction Method of Multipliers

(ADMM). We combine the basic idea of these two techniques and for-

mulate the DAL-ADMM algorithm for learning GGM from the data.

The advantage of the proposed algorithm is its flexibility. Most exist-

ing GGM learning algorithms assume the simplest problem based on

an /1-regularization. On the other hand, our algorithm can treat wider

variety of regularizalion terms including well-known group regulariza-

tions. This flexibility is essential for solving more complicated problems

arising in Chapter 4 and 5.

In Chapter 4, we consider finding an invariant pattern across mul-

tiple GGMs. We formalize the task as a convex optimization problem

using sparse regularization techniques, where the proposed formulation

can be casted as a generaiization of existing GGM learning problems.

We also show that the problem can be solved by the DAL-ADMM algo-

rithm. The proposed algorithm is composed of iterative updating steps

with each step requiring only simple analytic operations. The validity

of the proposed method is verified through numerical simulations and

also on an application to an anomaly localization problem.

Chapter 5 describes an anomaly localization problem based on a

GGM learning technique. In this chapter, we consider a GGM learn-

ing algorithm specialized to this task. One basic finding is that, in an

anomaly localization, row/column-wise changes between two precision

matrices, or the inverse of covariance matrices, are important. We im-



port this idea and formalize the task as a convex optimization problem.

The proposed formulation is a variant of structured sparsity models and

requires specific considerations to construct an algorithm. We find that

some proper transformations of the problem allow us to treat the prob-

lem with DAL-ADMM. Hence, the proposed algorithm requires only

simple analytic updating steps. We verify the advantage of our new

formulation over existing techniques on an anomaly localization task

through a real world data simulation.

Chapter 6 concludes this dissertation.
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Chapter 1

Introduction
1.1 Background

Invariance of the data behavior is a cornerstone assumption in several fields, includ-

ing statistical learning (Quinonero-Candela, Sugiyama, Schwaighofer, & Lawrence,

2008), signal processing, and control theory. This allows us to model the target

problem with simpler formulations which we can manipulate easily. The most well

known example of this would be an independent and identicallE di,stributed (i.i.d.)

assumption in statistics. This removes complicated interactions among observations

and we can treat each observed sample individually. Another example is a station-

arity of a time series. Under the stationarity assumption, we can safely apply the

current knowledge to the future prediction. However, these are not always the case

in reality and there are several real-world data that changes their behaviors. In such

cases, a non-stationary data generating mechanism affects data to have different be-

haviors in each datasets collected under different conditions, for instance, datasets

from several time stamps or the ones sampled under multiple environments. Ex-

amples include biomedical measurements (Shenoy, Krauledat, Blankertz, Rao, k
Miiller, 2006; Blankertz et al., 2008), geophysical data (Mann, 2004; Kaufmann &

Stern, 2002), and econometric time series (Engle & Granger, 1987).

Dynamical effects are not just a nuisance for methodology. In fact, understand-

ing temporal changes in data is often the one major point of interest, so that dis-

covering and describing non-stationarities in high-dimensional datasets are a key

challenge in explorative data analysis. For instance, there are various approaches

to test (Priestley & Rao, 1969; Dickey & F\rller, 1979) and correct for (Quinonero-

Candela et al., 2008; Shimodaira, 2000; Heckman, 1979; Murata, Kawanabe, Ziehe,
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Miiller, & Amari, 2002) non-stationarities in statistical model. A question arises,

however, when the observable data is composed of contributions from both invariant

and dynamical effects that are not directly accessible. One naive way is to treat the

data as a fully dynamical one since it includes effects from such factors. However,

this is not a convenient approach since we discard the fact there exists something

invariant in the data, which tends to require complicated modeling. This is unfa-

vorable not only from the methodological aspect, but also from the data analysis

perspective. Discerning invariant factors from dynamical ones in the data itself

can be one important goal of the analysis. For instance, in electroencephalography

(EEG) (Dornhege, Mill6n, Hinterberger, McFarland, & Miiller, 2007), measure-

ments on the scalp capture the activity of a multitude of sources located inside the

brain that we cannot measure directly, for technical, medical, or ethical reasons.

The observed signal is non-stationary due to the inherent non-stationary dynamics

in the brain. However, the EEG signal is not totally contaminated with the non-

stationary effects but also reflecting several systematic behaviors in the brain such

as kinematic signals. It is natural to assume such systematic behaviors result in

some fixed wave forms hidden in the non-stationary observations, which forms an

invariant factor across multiple EEG observations sampled under different environ-

ments. Finding this hidden wave form in the signal is an important step towards a

brain computer interfacing to reflect users intent to a computer control.

In practice, this kinds of underlying partial dynamics of data are captured in

several approaches. One way is to explicitly parametrizethe invariant and dynam-

ical part in the model (Hamilton, 7994; Durbin & Koopman, 2001). However, this

approach tends to require detailed domain knowledge to construct a right model

that is scarcely available in most cases. Another way is to impose general and mild

assumption on the data. This kind of approach is especially common in multitask

learning literatures (Caruana, 1997; Turlach, Venables, & Wright, 2005). In the

multitask learning, we exchange the information of each dataset through an in-

variant factor among them. This allows us to combine multiple tasks into a single

problem which efficiently capture the nature of datasets. This dissertation espe-

cially focuses on the latter context where the invariant pattern among datasets itself

is the obiective we want to analyze.



I.2 Main Issues

This dissertation aims to construct methodologies for finding invariant patterns un-

derlying across multiple datasets sampled from different time points or from several

environments. A key object for the purpose across the dissertation is the second

order statistics obtained from multiple datasets and reiated Gaussian expressions.

We focus on two representative models regarding the second order statistics and

introduce the notion of invariance for both of them.

First, we consider a linear mixture model and its relevant invariance. The main

problem is to recover latent sources from observations under the linear mixture

model. The most prominent example of this would be a Principal Component Anal-

ysis (PCA) (Jolliffe, 1986), which uses a sample covariance to derive the solution.

We treat an extension of PCA called Stationary Subspace Analysis (SSA) (von

Biinau, Meinecke, Kirrily, & Miiller, 2009a) where there are two kinds of latent

sources which are stationary and non-stationary. The objective of SSA is to re-

cover stationary sources from observations. This is the first invariance we seek for.

Next, we consider the second problem based on a Graphical Gaussian Model

(GGM) (Lauritzen, 1996). GGM is defined using an inverse of a covariance matrix,

which provides a different perspective to the second order statistics from PCA. The

objective of a GGM learning is to infer a graph structure that represents conditional

independence relations among random variables. We consider the case when some

topological patterns and edge weights are shared between multiple GGMs. We

search for this shared pattern in this problem.

We propose algorithms to solve these problems in this dissertation. In Chapter 2,

we consider the SSA problem. We propose an Analytic SSA algorithm which is very

efficient compared to an existing technique. We also provide detailed discussion

regarding the connection of Analytic SSA to well known Independent Component

Analysis (ICA) (Hyvd,rinen, Karhunen, & Oja, 2001) techniques. In Chapter 3-5,

we treat the second problem and describe algorithms for finding invariant patterns.

Chapter 3 is a preparation for the upcoming Chapter 4 and 5. In this chapter, we

work on convex optimization methods called Dual Augmented Lagrangian (DAL)

and Alternating Direction Method of Multipliers (ADMM). We combine the basic
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idea of these two techniques and formulate the DAL-ADMM algorithm for learning

a graphical model. In Chapter 4, we consider the most basic invariant pattern in

multiple GGMs. We formulate the task as a convex optimization problem using an

(1 and a group regularization techniques, which we refer as Common Substructure

Learning (CSSL). We also show that CSSL can be solved by the DAL-ADMM

algorithm. In Chapter 5, we treat an invariant pattern different from the previous

chapter, an invariance specific to the anomaly localization problem in sensor signals.

Chapter 2-5 arc based on (and extend) existing work. In particular, Chapter 2 is

based on Hara, Kawahara, Washio, and von Biinau (2010) and Hara, Kawahara,

Washio, von Biinau, Tokunaga, and Yumoto (2072), Chapter 3 is based on Hara and

Washio (20t2b), Chapter 4 is based on Hara and Washio (2011, 2013), Chapter 5

is based on Hara and Washio (20I2a).

In the remainder of this chapter, we introduce basic models used across this

dissertation. First, we review the second order statistics and the related Gaussian

expression of data. We also mention extending this Gaussian expression to multiple

datasets, especially for the case of a time series signal. In the sequential two sections,

we review two representative models regarding the second order statistics, one is

the Principal Component Analysis, the most well known linear mixture model, and

the other is the Graphical Gaussian Model, which is one of the most basic graphical

model. We also mention that these two expressions are in some sense dual to each

other. Finally, we conclude the chapter with a summary of contributionsl.

1.3 Second Order Statistics and Gaussian Distri-
bution

1.3.1 Covariance and Inverse Covariance

In the analysis of multivariate data, the interaction of random variables is the one

biggest interest of users. Here, across the dissertation, we consider that a muiti-

lEach chapter also have an appendix after the concluding section. Some additional remarks

and proofs of theorems are described in there.
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dimensional random variable fr: (rr,12,...,*o)'is continuous and is defined on

a space IRd. Hence, its distribution is expressed by p(c). The most basic property

of interactions among continuous random variables is captured by a couariance of.

two variables ri and ri defined as

Cov(ri,ri) = E [(r, - E["n]) (ri - E["i])] ,

where iE denotes an expectation over p(n). This measurement is positive if two

variables are simultaneously increasing, that is, the greater value of one variable

corresponds with the greater value of the other. On the other hand, if one variable

gets larger and the other one gets smaller in the same time, the covariance is neg-

ative. The zero covariance case is intermediate between these two cases when two

variables do not show linear dependencies to each other. For general d-dimensional

variable z, there exists O(d,') combinations of variables and the resulting covari-

ances are represented conveniently in a single matrix 2 6 pdxd defined as

This matrix X is called couariance matrir and its (i, j)th entry corresponds to

the covariance of ri and ri. Importantly, this matrix is symmetric and positive

semidefinite from its definition. Note that a variance of 16, or Var(r;), corresponds

to the covariance with its own Var(r,;) : Cov(rr,rt). Hence, the diagonal entries

of X correspond to the variance of each variable.

Although the sign of covariance is instructive to see how two variables interact,

its magnitude heavily depends on the scaling of each variable and is not always

meaningful. Correlatr,on is an useful alternative to interpret the magnitude of de-

pendencies, which is given by

Corc(ri, r) =
Dtj

This is a scaled version of a covariance and its domain is [-1, 1]. As the magnitude

of the correlation grows, the linear dependency between two variables gets stronger.

Hence, the value 1 or -1, two extreme cases of a correlation, implies two variables

ri and fri are completely linearly dependent to each other: there exists a non-zero

Σ≡E[π ―Ц瑚し―町」刈

Cov(ri,ri)
Var(r1)Var(23)
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constant c and ri : cri holds where the sign of c corresponds to the sign of a
correlation.

Despite its usefulness, the drawback of covariance appears when there are more

than two variables. In this situation, covariance captures not only the interaction

of two variables but the effects from other variables indirectly. We introduce one

simple example describing this drawback through an elementary school children

data. Suppose we held examinations for all children in one school and collected

data containing three fields: children's age; height; and their test scores. It is

obvious that, as children grows, they gets tall. But not only that, they learn more

and there test score gets well also. This results in a positive covariance between the

height and the score. However, the fact that taller students mark higher scores is

against our intuition. This happens because the effect of the age is involved in the

covariance between the height and the score. Therefore, we have to remove such

indirect effects to observe the essential dependency of two target variables. This

leads to the idea of. parti,al correlation Let c11i,31 denote d,- 2variables in r except

ri and ri. In partial correlation, the effects of the third variable c111,71 in z1 and

r,; ar€ modeled as a linear function:

: ri I znf, n11;,iy,

:rj*luolfl.yr,1y,

with some ui and u)i. Here, ri and ri are random variables and are statistically

independent of arqir,,1. This ri and ri are essential part of ri and rj afler removing

the effect of the third variable cq11,71. We measure the essential dependency of two

variables ri and ri as a correlation of r; and rj since the effects of the third variable

are no longer involved. The following is the definition of a partial correlation

between ri and ri:

PCorr(ri, rilnyr,l): Corr(r;, ri) : Cov(n,ri)

1/Var(r1)Yar(r1)

Hence, the next theorem tells the important connection of a partial correlation to

the inverse of a covariance matrix A : E-l which is also known as prec'ision matrir.

銑
　

物
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Theorem 1 (Partial Correlation and Precision Matrix (Lauritzen, 1996)). A partial

correlatr,on between ri {rnd ri gr,uen rema'ini,ng d - 2 uariables nyt,iy relates to each

entry of a preci,sion matrir lt bg

К
…

臨が一流 ・ (1・
1)

Fbom this result, we can interpret the precision matrix A as an unnormalized ver-

sion of the partial correlation analogous to the relationship between the covariance

and the correlation.

In the remainder of the dissertation, we call a covariance matrix X and an

precision matrix l\ as second order stati,stics since both of them are defined on

the second order moment of the probability distribution.

L.3.2 Gaussian Distribution

In data analysis, we often convert observed data into some kind of probability dis-

tributions. This allows us to use powerful methods to analyze data more intensively.

Here, we assume the mean and the covariance of al is known as p - IE[r] and I
respectively, which is quite realistic as we see later. The question is what is the

most appropriate probability distribution we can use for the data analysis under

this situation. One answer to this question is to pick up the distribution with the

highest uncertainty, which is also known as the marimum entropE pri'nci,ple. This

result suggests that a Gaussian distribution is an useful representation of data when

the statistics up to second order moments are known.

Theorem 2 (Maximum Entropy Principle (Jaynes, 1957)). Gi,uen nlean p, and

couariance matrir E, a probabi,li,tg distri,bution p(n) that mari,mize the followi,ng

entropE

″(p)=

is a Guassi,an di,stri,bution giuen by

―ル→範ズ→れ

ヽ

ｌ

′

ノ
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(2n)o det X
P(■)=人【μ,Σ)≡
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The remaining step is to derive the mean p, and the covariance X from the

dataset. Mari,mum likelihood est'imat'ion is the well-known approach for this prob-

lem. We suppose n data points D : {n,}f:r ile i.i.d. samples from a Gaussian

distribution N(p,E) with unknown parameters p and X. The log-likelihood func-

tion on the dataset D is then given by

( N 1 / t. .r- ,. .\lIogp(D;p,E):Io8tilre""o(}{*"-,,)'x_'(*n-p))}
/)

rI A/ Nd
= -iDt*, - tL)'D-'(*n - il - ;logdet D - ;tog2tr.- n:L

We find parameters fr and i thut maximize this log-likelihood, which are parame-

ters that best fit to the data. First, by setting the derivative over pl equal to zero,

we derive

ル=lEE"π・
π=1

ヽヽ4e then Optilnize the 10g― likehhood over Σ and derive

(1.動

^ 1At : ; \t*" - ii@" - f')'. (1 3)
TI:.L

These two results are the maximum likelihood estimators of the mean and the

covariance matrix in a Gaussian distribution, which is also known as an empirical

or sample mean and covariance, respectively.

Similarly, we can conduct the maximum likelihood estimation of a precision

matrix A from a Gaussian distribution N(p,A-l). Here, the covariance matrix of

the distribution is replaced with an inverse of A since A : E-r from its definition.

Again, writing down the log-likelihood function and maximizing it, we derive the

maximum likelihood estimators as (1.2) and

A=2-1 (1.4)

1.3.3 Gaussian Expression of Multiple Datasets

In the previous section, we considered how to approximate a single dataset with a

Gaussian distribution. Here, we extend it to a multiple datasets situation. This
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extension naturally arises in several studies. For instance, in multitask learn-

ing (Caruana, L997; Turlach et al., 2005), we face a problem of jointly solving

multiple tasks where each task has its own distribution. In other example, we

need to deal with datasets sampled from different time stamps for a source sepa-

ration (Matsuoka, Ohoya, & Kawamoto, 1995; Kawamoto, Matsuoka, & Ohnishi,

1998; Pham & Cardoso, 2001; Hyvarinen,2002; Parra & Sajda, 2003) or for a

change point detection (Basseville & Nikiforov, 1993; Siegmund & Venkatraman,

1995; Kohlmorgen, Lemm, Miiller, Liehr, & Pawelzik, 1999).

Suppose there are K datasets each consists of i.i.d. data points sampled from

a Gaussian distribution Al(px,Er) for k : I,2,...,K. If we know each dataset

have no relations to each other, then we can use an ordinal maximum likelihood

estimation for each dataset individually and derive its first and second order statis-

tics as (1.2), (1.3), and (1.4). This is the most simple and naive situation and no

special consideration is needed. However, in several real world applications, we

know that there exists some kinds of relations among datasets a priori. In such

cases) cooperating with user's prior knowledge helps us to improve the data anal-

ysis performance. The important point is how to import such knowledge into the

naive formulation and improve it. This is the main point across this dissertation

and details are described in remaining chapters.

Amongst several applications, one important example of a multiple Gaussian

expression is the representation of a time series data. Formally, a time series data

is a sequence of data points indexed by a time stamp t and is expressed as 2 :

{*(t)}L' Unlike i.i.d. samples, the distribution of a data point c(t) usually have

some dependencies on the past data n(1),n(2),...,n(t - t). Another difference

is that a time series data can even be non-stationary: the distribution of data

itself may change over time. This prohibits us from modeling data as a simple

Gaussian distribution. A simple alternative to this problem is to represent a time

series as a set of Gaussian distributions. First, we partition a given time series into

a set of epochs D : {Du}f:r, Dr : {n(t)}tero. Here, Tn is a set of consecutive

indices and Uf:tT* : {1, 2,...,7}. We then approximate each epoch Dp with

a Gaussian distribution N(p,p,Dp). This corresponds to capturing the dynamics

of data as a set of local static distributions. The remaining problem is how to
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derive distribution parameters pn and X,, from each epoch. In time series data,

an ordinary maximum likelihood estimation on i.i.d. samples are no longer useful

because of its time dependency structure. However, we can use time average as

its alternative under an ergodicztgr condition. An ergodicity is a condition that a

population statistic and a time average of a time series meets:

for a given function /2. See Hamilton (1994) for further detail. In the current case,

a function / is chosen to produce the mean and the covariance. Practically, we only

have finite number of samples and therefore lve replace the right hand side with

their average:

^1S-\itx: o, L*ft),I'Kt teTl

"1tk: ;\f,{t) - td@(t) - p)'.
I'Kl teTr

Using this technique, we can treat a time series data as a set of Gaussian distribu-

tions.

I.4 Principal Component Analysis

In this and the next section, we present two most basic models regarding the

second order statistics. We first introduce a Principal Component Analysis, or

PCA (Jolliffe, 1986) in this section.

Before we present the detail of PCA, we assume that the data is centered, that

is, a random variable o € IR.d has a zero vector 04 as its mean. Note that we can

always transform data to follow this assumption by subtracting sample mean (1.2)

from each data point. Therefore, the following discussion can be naturally extended

to non-zero mean situations, although we adopt this assumption for simplicity. It
also allows us to focus on the role of the second order statistics which is the central

target of our analysis in this dissertation.

“∫
Ｔ
〒
ん
同

１

一Ｔ‐ｉｍ』
〓”ご”ｐ”∫

√

ノ

2We assume that the right hand side of this condition exists.



1.4.l PCA

In the PCA model, or more generally in a linear source lllixing model, an ioi.d.

Obserntion"η is modeled as a linear superposition of a m― dimensional(m<α
)

latent variable sη :

frn: Asn, (1.5)

with some matrix ,4 € lRdx-. It corresponds to assuming that all data points D :

{*"}X:, are not fully distributed in IR.d but lie in some low-dimensional subspace in

R.d. The objective of PCA is to recover these unknown parameters A and {""}#:t
from the data D. We note that there is a linear transformation invariance in this

model that the replacement A -+ A: AR-r and s,, J 3", - Rsn with an arbitrary

non-singular matrix R € IR-x- produces the same model as (1.5). Therefore, we

can restrict ourselves to the orthonormal case Ar A:1- without loss of generality

where 1- denotes an rn x rn identity matrix. This corresponds to limiting ,R to

control only the rotation of a coordinate but not the scaling of s,,. Hence, we have

an equation

rn : AAT n''

from the model (1.5).

In the above equation, we no longer need to consider the latent variable s,,

and can focus only on finding a matrix A that satisfies this condition. Note that

however, in practice, data does not follow the model (1.5) exactly, and the above

equation holds only approximately. We therefore find a matrix A that minimizes

the discrepancy between the left and the right hand side of the above equation. To

that end, we adopt the following square metric:

井葛
牌―鴻 用 =井±0州到が剣り,

π=1

(1.6)

(1.つ

where we used the orthonormality of A f.or the equality. Since the first term is

independent of A, the resulting optimization problem is summarized as follows:

max
ATA=Im 井左

牌Lれだ=ス
‰

廿卜
丁発

」,
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where i ir th" sample covariance matrix given in (1.3).

The solution to the problem (1.7) can be derived using a method of Lagrange

multipliers. We rewrite the problem using a Lagrange multiplier f e lRrnxm as

maxm_in t la'i,ql- tr lr(at A - I^\1A r L I L . "'rl

By setting the derivative over A equal to zero, we obtain

Σスース
「

=0ご×π.

Recall that、ve can al恥 ′ays transformス into“4R~1、vith an arbitrary rOtation matrix

R,、ve rewrite this equation as

i,q, - AR-t fR : od,^.

Hence, for any l, we can always choose a matrix -R so that R-rl R is a diagonal

matrix. Here, we define,R-lf.R: diag(71, 12,...,1*) and, O: lor,a2t...,o^f.
The above equation can then be decomposed into m eigenvalue problems:

Da,6:1iai (i,: L,2,. . .,m).

Moreover,iom the orthonormality of αじ,we have%=α「Ёαづand the problem

reduces tO flnding γl,0/2,・ …, mヽ that lnaxilnizes the f0110、アing objective functiOn:

tr卜礎」=Σ %,
t=1

while keeping the OrthOnormality ofン 4.Obviously,the top ηl eigenvalues and their

corresponding eigenvalues are the s01utiOns of γl,0/2,・ …, mヽ and αl,α 2,・ …,αm,

respectively.Once the matrixス is estillnated vrith the abOve procedure, v7e Can

recover latent variables as

s': Arfrn'

which follows from the model (1.5) using the orthonormality of A.

This result indicates that leading eigenvalues and eigenvectors of the sample co-

variance matrix are essential for approximating data points with a low-dimensional

expression (1 5). We note that (1.5) is a general model and we can construct
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some different models other than PCA. The fundamental differences are the objec-

tive function (1.6). For instance, if we introduce a maximum correlation criteria,

we derive a Canonical Correlation Analysis (Mardia, Kent, & Bibby, 1979), while

introducing an independence criteria leads to an Independent Component Anal-

ysis (Hyvdrinen et al., 2001). An extension of PCA into a supervised learning

literature produces the idea of a Linear Discriminant Analysis (Fisher, 1936; Fuku-

naga, 1990). In Chapter 2, we introduce a stationarity criteria and derive Stationary

Subspace Analysis (SSA) and an algorithm that finds an invariance in the second

order statistics.

L.4.2 PCA as Matrix Approximation

In the previous section, we derived a solution of PCA from a minimum projection

length criteria (1.6). Here, we derive the PCA solution from a matrix approximation

point of view. The objective of a matrix approximation is to derive a matrix

5 6 pdxd that best describes the nature of i from some set of matrices S. A set S

can be usually a set of low-rank matrices (Srebro, Rennie, & Jaakkola, 2005) or a set

of sparse matrices (Zoq Hastie, & Tibshirani, 2006) depending on the application.

Here, we let ,S be a set of rank m matrices defined as S : {^9 e Rd*d; rank(S) - m}.

We then find a matrix ^9 that is closest to i:

lr ^ 12

F.,3 llD - sll,

where ll*ll" denotes a Frobenius norm3 of a matrix.

To solve the minimization problem above, we derive

objective function (1 8) To begin with, we rewrite the

following equivalent form:

=Σ Qφソー2 tr卜司十Σの6)2,
二=1                    づ=1

(1.鋤

the lower bound of the

Flobenius norm into the
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Σじ,′ スみ・3A Frobenius norm of a matrix ,4. is given bV llllle :
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where or(i) and oi(S) denote the zth eigenvalues of i and S, respectively. Now,

we can apply the von Neumann's trace theorem (Horn & Johnson, 1990) to the

second term and derive the lower bound as

牌―《≧ΣQ¢ )2

t=1

ご

Σ(Cφ )

二=1

α                  ご

-2Σ Qφ》j幅)十 Σの6)2
づ=1

_。。 )2

Note that the equality holds when the eigenvectors of X and S are the same. Since

the rank of ,S is limited to m, we have to find the m non-zero eigenvalues of S that

minimizes this lower bound. It is obvious that choosing the top m eigenvalues and

setting remaining d - m values to be zeros minimizes the bound, which is the same

result as PCA derived in the previous section.

Flom this rank restricted matrix approximation problem, we find that leading

eigenvalues and eigenvectors are essential to approximate the matrix. Note that

the above discussion holds not only for a sample covariance but for general square

matricesa.

1.5 Graphical Gaussian Model

In the previous section, we observed that the larger eigenvalues of the sample covari-

ance matrix play an important role in PCA. Here, we introduce another important

model based on the second order statistics, a Graphical Gaussian Model (GGM).

A graphical model (Lauritzen, 1996) represents a dependency structure among

multiple random variables. There are two types of it, a directed model and an

undirected one. GGM belongs to one specific case of the latter one, a pairwise

undirected graphical model. Therefore, we briefly introduce a pairwise undirected

graphical model first and GGM in the next.

alt can also be generalized to rectangular matrices using a singular value decomposition.
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1.5.1 Pairwise Undirected Graphical Model

Undirected graphical model, which is also known as a Markov random field, rep-

resents conditional dependency structure among random variables using a graph.

Here, we focus on one specific case, a pairwise undirected graphical model. In the

pairwise undirected graphical model, a graph is composed of nodes corresponding

to each random variable ra arrd a set of edges -E spanning between random vari-

ables. Using this edge set, a distribution of a random variable z € IRd is modeled

as a product of non-negative potential functions fo(ru) and $ii(ri,r):

P(") Π仇幌)Π 仇ルぉπJ),
づ=1     (0,′ )∈E

島 れ ,J=訥
Π′=lφグ(χダ)Πにノ)∈ E φα′′′(″グ,″′′)

１

一Ｚ
≡

χφ

ご

Π

Ｈ

同

√

ノ

(1・助

where Z is a normalization constant defined as

Z≡ Πφり0ぁχ′)α“
・

(t,′ )∈E

This model is called pairwise since it is defined on each pair of variables and no

higher order effects exist. Here, we assume that a pairwise potential d;i@t,ri)
cannot be expressed as the product of two unary functions. If this is not the

case, we can include such unary functions into $6(11) and Q1(zi) and remove the

corresponding index pairs from .E without loss of generality. We also note that a

constant function dti(ri,ri) : c with some constant c is the special case of the

above discussion, so that the valid pairwise potential function is a non-constant,

non-decomposable one.

The model (1.9) implies that we can express the conditional distributior ov€r 116

and ri given remaining d - 2 variables c\{l,i} fixed as

∫Πチ=lφづ′(″ダ)ΠにJ′ )∈ E φt′′′("グ ,″′′)απじαZ′

f n(rlnyr,1t) f i@il*r$,i)gni(rt, r j)
I flr,lnw,i) f i@il*vn,i)gni(ri, ri) dr6dri'
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where

d

fn(rlnyr,1) : 6r(r) n On,, (ri, ri),
j'+i

d

f i @ ilnyll) : Q i @ ) fI6u i @t,, r j),
i'+i

7ti(ri, ri) :

rf (i, j) e E, we can further transform the expression into

p(rr,r jlrttr,il) _ fn(rtl\u,it) 7t@1lnp,i)

Ｅ

　

Ｅ

π″
φ

　

ｌ

ｒ

ｉ

く

ｉ

ｔ

1t (i, j) €

tf (i, j) 4

I fn("ul*rtr,iy) drn I f i@ilry,i,1) dri
: p (r il.r\{i1})p(r j I 

ttt,,i} ),

where the last equality follows from the model (1.9) and the definition of a condi-

tional distribution. This result is exactly the definition of a conditional indepen-

dence, and is one specific example of Hammersley-Clifford theorem (Clifford, 1990).

