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Abstract

This dissertation is the study on the development of an acoustic energy harvester based on a

piezoelectric polymer for a fundamental &equency of human voice. [t is organized the following

five chapters, three appendices, and acknowledgements. The summaries of each chapter are as

follows:

Chapter I Introduction

In this chapter, the energy harvesting technology is introduced as the technical background, and

piezoelectric effect of poly vinylidene fluoride is described with the constitutive relationships and

its applications. The outline of this study is also described.

Chapter 2 Formation of Poly(vinylidene fluoride-tetrafluoroethylene) Thin Films

with Sol-Gel Method

In this chapter, I investigated the characteristics of the P(VDF-TeFE) thin film formed with a

spin-coating process on a silicon substrate using various solvents. For the conditions to form a thin

film on the surface, I carried out the measurement of the film thickness and investigated the

surface morphology of the film. The casting solvents, which are mixed two different organic

solvents, were employed to effectively form the thin film of P(VDF-TeFE). The roughness of film

surfaces was also controlled by the post annealing temperature. With the XPS and FTIR

measurements, I observed the limitation of the sol-gel process for P(VDF-TeFE) film forming

process.

Chapter 3 Improvement on Properties of Poly(vinylidene fluoride-tetrafluoro

ethylene) Thin Films

ln this chapter, the improved annealing process was proposed to solve the problems raised in

Chapter 2. Piezoelectric properties of P(VDF-TeFE) thin films were preserved from the post

annealing temperature higher than its melting poinf. Furthennore, to assist the rearrangement of



monomers in the P(VDF-TeFE) film, an electric field was applied during the annealing process.

With various measurements, I investigated the restoration of the polarization properties of the film

and additional advantages of the improved annealing process.

Chapter 4 Designn Fabrication, and Characterization of the Acoustic Enerry

Hanester for the Fundamental Frequency of Human Voice

In this chapter, I designed the acoustic energy harvester which electric power can be generated

from the acoustic wave by a piezoelectric diaphragm and fabricated with micromachining

techniques. The diaphragm structure was changed to compensate defects of P(VDF-TeFE) thin

films and a proof mass wzrs installed on the diaphragm to lower the resonant frequency of the

diaphragm. With the remodeled equivalent circuit and vibration modes, the fabricated devices are

measured and characterized for a sound source.

Chapter 5 Conclusions

The achievements obtained in this study are summarized and the consequences are discussed.

lV



Chapter I
Introduction

1.1 Background

With the advances of portable electronic devices and wireless interface, new energy technologl

is on the rise for the extension of an actuation time and the miniaturization of the device. The

conventional energy-storage technology which is based on chemicals involves some issues; the

effective actuation time is limited by a raw material of a battery, and the battery size gets larger by

an increase of storage capacity. Nowadays, all of the portable electronic devices are powered only

by batteries. As the scale of electronic devices decreases so does the energy consumption. In this

context, batteries should be also produced in smaller size by providing more energy storage

availability. However, due to technological issues, the batteries have not been following by the

same evolution trend, limiting the effective actuation time and performances of the portable

electronic devices as they need to be replaced or recharged periodically, and adding also

unexpected weight and volume [1]. Ambient power sources, as a replacement for batteries, come

into consideration to minimize the maintenance and the cost of operation. Power scavenging may

enable wireless and portable electronic devices to be completely self-sustaining, so that battery

maintenance can be eventually removed. Hence, self-powered source and energy harvesting

technology stand out as the solution of those demerits [2-5].

The energy harvesting technology, also known as energy scavenging or power harvesting, is the

process by which energy is derived from environmental energy sources captured and stored into

usable elechical eners/. Commonly, the term "energy harvesting" is applied when speaking about

wireless autonomous devices, like those used in portable electronic devices or wireless sensor

networks. A variety of sources are available for energy scavenging, including solar power, ocean

waves, piezoelectricity, thermoelectricity, and physical motions such as active or passive human

power.

In 1988, Seiko Epson in Japan developed a wristwatch powered by human movement. It

dispensed the conventional batteries, being the human arm movement used instead. In the

wristwatch, the motion of human arm drives a rotating weight, and through a gear train, an

electromagnetic generator rotates to generate a power. Since then, several wristwatches has a



generator were developed, but the potential of this system to power larger devices is limited by the

slowness how human movement consequently reduced arm movement.

The energy harvesters cannot currently produce sufficient energy to perform mechanical work,

but instead provide very small amount of power applicable for low-power consumed devices.

Hence, the energy harvesting can be an alternate energy source for small portable electronic

devices. In wide perspective, the energy harvesting technology is based on several ambient sources

as follows [6],

Human body: Mechanical and thermal energy,

Natural energy: Wind, water flow, ocean waves, and solar energy,

Mechanical energy: Vibrations, mechanical stress, and strain,

Thermal energy: Waste heat energr variations,

Light energy: Indoor room light and outdoor sunlight energy, and

E lectromagnetic energy : lnductors, coils, and transformers.

Additionally, chemical and biological sources and radiation can be considered ambient energy

sources. From the ambient energy sources, general energy harvesting systems can be classified as

follows,

Electromagnetic energy harvesting,

Piezoelectric energJ harvesting,

Electrostatic energy harvesting,

Thermoelectric energy harvesting, and

Solar energy harvesting.

ln this dissertatiory by applying a piezoelectric energy harvesting method, I have studied

acoustic energy harvester which is based on human voice as an ambient energy source.

1.2 Resonance for Human Voice

An acoustic energy harvesting was demonstrated using a mesoscale Helmholtz resonator

machined from aluminum, delivering a power of 25 mW to a resistive load at 152 dB sound

pressure level (SPL) [7]. This acoustic energy may be used to locally power a wireless active liner

for suppression of engine noise in turbofan engine nacelles, where noise levels typically reach

upwards of 150 dB [8]. There is a substantial amount of data on the fundamental frequency of



human voices (fo) in the speech of speakers of different ages and genders. Such data have been

published in several languages and for various fields. The data reported nearly always include an

average measure of Fs, usually expressed in Hz, but in some cases the average duration of a period

has been reported instead. Typical values obtained for Fo are 120 Hz for men and 210 Hz for

women [9]. Since the acoustic pressure of a human voice is under 90 dB SPL (0.632 Pa at a

reference pressure of 20 pPa) from a distance of 5 cm, the human voice has very low energy as an

ambient source.

Since acoustic pressure of a human voice is very low, it is difficult to be delivered on a

diaphragm for application in a Helmholtz resonator. Fig. 1.1 shows a lumped element model using

only a diaphragm without a bottleneck in a Helmholtz resonator. With the exposure of the

diaphragm, the area that can be reached by acoustic waves is increased, and the sensitivity for

frequency is improved.

Top electrode Acoustic

「
蓋Ｊ

Bottom electnodc

<Acoustic energy hamester) < Battcry>

Fig. I .l A schematic diagram of an acoustic energy harvesting system

In order to estimate a resonant frequency,f, of the diaphragm, the author employed the resonant

frequency formula from the study on the capacitive micromachined ultrasonic transducers [0].
The first natural resonant frequency can be written in terms of the effective mass, Fne, and the

stiffness, r, of the diaphragm as;
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Table LI Comparison of PVDF copolymer with PZT for physical quantities

Parameter

Density

Young's modulus

Dielectric constant

Operating

Unit

ρ   kg/m3

/。   GN/m2

41   pC/N

43  pc/N
g31  Vm/N

&3  Vm/N

a/恥

PZT

7,500

110

123

0.011

635～ 1,300

300～ 328

1,800

3.0

15～ 20

20～ 25

0.20～ 0.25

0.21～ 0.26

12

80～ 100

1,900

■2

12～ 20

15～ 20

0.15～ 0.22

0.15～ 0.26

11

120

PVDF P(VDF‐ TeFE)

re lim量

where t6 and a respectively represent a thickness and a radius of the diaphragm, Ie is the Young's

modulus, I is the residual stress, and o is the Poisson's ration of the diaphragm material.

Considering only the piezoelectric layer which the diaphragm consists of mostly, the piezoelectric

material that has a low Young's modulus and a density has the obvious advantage for a low

resonant frequency. For example, fixing the diaphragm size as 500 nm in thickness and 1 mm in

radius, the resonant frequency is calculated as about 3 kHz for the lead zirconate titanate (PZT>

used as a piezoelectric film. However, when a piezoelectric polymer like the poly vinylidene

difluoride (PVDF) is used, the resonant frequency is calculated is about 200 Hz which is close to

the fundamental frequency of human voice. These calculation results are caused by the difference

in physical quantities of the materials as shown in Table 1.1.

In order to lower the resonant frequency and mechanical impedance, as referred in Chapter 4, of

the diaphragm, poly vinylidene difluoride - tetrafluoroethylene (P(VDF-TeFE)) as a PVDF

copolymer is used in this dissertation. Even though a density of a P(VDF-TeFE) is almost same as

that of a PVDF, the Young's modulus, as a cause of the increase in mechanical impedance, of a

P(VDF-TeFE) is smaller than half of that of a PVDF. Hence, the diaphragm which is sensitive to

acoustic wave can be fabricated by reducing mechanical impedance of the diaphragm.

1.3 PiezoelectricPolvmer

In biological tissue and other organic materials, very weak piezoelectric effects have been

reported since the 1950's [1], but until 1969 it was not that available levels of piezoelectric



properties were discovered in non-biological polymers. While conducting an investigation on the

electrets properties of various synthetic polymers in that year, Kawai [2] discovered that drawn

and electrically poled PVDF showed exceptional piezoelectricity. A number of subsequent

researches have been studied on the piezoelectric [3, l4], ferroelectric [15], dielectric [16],

pyroelectric [ 7], electrocaloric [18], photovoltaic [ 9], photoelastic [20], and optical properties of

PVDF [21].

1.3.1 Poly vinylidene fluoride (PVDF)

PVDF has a chemical composition of (CHz{F:)n and is more fonnally known as 1, I difluoro-

ethylene. It is a semi-crystalline polymer with a crystal volume fraction of about 50oZ after melt

extrusion. The crystal structure after melt processing has a classically spherulitic, non-polar o

phase with a helical (TGTG', where G refers gauche and T refers trans, and a prime in G' refers

(a) (b)

(c) Y
J\

(d) *t'!-

Fig. 1.2 Diagrams of crystalline forms of PVDF (a) in the all-trans conformation (inset, end

view of a chain); (b) in the altemating trans-gauche conformation (inset, end view of a

chain); (c) end-on view of the crystal structure of the ferroelectric p phase, composed of
close-packed all-trans chains; (d) end-on view of the crystal structure of the paraelectric cr

phase, composed of close-p acked trans-gauche chains (from 122, 261)

Ｘ

Ｘ

Ｘ

常
拳



the dihedral angle being opposite to the G conformation with respect to the reference plane T)

configuration as shown in Fig. 1.2 (b). After the melt extrusion, strong mechanical orientation of
the polymer is required to introduce the solid state phase transition from the o phase to a highly

polar B phase with a planar zigzag, all-trans (TTTT) chain configuration as shown in Fig. 1.2 (a).

ln the p phase, the chain configuration crystallizes in an orthorhombic mmT structure with

chains along the crystal c-axis and the dipoles aligned approximately along the crystal &-axis as

shown in Fig. 1.2 (c) t22-261. The p phase is polar and uniaxial ferroelectric, as the polarization

can be repeatedly switched between opposite but energetically equivalent directions along the 2-

fold b-axis. The B phase unit cell nominally consists of two (CH2-CF2) formula units, one along

the c-axis parallel to the chains as shown in Fig. 1.2 (a). The unit cell dimension is approximately:

c : 0.256 nm along the chain axis, b = 0.491 nm along the polarization direction which is the 2-

fold axis and a: 0.858 nm perpendicular to the chain axis and to the polarization [25]. It is

possible that the unit cell is twice as big, containing two monomers along the chain, because a * 70

dihedral tilt-ordering would make the c-axis period two monomers long or c = 0.512 nm [24].

The complete crystalline o phase structure shown in Fig. 1.2 (d) consist of opposing polar

sublattices of the trans-gauche chains, resulting no net polarization in both parallel and

perpendicular to the chain axis. The o, phase unit cell nominally consists of four (CH2*CF2) units,

two along the c-axis parallel to the chains and two in the plane perpendicular to the c-axis. Tlre

unit cell dimensions are approxim ately: a: 0.964 nm, & = 0.496 nm, c : 0.462 nm [27].

Subsequent poling of the film rolls applied the melt extrusion is done under controlled

temperatures by applying electric fields in excess of 100 MV/m [28]. The PVDF films are

thermally annealed to allow the controlled mechanical relaxation necessary to provide

commercially stable material. The material properties of piezoelectric PVDF are made more

anisotropic because of this process history, as the large degree of microscopic order resulting from

the orientation reduces the in plane l-axis randomness and makes the macroscopic piezoelectric

behavior more consistent with that of the microscopic mm2 point group symmetry [29]. The

detailed morphology and fundamental basis for piezoelectric behavior of PVDF is discussed

extensively in }2, 1 5, 291.

1,3.2 Piezoelectric Constitutive Relationships

The constitutive equations describing the piezoelectric property are based on the assumption

that the total strain in the transducer is the sum of mechanical strain induced by both the

mechanical stress and the controllable actuation strain caused by the applied electric voltage. There



axes may be identified by numerals rather than letters. In Fig. 1.3, I refers to the x axis, 2

corresponds to the y axis, and 3 corresponds to the e axis. The shear planes are indicated by the

subscripts 4, 5,6 and are perpendicular to the directions 1,2, and 3 respectively [30]. Axis 3 is

assigned to the direction of the initial polarization of the piezo-material, and axes I and2lie in the

plane perpendicular to axis 3.

Axis

.s

v

Shear aoundx

Shem aroundy

Shear around g

Fig. 1.3 Tensor directions for defining the constitutive relations

The describing electromechanical equations for a linear piezoelectric material can be written as;

１

２

３

４

５

６

島=Σブs√ ら+Σmら五揚

ら=Σ場ノζ′+Σた場島

(1.2)

(1.3)

wheretheindexesi,j=1,2,...,6andm,k=T,2,3refertodifferentdirectionswithinthematerial

coordinate system as shown in Fig. 1.3. The above equations can be written in the following form,

which is often used for applications that involve sensing;

島=ΣブS′ ら十Σmgtt D″ , (1.4)

(1.5)

where

Eノ =Σ :%′ ζノ+Σただた2,



S

S

ξ

グ

D
ε

E
g

β

strain vector ( N/m' ),
matrix of compliance coefficients 1m2N ;,
stress vector ( N/m2 ),
matrix of piezoelectric strain constants ( m/V ),
vector of electric displacement (Clm2 1,

permittivity ( F/m ),
vector of applied electric field ( VAn ),
matrix of piezoelectric constants 1m2lC1,
impermitivity component ( m/F ).

Furtherlnore,the superscripts D,二 and ζ represent measuremellts taken at constant electric

displacement,oonstant electric fleld and constant stress respectively.

Equations(1.2)and(1.4)expreSS the converse piezoelecttic effcct,which describe the situation

when tlle de宙ce is being used as an actuator.Eq。 (1.3)alld(1.5),on the Other hand,cxpress the

direct piezoclectric effect,which deals with the case、 vhen the transducer is being used as a sensor.

The conversc enに ct is otten used to determine the piezoelectric coefRcients.

