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Preface

This dissertation presents techniques for estimating variable relations from small

samples, which was achieved by the author during his Ph.D. course at the Division of
Electrical, Electronic, and Information Engineering, Graduate School of Engineering,

Osaka University. The dissertation is organized as follows.

Chapter 1 describes recent background in a field of machine learning. Moreover,

past frameworks for estimating variable relations are reviewed and their difficulties are

discussed. The frameworks can fall roughly into two categories. One is a technique

to obtain some knowledge on the directed network representing the ordering of effects

among all observed variables. This technique aims to find important variables in the di-

rected network or to identiff an entire structure of the directed network. We discuss this

technique in Chapter 2 and Chapter 3. The other is to estimate undirected relations be-

tween a particular vaiable (a label variable) and the other explanatory variables, which

we discuss in Chapter 4. Both techniques are important and utilized in bioinformat-

ics, economics, marketing and so on. In this chapter, the outline of these techniques is

described. Then, we clari$r a position of our works.

In Chapter 2, we first present a linear non-Gaussian acyclic model (LiNGAM model),

which is one of the models to represent variable relations including the orderings of the

effects. Conventional methods based on this LiNGAM model enable a robust estima-

tion of the network of all variables including their orderings. However, the accuracy

of the estimation becomes worse for data containing the huge number of variables and

small samples (e.g. gene datasets). In otir work, instead of estimating the entire struc-

ture of the directed network, we focus on exogenous variables that work as origins

activating a state change of other variables in the network. We propose a method for

estimating them from small samples. In this chapter, we investigate performance of the

proposed method by numerical experiments with artificial datasets. Moreover, we apply

the method to gene datasets and confirm its practicality by comparing the results from

domain knowledge.

Chapter 3 proposes another LiNGAM-model-based method for a more accurate esti-

mation of the directed network under a situation with noisy and small sample data. Our
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proposed method is achieved by an improvement of a statistical independence measure

and introducing a more sophisticated solution search algorithm into the conventional

method. In numerical experiments, we compare the proposed method with the conven-

tional method and show an advantase of our method under the situation with noisy and

smaller sample data.

In Chapter 4, we further review techniques for estimating the relations between a

label variable and explanatory variables. This technique is known as regression. In con-

trast to Chapter 2 and 3 which focus on the situation that the number of samples of all

the observed variables are small, we focus on the situation that all samples have values

of their explanatory variables but only small number of the samples have their label

variable. For example, in a car insurance company, an insurance fee (a label variable)

is determined by its company's employees based on car information, driver's driving

records and so on (explanatory variables). Such determination by hand needs enonnous

cost and time. As a result, the number of labeled samples becomes small and unlabeled

ones are large. In recent years, active learning that utilizes both labeled and unlabeled

samples in such data has been proposed. In contrast to conventional passive machine

learning algorithms, active learning selects some unlabeled samples expected to be in-

formative for learning, asks an user to label them and enables more accurate estimation

from small labeled samples. However, conventional active learning methods have an

impractical assumption that an user always gives correct labels on selected samples. In

this chapter, we propose a new active learning algorithm for estimating variable rela-

tions which works accurately even under the situation with noisy labels. We extend a

querying measure and incorporate robust divergences into the extended measure. The

proposed method is compared with conventional methods and its practicality is evalu-

ated by experiments with artificial and real-world datasets.

Chapter 5 concludes this dissertation.



Acknowledgement
This dissertation presents techniques for estimating variable relations from small

samples. These techniques have been carried out during my Ph.D. course at the Division

of Electrical, Electronic and Information Engineering, Graduate School of Engineering,

Osaka University.

I would like to express my deepest gratitude to my supervisor, Prof. Takashi Washio

of the Division of Information and Quantum Sciences, the Institute of Scientific and

Industrial Research, Osaka University, for his patient inskuction, encouragement, valu-

able comments and various supports throughout this research.

I am deeply grateful to Prof. Noboru Babaguchi of the Division of Electrical, Elec-

tronic and Information Engineering, Graduate School of Engineering, Osaka University

and Associate Prof. Yoshinobu Kitamura of the Division of Information and Quantum

Sciences, the Institute of Scientific and Industrial Research, Osaka University, who pro-

vided insightful suggestions, careful reviews and valuable criticism on the whole content

of this dissertation.

I would like to express my deep sense of appreciation to Assistant Prof. Akihiro

Inokuchi, Assistant Prof. Shohei Shimizu and Assistant Prof. Yoshinobu Kawahara of

the Division of Information and Quantum Sciences, the Institute of Scientific and In-

dustrial Research, Osaka University, for their patient instructions, encouragements and

valuable discussions.

I am indebted to Prof. Tetsuya Takine, Prof. Kenichi Kitayama, Prof. Seiichi Sampei,

Prof. Kyo Inoue, Prcf. Zenichiro Kawasaki of the Division of Electrical, Electronic and

Information Engineering, Graduate School of Engineering, Osaka University, for their

thoughtful comments.

I appreciate Prof. Aapo Hyviirinen of Universify of Helsinki, Associate Prof. Seiya

Imoto and Assistant Prof. Teppei Shimamura of Institute ofMedical Science, University

of Tokyo, and Tsuyoshi Ueno of Japan Science and Technology Agency with whom I



lv

have cooperatively completed papers involving this dissertation.

I thank all the past and present members of the Department of Reasoning for Intel-

ligence, the Division of Information and Quantum Sciences, the Institute of Scientific

and Industrial Research, Osaka University (Washio Laboratory), who offered warm en-

couragement and friendship that gave me strength through difficult times.

Without the financial support from the Research Fellowships of Japan Society for the

Promotion of Science (JSPS) for Young Scientists, this research could not carried out.

I would like to give my appreciation to JSPS for its special helps as well as financial

supports.

Last, but by no means least, I am heartily thankful to my family, including grandfa-

ther, grandmother, father, mother and sister, for their selfless support in all aspect of my

life, their kindness, and their encouragement during my entire education.