It suggests that as long as potential functions d1(ri,ri) arc not constants nor de-

composable, pairs of random variables indicated by an edge set E coincides with

a set of conditionally dependent variables pairs. Or alternatively, we can say that

the absence of an edge between two random variables implies these variables are

conditionally independent. Because of this property, a pairwise undirected model

is a useful tool to model the pairwise conditional independence between random

variables. As we mentioned before, GGM is one of the most well known example

of this model. Note that Ising model (Lauritzen, 1996), a well known distribution

on binary variables, also belongs to this class.

Two extreme cases of the model (1.9) are the fully connected graph and the fully

disjoint graph. The former one is the case when all variables are dependent to each

other while the latter one is the case when all variables are mutually independent.

Most models belong to the intermediate of these two cases that have some condi-

tionally dependent variable pairs connected by edges while some edges are absent

expressing corresponding variable pairs are conditionally independent.
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L.5.2 Graphical Gaussian Model and Precision Matrix

GGM is one specific example of a pairwise undirected graphical model where the

marginal distribution of a variable c is given by a Gaussian distribution. Again, as

the previous section, we assume that data points are centered and the distribution is

expressed as,A/(Oa, A-t). Here, we used a precision matrix A instead of a covariance

matrix X since A plays the central role in GGM. FYom the definition of a Gaussian

distribution, we can write the probability distribution as

p(n):

=7霧慕垂
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From this formulation, we find the potential functions in GGM are given by

6i@r) - exp (-lutt,o?\,
\2/

/\
Qti(ri, ri) : exP ( -Ai3z rri | .

\./
Recall the discussion on a general pairwise undirected graphical model, we know

that if 6q(ri,ri) is a constant function, then r; and ri are conditionally indepen-

dent. Fhom the above function, it happens only when lvrj 0. Therefore, we can

conclude that the conditional independence in GGM and the precision matrix entry

have the following correspondence:

raJLri Itt{,,;} <+ Anr:6.

where lI denotes statistical independence. Reflecting back this result into the basic

nature of a pairwise undirected graphical model, we find that the edge pattern of

the GGM corresponds to the zero pattern in the precision matrix since the absence

of edges implies conditional independence. See Figure 1.1 for an example.

In precision matrix, as like the case of PCA, leading eigenvalues and eigenvec-

tors are essential to approximate the matrix. Since a precision matrix A relates to

a covariance matrix E through an inverse A : X-1, leading eigenvalues of A cor-

responds to minor eigenvalues of X. In this sense, discarded components in PCA
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Figure 1.1: An example of GGM. Zero/Non-zero patterns in a precision matrix A
corresponds to the presence/absence of each edge in GGM.

play the central role in a GGM context, which indicates that they have an opposite

nature even though both of them are defined on the second order statistics.

1.5.3 GGM Learning via /1-Regularization

An important problem when dealing a GGM is how to derive the model from the

data where the edge set .E is not known a priori. To construct the model, we have

to find the proper edge set E by examining the conditional independence between

random variables. This problem originates with Dempster (1972) which is referred

as couariance select'ion According to the discussion above, we know the conditional

independence structure of GGM is tightly connected to the entries of the precision

matrix A. Therefore, we can cast the task as estimating A from the dataset. The

most naive way would be to use the maximum likelihood estimator (1.4). Flom

the statistical perspective, this is the most appropriate estimator explaining the

data. However, from the law of large numbers, this estimator is a dense matrix

under a finite number of samples, that is, no matrix entries are exactly equal to

zero with probability one. It implies even if the (e,7)th entry of A is zero in

truth, the maximum likelihood estimation provides a non-zero estimai,rrr fril I 0.

This property is unfavorable for covariance selection since the objective is to find

conditionally independent pairs of variables, or equivalently, zero entries in A.

To overcome the problem, in classical studies, some entries of a precision matrix

are fixed as zeros and the remaining non-zero entries are estimated, where the

zero pattern is optimized in a combinatorial manner. However, this combinatorial

problem is not feasible for high-dimensional data. In recent studies, the use of
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an l1-regularization has been shown to be practical for covariance selection. The

first such study was conducted by Meinshausen and Biihlmann (2006). In their

approach, the solution is obtained by solving the Lasso (Tibshirani, 1996). Here,

let an N x d" matrix * : 
l*, n2 rrJ denote d-dimensional data with ,n/

data points. We also define Xi as the ith column and X1l as the remaining d - 1

columns of. X. For each column, we solve the following Lasso:

号
n:|1為 ―χvθ ll:十 ρ llθ l11, (1.1の

where p > 0 is a regularization parameter and ll0ll1 = Di lOi l. We then set zero pat-

terns of 0 to be the zth column of A. Meinshausen and Biihlmann (2006) have also

showed the asymptotic convergence of their estimator to the true graph structure

under a proper condition. This approach was later reformulated as an (.;regularized

maximum likelihood problem (M. Yuan & Lin, 2007; Banerjee, EI Ghaoui, &

d'Aspremont, 2008):

是鮮
イ(A;Σ )一 ρ llA‖ 1, (1・

11)

l(A; x) : los det A - tt [iA] .

Here, /(A;i) is a log-likelihood of a Gaussian distribution (up to a constant), .S*

is a set of symmetric positive definite matrices S+ - {,4 e Rd"d;A> 0}, and llAllt

is an element-wise (ylorrr_ llAll, = D!,,:rlAlrl. We refer to this problem as Sparse

Inverse Covariance Selection (SICS) following Scheinberg, Ma, and Goldfarb (2010).

The resulting precision matrix of (1.11) has some zero entries owing to the effect of

an additional /1-regularization term. Several efficient optimization techniques are

available for solving this problem. Examples include Glasso (Riedman, Hastie,

& Tibshirani, 2008), PSM (Duchi, Gould, & Koller, 2008), IPM (Li & Toh, 2010),

SINCO (Scheinberg & Rish, 2010), ADMM (X. Yuan, 2009; Scheinberg et al., 2010),

and QUIC (Hsieh, Sustik, Dhillon, & Ravikumar, 2011).

1.6 Summary of Contributions

Below, we briefly summarize the contributions of each chapter:
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Chapter 2: We consider a model called Stationary Subspace Analysis (SSA)

which is a variant model of PCA. The objective of SSA is to find an invariant

pattern across multiple covariance matrices based on a source mixing model.

We build a new algorithm Analytic SSA for this problem, which provides a

solution by solving one generalized eigenvalue problem. This simplicity is ad-

vantageous compared to an existing algorithm which requires solving a gradi-

ent decent based non-convex optimization problem since 1) it requires smalter

computational cost, and 2) a global optimal solution can be derived under a

certain condition while the prior algorithm guarantees only local optimality

of the solution. We also provide theoretical and numerical justifications of

this point.

Chapter 3: In this chapter, we work on convex optimization methods called

Dual Augmented Lagrangian (DAL) and Alternating Direction Method of

Multipliers (ADMM). W" combine the basic idea of these two techniques

and formulate the DAL-ADMM algorithm for learning GGM from the data.

The advantage of the proposed algorithm is its flexibility. Most existing GGM

learning aigorithms assume the simplest problem based on an l1-regularization.

On the other hand, our algorithm can treat wider variety of regularization

terms including well-known group regularizations. This flexibility is essential

for soiving more complicated problems arising in Chapter 4 and 5.

Chapter 4: We consider finding an invariant pattern across multiple GGMs.

We formalize the task as a convex optimization problem using spare regular-

ization techniques, where the proposed formulation can be casted as a gen-

eralization of SICS (1.11) and other existing GGM learning techniques. We

also show the problem can be solved by DAL-ADMM algorithm presented in

Chapter 3 with each updating step requiring only simple analytic operations.

The validity of the proposed method is verified through numerical simulations

and also on an application to an anomaly localization problem.

Chapter 5: This chapter is devoted for extending the model in Chapter 4.

In this chapter, we focus on an anomaly localization problem and considers a
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GGM learning algorithm specialized to this task. One basic finding is that, in

an anomaly localization, row/column-wise changes between two precision ma-

trices are important. We import this idea and formalize the task as a convex

optimization problem. The proposed formulation is a variant of structured

sparsity models and requires specific considerations to construct an algorithm.

We find that some proper transformations of the problem allow us to treat

the problem with DAL-ADMM. Hence, the proposed algorithm requires only

simple analytic updating steps. We verify the advantage of our new formula-

tion over existing techniques on an anomaly localization task through a real

world data simulation.

L.7 Proofs of Theorems

L.7.L Proof of Theorem 1

Let us recall the model for the partial correlation:

xi: ri + tr,Izq1i,31,

Tj : rj + ul *y,.iy,

where 16,ri andu\{;,i} are statistically independent. Here, we define the expecta-

tions of ri and aly1r,71 as

We also denote the expectation of. ri by 4. FYom the independence, we then have
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where

oo : [ @n- za) (zq1i.j] - n\t',j] )p(rr,r\{i,i} ) d,rid,n11r.1y,
J

Bij [ @11,,,t- rtrort) (rrt,,,rt - uy,,il)tp(r\{,,.r}) dcql;,;} .

.l

From the equation, we derive parameters ?o; and u)i ds

tai: B4lAi'

uj: Bi,o,,

where ai is defined accordingly to @4. Hence, we have equations

ri: ri - a,[ B;rr11t,iy,

rj : rj - al a;tny,1y.

We now turn to explicitly writing down the formula of a partial correlation.

From the definition of a partial correlation, we have

PCorr(r;, r1ln1p.,n) : -pe'r r ' 1/Yar(ri)Var(rr)
The numerator can be computed as

Cov(r1, ,i) : Cov(ri - a[ A;1e.\{i,i},ri - al A;'n\{,,i})

- otj aaBULai,

where

on, : I gi - rr)@i -Ti)p@i,ri) d,rid,ri..J
Each component of the denominator can also be given by

Var(ri) : Yat(q - o,[ n;rnr{,;,i})

- o, - o,[ B;ra;,

Var(ri) : oii - a'l A;Lai.

Using these results, we derive the partial correlation as

POorr(z;, rilnyt,ly):
I (oon - a6Bural)(ott - a4B;1a)
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Next, we compute the right hand side of (1.1). From the definition of a covariance

matrix D, it can be represented as

l"o, ai 
",1t: lo,a 01 oijl,

l"i oji ojj)
where we rotated rows and columns simultaneously so that the original eth and jth
rows/columns to be the last two rows/columns. Flom this expression, we first have

A″ = (Σ
~1)。

′
= (σ″ 一

ヽ
～
b also have

颯瑚√しや司

σリーα「β層
1%

(σぅo一 α「B510,)(%′ ―α」B71α′)一 (σ″一α「B層
lα
′)2・

一＼

ｌ

‐

′

ノ

％
　
％

一

Ｑ
　
％

ら
げ

σ
Ｔ

ｃ
ａ

一ヽ

ｌ

‐

′

／

し
』
れ

が

守

ら
げ

％
(σtt― α「B510づ )(%′ ―α「 3辱

1%)一
(σo′ ―α「B層

10ブ

)2'

σれ一α「B「
lαぅ

A′′ = (Σ
~1)′

′ =
(σれ―α『B71 αo)(%′ ―α」B牙

1%)一
けリーα「馬

10D

Since the above three values have a common denominator, they cancels out and

lvl _ ou-a.iBiro,i
t-i---T- tt/Lut\ii 1f @,n - aiB;La,;)(ot, - o4B;ra)

holds, which is equal to the partial correlation.

L.7.2 Proof of Theorern 2

The distribution p(z) has to satisfy the following three conditions:

f1- lp(n)dr,
J
fp: | ry@)dn,

.l
f

x - I @ - p)(n - p,)rp(r)dn.
J

□
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Using a method of Lagrange multipliers with u, u arrd W , we have the problem as

f lr \
^f' :ily - J n@)rosp(r) dn t u (/ rtc) ar - t 

)
." (l np@)o* -,) +r,lw, (l "- 

rt)(r- *t)-p(n)d, - x)l
/)

From the variational method, the optimal p(c) is given by

p(r): exp{-r l-u-turr*(r- tD'w(*- p)).

Substituting this result into the above three conditions, we derive the result. n
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Chapter 2

Finding Stationary Sources with a
Gene r alized Eigenvalue Problem

2.I Introduction

In Section 1.4, we derived PCA from the linear mixing model (1.5). In the PCA

model, all data points in the dataset are assumed to be independent and identically

distributed. The main point of this chapter is to extend the idea of the linear mixing

model into a multiple datasets situation where the distributions in each dataset

may no longer be identical to each other. The objective is to find an invariance in

the second order statistics across datasets based on the source mixing model. In

particular, we focus on a time series data where the multiple datasets expression

in Section 1.3.3 captures the non-stationarity nature of the observation. However,

note that the i.i.d. assumption is involved as the specific case of a time dependency,

and thus the discussions in this chapter are naturally applicable to the ordinal

multiple datasets setting where each dataset is composed of i.i.d. observations.

The basic model we consider in this chapter is a mixture of stationary and non-

stationary sources that are not directly accessible. It is a plausible model when the

structure of the data generating system is less understood: there may exist sev-

eral latent factors affecting the observation, as in stock market analysis (Engle &

Granger, 1987) for instance. Some of these latent factors may be stationary while

others are non-stationary. The existence of stationary sources is not discernible

from the mixed signals since a single non-stationary source can render all variables

of a multivariate time series non-stationary and thus mask the presence of time-

invariant behavior. Conversely, non-stationary components with low signal power
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can remain hidden among strong stationary sources. It is therefOre important to

discern the stationary and the non― stationary group of compOnents in the lnixed

signals.HOwever,standard Blind Source Separation(BSS)Inethods(HyVttinen

et al.,2001;Lee&Seung,2001;Ziehe,Laskov,Nolte,&Miller,2004)are nOt

helpfulin this respect since BSS algorithms such as lndependent Component Anal―

ySiS(ICA)(Hyvttrinen et al。 ,2001)separate sources by independence but not by

stationarity or nOn― stationarity ln particular,the stationary and non― stationary

sources need not be independent.

To that end,the Stationary Subspace Analysis(SSA)paradigm(VOn Binau et

al.,2009a)has been proposed.In the SSA model,the observed time series π
(ι )iS

generated as a linear lnixture of statiOnary sources sS(ι )and non― stationary sources

Sn(ι )With a time―constallt m破ing matr破 ス
,

π
(ι )=

and the aim is to recover these two groups of underlying sources given only samples

from c(t). The separation of stationary and non-stationary sources is useful in

many circumstances. First of all, SSA can uncover stationary components in seem-

ingly non-stationary time series. Moreover, SSA allows to study the stationary

and the non-stationary part independently. For instance, in change-point detec-

tion (Basseville & Nikiforov, 1993; Siegmund & Venkatraman, 1995; Kohlmorgen

et al., 1999), contributions from the stationary sources are not informative and can

be removed to reduce the number of dimensions (Blythe, von Biinau, Meinecke, &
Miiller, 2012). Conversely, one may be interested in the estimated stationary sig-

nals that reflect constant relationships between variables (Engle & Granger, Lg87;

Meinecke, von Biinau, Kawanabe, & Miiller, 2009). Moreover, if the channels of

the time series n(t) are spatially distributed, the estimated mixing matrix A 
"un

be visualized to reveal the characteristic patterns of stationary and non-stationary

contributions, as in EEG analysis (Dornhege et al., 2007; von Biinau, Meinecke,

Scholler, & Miiller, 2010) for instance.

In this paper, we propose a novel SSA algorithm, Analytic SSA (ASSA), where

the solution is obtained by solving a generalized eigenvalue problem. The solution

ぴ
　
♂

４
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to ASSA is guaranteed to be optimal under the assumption that the covariance

between stationary and non-stationary sources is time-constant. Thanks to the

analytic form, the algorithm requires a much lower computational cost than the

state-of-the-art method KL-SSA (von Biinau et al., 2009a), does not require the

selection of algorithmic parameters such as step size and convergence criterion,

and is numerically stable. Moreover, ASSA finds a sequence of projections, or-

dered by their degree of stationarity, and therefore does not need to repeat the

procedure for different numbers of stationary sources. In our simulations on syn-

thetic data, we demonstrate that ASSA outperforms KL-SSA and ICA over a wide

range of settings) even when the covariance between stationary and non-stationary

sources changes over time. Moreover, we apply ASSA to geomagnetic data, namely

Pi2 pulsation time series (Yumoto & the CPMN Group, 2001; Tokunaga, Kohta,

Yoshikawa, Uozumi, & Yumoto,2007), which are highly non-stationary and known

to involve several sources corresponding to the geophysical mechanisms. In this

case, the independence assumption of ICA is not suitable to recover the sources

of interest. ASSA successfully decomposes the signals into meaningful global and

local modes, which is in agreement with geophysical theory, and more plausible

than the decomposition obtained by ICA (Tokunaga et aL.,2007).

The remainder of this chapter is organized as follows. First of all, we introduce

the SSA model and the state-of-the-art algorithm KL-SSA in Section 2.2. In Sec-

tion 2.3, we derive our novel method ASSA and study its theoretical properties.

The relationship to similar methods is discussed in Section2.4. Section 2.5 contains

extensive numerical simulations to show its validity and a comparison to KL-SSA

and ICA. The application to geophysical data analysis is presented in Section 2.6.

Our conclusion and outlook are summarized in the last Section 2.7.

2.2 Stationary Subspace Analysis

Stationary Subspace Analysis (SSA) models the observed signal n(t) e iRd as a

Iinear superposition of stationary sources s"(t) € R- and non-stationary sources
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Source Mixture_π (t)=、[И

::、

スn]|∫
i[||

Stationary/Non-stationa ry Sou rces

"' 
(4 hltl4 lfl+i{if!,ilt'ilfrtfttilnii

"" rtr 
;lill,,,tr,[4, 

llittrttilhtltl'l tl

|∫ |:||=                 n

ObseⅣed Signals

呻 卜ヽ‖世¬ ‖帥‖‖r¨

“
(t)

暉仕叫ゴ llll ⅢⅢ中‖

Figure 2.1: An illustrative example of SSA with one-dimensional stationary and

non-stationary sources.

s"(t) € Rd-- (von Biinau et al., 2009a):

n(t) : A": lA= ,.1 f ""!'ll ,L rls,,(t)l ' Q'I)

where A is a time-constant invertible mixing matrix. We refer to the span of

4s 6 pdxm and A a pdx(d-rn) as the stationary and the non-stationary subspace,

respectively. The aim of SSA is to factorize the observed time series z(f) into

stationary and non-stationary sources. That is, SSA estimates the inverse mixing

matrix A-1 as B: lg"r B"lt such that 3"(r) : B'n(t) and s"(t) : B'n(t)
LI

are the estimated stationary and non-stationary sources, respectively. We refer to

the matrix 3s 6 prnxd and B" E p(d-m)xd as the stationary and the non-stationary

projection, respectively. See Figure 2.L for an example.

The demixing matrix B is not unique, because the factorizatton into a group of

stationary and a group of non-stationary sources is not unique (von Biinau et al.,

2009a; von Biinau, Meinecke, Kir6ly, & Miiller, 2009b). First of all, any linear trans-

formation within the two groups of sources yields another valid demixing. Secondly,

adding stationary components to the estimated non-stationary sources leaves their

non-stationary nature intact, whereas the converse is not true. This means that we

cannot identify the true non-stationary sources s"(t) from the mixing. Formally, if
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we apply the demixing to the mixed sources,

=BAS(ι )= (2.幼

we see that by the preceding argument, a solution to the SSA problem is fully

characterized by the condition B"A" : )mx(d-m1, that is, a stationary projection B"

must eliminate all non-stationary contributions in the estimated stationary sources.

This is equivalent to the condition that the rows of the stationary projection are

orthogonal on the non-stationary subspace,

span(B'r) I span(,A'),

where span(x) denotes the column span of a matrix. In terms of subspaces, this

means that the orthogonal complement of the estimated stationary projection is

equal to the true non-stationary subspace. Thus we conclude that we can iden-

tify the true stationary sources s"(t) (up to the linear transformation B"-4") and,

equivalently, the true non-stationary subspace. On the other hand, the recov-

ered sources .3"(t) are kept non-stationary for several different values of B"A' and

therefore the true non-stationary sources and the true stationary subspace are not

identifiable (von Biinau et al., 2009a, 2009b).

Note that the SSA model (2.1) itself does not specify a notion of stationarity.

Both the KL-SSA algorithm (von Biinau et al., 2009a) and our novel ASSA algo-

rithm are based on the so-called weak stationarity (Hamilton , 1994). A possible

extension would be to take time structure into account, for instance, the delayed

covariance or the autocorrelation (Hamilton, 1994). The notion of stationarity is

usually determined by the application domain and numerical considerations.

2.2.L The KL-SSA Algorithm

The first SSA algorithm (von Biinau et al., 2009a), that we will refer to as KL-SSAI,

is based on the notion of weak stationarity (Hamilton, 1994) without time structure.

1KL stands for the Kullback-Leibler divergence (Kullback & Leibler, 1951), which is used to

measure the stationarity of the estimated sources by comparing epoch distributions.
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That is, a time series z(t) is considered stationary if its mean and covariance remain

constant over time, or equivalently

n [u(t)] : E [z(, 1 ')J ,

Elu(t)u(t)t] : E[u(r + r)u(t +')t] ,

for all f, r € IR.

To apply this criterion in practice, we first divide a time series into K epochs as

we discussed in Section 1.3.3. Here, we let Tr,'n,. . . ,Tx denote consecutive index

sets. We then consider the time series u(t) to be stationary if the corresponding

epoch means Lrt, ILz,. . . , Fx and covariance matrices X1, Ez,. . . ,Ex are identical,

that is,

Fk : ltr*, and E7, : Ek,.,

for all pairs of epochs k,k' :1,2,...,K. Now this formulation involves O(K')
equality conditions between epochs, which we can reduce to O(K) by using the

equivalent condition that each epoch's mean and covariance matrix is equal to the

average,

pn:lt and Xs:E (k:I,2,...,K), (2.3)

where p and E are the average epoch mean and covariance matrix, respectively:

1K1K
'srr. i- t Fr,t": Kkrr. .: Kk"r.

Let us now turn to the algorithm which finds the stationary projection accord-

ing to this definition. We have observed samples from the time series n(t) : As(t)

which we have divided into K epochs along the time index. The choice of epochs

Ti,T;,. . . ,Tx (for instance, non-overlapping consecutive blocks or sliding window)

is a model parameter that is selected by the user according to the specific appli-

cation. For example, the epoch length determines the time-scale on which non-

stationarities can be detected or it may be desirable to align the epochs to an

experimental paradigm. The number of epochs K needs to be large enough in or-

der to avoid spurious solutions. See Section 2.2.2 for lower bound that guarantees

this.
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The aim of KL-SSA is to find the stationary projection B" such that the es-

timated stationary sources s"(t) : B"n(t) are weakly stationary according to the

condition (2 3) Since the first two moments of the estimated stationary sources

.i"(t) can be written as the projected moments of the input u (t), this means that

we aim to find B" such that

3Sμ
た =3Stt and BSΣ た3S丁 =3sΣ 3S丁

, (2.o

for all epochsた =1,2,_.,」κ.In order to■ nd this projection 3S,KL― SSA aims

to lninilnize the distance betlveen each epoch mean and covariance matrix and

their respective averages. This distance is lneasured using the Kullbaよ ―Leibler

divergence DKL(Kullback&Leibler,1951)betWeen Gaussian distributions2.sinCe

stationary sources can only be deterIIlined up to a linear transformation, 恥re can

require that B嘔3S丁 =I″ι without loss Of generality This constraillt determines

the scaling,avoids degenerate solutiOns,and reduces the number of parameters in

the Optimization problem.The KL― SSA optimization problem(Ⅵ )n Binau et al.,

2009a)iS

伊盟 ×a井
き 'KLⅣ

(3Sμゎ3SΣた3ST)IⅣ (3Sπ,3S'3S丁 月

=B辮
×d券

左
{旧

Sけ
た一司 喝 ―bgぬ け

SΣ
た3つ },

s.t.3電BS丁 =fm・

(2.5)

This optimization problem is non-convex and a local solution is found using a

gradient-based method (Avriel, 2003; Amari, 1998; Plumbley, 2005). See Miiller,

von Biinau, Meinecke, Kir6ly, and Miiller (2011) for an implementation.

Note that the population statistics in (2.5) are replaced with sample estimators

such as (1.2) and (1.3) in practice. In this context, advanced techniques such as

exponentially weighted moving average (Roberts, 1959; Montgomery, 2007) would

be helpful to obtain more accurate estimates, while we use naive estimators for

the simulation in Section 2.5 because we are primarily interested in comparing the

performance of SSA algorithms.
2According to Theorem 2, this is the least restrictive distributional assumption.
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2.2.2 Spurious Stationarity in the KL-SSA Algorithm

The feasibility of SSA depends on the number of non-stationary sources d * m and

the number of epochs K. If the number of epochs with a distinct distribution of the

non-stationary sources is too small, there exist directions in the non-stationary sub-

space on which the projected moments match - these are called spurious stati,onary

projecti,ons. See Figure 2.2 f.or an example. The existence of spurious stationary

projections renders the solution to SSA unidentifiable. The following theorem (von

Biinau et al., 2009b) provides us how many distinct epochs are necessary, in order

to guarantee that there are no spurious stationary projections in the generic case.

Theorem 3 (Spurious Stationarity in KL-SSA). For the KL-SSA algorithm, g,iuen

a d-dimensi,onal si,gnal wi,th m stat'ionary sources, the number of distinct epochs K
required to auoi,d the eristence of spurious stat'ionary project'ions 'is

κ >α
~鶴

+2. (2.o

In the speci,al case when the mean is known to be constant for all epochs, this becomes

κ >α ―鶴 +1. ●・つ

Note that in practice, having more epochs of sufficient length is always desirable,

as we will see in the results of the simulations in Section 2.5. Unless the number

of samples in each epoch becomes too small, additional epochs provide more infor-

mation about the variation in the non-stationary subspace which makes it easier to

identify.

2.3 Analytic SSA

The KL-SSA optimization problem (2.5) is not convex and a local minimum is

found by a gradient-based search procedure. Therefore the solution depends on

the choice of initial values and algorithmic parameters. Moreover, our stability

analysis in Section 2.8.1.3 reveals that the objective function is very flat in the

neighborhood of the global solution. This leads to a slow convergence and adds to

the computational cost, which is magnified by the need to repeat the optimization to
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B"l
Y

It

(a) K:2 (b) K:3

Figure 2.2: Illustrative example of spurious stationarity in d : 2. (a) Given two

Gaussians with equal means (two ellipsoids), there may exist more than one projec-

tion direction on which projected distributions are equal. (b) For three Gaussians

(three ellipsoids), this is no longer the case.

avoid local minima. In a fixed-point formulation in Section2.8.I.2, KL-SSA requires

O(r Km(m' + ^d + d')) operations to solve (2.5) where r is a number of iterations.

This computational complexity limits the algorithm's practical utility on large and

high-dimensional dataset. In particular, since KL-SSA requires to prespecify the

number of stationary sources m, so that it needs to be run repeatedly in order to

explore the results for a range of values.

In order to overcome these limitations, we propose a novel SSA algorithm called

Analytic SSA (ASSA). Based on an approximate upper bound of the KL-SSA ob-

jective function (2.5), it is formulated as a generalized eigenvalue problem, which

can be solved efficiently. As such, ASSA does not require any initializations nor

algorithmic parameters. In particular, we can show that the solution is optimal

when stationary and non-stationary sources have time-constant group-wise covari-

ance. Even when this is not the case, our numerical simulations show that ASSA

yields very good results (see Section 2.5).

2.3.L Analytic SSA Objective trbnction

The ASSA objective function is based on the following approximate upper bound

of the log-term in the KL-SSA objective function (2.5).
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Theorem 4 (Approximate Upper Bound of KL-SSA).3 Let /(B') denote the un-

constra'ined log-term i,n the KL-SSA object'iue functi,on (2.5),

' 
K. 

,^_ det(B'x*B'r)
f (8") : ;i r=Dr- 

log IlJA3a- 
,

and B"* 'is one of the true stati,onary projections that satisfi,es (2.1 and the ad-

dtti,onal constra'int 6s*53sxr - I^. Then the second, ord,er Taylor approrimation

of f (8") in the neighborhood of the solutr.on B"* i,s upper bounded by the function
g(8") defined as

gO⊃ =二
Σ

trレSCに
動 F10た 一 ⊃ 3S司

,

ん=1

zηαcr ιんθ εθηsι%づηι ιんαι βSEBST=Iγγ2.