By reducing the tensor elements and using standard■ otations,the resuLing equations of(1.2)

and(1.3)can be diSplayed in matrix follll as fo1lows[30];

Sl

S2

S3

S4

55

S6

Si
s」1

Sξ
l

颯
S星

S&

SL SL sL Si Si
stt stt stt Stt s免
Stt Stt Stt Stt s皇

場 義 義 義 毛
Stt Stt Stt stt s晶

sa stt sa stt s&

αl■  d12 α13

グ21 α22 d23
d31 d32 α33

d41 α42 α43

d51 d52 α53

α61 α62 α63

ζl

ζ2

ζ3

ζ4

ζ5

ζ6

島

島

亀

７

■

ら

島

イ

巧

電

可

≪

三

ε
ｉ

巧

電

＋

, (1.6)
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α24

α34

ζl

ζ2
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ζ5

ζ6

The particular crystal symmetry of a piezoelectric material determines which components of the

permittivity, piezoelectric, and stiffness tensors are non-zero and unique. Piezoelectric coefficients

are defined by the relationships between the elastic (f, E and dielectric (E, D) properties of

piezoelectric materials. Assuming that the piezoelectric film is poled along the axis 3, and viewing

the piezoelectric material as a transversely isotropic material, which is true for piezoelectric

ceramics, many of the parameters in the above matrices will be either zero, or can be expressed in



terms of other parameters [30]. In particular, the non-zero compliance coefficients are

Si=Sら
,

Si=Si=

sa=si,
S晟 =S晶 ,

=S島 ,

s&=2(si― sa)

The noln‥ zero piezoelectric strain constants are

d31=α32 and

α15~α 24・

Finally,the llon― zero dielectric coettcients areεL=εゑand ε皇.Subscquently,Eq。 (1.6)and

(1.7)are simplined to;

Ｅ

２３
Ｓ

SI

S2

S3

S4

S5

S6

島

島

為

０

０

０

４

０

０

ｏ

ｏ

ｏ

ｏ

４

ｏ

ｏ
ｏ
ｏ

ｏ
晩
ｏ

ｏ
ｏ
ｏ
琉
ｏ
ｏ

４
４
４

ｏ
ｏ
ｏ

４
毛
４

ｏ
・
ｏ
ｏ

４
４
４

ｏ
ｏ
ｏ

島

島

島

０
　
０
メ
電

ｏ

ど

ｏ

メ
『

０
　
０

＋

0

0

0

0

0

2(si― sL)

ζl

ζ2

ζ3

ζ4

ζ5

ζ6

α31

α31

α33

0

0

0

,(1.8)

(1.9)
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亀
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d31 d33  0

ζl
ζ2

ζ3
ζ4
ζ5

ζ6

The piezoelectric strain constant, d, is defined as the ratio of developed free strain to the applied

electric field. The subscript of d*i implies that the electric field is applied or charge is collected in

the m direction for a displacement of force in the i direction.

Thetransduction matrix in Eq. (1.9) applies to PZTmaterials. Fortransducers made of PVDF

materials, this matrix should be modified to [30]

０

０

亀

0   0
0   0

α32  α33

O  α15

α24  0
0   0

０

０

０

(1.10)



This reflects the fact that in PVDF films the induced strain is non-isotropic on the surface of the

film. Hence, an electric field apptied in the direction of the polarization vector will result

indifferent strains in I and 2 directions.

1.3.3 PiezoelectricCoefficients

The physical meaning of various piezoelectric coefficients (d,i, ga, sij, and eu) introduced in the

previous section will be reviewed in this section. These coefficients play an important role in the

performance of the piezoelectric material [3 I ].

133.f Piezoelectric Constant, dy

The piezoelectric coefficieatdllis the ratio of the strain in theT-axis to the electric field applied

along the i-axis, when all the extemal stresses are held constant. In Fig. 1.4, a voltage of V is

applied to a piezoelectric transducer which is polarized in direction 3. This voltage generates the

electric field

vQ)

Fig. 1.4 A piezoelectric transducer arrangement used for d31 measurement

(1.1 r )

which strains the transducer. I represents a thickness of the transducer. In particular

,Sl (r.12)

where / is length of the transducer for direction 1, and A/ represents a length deformation in which

上

■

／

一

′
〓島

Ｊ

一
′

〓

E (3)

χ(1)

10



^t_+
The piezoelectric constant d:r is usually a negative number. This is due

application of a positive electric field will generate a positive strain in direction 3.

(1.13)

to the fact that

ノぐり

Fig. 1.5 Charge deposition on a piezoelectric transducer

- an equal, but opposite force, F, is not shown.

Another interpretation of dij is the ratio of short circuit charge per unit area flowing befween

connected electrodes perpendicular to the 7 direction to the stress applied in the i direction. As

shown in Fig. 1.5, once a force Fis applied to the transducer, in the 3 direction, it generates the

stress f;

ζ3 (1.13)

where w is a width of the transducer which results in the electric charge

9=43F (1.14)

flowing through the short circuit. If a stress is applied equally in l, 2, and 3 directions, and the

electrodes are perpendicular to axis 3, the resulting short-circuit charge per unit area divided by the

applied stressed is denoted by do.

1.3.3.2 Piezoelectric Constant,gl;

The piezoelectric constant 91; signifies the electric field developed along the iaxis when the

淋
|

Ｆ

一
ル

〓

ZO)

‡(1)



＋
　

／

　

一

上

再 vQ)

Fig. 1.6 An open-circuited piezoelectric transducer under a force F in direction

- an equal, but opposite force, .F, is not shown.

material is stressed along the /-axis. Therefore, in Fig. 1.6 the applied force d results in the

voltage

(r.r s)

Another interpretation of g,1 is the ratio of strain developed along theT-axis to the charge per unit

area deposited on electrodes perpendicular to the i-axis. Therefore, in Fig. 1.7 , if an electric charge

q is deposited on the surface electrodes, the thickness of the piezoelectric element changes by

(1.16)

vQ)

Fig. 1.7 A piezoelechic transducer subject to applied charge

1.3.3.3 Elastic Complianceo sg

The elastic compliance constant s4 is the ratio of the strain in the r-direction to the stress in theT-

direction, given that there is no change of stress along the other two directions. Direct strains and

stresses are denoted by indices I to 3. Shear strains and stresses are denoted bv indices 4 to 6.

/=生 ご
″

甲

一
Ｗ

〓△

上
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u (3)
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zQ)

I(1)
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Subsequently, s12 signifies the direct strain in the l-axis when the device stressed along the 2-axis,

and stresses along directions I and 3 are unchanged. Similarly, s44 refers to the shear strain around

the 2-axis due to the shear stress around the same axis.

A superscript,E,is used to state thatthe elastic compliance srtt is measured with the electrodes

short-circuited. Similarly, the superscript, D, in srl) denotes that the measurements were taken

when the electrodes were left open-circuited. A mechanical stress results in an electrical response

that can increase the resultant strain. Therefore, it is natural to expect rro to be smaller than suD.

That is, a short-circuited piezo has a smaller Young's modulus of elasticity than that obtained

when it is open-circuited.

1,3.3.4 Dielectric Coefficient, ey

The dielectric coefficient e, determines the charge per unit area perpendicular to the i-axis due

to an electric field applied along theT-axis. In most piezoelectric materials, an electric field applied

along theT-axis causes electric displacement only in that direction. The relative dielectric constant

is defined as the ratio of the absolute permittivity of the material by the permittivity of free space.

The superscript of e in e11('refers to the permittivity for an electric fietd applied in the 1 direction,

when the material is not restrained.

1.4 Applications of Piezoelectric Materials

The discovery of piezoelectricity generated significant interest within the European scientific

community. Subsequently, roughly within 30 years of its discovery, and prior World War I, the

study of piezoelectricity was viewed as a credible scientific activity. The first serious application

for piezoelectric materials an ultrasonic submarine detector appeared during World War I was built

by Paul Langevin and his co-workers in France. This device was used to transmit a high-frequency

chirp signal into the water and to measure the depth by timing the return echo. Since then

piezoelectric crystals were employed in many classic applications such as sonar applications,

frequency stabilizers, ultrasonic transducers, microphones, accelerometers, piezo-ignition systems,

sensitive hydrophones and ceramic phono cartridges etc 132].

Piezoelectric vibration control has shown promise in a variety of applications ranging from

consumer, sporting products, and satellite vibration control systems. Some of the companies like

HEAD and K2 have invested in high-performance and novelfy items such as composite

13



piezoelectric tennis racquets, skis, and snowboards. These products typically involve the use of a

shunted piezoelectric transducer to decrease vibration, which will increase the user comfort, better

handling and performance [32].

Figure 1.8 (a) shows the design of the shoe energy harvesting system, which contains the PVDF

piezoelectric film insert and metal spring with coupled generator system. This PVDF insert in the

shoe is used to recover some of the power n the process of walking. The natural flexing of the shoe

when walking provides the neeessary deflection for generating power from the piezoelectric film

insert [33]. Fig. 1.8 (b) shows the magic backpack, the straps of this backpack are made using

PVDF, generating electrical charges when stress is applied [34]. These nylon-like straps convert

that mechanical strain into electrical energy, and researchers have figured out that if you carry a

100 pound pack and walk at 2-3 mph you can generate 45.6 mW of power. That is enough to the

power of portable electronic devices, or a head-mounted flashlight.

0 ①

FZT

≫珊ρ驚い [
密嬢

…

Fig. 1.8 Applications of piezoelectric materials; (a) shoe energy harvesting system (from [28]),
and O) magic backpack straps power generator (from [29])

1.5 Outline of Dissertation

This dissertation describes the results of my studies on the development of a piezoelectric

acoustic energy harvester for the fundamental frequency band of a human voice. For a voice of a

comparatively low frequency, the diaphragm of the energy harvesters must have high sensitivity to

a low acoustic pressure. For this reason, a piezoelectric polymer with lower mechanical impedance

than other piezoelectric materials was used in these studies; P(VDF-TeFE) was employed which is

a PVDF copolymer. Since the diaphragm of the device fabricated in these studies did not include

an elastic substrate, the piezoelectric film had to be sufficiently thin and flat, and chemically pure.

This dissertation is orsanized as follows.

14



In Chapter 2, the experimental techniques used to form a P(VDF-TeFE) films using the sol-gel

method are described. To control the film thickness by applying a spin-coating method, mixtures

of solvents were used as casting solutions. Film surfaces were characterized as a function of the

annealing temperature. The effect of using mixed casting solutions was also investigated by

employing X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy

(FrrR).

In Chapter 3, solutions to the issues raised in Chapter 2 are discussed along with a proposed the

improved annealing process that removes impurities while preserving the piezoelectric

characteristics of the P(VDF-TeFE) film.

In Chapter 4, the design and fabrication of an acoustic energy harvester using MEMS

techniques are reported at the fundamental frequency of a human voice. The properties of the

devices were measured and characterized experimentally. Also, improvements of the device are

discussed along with the energy conversion efficiency calculated from the measured properties.

In Chapter 5, the main conclusions of the present study are described.
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Chapter 2

Formation of Poly(vinytidene fluoride -

tefrafluoroethylene) Thin Films with Sol-Gel Method

2.1 Introduction

Poly(vinylidene fluoride - tetrafluoroethylene) (P(VDF-TeFE)) is a copolymer of vinylidene

fluoride (VDF, CH2-CF) and tetrafluoroethylene (TeFE, CFrlF) as shown in Fig. 2.1. Unlike

VDF, TeFE has no polarity. However, P(VDF-TeFE) can be grown with those of higher

crystallinity [ ], resulting in greater polarization and a shonger piezoelectric response than those of

the semicrystalline PVDF. Compared with the known copolymers, P(VDF-TeFE) is one of the

most widely used ferroelectric PVDF copolymers [2].

In an attempt to understand the structure-property relation of P(VDF-TeFE) theoretically, Balta-

Calleja et al. [3) studied the structure and properties using potential energy calculations to

determine the chain conformation and packing energies. They showed that the introduction of

TeFE may cause the formation of all-tran.s chains with a lower energy conformation. The great

proportion of bulky tetra-fluoride groups in the copolymer will prevent the chains from

accommodating the cr-chain conformation (or TGTG', where G refers to gauche and T refers to
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Fig. 2.1 A molecular structure of PVDF (top side) and P(VDF-TeFE) (bottom side)
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trans, and the prime in G' refers to the dihedral angle being opposite to the G conformation with

respect to the reference plane T). Therefore, the copolymers can directly crystallize at room

temperature into a feroelectric B-phase [3, 4] that possesses polar unit cells (similar to the p-phase

of PVDF homopolymer). The copolymer can also be electroprocessed into an enhanced

piezoelectric material immediately after crystallization. Ranjan et al. [5] calculated the total energ/

of the o- and p-phases of PVDF and P(VDF-TeFE). The results of their total energy calculation are

summarized in Fig. 2.2,which shows the energy difference between the a-and B-phases of PVDF-

TeFE as a function of TeFE concentration. The o-phase is lower in energy and hence is the more

stable phase in the limit of pure PVDF (TeFE concentration: 0). The transition from the a-phase

to the B-phase takes place at TeFE concentration of 12Yo.ln this study, P(VDF-TeFE) (75125) is
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Fig.2.2 Calculated total energy difference between the a and p phases

as a function of TeFE concentration in P(VDF-TeFE) (from [5])

Fig.2.3 A typical photograph showing granules of P(VDF-TeFE)
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used to denote a TeFE concentration of 25o/o. Note that in general a smaller electric field is

required for the a - B conversion in the P(VDF-TeFE) than that in PVDF. For this reason, P(VDF-

TeFE) is used to form the diaphragm of the acoustic energJ harvester in this study.

In this chapter, we discuss the formation of P(VDF-TeFE) thin films using the sol-gel process.

Cranular P(VDF-TeFE), as shown in Fig. 2.3, was provided by Daikin Co. Ltd. To control the

thickness of the thin films, the concentrations of the casting solvents and the coating speed in the

spin-coating process were adjusted as controllable parameters in the sol-gel method. To control the

thickness of thin films, it is easier to adjust the concentration of the casting solutions than to adjust

the coating speed. However, it was observed that when the film which was in the sol-state on the

surface of the substrate, it became detached during spin-coating. Since this phenomenon is related

to the viscosity of the solvents employed to cast the polymer [6], a reasonable mixing ratio for

easily forming a thin film was investigated by mixing two different solvents. Furthermore, it was

observed that the surface morphology of the thin film could be improved by controlling the

annealing temperature. Finally, the effects of the concentrations of the mixed solvents on fhe

properties of the formed film were investigated experimentally.

2.2 Experimental Procedures

2.2.1 Preparation of Casting Solvents

The formation of P(VDF-TeFE) films by the sol-gel process, a methyl-ethyl-ketone (MEK) is

generally used as a solvent [6]. MEK is a chemically stable compound also known as 2-butanone.

It has very good solvent properties, a high evaporation rate, and is miscible with organic solvents.

Its solubility is very high because of its low viscosity; the properties of MEK are listed in Table

2.1. However, the probability of rearrangement of the polymer chain is reduced by its high

solubility. Furthermore, in the case of using a low-concentration casting solution, a film may not

be formed or many pinholes form on the surface of the film even when an annealing process is

carried out [5]. In this study, an n, n-dimethylacetamide (DMAc) is added to MEK to control the

viscosity of the casting solvents as above.