Contents

Chapter 1 Introduction

Chapter 2 Identification of Exogenous Variables from Small Samples 5

2.1 Introduction 5

2.2 Background Principles 7

2.2.1 Independent Component Analysis 7

2.2.2 A LinearNon-Gaussian Acyclic Model (LiNGAM Model) . . . 8

2.3 A New Method to Identiff Exogenous Variables 9

2.3.1 A Variant of Linear Non-Gaussian Acyclic Structural Equation

Model 9

2.3.2 Central Limit Theorem for Independent and Non-Identically

Distributed Random Variables 10

2.3.3 Identification of exogenous variables based on non-Gaussianity

and uncorrelatedness I I

2.3.4 ExoGenous Generating Variable Finder: EggFinder 13

2.4 Experiments 14

2.4.I Experiments on Artificial Data 14

2.4.2 Application to Microarray Gene Expression Data 16

2.5 Conclusion 18

Chapter 3 An Improvement of Methods for Learning a LiNGAM model 20

3.1 Introduction 20

3.2 Related Works 22

3.2.I An ICA-based Method for Learning a LiNGAM Model 22

3.2.2 ADirectMethodforLearningaLiNGAMModel 24



Vl

Approaches for Improving the Conventional Methods 28

3.3.1 Extending the Independence Measure 28

3.3.2 ExtendingtheSearchAlgorithm ..... 31

Experiments on Artificial Data 36

3.4.1 Experimental setup 36

3.4.2 Kernel-based variants 37

3.4.3 Variants employing Beam search 39

Conclusion 40

Chapter 4 Robust Active Learning for Linear Regression via Density Power

Divergence

4.1 Introduction

4.2 Background

4.2.L Linear Regression Model

4.2.2 Pool-based Active Learning

4.2.3 A Conventional Method using Kl-divergence

Extending a Querying Measure by Asymptotic Analysis

4.3.1 Asymptotic Analysis on M-estimator

4.3.2 Density Power Divergence

Empirical Measures for Querying

4.4.1 Approximation of Querying Measure

4.4.2 Optimization of Querying Measure

Experiments .

4.5.1 Evaluation of Robustness .

4.5.2 Evaluation with Real-world data

Conclusion

Chapter 5 Conclusion

3.3

3.4

3.5

4.3

4.4

4.5

4.6

47

47

49

49

50

52

53

54

55

59

59

60

6l

62

64

65

68



List of Figures
2.1 An illustration of the linear acyclic model

2.2 Percentages of datasets where all the top m estimated variables were

actually exogenous under (a) n:30; (b) n:60; (c) n:100; (d) n:200. .

2.3 Temporal gene expression levels of (a) HBEGF (EGF stimulation); (b)

HBEGF (HRG stimulation); (c) JUN (EGF stimulation); (d) JUN (HRG

stimulation); (e) NAB2 (EGF stimulation); (f) NAB2 (HRG stimulation).

3.1 The LiNGAM model constructed by the residuals rj1)

3.2 The procedure to select the rc : 2 candidate pairs of the ordering and

the variable by the bealrn search algOrithm.

3.3 The procedure to select the candidate of the exogenous variable by Di-

rectLiNGAM (Beam-DirectLiNGAM with rc : 1).

3.4 Median numbers of errors with increasing the number of outliers.

4.1 An illustration of the contaminated distribution and the weighted likeli-

hood estimator

4.2 Difference among the flve methods under various amounts of noisy labels.

4.3 Comparisons of the means-squared error among six methods at each

leaming step. The left figures are for the MSE without noisy labels and

the right are for the MSE with 5% noisy labels

Vll

16

19

27

35

35

39

53

63

67



Vlll

List of Tables

2.1 Candidates for exogenous genes found by EggFinder from the dataset. l7

3.1 Median effors of the conventional methods based on the LiNGAM model

and their variants under (A) 8 variables; (B) l6 variables; (C) 32 variables. 42

3.2 Median computational time (sec) to estimate the ordering by the con-

ventional methods and their variants under (A) 8 variables; (B) 16 vari-

ables; (C\ 32 variables. 43

3.3 Median errors with the different scale variables. 44

3.4 Median errors of the variants using the beam search with the width of

the beam n:2,4 and 8 under (A) 8 variables; (B) 16 variables 45

3.5 Median computational time (sec) of the variants using the beam search

with the width of the beam n:2,4 and 8 under (A) 8 variables; (B) 16

variables. 46

4.1 Specifications of Datasets 63



Chapter 1

Introduction
In recent years, along the development of computers, their network and their data

storage, massive dataare stored and utilized to obtain useful knowledge in various fields

such as medical service, economics, marketing and so on. Techniques for obtaining

useful knowledge from such data are known as data mining or machine learning. In

studies of data mining/machine learning, one of the latest topics is to find relations

between events or objects from their associated observed data. For instance, in the field

of marketing, a relation between a price of a product and the number of its purchasers is

informative to determine a price for another product. A further example is the relation

between a distance of a house from a city center and its house rent. Such events or

objects are taken as random variables in the studies and many statistical techniques for

estimating the variable relations have been proposed in a last decade.

Techniques for estimating the variable relations can be roughly categorized into two

types. One is a technique to obtain some knowledge on the directed network, where the

vertices and the directed edges respectively represent the variables and effects propa-

gating among them. The purpose of this technique is to find important variables in the

network or to identi$ an entire structure of the directed network. As we mentioned

before, many empirical sciences and applications aim to estimate relations underlying

their objective systems such as natural phenomena, human social behavior and so on.

Thus, this technique is employed to know how each variable affects the others and

how observed data are generated. A representative model used in this technique is a

non-Gaussianity-based model called LiNGAM model. By utilizing non-Gaussianity of

variables which is frequently observed in many real-world data, methods based on this

model achieve strong identifiability of the directed nefwork [45,46].
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However, the conventional methods cannot estimate the entire structure of the di-

rected network accurately under a situation providing small samples only which is found

in many real-world problems. For instance, in bioinformatics, the number of samples

in a gene dataset is quite small because of ethical concerns. In such a situation, an es-

timation of relations between genes could fail and we cannot obtain any knowledge on

the network of the genes. Therefore, in Chapter 2, we will first propose a variant of

LiNGAM model based on some tealistic assumptions, and present a new method based

on the model to obtain useful knowledge on the directed network from small sample

data. The key idea of this method is to find important variables which work as triggers

that activate the chain of the effect in the network. These variables are origins in the

directed network, and are called exogenous variables. Their identification is important

for various applications.

In Chapter 3, to accurately and robustly estimate the entire structure of the directed

network from noisy and small sample data, we will present two principles to modiff the

past LiNGAM-model-based methods. One is to incorporate kernel based independence

measure for enhancing the robustness and the accuracy of the network estimation. The

other is to employ the beam search algorithm to avoid the local optima. Then, we

will propose variants of the LiNGAM-model-based methods to estimate the directed

network accurately and robustly. In these manners, we will discuss our study based on

the LiNGAM model and propose methods to obtain useful knowledge on the directed

network from small samples in Chapter 2 and3. The study in Chapter 2 is related to the

work published in 151, 48, 50], and that in Chapter 3 is related to [49].

