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Chapter t - Introduction to Rotary Motor, VoV,-ATPase

r.1 ATPase Superfamily

1.r.r VoV,-ATPase

Rotary ATPases are a family of enzymes that couple synthesis or hydrolysis of ATP

(adenosine triphosphate) with transporting solutes across membrane down or against their

electrochemical gradient. One of the member of ATPase family is vacuolar type ATPase,

VoV'.

VoV, is found in both eukaryotes and prokaryotes (Figure t.t.t). In eukaryotes this enzyme

functions as an ATP-driven proton pump in a wide range of cellular membranes, such as

lysosomes, endosomes, secretory vesicles, Colgi-derived vesicles and the plasma membrane

of various cell kinds (2,3). Low pH is required to activate the degradative enzymes in the

lysosome, therefore transport of small solutes and ions across the lysosome membrane is

coupled with ATP hydrolysis. Acidification of endosomes helps the dissociation of receptor-

ligand complexes and recycling of unoccupied receptors to plasma membrane. Acidification

in endosome is required for budding of endosomal carrier vesicles which move cargo

proteins from early to late endosomes. A similar acid-activated dissociation occurs in Golgi-

derived vesicles for transporting the lysosomal enzymes from trans-Colgi to lysosome.

Plasma membrane embedded V-ATPases in renal intercalated cells secrete protons into

urine, having a role in regulation of plasma pH. In osteoclasts this enzyme transports

protons to degrade the bone. V-ATPase is also found in the plasma membrane of

macrophages and neutrophils, participating in regulation of pH homeostasis. ln epididymus

and vas deferens, it serves for sperm maturation and storage.



In prokaryotes, this enzyme is found in plasma membrane of some eubacteria, such as

Enterecoccus hirae, Thermus thermophilus and archaea (Figure t.t.t). These are sometimes

classified as another member of ATPase family, archaeal -type ATPase (A-ATPase) or AoA,;

though we prefer to refer them as prokaryotic V-type ATPases (4).

Eukar yotic Prokaryotic

Figure t. Structure of VoV,-ATPase from eukaryotes (left) and prokaryotes (right). Eukaryotic

VoV,-ATPase has additional subunits which are not shown here. In eukaryotes, VoV.,-ATPase

functions as a proton pump by hydrolyzing ATP, and in archaea and some of eubacteria, it

functions as ATP synthase with pumping protons along the electrochemical potential.

In archaea and Thermus thermophilus, this enzyme functions as an ATP synthase while

transporting protons through the membrane down their electrochemical potential (5). For

coupling these two functions, this enzyme is composed of two distinct motor domains;

hydrophilic, cytoplasmic portion V,, which catalyzes ATP synthesis and hydrophobic,

membrane-embedded Vo, which transports ions through the membrane. These domains are

coupled via the rotation of a central stalk against the surrounding stator complex.
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Vo motor generates the rotary torque upon proton translocation driven by electrochemical

potential through the membrane. And V, part, in response to rotary torque from Vo motor,

synthesizes ATP (Figure t).

V, motor consists of 4 different subunits with a stoichiometry of A3B3DF (6). A3B3 makes

up the hexameric ring, where A and B subunits are alternately arranged. D and F subunits

make up the central rotary shaft, and fills in the cavity of R3A3 ring.

Vo motor is composed of L ring, C, I subunits and EG peripheral stalks (Zr8). t- ring in Thermus

thermophilus is composed of tz subunits. On top of the ring there is the C subunit

interacting with DF rotary shaft of V motor. L ring rotates against the membrane-

embedded portion of I subunit, in the opposite direction of DF shaft rotation in V,. So, in the

whole complex, V. and Vo push each other in opposite direction.

When V, motor is isolated from the hydrophobic Vo motor, it acts as an independent motor,

rotating the central shaft for hydrolyzing ATP into ADP (adenosine diphosphate) and Pi

(inorganic phosphate) (6). Due to its function, it is called as V,-ATPase.

1.1.2 FoF,-ATPase

Another member of ATPase family is famous FoF,-ATPase. FoF,-ATPase is found in

mitochondrial inner membrane, thylakoid membranes and bacterial plasma membrane

(Figure z). FoF,-ATPase catalyzes ATP synthesis coupled with transmembrane proton flow

(9). When there is enough electrochemical potential of the protons in the membrane, then

this enzyme synthesizes ATP from ADP and Pi. lt converts the electrochemical potential into

its chemical form in ATP (to). Aut when the electrochemical potential is insufficient, then



this enzyme works in reverse direction to generate electrochemical potential across the

membrane by catalyzing the pumping of protons with hydrolysis of ATP into ADP and Pi.

This enzyme, similar to V"V,-ATPase, is composed of two motor domains, water-soluble paft

F.-ATPase and memrane-embedded Fo motor.

Bacterial F, motor is composed of five different subunits with a stoichiometry of a3p3y6e.

Alternately arranged 3 cr and 3 p subunits make up the hexameric stator ring. y subunit,

rotor shaft, fits into the central cavity of c3B3 ring. e subunit binds to the protruding

portion of y shaft, and makes a connection between rotor parts of F.' and Fo domains. e

subunit is the endogenous inhbitor of F,, by blocking the rotation of y due to steric

hindrance via changing its conformation from closed to extended structure (tt). 6 subunit

acts a connection between stator parts of F. and Fo. The minimum ATPase active F' complex

is a3p3y.

ATP

ADP+

Fo motor

h#E
PIビ

r

牌
‐ミ
肝
+Pi

Figure 2. Schematic drawing of structure of FoF,-ATPase. Similar to VoV,-ATPase, FoF.'-ATPase

is also composed of two domains, membrane-embedded Fo motor and cytoplasmic part F.1

motor.



1.2

Fo motor consists of abrc,o-,,r. The number of c subunits varies among species. ln E. coli it is tz

(rz), and in Bacillus P53 it is 13 (13). c subunits make up the ring structure, cavity of which is

filled by y shaft. c ring rotates against abz stator complex.

Similar to V,, F, also acts as an ATP-driven rotary motor, when isolated from the membrane

portion Fo. Free F,, motor rotates y shaft to hydrolyze ATP.

Rotary Catalytic Mechanism of V.' and F,

1.2.1 Rotation of V, - so far revealed

V,-ATPase, when isolated from the whole complex, catalyzes ATP hydrolysis while rotating

the central shaft. So far, V, has been studied both in biochemical and single-molecule

experiments (figure 3). In 1998, a biochemical experiment (5) showed that after several min

of hydrolyzing ATP, all the V' molecules lost their activities (Figure 4). Moreover when V

molecules were pre-incubated with ADP, losing the activity was hurried. ln the same study,

ATP binding of isolated subunits were determined: B subunit did not bind ATP, however A

subunit showed a strong affinity for ATP. So, the catalytic reaction center resides at the A-B

interface, mainly on A subunit (5).

ADP+Pi   ATP

I VoVl―ATPase

ADP+Pi   ATP

Vl motor

10



Figure 3. V,-ATPase, when separated from the whole complex, acts as an independent

motor: Though its physiological role is to synthesize ATP, when isolated, it hydrolyzes ATP.

The direct observation of rotation of V, was achieved on 2oo3 by Dr. lmamura (t4). To

visualize the rotation of the shaft, a probe was attached to D or F subunits of central shaft,

where the stator A3B3 ring was immobilized on glass by toxHis tags (Figure 4). lt was

shown that central shaft rotates in counterclockwise direction when viewed from

membrane side. ln a later single-molecule study (t5), V., was observed to rotate in 3 step

behavior, where each step (tzo') was taken with hydrolysis of a single ATP molecule.

Torque for rotating one step was calculated from the angular velocity of the bead and the

frictional load (bead) (16). Torque of V, due to hydrolysis of one single ATP molecule was 35

pN.nm (figure 6). In the same study, by using a slowly hydrolyzable ATP analogue, authors

showed that ATP hydrolysis takes place at the same angle with ATP binding (Figure 5).

Bead
Streptavadin

\
Ur1*Bl

L[lul
If His8-lag

- 
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g\

Ｃ
Ｏ
コ
コ
一〇
＞
ｏ
∝

Figure 4. A, Rotation of V,-APase was first observed in zoo3 by using this experimental

setup (ra). The probe used for as a rotation marker was attached to O or F subunit. B, Graph

shows the trajectories of several rotating molecules at o.z mM ATP. C, 3-step rotation of V'-

ATPase was observed under non-saturating [ATP] (t4).

At t pM ATP
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A recent study confirmed binding and hydrolysis events occur at the same position, by

observing the rotation with a drag-free 40 nm gold colloid as a probe, under high-speed

camera (17). The authors concluded the dwelltime between each step at saturating [ATP] is

around 5 ms, sum of two events' dwell. One event was defined as ATP hydrolysis and the

other could be release of one of the products (nOe or Pi), or both of them.

Binding

angle
Hvdrolysis

２

・

８

４

一
２

８

４
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: 囃  絆

Binding

0    20   40
Time (sec)

At Saturating At Non‐ saturating

AttPYS         ATP

120 240360
Angle(degree)

Figure 5. Angular position for ATP hydrolysis and binding were compared, by performing a

buffer-exchange experiment (t5). First rotation was observed under saturating ATPyS

concentration, which is a slowly-hydorlyzable analogue of ATP. After assigning the angular

positions for ATP hydrolysis, buffer was exchanged to non-saturating ATP concentration,

where ATP-binding reaction becomes rate Iimiting step.

1.2.2 Rotation of F,

F.,-ATPase is, so far, the best-studied ATPase. And the studies done on F,-ATPase paved the

way for other ATPases, Iike V,-ATPase.

The first crystal structure of F, was revealed in t994 (18). The famous 'binding-change

mechanism' model was suggested based on this structure: Three p subunits work

12



cooperatively, where each subunit sequentially shifts from closed to open conformation.

(r9). Based on this structure, the unidirectional rotation of y in F, was hypothesized.

120

400

Time

Figure 6. Torque generated by hyrolysis of a single ATP molecule was calculated from the

stepping angular velocity and frictional coefficient of the bead (t5).