Using this bound,we formulate the following ASSA objectiК  function by re―

placing the log― term in(2.5),

3奨緊湯×aiケ
|::{‖

正
'S(μ

ん―πJ)‖ る
―卜2 tr[」 BS(Σλ一万)'~1(Σ た一三;)I'ST]}

=BsW× a tr[3SS3S司 ,

s.t.3嘔3S丁 =ム"
、vhere the matrix S is given by

S=lFΣE(μたμI+2ΣたE~lΣた)_戸π丁_22.
た=1

This objective functiOn can be interpreted as the variance of the lnean and covari―

ance across all epochs.The next result ensures the optilnality of Our approach.

Theorem 5(Optimality of ASSA).五 θι Bλ αCηοιC ιんθπづηづ鶴づzerげ ″.り 3λ づS

ιんcη gttα ttηιθθごιθ bθ θPιづmαι,ιんαιづs,span(D「 )=Span(3S*丁 ),υんθη ιんC Cουαrづ―

αηεθ bcιυθθη sιαιづOηαη αηごηθη―stα ;づ Oηα■りsθ %郷θesづsιづ7η c― cοηSιαηι.

(2.8)

0.②

(2.1の

3Note that Theorem 4 and 5 are valid only when true epoch population means and covariances

are available. In practice, we replace those statistics with sample estimators which might Iead to

a biased result. Nonetheless, as we see in Section 2.5, ASSA shows significant improvement of the

resulting errors over KL-SSA.
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Ⅳloreover, it can be shown that the case of tillne― constant covariance betlⅣeen

stationary and non―stationary sources can be reduced to the equivalent SSA model

with grOup-lⅣ ise uncorrelated sOurces. See Lelnlna 2 in Section 2.8.5.2.This result

suggests a canonical choice fOr the estilnated non― stationary projection, 恥Zhich is

not idellti■ able in general(See section 2.2): the nOn_stationary projection 3n is

chosen such that the estimated sources are group― wise uncorrelated,or BttBS丁 =
09_m)× m・ ■Om(2.2),We see that this is equinlent tO the condition

span(B"r) I span(A"). (2.11)

Thus 17e COnClude that if the stationary and non― stationary sources have tilne―

constant covariance,、ve can identify the non_stationary sources sn(ι )in the equiv―

alent grOup―wise uncorrel乱 ed mOdel(up tO the linear transformation 3nスS)and

fi・om(2.11),it f01lows that under this condition,the stationary subspace span(■ S)

can also be identifled.

In Section 2.8.4,恥re provide further discussions about the case、Ⅳhen the tillne―

constant covariance assumption is not fulfllled and ho、 v the optilnality ofthe ASSA

solutiOn is ske、 ved.

2.3.2  ASSA as a Generalized Eigenvalue Problem

The Optimization problem(2.9)is known to be equivalent to the minimization ofthe

generalized Rayleigh quotiellt tr[(・

'SI]BS丁
)~1(I'S6口

3S丁
)]、

ハzhiCh appears in several

other BSS problems(Jolli■ ,1986;Mardia et al.,1979).The S01utiOn is found

emciently by solving the corresponding generalized eigenvalue problem.

The Lagrangian ofthe ASSA prOblem(2.9)is giWn by

£ (3S,「)=tr[3SS3S丁 ]_tr[F(3嘔 3S丁 _ム
の ],

、vhere「 ∈ Rπ×れ is the matrix of Lagrange multipliers. By setting its derivative

equal to zero,、ve obtain the fo1lowing generalized eigenvalue problen■ :

S9=γΣ9.

The sOlution to this problem is a set of generalized eigenvaluesっ t and generalized

eigenvectors 9ゎ {%,9t}た 1・
The generalized eigenvectors are Σ―orthonormal to
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each other,that is,9「

'9′

=l ift=」 and 0 0therwise.This Σ―orthogonality is

equinlent to the uncOrrelatedness amOng recttered sources 6,(ι )=り「π
(ι).Hence,

each generahzed eigenvalue cOrresponds tO the、 アalue Ofthe ASSA Objective function

%=り「 Sりを/9「Σ9t.Let γl≦ γ2≦ …・< γd be the generalized eigenvalues in

projection 31 is then giК n by the mascending order. The estimated stationary

eigenvectors with m smallest eigenvalues,

Dl=レ192-司
T'

and the non-stationary projection Bf, consists of the remainings,

"N: lro sa-r v**r]'

This solution can be interpreted from a deflation point of view (Hyvdrinen et al.,

2001), where the ASSA objective function values (eigenvalues) Z are interpreted as

a non-stationarity score. In the deflation approach, the stationary projections are

determined incrementally. In the first step, we select the direction with minimum

non-stationarity score'/1. The (z + l)-th stationary projection is then found in

the X-orthogonal complement of the previously determined stationary projections

gt, gz, . . . , gt. Thus, in each step, the dimensionality of the input space is deflated

by projecting out the newly found stationary projection g+t. h particular, note

that the ASSA solution is uniquely determined if all eigenvalues 76 are different

whereas the KL-SSA solution is unique only up to linear transformations.

2.3.3  Spurious Stationarity in ASSA

As in KL-SSA, we need a certain number of distinct epochs in order to avoid the

existence of spurious stationary projection, which renders the solution unidentifiable

(see Section 2.2.2). We show that this minimum number of epochs is smaller for

ASSA, which is useful in practice where data tends to be scarce.

Theorem 6 (Spurious Stationarity in ASSA). If the couariance between stat'ionary

and non-stationary sources 'is time-constant, the number of epochs K required to

guarantee that there eri,st no spurious stati,onary projections in d dimenszons wi,th
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m statxonarA sources xs

K>

where u : Df;:trank(Ep -Dl K.

ouer all epochs, thi,s bound becomes

2(d-m*L)
u+ I

In the speci,al case

(2.r2)

where the rnean is constant

*r2(d-m)+7. (2.13)

The requirement of ASSA (2.12) is looser than KL-SSA (2.6) when u 2 3 -
l2l@ - m + 4). Since z is the average number of non-stationary sources with

different variances among epochs, we can assume u = d - rn rrr practice and the

inequality holds. Again, note that this theorem merely indicates the minimum

number of distinct epochs that are necessary to guarantee determinacy. Having

more epochs is always desirable to improve the accuracy of the solution.

2.3.4 Computational Complexity

The ASSA algorithm consists of three steps, 1) estimating the 1{ epoch mean vectors

and covariance matrices, 2) computing the matrix 
^9, 

and 3) solving the generalized

eigenvalue problem. Let l/ be the total number of samples l/ : Df;:rl%|. Then

the first step is in O(Nd2), the second step is in O(Kd3), and we require O(d3) op-

erations to solve the generalized eigenvalue problem, so that the overail complexity

is O(Nd2 + Kds).

The overall computational complexity of KL-SSA, when formulated as a fixed

point algorithm, is of the order O(Nd2 + Kd3 * rKm(m' + ^d + d')) (see Section

2.8.7.2), where r is the number of optimization steps which is expected to be large

(for instance, r > 100) since KL-SSA converges slowly due to its flatness around the

true solution. ASSA is clearly computationally advantageous, which is an important

property for an algorithm that is used in the context of explorative data analysis,

where results need to be obtained quickly and for different settings.

2.3.5 Choosing the Number of Stationary Sources

In practice, the number of stationary sources rn may be unknown and needs to be

chosen from the available data. Whereas the KL-SSA algorithm requires to specify
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the number m) sothat testing every value m:7,2,...,d- Lwould require d- I
independent runs of the algorithm, ASSA finds all possible stationary projections in

a single step, ordered by their stationarity score. We can then treat the evaluation of

each projection in a post-processing stage independently from the source separation.

Since the ASSA objective function (2.9) takes zero for truly stationary sources,

one would expect to see a significant jump of the eigenvalue at some level. However,

in our empirical studies, we have found that small errors in the estimation of the

stationary projections accumulate in the eigenvalues, which make this jump less

pronounced.

Apart from the visual inspection of eigenvalues, there exist a wide range of

different procedures for testing stationarity (Dickey & Fuller, 1979; Priestley &
Rao, 1969) for various types of signals and applications, which is the more suitable

approach in practice.

2.4 Relation to Previous Work

2.4.I Independent Component Analysis

Independent COmponent Analysis(ICA)(Hyvttinen et al.,2001)flnds indepen―

dent sOurces froln a linear lnixture,whereas SSA separates sources by stationarity

or non― stationarity.That is,in the ICA mixing model"(ι )=AS(ι),the SOurces

S(ι)are assumed to be independent whereas the general SSA mOdel(2.1)merely

presupposes that there exists a group of statiOnary and a group of non― stationary

sources,、 vhich lnay have arbitrary dependence structure among and bet、 veen theln―

selves.

In order tO sol■ 7e the ICA problem,three major properties of sources are used

(HyVarinen et al., 2001)whiCh are nOn― Gaussianity(Comon, 1994; Cardoso&

Souloumiac,1993;Hyvarinen,1999),autOCOrrelatiOn(Tong,Liu,Soon,&Huang,

1991;Molgedey&Schuster,1994;Congedo,Gouy― Pailler,&Jutten,2008),and

non―stationarity of the variance(MatsuOka et al.,1995;Ka■7amOtO et al.,1998;

Pham&CardOso,2001;Hyvarinen,2002;Parra&Sttda,2003).The third cri―

terion,the non―stationarity,has sOme resemblance tO the ASSA and the KL―SSA
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approach. However, these algorithms impose independence on the sources and do

not consider changes of the mean. Moreover, for ASSA, we have shown that it is op-

timal in the case of time-constant group-wise covariance, which is a less restrictive

assumption than the pair-wise independence of the ICA model. We further show

the practical distinction of the non-stationarity based ICA to the SSA problem on

the simulated experiment in Section 2.5.

Apart from the differences of underlying models, there are some prior works

close to ASSA in the ICA context. For example, Parra and Sajda (2003) have for-

mulated the non-stationarity based ICA as a generalized eigenvalue problem. They

divide samples into two epochs and diagonalize sample covariance matrices from

each epoch simultaneously by solving a generalized eigenvalue problem. The major

difference of their approach to ASSA is that the generalized version, joint diago-

nalization of K covariance matrices from K epochs (Cardoso & Souloumiac, 1993;

Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997; E. Moreau, 2001; Pham &

Cardoso, 2001; Choi & Cichocki, 2000), cannot be solved by a generalized eigenvalue

problem and requires solving much computationally expensive non-convex optimiza-

tion problems. Here, we point out that ASSA can be interpreted as a modified ver-

sion of the above algorithm to the SSA model. In the ASSA context, non-stationary

independent sources in ICA are replaced with stationary and non-stationary sources

with time-constant group-wise covariance. This difference changes the problem

from the joint diagonalization to the joint block-diagonalization (Flury & Neuen-

schwander,1994; Belouchrani, Amin, & Abed-Meraim, 1997; Theis & Inouye, 2006;

Abed-Meraim & Belouchrani,2004), which results in the ASSA algorithm when all

epoch means are constant. We present the further detail in Section 2.8.3.

2.4.2 Supervised Dimensionality Reduction

The aim of supervised dimensionality reduction, or feature selection, is to find

components that are informative for solving a classification or regression task. A

common approach is to maximize the difference between the distributions of each

class (Blankertz et al., 2008; Blankertz, Tomioka, Lemm, Kawanabe, & Muller,

2007; Fisher, 1936; Fukunaga, 1990) where the most prominent method is Linear
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Discriminant Analysis (LDA) (Fisher, 1936; F\rkunaga, 1990). LDA finds the direc-

tion on which the distance between the class means are maximal under the metric in-

duced by the common covariance matrix. Common Spatial Patterns (CSP) (Koles,

1991; Blankertz et al., 2008, 2007; Grosse-Wentrup & Buss, 2008), a well-known

method in EEG analysis (Dornhege et al., 2007), finds the projections such that

the difference in variance between two classes is maximized.

If we interpret each epoch T;,72,. . . ,Tx of the data z(t) in ASSA as samples

from different classes, finding the most non-stationary components is similar to

maximizing the difference among class distributions as in LDA and CSP. ASSA

can therefore be understood as a generalization of LDA and CSP because it takes

both the mean and the variance into account. In particular, LDA is included as a

special case of ASSA where all epoch covariances are equal.

2.5  Silnulation

2.5.L Dataset Description

In this section, we investigate the performance of the proposed ASSA algorithm and

some existing methods using artificial data generated according to the SSA mixing

model (2.L). In order to evaluate the behavior of the algorithms in a realistic

setting, we use several types of different sources; see Figure 2.3 for an overview.

For the stationary sources, we consider (a) the i.i.d. Gaussian,A/(p", X") and (b) the

ARMA (Autoregressive Moving Average) (Hamilton, 1994) model of order (3,3).

The parameters of these two models are chosen as follows. Each element of the

mean p' and the factors .L" € pdxd o1 the covariance matrix X" : LT L are

sampled from the standard normal distribution,A/(0, f ). The ARMA coefficients

are also randomly drawn from Gaussian distributions, where if the resulting set of

parameters are producing an unstable process, we discard them and regenerate from

the Gaussian till the resulting process gets stable. For the non-stationary sources,

we consider (c) an i.i.d. Gaussian model with 6 to 20 change points Af (pt,I|) with

parameters determined as before, (d) the chaotic Lorenzg5 (Lorenz & Emanuel,

1998) process plus white noise, and (e) nine different kinds of real recordings of
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ilnflt{il,iil1il}ilff{ili1'il||hilfi 
{t{ll'$fi ilil

(a) Gaussian (b) ARMA(3,3) (c) Gaussian (6 - 20

change points)

(d) Lorenz95 * White

Noise

(e) Sound, Music and (f) Constant (6 - 20

Voice (9 kinds) change points)

Figure 2.3: Examples for candidate processes. (a) and (b) are candidates for station-

ary sources and ("), (d) and (e) are candidates for non-stationary sources. When

(e) is chosen, one of nine recordings is assigned randomly. (b), (d) and (f) are

candidates for the time-varying covariance structure (see Section 2.8.2 for further

detail).

environment sounds, musics and voices4. The initial values of the Lorenzg5 process

and the nine real recordings are also selected at random.

We also investigate the effect of time-varying covariance between the stationary

and non-stationary sources. This is the case when the optimality of ASSA is not

guaranteed. For this purpose, we introduce the following model on non-stationary

sources:

s"(t) : s"'(r) + c(t)s"(t), (2.r4)

where s"'(t) are non-stationary sources that are uncorrelated with the stationary

sources s"(r). A time-varying covariance structure between the stationary and

the non-stationary sources is induced by the matrix C(t) e p(d-rn)xrn, which is

parametrized by a correlation parameter c. It bounds the amplitude of canonical

correlations (Mardia et al., 1979) between the two groups of sources and ranges

‐』

‐
抑呻1出山呂 脚 匡

a available here : http: / /research. ics.tkk. fi /ica/demos. shtml
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frOm zero(cOrrelatiOn is constant)to one(COrrelation varies from-l to l).The

details of the data generation can be found in Section 2.8.2.

ヽ
～
ζe set the dilnensiOnality of the Observed signal tO be α = 10, the number

of stationary sources to be η2= 5, and the total number of available samples to

be 5000,恥アhich are divided intO non― overlapping consecutive epochs 71,72,・ ・・,■

where we vary their number κ in the silnulations.

2。 5。2  ]Baseline Methods and Error Measurement

ln this sillllulation,we introduce t、 vO baseline lnethods to contrast、rith ASSA.The

flrst One is the KL― SSA algorithnl,which is implemented as a fixed point algOrithm

(See Section 2.8.1.1).Since KL― SSA inds only local s01utions,we choose the sO―

lutiOn with the smallest objective function value amOng flve restarts with random

initializatiOn5. The SecOnd baseline is a non― stationarity based ICA algorithm dis―

cussed in Section 2.4.1.Here,we doptthe methOd proposed by Pham and Cardoso

(2001)since it lneasures the non― stationarity of sources using epoch covariances,

恥アhich is silnilar tO the approaches by ASSA and KL― SSA.It also su∬ ers frOm local

optilna and、 ve therefore ch00se the best solutiOn among flve randoln restarts as

KL―SSA.ヽ 石ヽe then cOnstruct the stationary projectiOn 3LA in the following manner.

Letレ7=[υ 1 02 ・… υご]T beaα
×α demi対 ng matrix derived by ICA where

each rottz veCtOr corresponds to the source recovering projection gJ(ι )= tυ「
`じ

(ι ).

For each、アectOr lり t,、、アe heuristically lneasure the non― stationarity of the recovered

source 6。
(ι )using the scOre:

n― scoreい。)=Σ
"“

―■)2,

た=1

恥アhere σた,づ
denotes the standard deviation of 6。

(ι )in theん th epoch andび二is their

a、アerage across epochsび づ=Σ縫lσた./κ.This criterion achietts the minimum zero

fOr perfectly statiOnary sources,that is,σ た
,α
=σ″

,こ
fOr allた ≠た′,and we choOse the

resulting projection 3LA aS a Span of m rOw Кctors with top m smallest scores.

5The initial、 ralues are generated as[」 BStt  Bn丁
]丁

 =θ050И―■fTEョ
~' where each element Of

zlf∈ Rd× d is uniformly randOm in[-10,101 and 
θA denotes the matr破 exponential ofス .
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In order to evaluate the performance of algorithms, we adopt the smallest canon-

ical angle (Chatelin, 1993) between subspaces I (in degrees) to measure the differ-

ence between the estimated stationary projection ,B' and the true non-stationary

subspace ,4.". We report the number 90 - e(8"' ,A"), which is zero for a perfect

demixing where stationary projection is orthogonal to the non-stationary subspace.

2.5.3 Result

The results are shown in Figure 2.4. When the number of epochs is small, we observe

the effect of spurious stationarity: the true solution cannot be found reliably because

it is masked by the presence of spurious stationary projections. In this setting, the

minimum required number of epochs K given by the bounds (2.6) and (2.I2) are

5 and 3 for KL-SSA and ASSA, respectively. Though we have not analyzed the

spurious stationarity condition for the ICA method by Pham and Cardoso (2001),

it seems that it is intermediate between the conditions of ASSA and KL-SSA. For

any methods, when the number of epochs K is small, there exists spurious solutions

which results in the observed median errors above 45'. Moreover, a larger number

of epochs is clearly preferable to obtain more accurate solutions. However, note

that when the number of samples per epoch gets too small (around K ) 250 tn

this case), the effect of estimation errors in the epoch mean and covariance matrix

leads to deteriorating performance.

Figure 2.a@) shows the result for the case c : 0 (time-constant covariance),

in which ASSA is guaranteed to be optimal. We can see that ASSA outperforms

both baseline methods. While the median ICA result is achieving the competitive

performance with ASSA around K : 50 to 100, we can also see its instability

from the 75Ta ercor quantiles, nearly 90 degree errors meaning totally collapsed

solutions. Even for time-varying covariances (c > 0), where ASSA is not guaranteed

to be optimal, Figure 2.4(b),2.4(c), and 2.4(d) show that ASSA is consistently

outperforming on average (median performance) for all numbers of epochs K. In
these cases, the independence assumption of the ICA model is also not fulfilled since

the underlying stationary and non-stationary sources are correlated. The figures

clearly show that ICA cannot reliably recover the two groups of sources, because
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ASSA 一}― KL―SSA ―
:― lCA

10
mber of(

(a)C=0

(c) c : 0.6

10
Jrnber of el

(d)C=0.9

Figure 2.4: Median errors of ASSA, KL-SSA, and non-stationarity based ICA over

1000 random realizations of the data for different correlation parameters c. The

dimensionality of the observed signals, the number of stationary sources, and the

signal length are set to be 10, 5, and 5000, respectively. The observations are

divided into non-overlapping consecutive epochs. The horizontal axis denotes the

number of epochs K and is in a logarithmic scale. The vertical axis denotes a

subspace error and the error bars extend from the 25% to the 75% quantile.

its assumption is violated. The ICA results for correlated sources seem to be quite

distorted and appropriate stationary projections are found only by chance. We

conjecture that the relatively poor performance of KL-SSA is due to its numerical

instability (see Section 2.8.1.3).

We further conducted two extensive comparisons of ASSA and KL-SSA. In Ta-
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Table 2.1: The median runtime in seconds for ASSA and KL-SSA in the simulation

depicted in Figure 2.a@). We used a Matlab implementation under 64bit Windows7

with a Intel Xeon W3565 CPU. "Prel" denotes the computation of means and

covariances from data. " Pre2" is an individual pre-processing, the computation of

the matrix ,S in ASSA and the whitening in KL-SSA. "Main" is an optimtzation

process, solving the generalized eigenvalue problem in ASSA and the one updating

step in KL-SSA. "Step" denotes the median number of updating steps in KL-SSA

with five random initializations. "Total" is the overall runtime.

K Prel Pre2 Main Step Total

ASSA

KL―SSA

10  .0014  .0002  .0002     -   .0020

10  .0014  .0002  .0005   340   .1930

ASSA

KL―SSA

50  .0049  .0004  .0002     -   .0059

50  .0049  .0004  .0023   372   .9086

ASSA

KL―SSA

100  .0092  .0007  .0002     -   .0107

100  .0091  .0007  .0046   560  2.6569

ASSA

KL―SSA

200  .0178  .0013  .0002     -   .0202

200  .0178  .0012  .0091   556  5.2513

ble 2.1, we have summarized the computational advantage of ASSA over KL-SSA.

Here, we find that ASSA has achieved more than 100 times faster speed than KL-

SSA by avoiding an iterative optimization, which is a practical bottleneck of KL-

SSA due to its flatness of the objective function (see Section 2.8.1.3). The results

of an exhaustive comparison over different degrees of correlation parameter are also

shown in Figure 2.5. Here, the median error of ASSA is significantly lower than

that of KL-SSA even though the error of KL-SSA slightly improves as a correlation

parameter gets larger. However, despite its good median performance of ASSA, we

also observe the gradual growth of. tts 75To error quantile. We conjecture that this

is due to the violated assumption. It seems that even though ASSA is performing

well on average, its result is distorted for certain cases, and the probability of facing

such cases increases as a degree of assumption violation growso. Even so, the result

bSee Section 2.8.4 for further discussion about this point.
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ASSA --;L- KL-SSA

Figure 2.5: Comparison of ASSA and KL-SSA for varying correlation parameter

c. In this simulation, the number of epochs K is set to be 100. The vertical axis

shows the error measured as the subspace angle to the true solution. The horizontal

axis shows the correlation parameter. The median error of ASSA and KL-SSA over

1000 random realizations of the data is plotted along with error bars that extend

from the 25Ya to tlne 75% quantile.

shows that ASSA is not sensitive to the assumption violation as ICA and is out-

performing KL-SSA in terms of the 75Ta error quantile for correlation parameters

smaller than 0.6.

2.6 Application to the Geomagnetic Data Anal-

ysrs

We now apply ASSA to the investigation of the dynamics of the earth's mag-

netic field using ground magnetometer data. The geomagnetic phenomenon called

Pi2 pulsation (Jacobs, Kato, Matsushita, & Tfoitskaya, 1964; Saito, 1969) has

been studied to reveal the connection to the substorm (Saito, Yumoto, & Koyama,

1976) or the propagation mechanism of magnetohydrodynamic waves in the mag-

netosphere (Uozumi et al., 2004). However, the observations of Pi2 pulsations on

the ground involve several components reflecting 1) propagations of fast and shear

Alfv6n wave) 2) resonances of plasmaspheric or magnetospheric cavity and mag-

netic field lines, and 3) transformations to ionospheric current systems (Yumoto

∽
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& the CPMN Group, 2001; Sutcliffe & Yumoto, 1991; Yeoman & Orr, 1989; Ol-

son & Rostoker, 1977; Kuwashima & Saito, 1981). It is unclear how they couple

with each other and how their signals are distributed at different latitudes. Thus,

in order to extract the global system of Pl2 pulsations from the superpositions of

several effects, the use of ICA had been proposed (Tokunaga et al., 2007). The

result of ICA suggests the existence of two major components in an isolated Pi2

event. One is the global oscillation that is common for all latitudes and the other

is the local pulsation that is observed only in some specific latitudes. However, the

source-wise independency assumption underlying ICA is too restrictive for this spe-

cific problem. Flom a geophysical point of view, one expects that there are several

factors behind each source that interact with each other and thus lead to dependent

sources. We have also observed in Section 2.5 that ICA results for such sources can

be highly distorted. On the other hand, the components that are closely related

to the Pi2 event are those that exhibit strong non-stationary behavior over the

selected time window. Therefore, in order to obtain meaningful results, extracting

the non-stationary sources seems more plausible than factorizing into independent

sources.

The ground magnetometer data was obtained from CPMN stations at the 210'

magnetic meridian chain and South America chain (Yumoto & the CPMN Group,

2001). Figure 2.6(a) shows the horizontal direction component of each stationT,

which is bandpass-filtered (25 - 250s) amplitude-time recording of Pi2 pulsation

observed during the time window 13:35-13:55 UT on February 17, 1995 at 400

points in time. Note that the top four signals have larger powers: KTN (115nT),

TIK (71nT), CHD (36nT), andZYK (11nT), the other signals have power around

3nT. The periodic wave in channel ZYK is environmental noise that is not related

to the Pi2 event. As shown in Figure 2.6(a), most signals, especially those in low

latitude, have similar highly non-stationary waveforms. We therefore expect that

a common non-stationary source can be recovered from the signals. Moreover, the

most stationary sources would correspond to observation noise and the sources with

medium non-stationarity score are probably related to local phenomena. In order to

TThe names of the stations are abbreviated bv three Ietter codes. See Yumoto and the

CPMN Group (2001).
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13:35 13:45  13:55  13:35 13:55  13:35  13:45  13:55

(a) Original Signals (b) Pi2 Component A (c) Pi2 Component B

Figure 2.6: (a) Original signals: horizontal direction component of Pt2 pulsations

observed on February L7, 1995 at CPMN stations. The bandpass filter range is

25 - 250s. The plots are aligned in the descending order of station's latitude from

the top. Stations above and below dashed line are the 210" magnetic meridian

chain and the South America chain, respectively. The scaling of the vertical axis is

around 3nT except for top 4 stations. (b) Separated Pi2 component A as a linear

combination of N1, N2, and N3 (see Figure 2.7). (c) Separated Pi2 component B

as a linear combination of N4 and N5.

suppress the effect of noise, we first extract the seven Principal Components (Jolliffe,

1986) from the data to which we then appiy ASSA.

Figure 2.7 shows the waveforms of the non-stationary sources (Ns) estimated

13:45
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11.6

10。 1

13135 13:45 13:55

Figure 2.7: Estimated non-stationary sources (Ns) by means of ASSA. The observed

signals are divided into K : 20 non-overlapping consecutive epochs. The estimated

sources are classified into three groups based on their ASSA scores 7. N1, N2, and

N3 are classified into Group A. N4 and N5 are classified into Group B. N6 and N7

are noise sources.

by ASSA (using a consecutive partitioning into K : 20 epochs) in descending

order by their non-stationarity score 7i. We categorize the seven sources according

to their relative non-stationarity into group A (highly non-stationary), group B

(medium non-stationarity), and a noise group (virtually stationary). We conjecture

that the sources in group A and B are related to the Pi2 event. Figure 2.6(b)

and 2.6(c) show the Pi2 components A and B plotted as a linear combination

of the sources in group A and group B, respectively. We can see that the Pi2

component A, the global mode, is distributed globally to all latitudes whereas

the Pi2 component B, the local mode, occurs only in some specific stations (KTN,

CHD), mainly at nightside high latitudes. In past studies, the plasmashperic cavity

mode is deemed to be one of the dominant mechanism of Pi2 pulsations at low and

middle latitudes (Sutcliffe & Yumoto, 1991; Yeoman & Orr, 1989; Takahashi, Lee,
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Nos6, Anderson, & Hughes, 2003). This finding coincides with our Pi2 component

A. The KTN station, whose signal does not show contributions from component A,

is located in very high latitude, so that one would not expect that it is affected by

the plasmapause. The plasmapause is also known to cause a polarization reversal

of the substorm associated to Pi2 pulsations (Fukunishi, 1975; Takahashi et al.,

2003). In this particular Pi2 event, its location is estimated between the stations

CHD and ZYK. Hence the phase reversal of the Pi2 component A between CHD

and ZYK is probably related to the polarization reversal.

However, the interpretation of the Pi2 component B is unclear. Potential causes

are substorm current systems such as the westward auroral electrojets and oscilla-

tions of the current wedge. In this Pi2 event, the estimated location of the aurora

break up spot is in between the stations KTN and TIK. This would imply that the

signals from the KTN and TIK stations both show large local modes, which is not

the case for the component B. The effect of current systems is highly complex and

only partly understood. Further analysis will require satellite observations and the

investigation of other aspects of the magnetometer data, which is beyond the scope

of this study.

