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The integration of biotechnology into chemical manufacturing has been
recognized as a key technology to build a sustainable society. However, the
practical applications of biocatalytic chemical conversions are often restricted due
to their complexities involving the unpredictability of product yield and the
troublesome controls in fermentation processes. One of the possible strategies to
overcome these limitations is to eliminate the use of living microorganisms and to
use only enzymes involved in the metabolic pathway. The use of recombinant
mesophiles producing thermophilic enzymes at high temperature results in
denaturation of indigenous proteins and elimination of undesired side reactions;
consequently, highly selective thermophilic biocatalytic modules comparative to the
purified enzymes can be readily prepared. By rationally combining those modules

together, artificial synthetic pathways specialized for chemical manufacturing could
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be designed and constructed. In this thesis, the author developed this novel,
simple technology and designated it as “synthetic metabolic engineering”.

To construct such an artificial pathway, four steps are included: 1) appropriate
selection of thermostable enzymes; 2) expression in mesophilic hosts (e.g.,
Escherichia coli); 3) preheating of the cell suspension at high temperature
(typically at 70°C for 30 min) to disrupt the cell membrane and to inactivate the
indigenous host enzymes; and 4) rational combination of those catalytic modules at

adequate ratio to achieve the stoichiometrical conversion.

Chapter 2: Construction of a non-ATP-forming Embden-Meyerhof (EM) pathway and

its application in lactate production

A chimeric EM pathway with balanced consumption and regeneration of ATP and
ADP was constructed by using a mixture of nine recombinant . coli strains, each
one of which overproducing either one of the seven glycolytic enzymes of Thermus
thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus
horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase
of Thermococcus kodakarensis. By coupling this pathway with the Thermus
malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from

glucose with an overall ATP turnover number of 31.

Chapter 3: Direct conversion of glucose to malate by synthetic metabolic

engineering

Chapter 3 focused on the applicability of synthetic metabolic engineering to the
direct conversion of glucose to malate. Reversible carboxylation of pyruvate
catalyzed by the malic enzyme (AGO= +7.3 kJ mol'!) derived from 7. kodakarensis
was coupled with the thermodynamic favorable non-ATP-forming EM pathway to
achieve the redox balance and to shift the overall equilibrium towards malate
production (glucose + 2 HCOs" — 2 malate + 2 H20, AG?= -121.4 kJ mol'!). The
enzyme was observed to exhibit both pyruvate carboxylation (pyruvate + HCOs +
NADPH — malate + NADP* + H:20) and pyruvate reduction (pyruvate + NADPH +
H*— lactate + NADP*) activities. By increasing the HCOs concentration, the
reaction specificity could be redirected to the malate production. As a result,

direct conversion of glucose to malate can be achieved with a molar yield of 60%.
Chapter 4: Conclusions

This work demonstrated a wide applicability of synthetic metabolic engineering
to the production of desired metabolite on demand with thermodynamic prediction of
the production yield. The concept of in vitro synthetic-pathway biotransformation
is not new but its feasibility in practical application has been largely restricted
mainly owing to the prejudice that im vitro biotransformation is too costly for
producing low-value biocommodities. However, the comparative cost analysis
between in vivo and In vitro fermentation processes demonstrated that this

interpretation is not mnecessarily true and that the development of stable

standardized enzyme modules will provide economical advantages to the use of in
vitro systems.

Synthetic metabolic engineering enables a one-step preparation of highly
selective and stable biocatalytic modules via simple heat-treatment of the
recombinant mesophiles having thermophilic enzymes. More importantly, it is, in
principle, applicable to all thermophilic enzymes as long as they can be functionally
expressed in the host, and thus would be potentially applicable to the biocatalytic

manufacture of any chemicals or materials on demand.
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