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Chapter L

Introduction

1.1" Introduction to Dislocation

The conception of dislocation appearing as an abstract mathematical concept was first

given by an Italian mathematician named Volterra in the late 19th century when he

examined properties of singularities produced by cutting and shifting matter in a

continuous solid []. However, this conception remained unnoticed until three scientists,

Taylor, Polanyi and Orowan in 1930s, independently proposed dislocations as the

defects in crystalline material which may be responsible for a crystal's ability to deform

plasticity [3-4]. Then under the observations from transmission electron microscopy

(TEIO, the numerous aspects of dislocations for crystal plasticity and the other defect

behaviors have been confirmed [5] (see Fig. 1.1).

(a) (b) (c)

Fig. 1.1 TEM pictures of dislocations. (a) Dislocations in parallel slip planes in a single

crystal bcc molybdenum deformed at278K. (b) Dislocations formed bundles in single



crystal copper deformed at 77K. (c) In a single crystal bcc molybdenum deformed at

500K (the dark regions contain a high density of entangled dislocations) [5].

Dislocations define great properties of a crystalline material especially the plastic

deformation. Stress-strain relations of bcc metal Molybdenum under uniaxial tension at

a constant strain rate [6] are shown in Fig. 1.2.
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Fig. 1.2 Tensile stress-strain curve for Molybdenum at two temperatures [6].

At T : 493K, three typical stages can be observed. Stage I, called 'oeasy glide region",

happens immediately after the yield. During this stage, dislocations mostly glide on

parallel slip planes and their mutual interactions are weak. Therefore, the plastic

deformation proceeds without significant increase of applied stress. At stage II named

as work hardening region, dislocations moving in non-parallel slip planes start to block

each other's motions and cause intensive interactions. Frank-Read sources acting as

representative phenomenas in this stage are the main reasons for dislocation

multiplications. Besides, dislocations moving towards grain boundaries gain significant

feedbacks, which also account for the higher deformation of this bcc metal. This stage

has been studied a lot because of the variable and complex physical phenomena. Then,

the crystal enters stage III in which hardening rate degenerates according to dislocation

annihilation. This stage is called "parabolic hardening region" where the thermo-

dynamic recovery should be key issue.

The onset of the second stage in the work hardening of a single crystal, where the

curvature 02 ol02 e of a stress-strain curve becomes nesative. is associated with the onset



of cross slip, as verified

scanning-tunneling microscopy

slowly fading [8] (see Fig. 1.3).

by experiments

(STM) where a
I7l. The cross-slip is seen by

moving dislocation leaves a track

Fig. 1.3 A STM image of cross slip on Au(001) surface [8].

In stage II, there are some hardening mechanisms involved in the materials. Typical

one is the well-known grain boundary hardening, so called Hall-Petch relationship [9,

l0]. The other one is precipitate hardening which is often observed in aluminum alloy.

The punching of coaxial prismatic dislocation loops (PDLs) in crystalline materials at

precipitate-matrix interfaces without long-range applied stress is often observed by

experiments [11-15] and can be exploited as the improvement of material strength [13,

141. Precipitates employed in strengthening technique of quench-aging process [3]
generate misfit strain in the vicinity and constitute nucleation sites for PDLs. These

misfit stresses associated with internal stresses from PDLs can be the barriers for mobile

dislocations in matrix phase and thus are the reasons for precipitation hardening (see Fig.

1.4).



Fig. 1.4 System of PDLs produced in a silver chloride around a small glass sphere [16].

As we can see from the above discussions, dislocations play a very important role in

plastic deformation of crystalline materials. In addition to a crystal's ability to yield,

dislocations also control other mechanical behaviors such as creep, fatigue, indentation

hardness and friction. The knowledge on such fi"rndamental defects mechanics could

give a big hint to design the practically important mechanical properties of ductility and

brittleness.

1.2 Continuum Models for Dislocation Dvnamics and

Motivation of Research

The material modeling is a very fast growing area and attracts much attention in both

academic and industrial fields |71. Dislocation considered as a linear lattice

imperfection in crystals [18] is very important phenomena in materials science and such

a defect is the main reason why the practically measured yield stresses of crystals are

much lower than those of theoretical values ll9, 201 calculated from atomic theory

based on perfectlattice state. A wide range of resorts including atomistic and

continuum processes are utilized to dislocation dynamics (DD) in order to study and

analyze this sort of defect and plasmatic deformation in crystalline metals.

For the simple and ideal models of dislocations which behave endlessly extended or

act perfectly symmetric, we may get the analytical equations of motion from the

theoretical integral equations [18-20], but the analytical solutions become unavailable

and inefficient when dislocations evolve and cannot preserve symmetry any more.



Nevertheless, dislocation simulations make it possible to model an arbitrary shaped

dislocation and the collective behaviors of a bunch of dislocations.

We first introduce a series of continuum dislocation simulations for the superiority

in both space range and time scale while atomistic models are restricted in relatively

small material volumes, where each atom is individually resolved, and limited time

scale compared with reality [5].

The continuity of a material breaks down when it meets a singularity supposed as the

dislocation core in solid (denominator of strain adjacent to zero and the value becomes

infinite) [21]. Peierls-Nabarro (PN) model is a continuum approach with atomistic

achievement according to non-linear interatomic interactions around dislocation core.

Fig. 1.5 shows the comparison of displacements between a Volterra and a PN model [22,

231.

-b
ν(χ)
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π(χ)
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Fig. 1.5 Displacement distribution released by a dislocation.

(a)Volterra model. (b) PN model.

In the PN model (see Fig. 1.5(b), the displacement is modified to a smooth curve

instead of the pulse signal in Voltena model [7]. PN model gives a more realistic

physical meaning than Volterra's mathematical hypothesis since displacement is more

like continuum than discreteness. This model, as a sort of hybrid atomistic-continuum

model, has been used extensively for studying dislocation core properties.

The kinetic Monte Carlo (kMC) model 124-261 is a mesoscale study that treats

dislocation motions through the numerical sampling (Markovian) stochastic process.

Dislocations are modeled as a system of pure screw and pure edge segments resisted in

a fixed two-dimensional lattice (see Fig. 1.6).
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Fig. 1.6 The dislocation with kinks is represented as a collection of horizontal and

vertical line segments on a regular grid. Notations ZK and RK are used to differentiate

between left and right kinks of the kink pair separated by a distance.

In kMC model, a dislocation is represented as a collection of horizontal and vertical line

segments known as the kinks on a regular grid. The line moves upward through a

sequence involving kink pair nucleation and the motion proceeds as a result of thermal

fluctuation and applied stress causing double-kink nucleation/annihilation and lateral

kink misration.

Discrete dislocation dynamics (DDD) separating a dislocation line into mathematical

segments can demonstrate dislocation evolutions in three dimensions. This method is a

typical front-tracking method that all the segments of the front are tracked at any time

during the evolutions [27-30.1 (see Fig. 1.7).

Fig. 1.7 Motion of dislocation segments.

RK
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Dislocations are represented by a set of nodes connected through straight segments.

With the definition of Burgers vector b, the Peach-Koehler force worked on individual

segment is calculated, and then this force is transformed to a velocity u through mobility

constant. Finally the segment moves according to the velocity u.

DDD is much more complicated than the previous models because, for one thing,

the number of segments is not fixed and should be adjusted to the length of dislocation

line. For the other, all the topological processes have to be added to preserve

dislocation's reactions. DDD makes tracking the evolution of a bunch of dislocations

possible. Also, for a massive computation, this method is fitful for parallel computation

and thus we can get well performed dislocation evolutions [3]-34].

Instead of using discrete mathematical lines, phase field method (PFM) represents

dislocations by a continuum field l(x) smoothly occupying the entire simulation domain

[35-37] (see Fig. 1.8). A dislocation is represented as the interface of a non-slipped

region (ilx):0) and a slipped region (/(x):1).

Slipped
region

tl

Unslipped
region
tl

χ

Fig. 1.8 Representing a dislocation by a phase field function [13].

During the dislocation modeling, the phase value evolves in a way that reduces the total

free energy E and the dislocations are represented as a contour in two dimensions or

iso-surface in three dimensions [36]. This method takes great advantage of well-

developed numerical method for partial differential equations and displays well

especially in modeling the evolution of dislocations.

S
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DDD, PFM are two frequently used methods for dealing with dislocation dynamics

while both of them take advantages and have limitations. We employ a new method

called level set method (LSM) also using continuous functions like PFM to represent

dislocations in a smooth and higher codimension way (detailed will be shown in

chapters 2 and 3). More comparisons about DDD, PFM and LSM are discussed in the

final chapter.

The present research endeavors to study micromechanics of line defect and manipulate

dislocation evolutions by simulations. The motivation of this thesis is try to study and

deliver the dislocation evolutions including dislocation/dislocation and dislocation/

inclusion interactions mainly during stage II of work hardening. And the mechanisms of
some specific phenomenon (like cross-slip and double cross-slip) in that stage after

elastic deformation are investigated by a computational method known as the LSM

which is used as a powerfrrl tool to deal with topological changes. This method also

takes great advantages of well-developed and well-behaved numerical methods and can

demonstrate physical phenomena through mathematical constructions of the higher

codimension intersections in three dimensions.

1.3 Arrangement of Thesis

The content is a:ranged as follows. In chapter 2, the basic conception of the LSM

associated with fast marching method (FMM) is generally introduced with applications.

In chapter 3, several approaches have been executed accommodated to plastic

deformation utilizing level set dislocation dynamics (LS-DD), and the results we obtain

are well-performed according to theoretical aspects. In chapter 4, the double cross-slip

of an expanding Orowan loop is modeled using LS-DD. We investigate the internal

stress of the cross-slipped loop and the effects to other dislocations from the distorted

dislocation loop. In chapter 5, the formation of PDLs is demonstrated. We explain the

mechanism of this phenomenon and study the strain energy variation during evolution.

In chapter 6, we list the conclusions of this thesis, discuss the conveniences and

shortcomings of LSM and the spaces still needed to be improved.



Chapter 2

Level Set-Based Geometric Evolutions

of Interfaces in Two and Three

Dimensions

2.1 Abstract

The level set method (LSM) devised by Osher and Sethian [38] for the purpose of
following the front propagations with curvature-dependent speed handles topological

changes of implicit interface l(t):{xlfrx,/):0} including merging and breaking in any

number of space dimensions naturally. This method was original designed for modeling

codimension-one objects while attempts have been made to enable level set technique to

represent codimension-two geometry by the intersection of the zero level sets of a pair

of level set functions. The fast marching method (FMM) with the numerical schemes

for computing solutions to the nonlinear Eikonal equation is assembled together with

the LSM when the speed function is defined only on the zero level set [39]. Based on

entropy-satisfying upwind schemes and fast sorting techniques, FMM yields consistent

and accurate extended velocities. Besides, since the powerful technique of computing

distance from interfaces, FMM can create signed distance functions (SDFs) of
arbitrary-shaped fronts as the initial level set functions [40].

This chapter is organized as follows. In Section 2.2, the conceptions of front

propagation including implicit interface and SDFs are discussed for the preparation of
understanding LSM and FMM. In Section 2.3,the general features of LSM representing

codimension-two objects are explained. In Section 2.4,the detailed algorithms of FMM

and the associated velocity extension are described. In Section 2.5, some selected

numerical approximations and implementations of the methodology are introduced. In



Section 2.6, applications of FMM creating SDFs from fronts and demonstrations of
level set-based front evolutions under normal and curvature motion are given. Finally,

the differences between the evolution with and without and velocitv extension are

compared.

2.2 Formulations of Implicit Interface Propagation

Consider a closed front (curve in two dimensions or surface in three dimensions)

dividing a region into two portions moves under a known speed function F (see Fig.

2.1). This given speed function F(L, G, I) may depend on many aspects [41], where Z,

G and lrepresent:

o L: Local properties of the front are those determined by local geometric information,

such as curvature and normal vector.

o G: Global properties of the front are those depending on global geometric

information such as the shape and position of the front. For example, the speed might

depend on integrals along the front and/or associated differential equations.

o I: Independent properties are those independent of local and global geometric

information of the front. By which case, the physical meanings can be delivered into

the front.

F(L,G,I)

Fig. 2.1 A curve propagating with a known speed F.
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The objective is to track the evolution of the interface under the given speed

function F. Attempts including explicit and implicit interface representations have been

made to solve this problem. Since the implicit interface propagation shows that the

topological changes happen naturally, our task is to formulate this evolution problem in

an Eulerian framework.

2.2.1 Implicit Representation of Interface

A standard approach to model the front propagations is to represent the interface

explicitly by a set of marker particles (MPs) (see Fig. 2.2(a)). For this front-tracking

method, the position of each MP is tracked to reconstruct the front at any time as the

velocity on each MP is given 142,431.

While for the implicit representation, the interface dQ is stored in a set of mesh

points, typically in a uniform Cartesian grid set, and is defined on the locations where

the higher-dimensional implicit function / is equal to zero (see Fig. 2.2(b)). The

velocity is not directly defined on the interface but on all of the grid points, in which

case the front propagates only when the ( evolves [44].

(→                    (b)

Fig.2.2 Two approaches to rcprcsent an interface。 (→ Explicit rcprcsentation。 (b)

IInplicit rcpresentation.

Both the explicit and implicit representations give us the information of the front.

However, we choose implicit representation for two reasons. First, the computational
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time for the explicit representation depends on the number the MPs, which means a

longer curve normally needs more MPs and consequently takes a longer time. While for

the implicit representation, the computational time depends only on the number of mesh

points no matter how long and how many curves exist in the region. Second, the explicit

representation represents the interface in a direct and simple way, but needs artificial

local rules to describe the topological changes especially when the merging and

breaking of interface occur. While for the implicit representation, all the topological

chanses can be handled naturallv.