DMAc is a good solvent for a wide range of organic and inorganic compounds, and it is

miscible with water, ethers, esters, ketones, and aromatic compounds. However, since the boiling

point of DMAc is 165 oC, there is the possibility of solvent remaining in the fonned fihn when

DMAc is used in the sol-gel process. Hence, to evaporate all of the DMAc solvent, the annealing

must be carried out at a temperature higher than | 65 oC. As reported in the section 2.4, the
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Table 2.1 Casting solvents [7]

existence of remaining solvents was investigated for the cases of a mixed solvent and a single

solvent.

IUPAC name Methyl-ethyl-ketone N, N-Dimethylacetamide

Structure

MEK:100 wtO/0

MEK:75 wt%+DMAc:25 wt%

MEK:50 wt%十 DMAc:50 wt%

MEK:25、ゃt%+DMAc:75 wt%

DMAc:100 wtO/0

0
||

/＼ ノH・

０

１ｉ
Ｃ C舞3

/
CH3

＼ /

cfla cHz
CH3

Density g/cm3 0.94g/cln3

80°C 165°C

Mclting Pt. ‐86°C ‐20°C

Viscosity 0.43 cP@20°C 0.92～ 2.14 cP@20°C

Vapor pressure 74 Torr l Torr

Solubility of water 12%w/w 100%w′w

2.2.2 Film Coating Process of P(VDF-TeFE)

By varying the mixing ratio of MEK to DMAc, five different casting solutions of P(VDF-TeFE)

were made up. The mixing ratios and their names in this study are as follows:

(call as K100 single solvent),

(call as KD7525 mixed solvent),

(call as KD50 rnixed solvent),

(call as KD2575 mixed solvent),

(call as Dl00 single solvent).

The concentrations of the casting solutions are classified into two categories: high-

concentration (10, 15, and 20 tNf/o) and low concentration (6 wt%o and less). A film was always

formed when using one of the high-concentration casting solutions, whereas a film was only

つ
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Fig. 2.4 A schematic diagram showing a lumped sfucture of P(VDF-TeFE) spin-coated

on PtlTa-deposited Si substrate

sometimes formed when using the low-concentration casting solutions, depending on the mixing

ratio of the solvents. For the casting solutions with a concenfration over 20 vtf/o, a film could not

be formed by spin-coating because of the poor adhesion between the film and substrate.

Using the five casting solutions, P(VDF-TeFE) thin films were formed on the surface of a

Pt/Ta-deposited Si substrate by a standard spin-coating process as shown in Fig. 2.4. The initial

spin-coating speed was kept at 1,000 rpm for 5 seconds and the terminal speed was set at 2,000,

3,000,4,000, or 5,000 rpm for l5 seconds. To reduce the likelihood of defects forming on the film

surface during the spin-coating process, induced by moisfure in the atmosphere, the spin-coater

was filled with before the spin-coating process. DMAc is miscible with water (100%o w/w

(weight/weight)), thus it is very hygroscopic. In other words, the sol-state P(VDF-TeFE) film cast

with DMAc as a single solvent or a mixed solvent is vulnerable to humidity.

After the spin-coating process, an annealing process was carried out to form a B-phase film of

P(VDF-TeFE). As discussed in the section2.3,o'treating thickness measurements, according to the

previous study [6]," the annealing process was carried out at 120 "C for t hour. Alternatively as

discussed in the section 2.4, "tteating a roughness of the film surface," the annealing process was

carried out at 120, 175, or 215 "C for t hour to observe the relation between the annealing

temperature and the roughness of the film surface.

2.3 Film Thickness Measurement to Optimize Spin-Coating Condition

Classifying the casting solutions into high and low concentrationso the thickness of

deposited P(VDF-TeFE) film was measured by the profile meter (Alpha-Step@ 500). Fig.

shows the measured film thicknesses for the high-concentration casting solutions.
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Fig. 2.5 Thickness of P(VDF-TeFE) films spin-coated with various casting solvents

as a function of the spin-coating speed for (a) 20 wtolo, (b) 15 wf/o, and (c) l0
wt%o concentration of the castins solution
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For the casting solutions with 20 wto4 concentration, as shown in Fig. 2.5 (a), the film thickness

decreased slightly with increasing spin-coating speed because of the high viscosity of the casting

solutions. Considering that the spin-coating process began in earnest at a speed of 2,800 rpm, there

were clear changes in the film thickness witlr the spin-coating speed that depend on the

concentration of the casting solutions. The film thickness for the Dl00 single solvent was less

affected by the spin-coating speed than that for the other solvents. However, the film thickness had

already reached about I pm for the casting solution with | 5 wt%o concentration, and could not be

wefl controlled when the concentration of the casting solution was less than l5 wtYo, as shown in

Figs. 2.5 (b) and (c). ln addition, even though the film was annealed after the spin-coating process,

the film detached from the substrate surface because the adhesion of the spin-coated film to the

metal surface was low. With the exception of the Dl00 single solvent, the measured film thickness

was in proportional to the spin-coating speed.

For all the casting solutions, the measured film thickness exceeded I pm when using a casting

sof ution with a concentration higher tlran I 0 wtVo. Since the film thickness must be less than I pm

in this study, a casting solution with a low concentration is more suitable for the present study.

However, using the KD50. KD2575, and Dl00 as the casting solvents, no film was formed by the

spin-coating process at a low concentration. When the ratio of DMAc was higher than that of

MEK. there were interfacial delamination occurred between the substrate and the sol-state P(VDF-

TeFE) film during the spin-coating process.

800

----- KD7525 nrixed solvcnt (h

- +- KD?525 nrixed solvent (a

--l- KD?515 nrixcd solvcnt (rr

tr K 100 singlc solvcnt (a 5k rpnr
o Kl(n singlc solr,cnt (a 4k rpnr
a K 100 sinelc solvcnt (ri -lk

2345
Concentration of casting solution (wPlo)

Fig.2.6 Casting solution concentration dependence of the thickness of the P(VDF-TeFE)

film spin-coated with various casting solvents in the low-concentration category
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For the low-concentration P(VDF-TeFE) casting solutions, the thickness of the films formed

using the K100 single solvent and KD7525 mixed solvent is shown in Fig. 2.6 as a function of the

concentration of the casting solutions. Interfacial delamination occurred in the P(VDF-TeFE) film

formed using the K100 single solvent. Only the solution cast with the KD7525 mixed solvent

resulted in a film via the spin-coating process at a concentration of 3 wt% ard less. In the case of

the KD7525 mixed solvent, a film was formed at a concentration of 0.5 wt%, while islandlike

holes originating from interfacial delamination were formed on the film surface. For the spin-

coating speed of 5,000 rpm, it was found that the KD7525 mixed casting solution could be used to

effectively control the film thickness. As a result, adjustment of the viscosity through the mixing

of solvents is helpful for controlling the film thickness. Since, there have been very few

experimental reports on the sol-gel process using mixed solvents, the effects of mixed solvents on

the film properties should be investigated in detail. To carry out such an investigation, the two

solvents forwhich P(VDF-TeFE) films formed, i.e., the Kl00 single solvent andKD7525 mixed

solvent, were compared as discussed in the section 2.5.

2.4 Annealing Temperature Dependence of Surface Morphology of

P(VDF-TeFE) Films

A P(VDF-TeFE) is known to be more stable in the p-phase, in contrast to PVDF [5]. However,

the annealing process is an essential prerequisite to change the phase of the film. In the sol-gel

process of P(VDF-TeFE), the objective of the annealing process are to remove the remaining

solvents in the sol-state film, supply energy for the rearrangement of P(VDF-TeFE) monomers,

and planarize the film surface. As reported in this section, the effects of the annealing temperature

on the morphology of the film surface were experimentally investigated.

Using 10 rarPlo casting solution, for which a film can be formed using all five casting solvents

(see section 2.2.2), the relationship between the annealing temperature,T^, (120,175, or 215 "C)

and the average roughness of the film surface was investigated. The results are shown inFig.2.7.

Here, the temperature of 120 oC is in the range of the general annealing temperature of PVDF

copofymers [8], 175 oC is higher than the melting point of PVDF copolymers, and215 "C is a

temperature at which PVDF copolymer can completely melt. With an increase of the annealing

temperature, the roughness of the film surface changed markedly. The roughness decreased with

increasing DMAc mixing ratio even though the viscosity of a DMAc is higher than that of a MEK.

Since the vapor pressure of DMAc is as low as 1 Ton (the vapor pressure of MEK is 74 Tor), the
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Fig. 2.8 A schematic diagram showing various P(VDF-TeFE) crystalline state

for different annealing temperatures

time during which the sol-state P(VDF-TeFE) film is flattened is extended with increasing DMAc

mixing ratio. However, in the case of using the KD50 mixed solvent, the film surface was found to

be very rough compared with the other cases. The KD50 mixed solvent, which contains the same

concentrations of MEK and DMAc, may hinder the planarization of the film. Since the interfacial

delamination easily occured for the cases using the D100 single solvent, the roughness of the film

formed with the KD7525 mixed solvent was comparatively low.

With an increase of the annealing temperature, the film thickness slightly decreased. Figure 2.8

shows a schematic diagram of the state inside the film before and after the annealing process. The

amorphous-phase P(VDF-TeFE) in the sol-state film contracted during the annealing process.

Hence, at annealing temperatures higher than the melting point of a P(VDF-TeFE), it is possible

that the film thickness decreased owing to the evaporation of the amorphous-phase P(VDF-TeFE).

For the 4 wto/o casting solutions (K100 single solvent and KD7525 mixed solvent), using which

P(VDF-TeFE) thin films can be formed, the film surfaces were observed using a scanning electron

microscope (SEM, Hitachi High-Technology 3-4800). Typical results are shown in Fig. 2.9. The

two casting solutions as above produced films with similar decreases in film surface roughness

witlr increasing annealing temperature. However, the films formed with the KD7525 mixed solvent

are smoother than those formed with the Kl00 single solvent. At annealing temperatures of higher

tlran 175 "C, the surface roughness of the film decreased, probably because the annealing
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Fig.2.9 Typical SEM images of the P(VDF-TeFE) film surface annealed at (a), (b) 120"C, (c), (d)
l75oC, and (e), (0 215'C. Samples of (a), (c), and (e) are formed with the Kl00 single solvent,

and samples of (b), (d), and (f) are formed with the KD7525 mixed solvent. The average

roughness, R,, decreased with the increment of the annealing temperature, T".
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temperature was higher than the melting point of a P(VDF-TeFE). Hence, the film surface can be

flattened by melting the P(VDF-TeFE) film. As a result, very flat films can be formed by setting

the annealing temperature higher than the melting point. Nevertheless, if the annealing temperature

exceeds a certain point, the PVDF copolymer loses its piezoelectric properties [9]. According to

the experimental data, the piezoelectricity of a P(VDF-TeFE) is lost at205 oC. Thus, it is effective

that the annealing process is carried out at 195 oC.

2.5 Characterization of Surface and Inside of P(VDF-TeFE) Films

On the surface of a P(VDF-TeFE) film formed by the spin-coating process, a metal film

electrode will be deposited as part of a diaphragm. Hence, the film surfaces must be characterized

because the film surface becomes the interface between the P(VDF-TeFE) thin film and the top

electrode. X-ray photoelectron spectroscopy (XPS, Shimadzu ESCA 850) and the Fourier

transform infrared spectroscopy (FTIR, JEOL WIN SPEC-5O) were employed to observe the

surface and inside of the P(VDF-TeFE) films respectively. In order to examine the films formed

with all five casting solutions, P(VDF-TeFE) films were formed using the 10 wtolo casting

solutions and subsequently annealed at 120,775, or 215 "C.

Figure 2.10 shows XPS spectra of C1, core electrons whose binding energy is 290.5 eV for the

PVDF binder [0] (see Appendix A). Differences in the intensity of the -CF:-CHz-CFz- (286.3 eV)

and -CH2-CF1-CH2- (290.8 eV) peaks, which comprise the VDF structure [ 1], shows that the

surface area is different among the samples treated at different annealing temperatures. The surface

area is affected by the grain size of crystalline P(VDF-TeFE). Fig.2.ll shows the atomic force

microscope (AFM) images (Keyence \,rN-8000) indicating the changes in the grain size of P(VDF-

TeFE) with the annealing temperature. The surface area decreases with increasing grain size

resufting from the increasing annealing temperature [2]. The -CFz-CFz-CF2- peak (292.6 eV)

corresponding to the TeFE structure is very small in intensity, and it is hidden by the peaks of the

VDF structure. No peaks located at binding energies of less than 285 eV were detected from the

normaf chain structure of P(VDF-TeFE). The R-C:O- signal, which has a peak at282.5 eV [3],
represents a carbonyl group and an amide group in the binding structures of a MEK and a DMAc,

respectively, indicating the existence of remaining solvents. The bonding structures of both Q-H,

which has a peak at283.5 eV [4], and C-O-C, which has a peak at285 eV [5], were detected

from the amorphous P(VDF-TeFE) film. The C-H bonds represent the VDF chain structure along

the VDF axis direction, while the C-O-C bonds are formed by the insertion of 0 atoms during the

recombination or rearrangement of the chain structure of P(VDF-TeFE). In all the graphs in Fig.
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Fig.2.10 C15 cor€ XPS spectra taken from the films formed with l0 wt%o casting

solution and subsequently annealed at (a) 120 "C, (b) 175 'C, or (c) 215 'C.
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Fig.2.l l Typical AFM images of the P(VDF-TeFE) film surface annealed at (a) 120'C,

(b) 175 oC, and (c) 215'C

2.10. hardly any relationship was observed between the peaks related to impurities or solvents and

the annealing temperature. Although the film surface roughness decreased with increasing

anneaf ing temperature, as discussed in section 2.4, the micro structure of the P(VDF-TeFE) film

surface was not well controlled by the subsequent annealing process employed.

Because of the possible existence of C atoms bonded to O atoms, Or. cor€ (533 eV [6]) XPS

spectra were also taken. Typical results are shown in Fig. 2.12. Different carbon bonds such as

g=q 1530.8 eV [ 5]), R-C:O- (532.4 eV [ 7]). and C-O-C (533.1 eV [ 5]) were detected in large

quantities. Furthermore, small signals corresponding to the C-O-H bond (534.5 eV [ 8]) were

detected. Since no O atoms exist in a pure P(VDF-TeFE) film, all the detected bonds in this energy

region should originate from impurities, which entered the film, and from solvents remaining in

the films. Both R-C:Q- and C:O bonds are components of MEK and DMAc and have spectra

almost the sarne as C1. core XPS spectra. Considering that the solvents are highly hygroscopic. it
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appears that the C-Q-H bond in the film is induced by humidity via the solvents. There was no

relationship observed among the detected bonds, the mixing ratio, and the subsequent annealing

temperature.

In order to confirm the existence of solvents remaining in the films, FTIR measurements were

carried out. Typical results are shown in Fig. 2.13. Films that were formed using l0 wtVo casting

solutions and annealed at 175 "C were used, because the temperature of 175 'C is higher than the

melting point of P(VDF-TeFE) (- 170 "C) and the boiling point of DMAc (- 165 "C). The (C-C),

(CFz)5, and (CHz)u bonds indicated in Fig.2.l3 represent components of the chain structure of

P(VDF-TeFE) [9] (see Appendix B). The subscripts s and b of each bond denote the stretching

and bending of the covalent bonds in molecules, respectively. Even though the film formed with

the KD7525 mixed solvent was the second thickest film among the films deposited with the five

solvents, the IR absorption peaks corresponding to the bonds that were components of the chain

structure of P(VDF-TeFE) were markedly higher in intensity than those for the other solvents.