After this study, many researchers tried to show the rotation of F.,. The direct observation of

rotation of F, (thermophilic Bacillus P53) under microscope was achieved in t997 (zo). A

single F, protein was fixed onto glass from the N termini of beta subunits. The y subunit was

attached a fluorescently-labelled actin filament (several pm length), to magnify the rotation

orbit which was in z nm diameter. The rotation was always in counterclockwise direction

when viewed from Fo motor or membrane side. The rotation was too slow due to huge

viscous load, but this helped to determine the torque from one single step (tzo"). Torque

was calculated as 4o pN'nm.
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Streptavidin

Couerglass

F1 [10 nmJ

80"

Pi

ATP

120・

200・

Figure 7. A, Rotation of F'-ATPase was first observed by attaching an actin filament to rotary

shaft (zo). B, ln this scheme, a single turn of shaft was shown. Circles and red arrows

represent the catalytic states of beta subunits and angular positions of gamma subunit (zt).

The hydrolysis of a single ATP molecule which binds to top beta subunit occurs as follows:

ATP binding at o'; hydrolysis, 2oo'; ADP release 24o" and Pi release 32o' .

Later on, 3-step rotation consistent with the presence of 3 catalytic sites were observed,

when ATP was supplied under K, (t pfU). The mean dwell between steps corresponded to

binding of a single ATP molecule (zz). To observe the hydrolysis dwell, a much smaller

probe (4o nm gold colloid) was used. Under K,, two substeps of 8o'and 4o" were detected

to occur in a single tzo' step (4,2+). Dwells at oo and 80' occurs due to binding and

hydrolysis reactions, respectively. Further single molecule studies revealed the scheme of

rotation and single ATP catalysis as follows: ATP binding, o"; hydrolysis, 2ooo I ADP release,

z4o" and Pi release 3zo" (23,25-29).

ln 2oo1, a single molecule study showed that F., molecules lapse into 3o-sec scale pause,

which corresponds to ADP-inhibited state of f, Go). F, molecule shows this inhibitory

pausing state because it could not release its reaction product, ADP-Mg Gl).

14



1.j Mechanochemical Coupling in V,'

V,-ATPase and also F,-ATPase works as ATPase when isolated from the whole complex.

However, in some species, physiological function of these motors is to synthesize ATP, not

to hydrolyze. For example, T.thermophilus has VoV,-ATPase for synthesizing ATP (6), even

though E. hiraehas it for proton pump (32).

An impressing feature is the switching of function in V-ATPase (or in F,) in parallel with the

direction of rotation. Let's consider the case of T. thermophilus VoV,-ATPase (Figure 8). ln

the whole complex, shaft is rotated in clockwise direction due to enforcement by Vo motor,

though it is reversed in the case of isolated V,-ATPase. When V, motor synthesizes ATP,

shaft rotates clockwise; and when it hydrolyzes ATP, shaft rotates counterclockwise. This

relationshio between the mechanical rotation and chemical reaction is called as

mechanochemical coupling (25).

Clockwise Cou nterclockwise
H*

ADP + Pi ATP

VoVl-ATPase

ADP Binding

V., motor

ATP Binding

ATP synthesis AfP hydrolysis

ξ
ノ

ADP+Pi



Figure 8. Mechanochemical coupling scheme of VoV,-ATPase. Rotation direction of the shaft

is related with the chemical reaction being held. When the shaft rotates clockwise obeying

the Vo domain, V, motor synthesizes ATP. However, when V motor is separated from the

whole complex, it just hydrolyzes ATP while the shaft is rotating in counterclockwise

direction.

This reversibility in mechanochemical coupling implies that chemical reactions are regulated

by rotation of shaft (Figure 9). The chemical equilibirum in each individual reaction of ATP

hydrolysis (nfn binding, hydrolysis and product release) should be modulated by shaft's

rotation in V,-ATPase. So, exploring the kinetics of transient conformational states achieved

during shaft's rotation could enlighten us about the mechanochemical coupling mechanism

in V..

So far, several studies were performed for understanding the reversibility of

mechanochemical coupling mechanism in F, (2t,29,33), which will be covered in following

chapters as a means of comparison with data of V-ATPase.

Figure 9. Chemical reactions are regulated by rotary angle of the shaft. The equilibirum

between ATP hydrolysis and synthesis is balanced via the rotation direction of the shaft.

16



When the shaft rotates in clockwise direction, ATP synthesis is favored over hydrolysis; and

when it rotates counterclockwise, the opposite happens.

r.j Objective of this study

This study aimed to uncover the mechanochemical coupling mechanism in V,-ATPase. As

stated in previous section, the reversibility of mechanochemical coupling is an important

feature of both V, and F,-ATPase. Even though several studies was performed for F,-ATPase,

V1-ATPase still awaits being analyzed. One way to study this coupling mechanism passes

through the understanding of the kinetics and chemical equilibrium of individual reaction

steps of ATP hydrolysis. With this purpose in mind, I started to analyze the kinetics and

equilibrium of ATP binding event by using a mechanical manipulation method, which is

explained in next section, 'Experimental Techniques'.

However, during attempts of mechanical manipulation of ATP binding event, V, molecules

were observed to frequently lapse into some pauses and after a while to stop rotation

completely. To prevent the interference of these pauses to our analysis of ntp binding

event, we decided to characterize these two pauses first. The results related to these

pauses were explained in Chapter z. The frequently observed second-scale pause was

named as short pause. And the final, irreversible one was called as long pause. The angular

positions and the kinetics of these pauses were determined. Finally, the long pause state

was mechanically manipulated to check whether the molecule can resume rotation. This

technique was proved to be successful because V, molecules in long pause state resumed

rotation upon our manipulation. The suppressing effect of ADP on exit from long pause

implied that long pause represents the ADP-inhibited state of V,-ATPase.

17



After characterization of pausing behavior of V,-ATPase, mechanical manipulation of ATP

binding event was studied. Results for this part of my study were covered in Chapter 3.

Manipulation was performed at non-saturating ATP concentrations, where clear ATP-

waiting dwells were observed. ATP binding rate increased when the molecule was

manipulated in the direction of rotation. The torque generated by ATP binding event was

calculated from the slope of rotary potential of ATP-bound state. The contribution of

torque by ATP binding is less signicant in V, compared with F,.

In the final chapter, the future works which should be following this study were discussed.

Mechanical manipulation of other reaction steps should be performed to complete the

whole puzzle of mechanochemical coupling mechanism.

r.4 Experimentaltechniques

The following methods were used for single molecule observation and manipulation,

results of which were covered in Chapter z and 3.

1.4.1 Wild type V, vs TSSA mutant V,

During my PhD study, I used V-ATPase fromThermusthermophilus. This bacteria does not

have FoF,-ATPase, instead it has large amount of VoV,-ATPase located on its plasma

membrane (34).

Single molecule biophysicists, who worked with T. thermophilus V,-ATPase, used either wild

type or TSSA mutant of this protein. In 2oo3, direct observation of the rotation of V,-ATPase

was shown using TSSA mutant (r4).

18



Wild type V;ATPase has strong tendency to lapse into ADP-inhibited state during catalytic

turnovers (:t). V' molecules stopped rotation within =5 min after addition of ATP (t4). This

led scientists to search for mutations which can prevent or postpone ADP inhibition. A

double substitution (Sz3zA/Tz35S) in A subunit suppressed ADP inhibition to allow

observation of rotation around t hr after introducing ATP. So far, most of the single

molecule works focused on TSSA mutant of V,-ATPase ('t4,t5,35-37), though there are also

works done with wild type Vi-ATPase (73638).

In my PhD course, I preferred to use wild type V.,-ATPase due to that our final goal is to

understand the working mechanism of VoV,-ATPase under physiological conditions. We

would like to compare the characteristics of wild type V, with that of wild type F to have a

better understanding about general features of ATPase superfamily.

1.4.2 Rotation assay

Coverslips coated with Ni-NTA were prepared as described in Appendix section. A flow cell

of 5-to pl in volume was made of two coverslips (bottom, 24 x36 mm'] and top, 24 x 24

mm') separated by two spacers of 5o-pm thickness. Biotinylated V,-ATPase in buffer A (5o

mM Tris-HCl (pH 8.o), roo mM KCI) was infused into a flow cell and incubated for 5 min. V,-

ATPase had tags of to Histidine residues attached to the N-terminus of A subunits. These His

tags interacted with Ni-NTA moieties on the surface of bottom coverslip (top coverslip was

not coated with Ni-NTA). Unbound V, was washed out with 5o pl of buffer A.

Then bufferA containingl%BSAwas infused into the flow cellto reduce nonspecific binding

of the beads or colloid particles. After incubation for several minutes, the solution of a

rotation marker particle, magnetic beads (Seradyn, Thermo Scientific, USA), or the custom

19



colloidal gold beads was infused into the flow cell. After incubation for zo min or more,

unbound beads were washed out with 7o pl buffer A. Observation of rotation was initiated

after infusion of r4o pl buffer B (So mM Tris-HCl pH 8.o, too mM KCl, z mM MgCl,)

containing an indicated amount of Mg-ATP.

For ADP-free experiments, ATP regenerating system (fo pg ml pyruvate kinase, t mM

phosphoenol pyruvate) was added to buffer B. Rotation of the bead was observed under

phase-contrast microscopy (tX7o, Olympus) using a toox objective lens (figure to). Images

were captured with a charge-coupled device camera (fCaoonn; Takenaka) at 30 frames per

sec (fps). Analysis of rotation was performed using custom software (Digimo). Time-

averaged rotation speed was calculated over 5 consecutive revolutions. AII experiments

were carried out at z3-25"C.

lc bead
230011m

Glass

Figure to. Side view of the experimental setup for observing rotation. The size of V,-ATPase

is around 10 nm, though the diameter of magnetic bead we used is app. 3oo nm. Because of

the huge viscous load, rotation of V was impeded; rotation rate drastically decreased. For

one experiment, we also used 4o nm colloidal gold as a rotation marker to reduce the

viscous friction caused bv the load.

Streptavidin

(=10 nm)
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1.4.3 Mechanical manipulation with magnetic tweezers

A simplified diagram for magnetic tweezers is shown in Figure tt. Detailed explanation can

be found in Appendix section. Tweezers is composed of z pairs of crossed electromagnets,

which is made of an iron core (to, 1c, 40 mm) and a copper wire which surrounds the core

for roo turns. The electromagnets in one pair are separated by t5 mm, and this setup is

placed 10 mm above the microscope stage. The electromagnets are connected with

electricity in series. The microscope stage and magnetic tweezers are made of antimagnetic

materials. The magnetic field is generated as explained: One pair (y axis) of electromagnets

is applied current of having sine components, and the other (x axis) is current of having

cosine components. Magnetic field strength can be changed by current amplitude.

backward

Figure tt. Magnetic tweezers setup for mechanical manipulation of the rotary shaft. With

this setup, we can stall the bead at a desired angle or rotate it in desired direction.