2.2.2 Signed Distance Function

The interface is embedded in an implicit function Q with negative values in the interior

region C)-, positive values in the exterior region f)* and zero on the boundary dO (see

Fig.2.2(b)). The values in the interior and exterior regions except the interface where /
equals to zero are also concerned since they are involved in numerical calculations.

Therefore, a smooth function is desired to make sure the front propagates smoothly.

I)istance Function
Firstly, a distance function (DF) is defined as the minimum distance from x to interface

l4sl,

グ(χ)=min(χ ―χr), (2.1)

where xt e 0{2. Geometrically, distance function d can be constructed as follows. If x is

the point on the interface then d(x) : 0. Otherwise, for any point x, find the

correspondent point xsl orr the interface which is the closest point on dQ to the given

point x (see Fig. 2.3), and the distance is d(x) : lx- xa|Noticing that the point x5l is

the closest point on the interface to x, no other point on the interface df) can be found in

the large green circle. Besides, for any other point x' on the line connecting x and xg1,

x67 is also the closest point on the interface to x'.

12
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Fig.2.3 Finding the closest point xc7 on the interface dCl for a given point x.

The line connecting x and xcr is the shortest path from x to the interface, which means

that this path is the one of steepest decent for function d known as the Euclidean

distance function.

lval = r (2.2)

That is, any local deviation of path from the interface point xc7 to x increases a unit

distance from the interface.

Signed Distance Function

A signed distance function (SDF) l(x) is a kind of distance firnction with positive

values outside the interface and negative values inside the interface [40],

(2.3)

As we can see from Eq. (2.3), the SDF satisfies lilx)l : d(x) and thus shares the

properties of the DF d(x). It suggests that the derivative of any point from the implicit

function /equals to one according to of Eq. (2.2),

|▽ψl=|▽グ|=1 (2.4)

The arguments above implies that Eqs. (2.2) and (2.4) are true for any r assuming

that only one unique closest interface point x6'7 exists. However, there exist points that

are equidistant from more than one distinct interface points. Besides, for an implicit

function, the interface may not be analytical as a written equation, which makes it hard

to find the closest interface points. Thus solving the SDF can be treated as a boundary

lO<*>=-d(x) forxeC)-
Ij/(t)=o forxedc)
I

L/(t) = d(x) forx e Cl*

13



value problem and we induce a numerical approximation as a triumph to solve this

problem.

Boundary Value Formulation
Assuming that the front always moves outward under a positive speed F' in the direction

normal to the front, as shown in Fig. 2.2(b), one efficient way is to parametrize the

position of the expanding front with the arriving time Z(x) as the front crosses each

point x [46]. Since VZ is orthogonal to the front, its magnitude is inversely proportional

to the speed,

lvrlr = t , (2.5)

where T(x) : 0 for all the x on the initial location of interface f. According to the

assumption above, this front motion can be charucteized as the solution to a boundary

value problem. If the speed F depends only on position x, the Eq. (2.5) reduces to what

is known as the Eikonal equation. Furthermore, if the front propagates with a unit speed

F: 1, we have the relationship lVfl : 1. That is, the arriving time function Z(x) for the

boundary value problem can be treated as a SDF frx). Fig.2.4 shows an arrival surface

Z(x) of a circular front expanding with unit speed F: I.

、ヽ、、、、/
1nitial Curval「

Fig.2.4 Arrival surface T of a circle front propagating with a unit speed F : l.

The distances between two neighboring circular contours are equal. Thus, the arriving

time function Z(x) satisffing lVZl : I can be considered as an implicit SDF.

14



2.2.3 Initial Value Formulation

Now we consider the case that the front moves with a speed F that is neither strictly

positive nor negative, which means the front can move forward and backward (see Fig.

2.5). Under a given Speed, the initial curve (solid line) evolves in a normal direction

that partly outward and partly inward (dashed line). In this case, the front can sweep a

point x several times and a multi-valued function is required. The arriving time function

Z(x) which is a single-valued and stationary function becomes invalid in this situation.

Fig.2.5 Front propagating forward and backward.

Level Set Equation
Our way of solving problems like this is to embed the initial position of the front as the

zero level set of a higher-dimensional function 0 147-491. The time-dependent initial

value problem treats the front propagation problem by evolving the higher-dimensional

function d. We first set the level set function Q of which the zero level set matches the

original front Q(y@,0),0):0 where y(s,t) denotes the interface. During the propagation,

the front y(s,t) is always represented by the zero level set of the level set function,

ψ(/(S,′ ),′)=0 (2.6)

Take the derivative of the equation above with respect to / according to chain rule we

can get,
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¢十▽φ(/(S,′),′ )・ /r(S,′)=0 (2.7)

where @ denotes the derivative of Q with respect to time, that is , fu: 0fl0l. Note that

the derivative of ywith respect to time is the velocity of the interface n!,t): ll, Eg.

(2.7) can be written as

4+ツ・▽ψ=0

Since f is a scalar function representing the speed in the outward normal direction, we

project the velocity of the front to the local normal vector n andhave y1'fl: F, where n
:Vfllvl1. This yields the level set evolution equation given by Osher and Sethian

[38],

p, + nlv6l:o ,

(2.8)

(2.9)

(2.10)

as a given initial function Q(x,t:0). This time-dependent level set equation describes

the multi-valued initial value problem as the time evolution of a level set function /
with the zero level set which is always identified as the propagating interface.

Properties of Initial Value Formulation

o It can deal with not only two dimensional but multi-dimensional interface

propagation problem, for example, hypersurfaces propagating in three dimensions.

o The implicit function Q@,t) doesn't have to be a single interface, thus the topological

changes in evolving the front, especially breaking and merging, can be handled

naturally.

o It relies on the viscosity solution of the associated partial differential equation in

order to guarantee that the entropy-satisfying weak solution can be obtained (the

details are explained in Ref. [38,46]).
o lf Q is a smooth well-behaved function, geometric properties including normal vector

N and curvature r of the interface can be calculated usins the nodes of our Cartesian

mesh:

Ⅳ=尚 ;

ヽ

―
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where the curvature is defined as
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(2.13)

2。3 Level Set Method Representing Curves in Three

Spatial Dimensions

The level set method is typically used to model codimension-one objects such as points

in one dimension, curves in two dimensions and surfaces in three dimensions while

Osher and coworkers extended level set technique to treat codimension-two objects

using the intersection of the zero level sets of two level set functions [50]. That is,

instead of implicitly representing codimension-one geometry by zerc contour of one

level set function /, this approach represents codimension-two geometry as the

intersection of the zero iso-surfaces of level set functions d artd r4. Normally, a curve

can only be represented in two dimensions, while by using this technique, a three

dimensional curve can be represented as the intersection of two zero level set surfaces

(see Fig. 2.6).
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Fig. 2.6 Representing a curve as the intersection of two zero level set surfaces.

The procedure for extracting a curve in three dimensions from two hypersurfaces is as

follows: first create two level set functions both of which are SDFs, then output their

zero level sets (/: V/--0) (perpendicular to each other by preference), finally extract the

intersection of these zero level surfaces as the object we intend to deal with. One should

be noted that the set of points satisfring Q: Cr and V: Cz (Cr and C2 are constants) are

also curves, however, we only concentrate on zero level sets for convenience.

2.3.1 GeometricQuantities

In order to move a curve by a geometrically based motion, a number of relevant

geometric quantities of the curve need to be derived in terms of the given two level set

functions 0 and r4. Noticing that the V QxV ry taken on curve is tangential to it, we

normalize this and get the tangent vector I,

If we replace Q with -d, the direction of the tangent vector will be reversed. The

curvature times normal vector rcN is the derivative of the tangent vector along the

direction of the curve s.

卜

絣

・

rN: dr --vr r=fYl llds 
["E t.,l

N =,"N,
l"nl

The binormal vector B is defined as

B=,TxN,
IxNl

And the torsion times normal vector rNis defined as

where Tb Tz, T3 are the components of tangent vector T. Then the normal vector N can

be calculated by normalizingthe curvature times normal vector rcly',

(2.14)

(2.15)

(2.16)

(2.17)

τiV=一▽3・ r .
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As we can see from Eqs. (2.14)-(2.18), all these geometric quantities of the curve can be

written in terms of Q and V. And these geometric quantities can also be used for an

arbitrary point in three dimensions of the curve {d : Cr V : Cz\. One should be

mentioned that not all the curves of the normal and binormal motions evolve as nicelv

as curvature motions [46].

2.3.2 Evolution Equations

Moving a curve in three dimensions is actually evolving two level set functions Q and ty.

The velocity field y under which the curve moves is first investigated, then both Qand V
undergo the same partial differential equation known as the level set equations:

Eq. (2.19) shows the level set evolution equations in terms of / and V of which the

intersection is the very curve we want to deal with and investigate. In fact, a viscosity

coefficient could be added on the right-hand for a parabolic problem in order to get a

better accuracy but may cause diffusion and oscillatory [9]. fu(}Q@,t)l0t) andW@W

@,tyAt) are time interval derivatives while VQ@Q@,t)llx)and VV(0y(x,t)l0x) are

spatial derivatives with respect to x, !, and z coordinates. One should be noticed that the

velocity field v for evolving 0 and tyare exactly the same. Let y(s,t) denotes an arbitrary

curve in three dimensions, then this intersection can be represented by ( and ty as

ψ(/(S,′ ),′)=q
/(/(S,′ ),′)=C

Taking a derivative ofEq。 (2.20)with respect to′ gives

(2.20)

4+フ・▽ψ=0

%十ツ。▽″=0

▽ψ(/(S,′ ),′ )・ /r(S,′)+4(/(S,′ ),′)=0
▽/(/(S,′ ),′ )・ /r(S,′)+%(/(S,′ ),′)=0'

(2.19)

(2.21)

with making a comparison with Eq. (2.19), we have yt(s,t): v. Since Cr and Cz are

arbitrary constants, the evolution equation (2.19) is valid for all of the points in three

spatial dimensions.
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2.4 Fast Marching Method and Velocity Extension

Fast Marching Method (FMM) is a numerical scheme for computing solutions to the

nonlinear Eikonal equation known as the boundary problem [51-53]. Based on entropy-

satis$ing upwind schemes, causality relationship and fast sorting techniques, FMM
yields consistent, accurate and efficient algorithms computing distances from complex

curves and surfaces. The reconstructed SDFs can be used as the initial and reinitialized

functions during propagating the fronts of level set functions. FMM can also construct a

velocity extended to the whole computational region when only a localized velocity on

the front is determined to make sure that all the non-zero level sets evolve smoothly

according to the front.

2.4.1 Approximation Schemes to Eikonal Equation

Fast marching method is a computational technique approximating the solution to

Eikonal equation which is a first order hyperbolic partial differential equation with the

form:

IVZ(x) l: F(x), x e R' (2.22)

where F(x)> 0andtheboundarycondition, T(x):d@), xef cR'. TheF(x) onthe

right side is typically supplied as given input to the equation while the boundary

information that T(x) equals to a known function according to the prescribed curve or

surface f in n-dimensions.

Due to the nonlinearity, the equation may be non-differentiable even with smooth

boundary. Thus, beyond the formation of the discontinuity in the derivative that yields
oshocks' against entropy condition in the hyperbolic conservation law, the numerical

technique called FMM that naturally accounts for the non-differentiability and admits

physically corrected non-smooth solutions is devised. This consistent, accurate and

efficient technique known as a stationary boundary value problem first calls upwind

viscosity schemes and thus automatically selects solutions including non-

differentiability. On the other hand, by coupling the causality of the schemes to fast

sorting methods borrowed from discrete network problems, FMM gives a high

efficiency: the complexity is O(Mog2(,AI)), where N is the total number of grid points in
the whole domain.
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A one… sided upwind scheme for sol宙ng Eq。 (2.22)in three dimcnsions is

constructed as:

N lヽe a slightly revised scheme givcn in[54]tllmS Outto bc more convenient

where D',Dttχ,Dツ,Iメツ,Dフ and D+Z are backward and fopward initc difference

operators in χ,ノ and z coordinate directions deflncd as:

町 λν=写
ユカ
~写
t九た,端

"々=写
二九λ―写ュλ

弓 たν=L子 型 ,畷たν=写Jユ
ヵ―写ュた.  92っ

%ヵ 夕=L千
型 ,時 ヵν=写

脚
~写
ュヵ

2。4.2  The Algorithnl of Fast Marching Method

lteration

One way to solve Eq。 (2.24),given by Rouy and Tourin in[54],is thrOugh iteration.

Consider a stencil ofa grid point with its six neighbors in three dilnensions,as showllin

Fig。 2.7.
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T,,i,o*,

!,,i*,,0

T,-r.i,o Tr*r,i,o

T,,i,o-,

Fig.2.7 Updating a grid point.

Assuming each neighboring grid value for Ti;,1, is given, Eq. (2.2$ is a quadratic

equation for T. The solution is by updating the value of T at each grid point according to

this quadratic equation until a solution is reached:

For iter : 1:n

For ij,k: l:dim

Solve Quadratic for Ti;,pof the (m+I)-th iteration, given

Tirj,k, Ti+t1,k, T,j-t,t, Tij*t,k, T,j,*-t, T,j,t*t of the m-th iteration

End

End

Given N elements in each direction for a three-dimensional grid, the computations

yields at least OQfi labors.

Causality
The central idea behind the FMM is to systematically construct the solution Z using

only upwind values, that is, the information propagates from smaller values of Z to

larger values according to the upwind difference structure of Eq. (2.24). During the

procedure, we march the narow band forward from the front, freeze the values of

existing points and bring new ones into the thin zone.