Considering the film thickness, the probability of the rearrangement of monomers wzrs highest in

the case of using the KD7525 mixed solvent.

As shown in Fig. 2.14, lR absorption due to both C=O stretching motion and C-H bending

motion, which are related to the solvents, was detected for all the solvents studied [ 9], and

absorption due to N-H bending motion was also detected for the solvents containing DMAc [20,

21], since MEK is a ketone compound (R-C:O-R') and DMAc is an amide compound (R-C=O-N-

R'-R") in carbonyl group (see Appendix C). Even though the annealing process was carried out at

higher temperatures than both the melting point and boiling point, it is considered that the

existence of solvents remaining in the films is a limitation of the present sol-gel process employed

for the P(VDF-TeFE) film deposition. Since no O-H bonds were clearly detected, it was found that

the moisture, which was detected by the XPS measurements, only affected the film surface. On the

basis of both the XPS and FTIR spectra, it is concluded that the control of surface impurities and

the removal of remaining solvents in the film are necessary for the formation of P(VDF-TeFE)

films using the sol-gel process employed.

2.6 Relation between Film Formation Conditions and Piezoelectricitv

In order to investigate the effect of the film formation conditions (solvent type and annealing

temperature) on the piezoelectricity of P(VDF-TeFE) films, the remanent polarization, P., was

measured. The results are shown in Fig. 2.15. All five casting solutions were used with a

concentration of l0 wtYo, and the annealing process was subsequently carried out at 120, 175, and
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Fig. 2.15 Remanent polarizations obtained for cases with various mixing ratio of
DMAc and post annealing temperatures

215 "C. After the annealing process, a Pt layer was deposited on the film surface by sputtering.

The remanent polarization was measured using a ferroelectric test system (FCE-1, Toyo Co.p.,

Japan). Since no remanent polarization was observed for the film annealed at215 oC orving to the

loss of piezoelectricity, the measured values for the films annealed at 120 and 17 5 oC are shown in

Fig.2.l5.

The remanent polarization decreased with increasing the DMAc content, and it markedly

decreased when the DMAc content increased from 25 to 50 wt%. According to the results for the

film roughrress described in section 2.3, the KD50 mixed solvent adversely affected the film

formation and properties. In a previous study [8J, the remanent polarization of a typical bulk-type

P(VDF-TeFE) film (for which the thickness is 6-150 pm for commercially available films) was

reported to be 60 mC/m2. However, the remanent polarization measured for the films formed in

this study was less than half of the value reported in the previous study. This difference is probably

caused by the fact that the films formed in this section were not properly polarized. This means

that P(VDF-TeFE) films cannot be well polarized only by the heat energy. In addition, the

polarization decreased with increasing annealing temperature. Even though the PVDF copolymer

film was annealed at a temperature higher than the Curie point, the polarization of the copolymer

recovers to the average value after the annealing process [9]. However, according to the present

experimental results, the measured remanent polarization decreased with increasing difference

between the Curie point of P(VDF-TeFE) and annealing temperature.
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2.7 Conclusion

In this chapter, the techniques used to form the P(VDF-TeFE) films based on the sol-gel process

for fabrication ofa diaphragm for an acoustic energy harvester have been described. The effect of

five solvents and the subsequent annealing temperature were experimentally observed, in addition

to the surface and bulk of the formed films. The obtained results are summarized as follows.

1. In the formation of the P(VDF-TeFE) films by the sol-gel process, controlling the

concentration of the casting solution was more efficient than controlling the spin-coating

speed. The probability of interfacial delamination between the film and substrate increased

with increasing the spin-coating speed.

2. Even though a thin film was easily formed using a low-concentration casting solution,

interfacial delamination occurred because the viscosity of the casting solution was also low.

Hence, solvents in which MEK and DMAo are mixed can be used to control the viscosity of

the casting solution.

3. The morphology of the formed films was stable at annealing temperatures of up to 175 oC,

which is higher than the melting point of P(VDF-TeFE). However, the piezoelectricity of

the film was decreased or lost when the annealing temperature was higher than the Curie

point of P(VDF-TeFE).

4. As a result, to apply P(VDF-TeFE) thin films to a diaphragm, both possible impurities on

the film surface and remaining solvents in the film have to be removed. Also, remedies are

needed to employ the subsequent annealing process at temperatures higher than the Curie

point of P(VDF-TeFE).
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Chapter 3

Improvement on Properties of Poly(vinylidene fluoride

- tetrafluoroethylene) Thin Films

3.1 Introduction

Using low-concentration casting solutions, the formation of P(VDF-TeFE) thin films with a

suitable sol-gel process has been described in the previous chapter. Also, increasing the post-

annealing temperature was suggested as a means of lowering the film roughness. Although a

P(VDF-TeFE) thin film formed as above satisfies the mechanical properties required for a

diaphragm, its properties as a piezoelectric thin film are unsatisfactory. The problems discussed in

Chapter 2 are the reduction or loss of remanent polarization in the post-annealing process

employed and the existence of solvents remaining in the film. Furthermore, pinholes appearwhen

using a low-concentration casting solution [1]. The pinholes are molecular-structure defects of the

PVDF copolymer, and the cause of their formation has not yet clarified. Such pinholes commonly

appear in films formed by the sol-gel process, and cause the functions of such films as

piezoelectric and ferroelectric films to be substantially lost depending on the depth of the pinholes.

Upon solving the problems noted above, a P(VDF-TeFE) thin film can be formed as a

piezoelectric diaphragm.

In order to remove the solvents remaining in the films, a low-pressure chamber is employed in

this study. Because it is difficult to use a low-pressure chamber in the spin-coating process, the

annealing process in a low-pressure chamber is suggested as a means of effectively removing the

remaining solvents in the film. If the spin-coating process is carried out in a low-pressure chamber,

the film morphology tends to become rough owing to the substantial rate of evaporation of the

solvents, even though a post-annealing process is carried out after the spin-coating process. In the

annealing process, since the annealing temperature is higher than the boiling point of the solvents

and the melting point of P(VDF-TeFE), the evaporation of both MEK and DMAc and their

separation from the liquefied P(VDF-TeFE) film are facilitated. However, the direction of dipole

moments should be fixed by an electric field because the remanent polarization decreased at high

annealing temperatures as mentioned in the previous chapter [2]. Hence, it is difficult to employ a
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high-vacuum chamber for the annealing process because of the difficulty in applying a sufficient

electric field, whose intensity is often limited in a high-vacuum chamber. The formation of

pinholes can be suppressed by optimizing the post-annealing temperature and the process time,

because it is difficult to completely prevent the formation of pinholes.

In this chapter, the remedies by which the problems in the film formation process are solved are

proposed, and their effectiveness is experimentally verified.

3.2 Experimental Procedures

3.2.1 Preparation of Samples and Solvents

Among the five single and mixed solvents referred to Chapter 2, the solvents with which thin

films with a thickness of I pm can be formed are the Kl00 single solvent (MEK 100 wt%) and

KD7525 mixed solvent (MEK 75 wto/o + DMAc 25 wt%). Even though a film thinner than I pm

can be formed usingthe KD7525 mixed solvent, both the Kl00 single solvent andKD7525 rnixed

solvent are employed in this study to investigate the difference between a single solvent and a

mixed solvent because a single solvent is commonly applied to form such films [3]. For each

sofvent, 4 wtoh casting solution of P(VDF-TeFE) was made up to form a thin film by the spin-

coating process, which was carried out using an initial speed of 1,000 rpm (for l5 seconds) and a

Fig. 3.1 A low-pressure chamber employed for the annealing process under an applied electric field

40



0.01 Ml)a

Fig. 3.2 A schernatic diagram for the application of an electric field during an annealing process

terminal speed of 5,000 rprn (for 45 seconds). In order to reduce the effect of humidity and dust,

the spin-coating process was carried out in an airtight container in which the temperature and

humidity were controlled. Also, to prevent impurities from contaminating the film during the spin-

coating process. the chamber of the spin-coater was filled with N2 gas.

3.2.2 Application of Electric Field during Annealing Process

After the spin-coating process, the post-annealing process was carried out in a low-pressure

chamber. as shown in Fig. 3.1. In order to reduce the surface roughness of the film. the post-

annealing process should be carried out at a temperature higher than the melting poirrt of P(VDF-

TeFE) [4]. Also. to remove remaining solvents in the film. the P(VDF-TeFE) film should be

liquefied during the post annealing process in the low-pressure chamber. Hence. the post-annealing

process proposed in this study was carried out at 195'C. ln order to preserve the remanent

polarization of P(VDF-TeFE). an electric field was applied to tlre sample during the annealing

process. as sclrernatically shown in Fig.3.2. Although the maximurn applicable electric field was

2.2MYlm at the low-pressure of 0.01 MPa. an electric field of I MVim was applied considering

the leakase current between electrodes.
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3.3 Surface Morphology

In order to investigate the effects of the low-pressure annealing process on the formation of

pinholes, the surface of a film formed with the KD7525 mixed solvent was observed with a SEM

and an AFM. Fig. 3.3 (a) shows the surface of a film after annealing at atmospheric pressure, while

Fig. 3.3 (b) shows the surface of a film annealed in the low-pressure chamber. For the film shown

in Fig. 3.3 (a), many pinholes were observed on the sample surface, and the pinhole density was

about 6.3 x | 08 cm-2. Although it was difficult to accurately measure the depth of each pinhole, the

average depth was over 100 nm. Several pinholes penetrated into the P(VDF-TeFE) thin film from

the film surface to reach the substrate surface [5]. On the film surface annealed in the low-pressure

Fig.3.3 Typical SEM images of the film surface annealed in (a) atmosphere without a chamber

and in (b) a low-pressure chamber

Fig. 3.4 Typical AFM images of the film surface annealed in (a) atmosphere without a chamber

and in (b) a low-pressure chamber

』　　　　　　　　　　　　　　　　　　　　　　̈

日

Ｈ

Ш

■

■

■

■

■

■

■

42



chamber, as shown in Fig. 3.3 (b), the pinhole density was about 1.6 x 108 cm-2, and a decrease of

about 75o/o compared with that of the film formed by the conventional annealing process. Even

though the diameter of each pinhole was larger for the film formed under a low pressure, the

pinholes were shallow; if pinholes penetrate deep into a P(VDF-TeFE) thin film, then it cannot be

used as a piezoelectric film anymore. As shown in AFM images in Fig. 3.4, the pinholes on the

surface of the film annealed using the conventional method were very deep although their

diameters were small. In contrast, the pinholes on the surface of the film annealed in the low-

pressure chamber were shallow but with large diameters. As a result, the formatio:r of such deep

pinholes penetrating into the P(VDF-TeFE) thin film was suppressed by employing the low-

pressure annealing process.

3.4 Problem of Remaining Solvents

In the annealing process discussed in the previous chapter, impurities such as remaining

solvents and dust were often detected on the film surface. Since such film surfaces become the

interfaces upon the deposition of a top electrode, carefultreatment of the film surface is important

to maintain its electrical properties. From the spin-coating process to the end of the annealing

process, contamination by impurities was prevented as far as possible by controlling the

temperature and humidity in a sealed chamber. Both XPS and FTIR spectra were measured for

such specimens, which were compared with those of specimens formed using the conventional

annealing process without a low-pressure chamber (see Appendix A and B). The K100 single

solvent and KD7525 mixed solvent were used to make up 4 wtVo casting solutions. The two

solvents were used to form a 500-nm-thick a P(VDF-TeFE) thin film, which was applied to

fabricate a diaphragm.

When an electric field was applied during the annealing process, the sample surface became

electrostatically charged as shown in Fig. 3.5. In the case of using the conventional annealing

process without a low-pressure chamber, the sample surface became slightly charged, and the XPS

spectra were shifted to a slightly higher binding energy. However, in the case of using the low-

pressure annealing process with an applied electric field, the sample surface became more highly

charged than in case of the conventional annealing process. Hence, all the spectra of Cr, and Or. in

Figs. 3.6 and 3.7, respectively, were adjusted by the difference between the measured F1. peak and

the reference peak for the F15 cor€ electrons, whose binding energy is at 689.3 eV for CFz bonds

with the VDF structure [6].

Figures 3.6 and 3.7 respectively show XPS spectra of C1. core electrons and Ors cot€ electrons
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Fig. 3.5 XPS spectra of F;. core electrons taken from the films annealed in atmosphere and in the

low-pressure chamber. (a) Original spectra measured and (b) fitted spectra for F ls core

electron of CF' bond

for the fifms formed using the Kl00 single solvent andKD7525 mixed solvent. In Fig.3.6, the

difference in spectral intensity between the carbon atoms contained in the -CFz-CH2-CF2- Q86.3

eV) and -CH:-CFz-CH2-(290.8 eV) structures indicates the difference in the density of VDF bonds

per unit surface. In the films annealed by using the conventional process, as shown in Fig. 3.6 (a),

the R-Q:O- structure (282.5 eV [7]) was commonly detected. The structure is related to a ketone

and amide of carbonyl group in the signals of a MEK and a DMAc. respectively, indicating the

existence of solvents remaining in the film. By contrast, in the films annealed in the low-pressure

chamber under an applied electric field as shown in Fig. 3.6 (b), R-C:O- was not detected. This

indicates that the remaining solvents were removed from the film surface. In the film formed using

the Kl00 single solvent, the C-H bond (283.5 eV [8]) was detected. This peak, as mentioned in the

previous chapter, was observed in the amorphous P(VDF-TeFE) film of the remaining solvents [9].

During the annealing process at temperatures higher than the melting point of P(VDF-TeFE),

monomers of P(VDF-TeFE), which are spread out in the film and have a chain structure. lose their

preferential orientation. However, the monomers are rearranged by the electric field during the

annealing process. With the decreasing substrate temperature after the annealing process, the

monomers set in a chain structure with the preferential orientation preserved. Hence. C-H bonds

did not disappear as a result of the low-pressure annealing process but by the rearrangement of the

amorphous P(VDF-TeFE) fihn induced by the electric field applied during the annealing process.

Kl{X) ringlc mtvml ;mqlod ia dmospbw
KD7525 mirod plvcnt ;&trc.lcd in dmocpbcrc

Kl00singlcmlvut ;uqlodinlow-Fwre
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Fig.3.6 XPS spectra of C1. core electron of the film annealed in (a) atmosphere,

and in (b) the low-pressure chamber

C-O-C (284.5 eV [0]) bonds can be formed by the inclusion of an O atom during the

recombination of broken chains of P(VDF-TeFE). C-O-C peaks were not detected owing to the

removal of the remaining solvents through the low-pressure annealing process. Meanwhile, the

peak of the -CH2-CHF-CF:-of the TrFE (trifluoroethylene) structure was detected at 288.5 eV I l].