The other technique is to estimate undirected relations between a particular variable

and the others. The particular variable is called a label variable and otherwise are called

explanatory variables in the domain of machine leaming. A representative model used

in this technique is widely known as a regression model. While the previous technique

aims to obtain some knowledge on the directed network of all observed variables in

the data, techniques based on the regression model aim to find the undirected relations

between a label variable and explanatory variables only. However, these methods based

on the model can be applied to data containing the larger number of the explanatory

variables and has been widely employed in various areas because of its applicability.
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Nevertheless, the number of the samples in the data to be analyzed by the methods are

small in many applications, and the naive methods could fail to estimate the relations.

This is because cost to obtain the values of the label variable is more expensive than

one for the explanatory variables. As a result, in various applications, many samples

lack the values of their label variable while the values of the other variables are known

in all samples. For example, in medical service, a degree of severity of a patient is

evaluated by a doctor based on the patient's blood pressure, body fat percentage and

so on which data are obtained semi-automatically by an examination. The evaluation

is time-consuming for the doctor and therefore the samples having the evaluated values

are small. Here, we note that the evaluation of the values of the label variable is called

labeling. Moreover, the samples having evaluated values are called labeled samples and

otherwise are called unlabeled samples.

Recently, a new framework called active learning has been proposed to utilize both

a set of the small labeled samples and the unlabeled ones. In contrast to the naive

technique for estimating the variable relations, active learning selects some unlabeled

samples expected to be informative for the estimation, asks a user to label their label

variable and enables more accurate estimation from small labeled samples. However,

conventional active learning methods have an impractical assumption that a user always

gives correct labels on selected samples while a real-world user is likely to be noisy and

thus makes a mistake. Therefore, the methods should be extended to be robust against

such noise of the labeling for application to the real-world datasets. Chapter 4 will

address the problem of the conventional active learning methods and propose method

to robustly estimate the relations under the noisy real-world situation. The study in

Chapter 4 is related to the work in [52, 53].

As described above, the techniques for estimating the variable relations are very

important and useful in various areas. However, the state of the art has a gap to analyze

real-world datasets which usually have small samples and are frequently noisy. Thus,

in this dissertation, we close this gap between the conventional methods and real-world

problems by addressing the problems of the small samples and the noise. A summary

of our contribution in this dissertation is as follows.
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The first contribution is to propose a non-Gaussianity-model based method to

estimate exogenous variables in a directed variable network from the data having

small samples such as gene datasets.

The second is to propose another non-Gaussianity-model based method, which

enables more accurate and robust estimation of the directed variable network from

noisy and small sample data.

The third is to propose a novel active learning method to robustly estimate the

relations between a label variable and explanatorv variables from small labeled

samples.

In Chapter 2, we first describe backgrounds of the non-Gaussianity-based model and its

associated methods. Then, we present the first contribution for obtaining useful knowl-

edge on the variable network from small samples. In Chapter 3, we propose another

method along the second contribution to estimate the entire network more accurately

under the situation with the data having small samples. Chapter 4 reviews technical

backgrounds of active learning and the method for estimating relations between a label

variable and explanatory variables. Subsequently, we propose a new method for the

third contribution. In Chapter 5, we conclude our work.



Chapter 2

Identification of Exogenous Variables

from Small Samples

2.1 Introduction

Many methods have been proposed to obtain some knowledge on the directed network

of all observed variables in classical situations where much more samples than observed

variables are given (p<n, p: the number of variables and n'. the number of samples).

Especially, most of them aim to identifu an entire structure of the directed network

and use a linear acyclic model to analyze and represent effects between continuous

random variables 140,541. Estimation of the model commonly uses covariance structure

of data only and in most cases cannot estimate the complete structure of the entire

directed network (orderings of the variables and connection strengths) of the model

without using prior knowledge on the network 140, 541. Recently, the authors of [a5]

proposed a non-Gaussian linear acyclic model called LiNGAM model. By utilizing

the non-Gaussianity which is frequently observed in the real-world data, they showed

that the fulIstructure of a linear acyclic model is identifiable based on non-Gaussianiry

without any prior knowledge. This is a significant advantage over the conventional

methods I40,541.

However, most statistical works for the identification of the directed variable network

including the non-Gaussianity-based methods I45,46lwere established for classical sit-

uations having fewer variables than samples (p<n), whereas modem statistical analyses

using high-dimensional models tackle data containing orders of magnitude more vari-

ables than samples (p>>n) [14, 35]. For example, in bioinformatics, the number of
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samples in microarray gene expression data are much smaller than the observed genes

(variables). This is because experiments with genes are restricted by ethical concerns

and cost for the experiments. Thus, we consider situations in which p is in the order

of 1,000 or more, while n is around 30 to 200. For such high-dimensional and small

sample data, the past methods are often computationally intractable or statistically un-

reliable.

In this chapter, we propose a method to obtain knowledge on the variable network

based on the non-Gaussianity-based model, which requires much smaller sample sizes

than conventional methods and works even whenp)n. The key idea is to identiff vari-

ables which work as triggers that activate a chain of effects in the network instead of
estimating the entire structure of the network. These trigger variables are called as ex-

ogenous variables, and their identification leads to more efficient experimental designs

requiring practical interventions and better understanding of the objective systems. One

of promising applications is a detection of drug-target genes [4]. The new method

proposed in this chapter can be used to find genes firstly affected by a drug and trigger-

ing the gene network. The simpler task of finding exogenous variables than that of the

entire model structure would require fewer samples to work reliably. The new method

uses a non-Gaussianity measure developed in a fairly recent statistical technique called

independent component analysis [25].

This chapter is strucfured as follows. We first review independent component anal-

ysis and linear non-Gaussian acyclic models in Section 2.2. We then define our non-

Gaussianity-based model and propose a new algorithm to find exogenous variables in

Section 2.3. The performance of the algorithm is evaluated by using artificial data and

real-world gene expression data in Section 2.4. Section 2.5 concludes this chapter. This

chapter is related to the work published in [51,48, 50].