With this magnetic tweezers setup, we could manipulate the shaft's rotation via the

attached magnetic bead. With the custom software, we could input the desired magnetic

field's direction and the time period for manipulation. For instance, we can rotate the bead

to a certain angle, and make it stay there for certain time and then cut the magnetic field. In

21



this case to reach the desired angle takes around o.1 sec, from the original angle. Or we can

rotate the bead for several revolutions where the speed of forcible rotation could be user-

input. ln both studies covered in Chapter z and 3, the prior example of manipulation was

employed for studying the response of transient conformational states regarding the

chemical reaction of interest. This results obtained by using this manipulation technique will

be covered in more detail in the related sections of the Chapter z and 3.

Magnetic moment of some magnetic beads was not parallel to the microscope stage,

therefore when magnetic field was applied, they were inclined. These molecules were not

analyzed.

Whether the angle of rotary shaft is same as the angle of magnetic bead is not clear. There

are some studies performed for calculating the stiffness of the setup for F, motor Gg). lt

was shown that system has some elastic components, implying that the effect of applied

magnetic field could not be transmitted to the shaft in the same magnitude (lg-+t).For F,,

the corrected angle of the shaft deviated from that of magnetic bead in t:4 ratio.

The angle values for V, also need to be corrected. However, we could be sure about the

transmission of magnetic field effect, because rotary fluctuation of V, during the pausing

state does not greatly differ from that of F,-ATPase (t5), implying that rigidity of the shaft in

both proteins should be somehow similar.
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Chapter z. Two pauses of V,-ATPase and mechanical modulation of

long pause state

Main objective during my PhD study was to mechanically manipulate the individual reaction

steps during ATP hydrolysis (figure tz). However, we observed that V,-ATPase shows some

pauses during rotation and after a while stops rotation completely. Therefore, as a first step,

we decided to analyze these pausing states of V, for determining the interference from

these pauses in the individual reaction steps. Then we could continue with our main

obiective of mechanical manipulation of individual reaction steps.

MAIN
OBJECTIVE: ATp Hvdrolvsis cvcle of V,

Mechanical

鼈》」〆●ヽ
CHAPTER 2:

V
Two Pauses ofVl
and Mechanical

Modulation of
lnhibitory Long

Pause state

Figure rz. My main objective during PhD study was to mechanically manipulate the ATP

binding reaction for a better understanding of mechanochemical coupling mechanism of V,'.

However during rotation assay we observed that V,-ATPase lapses into some inhibitory

pausing states. Before continuing with the real objective, we decided to analyze these

pauses.

2.1 Inhibitory Pauses during rotation of V.,

Rotation of V was observed at single-molecule level by attaching a magnetic bead of zoo-

5oo nm in diameter as a probe to D subunit of the rotary shaft (Figure t3) $8). ,A383 ring

(CHAPTERllllll)

23



was immobilized on glass surface through the His-tags introduced at A subunits. Rotary

motion of the V. motor was visualized as the rotation of the magnetic bead, under phase-

contrast microscope.
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Figure 13. Rotation assay scheme (not to scale) with magnetic bead (38). Rotation

trajectory of a single rotating molecule where both reversible short pauses and irreversible

long pause were displayed. Short pauses are second-scale transient pauses that were

frequently encountered during rotation. After several min of rotation, every molecule

entered into an irreversible pause which we named as long pause, to distinguish it from

short pause.

First we drew the Michaelis-Menten curve of the V, motor with attached probe of magnetic

bead (Figure r4). Previous literature showed Michaelis-Menten curves of TSSA V with

duplex polystyrene beads of zzo (36) and 34o nm (15) diameter, and of WT V' with gold

colloid of 4o nm diameter (t7). Due to high viscous friction against the big magnetic bead,

rotation rate was limited to approximately 8 rps. Rotational velocity was determined at

varying ATP concentrations from o.5 pM to 4 mM.Vmax and Km were determined to be 3.8

rps and 8.r pM, giving the apparent rate constant of ATP binding as 1.39 x 1ot M-'s-', which

irreversible

140 180 2
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was consistent with kf;P values obtained from using 40 nm gold colloid (r7) and ATP

hydrolysis activity (36).

A typical time course of V, rotation at 4 mM ATP (saturating) can be seen in Figure t3. Time

constants of ATP-binding dwell and ATP-cleavage dwell are o.3 ms and 2.5 ms (t7),

respectively, which are negligible as compared to time for a single 12o" rotation (-42 ms).

Therefore, V molecules generally followed smooth rotation. However, at saturating [nfe]

such as 4 mM, rotation of the molecule was frequently interrupted for several seconds,

which is too long to be related with ATP binding or catalytic dwell of 0.3-2.5 ms. These

pauses were transient, so V, molecules spontaneously resumed rotation with the

completion of pause.
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Figure t4. Michaelis-Menten curve of V;ATPase based on rotation assay with magnetic bead

(38). Due to high-viscous load, V,r* was found to be 3.8 rps, and kflrP was calculated as 1.39

x 106 M-1s-1. V,.* obtained from rotation assay with 40 nm gold colloid was 64 rps, almost

same as that obtained from viscous-free ATPase assav.

These transient pauses always occurred in one of 3 angular positions separated by 12o",

which are consistent with the pseudo-3-fold symmetrical structure of V,-ATPase. This

suggests that the pause was due to a slow transition to a catalytically inactive state. This
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'rotate - pause - rotate' type of activity was observed until the V molecule completely

stopped.

The V molecules never reactivated from this final pause, even if several.hours passed. At

maximum 6 hours was waited to observe if there will be any spontaneous reactivation;

however, molecules didn't resume rotation. So, this final pause was practically irreversible.

The angular position of this final pause always coincided with one of the 3 angular positions

of short pause. This suggests that final pause is also caused due to an intrinsic inactivation

process.

From now on, for simplicity, we will call the final, irreversible pause as long pause (LP), and

second-scale, reversible pause as short pause (SP).

2.2 Angular position of the pauses

For charac\rization of SP and LP states, we first wanted to determine the angular positions

of SP and LP in relation to the ATP-waiting angle. For this purpose, we carried out a buffer-

exchange experiment during rotation assay.

First, rotation was observed under ATP-limiting conditions to determine the ATP-waiting

angles for individual molecules. At 4 pM ATP, which is well below the K,, 8.t pM, the overall

reaction rate is determined by the ATP binding step, and V, mostly spends time in an ATP-

waiting pause.

Before continuing with the buffer exchange experiment, I want to clarify one important

issue at ATP-limiting conditions: Does short pause occur even at non-saturating ATP

concentrations?

We noticed the presence of short pause state, for the first time under ATP-saturating

conditions (+ mM). However, if short pause was observed even under at non-saturating
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ATP concentrations, then we cannot say that the rate-limiting reaction at [ATP] below K., is

ATP-waiting pause. To check this point, we determined the dwell time of all transient

pauses including both ATP-waiting pause and short pause, at several ATP concentrations.

The transient pause even as short as 1 frame, o.o33 sec, was counted. Figure t5 shows the

dwell time histograms of transient pauses, under [nfe] from o.o5 pM till 4 mM. The time

constants derived from the single exponential fitting of the histograms were plotted

against corresponding [ATP]. The time constants including to pM ATP showed clear

dependence on [nte], though above to ;rM ATP was almost constant around 4 sec (Figure

16). The values until ro pM, close to K,, were consistent with theoretical time constants

calculated by using kflrP. fnis implies the occurrence of short pause was much lower than

that of the ATP-waiting pause at non-saturating [ATP]. However, we could not precisely

indicate the occurrence frequency of short pause at non-saturating [ATP]. Based on this

dwell time analysis, we concluded that the pauses observed at 4 pM ATP mainly occur due

to waiting forATP.
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Figure 15. Dwell time analysis of transient pauses at varying ATP concentrations that are

displayed on the side of graphs $8). Except to pM ATP, all conditions were fitted with

single exponential. Data from to ;rM ATP (=K,) was fitted with double exponential, which

gave two time constants, representing ATP binding dwell and short pause. Until K' time

constants simply showed [ATP] dependence. Though above K' time constants were almost

same around 4 sec.

0.1
1 10 1oO loOO 104

[ArP] (pM)

0.01  0.1

Figure 16. ATP dependence of transient pauses, including both short pause and ATP-waiting

pause $S). After K. = 1o ;rM, time constants remained constant around 4 sec, implying that

effect of short pause at non-saturating [ATP] is negligible. However, it becomes significant

at high [ATP].

So, ATP-waiting angles (figure t7A) were simply determined as three peaks found in the

histogram of the angular position during the rotation (figure t7B, top) $8). After we found

the molecules that showed 3-fold symmetry pausing equally at three ATP-waiting angles,

the buffer was exchanged with buffer containing 4 mM ATP, where the ATP-waiting pause

diminished and short pause became prominent. Angular histogram during rotation at 4 mM

showed the three positions of short pause (figure t7B, below). lt is quite clear that angular

０
　
　
　
　
　
　
１

●
ｏ
こ

〓
“
ち
“
ｏ
ｏ
Φ
Ｅ
Ｆ

28



positions of SP coincided well with those of the ATP-waiting angles. The angular difference

of 5P from the ATP-waiting angle was only 0.6 ! 12" (mean t SD; n = 48) (Figure t7C). Thus,

we can conclude that short pause share the same angular positions with ATP-waiting angles.

Later, we wanted to determine the angular position of long pause. For this, we simply

monitored the molecules'rotations until lapsing into long pause, at saturating [ATP], 4 mM

$8). Until final LP state, the molecules show frequent short pauses. And we are already

clear about the short pause's angular position relative to ATP-waiting angle. Therefore we

could determine the angular position of LP by comparing with short pauses' angular

positions. As shown in Figure t8A and B, the angular position of LP was approximately

identical to one of the three angles of SP. The angular deviation determined from statistical

analysis (Figure r8C) was -o.'r + 7.2" (mean t SD; n = 2g).Thus, LP also shares the same

angular position with ATP-waiting angle.