The full width at half maximum (FWHM) of the peak of the TrFE structure is almost the same as

that of the VDF structure, although the peaks have a lower intensity than those of the VDF

structure. The TrFE structure was detected in wide range owing to its weak binding in the P(VDF-

TeFE) film. For this reason, TrFE structures probably exist in the amorphous P(VDF-TeFE) film.
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Because of the detection of C atoms bonded to O atoms, Ors core electron (533 eV [2]) XPS

spectra were also measured as shown in Fig. 3.7. Among the film annealed with the conventional

process as shown in Fig. 3.7 (a), the XPS spectra display a marked distinction between the films

formed using the Kl00 single solvent and using the KD7525 mixed solvent. In the case of the film

formed using the Kl00 single solvent, signals from both the R-C:O- (532.4 eV [3]) bond and tlre

C-O-C (533.1 eV [0]) bond were the main structures in the XPS spectra. On the other hand, in the

case of the film formed using the KD7525 mixed solvent, appeared signals corresponding to

trapped O ions (529.8 eV Ia]) and C=O (530.8 eV [9]) bonds appeared. The existence of these

(a)

530 532

Binding energy (eV)

52E 530 532 534 536

Binding energy (eV)

Fig. 3.7 XPS spectra of O1. core electron taken from the film annealed in (a) atmosphere,

and in (b) the low-pressure chamber
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Fig. 3.8 FTIR spectra of the film annealed in atmosphere and in the low-pressure chamber

for two solvents. the Kl00 sinsle solvent and the KD7525 mixed solvenl

bonds indicated a difference in the rearrangement process of the P(VDF-TeFE) chain structure that

depends on the solvent type. For the film annealed in the low-pressure chamber with the

application of an electric field as shown in Fig.3.7 (b), most of the peaks related to O bonds were

not detected. Only for the case of using the Kl00 single solvent were a few peaks related to the

remaining solvents detected.

In order to investigate the internal state of the P(VDF-TeFE) thin films, FTIR measurenrents

were carried out. Typical absorption spectra obtained are shown in Fig. 3.8. As discussed in the

previous chapter, absorption due to the excitation of C:O stretching motion and C-H bending

motion, respectively, related to the ketone structure (R-C=O-R') in MEK and the amide structure

(R-C:O-N-R'-R") in DMAc, were detected for all the samples measured. Such absorption can

also be detected from the solvents employed. Compared with the film annealed by the

conventional process, the absorption due to C:O stretching motion and C-H bending motion was

markedly lower in the fihn annealed in the low-pressure chamber with the application of an

electric field. The observed decrease in absorption indicates that most of the remaining solvents

was removed from the film. As a result, the low-pressure annealing process with an electric field

contributed to removing impurities from the bulk and surface of the film. Although the remaining

solvents can be almost entirely removed by sufficiently lowering the pressure, it becomes difficult

to apply an electric field during the annealing process because dielectric breakdown easily occurs

between the two electrodes used to apply an electric field.
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3.5 Recovery of Remanent Polarization

As discussed in Chapter 2, increasing the annealing temperature efficiently reduced the

roughness of the surface of the P(VDF-TeFE) film. The annealing process was carried out at

195'C in this study, which is higherthan the melting point of P(VDF-TeFE). Hence, the P(VDF-

TeFE) film easily lost its piezoelectricity after the annealing process. As reported in this chapter,

an electric field was applied during the annealing process to preserve the orientation of the dipole
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moments. In order to measure the remanent polarization, a 60-nm-thick ft fitm was sputter-

deposited on the surfaces of films that had been annealed at atmospheric pressure and in the low-

pressure chamber. Fig. 3.9 shows typical P-E hysteresis loops obtained. The measured remanent

polarization markedly differed with the annealing conditions. For the film annealed at atmospheric

pressure, the measured polarization was relatively small. This reduction in the polarization may

originate from the remaining solvents in the film and impurities on the film surface. Compared

with the film annealed at atmospheric pressure without an electric field, the measured polarization

of the film annealed in the low-pressure chamber with the application of an electric field was

relatively high, probably due to the removal of the remaining solvents and impurities.

Considering the XPS results, it is anticipated that a relationship may exist between the

frequency of the input voltage used for measurement and the remanent polarization of the films

formed using the single solvent and mixed solvent. Fig. 3.10 shows changes in the remanent

polarization as a function of the frequency of the inputvoltage for frequencies ranging from 0.05

to 1,000 Hz. Since the rate of change of dipole moments is low in a piezoelectric polymer

compared with in metallic piezoelectric materials [15], the remanent polarization of the

piezoelectric polymer decreased with increasing frequency of the input voltage. In a previous study

[3], the polarization was reported to be 6A mCfu2 for a bulk-type P(VDF-TeFE) film. As a result,

compared with the annealing process at atmospheric pressure, it is found that the low-pressure

annealing process with the application of an electric field was more effective in preserving the

polarization and reducing the surface roughness of the film.

3.6 Conclusion

In order to supplement and improve the weak points of employing the general sol-gel process,

the annealing process in a low-pressure chamber while applying an electric field has been

proposed in this chapter. By considering the surface morphology, the existence of impurities, and

the remanent polarization, the suitability of the proposed annealing process was compared with

that of the previously employed conventional annealing process. The results obtained in this

chapter are summarized as follows.

1. Although the formation of pinholes cannot be completely suppressed by using the low-

pressure annealing process, it changed the morphology of the pinholes, by increasing their

diameter and reducing their depth. These changes led to improved electric properties of the

P(VDF-TeFE) thin film.
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2. According to the XPS and FTIR spectra, the amounts of impurities and amorphous P(VDF-

TeFE) in the film were decreased by the low-pressure annealing process by preventing

contamination with impurities and removing solvents remaining from the spin-coating

process.

3. In order to reduce the roughness of the film surface, the annealing temperature should be

higher than the melting point of a P(VDF-TeFE). Although the remanent polarization is at

risk of being reduced or lost at high temperatures, the remanent polarization was preserved

by applying an electric field during the annealing process.

4. As a result, the problems associated with the formation of a P(VDF-TeFE) thin film by

using the sol-gel process and thermal treatment can be solved by applying the proposed

annealing process.
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Chapter 4

Design, Fabrication, and Chara ctertzation

of the Acoustic Energy Harvester

for the Fundamental Frequency of Human Voice

4。 1 Introduction

ln a previous study [1], an acoustic energy harvester has been demonstrated that employed a

mesoscale Helmholtz resonator fabricated with aluminum (dimensions: 24.8 mm in diameter and

l6.l mm in length with a circular piezoelectric patch of 20.2 mm in diameter), delivering a power

of 25 mW to a resistive load at 152 dB SPL. This acoustic energlr, which may originate from

sound, noise, or a voice, may be used to locally power a wireless active liner for the suppression of

engine noise in turbofan engine nacelles, where noise levels typically reach upwards of 150 dB

SPL [2]. Note that there is a substantial amount of data on the fundamental frequency of human

voices (.Fo) in the speech ofspeakers ofdifferent ages and genders. Such data have been published

in several languages and for various types of discourse. The data reported nearly always include an

average value of Fe, usually expressed inHz, but in some cases the average duration of a period

has been reported instead. Typical values obtained for trt are 120 Hz for men and 210 Hz for

women [3]. Since the acoustic pressure of a human voice is under 90 dB sound pressure level (SPL)

(0.632 Pa at a reference pressure of 20 pPa) from a distance of 5 cm, the human voice has very low

energy as an ambient source.

Since the acoustic pressure of a human voice is very low, it is difficult to transmit it to a

diaphragm for application in a Helmholtz resonator. Hence, the use of a diaphragm without a

bottleneck in a Helmholtz resonator is suggested in this study. Because of the use of an exposed

diaphragm, the area that can be reached by acoustic waves is increased and the sensitivity to the

frequency is improved. The energr of an acoustic wave reaching the diaphragm of the energy

harvester is irregular and very small because the voice is transmitted via air. Therefore, it is

necessary to reduce the mechanical impedance and resonant frequency in the design of the energy

harvester. In this study, an acoustic energy harvester whose resonant frequency corresponds to the
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fundamental frequency of a human voice is theoretically designed, fabricated, and characterized

experimentally. On the frequency and acoustic pressure level of a sound source, the output voltage

is measured and characterized for a waveform that represents the state of the diaphragm resonating

at a specific resonant frequency.

4.2 Design of Energy Harvester

Microscale diaphragm structures play a significant role in microtransducers and micro-nano

devices as they can be used as elastic sensing elements for capacitive-type pressure, acceleration,

sound and ultrasound, chemical, and biological microtransducers. The microscale diaphragms of

these devices are fabricated by using either a surface micromachining sacrificial layer process or

bulk micromachining with bonding technology. Circular diaphragms are commonly used, which

are fixed on a silicon substrate through a side wall such that there is a thin air gap between the

diaphragm and substrate. The air gap is either filled with air or vacuum-sealed. The diaphragm and

substrate are both coated by a metal electrode, so that the structure becomes a capacitive-type

microtransducer. Since there is a microscale separation, a moderate voltage applied across these

two electrodes can produce a large electrostatic force.

Taking acoustic transducer as an example, if the diaphragm is excited by external sound waves,

its vibration will result in a change in the capacitance and output voltage of the transducer, which

can be exploited to detect acoustic waves, so that the diaphragm acts as a sonic or ultrasonic

receiver. In contrast, if the diaphragm is excited by an electrostatic force produced by signal

voltage across the two electrodes, its vibration will drive the surrounding medium, which can be

utilized to transmit sound waves, so that the diaphragm acts as a sonic or ultrasonic generator.

Therefore, microscale diaphragms are key elements in the transduction from the mechanical (or

acoustical) to electrical energy domain or from the electrical to mechanical (or acoustical) energy

domain. Therefore, it is of fundamental importance to study the dynamic behavior of microscale

diaphragms acting as key elements.

Rayleigh gave a fundamental discussion on the vibration of membranes and plates in his book

"The Theory of Sound" [4]. Afterward, Wente applied the second-order partial differential

equation of membrane vibration developed by Rayleigh to describe the behavior of the diaphragm

in the condenser microphones he invented [5]. Henceforth, the membrane model has been widely

used to model various condenser microphones. Note that Mason applied the fourth-order partial

differential equation of plate vibration developed by Rayleigh to describe the behavior of the

diaphragms of telephone receivers, and further studied the issue of stretched plate vibration, where
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both the bending stiffness of the diaphragm and the tension were taken into account, from which

he developed amathematical description [6]. He also indicated that if the stiffness of the plate is

small compared with the tension, the problem is reduced to membrane vibration, whereas if the

tension is small, it is reduced to plate vibration. Because of the use of a micromachining process,

the silicon nitride films in a capacitive micromachined ultrasonic transducers (CMUTs) have large

residual stress, which provides a uniform radial in-plane force; thus, the classical membrane model

was used to describe the behavior of such diaphragms [7], and the stretched plate model developed

by Mason was also used to describe their behavior [8]. In order to facilitate the design of systems

powered by an acoustic energy harvester, the goal of the following theoretical analysis is to arrive

at an equivalent circuit model of an energy harvester.

4.2.1 Resonant Frequency of Diaphragm

Vibration of a rigid body can be caused by several factors such as unbalanced mass in a system,

tear and wear of materials and can occur in almost all dynamical systems. The characteristic

behavior is unique to each system and can be simply described by two parameters: damping

constant and natural frequency. Most commonly, a single degree of freedom lumped spring mass

system is utilized to study the dynamic characteristics of a vibrating body associated with energy

harvesting. The single degree of freedom helps to study unidirectional response of the system.

Fig. 4.1 shows a diagram of a diaphragm with P(VDF-TeFE) layer on a Si substrate; and

equivalent lumped spring mass with external excitation. The source of vibration is shown with a

red arrow at the base of the contact point (red dot). The stiffiress of the structure depends on the
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Fig. 4. I A schematic diagram of (a) the diaphragm on Si substrate, and (b) the equivalent lumped

mass-spring-damper system of a vibrating rigid body

Top electrode
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loading condition, material, and cross-sectional area perpendicular to the direction of vibration.

The governing equation of motion for the system Fig. 4.1 (b) can be obtained from energy balance

equation or D'Alembert's principle [9]. The governing equation of motion for a lumped spring

mass system can be written as:

m"q2 * c"c2 * kecz:-ffi"qY , (4.1)

where m", is the equivalent mass, c"o is the equivalent damping ratio, and ft"q is the equivalent

stiffrress of the diaphragm. z=x- y is the net displacement of the diaphragm where x and y is

the displacement of the diaphragm and substrate respectively. Eq. (4.1) can also be written in terms

of damping constant and natural frequency. A damping factor, (, is a dimensionless number

defined as the ratio of the system damping c"o to critical damping c" as;

,s-
c"q 

-cc (4.2)

The natural frequency of a spring mass system is defined by Eq. (4.3) as;

(4.3)

where the stiffness k"o for each loading condition should be initially calculated. The power output

of this system will be higher is the system is operating at natural frequency which dictates the

selection of material and dimensions. The terms "natural frequency" and "resonant frequency" are

used alternatively in literature, where natural frequency of piezoelectric system should not be

confused with the natural frequency of mechanical system.

For the circular diaphragm, the equivalent stiffness and mass can be represented as [6] (see

Appendix C);

16 n tl(Yo+ T)
and  z“eq

9 ρ rd(π α2)

,             (4.4)
t-
Keg -

α
2(1_σ 2)

where I's is the Young's modulus, 7 is the residual stress, and o is the Poisson's ratio of the

diaphragm. Thus, the first natural resonance frequency can be written in terms of the equivalent

mass, ,neq, and the stiffiress, ft"q, of the diaphragm [ 0] as;
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4.2.2 Remodeling of Diaphragm Structure

Test samples of the diaphragm structure were fabricated, as shown in Fig. 4.2,to investigate the

resonant frequency experimentally. From the samples, the following serious problems were found:

an increasing in the residual stress in the diaphragm caused by the self-strain, a reduction in the

electrode area caused by self-healing effect of the piezoelectric polymer I l], and short circuiting

caused by pinholes formed in the film formation process.

Because of the difference in the deposition method of the top and bottom electrodes, flexure and

the formation of wrinkles occur which are caused by the self-strain and residual stress, as shown in

Figs. 4.3 (b) and (c), respectively. Residual stress is generated in multilayered diaphragms during

the fabrication process, mainly due to mismatches between the thermal expansion coefficients of

(a)

Ft:-2Orn
P(vllr-Trrf,)

: lOOrn
Ft/ Tl: - f0ru

Sisnbsfrett

Fig. 4,2 A schematic diagram of (a) the diaphragm structure,

diaphragm, and (c) a photo image of the test sample

(b) cross-sectional view of

(a)

Pt: -20 rn
PffDr-Tcrtr)

: lfilln
Ft/ Tt: - 4Orn

Slsrbslretc

(b)

Fig. 4.3 A schematic diagram of (a) the diaphragm structure, (b) cross-sectional view of the

diaphragm bent by a self-strain, and (c) a photo image of a test sample, which has an

expanded diaphragm

(c)

(c)
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Fig. 4.4 (a) A schematic diagram of self-healing effect in a piezoelectric polymer (fiom I t]),
and (b) a typical microscopic image of holes formed by self-healing effect

different layers. The high-temperature deposition processes, the different thermal and elastic

properties of the consecutive layers, and/or some other fabrication issues result in significant

residual stress in the device. The stress generated in the device bends the membrane downward or

upward depending on whether the stress is tensile or compressive. Moreover, the stress affects the

mechanical and electrical properties of the films as well as the resonant frequency and sensitivity

of the devices.

Several researchers have investigated the effects of initial tension on the diaphragm's resonant

frequency, either theoretically or by finite element analysis p2, l3l. They concluded that initial

tension increases the stiffiress of the diaphragm and increases its resonant frequency. In fact, the

vibrational behavior of the diaphragm changes from that of a plate with negligible tension to that

governed by a diaphragm with negligible stiffiress owing to the generation of residual stress in the

diaphragm.