Consider a two-dimensional version of solving Eikonal equation with the boundary

value known as the origin (the black sphere in Fig. 2.8(a) and light gray spheres are

grid points with unknown solutions. We start the algorithm by solving the Eq. (2.24)

from the target point downwind to its four neighboring grid points (shown as the green

spheres in Fig. 2.S(b)), then freeze the green sphere with the smallest value and proceed

with the downwind progressing algorithm. Noticing that recomputing the Z values at

T,,i-t,i
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downwind neighboring points can't yield smaller values than any of the known points,

we can systematically move forward. Besides, we will never go back and revisit a grid

point with a known value.

(e)                                                  (f)

Fig。 2.8 Update procedllre ofFMM.

Points are divided into three species (see Fig. 2.9): Accepted (black points),

Neighbor (green points in the narrow band) and Far Away points (light gray points).

Then the update procedure for FMM is as follows:

(a) Begin loop: Let A be the TrialPoint with the smallest Zvalue.

(b) Add the point Ato Know,4; remove it from Trial.

(→
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(c) Tag all neighbors of A that are not lcnown as Trial. If the neighbor is in Far, remove

from Far add to the set Trial.

(d) Recompute the values of T at all Trial neighbors of A according to Eq. (2.2$ by

solving the quadratic equation.

(e) Return to the top of the loop.

ACC

Fig.2.9 Upwind construction of Accepted value.

Heap Sort and Computational Efficiency

The efficiency of the marching technique largely lies on locating the grid point in the

niurow band with the smallest value for T. We introduce the heap sort which is a

comparison-based sorting algorithm. All the grid points including the values of Z and

indices in the niurow band are stored in the min-heap data structure (see the complete

binary tree of Fig. 2.10). The algorithm starts with finding the smallest element with the

location in the narrow band and the loop is as follows [55]:

Step I (DownHeap): Eliminate the root and use one sweep of DownHeap to ensure

the remaining elements satisfring the min-heap structure.

Step II (Insert): The Far Away neighbors (gray points in the downwind side of Fig.

2.9) are added to the heap using an Insert operation, and remaining neighbors in the

heap are updated according Eq. (2.2q.

Step III (UpHeap): Use the UpHeap operation for all the updated elements upward

to the correct locations in the heap.

ＳＥＵＬＡＶＬＡＲＴＦＯ

ｌ
■
▼

ＤＮＡＢＷＯＲＲＡＮ

IT
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Step IV: Retum to the top of the loop.

7" = l.3(3,5) T =2.3(6,8)

T =2.0(4,5) T =3.0(5,4) T =3.1(2,7) T =2.9(3,2)

(a)

Z = L3(3,5) T =2.3(6,8)

T =2.0(4,5) T =2.9(3,2)

Z = I .3(3,5) T =2.0(2,7)

T =2.0(4,5) Z = 3.0(5,4) T =2.3(6,8) T =2.9(3,2)

(c)

Fig. 2.10 Heap structure and UpHeap+ operator.

The DownHeap and UpHeap operations carry an element from root to bottom and

from bottom to root (in the worst case), respectively. Each array access takes O(l) time,

thus this algorithm has the complexity of O(log2(IuI)), assuming Melements in the heap.

Suppose a three-dimensional grid with Npoints in each direction, the FMM reduces the

(b)

r=0.6(′ =2,ノ =8)

r=o.6(ノ =2,ノ =8)

Z = 3.0(5,4)

r=0.6(ノ =2,Ji=8)

total operations count to O(Mlog2(/f)).
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2.4.3 The Fast Construction of Extension Velocities

The velocities are available for all the level sets throughout the whole computational

domain if the interface moves under the self geometric quantities [56-53]. However, in
many applications, we can define the velocity only on interfaces which have the realistic

meanings (for example, physical meaning). Thus, the velocities need to be extended

from the interface to all the other level sets to maintain a nice level set representation.

Equations for Extension Velocities

There are various approaches to extension velocities [59-61] while a technique calling

the algorithm of FMM is utilized to make sure that the velocities are created in such a

way that SDF is always preserved (see Fig. 2.ll).

Fig. 2.11 Building extension velocities.

Considering for a moment the level set function is an initial SDF frx,t:O), we build an

extension velocity which satisfies

v4., .YQ =0 (2.26)

Suppose that both F.*1 and / are smooth, Since the initial function satisfies lV 0@,/: 0)l

= I and the function evolves under the level set equation d, + F*tlV 0l: 0. Then, we

notice that
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平 =;|(▽ψ・▽ψ)=2▽ψ・:夕▽ψ (2.27)

= -2v O. v4.t lv 0l- 2v O 
.v 

lv Ol r"-,

The first term on the right-side is zero because the extension velocity is constructed

according to Eq. (2.26) and the second term is also zero because lV Q@,t:0)l:1. Thus,

the solution satisfies lY 0@,t)l:1, which means that the level set function / is always a

SDF.

Constructing the Velocity Extension

Once the values for both the signed distance and extension velocities are established at

Trial pointsl62-641, the routine of updating extension values can be started. As the

distance value is updated using FMM, the extension value is calculated according to Eq.

(2.24).

Consider a case that the new distance value at (i, j) is found by solving Eq. (2.2$.

Suppose that (i + 1,7) and (i, j -l) are the points that are used for updating the distance

and the v is the new extension value. In order to satisff the upwind scheme, we have

陶型,屏)(7辛)却 ,

which can be writtcn with respectto ν as

(2.28)

耳.″ (¢T―床3)+月 ,ノ4(イツ~411)
(2.29)

(げ―州 )+(イ
p―
州 )

In this case, during the evolution, Eq. (2.26) is always satisfied for all the points on the

computational region except the points along the front itself of which the values are

already defined.

2.5 Numerical Approximations and Implementations

In this section, we explain some numerical approximations for solving level set

equations including terms of spatial derivatives and time interval derivatives from

partial differential equations (PDEs). Reinitializations are utilized after several
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evolution steps to reduce the numerical errors. Finally, we introduce the visualization of
curves from two level set functions in three dimensions.

2.5.1 Weighted Essentially Non-oscillatory (WENO)

Numerical calculation, because of its discretization and way of approximation, cannot

be totally trusted. Lots of mathematicians in applied mathematics are committing

themselves to deliver more stable and accurate approximations of numerical partial

differential equations and try to explain them [65-67]. These are widely used in

computational science which could get different aspects with different choices of partial

differential methods. The next example shows the stability and convergence of weighted

essentially non-oscillatory (WENO) [68, 69] for PDEs compared with central

differential method.

We suppose an initial function with a "V" formed by rays meeting at the middle of a

coordinate (x: 0), see the nethermost curve in Fig. 2.12. When the front undergoes the

evolution as

%=FC+グソ″ , (2.30)

as we can see, this front becomes severely oscillatory using central differential method

(see Fig. 2.12),

Fis.2.l2 Central differences for PDEs with Ar : 0.1.
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and oscillatory becomes even more severe when A/ becomes smaller (as shown in Fig.

2.r3\.

3

2

I

0
-10

Fig.2.l3 Central differences for PDEs with A/ : 0.01.

The oscillation happens because in the middle of the front where .tr : 0, the gradient of
this point is always zero no matter how fine the mesh grids could be and how small the

increment of time is chosen, we could never get a proper gradient. Not only symmetric

but also unsymmetric shape, if peak point like this (here in x: 0) appeared, the

evolution will not be presented appropriately.

Osher and coworkers [68-71] thought about a way that can solve this problem, as we

can see from Fig. 2.14.

I

x

I
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4

,l

2

I

0

Fis.2.l4 WENO differences for PDEs with Ar0.0l.
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They use WENO which is a kind of upwind differential method when solving the

spatial differential part of the evolution equation and gives the result almost like exact

solution. It is very useful method not only in 2D but also in 3D where topological

changes are dramatic and computations get hard.

For a simple LSM, central differential method can represent the spatial derivatives

good enough. But for dislocation lines, the evolution may oscillatory dramatically

unless using WENO methods [70] which are not only stable and convergent but also can

provide smaller truncations and global effors.

Firstly, backward WENO be induced (while forward WENO not essentially

changes) by using six points {0,_r, 0,_r, Q,_r, 0,, Q,*r, Q,*r}

Then define five derivatives using backward difference are defined as,

vt = D-rd,-2, vz = D-tQ,-r, vz = D-|Q,, v+ = D-\0i*1, v5 = D-tQ,*, (2.31)

A set of approximations can be deduced

- ,t vl 7v, I lv.vo.:T_ 
6 

* 
O

Y0'=-2*4*4 . es2)663
Yd'=+.+-+366

The Hamiltonian-Jacobi (HJ) WENO approximation of (v0-), is a convex combination

of these three equations. Then weight function using the set of approximations turns to

be

▽ψ=o▽ψ
l十
の▽ψ
2+Q▽
ψ
3.

In order to deflne the weights,we estiinate the smoothness ofthe stencils:

こ=::(・ -2ッ2+73)2+:「 (.-4ち +3埼 )2

S2=TI(ツ2~2ち 十ソ4)2+:(b_ツ4)2     .

S3=11(ツ3~2ソ4+ツ5)2+:(3ッ3~4ν4+ν5)2

1nte.1.lediary paralnetcrs for weights can be like

(2.33)

(2.34)
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αl=て
可十ε)2

α2=(s2+ε
)2 
・           (2.35)

0.3
角=五十ε)2

Finally,we obtain the weightsこ υl,αゎandこなfrom inte.11lediary paraIIneters

名q=一一
%+α 2+α3

の=_T&T_。           (2.36)
αl+α2+α 3

角
Q=― 一

αl+α2+α 3

For this method is onc― sidcd,we should calculate the other side(fOrward WENO)

altemately for several evolution steps.

2.5.2 Total Variation Diminishing Runge‐ Kutta(TVD‐ Rη

We tried several nllmerical methods for solving tilne differential problemo The siinplest

way is Eulcr cquation which is a forward evolution[65,66],

ノ
″+l=ノ″
十か /(χ ,ッ,Z,′),           (2.37)

while/(χ ,ッ,Z,′)=ッ 'iS at the″ ―th time step.For this is explicit method,a better

method of approximation:total variation diminishing(TVD)Rungc… Kutta should be

lntroduced:

ツ
′+1=ツ″

+乃°/′ (χ ,ッ,Z,′)

ッ
″+2〓
ッ
″+1+か

/″
+1(χ
,ッ,Zダ )

ッ
″+1/2=3ッ″/4+ッ″+2/4       .        (2.38)

ッ
″+3/2=ッ″+1/2+乃 ./″ +1/2(χ

,ッ,Z,′)

ノ
″+1=ツ″
/3+2ッ
″+3/2/3

Eq. (2.38) is a third-order accurate TVD Runge-Kutta equation, while higher order

accurate TVD Runge-Kutta also exists but does not make a significance improvement

for accuracy. The associated Courant-Friedrichs-Lewy (CFL) condition should be
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considered to decide the interval step while an algorithm adaptive may be smart to be

used (see Ref. [5], Page 216).

2.5.3 Reinitialtzttion

Reinitialization for Signed Distance Function

During evolution, a level set function may not always be a SDF, so we have to modifu

the function after each or several iterations and run the PDE for / below until it gets

steady state:

a+sign(ψ )(|▽φl-1)=0

ψ(′ =0)=φ

wherc the fmction signα )iS deflned as

(2.39)

1, χく0

χ=0 。                    (2.40)
χ>0

Similarly,thc rcnewed signed distance hction″ from level sct Jhnction/,

Й+Sign(″ )(▽ψl-1)=0
(2.41)

VQ =o)=v

This was also solved for the steady state using third order TVD Runge-Kutta in time

combined with fifth order WENO in space. Noticing that fast marching method and fast

sweeping method can also do this reinitialization for making a non-SDF to be a SDF

while after each iteration but the computations cost too much.

Reinitialization for Perpendicular Zero Level Sets

According to Osher [40], the initial plane of zero levels should better be perpendicular

to each other. To realize this, we also run a PDE for Q,

fi,+sign(tfiY Yi =o" ' 
lv wl , (2.42)

$1t =01= 6

and similarly, we have the form for the other level set function
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Vtt
ti, +sign(O ji'Y V =0

yal

VQ =o) =v

This could be used once after several time steps of evolution equations.

(2.43)

2.5.4 Three-dimensional Visualization

The following explanation is how we can get the intersection from two implicit level set

functions while Refs. [72] and [73] give us another consideration for finding points of
interest.

For each grid-cube:

i. Split the grid-cube into 6 tetrahedron (5 is possible as well).

Suppose we map the grid-cube to the unit cube with comer at the

origin. Thus the corners of the cube are (xb xz, x3), where ri are 0 or

1 . Take a permutation of (1, 2, 3), and call it (i1, i2, i:). Consider the

points @r x2, x:) such that xi ether be 0 or be 1 and

0 ( xn 3 x,, 3 x,, 3l is satisfied. These points are the corners of one

tetrahedron. Since there are 6 permutations of (1,2,3), we get 6

tetrahedron out of this technique, and these are the ones that make

up the cube.

ii. For each tetrahedron, we have level set function values at the 4

comers. Find the unique plane that interpolates these values for each

level set function. Thus each level set function is now approximated

linearly by Ax+By+Cz+D. Now solve for (x, y, t) such that

Ax+By+Cz+D :0 (two equations here, one for each level set

function). This is 2 equations, 3 unknowns linear system and we can

solve for the line satisfying the system.

Fig. 2.15 explains how we obtain the zero level set planes from the implicit firnction.

The intersection of the plane point in the edge connecting two grid points is calculated

by once order linear approximation. This sounds to be less implicit as we use an explicit

approximation, but in fact, this could not change the implicit function in all the grid

points and the real zero level set embedded in the space.
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Fig. 2.15 Zero level set from the implicit function.

2.6 Numerical Results

In this section, examples of FMM and LSM are presented. Noticing that the FMM can

create SDFs and also can be used for extending velocities, the LSM needs to be coupled

with FMM for the cases that initial SDFs and/or the extended velocities are not

available.