The components extracted by ASSA suggest that there are two major sources

behind the Pi2 pulsations. Our Pi2 component A corresponds directly to geo-

physical theory and the findings of other empirical studies. The component B

suggests that there are other mechanisms whose understanding requires further in-

vestigation of current systems and the auroral breakup. In comparison to the ICA

result (Tokunaga et al., 2007), the global mode found by ASSA is more plausible

because it has smaller power at the KTN station, which locates north of the auroral

breakup and less effects from the plasmapause is expected.

2.7 Conclusion and Future Work

In this chapter, we have proposed the first SSA algorithm, ASSA, whose solution

can be obtained in closed form, and we have shown that it is optimal in the case

of time-constant group-wise covariance. Thanks to its formulation as a generalized

eigenvalue problem, it is more than 100 times faster than the state-of-the-art KL-
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SSA and it does not require tuning any algorithmic parameters. We also proved

that ASSA has a looser condition for avoiding spurious solutions. Moreover, unlike

KL-SSA, we do not need to run ASSA multiple times to derive solutions for dif-

ferent numbers of sources: we can derive a set of solutions in one step. We have

demonstrated the performance of ASSA in a realistic set of experiments and applied

it to geomagnetic measurements Pi2 pulsations, where it successfully factorizes the

observed time series into meaningful components.

A number of open questions remain. First of all, to date there exists no system-

atic approach for selecting the number of stationary sources rn from data. Even

though ASSA's eigenvalue spectrum and subsequent hypothesis testing can offer

some guidance, a principled model selection technique, such as Information Crite-

rion (Akaike, L974; Schwarz, 1978), still needs to be developed. Similarly, apart

from the lower bound on the number of epochs K, their choice T;,72,. . . ,7r is so

far determined heuristically, based, for instance, on the number of samples in each

epoch. Most importantly, both KL-SSA and ASSA hinge on the limited notion of

weak stationarity, which is a good pragmatic choice for many scenarios. However,

an extension towards separating sources by non-stationarities with respect to the

time structure would open up a wide field of new applications, where temporal

changes in the frequency domain are the main point of interest.

2.8 Appendix

2.8.1 Computational Issues of KL-SSA

2.8.1.1 KL-SSA with Fixed Point Algorithm

To solve the optimizationproblem (2.5), the combination of natural gradient (Amari,

1998; Plumbley, 2005) and conjugate gradient (Avriel, 2003) had been proposed by

von Biinau et al. (2009a). Here, we introduce the use of the fixed point algo-

rithm (Hyvdrinen et al., 2001). The fixed point algorithm is simpler since it does

not require the tuning of step size as the gradient descent method. It therefore

allows us to compare ASSA and KL-SSA more objectively.

In the pre-processing stage, each epoch mean and covariance are centered and
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恥zhitened as

1

μv=Σ 2(μ
た_戸 ),

1      1

Σv=Σ 2ΣλΣ 2,

fOrん =1,2,… .,κ .ヽ そヽalso Lctorize the statiOnary projection 3S as

″ ∈Rπ×d and deritt the alternat市
e problem Of(2.5):

″盟×a井 ,]{‖

″μV屹―bg面 (7ΣV″⊃},&[″″丁

1

3S=Tタア
Σ 2,

=」,72・

The fixed point algorithm is based on the fact that solutions to the optimiza-

tion problem minpy f (W) with a constraint WWr - I^ has the followirrg prop-

erty (Hyvdrinen et al., 2001):

sPan(I,Zr ) : sPan(dl4lr ),

where dW denotes the gradient d,W : Af W)IAW. It indicates that the optimal

I,7 is proportional to the gradient dW. Therefore, in the fixed point algorithm, we

update W by substituting dW and rescaling it so that WWr : 1- is kept. The

overall procedure is summarized in Algorithm 1. Note that in KL-SSA, the gradient

dW is given by

dw: ii{*p,Yr-dr - (w>Yw')-'wril}
k=l 

\ ^ t ")

In the synthetic experiment in Section2.5, we stopped the updating iteration when

1 - tr lW,.*W"'rol I m < 1o-5.

2.8.L.2 Computational Complexity

In this section, we derive the computational complexity of KL-SSA in the fixed

point formulation (Algorithm 1). In the pre-processing stage, we compute the

sample means and covariance matrices which is O(Nd2) where l/ is the total size

of epochs l/ : DL rlnl. The computation of the whitening matrix X-i i, irt
O(d,t) and the whitening of all epochs is of the order O(Kd3). In the optimization

stage, there appears an inverse of WEfWr which requires O(md(m + d)) for the
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Algorithm 1 : KL-SSA with a fixed point algorithm

Input:samples{"(ι )}■ 1,index sets{冗 }縫1,number of stationary sources鶴

Output:stationary projection βλL

l:d市ide samples illto epochs by{π}縫 1;

2:center and whiten the means and the co■ rariances{μ
v,ΣV}縫 1;

3:initialize lタ
ア
∈Rれ×a so that И弓グ

T=」
ァγι;

4: repeat

5:   compute the gradient αTタ
ア

;

6:  update lタ
アく←―αTグ

;

7:  normalize Tタ
ア
so that T771タ

アT=Iγ
ァ2;

8: until lク
ア
converges

^        一 ―■

)Set BIL← T77Σ
2;

matr破 multiplication and O(m3)for the inverse.The cost for all epochs is thus

Oυ(m(m2+鶴α tt α2))and the overall complexity is O(Ⅳα2+κα3+rκm(m2+

鶴α tt α
2))where r is the number of updating steps till convergence.

2.8.1.3 Stability

When solving an optimization problem min2 f (u) bV an iterative method, its nu-

merical stability is governed by the condition number of the Hessian matrix Y' f (u),

where the condition number n(C) for a matrix C is defined as a ratio of its largest

singular value to the smallest singular value. If rc(V2f (u)) is large, the contour of

/ forms a long ellipsoid with large eccentricity. In that case, the optimization pro-

cedure tends to require a large number of steps and the solution gets numerically

instable (Boyd & Vandenberghe, 2004).

Here, we see the Hessian matrix of KL-SSA (2.5) for the case of m : 1, that

is, B" : br € IRt", for simplicity. The unconstrained KL-SSA objective function

/(b) is

／

′

‐

ヽ

＼

κ
〒
ん
日

１
一κ

‖」けた―⊃厖
∫(b)=

bttΣb
判∝留

)・
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Let b* e lRd be a true SSA solution satisfying Q.q. We then derive

V1 1 ^- E;rb*b*rte - tb-b*Tti''ttu-l:+>r
Moreover, we can see from (2.18) that this Hessian matrix gets zero when the co-

variance between stationary and non-stationary sources is time-constant. It implies

thal f is very flat in the neighborhood of the true solution b*, and the gradient

based method may stop far before. When the covariance between the two groups

of sources is time-varying, we can express X6b* as

Σたb*=
[ノ

生S An]l:lilノ lSTb*,

where D" € ]R-"- is a covariance matrix of stationary sources, which is constant

across epochs, and Ei" 6 p(d-m)xm is a covariance matrix between non-stationary

and stationary sources in the kth epoch. We then derive

1K
;It',4"rb*b*tA"(";" - t*) : omx(d-m),
K ur_,

where the equality holds from the definition of D. The Hessian matrix is
r1 - | O^rrn }r,,*@-^)f ,-

=V'f 
(U-) : Al "rnxn vrnx\d-m) 

| AT ,o 106-*1r,n Z" 
-l

where Z" is defined as

Zn==11)三
)(Σ

が
~5プ・

S)ス STb*b*TAS(Σ
lS― Ens)T

b*丁Σb*
ん=1

It is ObviOus that the Hessian lnatrix is rank dencient and thus the cOndition number

is inflnite,、 vhich again implies that]KL― SSA is instable arOund b*. Note that this

result is irrele■rant to the parametrization of b.Even if we parametrize b as b=b(θ
)

with sOme other parameter θ∈Rd,the Hessian matr破 of∫ OVer θ,▽ ;∫ (b(θ )),iS

expressed as

▽;∫ 0(θ))=蒟▽2∫
0)ィ ,

vrith a Jacobian matrix乃 ∈]Rd×
α
,and ag」n it is rank deflcient.
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2.8.2 Data Generation

From the model (2.I4), we can see that the correlation between s'(t) and s"(t)

gets C(t) after a proper scaling. In this simulation, we set C(t): nldiag(c(f))RJ

where .R1 and R2 are m x m and (d - m) x (d - rn) orthogonal matrices and

diag(c(t)) 6 pmx(d-m) is a matrix with c(t) 6 pmin(m'd--) on its diagonal. Each

component of c(t) is limited to [-1, 1] from the definition of correlation. The

process c(t) is also chosen from several different sources in Figure 2.3 which are

(b) ARMA(3, 3), (d) Lorenz95, and (f) constant with 6 to 20 change points. The

chosen process is scaled so that each component of c(t) belongs to [-c, c] for a given

correlation parameter c e [0, 1]. When c : 0, the covariance between stationary

and non-stationary sources is zero and thus time constant, in which the optimality

of ASSA is guaranteed while the ASSA assumption is violated for c > 0. The

overall data generating procedure is as follows: 1) randomly generate A, R, and.R2,

2) randomly assign rn processes to stationary sources from two candidates and d-m
processes to non-stationary sources from three candidates, 3) generate s"(t) and

s"'(r) from each assigned processes, 4) randomly assign one from three candidates

to c(l) and generate non-stationary sources s"(t) according to the model (2.74),

and 5) generate the observed signal r(t) from the SSA mixture (2.L).

2.8.3 ASSA and Joint Block-Diagonalization

Here, we briefly introduce how the joint block-diagonalization (Flury & Neuen-

schwander,7994; Belouchrani, Amin, & Abed-Meraim, 1997; Theis & Inouye,2006;

Abed-Meraim & Belouchrani,2004) approach can be applied to the SSA problem.

As have shown in (2.I7), the essential covariance structure of stationary and non-

stationary sources is in the block-diagonal form when two sources are group-wise

uncorrelated. Therefore, the source recovery can be interpreted as the problem

of finding a matrix 6 6 pdxd that makes BEpBr to be block-diagonal for all K
matrices in one time, which is achieved by solving

κ

BttdI]胆
°C卜°
・

daまBΣたB⊃ ‖i,&[BΣ B丁 =島 , (2.1つ



56

where block-off-diag(*) denotes block-off-diagonal elements of a matrix. The equiv-

alence of ASSA to (2.15) is summarized in the next theorem.

Theorem 7 (ASSA and Joint Block-Diagonalization). The problem (2.15) coin-

cides wi,th the ASSA problem (2.9) with a condi,ti,on pt: pz: ...: pK.

2.8.4 Assumption Violation and ASSA Solution

In Section 2.3,we have constructed the ASSA algorithm based On the assumption

that statiOnary and non―stationary sOurces have a tilne― constant covariance. 1/1ore―

over, even when this assumption is not fulfllled, vre have observed that ASSA is

quite robust against the viOlation through silnulations in Section 2.5. Here, we

provide one theoretical result that gives an insight how the assumption violation

a∬ects the ASSA solutiOn.

In the analysis,lⅣ e consider the silnplest case ttZhen stationary and non― stationary

sources are group-lvise uncorrelated.[rhe reason is that we can always cOnstruct

such a lnodelin a tilne―constant situation without 10ss Of generality from LeⅡIIna 2

(SeCtiOn 2.8.5.2).Under such a model,we study how the fol10wing small perturba―

tion on a covariance betn7een the twO groups of sources agects the resulting ASSA

solution,

Σλ=ス
16黙

T C]『
|ス

T,

、アhere ΣS∈ Rπ×m is a co■rariance matrix of stationary sources,which is cOmmon

across epochs,Σ l∈ R9~m)×解~m)is a covariance of non―
stationary sources in the

たth epO(力 ,and Σr∈ Rπ×(d~m)is a covariance between the twO groups.Here,we

let O(Σr)=0(1)and explicitly impose a parameter O≦ 6≪ l tO express that the

assumption violatiOn is sumciently small.Our lnain result is based on the fact that

under this small perturbation,we can alsO express the lnatrix S deflned in(2.10)

as

s-

with some Q € lR-'o and P e

+0(62),
劃

初
ｄ

僣
」

ス
丁

o.16)

fo1lowing theorem.ヽヽ句then have the
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Theorem 8(Effect Of the Assumption Violation)。 Fθr α sttFctθηιりSttαι;Pcrιυr―

bαιづοη O<6≪ 1,ιんθ ИSSИ sοιzιづοη Bλ づS ηθι θrtんθgοηαJ ιο ιんcn―ψαcc Span(ス n)

αηαづιs c宵¬οr tS tη ιんθメθJJουづηθ οttferf

0(3λスn)=。 (CのP~1).

■om the deinition of the matrix S,we can interpret matrices C and P aS the

non― stationarity degree of the covariance bet、veen the two groups and the covariance

within non― stationary sources,respectively The above result shows that even for

Smal1 6,the assumption violation might cause larger error ifの P~l iS large.It

occurs when c has larger values in the directions where P has smaller values.The

smaller values Of」 P imply that the sources in these directions are non― stationary

only shghtly, while the larger(2 stands that two sources are strongly correlated.

、、re can therefore interpret the above result as that sourcesヽⅣith only slight non―

stationarity tend to be lnixed up with truly stationary sources under the assumption

violation. On the other hand, the e∬ ects of small correlatiOns with highly non―

stationary sources can be negligible in practice. It is in line with our intuition that

the signiflcant non― stationarity could be easier to distinguish even when there are

some correlations betttreen the two groups.

The above theOreⅡ l can partly explain the silnulation result in Section 2.5.In

Figure 2.5,the lnedian error gradually gro、 vs along a correlation parameter c while

the 75%quantile is rapidly increasing.Note that the parameter c corresponds to

the perturbation c in the theorem.The theoren■ indicates that the assumption

violation is not always fatal. There are some cases that has small errors even under

large c if oP~l iS Small.ヽ 4ヽe cottecture this is the reason wlly the ASSA solution is

not entirely collapsed even fOr large c,but only for some speciflc cases as observed

in the 75%errOr quantile.

2.8.5 Proofs of TheorellIIs

2.8.5。 l  Proof of Theorem 4

Since∫ (3S)takes its minimum zero at BS=3S*,its irst order derivative vanishes.

Therefore the second order Taylor approximationノ (3S;3S*)dependS Only on the
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second order derintive of∫ (3S):

スBS;B辞 )=券Ё力土
た=1,,t′ =1′ ,′

′=1

項 瘍
―
黎 )B_Q悧 物 劫

whereイ(3S;Σ)≡ -10g det(3SΣ 3S丁 )and

:::::;:l:i)=―
 (3SΣ BS丁

)房lΣ J′
′I (3SΣ 3ST)ル

lΣ

ブ
」3S丁

(3sΣ
3S丁

)~13sΣ ′
′

十 (3SΣ 3S丁
)「

13sΣ

′
′
(3SΣ

3ST)「 13SΣ ′
.

Here,θj and θ′denote the tth rOw andブ th c01umn vectOrs of a matrix θ,respec―

t市ely.From the assumption 3S*Σ たBS*丁 =3s電 3S*T=ム
“

We der市 e the f0110wing

silnpler expressiOn:

券き項瘍 ―掏 )β_
=券 Lゞ(―鳥 ,″

Σん″ 十鳥 ,″乃 ′′十九 ,″
Σた,3針

Tβ ttΣ
れプー塩 ,″耐 BttTBttΣプ

た=1

+島¨』 S*Σ
たデ′′塩 ,ノ

BS*Σ礼′―為
"』

S*Σ
′′為 ,ダ

』 S*Σ
′)

=券 Lゞ{鳥 ,″ oに 動 ′
B鰺

丁
B訃 Oλ

_⊃
プ

た=1

+塩 ″BS*(Σた―T),ノ税,ノ
BS*(Σた―T)′

},

where the last equality holds hom Σ=Σ縫lΣた/κ .By uSing Σtノ ,′ ,′

′Q・′島′′χ′為′′′=
trトフ丁xDχ丁

]and Iド
*Σた3S*丁 =3s*E3S*丁 ,.7e Obtain the resulting second order

n、1。r appr。対mation∫(3S;BS*)as

√(3S;IrS*)=」L】
EE{tr[3S(Σλ― T)βS*丁

3s*(Σた一 万)3S*丁
]

た=1

・

tr[3S(Σ た 一 T)五
'S*TI'S(Σ

た ― Σ )I'S*丁 ]}.

Then,、ve flrst derive the following upper bound:

∫ (3S;五 lS*)≦
;:】 :Ц

tr[3S(Σ た 一 Σ
)3S*TBS*(Σ た 一 Σ;)」9ST],

た=1
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from the Cauchy-Schwarz inequality

|(a,鋪〉|≦ 7(a,C)(針 ,針 )=(a,c),

Σた=レSス
]Lil×れ

Om専°
|卜

Sス
1丁

,

where(θ,D)=tr[θD丁 ]is an inner product of mttrices θ and D,and Cた =

BS(Σた一T)3S*丁 .

Here,let」 9n* ∈Rぎ
d一 m)× d denote a Σ―orthonOrmal complement of」 BS*,that is,

3nttBS*丁 =0(a― m)×れ,3nttBn*丁 =島_れ .ヽ そヽthen derive the following further

upper bound fronl the fact that tr[BS(Σ た ― ]日
)3n*TBn*(Σ た 一 Σ

)3S丁 ]≧
 Oh。 ldS

for any I'S:

∫(3S;3S*)≦
::2]{tr[正

,S(Σた 一 ]麗 )I'S*丁 五,s*(Σ λ ― :麗
)五

〕
S丁

]

・

tr[」BS(Σλ ― T)3n*丁 Bn*(Σ た 一 Σ )3S丁 ]}

=77ゞltr[3s(Σλ―T)19*丁 B*(Σた一Σ;)」3ST],

た=1

where B*==[BS*丁   Bn*丁
]丁

.Moreover, 」B*TB*=Σ
~l f0110ws fron■

3*Σ ]」B*丁 =Дα

and we derive(2.8).                                    □

2.8.5.2  Proof of Theorem 5

The theorem is obvious fron■ following lelnlnas.

Lemmal(ASSA and Uncorrelated SSA)。 rLθ ЙSSA sο Jυιづθη Bλ づSのι」παJ υんθη

sιαιJοηαη αηα ηθη―stαιづOηαη sθ包郷θθS α
“
θg"Ot,p― υづsθ υηcθドtJαιθα, ιんαι ts, ιんc cθ―

υαrづαηcc bcιυθθη ιんθ ιυθ θttο tιPS ts zcrθ .

●印げり If Stationary and non― stationary sources are group― wise uncorrelated,Σた

is in the follov7ing block― diagonal fornl:

(2.1つ

where X' is a covariance matrix of stationary sources, which is constant across

epochs, and Xi is a covariance of non-stationary sources in the kth epoch. Flom
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this block-diagonal structure and the orthogonality between B'* and A", B"*X6 :
Bs*AsEsA"r holds. Since this is independent of the epoch index k, we derive the

relations on B"*:

B"* ltt - Bt* ll, and Bt*X n : B"*8, (2.1鋤

forた =1,2,… .,κ .It is ob宙 ous that the ASSA objectiК  functiOn(2.9)getS

zero at BS=BS*.Since the ASSA obiectiVe function is non― negati祀 ,3S*is a

mlnlmlzer.                                          □

Lemma 2(Equivalent Class of UncOrrelated SSA).ス ην SSИ ttοごθι raFノ リをιん

α ιづ7η C― COη Sιαηι cθυαrづαηcc ♭θιυθθη sιαιをθηαη  αηα ηοη―sιαιづθηαη  sο鶴

“

θCS Cαη bθ

“

ご鶴cθα ιθ ιんc cgzづυα;θ ηι 77ι OαθJ υづιん gγl,tιρ
―υノづSC υη6οド tJαιθご sθ包

“

θcS.

0"げノ Let ΣSn∈ Rπ×(am)be a time― constallt covariance mttr破 between st訃

tionary and non_stationary sources. The equivalent uncorrelated SSA mOdelis then

given by

■0=レ十βΣttΣ計1」
[n。

_∬に、s』 ,

where Σ〕S ∈ Rπ×η2 is a covariance matrix of stationary sourё es and thus tilne―

constant.                                           □

2.8.5。3  Proof of TheOrem 6

FrOm the Lelnlna 2,it is suflicient to prove for the case of group― wise uncorrelated

sources. Under the uncorrelated lnodel,the conditions(2.4)is replaced by(2.18).

Let β denote a set of the ASSA solutions that satisies(2.18)and the constrdnt

BSE3ST=Im.The uniqueness of the ASSA solution is guaranteed(up to linear

transformatiOn)if SpanlBST)=Span← BS′
丁

)holdS fOr any solutiOns IP,3S′ ∈ β .

It holds when b∈ ∪3s∈β Span←BS丁 )haS degrees of freedom equal t0 0r less than

鶴 -l where the-l stems from the cOnstraint.The conditions(2.18)impoSe the

fo1lowing κ (α +1)COnStrailllts:

(μた
_万

)丁b=0,

(Σた一T)b=Od,

(2.1の

(2.2o
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where k : 7,2,. . . ,K. However, note that not all of them are independent. Since

at most rank(X;, - X) equations are independent in (2.20), the expected number of

independent constraints is K(u + 1). Conditions (2.19) and (2.20) also include d -
rn -t t dependent equations since their sums are obviously zeros from the definition

of p and E, that is,

Therefore, the total number of independent constraints rs K(u + 1) - (d-m+I)
and b has d - K(, + 1)+ (d+m - 1) degrees of freedom. Since this has to be equal

to or less than m - I, (2.72) follows. In the special case when the mean is constant,

the condition (2.19) vanishes and we have Ku - (d- m) independent constraints.

The degrees of freedom on b is d - Ku + (d - m) and (2.13) holds. n

2.8.5.4 Proof of Theorem 7

Let a matrix B : lf"t B"lt. The block-off-diagonal element of. BE*Br is
LJ

then B"EsB"r. Therefore, the objective function of (2.15) satisfies the following

inequality:

α
０

〓
ｂ

＼

、

‐

′

／

一Σκ一
Σ

κ
〒
ん
日

／

１

１

＼

ｄ

狙〓
ｂ

丁
ヽ
、
‐
‐
′
ノ

一μκ一μ
Ｋ
〒
ん
日

／

１

１

＼

K

】E〕
tr[BSΣ たBn丁 3nΣ たIP丁

]
ん=1

κ

<5″
{tr[五

,sΣたBnttβ
nΣ

たI'S丁
]_卜

trI・〕
SΣ

た
・ 'S丁

正,sΣたI〕
S丁

]}
た=1
κ

=Σ trレ SΣたΣ~lΣたBS司 ,

た三1

(2.21)

where the last equality follows from 3SttBStt Bnttβ
n=B丁 3 and BEB丁 =島 .The

equivalence of(2.21)to the ASSA objectitt function(2.9)can be checked with some

algebra with a condition μ l=μ 2=・ … =μ K・ Hence,3SΣ λ3ST=B嘔 3S丁 =I″ ι

is a necessary condition for a minimizer of(2.21)to cOincide with the minimizer

of(2.15),whiCh iS guaranteedけ Lemma l.                  □
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2.8.5.5 Proof of Theorem 8

We first show that the matrix,S is given in aform (2.16). Flom the definition,

have the average covariance X as

Σ =
丁

スが
プ

Ｔ

Ｓ
　
　
ｎ

Σ

プ
ス

where Fn=Σ縫lΣソ/K and En=Σ鷹l 
Σ1/κ .Hence,its in■7erse is given by

and the matrix S takes a form (2.16) with

糞 ォ
丁

F口

十

ご:λま
FFJP4

where J=(En-6埼 プ
nTΣS巧

プ
n)~1=プ 1+0(62).udng thS expressbL tt can

write do、vn the product Σたコ
~lΣ

んas

ΣたE~lΣたこ=´A161;}

whereのた=Σr tt ΣlΣ
n~1(Σ

瀞―Σ
m),

C and P deined as

ο=デ
:ゞL(Σr_IFn)(島一れ―十Σllコ

n~1),

た=1

P=券 ΣE(μlμlT+2Σ l図
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錢,cΣ
34 and Bλ,cSB4 as fo110WS:
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ン4SΣ
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十η
2(cASΣ SASTθ丁
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((ア
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nttθ 丁

)

十η℃ ス
nPスnttθ丁+ο (6η
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trl(Dl,clttθil)~1(Dl,c"il)|==2cη trlCん4n。
丁
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|

十―η
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because(DicED理 )~1=塩 +00).As tt httκ dscussed h Sectbn 2.3,the

ASSA solution 3λ ,c iS a minimizer of the above.Note that the problem further

reduces to flnding an optilnal ηCy since五
'S*is a constant matrix.By setting the

derivative over ηCγノ4n equal to zero,we obtain

ηθスn=―(3S*ス
ScP l+0(6η

).
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ηθ)ス
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×(a_m),and we ha■
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the claim。                                         □
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Chapter 3

Sparse Inverse Covariance

Selection with a Dual Augmented

Lagrangian Method
In Chapter 3-5, we consider a Graphical Gaussian Model (GGM) learning prob-

Iem introduced in Section 1.5, and extend it by introducing a notion of invariance

into the model. Across chapters, the Sparse Inverse Covariance Selection (SICS)

problem (1.11) is the basis of our framework. In this chapter, before we go into the

techniques for finding some invariance in GGM, we construct a technical founda-

tion used in upcoming chapters, which is a general convex optimization method for

GGM learning problems.

3.1 Introduction

SICS is the maximum likelihood estimation problem of a precision matrix A under a

sparsity constraint. In (1.11), an element-wise /1-norm is used as the regularization

term. Although this is the most basic formulation considered by a number of

authors (Meinshausen & Biihlmann,2006; M. Yuan & Lin, 2007; Banerjee et al.,

2008), it is not the unique regularization term used in several problems. The SICS

problem (1.11) can be expressed more generally in the following form:

t撃簿
イ(A;Σ )-9ρ (A),

イ(A;2)≡ 10g det A― ―tr[Ё A],

(3.1)
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where go6) is an arbitrary regularization term parametrized by p. In most cases,

some sparsity inducing norms are used as cpr(A). For instance, Duchi, Gould, and

Koller (2008) and Schmidt, Van Den Berg, Fbiedlander, and Murphy (2009) consid-

ered a grouped feature case and introduced a group regularization term instead of

an /l-norm, while Honorio, Ortiz, Samaras, Paragios, and Goldstein (2009) consid-

ered a spatial structure in a precision matrix and introduced a fused regularization

to promote common constant entries in the estimator. Note that the problem (3.1)

is a convex problem as long as cpr(A) is a convex function, and a global solution can

be derived with some proper optimization methodsl. The objective of this chapter

is to provide one such algorithm. For the SICS problem (1.11), several optimization

procedures have been proposed (Scheinberg et al., 2010; Duchi, Gould, & Koller,

2008; Friedman et al., 2008; X. Yuan, 2009; Scheinberg & Rish, 2010; Hsieh et

al., 2011). Amongst these methods, QUIC (Hsieh et al., 2011) would be the most

practical state-of-the-art method with some theoretical guarantees. However, the

efficiency of QUIC heavily depends on the specific property of the (ynorm and it
is not applicable to the general regularization term. In this chapter, we consider

the case when the regularization term gr(|t) is convex and the proximity opera-

tor (Rockafellar, 1996) defined on the convex conjugate of gr(tt) can be efficiently

computed. This assumption involves eo6): pllAllr as its special case, that is, an

algorithm proposed in this chapter, which we call DAL-ADMM, has wider flexibility

on the regularization term compared to algorithms specific to the /1-regularization

such as QUIC.

The main scope of this chapter is to propose a new algorithm for the general-

ized SICS problem (3.1), which can treat general regularization terms other than

the l1-norm. The proposed method relies on the Dual Augmented Lagrangian

(DAL) method (Tomioka, Suzuki, & Sugiyama,20tL) which provides an efficient

algorithm for convex and sparse regularization problems. We further update the

DAL framework by combining the Alternating Direction Method of Multipliers

(ADMM) (Scheinberg et al., 2010; X. Yuan, 2009; Boyd, Parikh, Chu, Peleato, k
rsome authors also considered non-convex regularization terms, see J. Guo, Levina, Michailidis,

and Zhu (2011) for instance. In such cases, the global optimality of the solution is no longer

guaranteed in general.
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Eckstein, 2011) and propose a DAL-ADMM algorithm. This update makes the en-

tire procedure dramatically simple and helps reducing the practical computational

cost.

The remainder of this chapter is organized as follows. In Section 3.2, we review

the extended SICS problem with a group structure as a specific example of (3.1).