The selthealing process is schematically illustrated in Fig. 4.4 (a). When electrical breakdown

occurs (in many cases around the defects in the polymers), the breakdown results in the discharge

Top elemode

…

繭 al

Elasticinsulator

Bottmelctrode
<Unimorph t1rye > <B'imorph tlpe >

Fig. 4.5 Two types of the diaphragm structure: unimorph type (left side) and bimorph type (right side)

≫≫B∝trode
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of part of the stored energy and the polymer film is punctured by the released energy. At the same

time, the metal electrode deposited on the surface of the polymer is rapidly vaporized and driven

outward from the breakdown site as shown in Fig. 4.4 (b). After these processes, the polymer film

will break down "open circuif' rather than "short circuit". Hence, piezoelectric properties

deteriorate with decreasing electrode area.

In order to solve these problems, the conventional unimorph-type diaphragm structure is

remodeled as a bimorph-type diaphragm as shown in Fig. 4.5. ln the three layers (bottom electrode,

top electrode, and piezoelectric thin film) compressing the diaphragm remodeled, an insulating

layer is inserted in the middle of the piezoelectric film layer. As a result, the electrical properties of

the piezoelectric film are not changed, although the formation of pinholes and the self-healing

effect occur in the piezoelectric thin film. Furthermore, wrinkles and the flexure of the diaphragm

can be eliminated by adjusting the thickness of the insulating layer inserted into the piezoelectric

film layer. However, insertion of the insulating layer increases the resonant frequency owing to the

increased the diaphragm thickness and the mechanical impedance of the inserted insulating layer.

4.2.3 Installation of Proof Mass

For the remodeled diaphragm with the bimorph structure introduced in the previous section, the

laminated diaphragm was fabricated. Table 4.1 shows constant parameters of the materials

comprising the diaphragm, and Table 4.2 shows the calculated constant parameters and estimated

resonant frequency for three test samples with different P(VDF-TeFE) thin-film thicknesses, where

the thickness is determined by the concentration of the P(VDF-TeFE) casting solution. After a

fabrication of testing samples, the measurement of output voltages was caried out at the resonant

frequency calculated for each sample. However, the output voltage was very small because a

displacement of a diaphragm decreased with increasing frequency of a sound source. Furthermore,

since the output voltages of samples are weak for noises because of high impedance due to the

capacitive structure of a diaphragm, the output voltage was concealed by noises.

Table 4.1 Constant parameters used in the calculations

Materials
Density

(ms/cm3)
Poisson's ratio

Young's modulus
(GPa)

Ni

Pt

AIN

P(VDF-TeFE)

8.9

2t.4

3.6

1.9

0.31

0.39

0.22

0.35

200

r68

345

2
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Table 4.2 Calculated parameters used in the estimation of resonant frequency

Concentration of P(VDF-TeFE)

castins solution
I wt% 3 wt% 5 wt%

Thickness
(nm)

Ni 20

Pt' 120 (60 x2)

AIN 40

P(VDF-TeFE).1 200 (100 x2) 360 (180 x2) 1200 (600 x2)

Total 380 540 1380

Calculated
parameters

of the
diaphragm

Density (mg/cm3) 8.57 66 ).t)

Poisson's ratio 0.347 0.347 0.349

Young's modulus (GPa) 101 71.6 29.2

Estimated resonant frequency-2 (Hz) t,441 t,972 4,222

* l. Since the diaphragm is bimorph structure, there are 2 layers of ft and P(VDF-TeFE).
*2. A radius of the diaphragm is 3.8 mm.

Also, as shown in Table 4.2,the resonant frequency calculated with Eq. (4.5) was higherthan the

fundamental frequency of a human voice. Therefore, in this study, it was attempted to lower the

resonant frequency by increasing the equivalent mass of the diaphragm by installing a proof mass

at the center of the diaphragm, as shown in Fig.4.6, during the fabrication process of the device.

The resonant frequency is detennined by the equivalent stiffness, k,o,and equivalent mass, m.o, irr

Eq. (a.a). By installing a proof mass, tlre resonarlt frequency is decreased because of the increase

in the equivalent mass of the diaphragm, even though the equivalent stiffness is also increased by

the increased residual stress of the diaphragm. Since the resonant frequency of the diaphragm with

a proof mass is difficult to calculate accurately, it is investigated experimentally.

P(\/DF-TeFE)

Mass area

Diaphragm
area

substrate

Mass

Top electrode '.

Bonom
electrode

-ttta

< Surfacial view > < Cross-sectional view >

Fig.4.6 A schematic diagram of the bimorph-type diaphragm with a proof mass
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4.3 Fabrication of the Acoustic Energy Harvester

Using the KD7525 mixed solvent referred to in Chapter 2, P(VDF-TeFE) casting solution is

made up to form a thin film by the sol-gel process. In order to control the film thickness, three

different casting solutions were used with concentrations of l, 3, and 5 wt%. In order to prevent

interfacial delamination between the P(VDF-TeFE) thin film and substrate when using these low-

concentration casting solutions, the spin-coating speed is changed flexibly during the spin-coating

process.

The fabrication process is shown in Fig. 4.7. The substrate is Si, and Ni is evaporated as a buffer

layer between the Si substrate and the bottom Pt layer. The bottom ft layer is used as a low-

resistance electrode. In particular, the bottom Pt layer has two functions; as the bottom electrode

and as an etching-stop layer during the RIE process on the backside of the substrate. Then, a

P(VDF-TeFE) thin film is coated by a spin-coater in an airtight container in which the temperature

and humidity are controlled. The film thicknesses are 100, 180, and 600 nm for casting solution

(e)PtA{i deposited Si snbstr:ete

(b) Coating lst P(!1DF-Te-FE) lih leyer
end enneeling with en electric lleld

(c) Sputtering deposited AIN leyer
as en insrletor

(d) Coatlng 2nd P(tlDF-T€fE) film leyer
end enneeling with en elechic lield

“

)

0                    (O Sputte=hg Ptlaver asthetop elmOde

(f) Dry-etching brcksirle wit[ a shedow mesk
end rweeling botton dectrode

叩 F=Td■3)Sh
AINLyo
pthya

Fig.4.7 The fabrication procedure ofthe acoustic energy harvester proposed in the present study

圃
一
一
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concentrations of l, 3, and 5 wt%o. respectively. After the coating process, the low-pressure

annealing process described in Chapter 3 is carried out at 195 oC for I hour with the application of

an electric field of I MV/m. Tlren, an unpolarized AIN layer is deposited as an insulating layer by

sputtering. AIN layer is used to fabricate the bimorph structure of the diaphragm. Then a second

P(VDF-TeFE) thin film is coated by the same process as that used for the first P(VDF-TeFE) film.

Then, a Pt layer is deposited as the top electrode by sputtering with a shadow mask. Finally, the

backside of the Si substrate, which is passivated with a polyimide film, is etched by RlE. The

weight of the proof mass is about l mg. Fig.4.8 shows photographs of the fabricated device and a

schematic of the layers of the diaphragm.

-T-
lal

I

AIN: 40 nm

PvNi : 80 nm

P(VDF-TeFE)
: 100. 180. or 600 nm

for each layer

Si substrate

Fig. 4.8 Pictures of the fabricated device (left side) and a
structure with the lamination layer (right side)

schematic diagram of the diaphragm

4.4 Characteristics of the Acoustic Energy Harvester for the

Fundamental Frequency of Human Voice

Since a human voice simultaneously produces sounds of various frequencies, a measuring

system is constructed to accurately measure the output voltage of the devices for a sound of single

frequency as shown in Fig. 4.9. The distance between the speaker and tlre device is 5 cm. ln order

to block the propagation of the vibration by the speaker, shock absorbers are attached to tlre

equipment. Also, a probe set is set up in a sealed cabinet to block environmental noise. The sound

source is generated by an amplifier with a DC supply and a function generator to minimize noise

signafs from the surrounding environment. The range of frequencies is 59-259 Hz, and the

acoustic pressure level is 80-120 dB SPL.
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Noise sheld bo■

<Meesuring probe set > < Dlegrem of meesurlng system >

Fig. 4.9 A picture and a schematic diagram of the measuring system for the acoustic energy harvester

4.4.1 Output Voltage for Frequency of Sound

Since the proof mass is very heavy compared with the diaphragm of the samples, the effect of

the proof mass on the vibration of the diaphragm was investigated. Fig. 4.10 shows the output

voltages of the top and bottom electrodes for each sample. A piezoelectric film generates both

positive and negative voltages on each side of the electrode depending on the strain direction.

However. the top electrode of the sample only generates positive voltages and the bottom electrode

only generates negative voltages. In piezoelectric materials, a surface on which a strain stress is

applied generates positive voltages, and a surface on which a compressive stress is applied

generates negative voltages. This means that the top electrode is subjected to a strain stress and the

bottom electrode is subjected to a compressive stress. Therefore, it was found that the diaphragm

11,H2 50日V力

"    llS H4
20 D\./|Ir

(c)

_-fr*_*Y-r_

SBlAr

Fig.4.l0 Output voltages of top and bottom electrodes, and differential voltage of (a) sample l,
(b) sample 2, and (c) sample 3, which diaphragm thicknesses are 380,540, and 1380 nm

J..-*J-^^ *- l'*"^*.'
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Fig. 4.1I Output voltages measured for three diaphragm thicknesses of (a) 1,380 nm, (b) 540 nm,
and (c) 380 nm as a function of the frequency of a sound source (2,, : I MQ)

was vibrated by the proof mass and that the tension of the diaphragm was not in a single direction

but in altemating directions. As a result, the waveforms of the output voltage are affected by the

limited direction of vibration.

The output voltage, which is the difference between the voltages of the top and bottom

electrodes, was measured for different sound frequencies with increments of 0.1 Hz The acoustic

pressure level was fixed at I 10 dB SPL because the pressure level changes with the sound

frequency. The reference point for the measured voltages is the peak-to-peak voltage of the

differential voltage between the top and bottom electrodes. Fig.4.1l shows the relationship

between the output voltage and sound frequency for the three devices with different diaphragm

thicknesses. Since the measured voltage is slightly changed by noises and vibrations from the

surrounding environment, the oufput data averaged over 30 measurement results are recorded in

Fig. 4.I l.

As previously mentioned, the resonant frequency of the diaphragm can be decreased by the

installation of a proof mass. All three devices with different diaphragm thicknesses exhibited

strong resonance for sounds of I l5-125 Hz frequency. The resonant frequency bandwidth depends

on the thickness of the diaphragm and the weight of the proof mass. The output voltage also

depends on the thickness of the diaphragm, because it is determined by the degree of diaphragm

distortion and the number of dipole moments. The diaphragm of 380 nm thickness resonated at
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Table 4.3 Frequency bandwidth of each waveform group for the three fabricated devices

Bandwidth (Hz)
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Fig. 4.13 (a) Two beams with end masses elastically connected at their ends, and cross-sectional

view of a bimorph beam (form [4]), (b) Power density vs. frequency for different end masses

(from [4]), (c) a conventional 2-DOFs cantilever piezoelectric energy harvester (from [l5]),
and (d) output voltage with secondary mass (from [ 5])

frequencies from 87 Hz, as shown in Fig. 4.1I (c), whereas the diaphragm of over three times the

thickness (1,380 nm) resonated at frequencies from 98H2, as shown in Fig. a.1l (a). For these two

cases, the output voltages differed by a factor of two. As shown in Fig. 4.11, the frequency of the

first output voltage peak, referred to as the first resonant point, shifted to a higher frequency with

increasing diaphragm thickness. However, it is also considered that the concentration of P(VDF-

TeFE) casting solution used to control the diaphragm thickness is also related to the output voltage.

All the peaks are classified according to the waveform of the measured output voltage, as shown in

Fig. 4.12, and Table 4.3 shows the frequency range of each group, in which the same waveform

was observed.

Two peaks were observed in each waveform group, excluding group 4. Z.Yang and J. Yang

(2009) [14] reported the mathematical analysis of a cantilever with a bimorph structure. As shown
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in Fig. 4.13 (a), two beams are used to represent the top and bottom surfaces of an elastic substrate.

This mass-spring system represented the interfacial effect of a bimorph cantilever with beams of

masses &s mo(r) and m0(2) and a stiffiress assigned between the beams as shown in Fig.4.l3 (b).

When mg(r) = .o('\ the cantilever vibrates at the resonant frequency. In contrast, if the two masses

are not identical, the resonant frequency is divided into two resonant frequencies. Also, Wu e/ a/.

(2012) [l51 strdied the two-degrees-of-freedom (2-DOF) system shown in Fig.4.l3 (c).

According to their study, there are two resonant frequencies of the main cantilever induced by the

vibration of the sub-cantilever, as shown in Fig.4.l3 (d). The main cantilever and sub-cantilever

affect each other through their vibration. As in the above studies, the devices fabricated in this

study can be represented as a 2-DOF system as shown in Fig. 4.14.

Diaphragm

Fig. 4.14 A equivalent mass-spring model of a 2-DOF system for the energy harvester

fabricated in this study, where m I is a weight of a diaphragm, m2 is a weight of a proof
mass, and kr is a stiffness of a diaphragm regardless of k2, which a stiffuess is

occurred by a proofmass

The equivalent model in Fig. 4.15 can be discribed as follows.

l*o' ),lli:l . [t i,]ti,:l: [3]
Assume that the system undergoes harmonic motion of the form

ur(t): Ul cos(at-a) and

uz(t): U2 cos(at-a) ,

where Ut and U2 are signed constants that determine the amplitudes

sinusoidal motions. Equation $.7) is substituted into Eq. (4.6) to obtain

eigenvalue problem:

(4.6)

(4.7)

of the t、vo respective

the fo1lowing algebraic
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Since Eq. (a.8) is a set of homogeneous linear algebraic equations, the nontrivial solutions of Eq.

(4.8) conespond to values of a.i2 that satisfy the characteristic equation

;tl:. (4.9)

that is, values of @,' for which the determinant of the coefficients of Eq. (a.8) is equal to zero.

Solving to obtain the two roots of the characteristic equation,

@n:

If″ 1=″2=“ andた1=ち =ち

0nl= and anz: (4.r l)

According to Eq. (4.10), there are two natural frequencies in the region of aresonance. Thus,

the vibration of the diaphragm is affected by the vibration of the proof mass, and the effect is

represented by the waveform of the output voltage. Considering groups 7 ,2, and 3 in Fig. 4.1 I , for

a group into which the same waveforms are classified, two resonant frequencies occur as a result

of the alternating vibration between the diaphragm and the proof mass. Therefore, the actual

resonant frequency exists at the midpoint of the two peaks of the output voltage.

Since a resonant frequency is a constant proportion of the natural frequency for the simple

harmonic vibration, it is found that the fabricated devices are vibrated by the vibration modes. The

vibration modes are caused by the interference between reflected waves, which are reflected by the

edge of the diaphragm, and traveling waves, which propagate from the center of the diaphragm to

the edge. When the diaphragm vibrates with the vibration modes, the resonant frequency is not a

constant proportion, unlike in electrical resonating systems. According to studies of the vibration

modes for a piezoelectric microdiaphragm [16], a diaphragm vibrates with a particular vibration

mode at specific frequencies as shown in Fig.4.15 (a). For a circular diaphragm, the resonant

frequencies and their corresponding deflection profiles at different mode shapes are obtained as

follows [17]:

{',-
J 
^r-

１
一笏

||(た
:1:4)  i::|‐ `υ

n21(61

(4.12)

where p is the diaphragm densify, h is the diaphragrn thickness, D is the flexural rigidity, Z is the

initial tension of the diaphragm per unit length, and y*n are the eigenvalues, which can be

calculated by solving the characteristic equation numerically. Since the devices fabricated in this

study correspond to 2-DOF system, D is not a fixed value in Eq. (.12). When waves of a certain

h1*,oD+y*,27)
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Fig.4.l5 (a) The frequency response of the diaphragm measured by a vibrometer, showing the

first nine resonances of the diaphragm (from [6]), and (b) the finite element modeling of
the (0, l), (0, 2), and (0,3) modes (from [6])

frequency are applied to the diaphragm, the proof mass and diaphragm vibrate with different

frequencies, implying the occurrence of a vibration mode.