During the level set evolutions, we lay down a uniform grid over a two or three

dimensional space and use the fifth order WENO finite difference scheme for all the

spatial discretizations, while use the TVD-RK of third order for the time discretizations

and set the associated CFL condition to be less than 0.5. We plot the zero-contour

considered as the front of a level set function for codimension-one objects while call the

three-dimensional visualization technique (introduced in Sec. 2.5.4) for codimension-

two objects.

2.6.1 Creating Signed Distance Functions using Fast Marching
Method

Creating Distance Functions from Target Points

We first consider a simple example: calculate the distance from any position x in two

dimensions to a single target point arbitrarily distributed. The DF can be analytical

represented by creating concentric circles with a uniform space in between. While for
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the cases that more than one target point are distributed in space, the DF can only be

obtained by numerical techniques of which we use FMM to get consistent and accurate

results (see Fig. 2.16).
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Fig.2.16 Creating DFs from arbitrary distributed points.

Contours of the DF from (a) one target point. (b) 10 targetpoints. (c) 102 target points.

(d) 103 target points.

The contours are circles for one tnget point, while for multi-point situations, any

position.r on contours is corresponded to its nearest target point. With calling the fast

sorting technique, FMM leads a very fast scheme for solving the Eikonal equation, and
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thus creates DFs from target points efficiently. Noticing that the calculation time

depends only on the number of mesh, the complexities for the cases Figs 2.16(a)-(d) do

not obviously change.

Creating Signed Distance Functions from Non-Signed Distance Functions

With the usage of FMM, we can create a SDF from a non-SDF containing the interface

of interest. During the calculation, only the information of interface is kept unchanged,

which means the recalculated SDF preserves exactly the same interface as the initial

non-SDF. Fig.2.l7 shows the example of creating a SDF from a circle function: ilr):
1l - O.SS2I noticing that the contour with a marker point is the interface.

0.8
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0.4

0.3 \
0.2
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-0.2

-0.3
0.8 I 0.8 r

(a) (b)

Fig.2.l7 Creating a SDF from a circle function: Q(r): (r' - 0.55"). (a) Contours of the

initial non-SDF. (b) Contours of the recalculated SDF.

The contours of the recalculated SDF are concentric circles with a uniform space in

between. The values inside the interface are negative while outside are positive.

The error norns (21 error, Lz error and L- error) of this recalculated SDF with the
,)

interface d?): (r' - 0.55"): 0 is investigated (see Table 2.1) and the result shows that

our fast scheme gives a first-order accuracy.

Grid Points L1 error Lzerror Zo erfor

Ｏ

χ

Ｏ

χ

200×200 0.005353
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800×800 0.001451 0.001180 0.003197

Table 2.l EIor norlns ofthe recalculated SDF with the interface:ズ r)=(r2_0.552)=0。

We also create a SDF from a`caulinower'Mction:グを,の =←-0.5+0.lrsinc8の )3

(see Fig。 2.18).The intcrface of interest can be of any shape and the contollrs of thc

recalculated SDF mγ not be just magniflcation or miniflcation of the interfaceo One

should be noted that FⅣ IM can create a SDF ttorn not only an explicitibttction but also

an implicit fmction contalmng interfacc ofany shape and even multi― interface.
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(→                      (b)

Fig。 2。 18 Creating a SDF from a`cauli■ ower'■mction:Ar,の =← -0・5+0。 1/sin(8の )3.

(a)COntOllrs ofthe initial non― SDF.(b)COntOllrs ofthe recalculated SDF.

Assembling Different Implicit Interfaces into One Signed Distance Function

Recalling that only the information of the interface is preserved, FMM can be used to

assemble different interfaces into one SDF. Fig. 2.19 shows creating a SDF from 17

different implicit interfaces containing circles and cauliflowers.

‐ll.6 ‐ll.4 ‐0.2   0   02  04  06

χ
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06  0.8   1

Fig.2.l9 Creating a SDF from different implicit interfaces. (a) The initial 17 implicit

interfaces. (b) The recalculated SDF with assembled interfaces.

The algorithm of assembling different interfaces is as follows:

(a) Tag the grid points in the narrow band of each individual interface.

(b) Create a new function and activate the corresponding grids (see Fig2.20(a)).

(c) Extract the values of grid points found from (a) and put them into the corresponding

grids of the new function.

(d) Run the FMM routine and get the signed distance (see Fig. 2.20(b)).

(a)
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Fi5.2.20 Assembling different implicit interfaces into one SDF (a) Grid points of
interest from 17 individual interfaces. (b) Signed distance value from the interfaces.

2.6.2 The Level Set Evolution of Implicit Interfaces

Merging of Loops under the Normal Vector

We first create a SDF / containing four circles with clockwise orientation (see Fig

2.2I(a)) as the initial function for level set evolution. This SDF is calculated by the

technique of FMM mentioned in the previous subsection. The evolution equation under

the normal vector takes the form

Q,+N'YQ:0 ,

and the evolution of these four loops is shown fromFig.2.2l.

(2.44)
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Fig.2.2l Merging of four loops under the normal vector.

Firstly, the four loops extend under the normal vector of the front and get close to each

other. When the segments with opposite orientations meet (see Fig. 2.21(b)), these

segments are annihilated and the loops break on these points. Thus the initial four loops

turn to be two loops with a large loop still preserving clockwise orientation and a small

loop with the counterclockwise orientation (see Fig. 2.21(c)). The outer large loop keeps

on enlarging while the inner small loop shrinks (see Fig.2.21(d))) and finally the small

loop disappears (see Fig. 2.21 (e)).

2.6.3 Modeling Curve Evolution in Three Dimensions

Helix Shrinking under the Curvature Times Normal Vector

We first create two level set functions Q and r4 of which the zero isosurfaces

(codimension-one interfaces) are two sine hypersurfaces (see Fig. 22(a)). Then we can

get the helical intersection (codimension-two curve) from the two hypersurfaces (see

Fig.22(b)).

Ｏ

χ

Ｏ

χ

-1  -0.8 -06 -04 ‐02
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(a) (b)

Fig.2.22 Creating the initial level set functions (/: 0). (a) The initial two hypersurfaces.

(b) Intersection of these two hypersurfaces.

The evolution equations for curvature motion of a helix in three dimensions take the

form [74]

Q, + rcN .Y 0:0
ty,+rcN.YV:0

(2.4s)

From Eq. (2.45), we can see that although the intersection is the object we intend to deal

with, two level set functions Q artd tyinthe whole region need to be involved during the

calculation of the evolution.

Fig.2.23 shows the helix evolving under the curvature times normal vector in three

dimensions. The curve remains helical in form during the evolution but the radius r
about the center axis shrinks by a speed of llr, in which case the straightening of the

helix accelerated durins the radius shrinkins.
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(e) r = 0.60

Fi9.2.23 Helix shrinking under

(b) r:0.20

(d) r: 0.50

(0 /:0.70

the curvature times normal vector.
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2.6.4 The Velocitv Extension for the Level Set Evolution

For an interface moving problem, the key quantity needs to be determined is the

velocity field of the interface. For some cases, the velocity field can be passively

obtained from the geometric quantities of all the levels in which the interface is

embedded, while for others, the velocity is locally computed on the interface and is not

analytical expressed away from the interface. A reinitialization process is induced to

keep the implicit level set function be a SDF but the process itself still leads to some

additional diffusive eror. We introduce the technique of FMM for extending velocities,

and compare with the case without extending the front velocity.

Suppose a line in a two dimensional region gliding from left to right under a unit

speed (see Fig. 2.24(a)), all the level sets are at first moving smoothly since the

velocities defined on different levels are of uniform (we draw three contours including

the front: blue(-Aft contour), green(O contour) and rcd(Lh contour)). Then the gliding

line meets a circular impenetrable particle with the radius R : 0.15 located in (0 0 0)

(see the orange circle of Fig. 2.24(a)), in which case, the line should stop gliding

rightward on the interface of the particle.
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Ftg.2.24 A gliding line bypassing an impenetrable particle (left column: evolution

without extension velocity; right column: evolution with extension velocity).

As we can see from Fig. 2.24(b)-(d), without velocity extension, the levels in front of
the zero level in the orange circular region first stop before the zero level meets with the

particle. As a consequence, these levels pile up and we could not get proper finite

schemes for PDEs which use the neighboring points of the zero level. On the other hand,

with the velocity extension, the velocity on all the other levels are recalculated

according to the zero level set and we can get a beautiful evolution of the line bypassing

an impenetrable particle. In Fig. 2.25,we draw out the contours of the two cases from

Fig. 2.24(d), and the result of Fig. 2.25(b) shows that all the levels are uniformly

distributed even the velocity of the interface is dramatically changed.
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Fig.2.25 Comparing the two cases of the gliding line bypassing an impenetrable

particle. (a) Contours of Fig. 2.24(d) without the extension velocity. (b) Contours of Fig.

2.24(d) with the extension velocity.
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2.7 Conclusion

We have shown the level set evolutions coupled with FMM creating accurate and

consistent SDFs as the initial level set functions for the LSM and also used for the

velocity extension when only the velocity of the front can be determined. Uniform grid

points are created for easing high order finite difference scheme constructions, and thus

we can present complex evolutions of level set functions and move a curve in a variety

of flows. We have also shown the level set based method for representing and moving

higher codimensional objects: curves in three dimensions. As shown from the numerical

results, the topological changes of the interface can be handled naturally, especially

when merging and breaking of the curve occur.
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Chapter 3

Micromechanics of Defects and Level

Set Method for Dislocation Dynamics

3.1. Abstract

Computational simulation of dislocation dynamics could generally be divided into

atomistic and continuum models or even hybrid atomistic-continuum if strictly

differentiated [5]. Although the application of atomistic simulation has specific aspect

which could demonstrate collective behavior of atoms in crystal populated by

dislocations, continuum theory can analyze the dislocation behavior over long range and

real time scales. In this chapter, examples of dislocations dynamics are approached

including edge dislocation climb, dislocation evolution under applied stress and

dislocation interactions. In the plastic deformation of distorted solids, the line defects,

which can be regarded as the atomistic topological change of the lattice alignment,

evolve dramatically due to the given Peach-Koehler force [l9]. This kind of mechanism

has so far been analyzed by using discrete dislocation dynamics (DDD) which can

revive the evolution of the dislocation loops properly but is extremely complicated and

time-consuming. Since the level set method does not need to track individual

dislocation line segment of all dislocation lines directly, it can demonstrate the variable

topological changes in an easier form as one of the prospective computational modeling

for defect mechanics.

This chapter is organized as follows. In Section 3.2, a basic conception of
micromechanics of defects is introduced and the equation of intemal stress field from

dislocation periodically distributed in a Fourier transformed form is deduced. In Section

3.3, some numerical implementations to level set method for dislocation dynamics are
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explained with the outline of the algorithm. In Section 3.4, we present some

applications of level set dislocation dynamics as a preparing for the following chapters.

3.2 Theory of Dislocation Elasticity

In this section, we briefly introduce the continuum theory of elasticity.Fig. 3.1 shows a

single lattice layer containing an edge dislocation with Burgers vector b ll8-211.

00300000

0000
Fig. 3.1 Edge dislocation with Burgers vector D.

Dislocation originated from displacement of crystal is regarded as continuous

medium, which means displacement should preserve continuity. And because of this,

the whole story begins with the displacement vector. After a passage around any closed

contour Z enclosing the dislocation line D, the elastic displacement vector z receives a

certain finite increment 6 which is equal to the lattice vector in magnitude and direction,

ザ
d% J:争 dχ =々a , (3.1)

where i,k:7,2,3 or indicial notation of tensor algebra. Distortion tensor ry is defined

by displacement vector r,

輝
嘔
●
●
０

０

０

。

０

０

″グ=争
Substituting Eq。 (3.2)to Eq。 (3.1),、VC Can get

000
0・ 0
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げ場t=a・
Z

Using Stokes's theorcm,Eq。 (3.3)can be Written as

dんt=∫(▽×″)″残dS,
Z          S

where n;, is component of unit vector z normal to surface S which is an arbitrary surface

spanning the closed line I. Since the rotation of the second-order tensor rl can be

written as

(Y xw), = €,onwr,n,o , (3.5)

where e;7r is permutation tensor which is an anti-symmetrical in the suffixesT and k and

the tensor wkij u1g is symmetrical according to suffixes k and j. The integrand of Eq.

(3.4) is identically zero everywhere except meeting the plane which contains

singularities, and the right-hand of Eq. (3.3) can be written as

a==為 lδ(/)ζた″ヵdS ,
S

where f is the unit tangent vector of dislocation line nd 5() is the delta function

equaling to one when the infinitesimal plane d,S meets singularity and zero otherwise.

Thus we get the relationship using Eqs. (3.4) and (3.6):

(▽×″)ヵ =aδ(/)免 (3.7)

From Eq. (3.5), we know that

θ
7/m)ィ勧,ブ =aδ(/)a (3.8)

We concentrate on stain and stress associated with dislocation displacement. First,

define the infinitesimal strain tensor as the average of two distortions with the opposite

suffrxes:

(3.3)

(3.4)

(3.6)

(3.9)

(3.10)

aly=:(″
、
‐十″

j′ ) .