In Section 3.3, we introduce the DAL based optimization method, and then up-

date it by combining ADMM and propose DAL-ADMM algorithm in Section 3.4.

The validity of the proposed method is presented through synthetic experiments in

Section 3.5. Finally, we conclude the chapter in Section 3.6.

3.2 Sparse Inverse Covariance Selection and Its

Group Extension

In this section, we briefly review the extension of SICS into its grouped vari-

ant (Duchi, Gould, & Koller, 2008; Schmidt et al., 2009) as one specific example of

a generalized formulation (3.1). This extended group SICS model is helpful when

we aim to find the dependency between the set of variables.

In group SICS, aII d2 entries in a precision matrix A are partitioned irtto M
disjointgroups. Here, let,Ibeasetof alId2 indicesinA,thatis,T,:{(i,j);'i,j:
L,2,...,d\. Each of M groups Q^(*: 1,2,...,M) is then represented as a

subset of Zwhereg^oj,n,: $for m * m'andUff:rQ^:I,. We also use

a notation l\g^ to represent a vector composed of entries in A specified by Q,.,

that is, l\s^ : (l\ni)e,il.s*. While the objective of the ordinal SICS is to identify

whether each (i, j)th entry of A is zero or not, the objective of group SICS is to infer

which of ltg* gets simultaneously zeros among M groups. For example, this setting

is relevant to the identification of dependencies between two sets of genes. In such a

case, we partition the entries of A into four disjoint groups; two of them corresponds

to the block-diagonal entries representing inner group interactions while the other

twos specify block-off-diagonal entries related to the interaction between the groups.

If latter two entries are simultaneously zeros, it implies that two sets of genes do

not involve anv interactions between them.
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Duchi, Gould, and Koller (2008) and Schmidt et al. (2009) formulated this prob-

lem as follows using group regularization techniques (T\rrlach et al., 2005; M. Yuan

& Lin. 2006):

M

是震
イ(A;2)一 Σ ρれ|IAgm‖pm. (3.動

Here, ll/ys^llo^ is an lo^-norm2 of nr- ;;; p^ e[1, -] and parameters p- and

pm ate assigned individually to each group. Note that this is one specific variant of

the problem (3.1) with cpr(A) : DX:, p^lll\s^llo- and p: (h, pz,. . ., plz)r. This

can be also seen as a generalization of SICS since settin E prn : p and pm : 1 results

in (1.11). For p* ) 1, a set of parameters l\g^ shrinks to zeros simultaneousiy

owing to the group effect. Hence, the optimal solution A* has a group-wise sparse

structure. A parameter p* is typically set to be 2 or m due to computational

considerations.

More generally, in what follows, we assume ,po(D is a convex possibly non-

differentiable function. Therefore we cannot merely apply ordinal gradient ascent

based methods to solve the problem (3.1). In addition, we assume that for all

0 > 0, npp(L): gpB(L), that is, a multiplication of. B to the regularization term

is equivalent to the regularization term parameterized by p0. Note that this is
the generalization of a multiplicative form cpr(A) : pf(L). Another important

assumption is that the following proximity operator (Rockafellar, 1996) can be

computed efficiently:

1

proxr-(B) : arsmin ,p;(Y) +;llY - Bll?,

where elis a convex conjugate3 of gp. An /1-regularization go(D: pllAll, and

a group regularization cpr(A) : DX,:rp^lll\s^llo- with pm:2 are the examples

that this proximity operator can be computed analytically. For instance, the convex

conjugate of goQt): llAll, is an indicator function defined as

個={L ilk∫ A

2An′
p~norm ofa vector a is giК n by ll"p=(Σ。lχt p):fOr p∈ 11,∞ ),and l ZI∞ ≡maxtlκをト

3A convex collliugate Of a function∫
(2)iS deflned asノ

*(ν
)≡ Supπ  ν

TZ一
ノ(π )・
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where llyll* is the dual of an l1-norm and is given bV llyll- : maxi,ilYiil. The

computation of a proximity operator can be casted as an Euclidian projection of B

onto the set .,4 : {Y; llyll." < p).This problem can be factorized into element-wise

subproblems:

-inl(s -b)', s.t. - p<a1p,a 2'"
for each (i, j)th entry A:Yi and b - Bu. The solution to this problem is ana-

Iytically given by A: min(l, pllbl)b, and the proximity operator can be expressed

AS

proxp;(B) :

The proximity operator for the

similar manner and is given by

//n\\
proxr-(B) : Imin( 

1 P^ lR' I

\ ,.^' llBs-llr)-"^ ) ,,:r,r,...,r'

3.3 Dual Augmented Lagrangian for SICS

Now, we derive the algorithm for generalized SICS (3.1) using Dual Augmented

Lagrangian (DAL) (Tomioka et al., 201L). DAL is an algorithm applying an Aug-

mented Lagrangian technique (Boyd et al., 2011) to the dual of the target problem.

It is known that DAL is super-linearly convergent, hence it is well suited for sparse

regularization problems (Tomioka et al., 2011).

The dual of generalized SICS (3.1) is given by

耀」ly-10g det″ 十ψ,(y),S・ t・ 7+y_Σ =Oα×α,

following the Fenchel duality theorem (Rockafellar, 1996). Here, L4l € IRd'd is a

dual parameter, which satisfies W* : A*-l at its optimal from the duality. We have

also introduced the additional parameter Y f.or the sake of compatibility with the

Iatter discussion. In DAL, we first formulate the following Augmented Lagrangian

function:

tlll r ^ll2
LB(W,Y, Z) : - logdet W + ei$) + ; llw +Y + ;Z -tll,'r 2l lJ lle
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where 0 > 0 is an algorithm parameter and z 6 pdxd is a Lagrange multiplier.

Note that an Augmented Lagrangian function with B -+ 0 corresponds to the

ordinal Lagrangian function. The basic approach of DAL is to relax the equality

constraint in (3.3) in the intermediate steps of the algorithm and make it fulfilled

at the termination. In DAL, we repeat the following two updating steps till the

convergence:

(
lW{r+t),y(t+r) € argmin LB(W,y, Z@1,
< w €s+,y

I z(t+l) - Z@ + 0(wu*rt +yft+t) - t) .

In every steps, a value of B is also gradually increased so that the super-linear

convergence is achieved (Tomiokaet a1.,2011). For the cases of anfi and a group

regularization with pm : 2, we can analytically write down Ytt+r) as a function

sf I lft+rl. By plugging-in this analytic expression) we can further reduce the first

problem into the following unified form (Tomioka et al., 2011) using Moreau's de-

composition (J. J. Moreau, 1965):

147(t+r1 € argmin - Iogdet w + :llpro*,,, (-pW - Zft)+ pilllt
W€S+ 2{J ll' vPP' 'llp

See Sra, Nowozin, and Wright (2011, Section 9.4.1 and 9.8.2) for the detail. This is

a smooth convex optimization problem and is solvable with some proper methods

such as a quasi-Newton method.

3。4 SICS via DAL―ADMM

The DAL algorithm derived in the preceding section has a super-linear convergerrce

property. This property is based on the simultaneous update of W and Y and a

gradual increase of. B rn every steps. However, SICS involves O(d2) free parameters

to be optimized and hence the computation of the gradient over W requires O(d,t)

complexity owing to the iog-determinant term. This can be too demanding even for

middle sized d. Therefore, we need to reduce the number of gradient evaluations so

that the entire procedure to become much more efficient. In this section, we tackle

this problem by introducing an idea of Alternating Direction Method of Multipliers
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(ADMM) (Scheinberg et al., 2010; X. Yuan, 2009; Boyd et al., 2011) and propose

a DAL-ADMM algorithm.

In ADMM, we decouple the minimization of W and Y into sequential steps,

(
lWu*tt € argmin LB(W,Y@,7@),
{ w€sl

I Yrt*tl € argmin LB(W(t+r),Y, Z@).
\v

It means that the optimization of Lp(W,Y, Zt')) over W and Y is solved only in an

approximate manner. Under this relaxation, as we see later, we can construct an

analytic update procedure for W which requires only one eigenvalue decomposition

in every update steps. This modification has another advantage that the second

step, an update of Y, is exactly the same as the computation of the proximity

operator sn gI. Unlike DAL, we do not need to plug-in this result into the larger

optimization problem. This allows us to use wider classes of regularizations; for

instance, a group regularization with pm: oo (Schmidt et al., 2009) which was dif-

ficult to treat with DAL. On the other hand, only a linear convergence is guaranteed

for DAL-ADMM (He & Yuan, 20L2). However, as we see in numerical experiments,

a reduction of the number of gradient evaluation overwhelms this drawback and

results in the faster computation. In the next subsection, we detail the above two

update procedures.

3.4.1 Solutions to Inner Optimization Problems

The inner optimization problem over W is given by

min _ loedet w + gll* *y(t) a |ru,_ rll,wes+ - 'z ll p llp

By setting the derivative over I4l equal to zero, we derive the first order optimality

condition:
/1\1

W _ ( _yftt _ lzat+x ) _ 1w-, :\d,d.
\P/IJ

Here, we consider the eigenvalue decomposition of the second term:

yltl―ン十Ё=びd電し鴫…ρ∂〆
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The solutionレ7(t+1)is then given by

14/(t+1)=び diag(δ l,δ 2,・ …Fd)び
丁

,
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See X.Yuan(2009)fOr the detail.Note thtt the pOsitiК deiniteness of T/p7(t■ 1)
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Hence, this update step is efficiently computed as long as the proximity operator

on g; is computationally cheap.

3.4.2 Convergence

Here, we list two convergence properties of DAL-ADMM under a fixed 0 > 0.

A sequence {Zlt)}er converges to the optimal parameter Z" : l\*.

A function value g(W,Y) - - log detW + e;V) converges linearly to its
global minimum g(W.,Y").

These results can be shown as follon/s. ヽヽb■rst get the Optilnality condition Z*==

14/*l by setting the derintive of£ 。(z tt Z)equal tO ZerO.Then,け applying the

general theOrem fOr ADMM(Bりd et al.,2011;He&Yuan,2012)and recalling

Tグ
*=A*~1,the claims f01low.

2.
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3.4.3 Implementation Details

In our implementation of DAL-ADMM, we use following two gaps presented by

Boyd et al. (2011) for the termination criteria:

primal-gap = llWr'+rt 
* vrr+rl - ill ,llF'

dual-gap = PllYrt+rl - Yttl llll llr'

When both of them are under a given threshold €, we regard that the process has

converged and stop the iteration. Here, two gaps measure how much the equality

constraint in (3.3) and the optimality of parameters are fulfilled, respectively.

The choice of an algorithm parameter p also needs some consideration in prac-

tice. Unlike DAL, we can not merely increase B in every steps since it may lead

to a non-optimal solution. In the proposed algorithm, we introduce the following

heuristic from Boyd et al. (2011):

{ rpu, if primal-gap } 10 dual-gap,
I

0(t+L) : I o.sB{t) if dual-gap > 10 primal-gap,
I

[0t'l otherwise.

This heuristic balances two gaps and makes them small simultaneously.

3。 5  Sirrlulation

In this section, we demonstrate the validity of DAL-ADMM through synthetic

experiments. All simulations in this section have been conducted on Windows 7

(64bit), Intel Xeon W365 CPU machines with a 6GB RAM.

3.5.1 Data Description

In our simulations, we considered a group regularization problem with pm: 2, that

is, rpr(A) : DX:, p*ll/vs*llr. We have generated data in the following manner.

First, we give a number of Gaussian variables d ar..d its partition d1, d2, . . . , dx where

Df:rdr, : d,. For each d1a, we generate elements of a random matrix U7, € lft.dtxsdt
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independently from a standard normal distribution ,A/(0,1). We then generate a

positive definite matrix Cn: LtL[ and set the resulting precision matrix 1 6 pdxd

to be a block-diagonal matrix with Ct,Cz,. ..,Cx on its block-diagonal. Here, each

group Q* corresponds to a pair of. dp and d7", variables with k,k' : L,2,.. . , K and

the total number of groups is M : K2. In the simulation, we consider 3 cases

with d - 20,60, and 100. For each case, the number of partition K and a value

dr: dz: ... - d"11 : r are set to be (K,r): (2,10),(3,20), and (4,25). After
a precision matrix A is derived, we generate n : 5d independent samples from a
normal distribution N (O a,A-l ).

3.5.2 Baseline Methods

In the simulation, we adopt a PQN algorithm (Schmidt et al., 2009), an algorithm

constructed for group SICS, to contrast with DAL-ADMM. We also introduce DAL

to compare with DAL-ADMM aiming to observe the advantage of an ADMM re-

laxation. DAL-ADMM, DAL, and PQN are implemented using MATLAB and C.

We used a DAL packagea and implemented a DAL procedure for group SICS. We

have also modified a PQN packages and used for our simulation. In the simulation,

we set p : dpo where ps varies in 13 different values ranging from 10-3 to 100 in a

logarithmic-scale.

3.5.3 Result

We randomly generated datasets 1000 times for each setting and compared the

running time of DAL-ADMM, DAL, and PQN. The results a.re summarized in

Figure 3.1. In the figure, we plot median times that each method achieves a relative

error (g(A(k)) - g(L))lg(L*) under tolerance parameters €gap : L0-2 and 10-5

where g(A) = -l(ly;il + >X:, p*llLs*llo^. The vertical bars extend from the

25To to the 75% quantiles of the running time. Note that PQN did not achieve a

relative error under €gap : 10-5 for larger p6 and thus omitted from the graph.

aavailable at http : / / ursv . ibis . t . u-tokyo . ac . j p/ryot at / d,al /
5available at http : / /wuu .di . ens. f r,/-nschmidt,/Sof tware/PQN. htnl
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In all experimental settings, we observe that DAL-ADMM outperformes other

twos. In particular, we can see the gradual decrease of the DAL-ADMM running

time for larger po. We conjecture this property is what original DAL has as an effi-

cient optimization method for sparse regularization problems, and is also inherited

to DAL-ADMM. Through simulations, we observe that the inner optimization pro-

cess in DAL gets a practical bottleneck and it is resolved by an ADMM relaxation

resulting in a dramatic improvement. A solution sequence in PQN approaches to

the optimal solution in a relatively small running time. However, at some point,

this speed drastically decreases and the improvement of the solution seems to be

bounded afterward.

3.6 Conclusion

In this chapter, we treated a generalized SICS problem (3.1) where the state-of-

the-art method for SICS (1.11) is no longer applicable. Our proposed DAL-ADMM



76

algorithm is based on DAL and we relaxed it by introducing an ADMM approxima-

tion. In synthetic experiments with a group regularization term, we observed that

this relaxation dramatically improved the running time against naively applying

DAL. A comparison of DAL-ADMM against PQN also showed favorable results

that DAL-ADMM is faster and hence works well for larger p where PQN tends to

require a longer running time.

Several future works have been indicated. The optimal choice of an algorithm

parameter p remains as an open problem. In our algorithm, we used a heuristic

update which works practically well but does not have any theoretical guarantees.

An introduction of a skipping technique proposed by Scheinberg et al. (2010) would

be a promising extension of DAL-ADMM to further improve its performance.
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Chapter 4

Learning a Common Substructure

of Multiple Graphical Gaussian

Models

4.l lntroduction

In this chapter, we address the problem of finding an invariant pattern from a set of

GGMs obtained from multiple datasets. We provide a technique for finding constant

interactions, or dependencies, among variables across several different conditions.

An illustrative example of this problem is an engineering system where system

errors are observed as dependency anomalies in sensor values (Id6, Lozano, Abe,

& Liu, ZOOS), which are usually caused by a fault in a subsystem. The invariance,

which in this example is the remaining healthy subsystems, is captured by a steady

dependency over the multiple datasets sampled before and after the error onset.

Hence, we can use such information as a clue for finding erroneous subsystems.

Unlike the basic GGM learning problem (1.11) which focuses on recovering the

topology of a dependency structure from a single dataset, our objective is to de-

compose the resulting GGMs from several datasets into common and individual

substructures. Hence, this common pattern is the invariance we aim to detect. See

Figure 4.I for an illustration. There are some prior studies on learning a set of

GGMs from multiple datasets. Varoquaux, Gramfort, Poline, and Thirion (2010)

and Honorio and Samaras (2010) imported the idea of Group-Lasso (M. Yuan &

Lin, 2006; Bach, 2008) and Multitask-Lasso (T\rrlach et al., 2005; Liu, Palatucci,

k Zhang,2009) and extended the framework of a single GGM setting. In both
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Figure 4.L: A decomposition of multiple GGMs into common and individual sub-

structures. The main objective of this chapter is to propose a methodology that

achieves this.

cases, the problem is formulated under the assumption that all precision matrices

share the same zero patterns. J. Guo et al. (2011) considered a method to avoid

this additional assumption, although the problem then loses convexity. Though

these approaches achieved some success in improving the estimation accuracy of

graphical models, this does not necessarily mean that they are suitable for finding

commonness across datasets as we will see in the simulation. In the context of

common substructure detection, Zhatg and Wang (2010) proposed using a Fused-

Lasso (Tibshirani, Saunders, Rosset, Zhu, k Knight, 2005) type of technique to

find an invariant pattern between two datasets. As a general framework for K
datasets situations, Chiquet, Grandvalet, and Ambroise (2011) considered impos-

ing sign coherence on the resulting structures. In the opposite context where the

target is dynamics rather than invariance, Zhou, Lafferty, and Wasserman (2010)

proposed using weighted statistics to trace the evolution of a GGM. We note that

there are also several related studies in the binary Markov random field litera-

tures (F. Guo, Hanneke, Fu, & Xing, 2007; Ahmed & Xing, 2009). They also use

/1-regularization (Wainwright, Ravikumar, & Lafferty, 2007) and F\rsed-Lasso type

techniques (Ahmed & Xing, 2009) for recovering temporal dependency structures,

which are technically quite close to the methodologies developed on GGM.
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The contribution of this chapter is twofold. First, we introduce the novel Com-

mon Substructure Learning (CSSL) framework that is applicable to a general case

of K datasets. Second, we show that the target problem can be solved by the

DAL-ADMM algorithm introduced in Chapter 3. In the proposed algorithm, the

inner problems for each iterative update are simple and can be solved efficiently

which results in fast computation. We confirm the validity of the CSSL approach

through simulations on synthetic datasets and on an anomaly localization task in

real-world data.

The remainder of the chapter is organized as follows. In Section 4.2, we briefly

review some existing GGM learning techniques. In Section 4.3, we present the

proposed framework and its theoretical properties. The optimization algorithm

based on DAL-ADMM is introduced in Section 4.4. The validity of the proposed

method is presented through synthetic experiments in Section 4.5. In Section 4.6,

we apply the proposed method to an anomaly localization task on a real world data.

Finally, we conclude the chapter in Section 4.7.

4.2 Structure Learning of Graphical Gaussian

Model

In this section, we review some prior extension of SICS problem (1.11) into multiple

datasets situations (Varoquaux et al., 2010; Honorio & Samaras, 2010; Zhang k
Wang, 2010).

4.2.L Learning a Set of GGMs with Same Topological Pat-

terns

The ordinary SICS problem (1.11) aims to learn one GGM from a single dataset.

The extension of this framework to multiple datasets has been studied by Varoquaux

et al. (2010) and Honorio and Samaras (2010). The task is to estimate K precision

matrices Ar, Az, . . . ,/\x from K datasets where the sample covariance matrices

for each dataset ur" ir,f,r,...,i*. The objective of this multitask extension is
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to improve the estimation accuracy of each GGM by incorporating the similarity

among datasets. In the framework of the above studies, GGMs from each dataset

are assumed to have the same topological patterns, that is, the same edge connection

structures while the edge weights might be different among GGMs. They both

introduced the followi\g (.r,p-Lorm of a set of K precision matrices {Ar}Lr,
1

ll^r. = i (iwr,,l,)',ll.^llr,p 
i=r\*=, /

as a regulafization term analogous to the Group-Lasso (M. Yuan & Lin, 2006; Bach,

2008) and Multitask-Lasso (Turlach et al., 2005; Liu et al., 2009) with p € [1, oo].

Varoquaux et al. (2010) has considered the case p :2 while Honorio and Samaras

(2010) used p : oo. These two choices are commonly adopted in many scenarios

owing to the computational efficiency. The entire estimation problem is defined as

κ

臨メ黒呈二}Lコ
Ъ鶴 劫 一洲 し

'

“

.1)

with non-negative weights '0r,r12,... ,Tlx. Without loss of generality, we can limit
ourselves to the normalized case ![, \n: I since the unnormalized version is just

a scaled objective function for some constant. The typical choice of parameters

would b" ,lo : Nr,lDf:rl/s where l/r is the number of data points in the kth

dataset. We refer to the problem (4.1) as Multitask Sparse Inverse Covariance

Selection (MSICS) in the remainder of the chapter.

Note that the MSICS problem (4.1) involves the ordinary SICS (1.11) as a special

case when p : L where lhe (.1,1-regularization term completely decouples into K
individual l1-norms. In the extended case for p > L, the regularization term enforces

the joint structure iyij (ff=, lA*,oi lo) 
i 

ao b" sparse, with .[,17 : 0 indicating that

the corresponding (i, j)th entries are zeros across alI K precision matrices.

4.2.2 Learning Structural Changes between Two GGMs

Although taking advantage of situations with multiple datasets using the above-

mentioned techniques is useful for improving the estimation performances of the

resulting GGMs, it only imposes joint zero patterns and does not indicate anything
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about the commonness of the non-zero entries. It is therefore not helpful when

comparing GGMs representing similar models where we expect that there may

exist some common edges whose weights are close to each other. Zhatg and Wang

(2010) considered the two datasets case and constructed an algorithm using a Fused-

Lasso type regularization (Tibshirani et al., 2005) to round these similar values to be

exactly the same allowing only significantly different edges between two GGMs to be

extracted. Their approach follows the ideas of Meinshausen and Biihlmann (2006)

by connecting the update procedure (1.10) for two datasets X1 and X2 through a

new regularization term for the variation between two parameters ll01 - 0rll,

∂誠凡喜 {:牌J― χttQ厖 十ρttL}十 γド1-釧 1,

“

・勾

where 1 > 0 is a regularization parameter for the variation. The new term enforces

the variation of some elements in two parameters to shrink to zeros. They also

provided a coordinate descent-based optimization procedure for the above problem.

4。 3 Learning Con■ 1■on Patterns in Multiple

GGMs

The above-mentioned work by Zhang and Wang (2010) adopted the idea of the

Fused-Lasso type technique using the specific formulation of the two datasets sit-

uation. In this section, we address our new framework, a Common Substructure

Learning (CSSL), for finding invariant patterns in multiple dependency structures

that is applicable to the general case of K datasets.

4.3.L Common Substructure Learning Problem

We first formalize what invariance we are aiming to detect in multiple dependency

structures. To begin with, we assume that the number of variables in each dataset

is the same) so that they are all d-dimensional. Also, the identity of each variable

are the same. For instance, a realization of 11 is always a value from the same

sensor while its behavior may change across datasets. We then define a common

substructure of multiple GGMs as follows.
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Definition 1 (Common Substructure of Multiple GGMs). Let /\p (k : I,2, . . . , K)
be a precrsion matrir correspondi,ng to the kth GGM. The common substructure of

the GGMs is then erpressed by an adjacency matri,r g 6 pdxd defi,ned as

84:
Ａ

　

０

ｒ

ｉ

く

―

ヽ

rf. Lr,ij : /\z,tj : . . . : l\x,tj,

otherwise.
(4.3)

(4.→

Note that this is a natural extension of the invariance notion adopted in the prior

work by Zhang and Wang (2010) for the case of two datasets. With an ordinary

sparsity assumption for GGMs, this definition leads the precision matrices to have

sparseness and commonness simultaneously. More specifically,

r Sparseness: As,;, : 0 for some k : 1,2,...,K and i, i : 7,2,...,d,

o Commonness: l\r,tj : /\z,tj : . .. : l\x,rj for some i,i : I,2,...,d.

Under the above commonness, the basic idea of our framework is to parametrize

each precision matrix 47, using two components, a common substructure O and an

individual substructure f)6 € lRd'd:

Ar:O*0*.

Here, each individual substructure matrix 06 is composed of non-zero entries that

are not common across the K precision matrices.

In the formulation (4.2), some entries in the two precision matrices are shrunk

to the same value owing to the effect of the term ll01 - 0rllr. In the proposed

parameterization, such commonness corresponds to the case when some entries of

the individual substructures are simultaneously zero, that is, f,)1,;7 : {}z,j : . . . :
Qx,tj :0. Hence, the non-zero common value is expressed by a common substruc-

ture matrix O. These facts motivate us to regulaize the individual substructures

through the group regularization llCIllr,p. On the other hand, we expect a common

substructure O to be sparse so that we can interpret it easily. To that end, we

adopt an ordinary (.yregulanzation llOll, and the overall problem is summarized as
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f01lows:

K

Q器″社12]ηたノQ tt Ωた;Ё∂―ρ‖O‖ 1-γ‖Ω‖lP,
“

.5)

s.t. O * flr € 5+ (k :7,2,. . ., K),

with regularization parameters p > 0 and 7 > 0. Since -((O f Or;tr), llOll, and

ll0llr,o are all convex, the entire formulation is again a convex optimization problem.

We refer to this problem as Common Substructure Learning (CSSL). Note that

in the above formulation, we have slightly relaxed the condition of commonness

to allow Oi7 and {lp,ii to simultaneously become non-zeros which is contrary to

Definition (4.3). We correct this point by applying the criterion (4.3) to the resulting

precision matrices Ar,Ar, ...,ir* in the post processing stage to extract only truly

common entries.

Here, we list two important properties of the CSSL problem (4.5), a dual problem

and the bound on eigenvalues. We first present the dual problem, which is essential

when we aim to solve the problem through DAL-ADMM.

Proposition 1 (Dual of CSSL). The dual problem of CSSL (1.5) i,s

κ

{鴫;凛:+鷹1とηたbg det%― α,

Σηた(%ヵ ―
'た

.′ )
た=1

/ K \a
l|,qfllWr.ii - f,r,.iilq ) < r (i,i : r.2' "',d)'
\ft--i /

where q denotes a parameter sati,sfging p-r * q-r : !. The resulti,ng matri,ces of

the dual problem Wf are related to the optimal prec'ision matrices Li through the

inuerse, /\i : Wi-' .

In both the primal and the dual formulations (4.5), (4.6), we enforced the positive

definiteness constraints, Ar : O * 06 € 5+ and Wp € .S+ so that the matrices are

valid precision or covariance matrices. Here, we show that they can be tightened

according to the next theorem.

≦ρ (り ,」 =1,2,… .,α),    (4.6)



84

Theorem 9 (Bounds on Eigenvalues). The opt'imal preci,si,on matrices for the

CSSL (/r.5) L!,L;,...,L|, wi,th 0 < p < Kil < oo haue bound,ed, ei,genualues

\Tt"Io < A; I \T*Io, where the bound,i,ng parameters \fi" and \f* are gi,uen by

λFm= Ъ牌たた十イ
κ力α2

λFaX

〃θ
“

,||*|ls αθηθιθs a sPθ cιttι ηογ翻げα mαιrづχ αηごts θづυθη bν llス |ls≡ maxづ σ。(■ )

υんθκ σづ(ス)づS αηづιんstηgυ ;α r υαιttcげ ス.

Using this result,we can replace the constraint Aた  ∈ S+Ⅵrith the tighter One

Aた ∈S才 ={ス ∈Rd×α
;ス ≧λFh島}and similarlyレレЪ∈{ス ∈Rd×α

;ス ≧λFax~1島 }・

NOte that this update is practically important when constructing an optilnization

dgonthm.絣nce the new cOnstrdtt set身 おcbsed,we can project pdtts out of

the constraint set onto the boundary,which is nOt possible for the open set S十 .

4。 3.2 1nterpretations of CSSL

The proposed CSSL problem (4.5)can be interpreted as a generalization of the

ordinary SICS prOblem(1.11)and its multitask extensionル ISICS(4.1).In the case

that γ→ ∞,the solution to CSSL is Ωl=Ω2=・ … =Ωκ =Od× d,which means

that all precisiOn matrices are equal and are represented by a single matrix O.ヽ 石ヽe

can obt滅n such a O by solving the SICS prOblem(1.11)With麗 =Σ鷹 lηた2た。On

the Other hand,if ρ≧κフγ,the common substructure Θ becomes zero.This Lct

f0110ws from the relationship between 4-nOrms:

γ l10 tt Ωλl11,P≦ ス十γ‖〇|11+γ ‖ΩI11,P

≦ρ‖0111+γ ‖ΩI11,p・

Suppose that the colnllnon substructure is non― zero,that is,O≠ Oα×α.The above

inequality then implies that the update Ωた ←― O tt Ωた and O ← 0ご×d improves

the objective fllnction value(4.5)withOut changing the resulting precision matrix

Aた =O tt Ωた,and thus the solution must be O=Od× d.In this situation,the CSSL
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problem (4.5) coincides with MSICS (4.1). For proper parameters p < Ki'y < *,
the CSSL problem (a.5) is intermediate between those two problems.