Since the proof mass has an area on the diaphragm, the traveling and reflected waves are not

symmetrical in the axis along which they propagate [8]. If the diaphragm on which a proof mass

is installed vibrates with the vibration mode symmetrical to the axis of propagation, the diaphragm

will be broken by torsion because of the heavy proof mass. Considering the result from [16],

groups 1,2, and 3 correspond to the (0, 1), (0,2), and (0, 3) modes, as shown in Fig. 4.15 (b),

respectively. In Fig.4.l1, the resonant frequency of each group is different from those of the

reported vibration modes. As shown in Fig.4.15 (a), the (0,2) mode appears at a frequency 2.3

times higher than that of the (0, l) mode. The (0,3) mode also appears at a frequency 5.5 times

higher than that of the (0, l) mode. For the devices fabricated in this study, however, the vibration

modes are compressive.

Assigning the groups shown in Fig. 4.12 to the vibration mode, the morphology of the

diaphragm for each group can be obtained as shown in Fig. 4.16. In the case of group l,
corresponding to the (0, l) mode, although the displacement of the diaphragm was largest among

the modes, the measured output voltages were lower than those of group 2. As shown in Fig. 4.16

(a), the displacement of the diaphragm is small because of the heavy proof mass. In the case of

group 2, corresponding to the (0, 2) mode, the voltage is only generated the distortion of the

diaphragm regardless of the proof mass as shown in Fig.4.l6 (b). Since the voltage of the second

peak, which appeared along with the first peak as shown in Fig. 4.12 (b), is almost the same as that

of the peak in group 1 in Fig. 4.12 (a), the mode transition from (0, 2) to (0, 1) may have been

41.1)

4●・3)
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Fig. 4. 16 The assignments of vibration modes to each group

induced by the proof mass along with the stiffness of the diaphragm. ln the cases of groups 3 and 4,

corresponding to the (0, 3) and (0, 4) modes, respectively, the output voltage was lower and the

waveform was distorted because of the increased curyature of the diaphragm surface between the

substrate and the proof mass, as shown in Figs.4.l6 (c) and (d). In particular, for sample 3 (380

nm) in group 4, the frequency of the output voltage decreased to half the frequency of the sound

source. Since the diaphragm of sample 3 is too thin to keep up a proof mass, its elasticity is also

low. Thus, for a high-frequency of the sound source, it is considered that the lack of elasticity of
the diaphragm makes it difficult to vibrate the proof mass.

The maximum measured voltage is about 50 mV, the peak power calculated from the intemal

impedance of the used measuring system (1 MO) is 50 pW. Table 4.4 shows a comparison of the

performance characteristics of the devices in this study and those in the other studies [9-21].
Compared with the previous acoustic energy harvesters, the generated power of the device

fabricated in this study is relatively high and its resonant frequency is the lowest. Since the

Table 4.4 Comparison of performances among the acoustic energy harvesters

o group 2-o,つ

Diaphragm Resonant Generated Acoustic
diameter frequency power pressure

(mm) (Hの (pW) (db SPL)

Piezoelectric

material

&]屏
lFど
乾 ・6 5232          0.7 133        PZT

S.Shinoda

θr α′.[20]
2.0 18020 100 PZT

S.lizunli

θ′α′.[211
1002.0 4920 82.8 PZT

This study 7.6 120
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piezoefectric properties of P(VDF-TeFE) are inferior to those of PZT, which was used in the

acoustic energy harvesters in the previous studies, and the diaphragm distortion is very small

because the sound pressure is very small, it is difficult to obtain a high output voltage.

As a result, although the resonant frequency region can be lowered by the installation of a proof

mass, the vibration of the diaphragm was disturbed by the proof mass. A high electric power can

be expected by controlling the weight of the proof mass.

4.4.2 Output Power in terms of Acoustic Power

Sound is a sequence of pressure waves that propagate through a compressible medium such as

air or water, and these waves generate the ambient atmospheric pressure. A piezoelectric film

generates the electric potential from a strain or pressure applied to the film. Since the pressure or

strain applied to the piezoelectric film increases with increasing sound pressure reaching the film,

the output voltage of the piezoelectric film also increases. Therefore, the output voltage as a

function of the acoustic pressure level was measured as shown in Fig. 4.17.The acoustic pressure

level or sound pressure level was measured at a distance of 5 cm from the sound source using a

digital sound level meter (Smart Sensor@ ARBI4). The &equencies of the sound source applied

were I 16, 119, and 125 Hz, at which the three samples generated the maximum output voltage. For

the same acoustic pressure level, the output voltage increased with increasing diaphragm thickness

[ 8]. However, the mechanical impedance of the diaphragm also increased with increasing

diaphragm thickness. Thus, the acoustic pressure level at which the diaphragm was vibrated also

increased. The acoustic pressure level Ln is defined as,

ら=20 1og10(;与
I) ,

(4.13)

where pr*, iS a measured root-mean-square (rms) sound pressure, and pr"s is a reference sound

pressure, typically 20 pPa, which is generally considered the threshold of human hearing.

Using Eq. (a.13), the sound pressure at a specific distance can be calculated. From the area

reached by the sound, the acoustic power P^" can be calculated as the product of the acoustic

intensity (1) and the area (l) reached by the acoustic waves:

(4.14)

where p is the acoustic pressure and Z is the acoustic impedance. The acoustic impedance can be

expressed as Z: c 'p, where c is the sound speed and p is the density of the medium. The acoustic

P“ =ルИ=ザ ,
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impedance of sound in air is 413.3 Pa's/m at20"C, and the area of the diaphragm,l, was 3.82r x

l0-6 m2.

Fig.4.l8 shows the relationship between the acoustic power, calculated using Eq. (4.14), and

the output power, calculated from the measured output voltage and internal impedance of the

measuring system. The output power is directly proportional to the acoustic power up to a point,

and the power subsequently converges to a constant value. This constant value is proportional to

Fig. 4.17 Output voltages obtained from the devices as a function of the acoustic

pressure for different diaphragm thicknesses

Acoustic power (pw)

Fig. 4. 18 Output powers obtained from output voltages and an impedance of the

measuring system as a function of the acoustic power calculated by an acoustic

pressure level
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the maximum output voltage that can be generated by the sample. The slope of the measured data

gives the conversion efficiency E". ln the region where the output power is proportional to the

acoustic power, the conversion efficiencies of the three samples with diaphragm thickness of 380,

540, and 1380 nm are 0.184o/o,0.lo/o, and 0.060/o, respectively. The maximum output power is

directly proportional to the diaphragm thickness, and the conversion efficiency is inversely

proportional. The conversion efficiencies of the samples fabricated in this study are low compared

with that of a microphone; the conversion efficiency of a typical microphone (sensitivity: l0

mV/Pa, impedance: 660 C)) is about 30%o. The sensitivities of a typical microphone and the

fabricated samples are similar; however, there is a large difference in internal impedance. The

fabricated samples have a capacitive structure; thus, their impedance is very high. As a result, to

obtain high conversion efficiency and a output voltage, the diaphragm should be thin to reduce the

impedance and the material of the diaphragm should have high piezoelectricity.

4.5 Conclusion

As reported in this chapter, the author fabricated an acoustic energy harvester in which acoustic

energy is converted to electric energy using a piezoelectric diaphragm fabricated with MEMS

techniques. The resonant frequency of the diaphragm was calculated with an equivalent circuit so

that the laminated diaphragm could be fabricated. The fabricated device was resonated at the

fundamental frequency of a human voice. The results are summarized as follows.

1. With an equivalent circuit of the device, the resonant frequency was calculated to determine

an appropriate thickness for the diaphragm. In the first design, the calculated frequency was

535.5 Hz. Although the calculated frequency was near the fundamental frequency of a

human voice, critical problems, such as pinholes problem and self-healing effect, occurred

in the fabricated devices.

2. In order to fabricate a pinhole-free structure and to reduce residual stress, the laminated

structure of the diaphragm was redesigned to change the diaphragm from a unimorph

structure to a bimorph structure. Since the thickness of the diaphragm was increased by

changing the structure, a remedy was needed to reduce the resonant frequency. In this study,

the installation of a proof mass was chosen.
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3. Using the remodeled diaphragm structure, the acoustic energy harvester was fabricated and

measurements were canied out for sound in the range of 59-259 Hz. The fabricated devices

were resonated at I 15-125 Hz near the fundamental frequency of a human voice. Through

the analysis of the waveforms of the output voltage, it was observed that the vibration mode

number affects the shape of the vibrating diaphragm. The maximum generated power was

50 pW for sound of 1 l0 dB SPL.

4. The maximum conversion efficiency of the device fabricated in this study was 0.184 %.

This efficiency is very low compared with a typical microphone. The efficiency of a typical

microphone is about 30Yo. The fabricated device and a typical microphone are different in

internal impedance, so that the conversion efficiencies are different.

5. The reasons for the improved performance of the fabricated devices were considered by

analyzingthe output voltage in terms of the acoustic pressure level. Since the output voltage

was very small even though the resonant frequency was the fundamental frequency of a

human voice, it is necessary to remodel the laminated structure of the diaphragm and to

improve the piezoelectric material.
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Chapter 5

Conclusions

In this dissertation, I have studied the development of an acoustic energy harvester for the

fundamental frequency of a human voice using a piezoelectric polymer. For a voice with a

comparatively low frequency, the diaphragm of the device has to be highly sensitive to low

acoustic pressures. For this reason, a piezoelectric polymer with lower mechanical impedance than

other piezoelectric materials was used in these studies; the polymer used was P(VDF-TeFE),

which is a PVDF copolymer. Since the diaphragm of the device fabricated in this study does not

employ an elastic substrate, the piezoelectric film has to be thin and flat, and chemically pure.

In Chapter 2, on the basis of the sol-gel process, the techniques used to form P(VDF-TeFE)

films based on the sol-gel process for the fabrication of the diaphragm of the acoustic energy

harvester are described. The effects of a mixture of solvents, and the annealing temperature were

experimentally observed, in addition to the internal and external of the formed films.

- ln the formation of P(VDF-TeFE) films by the sol-gel process, controlling the concenhation

of the casting solvents is more efficient than controlling the spin-coating speed. The

probability of irrterfacial delamination between the film and substrate is increased with

increasing spin-coating speed.

- Even though a thin film is easily formed using a low-concentration casting solution,

interfacial delamination occurs because the viscosity of the casting solution is also low. Hence,

the mixed solvents containing MEK and DMAc can be used to control the viscosity.

- The morphology of the formed film is stable even though the annealing temperature is higher

than the melting point of P(VDF-TeFE). However, the piezoelectricity of the film is decreased

or lost when the annealing temperature is higher than the Curie point of P(VDF-TeFE).

- As a result, in order to apply P(VDF-TeFE) thin films to the diaphragm, it is necessary to

remove the impurities on the film surface and the remaining solvents in the film. Also,

remedies are needed to carry out an annealing process at a temperature higher than the Curie

point of P(VDF-TeFE).
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In Chapter 3, in order to supplement and improve the weak points of the general sol-gel process,

the annealing process in a low-pressure chamber with the application of an electric field is

proposed. By considering the surface morphology, the existence of impurities, and the remanent

polarization, the suitability of the proposed annealing process is compared with that of the

conventional annealing process.

- The formation of pinholes cannot be eliminated by the low-pressure annealing process.

However, the process changes the morphology of the pinhole. The pinhole diameter is

increased and the depth is reduced, resulting in improved electric properties of P(VDF-TeFE)

films.

- According to the XPS and FTIR spectra, the amounts of impurities and amorphous P(VDF-

TeFE) are decreased by the low-pressure annealing process through the prevention of the

contamination with irnpurities and the removal of solvents remaining from the spin-coating

process.

- In order to reduce the roughness of the film surface, the annealing temperature should be

higher than the melting point of P(VDF-TeFE). Although here is a risk of reducing or

eliminating the remanent polarization at high temperatures, the remanent polarization is

preserved by applying an electric field during the annealing process.

- As a result, the problems associated with the formation of a P(VDF-TeFE) thin film by the

sol-gel process and thermal treatment can be solved by employing the proposed annealing

process.

As reported in Chapter 4, I fabricated an acoustic energy harvester in which acoustic energy is

converted to electric energy using a piezoelectric diaphragm fabricated with MEMS techniques.

The resonant frequency of the diaphragm is calculated with an equivalent circuit, so that the

laminated diaphragm can be fabricated. The fabricated device is resonated at the fundamental

frequency of a human voice.

- Using the Mason model, the resonant frequency of the diaphragm is calculated to determine

an appropriate thickness for the diaphragm. In the first design, the calculated frequency is

535.5 Hz. Although the calculated frequency is near the fundamental frequency of a human

voice, critical problems occur in the fabricated devices.

- In order to fabricate a pinhole-free structure and to reduce residual stress, the laminated

structure of the diaphragm is redesigned to change the diaphragm from a unimorph structure

to a bimorph structure. Since the thickness of the diaphragm is increased by changing the
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diaphragm structure, some remedies are needed to reduce the resonant frequency. In this study,

the installation of a proof mass is chosen.

- Using the remodeled diaphragm structure, the acoustic energy harvester is fabricated and

measurements are canied out for sound in the range of 59-259 Hz. The fabricated devices are

resonated at ll5-125 Hz, near the fundamental frequency of a human voice. Through analysis

of the waveforms of the output voltage, the vibration mode number affects the shape of the

vibrating diaphragm. The maximum generated power is 50 pW for a sound of I l0 dB SPL.

- The maximum conversion efficiency was 0.184 o/o. This efficiency is very low compared with

a typical microphone. The effrciency of a typical microphone is about 30%. The fabricated

device and a typical microphone are different in internal impedance, so that the conversion

efficiencies are different.

- The reasons for the improved performance of the fabricated devices are considered by

analyzing the output voltage in terms of the acoustic pressure level. Since the ouput voltage

is very small even though the resonant frequency is the fundamental frequency of a human

voice, it is necessary to remodel the laminated diaphragm structure and to improve the

piezoelectric material.

The major advantages of using the piezoelectric polymer P(VDF-TeFE) for actuation are its

flexibility, light weight, and relatively low Young's modulus. Another benefit of using P(VDF-

TeFE) is that it can be used as a sensor as well as an actuator, if required, in a given application.

Even though the fabrication of an integrated microdevice will involve multiple layers and more

complicated fabrication techniques, the use of P(VDF-TeFE) is expected to help in integrating the

diaphragm fabrication process with that of the piezoelectric device.

A more detailed simulation-based study of the effects of the interfacial microstructure on the

pressure and deflection of the P(VDF-TeFE) diaphragm would help to improve its performance

further through the achievement of either low deflection or a small acoustic pressure. More

comprehensive work is required to model and fabricate the acoustic energy harvester so that

human voices can be used as a source of electric power.
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Appendix. A

X-ray Photoelectron Spectroscopy

In this chapter, the XPS spectra, referred in Chapter 2 and3, are described. Surface analysis by

x-ray photoelectron spectroscopy (XPS), more commonly known as electron spectroscopy for

chemical analysis (ESCA), is accomplished by inadiating a sample with monoenergetic soft x-rays

and energy analyzing the electrons emitted. The XPS process is schematically represented in Fig.