The stress tensor is determined from strain tensor by linear elastic constitutive equation,

that is, Hookes's law as

aly=C′〃ε:=Cグ″(%―場),

where the forth-order tensor Ciiw is the elastic constant tensor and has the property of
symmetry; d is elastic strain and d is eigenstrain. For an isotropic medium, Eq. (3.10)

can be written as
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%=2μJ7J+λ%ら ,        (3.11)

wherc Kronccker delta notation dJy equals to l when J Ji and O othewise.In the abscnce

ofbody force,the cquilib五 unl cquation is siinply

aly,ブ =0 。                  (3.12)

I       Subttitute Eqs。 (3.2),(3.9)and(3.10)intO Eq。 (3.12),recdling thtt CIJlr is s_etric,

and we get

%露ιヶ=%場 ,ブ
,      0。 13)

Suppose ε」(χ)iS giVen in the forln of a single wavc of amplitude弓 (■),Where■ is
the wave vector

弓(χ)=弓 (■)CXp(J撤)。        (3.14)

Similaly,イ (χ)Can be written as

グ(χ)=イ (■ )eXp(′放)。        (3.15)

Substitutc Eqs。 (3.14)and(3。 15)into(3.13),and We have

Cグ〃夕々(ルんち=Cグ〃場(■)ち ,       (3.16)

where in the der市 ation(J撤 )/=′為 iS uSed.using thc notation

ν清(■)=Cク燿ち為,           (3.17)

乙 =― JCク〃場ち ,          (3.18)

we can gct

名(■)=イブハ7(■)D(■),           (3.19)

where D andtt are writen as

D(ξ)=θ″ガν″1/″243'         (3.20)

馬0=:鮨θル′釉 嶋 ・     0")

Finally,combining Eqs.(3.8),(3。9),(3.11)and(3.19)with deflning the relationship

4δ(/)=4(■ )eXp(Jlχ ), We Can deduce thc isotropic elastic stress fleld which is

associated wlth dislocation and takes the follll of Follrier transfo.1.l to its real coordinate

under the periodic bolmdary condition,as shown in Fig。 3.2[75]:
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こ:=狐
イ+`+が 2亀 ち夕 l~告7鍔 鍵 ァ

Kちb3礼ちか ¢3aム b3ゾ2+銭ち~力21洩D

δ″=2バ
ィ+`+イ・

31ム 洩` 告 満
Kちb3礼ち漑 +・3aムLか 佑ち―た2attD

鳥3=2″(論にちa洩―告ボ撃各【た2b3たち威+●3aム亀かにち―た2attD
ら2=σ
"=2/711aィ +ィ +ィ )Kた

3a犠か ●2亀 λ3が2卜告 7肩=T:∫≒巧露5「
【ち亀 13ち減+仏aム魏 +化ち ちattD

∂ぉ=∂"=2Д2いご+イ )【ムち ちaゾ2+●3aムが J十告 馘
Kλ2為―た3ちか にa~ム魏 +れ ちムスD

島3=∂■=2ズ
ムィ+ィ +イ )【

Lち ちaか●2ち ちが J+告
馘

Kち亀―亀ちか にaムが 2+化 b2ちattD

(3.22)

Founer transfo■ 11l assumcs thc pcriodic boundary condition with a prilne cell and

ininite image cells[76,77](sce Fig。 3.2).