The CSSL problem can also be interpreted from a distributional perspective.

Flom the relationship between the Lagrangian expression and the constrained op-

timization problem, the CSSL problem (4.5) is equivalent to solving a set of K
maximum likelihood estimation problems under the additional constraints

‖OI11≦ δ,‖ΩI11,p≦ δ′
,

for some properly chosen positive constallts δ and δ′. lνloreover,we have

れ詔 腎りκ
‖Ωた~Ω″‖1≦

礼遇 腎っK2]卜
p切 |十 pこ弯|)

≦2‖ΩI11,∞ ≦2‖ΩI11,P,

(4。つ

where the second inequality comes froln the fact that exchanging the order Of

maxけ′=1,2… ,κ and Σl′ =l produces the upper bound.The last inequality is an or―

dinary relationship bet恥 ℃en 4-norn・ S・ These relations and the fact that Aた 一A″ =

Ωλ―Ωん′lead to the bound

r,r'\T -,oll^* - Ar ll' < 26' '

Hence, from the result of Honorio (20IL, Lemma 23) and general matrix norm rules,

the left-hand side of this inequality can be interpreted as the upper bound of the KL

divergence between two distributions pr(*) : N(Oa,A;1) and pn,(n) : N(Oa,Att).

With these properties, we can interpret the second constraint in @.7) as a constraint

on the similarity among distributions:

max Dxrlpr@)llpr,,@)l S 25' mav ll n -t ll
k,kt:r,2,...,K rK \*)r ' -" n:i,'{.',76 ll'^k llst

where Dxrlpr(n)llpr,(*)l denotes a KL divergence between two distributions pn(n)

and pp, (ar). Flom Theorem 9, the optimal parameters Ai, Ai, . . . , Lk have bounded

spectral norms for a finite 'y, and thus this upper bound on the KL divergence is

always valid. Moreover, we can further extend this bound into the extreme case

7 -+ oo and d' -+ 0. As we have discussed before, this is the case f,)1 - f)z :
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….=f)κ =Oα×d and the problen■ is equivalent tO solving a single SICS problem

for O with 2=Σ 縫 lηた2ん。Hence,士om Banettee et」 .(2008,Theorem l),Ⅵ

can see that the resulting precision matrices still have inite eigenvalues fOr ρ>0,

and the right hand side of the abOve inequality goes to zero.This implies that the

resulting distributions represented by precision Ⅱlatrices derived from CSSL(4.5)

have to be silnilar to one another at sOme level and they can be even identical in

the extreme caseo NOte that MSICS(4.1)is a Special case of CSSL when O=Od× α

and thus the same upper bound holds,althOugh there is the signiflcant distinction

that the parameter y in Mslcs(4.1)alSO attcts the sparsity of the resulting

precision matrices while CSSL(4.5)can cOntr。 l the sparsity through the Other

hyper―parameter ρ.

4.3.3 Connection to Additive Sparsity Models

In this section, we discuss some connections of the CSSL problem (4.5) to addi,-

t'i,ue spars'ity models (Jalali, Ravikumar, Sanghavi, & Ruan, 2010; Chandrasekaran,

Parrilo, & Willsky, 2012; Agarwal, Negahban, & Wainwright, 2011; Candbs, Li,

Ma, & Wright, 2011; Obozinski, Jacob, & Vert, 2011). In general additive sparsity

models, the objective parameter we want to estimate is modeled as the sum of two

components, as in (a.a). Hence, these two parameters are estimated using sparsity

inducing norms such as an l1-norm and a trace-norm. In this sense, CSSL can

be interpreted as a specific example of additive sparsity models where we use the

combination of an /1-regularizatiot and a group regularization.

Here, we point out two close works from Jalali et al. (2010) and Chandrasekaran

et al. (2012). The former considers the multitask least squares regression problem

under the combination of (4 and group regularizations. Their basic idea is quite

close to ours in that some regression parameters can be close to each other across

datasets. They also proved the advantage of combining two regularizations over us-

ing only one both theoretically and numerically. The latter study is on GGMs but

with different sparsity assumptions from ours. They show that the additive sparsity

model naturally appears in GGM when there are latent variables. In such a situa-

tion, the first component in the additive sparsity model corresponds to the precision
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matrix between observed variables while the latter component is an interaction be-

tween Iatent variables. This insight is also helpful for interpreting our model (4.4),

that is, a common interaction among observed variables is contaminated by the

effect of latent variables whose distributions are different across datasets.

4.4 Optimization via DAL-ADMM

In this section, we present the optimizaLion algorithm for solving the CSSL problem

(4.6). In a prior study, Tomioka et al. (2011) have shown that DAL is preferable

for the case when the primal loss is badly conditioned. See Tomioka et al. (2011,

Table 3) and the discussion therein. This is actually the case we are faced with, as

summarized in the next theorem.

Theorem LO. The Hess'ian matrir of the CSSL primal loss functi,onDf:trtt (.(@ +
flr;ir) is rank-d,efi,ci,ent while the Hess'ian matrir of the CSSL dual loss functi,on

-Df:rrlnIogdetWl, i,s alwaEs full rank for 0 < p < Kil < oo.

This fact motivates us to solve the problem with DAL, which we modify into

DAL-ADMM in Chapter 3 for a computational consideration.

4.4.1 Optimization via DAL-ADMM

To begin with, we rewrite the CSSL dual problem (4.6) in the following equivalent

form:
K

... .. Til^,, * - t Tr log detw1,,
{Wp,Yp;WpeS+}[:, i:,

s.t. q1rW1, *Yn - rlnf,r,:0 (k : 1,2,. . . , K),

ρ

　

　

ヽ

―

―

ノ

＜
一　
　
　
　
口
Ｆ

κ
れ

日
か

(4.助(i,j:1,2,...,d),

'y (i,i:r,2,...,d').

Although this formulation is slightly different from (3.1), it is still in the scope of

DAL-ADMM. Based on the above expression, we define the following Augmented
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Lagrangian function:

LB(w,Y, z) :- i nr,Iosd,etwn + e;,.,(Y) + (llnw +Y + lz - , rll' ,

k:L 
.r't' 2ll P llr'

(4.e)

where p is a nonnegative parameter, S,W, Y and Z are the concatenated matrices

sivenbvs:fr 1T f rT r--- L-rEz t.l ,W:lrrW2 **),Y: LhY2
-- rT r rTy") , and Z : lt, 22 2") , and f/ is the matrix constructed as

fI : diag(zlt,Tlz,. . . ,rlx) 8Ia where I denotes the Kronecker product. A function

p;tv) is a convex conjugate of a regularization term p llOll, +r llCIllr., and is given

bv

9カ ,γ (y)=ら (y)十 弓(y),

以η=他 11驚
川鋤~机

In the Augmented Lagrangian function (4.9), the optimal precision matrix A[ is rep-

resented by the optimal Lagrange multipliers Zi. This can be verified through a sim-

ple calculation. We set the derivative of the unaugmented Lagrangian Ls(W,Y, Z)

over Wp equal to zero and find that

W*-t :7tr,

which implies that A[ : Ztr from Proposition 1. This follows from the fact that the

solution to (4.8) must be the saddle point of the unaugmented Lagrangian function

Lo(W,,Y, Z).

We solve problem (4.8) using ADMM by iteratively applying the following three



ａｍｐＯｅ
ｈ

ＯＺ

従ヽ
　　　∈　　　一一　　Ｍ

Ｅ
”
岬
州
Ｍ，ｃ。

ｇｅ

ｒ
ｉ
ｌ
く
ｌ
ｉ
ｔ

Ｍ

呻　　　　　　　　　　　　ＡＤ

ｃ。
　

　

　

　

　

　

　

　

　

　

ｎｇ

一１１
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
．Ｓ．

ｎｔ

　

　

　

　

　

　

　

　

　

　

　

ｕ

ｕ
　

　

　

　

　

　

　

　

　

　

　

ｅ
，

Ｓ
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
Ｃ

ｐ

　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
ｎ

ｅ

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

　

ｅ

ｓｔ
　

　

　

　

　

　

　

　

　

Ｈ

parameter Z* is guaranteed as the number of iterations tends to infinity (Boyd

et al., 2011, Section 3.2). Therefore, we can find the optimal precision matrices

Ai, A;, . . . , AL using DAL-ADMM. In the following two subsections, we give the

update procedures of W and Y.

4.4.2 Inner Optimization Problem: Update of W

The updat e of. W can be factorized tnto K independent problems where each prob-

lem defines an update of Wp:

min -q*Losde:Wl, * *llrr*r + Y;t) * lz[' - n*i- ll'wp€s+ - '2 ll '" p llr,

By setting the derivative over Wp eettal to zero, we obtain

w1, - ( -Lvl" - !z['* t*) - *r;' : od,d.\ Tr,- 
r oq*- * 0n*

Now, we write the eigenvalue decomposition of the second term as

- 
1 vl' - *zf' + ik : (Jdiag(oy,o2,...,oa)[Jr .

T* " Frlr
The above matrix equation then has a solution of the form

Wrr: IIdtag(fu,62,. ..,60)Ut .

The equation on each eigenvalue is

oi_ ot- J_.A':0.
Fnn

f.oyi : I,2,. .. , d, which has the analytic solution

Note that the positive definiteness of Wp is automatically fulfilled since 6i ) 0 for

13>0.
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4.4.3 Inner Optimization Problem: Update of Y

The update of.Y is formulated as

- Rll
nynd,(l') + li{v) - tllr*('+l) + v + }zat- "rll",

or equivalently, the Euclidean projection of apoint Yo: -HW(t+l) - Z@ l0*HS:
t, : proj(y6 ,A) =argmin iU, - ]Ioll?,

where the constraint set is given by A: {n 
: ln, y2 ,*7' , lff:, y,1il3

\L

, , (Df:rlYo,,iln)i t ^, (i,i : \,2,...,d)). Note that in the current case, as
)

we discussed in Section 3.4.L, the projection function proj(Ys,,4) corresponds to

computing the proximity operator. We can further decompose this problem into

O(d') problems over g : (Yt,tj,Yz,;j,. . . ,Y*1i)' for each (i, j)Ih entry. Hence, each

problem is

ν=prOj(ν O,C),

“

・10

where go is a /{-dimensional vector with the ftth component equal to -qpW['.]r) -
Z[')ilg + rtkik,ij and the constraint set is , : {ue ]RK; ltlul< p, llullni t}
with 1r denoting a vector of ali ones.

For any q € [1, m], problem (a.10) has a trivial solution U : Ao if go € C. In the

remaining cases, that is, ltloAol > p or llgoll, ) 7, the solution is on the boundary

of the constraint set 0C : {u,lttrul: p, llulln< t}n {u;ltfiul < p, llulln: ?]
owing to the convexity of the objective function. Thus, the problem can be reduced

to a search on the boundary. However, even though the constraint set C is convex, it
is an intersection of two sets and the shape of the boundary 0C is rather complicated.

Therefore, we do not search on the boundary EC directly, but solve a set of simpler

problems instead. The basic approach is to classify the boundary into three parts,

namely

∂
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The problems we solve here are modified versions of (4.10), replacing the constraint

with g e AC,. for each rn € {7,2,3}:

A : proj(Uo,0C*).

Note that 0C1 and EC2 involve infeasible solutions to the problem (4.10). For

example, a point gr with llglln > 7 is infeasible even lf g € EC1, while these three

regions covers the entire boundary of the constraint set, 0C C U3^:pC*. This

guarantees that we can search on the entire boundary dC indirectly by searching

on the sets 0C^(^: L,2,3) instead. Hence, if neither of the solutions to (4.11)

f.or y e )Cy and A € AC2 are involved in C, the solution to (4.10) is in 0C3. We can

take advantage of this property to construct an efficient solution procedure. We

first solve problems (4.11) for g € 0C1 and A €. AC2, respectively, and if neither of

solutions are in C, we then solve (4.11) for g € )Cs. In this chapter, we focus on the

specific cases g : I,2, and oo, since efficient solution procedures are available. In

Table 4.1, we summarized the solutions to the problem (4.10). For further details,

see Section 4.8.1.

4.4.4 Convergence Criteria

In Section 3.4.3, we introduced two gaps as stopping criteria, namely a primal-gap

which measures how much the equality constraints in (4.8) is fulfilled,

primal-gap = llHW@ aY@ - Hsll'

and a dual-gap which is a degree of the feasibility condition of the solution, defined

AS

dual-gap = 0llH(Y('+1) - v('))ll" .

Here, we consider another criterion called duality-gap which is the difference be-

tween the primal and the dual objective function values. Let f (W) be the objective

function in (a.6) and let g(O, CI) be the one in (4.5) The duality-gap at the tth

iteration is then defined as

(4.11)

duality― gap≡ ∫(予
レ(t))一

口9れ
g(° (プ ),Ω (ι

′
)),
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Table 4.1: Solutions to problem (4.10) for q :
sections for the detail. An operator Zr(x) in y €
for each Es,i, that is, At : sgn(Es,;)mit(lEo,rl, f).

1,2, and

∂C21br 9

corresponding

a thresholding

ｅ

　

　

ｓ

ｅ

　

・
１

「

　

　

∞

∞
　
　
〓

g=1 g=2 9=∞

νO∈
`

ν =υ 0

υ∈∂

`1
ν=け    転 6就bnは ⇒

υ∈∂

`2

Continuous Quadratic
Knapsack Problem

(Section 4.8.7.2)

ν=五
万雨

ν°

(SeCtiOn 4.8.1.3)

ν=■ (ν。)

(SeCtiOn 4.8.1.4)

ν∈∂

`3

Continuous Quadratic
Knapsack Problem

(Section 4.8.1.5)

Analytic Solution
(Section 4.8.1.6)

Continuous Quadratic
Knapsack Problem

(Section 4.8.L.7)

where π′(ι),0(ι),and Ω(t)denote parameters estimated in the tth step after proper

projections and transformations.ヽ
～
b need these modiflcations of variables since

the estilnators in intermediate steps are not necessarily feasible.  For example,

14/C)does nOt need to satistt the cOnstraints in(4.6)since they are imposed only

on a■7ariable y in the DAL―ADMM setting(4.8).The projected variableル C)

isル0=_″-1,0+s where'0=proj(40,ス)and対の=―〃(″
0-S).

The same goes for A(ι )=Z(→ .An estimator AF)is not necessarily posit市 e de■

hit%and thus 17e project them as AP=proj体 り,身 ).Ths prtteCtbnぉ co‐

AF)=び diag(σ l,σ 2,…・,σd)び
丁.The projected matr破 is then giК n byÅ∬

)=

びdiag(δ l,δ 2,…・,δα)び
丁where each eigenvalue is givenけ δづ=max←乃,λPh).

For computing the value of g(OC),Ω ←)),.7e need to further factorize AC)i就 。

00)and ΩC).This can be computed in an elemellt― wise manner.Let θ=0身),

Ω
:り =A:リ ーθ,and λ=(Å 1り ,Å夕|プ ,・ …,A2,プ )T・ The problem we need to solve is



then given by

m;npl|l+?ll,\ -eLxllp.

For p : 1 and m, this function is piecewise linear with breakpoints given by

{0, )t, \2,. . ., )6} and {0, (min6 );, * max6, \n)12}, respectively. Hence, the opti-

rrral0 is one of these breakpoints and can be found by searching over the candidates.

For the case p : 2, there exists an analytic solution

(

o : :l ,lr - sgn(l|.\), \'l , fK-p, (()

In our simulations in Sections 4.5 and 4.6, we have evaluated both criteria. We

set two threshold parameters €pdgap and egup, and evaluate the conditions

max(primal-gap, dual-gap) ( 6pdg.p,

duality-gap 1! €gap,

in each iteration. If one of two conditions is fulfilled, we regard the iteration as

converged and output the result. In the simulations in Sections 4.5 and 4.6, we set

€pds.p : 10-5 and egu,p : I0-5d.

4.4.5 Computational Complexity

In this section, we summarize the computational complexity of the proposed algo-

rithm. In the trZ update step, the computational cost is dominated by the eigenvalue

decomposition of a dx d matrix, which requires O(d,t) operations, so that the overall

complexity is O(Kds) for the update of K matrices. In the Y update step, we need

a projection proj(Ys,.,4) which is divided into O(d2) subproblems. For both q:1
and q : 6, the most computationally expensive procedure is solving the contin-

uous quadratic knapsack problem which requires sorting O(K) elements and has

complexity O(KInK)r. In the case Q:2, the update is analytically available with

O(K) complexity. The overall complexity for the Y update is thus O((K ln K)d2)

for q :1, oo and O(Kd2) for q - 2. The complexity for the Z update is O(Kd2).
lSee Section 4.8.1.2,4.8.1.5,and 4.8.1.7.
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In the convergence check, we need to calculate the projection proj(Af',S**) which

has O(ds) complexity or O(Kds) for K matrices. We also need the projection

proj(Yo(t),.,4) which is again O((KlnK)d,2) for q:1,oo and O(Kd2) for q:2.
Summarizing the above results, we conclude that the computational complexity of

one update in DAL-ADMM is O(Kd3 + (K ln K)d2) for q : 1, oo and O(Kd3) tor

e :2. In many practical situations, the number of datasets K is in the tens, while

the dimensionality of the data d can be a few hundred. In such cases, ln K K. d
holds, and the entire complexity is approximalely O(Kd3). We note that this is the

least necessary complexity in general. For an unregularized setting, the solution

A[ is a maximum likelihood estimator i;l, which requires O(d,t) complexity for a

matrix inverse and 0(Kd3) for K matrices.

4.4.6 Heuristic Choice of Hyper-parameters

In the CSSL problem (4.5), the choice of hyper-parameters p and 7 affects the

resulting precision matrices. There are several approaches for choosing these, such

as cross-validation (M. Yuan & Lin, 2007; J. Guo et al., 2011) and the Bayesian

information criterion (J. Guo et al., 2011). Apart from selection techniques, the

following result gives us some insight into p and 7, and is helpful in analyzing the

data more intensively.

Proposition 2. Let the bi,uariate common substructure O and indi,ui,dual substruc-

tures {t1, be i,n the forms" : f: 0f 
orae,* : f'* 'r] , ora consi,d,er the fouowlng

l0 0J lrr ,r)
CSSL problem wi,th regularizati,ons only on off-di,agonal entries:

κ

Qお龍12]η
たノρ tt Ωtt Ё∂-2洲列-2γレ鵬,

S.t.0+Ωた∈S十 (た =1,2,… 。,κ ),

υんθ
“

ω=(ω l,ω2,…・,ωK)丁 .7Lθη ιんθ9謄αttθηαJ θηιttcsげ ιんθ
“

Szιιtt P“ cづ―

sをθη παj7・OCeS θ,ω んαυc ιんθルJιθυづη P"pθ ttν f

“

.12)

た鞘/日≦γ ttd唐引≦ρ⇒θ=Qω =0る



95

where 11, i,s the off-d"iagonal entrg of I,n.

Although the result is specific to the bivariate case, we can use this as a guideline

for choosing the hyper-parameters p and 7. It also shows that p and 7 are not inde-

pendent of each other, but rather they should change simultaneously proportional

to maxl≦にκ lγたl and lΣ鷹lηたrλ l,respectiК
II In particulaL if each matrix Ёたis

multiplied by some positive constant c, the above condition indicates Ihat p and 'y

also need to be multiplied by c. Such scale invariance is maintained only by a linear

model between p and 7. Therefore, we construct the following heuristic based on

this linear model.

1. Let urj rnox*:r,2,...,*lEr,nil and o.;7: llf:, qr,ir,,;il. w" then assume that

the linear relation

u6i:uii31 *Ss,

holds for all entries 'i, j : 1,2,. . . ,d f.or sorrl€ s6, s1 € IR.

2. Estimate s6 and s1 from the tuples {uri,rni}r,i:r,2,...d, using a least squares

regression.

3. Parameterize p andl as p: max(osr *s0,0) and 1: a using a parameter

a.

This procedure provides an efficient way of tuning p and 7 simultaneously through

a single parameter a.

4。 5  Silnulation

In this section, we investigate the performance of the proposed CSSL approach on

finding common substructures among datasets through numerical simulations.

4.5.t Generation of Synthetic Data

Here, we briefly summarize the data generation procedure for our simulation. For

the synthetic data, we need K precision matrices with sparseness and common-

ness. We tackle this problem in a two-stage approach. We first generate a single
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sparse precision matrix, and then add some non-zero entries to make K matrices

where the additional patterns are independent of each other2. After K precision

matrices Ar, Az, . . . ,l\x have been constructed, we generate K datasets from the

corresponding Gaussian distributions ,A/(Oo, A* t) for k : L,2,. . . , K.

4.5.2 Baseline Methods and Evaluation Measurements

In the simulation, we adopt SICS (1.11) and MSICS (4.1) as baseline methods

to compare with CSSL. Since neither method is designed for finding a common

substructure, we apply a heuristic to extract the substructure 6 frottt the estimated

precision matrices Ar,Ar,...,lrn. Note that, in SICS, each A6 is estimated by

solving (1.11) individually while the set of matrices is estimated simultaneously in

MSICS (4.L).The following is the heuristic criterion used:

OtJ=
if max1,p,: r.2,...,Kllr.ni - frr,.ril S ,,

otherwise,

where e is some given threshold. Here, to avoid selecting zero edges as parts of

a common substructure) we set Aii to be zero rf i\,tj : itz,tj : .. . : iyx,ri : 0

and one otherwise. In our simulation, we select the threshold e from the resulting

precision matrices. Specifically, we compute variations of estimators for each entry( ,. . .)
{maxl,,7,,:1 ,2,...,x ll\rn - /\rr,,iil} 

,,r=r,r,...,oand 
then set e as the 100es% quantile. This

corresponds to considering the lower 700eo7o varied entries as common.

In our simulation, we evaluate the common substructure detection performance

through precision, recall, and the F-measure. While these values are defined based

on the number of true positive, false positive, and false negative detections, we

slightly modify these measurements. The reason is that finding common depen-

dencies with higher amplitudes is much more important than finding very small

dependencies which can be approximated as zero in practice. To that end, we

adopt following weighted measurements, namely WTP (weighted true positive),

θ

　

　

０

ｒ

ｉ

く

ｌ

ｋ

2See Section 4.8.2 for further details.
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WFP(weighted Llse positiК ),and WFN(1祀 ighted LIse negat市 e):

WTP=ンカら,″亀%翠,κ
嚇

WFP=Σ 鳥,″ ら,り (1-几 ,″
)た二骰 干,KL″ |,

こ<ブ

WFN=Σ
{え ,″ (1-ら ,″ )十 ←

― え ,り)}亀 ゥト身ぱ腎,κ
い 切 |'

こ<′

where乳
,二′,ら ,こ′and島 ,t′

are deined as

島,づJ=」 (た
,た
′彗腎 ,̈K IAた

,t′
― Aた′

,t′ |<6),

Jp,り =」 (λ二畢警,K IAた
,″ |>0),

島,づ′=I(た
,た
′当鮮 ,κ lAた

,″
― Aた′,tJI=0)・

Here,I(P)iS an indicator fllnctiOn that returns l for a true statemellt P and O

other、vise. The modined measurements in the silnulatiOn are deined using these

values as

WTP
Precision=而

P十 V`FP'
VヽTP

Recall=民
雨〒P+、vFN'

F― IIleasure=2iliま
i[I:ilifiじまjtti・

In the silnulation,恥re also observe whether the zero pattern in the precision lna―

trices is properly recovered thrOugh CSSL,SICS,and ⅣISICS.ヽ 始ヽuse the following

F―Ineasure fOr this eヾまuation,which lⅣe refer to the''F。―Ineasure''to distinguish it

fron■ the one above:

2TP
F。―measure=2TP tt FP tt FN'

κ

TP=ΣΣIはれ″=Of体礼″=0,
た=l t<′

K

FP=ΣΣf体切≠の」はれり=0,
た=1 づ<′

κ

FN=ΣΣ」体切=の J体れ弯≠け
た=1 じ<′
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4。 5。3  Result

ヽヽ石e cOnduct silnulatiOns for three cases with data dilnensionality α=25,50,and 100

恥「here the number of datasets is■ xed at fr=5.FOr each case,we generate precision

matrices Al,A2,・ …,Aκ tO have 15%non zerO entries on average.In the simulation,

、ve randolnly generate datasets 100 tilnes and apply CSSL,SICS,and ⅣISICS using

several di“ erentけper‐ parameters,、 vhere in each run,n7e Set the number of data

points in each dataset to be 5α. FOr CSSL,we use the heuristic、Ⅳith a parameter

α varying fronl 10~2t。 10-O over 41 values.ヽ 4ヽe dsO evaluate results for ρ=α

and γ二=oD tO See the elbct of γ in an extreme case.As discussed in Section 4.3.2,

this corresponds tO sOlving a single SICS prOblem with発 =Σ縫 lηた2た and setting

the result to Al=A2=・ …=AK=A.For SICS and ⅣISICS,v/e set the value of

ρ to be α.For each lnethOd,we adopt the resulting precision llnttrices with 15%

non― zero entries among these 41、 ralues of α. In SICS and ⅣISICS,we also vary the

thresh01ding parameter 6。 among O.5,0.7,and O.9.

ヽヽ4e summarize the results in Table 4.2.From the table, 恥re can see the clear

advantage of CSSL、 、rith P==2 and(x)over the other lnethOds.These t恥 ′o llnethods

shO、v higher F― Ineasures,恥 rhich are fron■ their higher precision.This contrasts、 vith

SICS andルISICS,恥「hich achieve high recall but have relatively poor precision.This

implies that structures detected by those methOds involve not only true cOmmon

substructure but alsO many false detections. This sho恥「s the drawback of estilnated

precision matrices derived thrOugh SICS and ⅣISICS,that is,their estilnators tend

to be highly、アaried even for true colnlnon entries恥 アhile this is nOt the case for

CSSL. This phenOmenon is especially signiflcant in SICS, lⅣ hich can hardly flnd

colnI■on substructures oⅥ ring to its highly varied estilnators. The results fOr lν ISICS

under p = ∞ and 60 = 0.9 are still better than the others, althOugh 6。  = 0.9

means that 90%Of estimated non― zero entries are considered commOn,which is

too optilnistic. ルloreover, we can see that the improvement of the F― Ineasure is

achieved by the grO、 vth Of recall by contrasting the results、 、rith 6。 =0.5 and O.9.

This implies that variations on the true conll■ on substructure mostly happen in

between 50°/O and 900/0 0f the entire variations of the estilnated precision matrices,

恥′hich are highly varied and can hardly be considered cOmmon. NOte that despite
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Table 4.2: Simulation results for three cases (d - 25,50, and 100) with K : 5

datasets evaluated by weighted precision, recall, F-measure, and Fs-measure. The

measurements are averaged over 100 random realization of datasets. The numbers

in brackets are standard deviations of each measurement. Each of the three rows

in SICS and MSICS corresponds to results with e6 : 0.5,0.7, and 0.9 from the top.

Top three results are highlighted in each measurement.