2.2 BackgroundPrinciples

2.2.1 IndependentComponentAnalysis

Independent component analysis (ICA) [25] is a statistical technique originally devel-

oped in signal processing. ICA model for a p-dimensional observed continuous random

vector x is defined as

x:As, (2.1)

where s is ap-dimensional continuous random vectorwhose components sa are mutually

independent and non-Gaussian, and A is a constant pxp invertible matrix. sa are called

independent components. Without loss of generality, we assume each si to be of zero

mean and unit variance. Let if:A-l. Then we have s:ifx. It is known that the

matrixff is identifiable up to permutation of the rows [12].
Let S:'Wx. A major estimation principle for fV is to find such W that maximizes

the sum of non-Gaussianity of estimated independent components Q, which is known

to be equivalent to maximize independence between the estimates when the estimates

are constrained to be uncorrelated [25]. lnf24], a class of non-Gaussianity measures

was proposed:

J(a)=ぬ (w二)=lE[θ (w」 x)]― EIC(z)]]2, (2.2)

where w「 is the j_thrOwOfthematrixW andisconstrainedsothatEl聟 l=EI(w」 x)21=1

bccausc of thc aforcmcntioned assumption On llnit variance of sを .θ
(。 )iS a nonlincar

and non― quadratic inctiOn and z is a Gaussian variable with zero mean and unit vari¨

ance.In pracice,the expectations in Eq。 (2.2)are replaced by their samplc means.In

the rest ofthis chaptct we say that α ναrJα b′θ z Js′ηο
“
θ
“
04-Gα

“
ssJα″″乃αtt αソαrJαbた

υ/J(鶴)>」 (′
υ).In the domain ofICA,the f0110wing cottecture is widely madc[25].

CO可eCture l動θ gJabα′

“

傷 加 ″″ グ ぬ (W)お θ

“
げ 島ル r“θS′ καsO“αbル θttο Jθω

グθ
(。 )α4グ 腸

`Jis″
Jb夕′Jθκsのrs二・

In particular7ifG(s)=S4,cotteCture l istruc fOr any condnuous randomvariable whose

moments exist and kurtosis is■ on―zero[24],and it Can also be proven that there are no
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spurious optima [3]. Then the global maximum of the measure in Eq. (2.2) should

be one of si. However, kurtosis often suffers from sensitivity to outliers. In practice,

G(s):s)<p1-"'12) is a suitable candidate for the function G(.) t251.

2.2.2 A Linear Non-Gaussian Acyclic Model (LiNGAM Model)

Relationships between continuous observed variables rt (i : l, . . . , p) are typically

assumed to be linear and acyclic 140, 541. Each relation can be represented as a lin-

ear combination of the variables (Linearity), and each variable never affect itself even

through the other variables (Acyclicity). For simplicity, we assume that the variables z;

are of zero mean and unit variance. Let o(i) denote such an ordering of ri that no later

variable affects any earlier variable andbii denote the connection strength from ri to ri.
Then the relationship in the linear acyclic model can be expressed as

ri i: t biiri I ei, (2.3)

o(j)<o(t)

where ei are external influences associated with r; and are of zero mean and unit vari-

ance. Furthennore, 'faithfulness' [54] is typically assumed. In this context, the faithful-

ness implies that correlations between variables ri arra entailed by the graph structure

only, i.e., the zerolnon-zero status of bii. Finally, the external influences e are assumod

to be independent, which means there are 'no unobserved confounders' [54]. Here, un-

observed confounders are unobserved variables behind the multiple extemal influences

to statistically change their values. If such unobserved confounders exist, sofii€ €; zrr€

not mutually independent.

We emphasize that r; is equal to e, if it is not influenced by any other observed

variable ri bli), i.e., all the bi1 (jli) are zeros. In other words, an extemal influence

ei is obsertted as 16. Then, such ei or rr; ?re called exogenous variables. Otherwise, e;

is called an eruor. For example, consider the model defined by

rl: €1,

12: 1.5r1 | e2,

z::0.8rr -L.3rz*ez. (2.4)



Figure 2.1: An illustration of the linear acyclic model

e1 is equal to e1, i.e., it is not influenced by either fr2 or frs. Moreover, 12 is influenced

by z1 and z3 is influenced by both 11 and:r,2. Thus, r1(:e1) is an exogenous variable,

and e2 and e3 are errors. Note that there exists at least one exogenous variable rt(:et)
because of the model assumption of the acyclicity and no unobserved confounders.

Fig.2.l shows an illustration of the linear acyclic model of the example Eq. Q.$.
Recently, the authors of [a5] proposed a linear non-Gaussian acyclic model called

LiNGAM model, where the external influences €, &re asSUrned to be non-Gaussian while

conventional models have assumed that the external influences are Gaussian. Methods

based on the LiNGAM model have strong identifiability of the entire variable network

under the classical situation with p<n. In the next section, we will define a variant of

the LiNGAM model to identiff exogenous variables from small sample data.

2.3 A New Method to Identify Exogenous Variables

2.3.1 A Variant of Linear Non-Gaussian Acyclic Structural Equa-

tion Model

We make an additional assumption on the distributions of e1 in the model (2.3) and

define our non-Gaussian linear acyclic model, which is a variant of LiNGAM model

[45]. Recall that the set of the external influences ei consists of both exogenous variables
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and effors. To characterize the difference between exogenous variables and errors, we

make the following additional assumption.

Assumption I External infiuences are non-Gaussian but errors are less non-Gaussian

than exogenous variables, i.e., J(e6) > J(") rf rn:eu and ei is an error qssociatedwith

an endogenous.variable r i.

The only difference between LiNGAM model and our model is the assumption that er-

rors are less non-Gaussian than exogenous variables. Let a p-dimensional vector x be a

set of the observed variables fri and a p-dimensional vector e be a set of extemal influ-

encos €;. Letapxp matrix B consist of the connection strengths bii where the diagonal

elements b,ii are all zeros. Then we write our model (the model (2.3) + Assumption 1)

in a matrix form as:

x:Bx*e. (2.5)

Assumption 1 reflects three facts: i) observed dataare often considerably non-Gaussian

in many fields [25]; ii) exogenous variables are directly affected by an external factor,

which usually has non-Gaussianity; iii) in statistics, errors have been typically con-

sidered to arise as sums of a number of unobserved non-Gaussian independent vari-

ables, which is why classical methods assume that errors are Gaussian resorting to The-

orem 1 [9] in the next subsection, though in reality, many variables are not exactly

Gaussian. Therefore, we assume the errors to be non-Gaussian as long as they are less

non-Gaussian than exogenous variables each of which is directly affected by the non-

Gaussian external factor only. This distinction between exogenous variables and errors

leads to a simple estimation of exogenous variables proposed in Subsections 2.3.3 and

2.3.4.