舶
⇔
＝

“
⇔
＝

舶
一
＝

>

>

l1   11

]|   |

120    240    360

Angle(degree)

Ｌ

０
０
４ -20   0   20  40

△0(degree)

X

29



Figure t7. Short pause and ATP-waiting pause share the same angular position (18). ey

performing a buffer-exchange experiment, we determined the angular positions for both

kinds of pauses. First rotation of a single molecule was observed at non-saturating ATP

concentration, where ATP-binding is rate-limiting step. Then buffer of chamber was

exchanged to saturating ATP concentration, where short pause becomes significant. ATP-

binding event cannot be observed at saturating [ATP] due to very small time constant and

Iow time resolution of camera.

2。3   Kinetic Analysis of Pauses

Next we wanted to deterrnine the kinetic Parameters of shOrt and long pauses.Regarding

the short pause,Figure 19 shOWS the histograms Of the duration tirne of short pause and

rotation tirne between two successive short pauses, respectively. 丁he histograms were

fitted with single exponential decay,providing tirne constants of the inactivation into short

pause and act市 aJon from shott pause,η
ttcrlya“ο″(0・ 95)and τЯ鷺ゎ.(4・2S),reSpect市eり .

Thus,V・ rennained in the active state(rotatiOn state)for Only 18%of the observation tirne.

The free energy difference of the inactive state(SP state)fronl the active state(「 Otation

state)was eStimated from the equilibttum constant(0・ 21)of the act市 e state to be‐ 1.5 kBT,

where kBT represents the therrTnal energy.

Biocherrnical studies have reported that■  thermophilus Vl lapses into the ADP‐ inhibited

form dunng AttP hydrolysis(14),the dme cOnstant of the inact市 ation in the l■ erature(～ 3

rTnin)is toO 10ng to reflect SP(5)・ HOWeVer,the literature value is rather close to the rotation

dme undllapsing′需お、P.

Figure 20 shows the histograrll of the rotation tirne before LP including both the rotation

tirne and the duration tirTle of SP.Fitting of the histogran■ vvith single exponential decay

gave the ume cOnstant ofinact市 ation htO LP state,τttcmめ ,,Of17・ 6 min.
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Figure t8. Long pause shares the same angular position with short pause G8). By observing

rotation of a single molecule until it lapses into long pause, angular positions of both pauses

were compared. Until the molecules lapse into long pause, short pauses were noticed at

saturating [ATP].
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Figure t9. Time constants of short pause and rotation time between two successive short

pauses were determined from dwell time analysis. V, molecule rests for = 4 x rotation time

G8).V, molecule rests more than works.

As a means of comparison,we measured the tirne‐ dependent inactivation in bulk ATPase

assay under the presence of ATP‐ regenerating systemo As previously reported,(5,36),the

ATPaSe activity was gradua‖ y inactivated and finaHy reached nearly zero in 8o rnin.丁 his

tirne― dependent inactivation is explained by ADP inhibition:Vlfails to release ADP producod

upon hydrolysis and transforrns into the stable inhibitory state.Fitting the tirne course with

a single exponential function gave the tirne constant of 3・ 4 rnin. AIthough this tirne

constant L in the range of minutes,simlarto Fttctl1/aめ ,(17・ 6 min),た もevidendy faster than

τ縄血 llon.Howeveら f we bok carefu‖ y to the time course of hact市 ajon h bJk ATPase

assay,we can see there are two phases,fast inactivation process which is fo‖ owed by slow

inact市ation(cyan‐dOtted line).丁his inding suggests that there are two independent

pathways for reaching ADP inhibition.When we fitted the time course from bulk AttPase

assay with double exPonential,we obtained two tirne constants of 2.13 nlin and 15・ 7 rllin.

Fronn the equilibrium level of fitting,the equilibriunl constant of inactivation was calculated

tO be O.018,which gives the energy difference between active state and LP as‐ 4・ O kB丁 .

Rotation tirne constant deterrrlined frorn dwe‖ tirne ana:ysis of single molecule analysis is

17・ 6 nlin.Hovvever,the bulk ATPase assay gave us a different value for rotation tirne,3・ 4

min(frOm single exPOnential■ tung).Even though the unた s are matching,the values are

quite different. When we look‐ at the bulk AttPase assay graph carefu‖ y, we could

distinguish that there are two populations,fastJi宙 ng vl and s10wiy(10ng)J市 ing Vl.Double

exponentialfitting gave a tirne constant foriOng‐ living vl as 15・ 7 rnin sirrl‖ arto that obtained

frOm single molecule analysis(17・ 6 min).The later dme constant(15・ フmin)iS qute close to
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τ梶蘭И勧 ,Whた h implに s that the slow inacJva■ on process leadhg to the LP state

corresponds to the slow inactivation obseⅣ ed in the bulk AttPase assay.One reasonable

explanation for vvhy we could not observe fast‐ inactivating rnolecule during rotation assay

could be that the rnolecules inactivated via the fast pathway stopped rotation before being

identified under optical rnicroscope; because the probability of finding actively rotating

wild‐type V・ particlesis quite low compared with the TSSA mutant of V4that was often used

for kinetic analysis of V・ rotation(4,14,35‐ 37,42,43)。 ln caSe Of w‖ d―type Vl,over 5 min was

usua‖y required to find the first rotating particle after AttP infusion into the flovv ce‖ .
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Figure zo. Rotation time of single V' molecules until lapsing into long pause, determined

from single molecule assay and bulk ATPase assay $8).

2。4 Viscous load effect on pausing behavior

So far, we demonstrated the existence of short and long pause, and analyzed their

characteristics in rotation assay by using a quite big magnetic bead. However, we need to

ATPase Assav
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check the effect of viscous drag on kinetics of these pauses. For this purpose, we decided

to use a really small bead (40 nm gold colloid) which shows negligible viscous drag much

lower than that of the magnetic beads (r7). However, even in drag-free condition, V,

showed transient, second-scale short pauses and final long pause (Figure zt).

At
O min

At
3 min

At
13 min

At
16 min

Figure zr. Rotation of a single molecule attached to 4o nm gold colloid $8). Due to the big

file size, we recorded the molecules at every 3-4 min for min of to sec. Rotation was

recorded with high-speed camera. Here, recording rate was z5o frame/sec. Transient pauses

which last for several seconds were observed, these represent the short pauses that we

have observed in case of magnetic bead. The long pause was also observed, after several

times of recording the same molecule.
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Hydrolysis
dwe‖

Short
Pause

Figure zz. Short pause share the same angular position with catalytic dwell $8). The above

histogram was obtained by analyzing the very short dwells observed during rotation time.

And short pauses were defined as longer than one second.

Because of the smaller load size, % motor reached max speed of 64 rps, at saturatinS, 4 mM

ATP. To catch-up with the rotation speed of V.,, we used high speed camera for recording.

The min time resolution that we used during recording was 4 msec. At this resolution, we

could distinguish the sum of two dwells (S ms) due to ATP-cleavage (2.5 ms) and one (or

both) of product release (2.5 ms) (t7). ATP-waiting dwell was o.3 msec, indistinguishable

under this resolution. The angular distribution of rotating time between two successive

short pauses should reflect this 5 msec interval, and indeed we saw 3 angular positions

separated by rzo". Then we compared the angular positions of this 5 msec joint dwell with

Angle (degree)
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that of short pause,the positions of these two events overiapped(Figure 22). PreViOus

l忙erature reported that ATP hydrolysL occur at the same angle wth ATP wating(15,17)。

This obseⅣ ation again supported our finding that shOrt pause and AttP binding share the

same angular position.

丁hen we calculated the rnean tirne constant for short pause and rotation tirne between two

successive short pauses as 3・ 50± 0・ 54S(48 events)for τfttrlonand o.55± 0・24S(36 events)

for τ膠 ″。″・丁hese values are consistent with those obtained from magnetic bead case.

We attempted to deterrnine the rotation tirne untillapsing into long pause.However,due

to the big file size,we could not record rotation with fast franling camera over 5 rlnin.

丁herefore we perforrned a tirne‐ lapse rotation assay;every 3-4 rllin,we recorded the rotary

motion of the targeted molecule with a fast‐ franling camera for at least lo s.VVith this

method,the finallong pause was obseⅣ ed.Even though the tirlle resolution was around 3

min,the average rOta■ on ume befOre LP was calculated to be 16。 7± 7・ 8 min(6 molecules).

丁his obseⅣation is also consistent with our previous calculation based on magnetic bead

rotation assay.

Herein,we confirrlled that the viscous drag dOes nOt affect the kinetics of pauses.F「 om

now on,we again used the magnetic bead as the rotation marker in the single‐ rnolecule

rotation assay。

2.5 Effect of solution ADP and inorganic phosphate on the pauses

Previous studies about F,-ATPase showed that addition of ADP into reaction mixture of

rotation assay caused immediate stop of rotation due to being trapped in ADP-inhibited

state (3o). We wanted to investigate whether a similar effect would be seen for V,, so we

iniected zoo pM ADP into chamber solution together with ATP. This amount of ADP was
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reported be enough tO inact市 ate Vl after pre‐ incubation wth ADP(5)・ 丁o our surpttse,a

clear effect of ADP was not obseⅣ ed on the rotation behavior of Vl.Kinetic Parameters of

short pause,73L″″薇″ and τ協 ″ゎ″were not essenua‖ y affected by ADP(Tableっ .丁he

duralon Jme ofrotaJon unIILP,τ Z″″″。″aLo dd notchange(TaЫ e 2)。

4mM
ATPY

200「M
ADP

Ｍ

ざ
ｍ

ａＰ

３。

Ｎ

Short Pause
(sec) 4'2 ! o'3

Rotation Time
(sec) o'9 t o'o4

4・4± 0・4    4± 0。3

1・7± 0・ 1   0。 8± o.o2

*All experiments are performed in the presence of 4 mM ATP.

YATP regenerating system is supplied.

TABLE t. Dwell times of Short Pause and Rotation Time obtained from single exponential

fitting of dwell histograms. Number of molecules and number of events used in this analysis

were as follows: 4 mM ATP:7 mols, z5o events; 3o mM NaPi: 3 Mols, r3o events and zoo pM

ADP: 4 mols, t7o events.

4 mM ATPY 3o mM NaPiY 200「M ADP

't5.8 xz.6

* Mean t Std. error

YATP regenerating system is supplied.

TABLE z. Rotation time until LP under saturating [ATP], [ADP] or IPi]. All experiments were

Life Time of
Rotation* (min) 17.6 ! 1.5 t4.8 t t.7
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done in the presence of saturating [ATP], 4 mM. The number of molecules used and

total number of events for different conditions were as follows: 4 mM ATP: 98 mols,

trials; 3o mM NaPi: 43 mols, 72 trials; zoo pM ADP: 35 mols, 67 trials.