(a)α =25

CSSL

(p=1)

ⅣISICS  ⅣISICS

(p=2)(p=∞ )

CSSL   CSSL

(p=2)(p=∞ )

CSSL

(γ =∞ )

SICS

Ｏ

①
】
』

54(.23)

49(.21)

45(。 19)

。84(。 19)。 70(。 16).56(。 19) ・48(.20)

.14(.14)

.20(.16)

.33(■ 6)

38(.21)

43(.21)

41(.19)

６
の
配 .45(.32) .82(.14) 。84(。 12)

.07(.07)

。86(。11) ・23(.18)

.80(.20)

48(.2o .60(.2o

74(.1動 .74(.lo

83(.13) 。86(。 11)

“

.09(.08)

.60(。 19) ・21(.16)

.45(.18)

41(.21).55(.23)

53(.21).58(.20)

53(.19)・ 58(■ 8)

.56(.22) 。75(。 14).66(。 17)

“

.92(.0動 .92(.0動  。92(.02).92(.02).92(.02).93(.02).92(.02)

b)d=50

CSSL

(p=1)

CSSL    CSSL

(p=2)(p=∞ )

SICS
ⅣISICS  L71SICS

(p=2)(p=∞ )

CSSL

(l: oo)

６

Φ
】
』

10(.13) .24(.20) .58(。 19)

13(.14)  .37(.20)  .52(.19)

27(.19)  .42(.18)  .47(.18)

.87(。 11)・69(.14) .56(.17) .47(.17)

．Ｏ
①
″出

.41(.20) .83(。 11) 。85(。 10)。 91

.04(.04)

(.05) .10(■ 1)

.50(.22)

18(■9 .60(.19)

51(.21).72(■ 6)

81(.12) .86(.08)

餞 .53(.20) 。75(。12)。 66(。 15)。61

20(.19

42(.2の

54(.1つ

.05(.00

(。
15).10(■ 1)

.34(.2の

.58(.19)

.59(.18)

.60(.16)

L .90(.00 ・90(・ 0動 ・89(.0動 ・89(.00 ・89(.00 ・90(・ 0動 ・90(・00
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(C)d=100
CSSL

(p=1)

CSSL   CSSL

(p=2)(p=∞ )

CSSL

("r: m)
SICS

ⅣISICS  NISICS

(p=2)(p=∞ )

６

の
】
飩

.68(。 15)

.62(.16)

.55(.16)

。91(.07)。 78(。 10) .64(.14) .53(.15)

09(.11)

10(.12)

22(■ 7)

■7(.lo

.33(.21)

.46(.18)

．Ｏ
①
配 .37(.18) .81(.11) ・83(。 11)。 95

.03(.10)

(.02).06(.10)

.24(.19)

.06(.10)

.25(.21)

.67(.16)

.59(■ 7)

.67(.15)

.82(.09)

L

08(.11)

28(.21)

54(.1つ

.51(.19) 。79(。 10)。 72(。 12)

.05(.1の

。67(。 12) .07(.10)

.22(.18)

63(.16)

64(■ 5)

65(。 14)

“

.87(.04).87(.04).87(.03).87(.03).87(.03).88(.04).87(.03)

the significant difference in the common entry detection performances, all methods

achieve comparable zero pattern identification performances as shown by the Fs-

measure. This shows that finding common entries is a different problem from the

ordinary graphical model selection, and that only CSSL works well for both tasks.

We note that CSSL with p : 1 and ? : oo give two extreme results. In the

former setting, the resulting precision matrices achieve higher precision with lower

recall, while it is the opposite in the latter setting. The first result is caused by

the difference between the term llQllr,o with p : 7 and p > 1. For p : 1, llQllr,o

completely decouples into ordinary h-regularizations and the resulting precision

matrices do not necessarily have common zero entries in individual substructures.

Intuitively speaking, the results for p : t have common zero entries only when it
is strongly confident, which results in a very conservative performance compared

with p > 1. On the other hand, if 1 : oo, the entire structures are considered to

be common, which results in fewer false negatives and more false positives.

4.6 Application to Anomaly Localization

In this section, we apply CSSL to an anomaly localization problem. The task is to

identify contributions of each variable to the difference between two datasets. Cor-
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relati,on anomal'ies (Id6 et al., 2009), or errors on dependencies between variables,

are known to be difficult to detect using existing approaches, especially with noisy

data. To overcome this problem, the use of sparse precision matrices was proposed

by Id6 et al. (2009) since the sparse approach reasonably suppresses the pseudo-

correlation among variables caused by noise and improves the detection rate. Here,

we propose using CSSL. There is a clear indication that the proposed method can

further suppress the variation in the estimated matrices. In particular, we expect

that dependency structures among healthy variables are estimated to be common,

which reduces the risk that such variables are mis-detected and only anomalies are

enhanced.

4.6.L Anomaly Score

We adopt the measurement for correiation anomalies proposed by Id6 et al. (2009).

This score is based on the Kl-divergence between two conditional distributions.

Formally, Iet n be a Gaussian random variable which follows N(Oy,A|1) before

the error onset and ,A/(0a, Ar l) afterward. We measure the degree of anomaly on

the ith variable 16 using the Kl-divergence between conditional distributions from

before and after the error, which are p1(rilnr;) and 'pr(ralry,), respectively, where

r1r is the remaining d - 1 variables except for ri. To compute the score, we first

divide the precision matrix A1 and its inverse Wl rnto a (d- 1) x (d- 1) dimensional

matrix, a d - 1 dimensional vector, and a scalar,

14/1≡ A「
1=1杵

;iト

where we have rotated the rows and columns of A1 and W1 simultaneously so that

their originali,th rows and columns are located at the last rows and columns of the

matrices. The matrix A2 and its inverse W2 ate also divided in a same manner.

The score is then given by

f
dl' : I D*"ftr@,1*y)11,pr(r,lry)]p,(rro) dry

J-

: ul(lt- r'\ -r- !(l;W'z - l'' %l' \ r ( ' )' 'l

- tz) +t[l;| --l;I'- ) +, 
{tn 

^,+ 
o,()' - 

^,) }.

Al=|:i tト
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Here, the Kl-divergence is averaged over the remaining d - I variables 216. Since

the KL―dittrgence is not symmetric and α:2≠ α:l h01dS in general,the resulting
anomaly score 07 is defined as their maximum:

c=max(α :2,α子
1).

“

.13)

4.6.2 Simulation Setting

We evaluate the anomaly locaiization performance using sensor error data (Id6 et

al., 2009). The dataset comprised 42 sensor values collected from a real car in 79

normal states and 20 faulty states. The fault is caused by mis-wiring of the 24th and

25th sensors, resulting in correlation anomalies. Since sample covariances are rank-

deficient in some datasets, we added 10-3 on their diagonal to avoid singularities.

For simulation, we randomly sample K,, datasets from the normal states and K1

datasets from the faulty states, and then estimate sparse precision matrices using

six methods, CSSL with p : I,2, and oo, SICS (1.11), and MSICS (4.1) with p : 2

and oo. For CSSL, we adopt the heuristic and set p : max(os1 * ss,0) and 1 : s1

for a given a, and for SICS and MSICS, we set p : a. We test each method for

11 different values of o ranging from 10-1'5 to 10-0'5. The weight parameters 47, in

CSSL and MSICS are set to b" rl*:7l2Kn for normal datasets and r1p:7l2Kt
for faulty datasets to balance the effects from the two states. Since the anomaly

score is designed only for a pair of datasets, we calculate anomaly scores for each

of Kn x K1 pairs of datasets.

4.6.3 Result

We repeat the above procedure 100 times for 4 different settings, [K,,, K1] :14,71,

[12,3], 120,5], and [40, 10]. For each run, we evaluate the localization performance

of each method by drawing an receiver operating characteristic (ROC) curve and

measuring the area under the curve (AUC). In Table 4.3, we summarize the best

median results for each method and setting. The table shows that CSSL with

P : 2,m and MSICS with p : oo achieve better localization performances than

the others. In particular, CSSL with p : 2 and oo achieve AUC : 1 as their
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Table 4.3: Anomaly localization results under 4 different settings, lK", Kr) :

[4,1],172,3], [20,5], and [40, 10]. For each method, we compute precision matri-

ces for 11 different values of a ranging from 10-1'5 to 10-0'5. The table shows the

median of the best AUCs among these 11 results over 100 random realizations of

datasets. The numbers in brackets are the 25To and the 75% quantiles. The bold

font represents the top three results.

[塩 ,埼]=卜 ,」 [島 ,埼]=μ 2,司

best AUC α best AUC α

CSSL(p=1)

CSSL(p=2)

CSSL(p=∞
)

SICS

MSICS(p=2)

MSICS(p=∞
)

.975(.950/.98つ

987(。963/1.00)

987(.963/1.00)

.975(.938/.987)

.975(.950/.987)

987(。963/1.00)

10~09

10~°
9

10~° 9

10-05

10-08

10~11

.975(。 950/1.00)

。987(。 963/1.00)
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median performance in some cases. This means that they detect faulty sensors

perfectly for more than half of the simulation. To see further differences, we plot

the median anomaly scores derived from each method for [K", Kr] : [20,5] in

Figure 4.2. Flom these graphs, we observe a clear distinction between successful

methods and others on the significance of healthy sensors. The 22nd and the 28th

sensors are relatively highly enhanced in SICS and MSICS with P :2, but are not

in CSSL and MSICS with p: @. We conjecture that this is the major cause of

performance differences. Interestingly, not only the 22nd and the 28th sensors but
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Figure 4.2: Median anomaly scores for each method under lK", Krl : 120,5] with

best AUCs. Each plot is normalized so that the maximum is the same. Dotted

lines denote true faultv sensors.

most of other healthy sensors also have the same tendencies. That is, CSSL and

MSICS with p : oo reasonably suppress their significance while keeping erroneous

sensors enhanced. Moreover, although the differences are subtle, we can see that

CSSL with p : 2 and oo more successfully suppress the significance of sensors 1

to 27 and 33 to 42 than does MSICS with p : oo. Thus, as we expected in the

beginning, CSSL reduces the nuisance effects and highlights only variables with

correlation anomalies. The remaining peaks at some healthy variables are caused

by the effect of the two faulty sensors since their effects may propagate to other

healthy yet highly related sensors.

4.7 Conclusion

In this chapter, we formulated the CSSL problem for multiple GGMs. We further

showed that the problem can be solved using DAL-ADMM with each updating
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step computed efficiently. Numerical results on synthetic datasets indicate the clear

advantage of the CSSL approach, in that it can achieve high precision and recall at

the same time, which existing GGM structure learning methods can not achieve.

We also applied the proposed CSSL technique to the anomaly localization task in

sensor error data. Through the simulation, we observed that CSSL could efficiently

suppress nuisance effects among variables in noisy sensors and successfully enhanced

target faulty sensors.

Several future research topics have been indicated, including analyzing the asymp-

totic property of the CSSL problem (4.5) and extending the current formulation to

the Adaptive-Lasso (Zoq 2006; Fan, Feng, & Wu, 2009) type one to guarantee the

oracle property (Zw, 2006) of the estimator. Applying the notion of commonness

to more general dependency models, such as those with non-linear relations and

commonness based on higher-order moment statistics, is also important.

4.8 Appendix

4.8.l  Solutions to(4。 10)fOr 9=1,2,and∞

Here,37e prOVide detailed derivations of Table 4.1.

4.8。 1.l  The solution is in∂θl

Problem (4.11) for y e 0C1rs formulated as follows:

‖ν―ν。||:, S.t.11lν l=ρ・
１

一
２

ｎｍｉ
ν

“

.14)

Note that we ignored the constraint llgll, f l beca',tse it holds for general gs and 1

with probability one. Hence, our interest is whether the solution Io @.7! satisfies

llglln 3 7 or not. The additional constraint is not important in this respect.

The problem (a.lQ has two possible cases as its solution, ltrA: p and ILA :

-p. For each case, we can solve the problem using a method of Lagrange multipliers:

句
nw:陶―υO曜 +μ ttυ -0,
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where e e {p,-p}. By setting the derivative over gl equal to zero, we obtain

U: Uo- ltLx. Moreover, by substituting this result into the above, we derive

the optimal p as p : (L[oAo - e) llf , and the resulting objective function value is

(tlrAo- <)'lZN.The constraint ( - p or e : -p is chosen so that this objective

function value is minimized. Obviously, ( : p is optimal for the case when LLao >
0, while e : -p for llryo< 0. Thus, the overall solution to problem (4.14) is

Iloao - pssn(I|a), 
_.

KL^

4.8.I.2 The solution is in )Cz for q : 1

When the solution is in )Cr, the problem is formulated as

. 1 ,,

^d";lly - aolll, s.t. llalln : t.

υ =νO―

Here, the shape of the constraint boundary changes according to the value of q. For

general q € lI,m], there exists several algorithms to solve this problem (Boyd &

Vandenberghe, 2004; Sra, 2011). In particular, for Q: I,2, and oo, we can derive

solutions in very efficient manners.

For g : 1, Honorio and Samaras (2010) showed that the problem is equivalent

to the following cont'inuous quadrati,c knapsack problem:

“

.15)

(4.lo罐款れ鋼ん… Q瑶～%

which relates tO υ by νた=sgn(ν o,た ント HOnoriO and Samaras(2010)alSO provided

a solution technique for this prOblem.Fronl the KKT cOnditiOn, the s01ution to

(4.16)is 4(ν)=maX(lν o,た |― ν,0)fOr SOme constatt ν.Moreover,the optimal

ν satisies llz(ν )=γ o Since llz(ν )iS a decreasing piecewise linear function

with breよ points{lνo,た |}縫 1,n7e Can ind the minimum breakpoint z/。 that sttisies

llz(z/。 )≦ γけ SOrting the κ breakpoints.The optimal ν is then giКn by

ν=蛯
lνO,た |― γ

l為 |  '
where為 ={た ;lνo,た |― 埼≧0}・ Note that the comple対 ty of this algorithm is

ο(κ 10g κ)SinCe we conduct a sorting of κ values3.

3We can further reduce this to expected linear time complexity by introducing a randomized

algorithm (Duchi, Shalev-Shwartz, Singer, & Chandra, 2008).
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4.8.1.3 The solution is in 0C2 for q:2

We can derive the solution to the problem (4.15) for q : 2 analytically. We solve

the problem using a method of Lagrange multipliers:

' 1rr ,2 )r,, ,2

1;" -i" 2tlu - aoll; + ,(llulli - 'y') .

By setting the derivative over gl equal lo zero, we derive U : aol(7 * )). Moreover,

from the constraint llAll, :7, the solution is

a: ,7, An'
llAollz

ｒｅ

岬
ｂｙ　　　　句

４．８。．．４Ｔｈｅｓｏ‐ｕ̈
　
　
　
　
ｗｈｉｃｈｉｓ

. The problem is just a

4.8.1.5 The solution is in )Cs for q : 1

We provide the solution procedure for (4.11) when A € ACa and q: l based on the

next theorem.

Theorem LL. Let ! be the solution to problem (/r 11) for A e Aq and suppose 'it

is i,nfeasi,ble i,n the original problem (/r 10). Then the solut'ion to (4.11) for A e ACa

has same si,gns wi.th !, that'is, ilnyx > 0 for k : I,2,..., K.

From this result, we can factorize the variable indices into two parts, I+ :

{k;ilu > 0} and T- - {k;A* < 0}. Using this factorization, we can rewrite the
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problem as

. 1\-/ \2,1s-,
^i"; l- @* - ao.)' * ; >_,fu,, - ao.,,)' .
v -ker+ -k€T.-

s.t. Drr+ I y*:e,
keTa keT-

Drr- t ak:l,
keTa keT-

where ( e {p, -p}. This can be divided into two independent problems defined

two sets of variables {At;k eI*} and {E1,;k eT,-}, respectively, given by

-i"; ! (uf - aot)' , s.t. s+ ) o, D,fi :+,
u+ '- kez+ k€Ta

ツ:とし「+蜘02,試 .ク ≧Q Σν『=
たcπ_

γ一ξ

The sOlutions tO these problems relate tO ν in that ν考=νォforた ∈Ztt and νた=―ν
「

forた ∈Z_.These problems are continuous quadratic knapsack problems and the

solutiOn can be foundけ uSing the same algorithm as in problem(4.16).ヽ 石ヽe der市e

the flnal solution by solving these prOblerns for the tn70 caSes c=ρ  and C=―ρ,

and choosing the one with the smaller objectitt functiOn value in(4.11).

4.8。 1.6 The solution is in∂亀 for g=2

ヽ
～
b can derive the solutiOn tO the case υ∈∂

`3 and 
α=2 analytically. ヽヽb use a

method of Lagrange lnultipliers:

りnη鸞:|lν
―ν。||:+μ (1lν ―C)十

'(|lν

llζ
―γ2),

where c∈ {ρ,一ρ}. By setting the derivative over ν equal to zero, we derive

ν=(υ。―μlK)/(1+λ ).If ρ=0,We have μ=1lν。/κ frOm the constraint

llυ =0.Hence,frOm‖ νl12=γ'We Obtain the optimal υ as

ν=  し―鳳a.

FOr the case of ρ>0,Ⅵ have 1/(1+λ )=ξ/(1lν。―Kμ)士Om the constrdnt

llυ =(.Hence,we ha、re a quadratic equation in μ from the constraint llν ll:=γ
2:

ρ
211υ

O_μ lκ ll:=γ
2(1lν

O― κμ)2
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Solving this equation gives the optimal gr as

υ =
LLao - K p'

(ν。― μlK),

where

μ=衰11lυ O土 ν7),

γ=(1lνO)2_K
γ2(1lυ。)2_ρ

2‖ν。||:

γ
2K_ρ 2

By substituting this result into l υ―ν。||:,We obtain

|lν
―υOII:=券

“

-1lνO)2+K‖
νO‖

`―

にlυ∂
2“

土 ν7)2.

Since κ llυ。||:一 (1lυO)2≧ 0,the minimum of this value is achievedけ Ch00Sing ξ

and a sign in μ as c=Sgn(1lυ O》 and― Sgn(1lν。)respectivelI Thus,the cpverall

result is given by

ν=電くれ、頭石ぼ雀
=π
万し0~μa,

μ=券 (1lνO― Sgn(1lυ。)、
/7)・

4.8。 1.7 The solution is in∂
`3 fOr g=∞

The solution for(4.11)with ν∈∂

`3 and 9=∞
has two possible cases,1lν =ρ

and llν =一ρ,Where for each case the problem is giК nけ

嗜n】 :し
にνQが '&[1lν =C,一γlκ ≦υ≦γlK,

“

.1つ

with( e {p,-p}.Here, theconstraint llgll-:'i,isrelaxedto llgll- ('y. However,

if thesolutionto(a.17) satisfiesllgll- lp,rthastobealreadyfoundasasolution

to (a.11) f.or g € Aq and therefore this relaxation does not affect the overall

procedure.

Since problem (4.17) is a variant of the continuous quadratic knapsack problem,

we can take a strategy similar to (4.16). Ftom the KKT condition, the solution

to (4.17) is of the form gp(u) : sgn(Eo,r - u)min(lyo,n - u|7) for some constant
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u. Moreover, the optimal z satisfies I!ry(u) : q. Since tloAQ) is a decreasing

piecewise linear function with breakpoints {Ao,r - 1,Ao,* + -y}{:r, we can find the

minimum breakpoint us that satisfies Llra@o) < ( by sorting the 2K breakpoints.

The optimal z is then given by

where 11: {k;Uo,r,-uo} 1},L2: {k;-.y < Ao,*-uo { ^l), andT3: {k;Ao,x-uo I
--Yl'.

4.8.2 Generation of Synthetic Precision Matrices

Here, we present the detailed procedure used to generate sparse precision matrices

with a common substructure in Section 4.5. The procedure is composed of two

sequential steps. We first generate a single precision matrix, which is the common

substructure in the resulting K matrices. We then add some non-zero entries to get

a matrix A*. This additional pattern is chosen to be unique for each matrix so that
the resultant matrices A1, A2, . . . , Ar satisfy the additive model assumption (a.Q.

In the following two subsections, we explain the above steps.

4.8.2.I Generation of a Sparse Precision Matrix

In several previous studies, synthetic sparse precision matrices are generated in a
naive manner, that is, just adding a properly scaled identity matrix to a sparse sym-

metric matrix so that the resulting matrix is sparse and positive definite (Banerjee

et al., 2008; Wang, Sun, & Toh, 2009; Li & Toh, 2010). In our simulations, we take

a different approach to generating a sparse precision matrix for compatibility with

the next step.

Our approach is based on an eigenvalue decomposition A : (J D(Jr , where D

is a matrix with eigenvalues on its diagonal atd U is an orthonormal matrix such

that tlrtl : (J(Jr : Ia. Here, we use the fact that A is sparse if U is sufficiently

sparse and the problem can be reduced to generating a sparse orthonormal matrix

U. This can be done easily by applying a Givens rotation (Golub & Van Loan,
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1996) to an identity matrix Ia. Formally, we Iet [/(0) : Iaand apply the following

procedure repeatedly until the desired sparsity is achieved.

1. Randomly pick two indices 'i, j from {I,2, . . . , d}.

2. Randomly generate d from a uniform distribution from 0 to 2r.

as

瑚・

4. Keeptheremainingentries U:::\ :U::),for(i,', j')e{U,,i.),(i., j),(j,i,),(j, j)}.

In our simulations, we generated each eigenvalue from a uniform distribution from

0to1.

4.8.2.2 Generation of Sparse Precision Matrices with a Common Sub-

structure

Here, we turn to imposing commonness on the resulting precision matrices. To

begin with, we generate small sparse precision matrices Vr, Vz, . . . , Vo in the above-

mentioned manner and construct a sparse block-diagonal precision matrix as As :
block-diag(iVr, Vr,. . . , Vo). We then add some non-zero entries to A6 and generate

K precision matrices Ar, Az, . . . , Ar. At this stage, we keep the original non-zero

entries A6 unchanged so that they form a common substructure at the end. Note

that the addition of non-zero entries can not be done randomly since this might

destroy the positive definiteness of matrices.

We describe the procedure for the case a:2. Let the eigenvalue decompositions

of V1 and V2 be V1 : UtDttI and V2 : UzDzU]. Note that U1 and U2 are sparse

since they are generated to be so. Now, let matrix A6 be of the form

脚
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The objective is to generate a sparse non― zero lnatrix Φた恥′hile keeping the pOsitive

deflniteness of Aた . This corresponds to keeping a deterlninant of Att positive.Here,

we ch00se ΦたOf the fOrm

Φた=針Ξたげ ,

where Ξt is a b× b diagonal matrix and tt and tt are matrices composed of b

columnsin tt and 1/2,reSpectively.Specincally,we let銑 =卜 1,1し12・ …鶴1,al]

and銑 =卜2,1鶴2,2・ …鶴2,α21'Where dl and α2 denOte the dimensionality ofeach
matrix.Matrices tt and tt are then giКn by

…%』 ,

一賜期,

for some index sets{7「 1,1,71,2,… ・,71,b}⊆ {1,2,_.,α l},{7F2,1,72,2,… ・,72,b}⊆

{1,2,_.,α 2}・ Then,± OIn a general matrix properttt we can express the deter―

minant of Aん as

det Aた =det(Ψ l― ΦλΨ,lΦ I)

=det(Dl― じ「」Φん眺D,lιげΦI銑 )

=喜
(電
げ轟),

where Dl=diag(σ l,1,σ l,2,・・・,σl,dl),D2=diag(σ 2,1,σ 2,2,・・・,σ 2,α2)'and Ξた=
diag(ξた,1,ξた,2,…・,ξた,b).Hence,the positi(deiniteness of Aた is guaranteed if ξれ<

σl,π l,。
σ2,π2,` iS Satisfled forづ = 1,2,_.,b.h/10reover, this inequality prOvides us a

guideline on ch00sing index sets. Since n/e恥 ′ant non― zero entries of ΦたtO be larger,

which can be aぬ ieКd by larger lξた
,づ |,We ch00se index sets sO that σl,π L`σzπzo gets

large.This cOrresponds to choosing leading eigenvalues and eigenvectors of Ψl and

Ψ2・ In Our silnulatiOns,恥re pick b==2 indices at random frOm thOse with eigenvalues

in the tOp 1/3.ヽ 石ヽe alsO generate ξた,t as ξた,t=お ,た ,二 νσl,π l,じ
σ2,π2,t'Where a,た ,二

=κυ

and κ takes a value 1 0r-1、 、rith equally likely,and υ f0110ws a uniforln distributiOn

froln O.5to O.8.

For generd α>2 castt we■ rst construct a matr破 AP ttOm Ψl and Ψ2・ We
then iteratittly apply the abo■ re procedure to generate Ar)缶 Om AF)and Ψ3,AF)
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from Al2) and Va, until Ar - Af-t' is derived. In the simulation in Section 4.5, we

set the number of modules to be a : 2 for d : 25, a :3 for d - 50, and a : 4 for

d: 100.

4.8.3 Proofs of Theorems

4.8.3.1 Proof of Proposition 1

Let E and F1, be non-negative d x d matrices satisfying -Eui 3 @u 3 Eii and

-Fn,tj S Q*n a Fx,tj, respectively, for all k: L,2,...,K and'i,i :7,2,...,d.
Then, using Lagrange multipliers l, fo, and {A6, Ao,*}Lr, the CSSL problem (4.5)

is expressed as

max ,F,l . ,* irr{log det(o 1 fir) - tr [ir1o * o-)]]
o.E,{ok,Fk}[, f ,fs.{A1,Ae ,*}f_, 7r

a ( /K '-r\
- t lon,,.'(i*,,)"1i,r:l( \k:l / )

- tr [ro] + tr [abs(r)E] + tr [roa]
K

- I{r'[a*cl*] - trfabs(A r)Fr]- tr[Ao,6rs]] ,

k:r

s.t. fs,ir') 0, Ao,r,rj > 0 (k:I,2,..-,K, i', j:L,2,-'.,d).

By changing the order of maximization and minimization above, we derive the

dual problem. Now, we optimize each variable O, .8, f)6, and Fn by setting each

derivative equal to zero:

κ

)三〕ηた{(O+―Ωλ)~1-2た }―「=Oα×d,
た=1

-ρldl」 十abs(「 )十 ΓO=Od×α,

Ъ{ρ tt Ω∂4-2た }―
△た三%翅 鮨=La… ,り ,

―γ

(喜
《 づ′

)デ
几 ″′+
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As the result of these equations, we obtain
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4.8.3.2 Proof of Theorem 9

We first prove the lower-bound. Let Wp : L*lrl* *.E6 in the dual problem (4.6).

we then n'* lD[ , Lt.,il S n u,r,a (f[, ll*,,iln)' . -,, and hence

ll t rr r

,_A* +i_ll < a lla*ll * llr,.llllTt lls TP tt lls Ir rls

d
t 

'lr 
n'i:''''"''o' ru'Ll tt klls

d

- qk k:r,2....,K i,i=1.2.....4' rv'er ' ll '' Ils

=#* llt-ll,

where the last inequality comes from the general relationship between lr-norms

maxk:r,2,...,xlLx,uit < (fL, lA*,orlo)i. Sin"u Wt : Lilnr+ ift : A[-1 holds at

the optimum, we have the lower-bound.

We now turn to proving the upper-bound. Flom strong duality, the duality-gap

is zero at the optimal solution to the primal and the dual problems (4.5) and (4.6),

and therefore we have

K
p llo-ll, + r llo.ll,,o - d -Drrt [i*(". + CI;)]

k:r

Moreover, from 0 < p < l<i-y < oo, tr [t*(". + Cr;)] ) 0, and the general lo-norm
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rule(Σ縫11Ω湯,″ F):≧ maxた =12,¨ "K IΩ l,り |,

働十κ→附ρ≦争
holds.Since κ:≧ l for p≧ 1,We Obtain

Ю
*L十

牌
*‖

Lメ 些
;三

・

ヽヽ4e use this inequality to derive the upper― bOund. From the deflnition,the precision

matrix is gittn by Al=O*+Ωl,and hence、～
re have

‖Aヵ lls≦ ‖O*|ls+‖ Ω力|ls

≦|10*|ls tt dづ 」曇耀撃りdlΩ l,が

≦|10*|ls十 ご
卜野湯lκ り当鮮

"α

lΩ l,こ′|

≦‖0*|ls tt α‖Ω
*|11,∞

≦αOO*憔十牌¶二⇒
≦αOOⅦ l+牌¶L⇒
<二控

.

ρ

Here,we ha、re used the relationship l10*|ls≦ ‖O*|12≦ ‖°
*|11・       □

4.8.3.3  Proof of Theorem 10

The Hessian matr破 ofthe CSSL primalloss Σ鷹 lηノ(O tt Ωた;Ёた)iS

Tlprimat: -

given by

where Oた =(0+Ωた)~1● (O tt Ωた)1・ It iS easy to veritt that[― ら,11● 島]丁
spanS

a null space ofつりprimal and thus`Hprimal iS alWays rantdeflcient.

Σ縫lηたのた ηたのl η202 … ηKのK

η101   η101 0ご 2×d2  …. Od2× d2

η202   0d2×α2 η202        :

|         :              
・・.    Oα 2× α2

ηκOκ   Od2× d2  .…   Oα 2× d2 ηKOK
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0n the other hand,the lnatrix ofthe CSSL dua110ss― ΣE11lηたlog detンフЪ iS the
block―diagOnal lnatrix

πdu」 =block―diag(ηlol,η2の2,… 。,ηκOK),

where Qr : W;' g W;'. Flom Theorem 9, we know that the CSSL solution has

bounded eigenvalues and thus the above Hessian matrix is always strictly positive

definite for any feasible l4ls. tr

4.8.3.4 Proof of the Proposition 2

TI
Let ir be the covariance matrix i* : l"r '*l We then have an upper-bound

L'r u*)
of @.L2) given by

K

I n*1tog (u,,u* - (0 + rr)') - (orur * b1aa1, -f 211,0 * 2r1,u6)\ - Zplel - 2l ll.ll,
k:1

K

< I n*{Iog(u1,ur - (0 + a)2) - (orur * b7"u1,) - 2 (r1"a1, + llur"l))
k:7

lK \
- r( t rtnrxo + ploll ,\El /

from the relationship Df;:, ,tnlrnl < llc..rll- < ll.llo. Moreover, this upper-bound

coincides with the original problem when c,s : Ox. Therefore, if. us : O6 is a

maximizer of this upper-bound, it is also a maximizer of (4.L2). Ffom the derivative

of the upper-bound over up, we get that u)k : 0 is a maximizer if the following

condition holds:

-0+,r)<r##?y-,r,)
This is a sufficient condition for the original problem (4.72) to have @n : 0 as its

solution. Under this condition, problem (a.L2) can be expressed as

max log(ua - 0') - @tL + Ut) - 2C0 + plll) ,
0,il.,6,u6,u1"

s.t. tr,6 - 02 > 0,

0
0 +r*) 3 . 