「

~~~~~~~¬ ……………………T――~~~~~… 1

■__ ユ_……._s_T ■_………_姜T

ユ___幸 .T ユ_……___FT

r…………………

ユ_,__秦 T ユ_… ……擬.T ユ………́催 T

J--------J---- -----l

Fig.3.2 Periodic simulation cell with dipole dislocations [76].

The dark green framed cell in the middle is the prime cell with dipole dislocations and

the dashed line cells are image cells. Because of the periodicity of the boundary, the

total elastic field in the prime cell contains the superposition of elastic field from all the

other image cells infinitely extending.

The force which acts on dislocations is called Peach-Koehler force defined as

f :(o'o'.b)"€ , (3.23)

where the total stress otot includes applied stress oupp and internal stress oint caused by

singularities;
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And the Eq. (3.23) can be written as

o'o'=oaP +o'nt

ズ=θ″″qttaa

(3.24)

(3.25)

Dislocation can move conservatively (without diffusion) in the plane containing

both its tangent vector and Burgers vector under the Peach-Koehler force of Eq. (3.25).

At a high temperature, edge dislocations may move out of the slip plane by a

non-conservative process, called climbing. Some models of dislocation dynamics are

given in Sec. 3.4.

3.3 Implementations to Level Set Dislocation Dynamics

3.3.l Mobility Tensor

The dislocation velocity is deflned by

ツ=ル件ノ ,

whereノ is PcaCh…Kochlcr forcc ofEq。 (3.25)andゑ riS the mObility tensor deflned as 175,

78,79]

(3.26)

″Θ“″十“Θ“一σ

Ｉ

ｇ

　

　

ｇ

“
　
　
“

ｒ

ｌ

リ

ｌ

ｌ

ｔ

〓″
(edge dislocation)

(screw dislocation)
(3.27)

where the te.11.I―
“
Θ″ in the mobility tensor praects the velocity of an edge

dislocation to its slip plane since edgc dislocation can only glide in the self slip plane in

the case that climb mobility is not considered.The″ g is glide mobility constant and″ε

is climb mobility constant,r is identity mat五 x and“ is nolll■ al vector of the slip plane

that can be obtained as

“
=謁 ,    0蜀

where ξ is the tangcnt vcctor of the dislocation wri■ en as thc fo....of two level set

価 ctions ψand/;

ξ=iλ夕:子;弁
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For preventing singularity, we regularize the Eq. (3.29) as

The delta function first mentioned in Eq. (3.6) is given by

6(y):6(il5(v)

The left side of Eq. (3.31) is a one-dimensional smear function defined as

-e1x{€
otherwise

(3.30)

郷
一
θ

０Ｃ＋
ｌ
一Ｚ
０

ｒ

ｌ

ｌ

く

ｌ

ｌ

ｔ

〓χ
δ

(3.31)

(3.32)

This smear function tums the pulse function into a continuous

the mobility ration of m" and mr to be

o s!s- <t
ms

wave. We normally set

(3.33)

3.3.2 Velocity Interpolation

For a normal level set function, the velocity could be defined for each of the level set

[80, 8l]. When added physical meaning, velocity could only be acquired from the zero

level set. To define the other level sets' velocities, several approaches have been applied,

Rhee e/ al. l82l used an underlying elliptic PDE coupled to a source term along the

interface; Malladi et al. l83l introduced the idea of extrapolating the velocity at the

closest point on the front; Sethian and Strain [84] defined the velocity at the interface

depended on a jump condition across the interface; a speed function from the front f
using some less physical quantity also be considerable. For the case of a three-

dimensional curve, the real meaningful velocity is only the intersection of the two zero

level set functions, which makes the problem much more complicated. According to

Xiang Yang et al. I75, 78, 791, they first approximated the velocity of intersection

points from grid points and then employed fast marching method (FMM) or fast

sweeping technique (FSM) to update velocity of all the grids by the extension method.

For any grid point, the dislocation line segments in its nearby cubes are first found

by the plotting method. For example, point C (grid point of interest) in Fig. 3.3, the

distance from C to dislocation segment EF is the minimum distance from grid to
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dislocation. We compute the velocities on E and F, find

interpolate the velocity on G from E and F. The velocity on C

on G.

the location of G and

is approximated as that

Fig. 3.3 A cubic of simulation grids.

The trilinear interpolation of velocity is defined from the eight neighboring grids as

ズχ,y,Z)=:4え
0・・」+じ牌ち二乳■・ (3.34)

(3.35)

Assume that we have grid points (xi*r,,11*t,,zo*h) and the velocity vi+t,.i+r,,k+t, on

them, where lu lz,ls: 0 or I for the neighboring gnd points. In Eq. (3.26), thex,, ,Vt,and
7,, are defined as

孔=1+(24

2=1+(2ら

_1)(21li}王 ][-1)

-1)(7-1)  
・

,,, :, + (2t, - t1(Q :-t') -r,-dz

Then this velocity is extended to the whole space associated with the FMM or FSM to

make sure the new calculated velocity satisfies Eq. (2.26) [85-87].
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3.3.3 Outline of Algorithm

Step I: Initialize two level set functions / and ryboth of which are SDFs as the

initial functions.

Step II: Compute the tangent vector € and the delta function d(y) from Eqs.

(3.29) and (3.31).

Step III: Compute the internal stress tensor 6 using Eq. (3.22) and an inverse

Fourier transform.

Step IV: Compute the Peach-Koehler force f from Eqs. (3.23)-(3.24) and

velocity field v using Eq. (3.26).

Step V: Perform velocity interpolation and extension introduced in Sec. 3.3.2.

Step VI: Evolve level set functions Qand tyusing Eq. (2.19).

Step VII: Reinitialize Q arrd r4 as explained in Sec 2.5.3.

Step VIII: Repeat step II to VII until the state is mechanically balanced.

3.4 Applications of Level Set Dislocation Dynamics

In this section, we present several applications using LSM for dislocation dynamics.

The simulations were performed using the simulation cell which one side / has plus and

minus units normalized by the real length of 250b (b denotes the magnitude of Burgers

vector, here 0.286 nm). The cell box is divided into 64x64x64 grid points. The shear

modulus p is set to be 161GPa, and the Poisson rctio v is set to be 1/3. For all the

calculations, the stresses d *" scaled bV ltbl(2D and time /* is scaled by 4l/Qtb2m)

where mris the mobility constant for dislocation glide and it is set be 1.0 in the present

calculations.

During the simulations, the fifth order weighted essentially non-oscillatory (WENO)

is used for spatial differentiation and the third order total variation diminishing

Runge-Kutta (TVD-RK) is used for temporal differentiation (D. Reinitialization for

keeping the two level set functions, which are both signed distance functions (SDFs), is

performed after each time step of solving the evolution equation to reduce the numerical

effors. We do not present climb mobility if not specified and the periodic boundary

condition is assumed in x. v and z directions.
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3.4.1 Prismatic Dislocation Loop Shrinking under the Self-stress
by Climb

An edge dislocation normally does not climb at a low temperature when diffusion is

diffrcult and the movements of the dislocation are restricted on the self slip plane. While

at a high temperature around 20%-30% of the melting degree, climb starts to take place

and becomes severer when the temperature is much higher.

Suppose a dislocation loop with the Burgers vector perpendicular to the plane

containing the loop (see Fig. 3.4(a)), in which case each segment of this dislocation loop

is pure edge dislocation and this loop is called prismatic dislocation loop (PDL). A PDL

can be formed in a material subject to inadiation or quenching by precipitation of
vacancies or interstitial atoms Il9,20l and will shrink under the self-stress by climb (the

climb mobility m" is non-zero) at a high temperature (see Fig. 3.4). The leading order

term in the shrinking force is [88]

ふ=浩d∝妻,

where r is curvatllre ofthe loop and ε is the radius ofdislocation core.

(3.28)

(a) r-: o
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(b) /' :0.03

(d) r- :0.09 (e) r*:0.12

Fig. 3.4 A PDL shrinks under the self-stress by climb.

During the evolution, the edge dislocation loop jumps out of its slip plan which is a

cylindrical surface (see Fig. 3.a(a)) containing the loop and moves toward the center.

Note that the ratio of loop shrinking increases as the radius of the loop decreases since

the internal stress of dislocation becomes more intense when segments get closer and

finally this PDL vanishes. Recall that the values employed in Eq. (3.28) are p:161 GPa"

v: Il3, b :0.286 nm.

3.4.2 Orowan Loop Expanding under an Applied Stress
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For this time, suppose a dislocation loop in the space with a slip plane containing both

the dislocation loop itself and the Burgers vector, which is called Orowan loop (see Fig.

3.5(a). In the absence of applied stress, Orowan loop also tends to shrink with the

leading order term of the force [88]

ノI=Z房そ::τttKl+ツ )C°S2θ +(1_2ソ)sh2のκbg■ ,

8K
(3.2e)

where d is the angle between the tangent vector of the dislocation and Burgers vector.

We apply a scaled stress o*: 7.5 to the crystalline material to overcome the shrink of
the Orowan loop caused by self-stress and expand this dislocation loop (see Fig. 3.5).

(a) t': g

(b) t-:0.03 (c) t.:0.06
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(d) /-:0.09 1e1f : o.tz

Fig. 3.5 An Orowan loop expanding under an applied stress o-.

The simulation result shows the applied stress oo has the ability to extend the

Orowan loop and the ratio of loop expanding increases as the radius of the loop

increases since the internal stress of dislocation becomes less intense when segments get

further.

3.4.3 Orowan Loop Evolving under Other Applied Stress

In the previous subsection, we know that the applied stress oohas the ability to extend

the Orowan loop while we also show an interest on the effects of other applied shear

stress to this kind of dislocation loop with or without consideration of climb mobility.

An Orowan loop with the Burgers vector in x direction under the scaled shear stress

oi,:2.5 and or: 4.0 is presented (see Fig. 3.6).
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Fig. 3.6 An Orowan loop under the applied stress oi and oi ( :0).

At a low temperature, the climb of edge dislocations barely happens and we set the

mobility ratio mrlm, equals to 0. As we can see from Fig. 3.7, the pure screw

dislocation segments can move out of the slip plane (r-y plane) to the opposite poles and

drag the neighboring mixed segments as a line tension. While the pure edge dislocation

segments can only glide on the self slip plane.

(a) r-:0.03 (b) r. :0.06
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(c) r'= 0.09 (d) r':0.12

(e) r'= 0.15 (f; r':0.18

Fig.3.7 An Orowan loop evolving under the applied stess o| and o| with m"lmr:0.

At a high temperafire, ttre non-screw dislocation segments can freely move out of
the slip plane and the mobility ratio m"/m, is set to be l. As we can see &om Fig. 3.8,

the Orowan loop rotates from its original plane during the expanding.
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(c) r'= 0.09

ft) r. = 0.06

(d) r':0.12

(e) r.:0.15
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Fig. 3.8 An Orowan loop evolving under the applied stress o'- and o,n with m"/mr: l.

Next we consider a medial situation and set the mobility ratio mJmrto be 0.6. The

loop also rotates, but since the climb mobility is smaller than glide mobility, the moving

of screw dislocation segments is faster than the other parts (see Fig. 3.9).

(a) r':0.03 o) l:0.06

(c)′ =o.o9 (o f :0.12
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0.6

o.4

o.2

N0
-o.2

-04

-0.8

-l
1

(e) r-:0.15 (f; rt:0.18

Fig. 3.9 An Orowan loop evolving under the applied stress oi, and oi,
wfthmrlmr:0.6.

The simulation results show that the applied stress oxy can drag the screw

dislocation segments to the opposite poles and intend to rotate the Orowan loop from its

initial slip plane at a high temperature.

3.4.4 Interactions of Parallel Dislocation Lines

The dislocation movement takes place from the very beginning of plastic deformation

of material. As mentioned in chapter one, the interactions of dislocations are not severe

and dislocations mostly glide in parallel slip planes immediately after yield stress. When

dislocations get close to each other, the interactions including complex cross-plane

interaction and the tangling of dislocations become dramatic, which make the plastic

deformation of material hard to proceed.

We first consider two infinite straight edge dislocations I and II with the same

orientation in -y direction and the same Burgers vector in x direction (see Fig. 3.10(a))

and want to investigate the movement driven by interaction force of these two

dislocations without applied stress. The dislocation II is set apart from I at a distance of

I in x direction and d in z direction. When / is smaller than d (we set / slightly smaller

than d), the attractive force works, that is the two dislocations will glide on the

individual slip planes to get close to each other (see Fig. 3.10).
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Fig. 3.10 Interaction of two parallel edge dislocations with the same orientation and the

same Burgers vector (l < d).

When we set / slightly larger thand, the repulsive force works, which meansi that the

two dislocations will glide on the individual slip planes to leave apart from each other

(see Fig. 3.1l).

|    |   |    |   |   |   |   |    |   |ヽ 1ヽ

(ぅ ′=o
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Fig. 3.11 Interaction of two parallel edge dislocations with the same orientation and the

same Bwgers vector (l> d).

Next we consider two screw dislocations with opposite orientations lr : (0, -1, 0)

and ln : (0, 1, 0), respectively, and the same Burgers vector in -y direction (see Fig.

3.rz(a)).
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Fig.3.l2Interaction of two parallel screw dislocations with opposite orientations and

the same Bursers vector.

Two screw dislocations with opposite directions attract each other. Since any plane

can be a slip plane for a screw dislocation, these two dislocations move directly toward

each other and annihilates when they meet. Predictably, two screw dislocations with the

same orientation and Burgers vector move apart from each other.

3.4.5 Interactions of Perpendicular Dislocation Lines

We discussed dislocations with parallel slip planes from the previous subsection.

Now we consider two perpendicular dislocations with the tangent vectors tt: (0, -1, 0),

lrr: (1,0, 0), and Burgers vectors }1: (0, -bv0), bt: (bn,0, 0), respectively (see Fig.

3.13(a). Since there is no specific slip plane for a screw dislocation, these two screw

dislocations move directly by Peach-Koehler force. Two dislocation lines get close

especially the middle segments that are closest to each other under the attractive force

caused by each other's self-stress. The interaction becomes more severe when

dislocation segments get closer (see Fig. 3.13).
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(d) r- :0.09 @) f : o.tz

Fig. 3.13 Interaction of two perpendicular screw dislocations: case one.

Dislocations are line defects not only with Burgers vectors but also with orientations.

We reset the direction of dislocation II from ft : (1, 0, 0) to ln : (-1, 0, 0) while the

other conditions are exactly the same (see Fig. 3.1a(a). As we can see from Fig. 3.14,

repulsive force takes place for this time and dislocations move apart from each other

especially around their middle parts. The effect becomes weaker as the middle parts

move further from each other and the movement becomes slower.
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Fig. 3.14 Interaction of two perpendicular screw dislocations: case two.

3.4.6 Dislocation Bypassing an Impenetrable Spherical Particle

An edge dislocation can glide continuously under an applied shear stress until it meets

other defects. Assuming that an impenetrable spherical particle exists on the way where

the dislocation glides (see Fig. l5(a)). This hard particle with the radius of R exerts a

strong short-range repulsive force acting on dislocations as [75, 78]
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(3.30)

where r is the distance from a point to the center of the particle and the width d.x is the

grid constant. We set the fs to be large enough to make sure that this hard particle

cannot be penetrated by dislocations. Fig. 3.15 successfully shows an edge dislocation

bypassing a hard spherical particle and leaves an Orowan loop.
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Fig. 3.15 An edge dislocation bypassing

*
(e) t :0.37

an impenetrable spherical particle.

The bypassing mechanism implies that the motions of dislocations are hindered if
particles exit. As a consequence, the plastic deformations of the material are obstructed,

which means that the existing of particles strengthens the material.

3.5 Conclusion

We have demonstrated a series of dislocation dynamics simulations based on level set

method for codimension-two objects which are curves in three dimensions endued with

physical meaning. The models of dislocation evolutions under self-stress and applied

stress, dislocatiorVdislocation interactions and dislocatiorVparticle interactions can all be

demonstrated and the results quite accommodate to the analyical expectations. The

internal stress field can be solved efficiently using FFT, assuming periodic boundary.

Topological changes of dislocations, especially when merging and breaking occur, are

handled naturally using level set dislocation dynamics. Besides, the simulations are

performed in a relative large space and a long time interval.
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Chapter 4

Evaluations for the Internal Stress

Field of a Double Cross-slipped

Dislocation Loop

4.1 Abstract

The onset of the second stage in the work hardening for an fcc single crystal, called

dynamic recovery, where the curvature 02o I 02e of a stress-strain curve becomes

negative, is associated with the onset of cross-slip. However, there are a number of
possible mechanisms for cross slip working in the final stage of work hardening 189-92].

Since the determination of the activation energies - for these processes is very

complicated, the detailed analysis of stage III remains uncertain. One mechanism for

cross slip of a perfect dislocation is explained [93, 94]. Since the complexity and

uncertain of the mechanism, we use level set dislocation dynamics (LS-DD) to model

the phenomenon of cross slip and double cross slip and investigate the changes of
internal stress and the effects ofthe cross-slipped dislocation to other dislocations.

This chapter is organized as follows. In Section 4.2, the mechanism for cross slip

and double cross slip of a perfect dislocation is explained. In Section 4.3, the technique

of moving curves on surfaces for level set evolutions is introduced. In Section 4.4, the

double cross-slip of an expanding Orowan loop is modeled using LS-DD with the

investigation of internal stress of the cross-slipped loop and the effects to other

dislocations from the distorted dislocation loop.
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4.2 Mechanism for Cross-slip and Double Cross-slip of a

Perfect Dislocation

One mechanism for cross slip is suggested as shown in Fig. 4.1 l20l.In general, a screw

dislocation tends to move in certain crystallographic planes, but can switch from one

slip plane to another with the same Burgers vector D. As we can see from Fig. 4.1(a), a

perfect dislocation in fcc metal expands under the action of an applied shear stress on (1