Next, we wanted to test the effect of inorganic phosphate (Pi) because solution Pi

somewhat rescues F, from ADP-inhibited state. However, solution Pi neither affected the

kinetics of the pauses.

These data suggest that short pause state is irrelevant to the ADP-inhibfted state. Against

our expectation, rotation time until LP was similarly not affected by solution ADP. One

remaining possibility is that the reverse reaction rate, the activation from LP could be

dependent on solution ADP. However, the duration time of long pause is too long to be

analyzed without disturbance. So, we tested this possibility by using magnetic tweezers

(next section).

2.6 Mechanical Activation from LP State

The kinetic features of LP do not match perfectly with those of ADP-inhibited state of V

from bulk ATPase measurement (5). However the basic characteristics of LP such as its time

scale and apparent irreversibility support the contention that LP corresponds to ADP-

inhibited state of V,.

In the case of F,, ADP-inhibited state was mechanically activated by applying external force:

when F, in the ADP-inhibited state is forcibly rotated in forward direction by 8o", it always

resumes active rotation immediately after release from the external force (t).

We were curfous whether V in LP could be also activated by external force similar to ADP-

inhibited F,. A schematic image of the experimental setup for applying magnetic field was
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shown in Figure tt: In this experiment, magnetic bead was not only used as the rotation

marker but also as the handle to control angular position of rotary shaft of V. The torque

for external control was generated with magnetic tweezers which is composed of crossly

located two pairs of electromagnets and is mounted t cm above the microscopic stage.

Magnetic tweezers generated a magnetic field parallel to the stage, and the magnitude and

orientation of the magnetic field could be controlled by the electric current on each

electromagnet.

Before applying a magnetic field to V,, we had to ascertain that molecule lapsed into LP

state. So far-observed, the longest short pause was around 4 min. Therefore, we set our

criteria for LP as a pause longer than 5 min while dwelling at one of the three 5P angles.

After waiting for 5 min, a magnetic field was applied to forcibly rotate the V, molecule in LP

and stall it at a target angle. After the set time period passed, we switched off the current

to release the molecule from magnetic field. Similar to the mechanical activation of ADP-

inhibited F, (t), V, showed essentially two behaviors. One is the reactivation from LP state.

V, resumed active rotation immediately after released from the magnetic tweezers. Once

reactivated, V,' made a continuous rotation until being trapped in the SP state. The rotation

velocity after reactivation was same as that before entering into LP state. These findings

imply that V, reactivated from the LP state completely resumed the catalytic activity of ATP

hydrolysis. The other type of response to the manipulation was the return to the original

pausing angle after release from the magnetic field. In this case, V, again showed LP unless

activated by another manipulation. Examples for typical time courses of the reactivation

and the failure of reactivation were shown in Figure 23.
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Figure 23. Typical behaviors of V, upon release from the tweezers $8). One is failure (left)

and the other is success (right) in reactivation.

Unclassifiable behaviors were also observed (less than t%). The typical behavior of the

minor events was that the molecule returned to the original angle after release from the

magnetic field and resumed rotation spontaneously within 3o s, which is too short to be

classified as LP. ln this case, V, most probably changed the pausing state from LP to SP

upon the manipulation. This type of data was omitted from the data analysis.

2.6.t Angle dependency of Mechanical reactivation

We stalled V in the LP state at angles ranging from -11oo to +11o'for to sec, at 4 mM ATP

$B). Based on these manipulations, we calculated the reactivation probability (%) defined

as the ratio of reactivation events to the total number of trials. As seen in Figure 24,

reactivation was never observed in clockwise direction. Even in the counterclockwise

direction, until 5oo, none of the molecules were reactivated. Manipulation over +5o' induced

reactivation. When the magnetic bead was rotated +11oo, most molecules resumed active
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rotation iust after being released. With this experiment, we confirmed that V' paused in the

LP state can be reactivated with forcible forward rotation similar to F, under ADP inhibition.
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Figure 24. Reactivation probability against stall angle (degree) (38). ln counterclockwise

direction, reactivation from LP was never observed. Starting from +5o degree in clockwise

direction, reactivation probability increased and reached its max value at +tto degree.

2.6.2 Suppression by ADP

Nex! we wanted to test the effect of solution ADP on the reactivation of V' in the LP state

$8). We previously showed that solution ADP didn't affect any of the following

parameters: SP, rotation time between SPs and rotation time until LP. Subsequently, we

would like to see if the reactivation rate from LP will be affected.

And in the case of F', solution ADP was shown to suppress the reactivation of F, under ADP

inhibition.
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The reactivation probability was determined in the presence of zoo pM ADP and 4 mM ATP.

The suppressive effect of ADP was evident at +11o" and +9oo, but was not observed at +7o"

(figure z5). The reactivation probability at +11o" decreased from 9o% to 3t%. Thus,

reactivation from the LP state was also found to be sensitive to solution ADP, as we

expected from the contention that LP represents the ADP-inhibited form of V,.

‐ 4 mM AttP

‐ 200 μM ADP+4mM AP

‐90  ‐60  ‐30  0   30  60

Angle(degree) Figure 25. Reactivation

probability against stall angle in the presence of saturating [nOn] (38). Effect of ADP was

clearly observed at stall angles of 9o and tto degree. At 11o degree, reactivation probability

decreased from go%to 3t%.

2.7 Discussion: Comparison with Fl

2.7.1 SP in V, and F,

Bulk ATPase assay of T. thermophilus V., suggested that V, decreases ATPase activity with

time constant of 3.4 min until the activity almost reached zero. lnactivated V., tightly binds
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ADP at the catalytic site and it does not resume activity unt‖  bound ADP is removed.

Actua‖y during the purification process of Vl‐ATPase,lrve apply a method to remove the

bound ADP,which results in drastic increase of rlnean AttPase activity.Hovveveら even after

repettion ofthL method for severaltimes,a signficant portion(17%)Ofthe mOlecules were

still bound ADP.丁 he SP state was the rllost frequently observed Pause during the rotation.

However SP cannot represent the biochenlica‖ y suggested ADP inhibition because its tirne

constants of inactivation and activation(π R:。れりrrOr=0。 9 S and Ff‰ぬη=4。 2S)are bOth too

shorto So,SP is a nevvly identified inhibitory state of Vl.

SP can neither be an artifact possibly caused by viscous drag of the big rOtation probe

(magne■ c bead),beCause rotation wth essenually drag―free probe(40 nm gOld colloid)SIII

shovved SP.丁 he occurrence frequency and its lasting tirne vvere both consistent with those

obtained fronn magnetic bead case.Actua‖ y a sirnilar short pause of a second‐ scale dwe‖

time(1・ 7 Sec)waS reported for Fl‐ AttPase(30)。 But the physiologicalrole and the mechanLm

of short pause in both rnotors are notidentified(Figure 26).Further study should be done.

100  200  300  400  500u 75 150

Figure 25. Two types of pauses observed in F,-ATPase (left) (3o). 3o-sec pause corresponds

to ADP-inhibited state of F,. The trajectories on right show the 3o-sec pauses (colored

parts). However, the z-sec pause was not attributed to any catalytic state of APT hydrolysis.

Further research is necessary to deduce the role of 5P and 2-sec pause in V and F'',

respectively.

ADP¨ lnhibited

rsp-1.7s

(N‐ 340)

「ゎ=32.3s

(N=115)
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Another interesting point is that we didn't see clear second-scale inactivation or activation

caused by SP in bulk ATPase assay. Actually a slight activation was observed at the

beginning of ATPase activity assay (5), however degree of activation is quite smatl as

compared to activation rate from short pause. These findings imply that SP state involves

some conformational rearrangement that is not related to catalysis. So, V, probably is in

equilibrium between the active state and SP state before being injected into assay mixture

for bulk ATPase measurement. Actually this assertion somehow explains the marked

discrepancy of the bulk ATPase rate and rotation speed from single molecule rotation assay.

Rotation speed is clearly faster than that expected based on bulk ATPase rate. Even though

the rotational rate of V, at V,"* condition was reported to be 64 rps, the value estimated

from bulk ATPase rate (t/3 of ATPase rate) was only tz rps. Based on activation rate from SP

state, estimated fraction of active V, at any time is only l8%.lf we correct bulk ATPase rate

assuming that only t8% of the V, molecules are in active state, then the genuine rotation

rate would be 67 rps, which is almost same as the actual rotation speed from single-

molecule assay. This calculation is in favor of above assertion mentioning the pre-existing

equilibrium between the active and inactive states.

Moreover, we showed that solution ADP does not have any effect on either SP or rotation

time between SPs. This finding also supports that SP state is irrelevant to catalysis, and very

clearly not related to ADP binding.

2.7.2 LP of V, is more stable than that in F,

Bulk ATPase assay pointed out that LP state has an expected minutes-scale inactivation time
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constant. The extremely long duration time of the LP state obtained from single-molecule

assay is consistent with the prediction from the bulk ATPase assay. Actually, ADP-inhibited

state is so stable that V almost completely lost its catalytic activity, suggesting that the

time constant of reactivation is very big. This finding is in contrast to the ADP-inhibited form

of F.'ATPase (Figure z7), which spontaneously resumes active rotation after 3o s under the

assistance of thermal agitation (3o).

During the mechanical manipulation, LP of V, required stalling over >50" for reactivation,

though F, reached almost 70% reactivation probability at 50' (Figure z8). This suggests that

activation energy for the activation of ADP-inhibited V, is much larger than that for F,.
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Figure 27. Time course of activity of F, (left) and V, (right) (3o,18). Even though all V'

molecules finally lapse into long pause state, only 6o% of F, molecules gained ADP-inhibited

state.
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Figure 28.Reactivation probab‖ ity against sta‖ angle under varying buffer conditions:For Fl,

0.2 μM AttP,2 mM AttPand 20 mM ADP(+33 μM ATP)(1)・ For V4,4 mM AttP and 200 μM ADP

(+4 mM AttP)(38).React市a■on probabil忙 y achieved at 70° もalmost loo%in case of F"

thOugh less than lo%in case of Vl.

2.7.j Physiological role of SP and LP

The energy differences of SP and LP state from active states are -1.5 and -4.o kBT,

respectively. These states are significantly stable as compared to that of ADP inhibition of F,

(o.6 kBT). This finding implies that free V, takes a longer rest than F, during pausing of the

catalytic turnover.