-,, 
S (.y -rx) (k :I,2,...,K),

U11Up - A'
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for some properly chosen a,5,and F=Σ 縫lηたrた。Hence,since the additional

condttion invcblves θ=O irrelevant to the nlue ofし たand υλif mⅨた=1,2"… ,κ lγた|≦ γ

holds,we have θ=O when lFI≦ ρ frOm ld6 et al.(2009,Proposition l)。   □

4.8。 3.5  Proof of Theorem ll

Letん (ν)=‖υ―υ。|13/2 and ν
′be one of theお asible solutions to the original

problem(4.10).MOreover,since夕 iS infeasible for the original problem(4.10),

‖JI19>γ hOlds.Then,for υ
′′=ν′

十 C(ク ー υ
′
)With O<6≦ 1,ん (υ

′′
)≦ ん(ν

′
)hOldS

from the conve対 ty ofん .Therefore,υ ″iS a better solution tO the problem(4.10)as

long as the f0110恥 ring two constraillts are fulf11led:

11lν
′′
|≦ ρ,

‖ν
′′
|19≦ γ・

The flrst condition always holds because

11lν
′′
|≦ (1-C)11lυ

′
|+6111ク |≦ ρ.

On the other hand,the lttter condition lν
″
|19=(Σ鷹11ν″19):≦ γ iS n。 1。nger

valid if llν
′
19=γ and sgn(νヵ)=Sgn(」た一νl)WhiCh results in gλνヵ≧0・ This is a

necessary condition for the solution to(4.10).Otherwise,we can always improve

the solution by the above procedure,、 vhi(■l contradicts its optilnality.        □
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Chapter 5

Structure Learning for Anomaly

Lo calization

5.1 Introduction

The main scope of this chapter is an anomaly localization problem which we consid-

ered in Section 4.6 as a benchmark application. This is the one important technical

field of data mining; related topics involve a change-point detection of time se-

ries (Basseville & Nikiforov, 1993; Siegmund & Venkatraman, 1995; Kohlmorgen

et al., 1999) and an outlier detection (Hodge & Austin, 2004). A localization of

anomalous variables is a key task toward characterizing the cause of the change (Id6,

Papadimitriou, & Vlachos, 2007; Id6 et al., 2009; Hirose, Yamanishi, Nakata, & FU-

jimaki, 2009; Jiang, Fei, & Huan, 2011). This is an essential technology for finding

erroneous sensors automatically, for instance. The importance of anomaly Iocaliza-

tion techniques is especially high in engineering systems (Id6 et al., 2009) and on

sensor networks (Hirose et al., 2009), where the number of possible faulty sensors

can be large. In such situations, the localization of errors requires professional in-

vestigations and tends to be costly. There are two fundamental directions on the

study of anomaly localization; one is a graph based approach (Id6 et al., 2007 ,2009;

Sun, Qu, Chakrabarti, & Faloutsos, 2005; Papadimitriou, Sun, & Yu, 2006; Sun,

Xie, Zhang, & Faloutsos, 2007) as we considered in Section 4.6 and the other is a

PCA based approach (Hirose et al., 2009; Jiang et al., 2011) which seeks a subspace

where anomalies occur.

As in Section 4.6, the graph based approach consists of two stages, 1) estimat-

ing GGMs from datasets sampled before and after the error onset, and 2) finding
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anomalous variables by contrasting these GGMs using a KL divergence based met-

ric (4.13). The most important part in this method is an estimation of GGMs where

the estimation error in this stage may mask faulty variables and lead to higher false

detection rates. The aim of this chapter is to improve the anomaly localization

performance by providing good estimates of GGMs. To that end, we consider an

invariance specific to this task. The proposed method is based on this newly de-

fined pattern; we introduce a new regularization term that penalizes a difference of
precision matrices in a row/column-wise manner, which we show in the simulation

that it is more suitable to the anomaly localization than the one we considered in

Chapter 4.

The major challenge of this study is how to deal with the new regulafizalion

term and solve the estimation problem. The difficulty lies in two fundamental parts,

that is, 1) the new term is the sum of group regularization terms with overlapping

supports between the groups, and 2) the penalty is symmetric up to a matrix
transpose. In particular, the first difficulty makes the computation of the proximity

operator on our new regularization term inefficient and thus DAL-ADMM is not

directly applicable to the problem. However, we show that these two difficulties can

be avoided by formulating the problem properly. Hence, we can apply DAL-ADMM
after the transformation. The resulting algorithm requires only analytic operations

in each updating step.

The remainder of this chapter is organized as follows. In Section 5.2, we for-

malize the GGM based anomaly localization problem. In Section 5.3, we present

the proposed invariant pattern and formulate the GGM learning problem. The

algorithm with DAL-ADMM is also described in this section. The validity of the

proposed method is presented through an experiment using sensor error data in
Section 5.4. Finally, we conclude the chapter in Section 5.5.

5.2 Anomaly Localization with GGMs

In this section, we revisit the GGM based anomaly localization problem and provide

its detailed formalization. In an anomaly localization task, we have two datasets,

where one is sampled before the error onset and the other after that. The goal is
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to identify contributions of each of d random variables tt: ("r,rr,...,ra)T € lRd

to the difference between these two datasets. In the following, we assume the next

two points on the dataset.

o The number of variables in each dataset is the same and they are all d-

dimensional.

o The identity of each variabie are the same, for instance, a realization of 11 is

always a value from the same sensor.

Under this condition, Id6 et al. (2009) proposed to represent data with GGMs

and score the degree of anomaly for each variable using a KL divergencel. The

underlying assumption on GGM in this approach is as follows (Id6 et al., 2009).

Assumption 1 (Neighborhood Preservation). If the system'is working norwr,allg,

the neighborhood graph of each node (uariables) i,s almost inuari,ant agar,nst the

fl,uctuati,o ns o f erp eri,ment al co n di,ti,o ns.

Formally, let A1, A2 € Rd*d be precision matrices from two datasets and their

partitions be Aa : lt: 
tkl 

with k : L,2where 176 and )7, correspond to the
Ji 'lrj

original i,th row f column of matrices after permuting rows and columns of matrices

simultaneously. The above assumption indicates that if there are no errors occurring

on the ith variable 16 between two datasets, the pairs {lt,lt} and {12, )2} are

almost identical. The comparison of these two pairs corresponds to contrasting

two conditional distributions and an anomaly score (4.13) arises as its metric. The

score (4.13) marks higher values when the neighborhood structure oL ri changes

along the error.

From the definition of the anomaly score (4.13), it is obvious that providing

good estimates of A1 and A2 from data is an essential step to estimate the anomaly

score accurately. The use of SICS (1.11) for this purpose was firstly introduced by

Id6 et al. (2009). In Section 4.6, we show that the CSSL estimator provides better

Iocalization performance than the one of SICS. Note that when there are only two

lSee Section 4.6.l for the detail.
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datasets, the CSSL problem can be simplified as follows under slight modifications:

2

Alサ疑+憑イに扇Ёた)―ρ llAl― A2‖ 1, (5.1)

where Σl and
〈Σ are sample covariance matrices obtained from each dataset.

5.3 Anomalous Neighborhood Selection

Now, we turn to providing the proposed formulation using a row/column-wise reg-

ularization. We also show that, with a proper transformation, the problem can be

solved through DAL-ADMM.

5.3.1 Row/Column-wise Regularization

In the CSSL formulation (5.1), we regularized the difference of two matrices in

an element-wise manner. However, the neighborhood preservation assumption in-

dicates that if no error is occurring on a variable ri, its neighborhood graphs on

two GGMs may be kept almost constant across two datasets. Or alternatively, an

error on z4 c&us€s some changes on its neighborhood graphs. In a precision ma-

trix literature, this corresponds that two matrices have row/column-wise changes

before and after the error onset. Therefore, it is much more appropriate to find

row/column-wise differences between matrices rather than element-wise changes.

We formalize this problem by introducing a row/column-wise regularization

term. Specifically, w€ model the difference of A1 and A2 as the sum of d com-

ponents f,)r, f,)r, . . . , f)a 6 pdxd given by

d

Ar-Az:Icl,.
i.:I

where each f,)i has a support supp(f)i) : {(j, j'); j :'iV jt : z}, that is, the (j, j')fh
entry of 06 is zero for ary (j,l') f supp(f);). See Figure 5.1 for an illustrative image.

In this parametrization, each C); corresponds to the row/column-wise change caused

by an error on the variable r;. The condition Qt * la^a implies that the difference
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d

Ar-Az:for
EI

Ωl

Figure 5.1: Row/column-wise parametrization of a difference between two precision

matrices. Each matrix Q; has a support on the ith row/column denoted by colored

regions.

At - A, has a non-zero ith row/column and therefore the ith variable is anomalous,

while f,), : 0a'a indicates that the ith variable is healthy.

To make the estimators to have this group-wise zerofnon-zero structures, we

penalize each f)1 in a group-wise manner using a group regularization term (M. Yuan

& Lin, 2006):

d(r,)=f.iio?,,+ t 02v/\ssl _ 

" 
| 2""i,ii, 

r,.,,*?u,nn, 
"n.,,,,

where Or,jj, denotes the (j, j'hh entry of f,)1, off(fli) : supp([-)r)\{(r,i)} is an off-

diagonal support, and we halved the effect of a diagonal term to make the optimiza-

tion process simple. With this term, we define the following convex optimization

problem:

2d
maT^., Dl(ttrti*) - p4(o), s.t. A1 - l\z: Inn, (b.2)

Ar,Az€S+,{on)!:, _1":y 
i:l

which we call Anomalous Neighborhood Selection (ANS).

5.3.2 Optimization via DAL-ADMM

In solving ANS (5.2), there are two fundamental diffi.culties both owing to the term

d(Ct). The first difficulty is that each support of fl; overlaps to one another which

promotes some redundancies in the model. Suppose A1 and A2 are both composed

of non-zero diagonal entires with one non-zero off-diagonal value on the (i,i')th
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entry. Identifying whether this off-diagonal non-zero entry is induced by a term 06

or f);, is not always possible (Obozinski et al., 2011). This kind of model is known

as Latent-Group-Lasso and its properties are analyzed by Obozinski et al. (2011).

The second difficulty is that Ar, Az as well as f)1, f,)2, . . ., Q4 are all symmetric

matrices. Explicitly imposing symmetricity constraints in the problem will make the

entire optimization process complicated and might even harm the computational

efficiency. If there is only the first constraint, the problem (5.2) is one specific

example of Latent-Grouplasso, and a covariate duplication technique (Obozinski

et al., 2011) will be a possible approach to solve the problem while the additional

second constraint makes the problem more difficult.

We tackle this problem by using DAL-ADMM. To begin with, we derive the dual

problem of ANS (5 2).

Proposition 3 (Dual Problem of ANS). The dual problem of ANS (5.2) r,s giuen

bf

理丼-1°g det(Σ l― y)一 bg det(Σ 2

s.t.2x子 十 嬌′≦ρ2(にΣ
(′ ,ブ

′
)∈。
「

(Ωo)

+y),

1,2,.… ,α ).

“

.3)

Here, y a pdxd 'is a dual uariable and i,ts opti,mal ualue Y* relates to the opti,mal

pri,mal solutions lti and lti through Ai : (tl -Y*)-' and, lti: (i, -1Y.)-r.

To deal this problem with DAL-ADMM, we need to compute a proximity op-

erator.Let`={y∈ Rd×ご
;2x子 +Σし,′

′
)∈OfFIΩし)】ヵ′≦ρ2(づ =1,2,_.,α )}.The

proximity operator defined on the convex conjugate of goQt) : pf(A) is then given

by

proxe,;@) : proj(8, C). 
.

This is a convex optimization problem and the solution can be found using some

proper algorithms. The question is whether that computation can be conducted

efficiently or not. Unfortunately, the shape of a set C is quite complicated because

of some variable overlaps between inequalities, which makes the computation of
2We explicitly included the constraintY : YT to show the symmetricity.
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this projection less obvious. We tackle this problem not directly, but with some

modifications, where the resulting problem requires much simpler operations only.

In DAL-ADMM, or more generally in ADMM, the problem is composed of two

convex functions and some linear constraints defined between two groups of vari-

ables (Boyd et al., 2011). Our basic idea is to design these functions and constraints

so that the resulting algorithm becomes simple. We first introduce two additional

parameter s W1,Wz Q Rd'd that satisfy Wr : ft -Y and. W2 : tztY, respectively.

We then combine the symmetricity constraint into these two equations and derive

two additional equations 14{ : i, - yt and, W2 : i, + Yr . Note that one of

the above four equations is redundant but we deal them equally to make the entire

expression symmetric. Since these four new equations now involve the symmetric-

ity constraint, we no longer need to impose the symmetricity on Y expiicitly. This

allows us to rewrite the inequality constraint into the following form:

(j=1,2,… .,α
).

Note that this new constraint no longer have any parameter overlaps and hence it
is not symmetric over Y. Together with the above four equalities, we can derive

the equivalent dual problem with (5.3) but with simpler constraints as

IIllll

レ71,ンフち∈S+,y

′
生
２

＜
一

嘲
ご
Ｆん
戸

〆

７
＜
一

イ

―Σbgdet%,
た=1

=R2=R3=R4=Oα ×d,

(づ =1,2,… .,α ),

島
ｄ
Σ
戸

(5.→

where

Rl=″「1+y_Σ l,

R2=レレ「1+y丁 _21,

R3=予レЪ~y― Σ2,

R4=ンフЪ~y丁 _22・
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Now, we turn to solving the problem (5.a) with ADMM. First, we introduce the

following Augmented Lagrangian function:

2a4lltr2
LB(\',Y, z) : - t log det wn + d(y) + ;D llt- * it*ll_,

k:I tn:I ll Y llF

where Z^ is a Lagrange multiplier and p is a non-negative parameter. The function

d(Y) is an indicator function on Y , which is defined as

・η={L itty≦〃̈=唱…a
Using this Augmented Lagrangian, we repeat the following three steps:

可
ι+⇒

,咤
t+⇒ ∈argmin£β(L yO,ZO),

シ71,シア2CS+

ylt■⇒ ∈argmin£β(71t・
1),x ZO),

y

究+⇒ =z禽)十 βR静⇒
い =1,2,3,4),

where RX*D is an .R- wrth W(t+1) and y(t+t1. In the next three subsectrons, we

show that the above update processes onW and Y can be solved analytically, and

the optimal solutions of ANS (5.2) can be derived as the result of ADMM.

5.3.2.I Update of W

Here, we detail the update process for Wl as an example. The update of W2 can

be done in the same manner.

First, the optimization problem about Wy is given by3

耀卜
~bg detT71 tt β‖喝―ム艦,

“

・→

ス1=21_:(yO十 yOT)_分
(Zlの

十るり).
Here,17e note that Once we initialize 4° +4° to be a symmetric matrix,a matrix

Zl→十えのiS also symmet五 c for any ι≧0.It Can be veri■ ed easily by the induction.

3We use Ar:fz+ (y(t) 1y@' )lz - (Z!') + zI'))lzB instead of Ar for the update of W2.
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From the ADMM updating rules on Zl and ZF2,We have

zit+1)十 え
t+1)=Zr)十

えの十β(Y° +y°
丁
)_2β

21,

which is symmetric if Zit)十 Zメ iS Symmetric.

teed to be symmetric from its definition. Hence, the first order optimality condition

of (5.5) is given by the following matrix equation:

1

W1 - Z,Wr'-At:}ara.

Here, let an eigenvalue decomposition of ,41 be Ar: (Idtag(ot,oz,. ..,oa)tJT. The

solution to the matrix equation is then Wft+I) : Udiag(61,62,...,6o)U' where 6i

is a solution to the quadratic equation 6i - 6i I 
l2g - ot: 0 and is given by

5.3.2.2 Update of Y

We first define a matrix B as

't r t ^ /t+r;\ _ (i"_ W1r+r))] _ L(Z!, _ rrrr /r\ ,t)t) 
.B:l{(r, -r4lt+1)) - (tr-wj'+rr'1} -*(zl" +z;"' -z;'' -zi2t\ r r / \ ' z /) 4{J\ t ' r * /

The optimization problem over Y is then defined as follows:

-ir,] V-Bll?, s.t. f":=* (i,:r,2,...,d").y 2" "r 7^ 
L"- 2

This problem can be further decomposed into individual problems defined on each

column of matrices. Here, ret y : lo, uz ua] ana a : lu, b2 br].

Each subproblem is then defined as

ッ:‖
銑―仇‖:,試.陶こ‖2≦ 子.

Under the symmetric initialization on Z10+4∫ 0,the matr破 Al is alsO guaran―

(5。の

This prOblem has two possible cases as its solution.First,when‖ bづ ||:≦ ρ2/2 holds,

the solution is νt=bじ。On the other hand,if llbこ ||:>ρ
2/2,the solution is on the
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boundary and‖ νjl12=ρ2/2 holds from the cOnvexity of the quadratic objective

function. This tilne,、 ve use a lnethod of Lagrange multipliers and solve

ッΨ:膨 t―仇曜+;(脂づ曜―ザ)・

From this problem,we ha■ /e that the optimal νt is in the fOrm of ν。=bj/(1+μ ).

Hence,tOgether with the constraint‖ υjll:=ρ2/2,we deriК  the solution as

銑=流 し

Thus,the overall s01ution to the prOblem(5.6)is giV)n by

銑輌n←流 )ほ

5。 3.2.3  Convergence

Here,we note a convergence property of the ADⅣIⅣI iterative update.First,it is

guaranteed that a sequence{Z結 )}腿
l converges to the optimal parameter al(Bり d

et al.,2011).Second,we h〔 Ⅳe two conditions on optimal parametersレ シ「r,レシけand

Zl,8,4,4 as

レ予「r-1=ζ +ら
,

И年
-2=ζ 十る ,

which fol10恥アs fron■ the flrst order optilnality conditions of N、 and予予Ъ on an unaug―

mented Lagrangian fllnction£ 0(ンフlК Z).TOgether with the primal― dual optimaト

ity Ai=(21-y*)1,A,=(22+γ *)1,and linear constraints″T=21-y*,
″ぢ=Σ2+y*,we derive the optimal primal parameters as

Al=Zi十 ら ,

Aぁ =zま 十Z歩

It indicates that we can derive the optimal precisiOn matrices to the problem(5.2)

by using the resulting Lagrange multipliers Ztt from the ADMM iteratiК  update.

NOte that only precision lnatrices Al and A2 are derived from ADル lⅣI while the

di∬erence parameters Ωt are not.
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5。4  Silnulation

In this section, we verify the validity of ANS (5.2) through an anomaly localization

simulation using a real world data.

5.4.L Simulation Setting

In the simulation, we use the same sensor error data (Id6 et al., 2009) as in Sec-

tion 4.6. The dataset comprised 42 sensor values collected from a real car in 79

normal states and 20 faulty states. The fault is caused by mis-wiring of the 24th and

25th sensors, resulting in erroneous behaviors. In the simulation, we transform each

dataset into a sample covariance matrix, so that we have 79 and 20 matrices from

normal and faulty states, respectively. Since sample covariances are rank-deficient

in some datasets, we added 10-3 on their diagonal to avoid singularities.

We adopt SICS (1.11) and CSSL (5.1) as baseline methods to contrast with

ANS. In this simulation, we consider the two datasets case different from Section 4.6

since ANS is designed under such a situation. Therefore, the result here cannot be

directly compared with those in Section 4.6 where we considered a general multiple

datasets situation.

5.4.2 Result

We conducted the simulation for all 79 x 20 normal-faulty pairs of datasets. In

each run, we have datasets from two different states and estimated two precision

matrices A1 and A2 with three different methods, which are SICS (1.11), CSSL

(5.1), and ANS (5.2). After precision matrices are estimated, we calculated the

anomaly score (4.13) for each variable using estimated matrices from each of three

methods. The anomaly localization performance is evaluated by drawing an ROC

curve and measuring the AUC, which achieves the best result 1 if two erroneous

sensors mark top two anomaly scores. The overall performance for each of three

matrix estimation methods is measured as the median AUC of all 79 x 20 runs of

the simulation.

We summarize the best median AUC results for each method among 41 different
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Table 5.1: Anomaly localization results for SICS, CSSL, and ANS. For each method,

we compute precision matrices for 4I different values of p ranging from 10-2 to 100.

The table shows the median of the best AUCs among these 41 results over all 79x20
pairs of normal-faulty datasets. The numbers in brackets are the 25Ta and the 75%

quantiles.
Dest lnedlan A Uじ

(25%/75%quantiles) optimal p

SICS

CSSL

ANS

0.9875(0.9500/1.0000)

0.9875(0.9500/1.0000)

1.0000(0.9750/1.0000)

10-050

10-105

10-005

values of p ranging from 10-2 to 100 in Table 5.1. The result shows the significant

success of ANS that achieves AUC : 1 as its median performance. It means

that ANS could detect faulty sensors perfectly for more than half of the 79 x 20

cases. To see further differences, we plot the median anomaly scores derived from

each method in Figure 5.2. It is obvious that ANS successfully extract only faulty

variables while the anomaly scores on other healthy variables kept almost zero.

This makes sharp contrast to other methods whose scores have some peaks on

some healthy sensors. The results in Figure 5.3 also support this tendency that
only ANS could successfully highlight matrix entries related to anomalous sensors.

In other two methods, it is hard to observe such clear evidence of errors in estimated

matrices. From these results, we can conclude that ANS is the superior method to

others both on anomaly localization performances and also on an interpretability

of the result.

5.4.3 Discussion

Through the simulation, we observed the advantage of ANS over other two existing

precision matrix learning methods. This advantage is caused by our new regular-

ization term on the row/column-wise difference between two matrices. Flom the

definition of an anomaly score (4.13), we can see that the score gets small when

{lr, )r} and {12,,)2} are similar to each other. Hence, the equivalence of these two

pairs results in the zero anomaly score. In the SICS problem (1.11), this kind of
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(c)ANS

best AUCs.Dotted lines

20    30
SensoriD

(a)SICS

SensorlD

(b)CSSL

Figure 5.2: Median anomaly scores for each method with

denote true faulty sensors.

10

20

30

40

10

20

30

40

10

20

30

40

(b)CSSL

20

(c)ANS

Figure 5.3: An example of the difference between two estimated precision matrix

entries. Darker/Lighter means lower/higher discrepancies.

properties on precision matrices are not considered, which results in high variations

between two matrix entries even on healthy sensors (Figure 5.3(a)). Such variations

produce higher anomaly scores not only on truly faulty sensors as we can observe

in Figure 5.2(a). This would be the reason why the SICS estimators have inferior

anomaly localization performances. On the other hand, the CSSL problem (5.1)

considers the variation between two precision matrices. Compared to the result of

SICS (Figure 5.3(a)), we can observe that the resulting matrices derived through

CSSL have less variations (Figure 5.3(b)). However, the regularization is applied

in an element-wise manner on the variation and seems not be sufficient to extract

only error related changes as we can see on some peaks in Figure 5.2(b). In the

result of ANS (Figure 5.3(c)), some healthy sensor related rows/columns are also

10    20

(a)SICS

Sensor lD
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extracted as candidates of anomalies, though their magnitude are sufficiently small

and their effects are almost negligible in the anomaly score (Figure 5.2(c)). This

would be the cause of the significant success of ANS.

5.5 Conclusion

In this chapter, we proposed a precision matrix estimation technique ANS (5.2)

for an anomaly localization task. We focused on the neighborhood preservation

assumption and considered that a row/column-wise similarity would be arr apprG

priate invariant pattern representing healthy variables. Based on this idea, we in-

troduced a row/column-wise regularization on the difference of two matrices, which

is much more effective than existing element-wise regularization techniques for this

specific task. The new regularization term has overlapping support structures and

hence it is symmetric up to a matrix transpose. These difficulties can be efficiently

avoided by modifying the dual problem which can be solved through DAL-ADMM.

We showed that each updating step of ADMM can be computed analytically and

the iterative update steps converge to the optimal parameter. We also verified

the effectiveness of ANS through a real world data simulation, which shows higher

anomaly localization performances and a higher interpretability.

5.6 Proofs of Theorems

5.6.1 Proof of Proposition 3

We first introduce matrices f; € IRd"d (i, : L,2,. . . ,d) satisfying

li,i3, )- 0 and -lLjj,<Qr,jj,<lLjj, (i.,i,i' :!,2,...,d).
(5.7)

Using these matrices, we can rewrite the problem (5.2) as

2

Aち A2∈∬ お う几堆 1西
FIA扇 兌た)一 ρα⊃ ,血

“

。つ and Al― A2 Ω
ご
〒
ん
嗣

〓
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ヽヽ石e fllrther introduce Lagrange multipliers P andのバt=1,2,… .,α)and reWrite

the probleln as

2

ALA2∈∬ お け几准 1周ル
コ

イは 扇発た)一 ρα⊃

+Σ  Σ (民駒′Ωじ庸′― 1民J/1「じ″ ―Q靡′F二″′
)

二=1(′ ,ブ

′
)∈ OfF(Ω

`)

十trly丁

(Al―
A2~Σ

:Ω
O)|,

S.t.Ct,ヵ′≧0(t,ブ ,ブ

′
=1,2,… 。,α)。

By exchanging the order of the maxilnization and the lninilnization,we derive the

dual problem. First,we optinlize the above over Al and A2 by setting the derivatives

equal tO zero and derive

A「
1-21+y=Oα×d,

AFl-22~y=Oα×α.

Secondly,fron■ the optillnization over Ω and「 ,、ve have the condition

2x:十 Σ γみ≦ρ2.
(′ ,′

′
)∈ OfF(Ωぅ)

Finally,by substituting these results into the above dual probleni,17e derive the

result(5.3).                                        □
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Chapter 6

Conclusion
This dissertation investigated methodologies for learning invariant patterns hid-

den across multiple datasets. For the purpose, we focused on the second order

statistics, one of the most primitive parameters representing natures of multivari-

ate random variables. In particular, we considered two models, a linear mixing

model and a graphical model, as the basis of our framework.

First, we worked on a model called Stationary Subspace Analysis (SSA), which

is a variant of linear mixing models. This model assumes that the observation

is a linear mixture of two kinds of latent sources, which are stationary and non-

stationary. We built up the proposed algorithm, Analytic SSA (ASSA), which

recovers these latent sources from the data based on the fact that the problem

can be formulated as a generalized eigenvalue problem under proper conditions.

The advantages of ASSA over other existing algorithms have been verified both

theoretically and numerically.

Next, we considered finding invariant patterns across multiple Graphical Gaus-

sian Models (GGMs). We first derived a general convex optimization algorithm

DAL-ADMM to solve GGM learning problems. This algorithm allows us to work

on a wider class of problems where existing methods could not treat. We then

considered two invariant patterns on multiple GGMs, or corresponding precision

matrices; the first one is an element-wise commonness across multiple precision

matrices, while the latter one is a row/column-wise heterogenisity, a specific pat-

tern for an anomaly localization task. Each of these two patterns are incorporated

with a GGM learning problem by introducing new regularization terms. Hence,

these problems can be solved by DAL-ADMM procedure.

Apart from the remaining problems raised in each chapter, we point out two
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general issues as the further improvement directions of this study. The first one is an

establishment of the general framework for an invariant pattern learning. Currently,

two fundamental models, SSA and GGMs, are introduced based on the second order

statistics. However, these two problems are defined on quite different principles.

Introduction of a general model that unifies these problems would be needed to

further improve the invariant pattern learning problem. The second issue is on the

practical aspect, an introduction of task specific invariant patterns. One of this

problem is already considered in Chapter 5 where we observed that the algorithm

specific to the target task is superior to general methodologies. Investigations of

practical invariant patterns and their learning algorithms would be a possible future

direction.
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