1 1) plane with the Burgers vector b : I-1 0 1]. The loop expands until the local stress

field makes dislocation motion changes and the loop prefers its gliding on (l -1 1) to on

(1 I 1). Since only the pure screw segment is free to move in both (l 1 1) and (1 -1 l)
planes, this segment crosses slip atthe edge of two planes (S in Fig.4.1(b)) and glides

on (1 -1 1) plane (see Fig. a.l(c)) until it meets the edge CD where the loop prefers the

initial slip plane of (1 I 1). Similarly, as shown in Fig 4.1(d), the screw dislocation

crosses slip again from (1 -1 l) to (1 I 1) plane. This process is known as the double

cross slip.

Fig. 4.1 A scheme of the mechanism for cross-slip and double cross-slip of a screw

dislocation in a fcc metal.

4.3 Moving Curves on Surfaces

[- 1,0,1]
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Given a surface M in three dimensions and a curve on that surface, suppose that the

cnrve is constrained on surface M vnder a specific type of motion [95]. To realize this

kind of restriction, the velocity of the curye is projected on the surface and the evolution

equation turns to be:

¢+P▽′ツ・盗=0,

wherc P▽ /is the orthogonal praection opCration which is deflned by

烏″=f―
I卜

:デF竺
 。

(4。 1)

(4.2)

Thus, the P* projects velocity y onto the level set surfaces of ty, passing through the

points in three dimensions.

An example a curve moving on a constrained surface is shown in Fig. 4.2. A loop

expands in three dimensions, when given a specific constrain plane (see green plane in

Fig.4.2) with the usage of orthogonal projection operation from Eq. (4.2),the expanding

velocity of the loop is projected onto the green plane and also the loop motion is

constrained in that plane.

(→ ′=0
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(b) r:0.2 (c) t:0.4

(d) r:0.6 (e) /: 0.8

Fig.4.2 Loop expanding on a specific constrained plane.

4.4 Double Cross-slip and Internal Stress Field

The simulations were performed using the simulation cell which one side has plus or

minus unit normalizedby the real length of 250b (b denotes burgers magnitude of 0.286

nm). The cell box is divided into 64x64x64 grid points. The shear modulus p is set to

be 161GPa and Poisson ratio vis setto be 1/3. For all the calculations. the stresses d
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are scaled by pbl(2t) and time /* is scaled by 4l/(pb2mg) where m, is the mobility

constant for dislocation glide and it is set be 1.0 in the present calculations.

During the simulations, the fifth order weighted essentially non-oscillatory (WENO)

is used for spatial differentiation and the third order total variation diminishing

Runge-Kutta (TVD-RK) is used for temporal differentiation 196-991.

4.4.1 Internal Stress of a Double Cross-slipped Dislocation

It's complicated for continuum dislocation models to demonstrate double cross-slip

without using artificial rules. In this simulation, we create a double cross-slip plane on

which the velocity vector of the loop evolution is projected to make sure that the

dislocation can only glide on this specific plane (the curved green plane of Figure 4.3).

The Orowan dislocation loop placed on the slip plane with the Burgers vector parallel to

y coordinate, b: (0, b,0), is subjected to the applied stress which varies during the

dislocation evolution (see Fig. 4.3).
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Fig. 4.3 Double cross-slip of a dislocation loop under the applied stress.

The Orowan loop first only expands on the self slip plane (plane /) under the applied

stress or" (see the top-right cubic of Fig. a3@)). When this loop just meets the edge of
plane II,we add another component o, as the applied stress (see the top-right cubic of
Fig. a.3(b)). When this loop meets the edge of plane III again, the applied stress

resumes to be like that for Fig. 4.3(a). The dislocation crosses slip again from plane 11to

plane III,which is parallel to the plane I, and expands on plane III.The dislocation does

the cross slip twice, and we successfully realize the double cross slip. Now we discuss

how to set the stress ratio of T : oy, I o* so that the Peach-Koehler force projected on

plane llbecomes larger than that on plane L

Before discussing the numerical results, we think about the simple example first: a

straight screw dislocation in y direction under the applied stress o* and o*. The

Peach-Koehler force in each direction is;
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(4.4)

where J is the force in x direction, it is also the force on plane I; f" is the force tn z

direction. The force on plane II is f11: /)cos? + f,sin9. When f : "fu I fi>l as y: oy,/ oyn

β=y//=             =COS θ十/Sin θ>1

1-cosd
.'.1/ > 

-

' sin9

82

(4.5)



that is, when y > (l-cos?) I sin?, the force on plane 11 overcomes the force on plane { in
which case it's more reasonable for the dislocation to glide on plane II rather than on

plane L For the model employed here in Fig.4.3, 0is 68.2deg, and thus Bis 1 when 7is
0.68 (drawn as the linear solution in Fig. 4.4).

For the three dimensional dislocation loop, we need to think about not only the

applied stress field but also the internal stress field, since the internal stress also affects

the dislocation evolution (drive the loop to shrink etc.). Figure 4.4 shows the

relationships between y 1:d rld y) and f (=fu lf) when the applied stress d o are 10,20,

50, 100, respectively.

0 0.2 0.4 0.6 0.8 | r.2 r.4 1.6 1.8 2

r ?oit oi)

Fig.4.4 Correlation between yand B using LSM calculations.

When the applied stress d*is relatively small, say 10 (see the red line of Fig. 4.4),the

effect of internal stress is large and yis small (0.36 compare to the linear solution 0.68).

When the applied stress d * is 100 in which order the internal stress is negligibl e, the y

- B relationship is very close to the linear solution. This fact suggests that the driving

force to cross slip is much affected by the topological three dimensional effect of the

loop, and the less external stress d* should be enforced to the field when applied stress

relatively small since the internal stress arising from the loop is superimposed.

We take two cases: when y:0 and y:0.6 both of which are under the applied

stress d r, :20 (indicated by arrowheads in Fig. 4.4), and then observe the topological
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change of each case and discuss the internal stress field. Whefr /: 0, the B is far below

1, the loop will only glide on the plane 1(see Fig. a.5(a)).

I

0.8

0.6

0.4

0.2

NO
4.2
.0.4

{.6
{.E

-t
I
0.5

nv"

(→ /=0 (b)/=0.6

Fig. 4.5 Cross sections for displaying the intemal stress distributions at y:0 and y--0.6

both of which are underthe applied stress dr":20 att* :0.005.

Taking a slice of the dislocation configuration in the light red colored-plane in Fig.

4.5(a), the intemal stress distributions are demonstrated in Fig. 4.6: Fig. 4.6(a) is

dimensionless d,,' component for Fig. a.5(a) and Fig. 4.6(b) is d*. Figs. 4.6(c), (d) and

(e) are d, distributions for the more expanded loop on plane L The calculation steps

were increased about four times for Fig. 4.6(c), seven times for (d), and twelve times for
(e) of Fig. a@). Since the cell box is constrained to the periodic boundary condition, it
should be reminded that the stress extremely close to both sides is influenced by the

neighbor virtual cells. dy, is distributed mainly toward z direction, and thus the strong

interference of stress is not observed inside the loop. Meanwhile, d* is negative

between the two dislocation cores and elliptically distributed. And it is positive on the

left side and right side of the loop and symmetrically distributed according to the plane

of z:0. Therefor", d, is the source for the dislocation to shrink itself and it could

become the barrier for the dislocation to expand due to the external applied stress. When

the loop is more expanded as Fig. a.6@) to (e), the stress inside the loop decays but still

has a long-ranged interaction.

Ю:8-0:6‐04 112
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Fig. 4.6 Internal stress distributions of the loop when T: 0, applied stress d n,:20.

When y:0.6,the B is larger than l, the loop will glide from plane 1to plane 11(see

Fig. a.5O)). When the dislocation just crept from plane 1to plane II, we imaged the

intemal stress field of this bended dislocation loop in Fig. 4.7, similarly taking a slice of
the configuration Qight red plane in Fig. 4.5(b)). Figs. 4.7(a) and (b) are ow and oy,

components for Fig. 4.5(b), respectively. Figs. 4.7(c), (d) and (e) conespond to the

entire processes of cross slip. Since the component oy" on the core of the dislocation is

negative, this stress drives the dislocation to shrink unless a positive stress is applied.

Not like the stress of Fig. 4.6(b), the elliptical negative value of oy" starts to bend over

along the slip plane II and evolves more and more. The vicinal value of the right side

dislocation also starts to rotate when dislocation crosses slip onto the inclined plane due

to the asymmetry of the configuration. Viewing Figs. 4.7(c) to (e), the internal stress

inside the loop still remains regardless of the different slip plane.
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Fig. 4.T Internal stress distributions of the loop when T: 0.6,applied stress d *:20.

4.4.2 Effect of Internal Stress to Other Injected Dislocation

The effect of intemal stress from both normal slip Orowan loop and cross-slip loop has

been studied. According to thed* component by which the injected negative screw

dislocation segments will be drag to glide.

First we select four cross sections of A, B, C, D for a normal slip and studied how

dislocation segments on these planes move (see Fig. 4.8) if negative screw dislocations

P and Q were injected. The red and blue areas zlre athactive and repulsive regions,

respectively, and the green is immobile region, all relative to the middle green line on

１

８

６

４

２

０

０

０

０

N

87



red plane A of Fig.4.8(a), where the drag force exerted on the injected dislocation is

less than the friction stress by Peierls potential (5MPa). The P segment on plane I is in

red region (see Fig. 4.8(b), which means it will be attracted to the middle line. When

crosses the middle line, it will be repelled from the middle line to the right side. That is,

the P segment will be driven rightward continuously. Then Q segment which is in blue

region on plane l, will be repel against the middle line and glide towards the positive

segment of the dislocation loop.
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(a) Four cross sections

ヽ
０
・
５

＾̈
¨̈
〉̈　　　　．

(b) Planel

88

(c) Plane -B



(d) Plane C (e) Plane D

Fig. 4.8 Attractive and repulsive region of four cross sections for a normal slip

dislocation loop.

A cross-slip dislocation loop also has been studied similar to the normal slip loop

mentioned above (see Fig. 4.9). The attractive region and repulsive region are not

symmetric according to the plane of z:0 since the negative screw dislocation segment

crosses to the plane II, and the evolutions of the injected dislocations change comparing

with the normal slip.
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(a) Four cross sections
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Fig. 4.9 Attractive and repulsive region of four cross sections for a cross-slip dislocation

loop.

4.5 Conclusion

The simulations using level set method successfully rcalized the cross-slip and double

cross-slip. In the cross-slip simulation associated with the prescribed slip plane, when

the applied external stress ratio Tbetwe "n 
d r* and d y" is set to be 0.6 with d r,:20, the

Peach-Koehler force on plane ll becomes larger than that on the initial slip plane, and

thus the Orowan loop starts to cross slip from plane 1to plane 11. Differing from the

‐0.8‐0.6‐0.4-0.2
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theoretical value of 7 (:0.68) for the straight dislocation model, the driving force to

cross slip is much affected by the topological three dimensional effect of the loop, and

the less external stress du" is needed to be enforced to the field where the intemal stress

is superimposed.

We also discussed the internal stress distributions around the loop for the two cases

of normal slip and double cross-slip. Because of the negative d * "o ponent inside the

dislocation core, the internal stress tends to drive the loop to shrink. The compo nent d *
of applied stress makes the loop expand, while the component d* tends to drag the

loop upward at its right end. Thus, the intemal stress d* could become the barrier for

the dislocation movement. When the loop is more expanded along the normal slip plane,

the stress inside the loop decays but still has a long-ranged interaction. The internal

stress inside the cross-slipped loop still remains regardless of the different slip plane.

Finally the effect of internal stress drhas been studied by drawing the attractive

and repulsive regions when a negative screw dislocation segment inserted both for

normal slip and cross-slip. The attractive and repulsive regions are symmetric according

to the plane of z :0 for a normal slip while not symmetric for the cross-slip. As a

consequence, the evolution of the injected negative screw dislocation line is much

expected to be affected by the internal stress distribution.
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Chapter 5

Modeling of Prismatic Dislocation

Loops around a Spherical Inclusion

5.1 Abstract

Inclusions as the barriers for moving dislocations are often used for material hardening

and this kind of precipitate hardening is often observed in aluminum alloy. Also

inclusions are reasons for the nucleation of dislocations [00, 101] since the stress at

inclusion-matrix interface is highly concentrated and the punching of coaxial prismatic

dislocation loops (PDLs) in crystalline materials at precipitate-matrix interfaces without

long-range applied stress is often observed by experiments. Precipitates employed in

strengthening technique of quench-aging process generate misfit strain in the vicinity

and constitute nucleation sites for PDLs. These misfit stresses associated with internal

stresses from PDLs can be the barriers for mobile dislocations in matrix phase and thus

are the reasons for precipitation hardening.

Tsuru and Shibutani [02] discussed the formation of PDL around a spherical

inclusion in aluminium and investigated the stress distributions on {l I 1} plane with

different heights by molecular dynamics simulations. Their works give us a physical

aspect for understanding the mechanism of PDL formation but the computational

volume of material and time interval are comparatively limited. Thus we want to deliver

and explain this complicated mechanism in a large scale by creating continuum models.

This chapter is organized as follows. In Section 5.2, the micromechanis of a

misfitting spherical inclusion is introduced and the Peach-Koehler force from inclusion

worked on dislocations is investigated. In Section 5.3, the technique of modeling open

curves for level set method (LSM) is explained in order to initialize the two small half

dislocation loops of the PDL formations. In Section 5.4, the formation of PDLs is
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demonstrated using level set dislocation dynamics (LS-DD) with the studying of strain

energy variation during the evolution.

5.2 Micromechanis of a Misfitting Spherical Inclusion

and the Initialization of LSM

5.2.1 Misfit Stress Field

Consider an infinite homogeneous elastic solid D containing a spherical sub-domain C)

with the radius R (see Fig. 5.1), which undergoes a uniform permanent deformation

(such as phase transformation, precipitate and recrystallization).

Fig. 5.1 A homogeneous elastic solid D with a spherical sub-domain C).

The displacement in the matrix is purely radial and decreases with radial distance as r'2.

Since the radial displacement u, equals aR at the inclusion-matrix interface (r :
R),where a is the dilatational misfit strain, the displacement at r (>R) is [103]

,, =to!' (5.1)
r-

Therefore, the displacement components in rectangular Cartesian coordinates are
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According to Eq. (3.11), the stress fields generated by the dilatational misfitting

spherical inclusion with the radius R locating at the origin coordinate (0,0,0) in an

isotropic elastic matrix (r > R) is
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where /4.d is shear modulus of matrix, a is a dilatational misfit strain and v is Poisson

ratio. Then the stress tensor inside the particle (r < R) can be similarly obtained as

(5.5)

where pp is shear modulus of precipitate. Then the total stress field has three aspects:

stress caused by dislocation /it, stress generated by inclusions dn'and applied stress

&p:

o'* =o*t +otn" +ow (5。 6)

It is easy to see the maximum shear stress (MSS) at the inclusion-matrix interface is

on the cylinder surface of radius RlJ, (see Fig. 5.1), where MSS meets the critical

shear stress for dislocation nucleation and, as a result, small half loops are punched out

[20, 101].
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Fig.5。 1(a)A mis■■ing spherical inclusion and the cylindrical surfacc with maxilllllulln

reso市ed shett stress h χ diКction。 (b)%On ie red cross… section o=R/J)Of Fig。

5。 1(→ at Z=0い任=161GPa,a=0.01,R=0。 3).

5.2.2 Punching of Initial Dislocation Loops

The present paper mainly focuses on the morphological evolution of dislocation driven

by the right elastic field. Therefore, the nucleation of dislocation at the inclusion-matrix

interface is computationally modeled as below.

The nucleation of dislocations happens where stress is very concentrated. The stress

required to nucleate a dislocation loop with radius equal to r" [20] is

τ=舞胸(千)刊・
where re is the radius of dislocation core. As we can see, 7= 1tyl50 for the nucleation of
a dislocation loop with radii r" = l1b and rs taken as 2b. The MSS at the inclusion-

matrix interface is given from Eq. (5.4) with ee given as 0.01 is

Tmax: 3eopM = tr1ya/33 , (5.8)

that is, the MSS generated from the inclusion exceeds the critical stress for nucleating

dislocation loops with the radius equaling to l5b, and we assume two small half
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dislocation loops are emitted on the cylindrical surface with the radius equaling to

R I J, in the matrix (see Fig. 5.2).

R/J'

Fig. 5.2 Schematic diagram of two small half loops emitted around a spherical inclusion

generating a shear stress which exceeds the critical stress for dislocation loop

nucleation.

5,2.3 Peach-Koehler Force Worked on Dislocations

When two small half dislocation loops are punched out around a misfitting spherical

inclusion, these dislocation loops are driven by the misfit stress field of Eq. (5.4) and

expand on the cross-slip plane until they merge with each other [04, 105]. Then, this

dislocation loop becomes a PDL and glides away from inclusion-matrix interface to

relax the strain energy. We study the Peach-Koehler force worked on edge dislocations

and on PDLs for convenience in discussing the mechanism of PDL formation. In this

chapter, [1 0 0], [0 1 0] and [0 0 1] are referred to x,y andz directions, respectively.

We first consider edge dislocations with orientation [0 -1 0] (in the -y direction) and

the Burgers vector b. : fl0 0] (norm alized, by b: the magnitude of Burgers vector b and

oriented in the x direction), as shown in Fig. 5.3. A spherical particle of radius R : 100b