2.3.2 Central Limit Theorem for Independent and Non-Identically

Distributed Random Variables

Assumption 1 which states that external influences are non-Gaussian but effors are less

non-Gaussian than exogenous variables is motivated by Theorem 1 below. The classical
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central limit theorcm states thatthe probability distribution ofthc sum ofa large number

ofindependcnt and Jグθ
“
″εα′レ diStributed random variables will be less non― Gaussian

than the original variables.Howevet the identicality among the distributions does not

always hold in lnany practical cases,and thus less non― Gaussianity ofthe sll― cd Van_

ables is■ ot obviously cnsured by thc ccntral limit theorem.A past study assessed a

wider condition called Lindeberg's condition where the suFn Of Such random variables

will bc lcss non―Gaussian[9].Let us assume that κバイ=1,…・,L)are indcpendent

random vaHablcs following their own probability dcnsity inctionsル
(・ )each OfWhich

has a inite mean μィ=E[″』and a inite variance弓 =Varレ』.WC dCnotc the sllm of

■e variances by DL=Σ た1弓 .Then,■ e Lhdeberg's condidon is asお ■ows.

Theorem l(Lindeberg's condition)J/`α
“
グθ

“

ソαrJα b′θs sα′し翁 励θ ZJ4グCbθrgむ εοκ―

グJ″θκ∫

鳳尭を4′りJ≧αЛしι~の2節のα均=0ル Vα >Q

励gs夕

“
q′励θJ“グリθ

“
∂υ″ rα

“
あ

“
ソαttα bルs wJJ′ εθ

“
ソθrgg′′グ凛蛯アJb“′Jθηゎ Qνss滋

“
αs L→ ∞ .□

It can be expected that random variables hardly have distributions other than ones hav¨

ing the Lindeberg's condition in most cases. Therefore, if crrors arc sllms of Fnany

unobscrvcd indcpcndcnt vanablcs that havc approxilnately the same rnagnitudes ofnOn‐

Gaussianity as exogenous variables,it can be expected that they are less non― Gaussian

than exogenous vanables.Bccause ofthe liinitation ofthe number ofsulllmed varlables,

errors would not to be exactly Gaussian. Thcsc conSiderations inotivate the aforemcn―

tioned Assumption l.

2.3.3  1dentiflcation ofexogenous variables based on non‐Gaussianity

and uncorrelatedness                    
′

We relate the linear non‐ Gaussian acyclic model(2.5)with ICA similarly to[45].Let

us solve the model(2.5)for x and then we have an ICA modelrepresented by Eq。 (2.1)



l2

as follows

x : (I-B)-ie:A'e.
(2.6)

Note that I-B is invertible since it can be permuted to be lower triangular due to the

acyclicity assumption [45] and its diagonal elements are all non-zero (unity). In the next

subsection, we propose a new algorithm to find exogenous variables rt(:et) using the

relation (2.6). In this subsection, we present two lemmas that ensure the validity of the

algorithm.

Lemma I Assume that the input data xfollows the model (2.5) and that Conjecture l
(Section 2.2.1) is true. Let us denote by V" the set of all the obseryed variables ra. Then,

the most non-Gaussian observed variable in V, is exogenous: J (r) is maximum in V,

) r6:ei. a

Proof Eq. (2.6) shows that the model (2.5) is an ICA model, where external influ-

€rcoS e4 are independent components (ICs). The set of the external influences consists

of exogenous variables and errors. Due to the model assumption (Assumption 1 in Sub-

section 2.3.1), exogenous variables are more non-Gaussian than errors. Therefore, the

most non-Gaussian exogenous variable is the most non-Gaussian IC. Next, according

to Conjecture I that is here assumed to be true, the most non-Gaussian IC, i.e., the

most non-Gaussian exogenous variable, is the global maximum of the non-Gaussianity

measure J(wTx):J"(w) among such linear combinations of observed variables wrx
with the constraint lE[(wrx)2]:1, which include all the observed variables ri in V,.

Therefore, the most non-Gaussian observed variable is the most non-Gaussian qcoge-

nous variable. a

Lemma 2 Assume the assumptions of Lemma l. Let us denote by E a strict subset

of exogenous variables. That is, E is a subset of exogenous variables but there exists

at least one aeogenous variable not contained in E. Let us denote by Un the set of

observed variables uncoruelated with any variable in E. Then the most non-Gaussian

observed variable in U6 is exogenous: J(16) is maximum in UB 1 rt:€t. Z
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Proof First, the setV* is the union of three disjoint sets: B, UB and, C6, where CB

is the set of observed variables in 7"\E correlated with a variable in E. By definition,

any variable in Us are not correlated with any variable in E. Since the faithfulness is

assumed, the zero correlations are only due to the graph structure. Therefore, there is

no directed path from any variable in E to any variable in UB. Similarly, there is a

directed path from each (exogenous) variable in E to a variable in CB. Next, there can

be no directed path from any variable in CB to any variable in UB. Otherwise, there

would be a directed path from such a variable in E, from which there is a directed path

to a variable in CB, to a variable in UB through the variable in Cs. Then, due to the

faithfulness, the variable in E must correlate with the variable inUB, which contradicts

the definition of U B.

To sum up, there is no directed path from any variable in .B u CB to any variable in

Up. Since any directed path from the external influence ei associated with any variable

ri inV, must go through ri, there is no directed path from the external influence asso-

ciated with any variable in E u C B to any variable in U B. In other words, there can be

directed paths from only the extemal influences associated with any variables in U B to

some variables in U6. Then, we again have an ICA model: i:Ir'6, where i and 6 are

vectors whose elements are the variables in UB and corresponding external influences

in e in Eq. (2.6),and -4.' is the corresponding submatrix of A/ in Eq. (2.6). Recursively

applying Lemma 1 shows that the most non-Gaussian variable in [/B is exogenous. r
To find uncorrelated variables, we simply use the ordinary Gaussianity-based testing

method [33] and control the false discovery rate [8] to 3o/o for multiplicity of tests.

Though non-parametric methods [33] are desirable for more rigorous testing in the non-

Gaussian setting, we used the Gaussian method that is more computationally efficient

and seems to work relativelv well in our simulations.

2.3.4 ExoGenous Generating Variable Finder: EggFinder

Based on the discussions in the previous subsection, we propose an algorithm to suc-

cessively find exogenous variables, which we call EggFinder (ExoGenous Generating

variable Finder). Algorithm I shows a pseudo code of EggFinder. At Step 2(c) in Algo-
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Algorithm 1 ExoGenous Generating Variable Finder: EggFinder

1.G市en 4,in面 alレeE=0,ιけ)=ち ,and鶴 :=1.

2. Repeat untii no variables″ 二are uncorrelated with exogenous variable can―

ddates,J.θ。,し1ン
)=0:

(a)Find the most non― GausJan va百 aЫe″(m)inし
,y):

メ→=籠g郡
)バ4

where J is the non― Gaussianity measure in Eq.(2.2)wtth

θ(・)=exp(―″2/2).

Add the most non― Gaussian vattable χ(m)tO E,that is,E=E∪ {κ
(m)}.