Based on current findings of this study, we could not determine the physiological role of SP.

However, we could simply hypothesize that both SP and LP states are dual suppression

mechanisms for free V, motor to escape from wasteful consumption of cellular energy

source, ATP. lsolated V, was found in the T. thermophilus cytosolic fraction. And it is well

known that yeast V' domain detaches from the whole complex upon glucose starvation,

and upon detaching, isolated V' somehow lost its ATPase activity. We don't have any
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knowledge whether yeast V, has similar pausing states, SP and LP, like T. thermophilus does.

Further study on rotation of eukaryotic V, is necessary.

Conclusion

For studying the individual reaction steps during ATP hydrolysis, single-molecule rotation

assay was held. Some pausing behavior of V, was observed, during rotation assay. To be

able to continue with our goal of manipulating individual reaction steps, first we needed to

characterize these pauses.

V,-ATPase indicated two types of pauses during rotation, one was a reversible, second-scale

'short pause', and the other one was an irreversible 'long pause' which marks the end of

rotation.

Short pause was a newly found inhibitory state, though long pause was previously

predicted from bulk ATPase assay. Our single molecule analysis supported that long pause

represents the ADP-inhibited state of V,. ln case of F,, ADP-inhibited state is reversible,

which suggests that V-ATPase is more strictly controlled than F,-ATPase.

V;ATPase in long pause was reactivated when the shaft was forcibly rotated above 5o' in

forward direction via the magnetic bead. The observed angle dependence of long pause

was distinctive from that of F,-ATPase, implying that energetic and kinetic features of

mechanochemical coupling of V, are different from those of F,.
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Chapter 3. Mechanical Modulation of ATP Binding Affinity

After characterization of the pausing states of V,, we wanted to focus on ATP binding event

in ATP hydrolysis cycle (figure tz). By using the magnetic tweezers setup.like in case of LP

state, we applied magnetic field to central shaft during the waiting time for binding ATP.

Results of mechanical manipulation were explained below. The contents of this chapter

will be soon submitted to a journal for publication.

301 3-step rotation at non-saturating [ATP]

Same setup from Chapter z was used here for rotation assay and mechanical manipulation:

For rotation assay, a streptavidin-coated magnetic bead was attached to D subunit of

central shaft. Here, magnetic bead was used also as a handle for manipulating the rotary

shaft. Rotation assay was conducted under ATP-limiting conditions (t or t.5 pM), well below

the Michaelis-Menten constant (K.) of the rotation assay with magnetic beads (8.t pM). At

these ATP concentrations, V,-ATPase demonstrated a 120" stepping rotation (Figure z9). The

mean times of the ATP-waiting pause were o.57 and o.3z sec at t and t.5 pM, respectively.

We should keep in mind that mean time for catalysis on V-ATPase was 2.5 msec, which is

much shorter than ATP-waiting dwell and mean time for 12o" rotation of the beads. So,

catalytic pause was undetectable in this condition.

3.2 Mechanical Manipulation during ATP binding dwell

Under non-saturating ATP concentrations such as t pM ATP, occurrence frequency of

second-scale short pause was less than o.4Z of the total pause and therefore its effect is

negligible as compared to ATP-waiting dwell.
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Figure 29. Rotation traiectory of a single molecule, in the presence of t pM ATP. The pauses

are the ATP-waiting dwells. lnset shows the X vs Y trajectory of this molecule. tzo" stepping

behavior was clearly observed under [nfe] less than K,.

When V,-ATPase paused for binding ATP, magnetic tweezers was turned on to stall

magnetic bead at a target angle. After the set period of time passed, magnetic tweezers

was turned off to release the magnetic bead and therefore the shaft of the molecule. Upon

our manipulation, in general two behaviors were observed, similar to in case of long-pause

state (38). One type of response was going to next ATP-waiting angle immediately after

release. V,-ATPase cannot rotate to the next stepping angle unless it binds ATP. This means

that when the molecule was released, it was already bound to ATP. This response was

named as 'on' event. The other response was going back to the original waiting angle iust

after release from the tweezers. ln this case, the molecule was not bound ATP at the time

of release, therefore it couldn't generate the torque needed for rotating to the next step

and just returned back to the angular position where it came from. This second response

was named as'off'event. Some unclassifiable responses were also observed; for instance

the molecule went back to the original angle after release from the magnetic field, like in

ｃ
ｐ

一
っ
て

＞
ｏ
に

49



the case of an 'off' event however didn't resume the rotation anymore. In this case maybe

the molecule lapsed into long pause state. This type of behaviors was rarely encountered

(less than 5%), therefore discarded from analysis.

The waiting times just after manipulation were analyzed to check whether our mechanical

manipulation results in change of any kinetic or catalytic properties of the enzyme. ln case

of an 'off' event, dwell time after coming back to original angle until spontaneously binding

ATP was analyzed (figure 3o). And for the 'on' event, dWell time of ATP binding on the next

stepping angle was analyzed (figure 3o). ln both cases, the dwell time histograms gave

close values to original ATP waiting time constant (o.57 sec) from free rotation at t pM ATP.

This implies that stall-and-release type of mechanical manipulation affected neither catalytic

nor kinetic properties of V,-ATPase, suggestive of the high robustness of this enzyme.

After many trials of manipulation, the probability of ATP binding was measured as the

probability of an "on" event, Pon.
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Figure 3o. Two typical behaviours of V,-ATPase upon mechanical manipulation during ATP

binding dwell. One is the molecule returns back to the original angular position after release

from the tweezers, 'off' event. The other is the molecule jumps to the next stepping angle

directly from the stall angle position upon release, called as 'on' event.
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j.z.r Angle and Time dependency of Pon

Pon obtained at non-saturating r pM ATP was plotted against the stall angle, for stall times

of 0.5, r, 3 and 6 sec (figure 3r). Stall angles were varied between -1oo'and +tooo, with

increment size of 4o'. Here, o" was assigned as the mean angle for ATP-waiting pause and

the plus direction, same as direction of free rotation (counterclockwise). Pon increased as

the stall angle increased, reaching its maximum value at loodegree. In the angle range of [-

60o, +60'], stalling longer than o.5 sec resulted in a significant increase in Po" (%). However,

above r sec stalling, Pon values did not significantly change depending on stall time. This

result was in good agreement with our expectation such that at stalling above =0.6 sec, Pon

values should reach saturation. Time constant for ATP binding during free rotation is o.57

sec. So stalling longer than the threshold, o.57 sec, should give saturated values for Pon.

Stall Time 100
-Gトー0 5 sec

:1:三 ::::     80
t6sec

0
-100 -60 -20 0 20 60 100

Angle (degree)

Figure 31. Pon against stall angle, at different stall time conditions under t pM ATP. Stall

times used in this experiment were displayed next to the graph. A clear difference between

the Pon values of o.5 sec and above o.5 sec could be seen.

To see the time course of Pon for varying stall angles, the data points were re-plotted

against the stall time (Figure 3z). From the graph, we omitted data of -1ooo, because they
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were extremely low to provide a reliable time-dependent progress for Pon. As seen in the

Figure, time courses reached saturation at around 3 sec. Another important point is that

saturation was below 1oo%, at all stall angles except +1ooo. This suggests that ATP binding

during stalling was reversible. lf we stall the molecule for long time period, during our

stalling, the molecule not only binds ATP but it also releases bound ATP into environment.

This was also observed in case of stall-and-release experiment performed for ATP binding

event in F,-ATPase (zt).
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Figure 32. Probability of 'on' event against stall time. The same dataset from Figure 31 was

used to draw this graph. Time course of ATP binding depending on stall angle can be clearly

observed. After 3 sec, Pon seemed to saturate regardless of stall angle. Except +1oo", Pon of

other stall angles saturated below too%, implying that ATP was also released during our

mechanical manipulation.
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,.2.2 Rate constants of ATP binding and release

We fitted the time course of Pon based on a reversible reaction scheme. From the fitting, we

determined the rate constants of ATP binding and release. The dissociation constant of ATP

was also determined from the ratio of kos to kon. We plotted these rate constants against

stall angle in semi-log scale (Figure 33). kon increased exponentially upon V,-ATPase rotation,

whereas ko6 reduced exponentially. Between [-6o, +6o] angle range, kon increased by

approximately zz fold, while ko6 decreased by 8 fold, which resulted in the decrease of K6 by

approximately t73 fold.
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Figure 33. Rate constants of ATP binding (ko") and release (ko11) were determined from the

fitting of Pon vs time graph. K6 was derived from the ratio of k6s and kon. F.' data is courtesy

of Dr. Rikiya Watanabe (zt).
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As seen from the graph, ATP-binding rate determined from free rotation is slightly higher

than ko, at o" which was determined from stall-and-release experiment. This situation was

also observed in case of F,-ATPase. This observation could be explained by rate

enhancement due to the thermal agitation; rotary shaft is subject to rotary fluctuation due

to thermal noise. When an infrequent large rotary fluctuation occurs in forward direction

(counterclockwise), ATP binding event takes place.

j.2.3 Calculation of torque generated by ATP binding

Angle dependency of kinetic parameters could give us information about torque generation

driven by ATP binding. Rather than the individual data points, general tendency of kinetic

parameters over an angle range is important. The study done on F,-ATPase estimated the

torque contribution by ATP binding from the angle dependency of ko11 (zt). Then they

compared this value with that of ATP-hydrolysis event.

Torque generated by ATP binding corresponds to slope of rotary potential of ATP-bound

state (Figure 34) (t6). Relative energy difference between the ATP-bound state and the

transition state for ATP binding/release was given by the formula, -krTlnk"u(g).

Differentiation of this formula with respect to angle, -o,rd,no4)f, gives us the torque
ae

generated by ATP binding. Here we assume that only free energy of ground state changes

upon rotation, while activation energy remains constant over defined angle range. So, by

using this formula, we calculated the torque generated by ATP binding as 4 pN.nm for V,-

ATPase. The whole torque by hydrolysis of a single ATP molecule is 35 pN'nm. So,

contribution by ATP binding event to whole torque is only tt%. However, we should keep in

mind that these torque values must be underestimated due to the elasticity of the

experimental setup.
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Figure 34・ TOrque generated by ATP binding vvas calculated frorTl the slope of rotary

potential of ATP― bound state.Torque by ATP binding in vlvvas found to be 4 pN・ nnl,which

も11%of whole torque(35 pNonm)by hydrolysL of a single ATP molecule(15)・

j.j Discussion and Comparison with F

j.3.1 ls ATP binding not the primary torque generating step?