A.l for the emission of an electron from the shell of an atom. MgK, x-rays or AIK* x-rays are

ordinarily used. These photons have limited penetrating power in a solid, of the order of I - l0 pm.

They interact with atoms in this surface region by the photoelectric effect, causing electrons to be

emitted. The emitted electrons have kinetic energies given by;

K.E.:ha-8.E.-/, (A.1)

where ho is the energy of the photon, B.E. is the binding energy of the atomic orbital from which

the electron ordinates, md /. is the spectrometer work function. In a first approximation, the work

function is the difference between the energy of the Fermi level Er and the energy of the vacuum

level Ey, the zero point ofthe electron energy scale;

φs EF~Ev (A.2)

This quantity is to be determined by calibration for the spectrometer employed. From equation

(A.1) it is clear that only binding energies lower than the exciting radiation (1253.6 eV for MgIQ

4
x{ry

b

Fig. A.l A schematic diagram of the XPS process (from [])
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Fig. A.2 A schematic diagram of an XPS set-up with an hemispherical sector nalyzer (from I I ])

and 1486.6 eV forAlKo) are probed.

The schematic diagram of XPS set-up is shown in Fig. A.2. X-rays illuminate an area of a

sample causing electrons to be ejected with a range of energies and directions. The electron optics,

which may be a set of electrostatic and/or magnetic lens units, collect a proportion of these emitted

elechons defined by those rays that can be transferred through the apertures and focused onto the

analyzer entrance slit. Electrostatic fields within the hemispherical analyzer (HSA) are established

to only allow electrons of a given energy (the so called Pass Energy, PE) to arrive at the detector

slits and onto the detectors themselves. Electrons of a specific initial kinetic energy are measured

by setting voltages for the lens system ttrat both focus onto the entrance slit the electrons of the

required initial energy and retards their velocity so that their kinetic energy after passing through

the transfer lenses matches the pass eners/ of the hemispherical atwlyzer To record a spectrum

over a range of initial excitation energies it is necessary to scan the voltages applied to these

fansfer lenses and the prescription for these lens voltages is known as the set of lens firnctions.

These lens functions are typically stored in some configuration file used by the acquisition system.

In Chapter 2 and3, there are XPS spectra of carbon ls and fluorine ls core electron taken from

the P(VDF-TeFE) films. The carbon ls peak shapes are almost identical, but reveal slight

differences in overlay as well as different charging shifts. The asymmetric peak fit for

homopolymers of ethylene is after the method of Beamson et al. [2] mirroring their findings with

respect to resolution of vibrational levels and again hinting at a 5th level. On the data processing

of the XPS spectra of P(VDF-TeFE), the carbon ls and fluorine ls binding energies for

homopolymers of the ethylene and the fluoroethylene are listed in Table A.1 [3, 4].
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Table A.l Binding energies of the homopolymers of the ethylene and the fluoroethylene

Bonding structure Cls(elゆ Fls(eV)

~CIH2~CH2~CH2~

~CH2~CHJ~CFH一

一CFH一 CH,一 CFH一

~CH2~CH2~CF2~

―CFH― cH2~CF2~

一CF2-cH2~CF2~

~CH2~CFH― CH2~

~CH2~CFH― CFH―

~CH2~Ω FH一 CH2~

―CFH― CFH一 CFH一

~CH2~CFH― CF2~

―CF2~CFH一 CF2~

~CH2~CF2~CIH2~

~CH2~⊆ F2~CFH―

―CFH― CF2~CFH―

~CH2~CF2~CF2~

一CFH一 ⊆F2~CF2~

―CF2~ΩF2~CF2~

285.0

285.4

285.7

285.7

286.1

286.4

287.9

288.4

288,7

288.7

289.1

289.8

290.9

291.3

291.7

291.7

292.1

292.5

689.3

689.3

689.3

689.3

690.1

690.1

689.6

690.1

690.1

690.2

690.2

690.3

On the data processing of peaks in XPS spectra related to O atoms, the XPS data of the solid

elecholyte interphase (SEI) was imposed on this study [5]. The SEI is a solid layer formed with a

decornposition of elecholytes in the researches of a Li-ion battery. According to the researches, the

electrolyte which is used in a Li-ion battery is an organic solvent such as ethylene carbonate and

dimethyl carbonate. Both methyl-ethyl-ketone (MEK) and dimethylacetamide (DMAc), employed

in this study, are also an organic solvent. MEK is carbonyl group (R-C:O-R') and DMAc is amide

group (R-C:O-N-R'-R"). The most straightforward 01, deconvolution model comprises only two

peaks, at around 531 and 533 eV for singly and doubly bond oxygen, respectively [6]. Models

based on greater differentiation use up to 5 or more peaks for the O1. deconvolution [7]. The

deconvoluted binding energies of C1, and 01" in different chemical environments are listed in

Table A.2 and Table A.3.
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Table A.2 Deconvolution of the Crs spectra

C6 peak position (eV) Assignment

283.718],284[9],284.3[10],

284.4[111,284.8[101,285.0[12]

285.5[131,286.0[14],286.1115]

28`.5[11]

285.0[14],285.5[131,286.0[121,286.5[9]

286‐2871131,287.0[16],287-288[10]

287.0[141,287.3[15]

287.6[17],289¨290[10]

288‐291[9],290.6[16]

C H,sp2 carbon

C-OH

~(CH2~CH2~0)n~

C-0匡C

Ctt ethercarbon

C=0

C00R orCくOR)(C02LD

RO―C02Li

Thble A.3 Deconvolution of the 01, spectra

O13 peak position (eV) Assignment

532.4[181,533.8[161,534.51101,

532.5[131,533.01101,534.0[18]

531.0[14]

530.8[14]

RO-CO2Me
(various carbonates)

C-o{ or C-O-H

C:O

C-0-Me
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Appendix. B

Assignments of IR spectra

In this chapter, the FTIR spectr4 referred in Chapter 2 and3, are described. Fouriertransform

infrared spectroscopy (FTIR) is a technique which is used to obtain an infrared spectrum of

absorption, emission, photoconductivity or Raman scattering of a solid, liquid or gas. In infrared

spectroscopy, [R radiation is passed through a sample. Some of the infrared radiation is absorbed

by the sample and some of it is transmitted. The resulting spectrum represents the molecular

absorption and transmission, creating a molecular fingerprint of the sample. Like a fingerprint, no

two unique molecular structures produce the same infrared spectrum. Therefore, infrared

spectroscopy can result in a positive identification (qualitative analysis) of every different kind of

material. ln addition, the size of the peaks in the spectrum is a direct indication of the amount of

material present.

The FTIR spectra of PVDF and P(VDF-TrFE) were investigated as a preliminary to analyzing

FTIR spectra of P(VDF-TeFE). The technique of infrared absorption is suitable to characterize

PVDF and its copolymers because the absorption energy of the gauche and trans configurations of

軸 転
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Fig. B.l A schematic diagram of a Michelson interferometer adapted for FTIR (left side), and

a simple spectrometer layout of FTIR (right side) [from http://mmrc.caltech.edu]
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Table B.l Assignments of the FTIR bands of the o-PVDF and P(VDF-TrFE) [1,2]

PVDF

Band (cm Assignments

P(VDF‐ TrFE)

Assignments

CF2ツs;CCッ s

CH2ri CF2 νa;CF2r

CCちi CF2 W'CH2 W

CF2ツa;CF2r

CH2ツsi CCッs;CCC δ

CH2 W;CCソa

CF2 δ

531

613

762

794

869

974

1067

1209

1382

CF2 δ

CF2 δ;CCC δ

CF2 δ;CCC δ

CH2r

CF2｀;CCC δ

CH2t

CF2｀;CH2 W

CCッal CF2ソ s

CF2 7a;CH2 W

CH2δ;CH2 W

CH2δ;CH2 W

CH2δi CH2 W;CC L

Band (cm

840

877

1067

1178

1287

1301

1430

* vr, symmetric stretching; v", antisymmetric stretching; d, scissoring; W wagging;
t, twisting; r, rocking

Table 8.2 Assignments of the principal FTIR bands of a MEK and DMAc

Type Assignments Band(Cm‐
1)

carbonyl - general

ketone

amide

alkane

C:O stretching

C:O stretching

C:O stretching

N-H bending

C-H bending

1665～ 1760

1665～ 1745

1630～ 1680

1515～ 1640

1450～ 1470

the PVDF and its copolymers occurs in different wavelengths. The different crystalline phases of

the PVDF and its copolymers, orthe predominance of some of the crystalline phases, also can be

identified by FTIR, because each crystalline phase bands with characteristic relative intensities [ ].

The assignments for the main FTIR bands of PVDF and P(VDF-TrFE) are listed in Table B.l.

On the same method as the data processing of XPS spectra, the assignments which are related

to two solvents, methyl-ethyl-ketone (MEK) and dimethylacetamide (DMAc), were investigated

with studies about the solid electrolyte interphase (SEI). Fig. 8.2 shows FTIR spectra of a MEK
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and DMAc. The solvents are organic compounds which are a ketone-type and amide-type as a

carbonyl group respectively. On the bonding structure of which the organic compounds consist,

their assignments are listed in Table C.2 [3-9].
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Fig. B.2 FTIR spectra of two organic compounds for the condensed pahse [Data from NIST
Standard Reference Database 69:NIST Chemistry WebBookl
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Appendix. C

Variational Equation of Motion for Circular diaphragm

In this chapter, detailed procedure that both equivalent stiffness and mass of the diaphragm, as

referred in Chapter 4, are described with Mason model [1]. The potential energy of bending for a

thin plate vibrating in flexure depends on two radii of curvature Rr and R: rather than a single

radius as does the bar bent in flexure. [t is shown in "The Theory of Sound," (Rayleigh) [2] that

the potential energr of bending is given by

(C.1)

where Io is the Young's modulus, a is the Poisson's ratio or the ratio of the lateral contraction to

the longitudinal expansion of the material, and f6 is a thickness of the plate. This energy is

calculated by calculating the energy of stretching part of the plate and compressing the other part

about the center line of the plate which is assumed not to change length. This compares to the

expression

RB= るイ
 (キ

+寿 +I筈
5),

ザ得), (C.2)

for a bar bent in flexure which has only one radius of curvature.

lf, in addition, there is a tension which stretches the plate as a whole another term has to be

added to the potential energy. In calculating this addition to the potential energy, the assumption is

made that the tension I is so high that the change in tension due to displacing the membrane will

be small compared to L Under these assumptions, the increase in potential energ/ is found by

multiplying the tension by the increase in area. lf w is the displacement normal to the plane of the

diaphragm, the altered area is given by

where dS is an element of area. Hence the potential energy is

1-| (3静
)2+ (3チ)2
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,        (C.4)

where Vw is the gradient of w.

lf w is the displacement perpendicular to the plane of the plate at the point where rectangular

coordinates are -r and v. it has been shown from seometrical consideration that
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Hence the complete expression for the potential energy of a thin stretched plate is

|(▽
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)2_2

ｒ

ｉ

く

ｌ

ヽ

∬〓ＥＰ

(C.6)

The added term Ito the Young's modulus occurs because the added tension increases the effective

modulus as shown by Rayleigh in connection with stretched bars.

For a complicated system of this type the equation of motion is usually found by employing the

variation equation which states that the increase of the potential energy is due to the impressed

forces acting though the displacement 6w. Ifp is the transverse pressure on the diaphragm (which

may be the resultant of pressure on the two sides of the diaphragm) and p is the densify of the

material, the vibration equation of motion is

δP.E。 一JJpδ1/7`SttJJρ rdI:ρδ″パ=0
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This equation states that the increase in potential energy due to a displacement 6w is equal to the

pressure minus the mass times acceleration multiplied by the displacement 6y and integrated over

the surface of the plate.

By employing Green's theorem, Rayleigh has shown that the variation of the first term of P.E.

can be expressed in terms of the variation in 6w and (d6w I dn)by

lv -Lmt.iI ff
6P.E.r : \'*;' lit l f f va.ow ds
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▽4=(慕 十手)(gi写
+多

),

δP.E。 2=ri―∬▽2wδングs+Jl〕サδ″̀ガ |.

Hence the equation lo be satisfled for every point ofthe surface is

Wyaw-rv2w-p+,op*-0. (c.lr)

From equation (C.I 1) the equation of motion satisfied by every point of a thin plate is

(C.9)

d.l is an element of are4 dl is an element of length along the boundary, dn is an element of length

normal to the edge, dt is an element of length along the tangent to the edge at the point under

consideration and R is the radius of curvature of the edge of the diaphragm at the point under

consideration. Simpler expressions for the last two terms are given later for square and circular

boundaries.

In a similar manner the variation of the second term in (C.6) has been shown to be



(C.12)

We assume here simple harmonic motion and a symmetrical motion about the circle. Hence

equation (C.12) takes the form

1ダ|卜」F可 ▽
4w_′ +亀ρ

l阜
多=0 ・

12(1{∴夢ヮ
▽4w_ω

2亀

ρ″_′ =6 ・

Sctting

#=12 
ωlρ (1-σ

2)=ヵ
4

12(1_σ 2)

the equation can be written

(C.13)

(C.14)

(C.16)

(C.15)

The solution of this equation will be the sum of the solutions of the two separate factors in w.

Since the Bessel's functions of second kind are inadmissible for this case on account of their

infinite values at r = 0, a solution of this equation is

(競争十÷孫+ル
2)(′

争+タジターカ
2)w=

″=И JO(λ7)+3J00た r)一 扇イト万

J06ib)==/0(1レ )=1+:た
2r2+ば

,ヵ
4″4+¨

.

″=0=И JO(λα)+BJ00たα)-1万イト石

where

(C.17)

is the Bessel's function of zero order with imaginary argument.

To obtain the constants I and B, we assume first that the plate is rigidly clamped, i.e., l,r, :
dwldr = 0 when r = a. Inserting these conditions, the constants I and .B are determined by solving

the equations
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Solving these equations,the valuc ofthe displacenlent w at any point becomes
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(C.18)

(C.19)

(C.20)

(C.22)

lntegrating over the surface to find the volume velocity, one finds that the volume velocity is

v:j'co2nfi*a':#LAtl e2')
LaVr$a) rtfta)) J

Hence the impedance of the plate is

′
一
／

〓ろ

where S is the area ofthelplate.

The low―frequency values of the equivalent ne● vork can be obtained by expanding this

expression in series follll.SinCe

xo=卜字+字一磯肝絲難一 ,
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it is easily shown that the impedance Za at low frequencies becomes

z,: - 
jr6t: (Y.+r) 

| , - ,S'lr(,t, 
iL1^ *.. l, (c23)-u ataa(naz)(l - oz; I ^ 80 ro' (Y0+ T) I'

This wilt be the impedance of a compliance C in series with an acoustic inertance rl4having the

values;

c:ffi and M-ffi G.z4)

In Fig. 4.1 (b), the series resonant circuit Ct andMl represent the compliance,llk"o, and mass of

the diaphragrrr, ffieq, which in mechanical impedance units will be

q= 面 4=

亀q
_ 1 _l6ntiTo+f) ^^, 

gpta(na2)

Ct or1tff and ffi'q Mt:ff ' (c'2s)

where na' is the area of the diaphragm and air chamber. These are obtained from Eq. (C.2$ by

muftrplyrng oy \T.a-r.
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