Letし「r十⇒be the subset ofじ「F)where vaHaЫ es are uncorrdated

with″(m),and m=m+1.

rithm 1, we use the Gaussianity-based correlation testing method and control the false

discovery rate to 3Yo to remove the variables correlated with the selected candidates of

the exogenous variables.

2.4 Experiments

2.4.1 Experiments on Artificial Data

We studied the performance of EggFinder when p)n under a linear non-Gaussian

acyclic model having a sparse graph structure and various non-Gaussianity conditions

for errors. Many real-world networks such as gene networks are often considered to

have scale-free graph strucfures. However, as far as we know, there is no standard way

to create a directed scale-free graph. Therefore, we randomly created a sparse directed

acyclic graph with p:1,000 variables using a software Tetrad [1]. The resulting graph

ｂ

　

　

ｃ
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contained 1,000 edges and l:l7l exogenous variables. We randomly determined each

element of the matrix B in the model (2.5) to follow this graph structure and make

the standard deviations of z1 owing to parent observed variables ranged in the interval

[0.5, i.5].

We generated exogenous variables and errors as follows. We randomly generated a

non-Gaussian exogenous variable rt(:et) that was sub- or super-Gaussian with prob-

ability 50%. We first generated a Gaussian variable zi with zero mean and unit vari-

ance and subsequently transformed it to a non-Gaussian variableby e; : sign(2,)lzl5,.

The nonlinear exponent d; was randomly selected to lie in [0.5,0.8] or [1.2,2.0] with

probability 50%. The former gave a sub-Gaussian symmetric variable, and the latter a

super-Gaussian symmekic variable. Finally, the transformed variable ei wBS scaled to

the standard deviation randomly selected in the interval [0.5, 1.5] and was taken as an

exogenous variable. Next, for each error ei,wa randomly generated h (h:1,3, 5 and

50) non-Gaussian variables having unit variance in the same manner as for exogenous

variables and took the sum of them. We then scaled the sum to the standard deviation

selected similarly to the cases of exogenous variables and finally took it &s ar orror e;.

Alarger h would generate a less non-Gaussian error due to Theorem 1.

Finally, we randomly generated 500 datasets under each combination of h, and n

(n:30, 60, 100 and 200) and fed the datasets to EggFinder. For each combination, we

computed percentages of datasets where all the top m estimated variables were actually

exogenous. In Fig. 2.2,the relations between the percentage and rn, are plotted. First, the

percentages generally increase when the sample size n increases. This is clear since a

larger n enables more accurate estimation of non-Gaussianity and correlation. Second,

similar changes of the percentages are observed when h is larger. This is reasonable

because a larger h generates data more consistent with Assumption I of the model (2.5)

as we mentioned before. In summary EggFinder successfully finds a set of exogenous

variables up to more than rn:10 in many conditions. However, EggFinder may not

find all the exogenous variables when pln, although it asymptotically finds all the

exogenous variables if all the assumptions made in Lemmas I and 2 hold.

Interestingly, EggFinder did not fail completely and estimated a couple of exogenous

variables even for the h:1 condition where the distributional assumption on errors was
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(d) n=200

Figure 2.2: Percentages of datasets where all the top nx estimated variables were actually

exogenous under (a) n:30; (b) n:60; (c) n:100; (d) n:200.

most likely to be violated. This is presumably because all the variables in the network

might satisff the condition mentioned in Theorem l. Therefore, due to Theorem l, the

endogenous observed variables, which are lower in the network, are more likely to be

less non-Gaussian than the exogenous variables, even if the errors and the exogenous

variables have the same desree of non-GaussianiW.

2.4.2 Application to Microarray Gene Expression Data

To evaluate the capability of EggFinder.in a real situation, we analyzed, a real-world

dataset of DNA microarray data collected in experiments on a human breast cancer

cell line MCF-7 [38], where two ligands of ErbB family receptor, epidermal growth

801

70l

60

50

40

0s10152025
Number of estimated variables m
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Table 2.1 : Candidates for exogenous genes found by EggFinder from the dataset.

Probe ID Symbol Entrez Gene Name

203821-at HBEGF heparin-binding EGF-like growth factor

201466_s_at JLN Jun proto-oncogene

216017_s_at  NAB2 EGR1 binding protein 2

factor (EGF) and heregulin (HRG), were dosed to MCF-7 under four different concen-

trations, and the gene expression levels were measured. EGF and HRG induce distinct

kinase activity patterns and phenotypes of MCF-7 cells. It is known that EGF binds

to ErbBl receptor (EGFR) and induces EGF-stimulated transient activation of extracel-

lular signal-regulated kinase (ERK) induced cell proliferation. While HRG first binds

to ErbB3 or ErbB4 receptor and then induces trans-activation of ErbB2 receptor, and

HRG-stimulated sustained activation of ERK induces cell differentiation. The number

of dose concentrations was eight (0.1, 0.5, 1.0, and 10.0 nmoll{. for either EGF or HRG).

The gene expression values were measured at seven time points (5, 10, 15, 30, 45,60 and

90 minutes) after dosing. The total number of experimental conditions was 55 instead

of 56:8 x 7. This is because no experiment under the condition of the concentration

of EGF 10.0 nnoU[. at 60 minutes elapsed time was conducted. For each condition, the

expression levels of 22,277 genes were measured using Afffmetrix GeneChip microar-

rays. As a preprocessing, we focused on 62 genes, which had been selected as genes

regulated by both EGF and HRG with multiplicative decomposition model [38]. To es-

timate exogenous genes under both stimulations from 62 genes, we applied EggFinder

to the data matrix of 55 conditions and 62 genes. This is a challenging situation with

p>n.

EggFinder found three candidates for exogenous genes shown in Table. 2.1. Fig.2.3

shows temporal gene expression levels of these three candidates. As described in Fig. 2.3,

HBEGF and JUN show different expression patterns between EGF and HRG stimu-

lations; under HRG stimulation, the expressions of HBEGF monotonically more in-

creased, and JLIN's expressions achieved a higher peak at 45 or 60 min than under EGF

stimulation. Biologically, JUN binds to FOS [29], which was identified as a master
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regulator determining cell fate in [38]. Thus, the analysis of EggFinder suggested that

JUN is a candidate master regulator that determines kinase activity patterns and pheno-

types caused by EGF and HRG. HBEGF also binds to EGFR [28] and ErbB4 [16] and

then induces activation of ERK [47]. Note that HRG-stimulated sustained activation of
ERK requires consecutive formation of ErbBl(EGFR)-ErbB3 and ErbB2-ErbB3 het-

erodimers [19]. Thus, the analysis of EggFinder produced a biological hypothesis that

HBEGF plays a crucial role as an accelerator that amplifies expressions of downstream

genes of ERK pathway only when stimulated by HRG. Although expression levels of
NAB2 do not have clear differences between dose concentrations, we found that the

average expression level of NAB2 under HRG stimulation were lower thanthat under

EGF stimulation. NAB2 represses transcriptions induced by EGR family (EGRI and

EGR2) [55] which are regulated by FOS. Since EGRI increases expression of human

EGFR mRNA and protein [39], decreased expression of NAB2 under HRG stimulation

also might be related with consecutive formation of ErbB family. In these manners, the

genes worth examining are suggested by EggFinder.