A previous study, by performing the same stall-and-release experiment, determined the

rate constants, kon, ksff and K6 for ATP binding event of F,-ATPase (Figure 33). From the

comparison of kinetic parameters of V, and F,, we could deduce z important assertions. One

is that ATP-binding site of V,, has lower affinity to ATP than that of F,,. kon values of V' over all

stall angles are lower than those of F, while k6il and K6 ar€ higher.

The second one is that ATP binding does not contribute to torque generation in V' as much

as it does in F. (Figure 33 and 34). Previous study determined the torque contributed by ATP

binding in F' as rr pN.nm (zr). Here we assume that the torsional rigidity of rotary shaft of V

estimated from the rotary potential during pausing state is not so different from that of F'

(though precise estimation of torsional rigidity of V, is required). Based on our experimental

data, conformational changes in A subunit induced upon ATP binding are expected to be
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smaller as compared to those in p subunit of F,. For a better understanding of the effect of

ATP binding, crystal structures of A subunit with and without bound ATP are awaited.

3.3.2 lmplications about ATP synthesis

By using the kinetic parameters determined for ATP binding event, we can also interpret

about ATP synthesis. K6 at o" was o.7 liM, which is too low to release ATP into cellular

medium where ATP concentration is in millimolar range. When we rotate over -162o, then K6

reaches to the millimolar range and V is able to release ATP. ln addition, ko11at o" was 0.46 s-

' is quite slow to explain the maximum turnover rate of ATP synthesis (62-ll s") G6).

However, if we rotate the shaft over -277", then ko6 could reach the maximum turnover rate.

These results suggest that ATP synthesis is not simply the reverse of Atp hydrolysis reaction.

Therefore the angular dependence of kinetic and thermodynamic parameters should be

considered to have an accurate interpretation of ATP synthesis event. We should not forget

that these parameters were most probably overestimated, due to the elasticity of the

experimental setup.

Conclusion

ATP binding event was modulated mechanically using the magnetic tweezers. Strong angle

dependency of ATP binding event shows that chemical reactions are modulated by rotation

of the shaft. Torque generated by ATP binding event was calculated to be 4 pN.nm, which is

quite small compared with the whole torque $5 pru.nm) of V, in one single step.

3・4
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Chapter 4. General Conclusion and Future Work

4.1 GeneralConclusion

This study was an attempt to shed light on the rnechanocherTnical coup‖ ng rnechanisrn of Vl‐

AttPase by comparison with F「AttPase. Even though bOth vl― and Fl‐ATPases are rotary

motor proteins, thei「  subunit arrangements and so far revealed‐ rotation schemes are

different. 丁his study emphasizes their significant differences more, by focusing On the

mechanocherllical coupling and torque generation rnechanism。

We successfully analyzed the ATP binding reaction regarding its angular dependency and

kinetic rate constantso We showed that Vl‐AttPase displays a strong angular dependency

during ATP binding reactiono Moreoveら we compared our results with that of Fl data,which

was available from literature.丁 his comparison pointed out that rnechanochenlical coupling

mechanism of Vl is different fronl that of Fl based on the obseⅣ ation that AttP binding

reaction is not primary torque‐ generating step in case of Vl.As a fo‖ owing step for this

study, ATP hydrolysis and product release events should be analyzed with mechanical

manipulation method to complete the picture of rnechanocherlnical cou‖ ng mechanism of

Ⅵ‐ATPase(refer tO Section 4・ 2).

FurtherrTlore,vve characterized two pauses of VttAttPase which were frequently observed

during Our rnanipulation of V・‐AttPase in AttP‐binding reactiOn.We wanted to clarify that

these pauses do not interfere with the AttP‐ binding dwe‖ Of vl‐AttPase and we did so.One

pause,named as`sho「 t pause',Iasted for several seconds.Our analysis wasn't able to reveal

its physiological rOle,hOwever,discovering this pause,itselt vvas a new finding of this study.

Further research is necessary for uncovering the still unknown points about this pause

(refer tO section 4・ 3)・  We alSO revealed that the other pause, named as `long pause',
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represents the ADP-inhibited state of V-ATPase. Comparison with F,-ATPase showed that

larger activation energy is required for exit from long pause in case of V,-ATPase.

4.2 Future Work

4.2.r Mechanical Modulation of ATP hydrolysis

In previous studies, ATP binding, ATP hydrolysis and ADP-inhibited events of F, were studied

by employing stall-and-release experiment (t,zt). As to V-ATPase, only ATP binding and long

pause (ADP-inhibited state) reactions were studied (18). Based on our results from stall-

and-release experiment, ATP binding does not seem to be main torque-generating step in

V,-ATPase. Though, the effect of ATP binding is crucial in case of F,-ATPase. lt was also

shown that ATP hydrolysis contributes to whole torque less than ATP binding does.

To our surprise, ATP binding event does not have a role in V, as significant as in F,. To have a

general view of torque generation mechanism in ATPase superfamily, further research

should be performed on V-ATPase. By comparing the rotation mechanism of V with that of

F,, a better understanding on ATPase superfamily could be gained.

4.2.2 Mechanical manipulation of Short Pause State

By performing stall-and-release experiment, we showed that long pause state corresponds

to ADP-inhibited state. Yet the physiological role of short pause hasn't been determined.

Based on obtained results, we hypothesized that short pause could be an additional

suppression mechanism for V, to escape from hydrolyzing ATP in case V, is detached from

the whole complex.

There is a possibility that short pause could be the transition state for lapsing into long

pause - ADP-inhibited state. To check this possibility, short pause could be studied using
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stall-and-release experiment. V' could be stalled for long period of time during short pause,

and confirmed whether it will lapse into ADP-inhibited state upon release. By this way, we

can expand our knowledge about short pause.

4.2.3 Application Point of View

From the application point of view, this study could inspire ideas for using V,-ATPase in new

technologies, such as blocking the invasion of the cells by viruses and toxins or use V,-

ATPase as a stepping motor to induce a desired biological reaction and so on. Following are

some possible ideas for employing V,-ATPase in applied technologies.

4.2.t.1 BlockingEntry of Viruses andToxins

Eukaryotic VoV,-ATPases are shown to have a role in normal physiology at various

intracellular sites and also at a number of disease-related processes, one of which is entry of

toxins and viruses. Enveloped viruses such as influenza virus enter cells through acidic

endosomal compartments, where low pH triggers pore formation in the membrane.

Through these pores viral mRNA or cytotoxic portions of the toxin molecules are

translocated into the cytoplasm. pH in endosomes are regulated by the proton pumping

V.V,-ATPases. Our idea is to engineer eukaryotic V,-ATPases to have the long pause like their

homolog prokaryotic V-ATPases. Because pumping by Vo domain is coupled to ATPase

activity by V, domain, if V, domain stops rotation, theoretically Vo will also stop pumping

protons. By this way, pH will not be regulated by V"V,-ATPase anymore, and the entry of

toxin and virus will be inhibited. So, engineering the eukaryotic V,-ATPases to have a long

pause could save the cells from the invasion of viruses and toxins. However, whether
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eukaryotic V,-ATPases have the same 'pause'type of regulation as prokaryotic V,-ATPases is

not clear. 5o, further single-molecule research on eukaryotic V,-ATPase is necessary.

4.2.3.2 Treatment of Osteoporosis

Osteoporosis is a disease in which bone resorption exceeds bone formation, and results in

weakening of the bones. Osteoclasts generate an acidic microenvironment necessary for

bone resorption by using V"V,-ATPases to pump protons into the resorption area. lf V"V,-

ATPases'pumping protons can be stopped, then osteoporosis could be largely prevented.

The way to stop pumping protons could be to prolong short pause state or to induce

entering into long pause state. So, engineering V.V,-ATPases in this way could be enough

for fighting with osteoporosis.

4.2.3.3 As a stepping motor

Another application could be to use the VoV,-ATPase like a stepping motor, to induce a

biological reaction while the V,-ATPase is rotating and to block the reaction when the motor

stopped during short pause. lf the reason for short pause is revealed, we could manipulate

V'-ATPase to enter into short pause and resume rotation again at desired time intervals. This

type of regulation could reveal insights about the biological reactions.
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Appendix ProtocolsforExperiments

A.t Purification of Wild Type V,-ATPase from E.coli

roo mM NaPi(pH 8.o),3oo mM NaCl, zo mM lmidazole (pH 8.o)

too mM NaPi (pH 8.o), 3oo mM NaCl, zoo mM lmidazole-Hcl (pH

zo mM Tris-HCl(pH 8.o), r mM EDTA

zo mM Tris-HCl(pH 8.o), t mM EDTA, t M NaCl

ADP Removal Buffer roo mM NaPi(pH 8.o), ro mM EDTA

Biotinylation Buffer zo mM MOPS-KOH (pH Z.o), r5o mM NaCl

Eilters&eofumns

Amicon Ultra Centrifuge Filters (Millipore)

Ni-NTA Column

UNoq Column (Bio-Rbd)

PD-to gel filtration column

Superdex HR2oo GL column (Amersham-Tricorn)

Methods

A.1.1 Preparation of Glycerol Stock of V,-ATPase Expressin g E.coli

J Transform WT V, plasmid (expressing Thermus thermophilus V,-ATPase) into E.coli BLzr DE3

strain.

Materials

Buffers

Buffer A

Buffer B

8.o)

Buffer C

Buffer D
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J Streak the transformed cells into LB plate + Amp + Cam. Incubate overnight.

J Pick 8 colonies from the plate, inoculate 4 ml zxYT medium (+ amp + cam).

I Incubate overnight at 37 "C.

I Culture

t) Glycerol stock: 6oo ul culture + 4oo ul from 8o % glycerol
stock. Store at -8o'C (either freeze in liquid N, or not before
storing.)

z) Exoression Check too ul culture in to ml in zxYT media (+ Amp

I To find the best V,-ATPase expressing colony, incubate the samples.from z) at37'C until

O.D. 6oo of o.6 is reached.

I Add IPTG (final t mM) to induce expression.

J Incubate at37"Cfor expression.

I Centrifuge the sample at 5ooo rpm 10 min at 4 "C.

j Discard the supernatant.

I Add t ml Buffer A, to dissolve the cells.