with the dilatational misfit strain r0: 0.015 is located at origin (see Fig. 5.3(a)). The

Peach-Koehler force worked on edge dislocation segments distributed on x-z plane

when y : 0 (the gray slice of Fig. 5.3(a)) is investigated (see Fig. 5.3(b)). We can see

that when an edge dislocation is at top right of the spherical particle, the Peach-Koehler

force f,' (scaled by lt*; f: = "f:" I p. as py,1: 16lGPa) is positive which means this

edge dislocation will be driven away from the inclusion, while when an edge dislocation

is at bottom right area, the force is negative and the dislocation will be attracted toward

the inclusion. The force on the left half area becomes an opposite manner.

glide cylinder of radius

emitted small
dislocation loop
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Fig. 5.3 Peach-Koehler force worked on edge dislocations around a misfitting spherical

inclusion on the gray slice.

When a PDL with clockwise orientation (according to the x direction) is produced

(see the red circle of Fig. 5.4(a)), this PDL receives a repel force paralleling to Burgers

vector. We investigate the Peach-Koehler forcej" on the homocentric PDL on the plane

of x:0.6 (see the gray slice of Fig.5.4(a)), and draw a image figure of the force in

order to see the gradual change (see Fig. 5.4(b)). The force first radially increases as the

radius of the dislocation loop increases from zero and reaches the maximum 4.6x10-3

when the radius of the loop reaches R / JZ (btact< dashed circle), and then decreases as

the radius of the loop increases. Since the equality of the magnitude of the force on each

segment for each individual PDL, the PDL glides away from the inclusion-matrix

interface keeping its shape.
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PDLs around a misfitting spherical inclusion
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5。3 Representing Open Curves using LSM

LSM is used to represent closed curves that either loops or lines with ends located at the

boundaries of the computational region. However, there exist problems that ends of the

curves located within computational region. Smereka [06] used an additional level set

function with the codimension-two intersection points of two level set fi.rnctions to

represent ends of cuwes (see Fig. 5.5).
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(5。9)

(a) (b)

Fig. 5.5 Representing an open curve with an additional level set flrnction 4. (a) Initial

stage. (b) A slightly later time.

The curve of interest is defined as the /: 0 isocontour in the region where 4 > 0 (part of
red curve between two black intersection point, see Fig. 5.5), while a ghose curve is

defined as the /: 0 isocontour in the region where 4 < 0 (two parts of red curve outside

two black intersection point).

Then we show an example of the spiral crystal growth of an open curve (see Fig.

5.6), so called Frank-Read source mechanism. The curve of interest defined as f(r) :
{ilx,t):0,q(x,t)>0} evolves under the velocity given as

ν =sgn(η )尚
   (1-え

Sgn(η )κ(ψ)) ,

whcrc sgn is a sign hction,κ is local cllrvature andえ is a constant.
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Fig. 5.6 Spiral crystal growth of an open curve.

5.4 Simulation Results

In this section, we present the formation of PDL using LS-DD. The simulations were

performed using the simulation cell which one side / has plus and minus units

normalized by the real length of 250b (b denotes the magnitude of Burgers vector, 0.286

nm). The cell box is divided into 64x64x64 grid points. The shear modulus lrM ffid ltp
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are set to be l6lGPa and 80GPa, respectively, and Poisson ratio v is set to be 1/3. For

all the calculations, the stresses are scaled by 36b(l-v)l(21(l+v)) and time is scaled by

2l/Qamr) (that is, f : tl(21/1an")) where ln" is the mobility constant for dislocation

glide and is set be 1.0 in the present calculations.

During the simulations, the fifth order weighted essentially non-oscillatory (WENO)

is used for spatial difFerentiation and the third order total variation diminishing

Runge-Kutta (TVD-RK) is used for temporal differentiation (7). Reinitializations for

keeping the level set functions be signed distance function (SDF) are performed after

each time step of solving the evolution Eq. (2.19) to reduce the numerical errors. We do

not present climb mobility if not specified and the periodic boundary condition is

assumed inx,y and z directions.

5.4.1 Initialization of Two Half Dislocation Loops

To represent two initial small half dislocation loops, we create two hypersurfaces

(FVrI) both of which are cylinders (see Fig. 5.7(a)). The intersections of these two

hypersurfaces are two small dislocation loops with half inside the inclusion (see blue

"ghost curves" in Fig. 5.7(b) and with half in the matrix (red "curves of interest" in Fig.

5.7(b). The value of r4is positive outside the green cylinder (Vrl) and negative inside

the cylinder. The upper intersection loop has the clockwise orientation since ty frst
varies from positive through the green interface (Vn}) to negative, and the bottom one

has the counterclockwise orientation since the value of rprvaries from negative through

the green interface (V=0) to positive again (the orientations are according to top-down

view as shown in Fig. 5.7(a)).
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(→ (b)

Fig.5.7 (a) Representing two small dislocations loops by two hyperplanes (FVrI)
with half loops in the matrix (red curves) and half inside the inclusion (blue curves); (b)

Zoom in of the dashed rectangle of (a).

The curves of interest fl (red curves) are the intersections of Q:0 and 14: 0 outside the

spherical inclusion, while the segments inside the inclusion surface (blues curves) are

treated as ghost curves fG (7) which are not taken into account in the simulations (7).

These two types of curves are defined as
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where Z represents the whole calculation region and d2 represents the region of the

spherical particle (yellow ball of Fig. 5.7(a)). And also we replace the tangent vector f
of Eq. (3.30) bv

♂
iS=雄

)ξ , (5。
11)

where d function is defined as:

(5.12)

The Eqs. (5.10) and (5.11) are used to make sure that the half parts embedded in the

inclusion do not contribute internal stress to the whole region and thus fG can be

negligible.

5.4.2 Mechanism of Prismatic Dislocation Loop Formation

In this simulation, we specify a misfitting spherical particle of radius R : 50b with the

dilatational misfit strain a:0.01 and the normalized Burgers vector b* : fI0 0] defined

on both inclusion and matrix. During the whole calculation, this spherical particle keeps

invariable and produces a misfit stress field according to Eq. (5.a) in a homogeneous

isotropic matrix (r > R) and the stress tensor according to Eq. (5.5) inside the inclusion

(r < R), respectively. As indicated in subsection 5.2.3, the magnitude of the misfit stress

field reaches the maximum on the cylindrical surface of the radius R I J, with the

axis paralleling to the Burgers vector (see the light green cylinder of Fig. 5.8(a)). When

一Ω／
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∈
　
　
∈

χ
　
　
χ
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∫
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the MSS UtM/33) exceeds the critical stress for nucleation of dislocation loops of radius

equal to l5b QrNrll}}), two small half dislocation loops are injected of which the half

loop on top has the clockwise orientation and the bottom one has the anticlockwise

orientation (according to top-down view as Fig. 5.8 (a)). Thus, the farthest segments of
the two half loops are edge dislocations and the segments on the inclusion-matrix

interface are screw dislocations. The velocity vector of the dislocation evolution is

projected onto the cross-slip plane (light green cylinder) to make sure that the

dislocations always receive the maximum shear stress from the inclusion among all the

slip planes.

Under the shear stress generated by the inclusion, the forward edge components

glide away from the inclusion-matrix interface by repel force and the screw components

paralleling to the axis of the glide cylinder experience a force causing them to cross slip

around the circular surface of the cylinder (see Fig. 5.8 (b)). As the half loops are

expanding on the cylinder, the two screw components with opposite orientations of the

two half loops approach to each other (see Fig. 5.8 (b)), and annihilate when two half
dislocation loops merge. Finally they become one dislocation loop (see Fig. 5.8 (c)).

The middle mixed dislocation segments experience more intense shear stress than top

and bottom edge dislocation segments and also internal stress of dislocation acting like

line tension of the loop. Therefore, the middle-bended dislocation loop preferably

becomes a prismatic dislocation loop with all the segments perpendicular to the Burger

vector (see Fig. 5.8 (d). This PDL glides along the cylinder surface away from the

inclusion-matrix interface (as seen in Fig. 5.8 (e), the loop can only glide on the

cylinder because any other motions need climb mobility). Since the influence of the

stress decreases as the distance from inclusion to dislocation increases (see Eq. (5.4)),

the driving force on the PDL gradually weakens. At last, the motion ceases at the

position where the driving force is no larger than friction stress by Peierls potential

(rpN:5MPa).
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Fig. 5.8 Formation of a PDL under the shear stress generated by a misfitting spherical

inclusion of radius R: 50b with the dilatational misfit strain a:0.01 in a homogeneous

isotropic medium. The left column shows a three-dimensional view and the right

column shows a top-down view.

5.4.3  Strain Energy Variation during the Process

The elastic straln energy is deflned as the integration ofthe multiplication ofstress fleld

and strain fleld in the whole volllme〆 (23),124).

‐0.2

-0.4

‐0.6

れこ

Ed=:ι %alJ改 =:ι Cグ〃%alydX,

イ=:ι (げ +げS)(げC+げS)と ,

and Eq。 (5。 14)can be expanded as

ギ=:ιげげCと +:ιげげS壷 +:ιげげSと +:ιげSげCと ,

(5。 13)

where dx: dxdydz. When two origins (inclusion and dislocation) generating stress field

coexist, the total stress is the superposition of them in the linear elastic framework:

(5。 14)
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where dn" and Cn'indicate the stress and strain fields of matrix caused by inclusion and

/i' and y'i' due to the case by dislocation. The first two terms of the right side of Eq.

(5.15) are strain energy generated by inclusion and dislocation, respectively. And the

last two terms are elastic interaction energy for the coexistence of inclusion and

dislocation. Due to the svmmetrv of elastic constant:

%=%グ ,

the third and fourth terms of Eq. (5.15) should be equal. The Eq. (5.15) can thus be

written as

イ =4C+4S+瑠

(5.16)

(5。
17)

where ttC,切 S,イ are ehsdc strdn energy caused by hchJon,ddocttion and

お mttbn,■ e ttC kccpS llnvttied(弓
¨
=瑚
C/(ん
b3)=716.9),sO WC justお cus on

=よ
“
S and瑚耐whiCh ae scded by熱〔b3(scc Fig.5。 9).The pЮ cessお divided i■ o threc

stages depending on different topological shapes of thc dislocation.I)llnng the step I

(COmputational stepノ frOm o to O。 12),two Sma11 loops expand along the cross― slip

cylindrical surface.The=PSquickly increases sincc the total length ofthe dislocation is

rapidy edttgedo ⅦdL■c4饉 dSO qdcHy hcreases and rcachcs the chmax when

two loops merge and the pure screw scgments almihilate.At stage Ⅱ(ノ frOm o。 12 to

O.85),the=よdS deCreascs when the middle― bended loop becomes a PDL as a

consequcnce of the total length of the loop intending to be shorten energetically。 「Fhc

=計

載
deCreases sincc the dislocation loop glides away from the inclusion― matrix

intcrface.At stage HI(イ 士om O.85 to thc end),the PDL continues to glide along the

cylinder away ttom inclusion… matrix interface and thcrcfore E」
m COntinues to decrease.

Since■ereお no didocation deわ rlndions,■c ttS dOes notobviougychange。

As discussed above about the elastic straln energy caused by inclusion,dislocation

and dislocation… inclusion interaction, we can obtaln the total straln energy variation

during thc whole process(see the blue cuⅣ e of Fig。 5。 9)。 As the small dislocation is

punched out and expanded along the cross― slip cylind五 cal surfacc, the total strain

energy quickly increases since the total lcngth of the dislocations is extended and

interaction energy dralnatically increascs(Stage I).Atter that,E:ld dCCreases since the

total dislocttion loop length sho■ ens and the PDL moves away ttom the interface(stage

II and IH).Finally,it flattens at stage ⅡI bccause no obvious defo.1.latiOn of dislocation

is obseⅣ ed and dislocation― inclusion interaction becomes weaken.

108



250 1050

1000

950

850

200

150

で loo

50

0

‐50

900  
で

1.5

′
*

Fig. 5.9 Strain energy (caused by dislocation and dislocation-inclusion interaction,

respectively) and total strain energy variation during the process of PDL formation

around a misfitting spherical particle of radius R: 50b with the dilatational misfit strain

ep: 0.01.

5.5 Conclusion

The simulations using LSM successfully realized the formation of PDL. On the glide

cylinder where the inclusion-matrix interface meets the maximum resolved shear stress,

two small half loops with opposite orientations are punched out. The forward edged

segments are repelled from the inclusion, while the screw segments cross slip around

the circular surface of the cylinder. Making the loops approaching to each other, the

screw dislocations with opposite directions annihilate as two half loops merge and then

become a middle-bended loop. Finally the middle-bended loop becomes a prismatic

dislocation loop and glides along the cylinder until the driving force becomes less than

friction (Peierls barrier).

We also studied the elastic strain energy variation during the process of PDL

formation. The total strain energy first increases as the initial two small half dislocation

loops expand and reaches the climax when two loops merge. Then, the strain energy

quickly decreases as the loop approaches a perfect prismatic loop. After that, the PDL
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glides relatively fast since misfit shear stress is intensive near the inclusion. Finally, as

the moving of the PDL slows down without any deformation of dislocation, the

decreasing of the strain energy also becomes slow until the PDL stops.
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Chapter 6

Summaries

This thesis has presented a series of dislocation evolutions using level set method

(LSM) in the base of elastic theory for dislocation. Dislocation as the line defect in solid

decides many mechanical properties of crystalline materials, especially the ability for

plastic deformation. The strain-stress relationships have been made for materials, where

dislocations move immediately after the elastic deformation. This is the reason why

materials cannot resume the original shapes even after unloading, so called "plasticity".

Therefore, for its importance and complexity, dislocation draws lots of attentions in

both academic and industrial fields.

In chapter 2, we have introduced LSM coupled with fast marching method (FMM)

and shown extreme success of topological evolutions of interfaces especially when

merging and breaking occur. FMM is utilized for creating signed distance functions

(SDFs) with demanded implicit interfaces as initial functions for level set evolutions

and is also associated with the determination of extension velocities. In that case, the

level set functions can always preserve SDFs during the evolutions. The preservation of
smooth distribution for values is significant for preventing the diffrrsion of the interface

since the partial derivatives with stencil of several grids length of the functions are taken.

Furthermore, representation of codimension-two objects by two level set functions is

introduced, which makes the demonstration of curves in three dimensions available.

In chapter 3, we have shown a series of models of dislocation evolutions based on

level set dislocation dynamics (LS-DD) in three dimensions. Based on the complex

internal stress fields solved efficiently by FFT under the periodic boundary condition,

the prismatic dislocation loop (PDL) shrinks automatically at an equivalent high

temperature and dislocation curves interact with the others. An Orowan loop expands or

rotates from its original slip plane under the applied shear stress fields. We have also

successfully seen the formation of an Orowan loop from a gliding linear edge

dislocation under an applied stress when it meets an impenetrable particle.



In chapter 4, we have also rcalized the phenomena of cross-slip and double

cross-slip of an Orowan loop which the screw segment reacts at the edge of cross-slip

plane. With the aid of the moving curves on specific surfaces technique, the expanding

loop can choose to cross slip from initial slip plane when the Peach-Koehler force

projected on the cross-slip plane becomes larger than the initial one under the applied

shear stresses. We have investigated the intemal stress of the cross-slipped dislocation

loop and studied the effects to the other dislocations from the distorted loop in

comparison with the case of a normal expanding Orowan loop.

In chapter 5, we have successfully demonstrated the formation of PDLs. Firstly two

small half loops with opposite orientations are punched out on a cylindrical surface

where the inclusion-matrix interface meets the maximum resolved shear stress. Then,

the forward edged segments are repelled from the inclusion while the screw segments

cross slip around the circular surface of the cylinder and approach to each other. Two

half dislocation loops merge into a middle-bended loop when two screw segments with

opposite orientations meet and annihilate. Finally, the middle-bended loop becomes a

PDL. Afterwards the PDL glides away from the inclusion along the cylindrical surface

until the driving force becomes less than the frictional stress (Peierls barrier). Since the

series of movements happen automatically, we studied the elastic strain energy variation

during the whole process. The total strain energy first increases and reaches the climax

when two loops merge as the initial two small half dislocation loops expand. Then, the

strain energy quickly decreases as the loop becomes a perfect PDL. After that, the PDL

glides relatively fast since misfrt shear stress is intensive near the inclusion and the

decreasing of strain energy is also relatively quick. Finally as the moving of the PDL

slows down keeping the same shape, the decreasing of strain energy also becomes slow.

Now at the end of this thesis, which so far has been focused on the complicate

dislocations description in three dimensions, it is natural to raise the question: can we

demonstrate the interactions of between the linear dislocation and the other point and

planar defects? And can we extend this method to more macroscopic field keeping the

unpredictable intemal stress field due to the complicate morphology of dislocation? It is

quite challengeable subject which should be overcome for the prospective multi-scale

modeling of materials. It is hoped that LSM with the powerful ability for manipulating

topological evolutions of multi-codimensional objects would be the best candidate for

this kind of methodology.
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