2.5 Conclusion

We defined the variant of conventional non-Gaussianity-based model and proposed the

method to estimate exogenous variables from data having small samples. The accuracy

of our proposed method was evaluated by the experiments with the artificial datasets

and the gene expression dataset. Particularly in the experiments on microarray gene ex-

pression data, our method suggested the genes worth examining. These results showed

the applicability of our non-Gaussianity-based model and our method. We believe this

is an important first step for developing advanced network analysis methods which can

find exogenous variables in the network even under the challenging situations pln.
One of the important issues for our future research is to establish a way of deter-

mining the number of valid exogenous variable candidates. Moreover, relaxing our

non-Gaussianity-based model to more general nonlinear model is also important. Fur-

ther, future work would address what is the better correlation testing procedure taking

non-Gaussianity into account to remove the correlated variables in our algorithm.
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Chapter 3

An Improvement of Methods for

Learning a LiNGAM model

3.L fntroduction

The methods based on the LiNGAM model 145,461have strong identifiability of the

directed network representing the effect among the observed variables. However, for

correct network identification, they practically need to properly examine independence

between variables in the network and search a correct network by using finite sam-

ples. Nevertheless, the current LiNGAM-model-based methods do not meet with these

requirements sufficiently since they employ incomplete measure to evaluate the inde-

pendence and a simple greedy search algorithm. Particularly in real-world situations

having small samples such as gene data analysis, the accuracy of the estimation of the

directed network is not acceptable because of the statistical sampling fluctuation. In

addition, the robustness to outliers in real-world data is important in estimating the net-

work. Therefore more sophisticated independence measures and more advanced search

algorithms should be introduced into the methods to estimate a network of the observed

variables more accurately and robustly under small samples.

In this chapter, we propose two approaches to improve the LiNGAM-model-based

methods and present our methods by uniffing them to enhance their accuracy and ro-

bustness under small samples while maintaining their tractable computational time.

The first approach is to modiff the independence measures to more sophisticated

ones. The methods based on the LiNGAM model need to apply various transformations

to the variables and compute their correlations since two variables are independent if
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and only if their arbitrary bounded transformations of the variables have zero correla-

tion. However, the independence measures used in [a5] and [46] include a few types

of nonlinear correlations only. In the field of ICA, many independence measures that

use wider varieties of the transformations have been proposed [44, 6]. Among such

independence measures, a kernel based independence measure studied in [6] supports

much varieties of the transformations and examines the independence more strictly than

the conventional independence measures. In addition, the kernel based measure has

sufficient computational efficiency because of a technique called Kernel Trick, which

we will explain in Section 3.3.1. Under these considerations, we propose variants of

the methods based on the LiNGAM model which adopt the kernel based independence

measure. In the original paper of the kernel based independence measure [6], its robust-

ness to the outliers is well ensured because of the varieties of the transformation. Thus,

the measure is expected to provide more accurate and robust estimation of the network

to our variants of the LiNGAM-model-based methods.

The second approach is to use beam search [61] instead of a greedy search algo-

rithm used in [a6] to more accurately assess the network structure. This beam search

algorithm always maintains the constant number of suboptimum solutions at a step in

contrast to the greedy search that always selects only one best solution at the step. This

search algorithm is expected to provide more accurate network estimation under small

samples since it uses more complete search than the greedy search. Here, we note that

the beam search algorithm is not expected to enhance the robustness to outliers. This

is because outliers statistically affects the independence measure but not to the search

process.

We briefly review the conventional methods, ICA-LiNGAM [45] and DirectLiNGAM

[46] in the next section. Further in Section 3.3, we propose fourvariants ofthe LiNGAM-

model-based methods by using kernel based independence measure and/or the beam

search. Moreover, we experimentally characteize the conventional methods and our

variants in terms of their accuracy, computational cost and robustneds to outliers in the

section 3.4. Finally, we discuss our results and give a conclusion in Section 3.5. This

chapter is related to the work published in [a9].
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3.2 Related Works

3.2.1 An lCA-based Method for Learning a LiNGAM Model

Firstly, we recall the linear non-Gaussian acyclic model representing the variable net-

work. Let o(i) denote such an ordering of an observed variable rithatno later variable

affects any earlier variable andbii denote the connection strength from 17 to r;. Then,

the linear non-Gaussian acyclic model, LiNGAM model, is defined as follows:

tri'.: t biirilea, (3.1)

o(j)<o(t)

where €i arte non-Gaussian external influences associated with ra. Further, let a p-

dimensional vector x be a set of observed variables ri and a p-dimensional vector e

be a set of non-Gaussian external influences ei. Then, the LiNGAM model in matrix

form is defined as follows:

x:Bx*e, (3.2)

where B is the p x p strictly lower triangular matrix each element of which is a con-

nection shength bii. ln 1451, a method for estimating networks of observed variables in

the LiNGAM model by using ICA was proposed which is called ICA-LiNGAM. In this

subsection, we explain how the method estimates the connection strength matrix B and

identifies networks.

Let us solve Eq. (3.2) for x. Then we obtain

x: Ae, (3.3)

where A : (I - B)-t is a mixing matrix. The mixing matrix A is identifiable [2]
if the observed variables are linear, invertible mixtures of non-Gaussian independent

source variables [25] and a sufficient number of samples on the observed variables are

given. Since the external influences e; are independent of each other and non-Gaussian,

the LiNGAM model Eq. (3.3) can be defined as the ICA model [25] which is known to

be identifiable.
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Algorithm 2ICA-LiNGAM

1. Given a p-dimensional variable vector x and its p x n data matrix X, apply

FastlCA [26]to estimate A.

Find the only one if, where ff denote permuted rows of W : A-r to

minimize DJllfrn,l for ensuring the non-zero diagonals.

Divide each row of ff by its corresponding diagonal element, to yield a

new matrix iV'with all ones on the diagonal.

Compute an estimate 6 : I - if'.