J Sonicate the samples, to break the cell walls of E.coli. I total = 2 or 5 min, on time ='1 s€c, off time = 2 sec

J Incubate the broken cell suspension at 65'C for 3o min, to degrade the thermo-sensitive

proteins of E.coli.

J Centrifuge suspension at 15ooo rpm for to min.

J Analyze the supernatant, by using Native PAGE.

J According to expression result, keep only the best expressing colony, discard the others.

A.t.z Preculture

JTake 1 or 2 strokes from the V1 glycerol stock and dissolve it in t5 ml of zXYT medium

(autoclaved) + ampicillin (Oiluted rooox) + chloramphenicol(Diluted tooox)
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JShake it in the incubator at37"C at max speed

A.1.3 Main Culture

Jlnoculate the mass culture.

JShake in the incubator at 37'C.

|When O.D. is = o.6, add IPTG (final conc. r mM).

f Let the cells express V,-ATPase for about zo hrs (>16 hrs) at37"C.

A.t.4 Harvesting Cells

JHarvest the cells at Tooo g, 10 min.

J Discard the supernatant.

JDissolve the pellet in =1oo ml buffer A. Keep the cell suspension on ice.

fAdd one tablet of protease inhibitor cocktail (staying in the 4"C refrigerator). Mix it to

dissolve the tablet.

A.t.5 Breaking Cells - Sonication

JAdjust the tuning of the sonicator to leve[ 4.5.

JSet the conditions of the sonicator to total = 5 min, on time = 1 s€c, off time = z

A。1.5  Heat Treatrnent ― Degrading Therrllo‐ sensitive Proteins except temperature

resistant V4‐ ATPase

↓Keep at 65°C fOr30 min in water bath.

…
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JCentrifuge at to,ooo rpm, 90 min at 4 "C.

jTake the supernatant containing V,-ATPase, discard the pellet.

A.1.6 AffinityChromatography

JWash with MilliQ twice or 3 times.

JEquilibrate the column with buffer A.

JApply your sample. Let it flow through the column.

fWash with bufferA.

JElute with buffer B.

JCheck the presence of protein by Bradford Assay.

ICollect all the fractions where colour change took place.

JCondense the fractions to 3 ml, by using 50 k amicon centrifugal filter tubes.

JExchange the buffer of your sample to buffer C, which is used as wash buffer in AKTA

HPLC.

A.r.7 Anion Exchange Chtromatography

JWash the pumps with MilliQ.

JAttach the column.

JWash the column with MilliQ.

JEquilibrate the column and also the pumps with buffer C.

JAttach the sample loop.

JApply your sample.

JRun the program, collect the fractions containing V-ATPase.

JCondense the fractions to multiples of 2.5 ml by using amicon centrifugal filters.
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A.t.8 Removalof Bound ADP

IRepeat ADP removal protocol (below) for =5 times

(reaching ATPase activity of 5o s-'would be enough).

V1 in 100 mM NaPi (pH 8.0), 10 mM EDTA

I
v

Heating at 65' for 10 min

Iv
Cooling on ice for 30 min

I
Y

Gel filtration with PD-10 column

1 cycle

A.t.9 Reducing Disulfide Bonds with DTT

Jlncubate sample with DTT (final conc. t mM) at room temp for =2hrs.

JCondense sample to 5oo ul.

A.1.1o Gel Filtration Chromatography

JDo the washing with MilliQ and equilibration with biotinylation buffer.

tlnject your sample, collect fractions.

A.t.rt Biotinylation

jlncubate sample with maleimide-PEGr-biotin in ratio of [V'] : IBiotin] = t : 5
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Ilncubate at room temp for z-3 hrs.

f Remove excess biotin using PD-to column.

f Make aliquots. Freeze in liquid Nr. Store in -8o "C.

A.z ATPase Activity Measurement

By using ATP regeneration system, ATPase activity of V,-ATPase is measured (44). This

system allows us to measure ATPase activity at constant [ATP]. Absorbance at 34o nm is

monitored by UV/VIS spectrophotometer (VR-55o, Jasco), as a measure of ATP hydrolysis

rate. As seen in the reaction scheme below (fig. lS), synthesis of t ATP molecule results in

oxidation of t NADH molecule.

V.'-ATPase

orr: ADP+P.

ft^'atc rFpEp 
(phosphoEnorpyruvate)

(Pyruvate Kinase)

Lactate

Figure 35. V,-ATPase activity measurement by decay in NADH oxidation.

slope(dAbs/min)
ATPase(turnover/s) - 60 x 6220* x [Vr(M)]
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-NADH 
molar extinction coefficient at 340nm

A.3 Rotation Assay

A.3J Preparation of Ni-NTA-Glass

Materfals

Glass coverslips (24 x 3z mm)

Glass holder

3-mercaptopropyltrimethoxysilane(M PTMS)

Ma leimido-Ca-NTA (Dojindo)

DTT, Chloroform, Toluene, Ethanol

Methods

Cleaning the Surface of the Coverslips

- Put the z4 x 32 mm glasses into glass holder, and soak it into ethanol (gg.SZ).

Bath sonicate for t5 min, to remove dust from the glass surface.

Forming HydroxylGroups on the Glass Surface (O, ftching)

- Dry the glasses with nitrogen gas.

- Locate the glass holder into reactive ion etcher.

- Perform O, plasma treatment for 5 mins.

Silanization (Using organic solvents)
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- Incubate the glass holder for t hr in toluene + MPTMS solution, in ratio of toluene :

MPTMS = 1oo : t, with constant stirring.

- Wash with chloroform, ethanoland Milliq, in order.

- Soak in DTT solution (too mM Tris-HCl, t mM EDTA, 10 mM DTT) for 3 hours.

- Wash in MilliQ.

- Incubate glasses with maleimido-C3-NTA solution (S mg dissolved in 6oo ul pH 7.o

solution) at RT.

- Wash in MilliQ.

- Store in MilliQ at 4'C.

Incubation with Ni'. solution

- Just before using the glass for rotation assay, incubate the glass with solution =5o

mM NiSOo for >5 mins.

- Wash with MilliQ again, dry with air blower.

A.3.2 Magnetic Bead Preparation

Materials

Streptavidin coated magnetic beads, average diameter of =Joo nm (Seradym seramag)

Mefrpd

t) Take 3o ul from the bead stock.

z) Sonication(just very short: 5 sec-to sec)

3) Dilute beads in r ml of MilliQ.

4 Centrifuge at 3ooo rpm, 2 min at 4 "C.
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5) Take supernatant, discard pellet.

6) Centrifuge at 15k rpm, 6o-9o sec at 4 
oC. -l

7) Ppt. (Discard the sup.) |

Repeat if needed.

8) Add zoo pl of o.5x Buffer(-ATP buffer).

9) Add 5o-7o pl of o.5x Buffer(respectively for 3o-5o pl)

ro) Store at 4 
o, until usage.

tt) Before usage, pipette, and sonicate for very short; and then rotate in table-top

centrifuge for very short (zo - 3o secs).

A.j.3 Rotation Assay

Materials

NI-NTA glass

Parafilm

Grease

Coverslip(t8 x 18 mm)

BSA

-ATP buffer (o.SrBuffe4 | +ATP Buffer

. z5mM Tris-HCl pH 8.o I . 5o mM Tris-HCl pH 8.o I
I I rx Buffer

. somMKCl I o toomMKCl )

. 2 mM MgCl2

o PEP, PK

. ATP-Mg (o.St,tvt - non-saturating [ATP] = e mM -

Saturating IATP])
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Method

t) Cut from parafilm in 2.5 x 25 mm size. Expose it in grease. Then place these

parafilms on the glass, making sections having size of "Gt x z5 mm size.

z) Put a coverslip (r8 mm x r8 mm) on top of NI-NTA glass. Press it so that coverslip,

greased parafilms and Ni-NTA glasses will be sticked to each other, tightly.

, Sample was diluted in -ATP buffer (final conc. t nM to 4 nM).

4 lnfuse V.,-ATPase into the chamber ) 5'

5) Wash once with 45 pl-ATP buffer.

6) Infuse zo pl (- ATP buffer + BSA(5-to mg/ml)) buffer.

7) (Sonicate the beads for t sec.) Beads directly apply 5 pl into the chamber (zo'to 3o').

8) Move to the microscope stage towards the end of the bead incubation time. Check

the beads.

9) Wash with -ATP buffer (Zo pl).

to) Infuse =1!olrl of +ATP buffer.

tt) Observe rotation.

A.4 Mechanical Manipulation with Magnetic Tweezers

J A magnetic tweezers compose d of z pairs of electromagnets were attached to the

microscope stage, as seen in Fig.36.

J Tweezers is controlled with a custom-made software.

J For example, during the pause at binding angle, i.e. when the molecule is waiting for ATP

to bind, the tweezers is turned on to stall the molecule at a certain angle for a certain

period of time.
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*Under the condition that ATP binding is the rate-limiting step, 3-step rotation of V'-

ATPase can be observed. Pauses at each step correspond to dwell time for one A

subunit from AuB, ring of V,-ATPase to bind ATP.

I After certain time period lapsed; the tweezers is turned off to release the molecule from

the magnetic field.

IBefore, during and after this stalling, the molecule's rotation is recorded at 3o fps.

JThe behavior of the molecule upon release from the magnetic field is analyzed by image

analysis software, Digimo.

Figure 36. Magnetic Tweezers and

Manipulation of the Bead by applied

Magnetic Field (t)

A.4.1 Analysis of the Manipulation Data

J Mainly two behaviors were observed, as summarized in Fig.ll.
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Waiting

at this

binding

angle

↓

Magnetic
Fie:d

↓

No ATP binding

Torque is not
generated

O statlVi;t
.:......'tt'.....isome

time Torque is
generated

AttP binding

Figure 37・  Fon″ard and backward step upon release from the tweezers

- Forward step: Upon release from the tweezers, therefore from the magnetic field,

molecule goes to next binding angle, implying that molecule was bound ATP when

it was released from tweezers.

- Backward step: Upon release from the magnetic field, molecule goes back to

original binding angle, implying that molecule was not bound ATP when it was

released from tweezers.

J Probability of occurrence of forward step is calculated as a measure of effect of

mechanical manipulation on ATP binding event. Using KaleidaGraph graphing software,

graphs of forward step probability (FSP) vs stalling angle or stalling time is drawn.

ForwardStep

Forward Step + BackwardStep
ForwardStep Probabiltry (FSP) -
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