To find an ordering of the observed variables, derive the permutation ma-

trix F which yields a matrix B : FBP" which is as close as possible to

strictly lower triangular.

Though ICA can estimate A (and W : A-t), there are still indeterminacies of

permutation and scaling. In spite of these indeterminacies, the correct permutation can

be found [45] since B should be a matrix that can be permuted to be strictly lower

triangular, in other words, W : I - B is to be lower triangular and have no zeros

in the diagonal if W is correctly permuted. Additionally, the correct scaling of the

independent extemal influences can be found by using the unity on the diagonal of

W : I - B. Accordingly, ICA-LiNGAM can estimate B : I - 
.W 

and identiff

networks without using any prior knowledge. Pseudo code of ICA-LiNGAM is shown

in Algorithm 2.

However, there are two potential problems that most ICA algorithms used in the ICA-

LiNGAM may not converge to a correct solution in a finite number of steps, and that

a permutation algorithm used in ICA-LiNGAM are not scale-invariant. Therefore, they

could give a wrong identification of the network. Additionally, ICA-LiNGAM doesn't

estimate the networks correctly if it doesn't examine independence between variables

in the network properly.

2.

3.

4.

5.
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Algorithm 3 DirectLiNGAM

1. Given a p-dimensional variable vector x, its p x n data matrix X, and a set

U of subscripts of all ri e x, initialize an ordering list of variables K : A

and rn :: 1.

2. Repeat until p - 1 subscripts are added to K.

(a) Regress ri on ri for all i e U\K(i I j) and, derive the residual data

matrix gU) f1e6 the data matrix X for all j e U\1{ by Eq. (3.a). Find

a variable r(^\^)) which is most independent of its residuals:

)(*) : argmin T(q,U\K),
J€U\K

where 7 is the independence measure shown in Eq. (3.5) and X-) is

the subscriot of the selected candidate variable.

(b) Add the subscript )("') of the variable that minimize T to the end of

K.

(c) Let X :: R(x-)) and m :: m I \.

Add the subscript of the remaining variable to the end of K.

Construct the connection strength matrix B by ordinary least squares of

Eq. (3.6) based on the ordering K.

3.2.2 A Direct Method for Learning a LiNGAM Model

In [46], another method called DirectLiNGAM for identifliing the networks was pro-

posed. In this subsection, we explain how DirectLiNGAM estimates the networks of

the observed variables.

Pseudo code of the DirectLiNGAM algorithm is presented in Algorithm 3. At first,

it tries to find an exogenous variable as the top variable in an ordering of the network.

３

　

　

４
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Letus denotebyrl〕 ぬc residuals when銑 おregressed on″ ′:

=銑 ―
Wち

γ絆 (を ≠J).

Then, the variable :ri is exogenous if and only if it is independent of its residuals rji)

with all re\ I j) t46).The independence measure used in DirectLiNGAM [a6] is

(3.4)

(3.5)築 り の =Σ [ICOrr{9けP),χJ}|十 卜Orr{γP,9し′)}‖ ,

五∈Ц二≠′

where [/ is the set of subscripts of all observed variables r,;, artrd Q(.) is a nonlinear and

non-quadratic function tanh(.) which originally used in FastICA [26]. This original

paper [26] focuses on the variables following non-Gaussian distributions with high/low

kurtosis, and evaluate the independence between the variables. In this condition, the

function Q(.) : tanh,(.) transforms the non-Gaussian variables to reduce the effect of

their kurtosis and make the Gaussianity-based correlation analysis possible to evalu-

ate the independence between the non-Gaussian variables. Further explanation of this

function is described in [25]. In many cases, such a nonlinear correlation would evalu-

ate the independence accurately enough as described in the ICA literature [25]. Thus,

DirectLiNGAM selects the variable 1716 that minimize the statistics Eq. (3.5) as the

exogenous variable at Step 2(a), and. added the subscripl )(nz) to the end of the order-

ing list K at Step 2(b). Next, in data X, the component of the exogenous variable to

the other latter variables is removed, and we obtain the residual data matrix 11(r(*)) fy
performing the least square regression of Eq. (3.a). The LiNGAM model still holds

for the remaining residuals in U\{j}, and an ordering of the residuals is equivalent to

that of the corresponding original observed variables (The proof of the LiNGAM model

composed of the residuals is given in [a6]). Therefore, DirectLiNGAM can recursively

find the second top variable as the exogenous variable in the LiNGAM model composed

of the residuals. Thus, we set X :: R()(-)) at Step 2(c). By repeatirig these operations

2(a)-(c), the ordering of the observed variables K is obtained. Finally, based on the

obtained ordering K,the structure of the connection strength matrix B and its element
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b;3 is estimated by ordinary least squares [41] to be:

bt′ =ariFini[](″γ― Σ
ο(′ )<ο (1)可10執 (3.6)

where χγ is thC鶴―th sample of the corresponding variable.In addition,we recall that

θ
(を )iS the ordering ofthe obseⅣed variable″ 二.Since no later variable afttcts any carlier

vanable,we sct b″ =0,(θ (J)≧ οし),j≠ プ).Furthet the diagonal element btt is zero
because cach obscⅣ ed vanable docs not afFcctitseli

We show an example ofthe procedure to estin■ ate the ne●Ⅳork by]DirectLiNGAヽ 4.

Supposc wc havc a dataset X containing threc observed vanables″ 1,χ 2and"3 0btained

from the network corrcsponds to thc LiNGAM model shown in Fig.2.1.Firstly in

m=l itcration,DircctLiNGANIItries to ind an exogenous variable by evaluating thc

independence bettcen■′and its residuals r∫〕for all」 ∈{1,2,3}andを ∈{1,2,3}＼′
at Step 2(a)in Algo五血 3.Supposc we obtain the following statistics of the three

possible candidatcs:

T(χl,び )

T(χ2,y)

T(χ3,y)

0,11

592,

015

Hcre,we recall that if a vanable is the mOst independent ofits residuals and is likcly to

be exogenous,the statistic:「 would be small. Thus,in this example,■ l is selected as

he exogcnous variable in lst iterttion(772=1).Subsequcntly the subscript λ(1)=1

ヽ added to the orde五 ng Hst of variables κ,J.θ.κ ={1}at StCp 2(b).Then,ぬ e

data matrix X is updated to the regressed data matrix R(1)by using the least square

regression of Eq。 (3.4).As can be shown in Fig.3.1,the network consmcted by the

remainingresidualsrll)andrll)is also thc LNGANI modcl andthereforc onc itcrat市 ely

tries to■ nd an αοgθ
“
θ夕s Val■ able(reSidual).SeCOndly in m=2 iteration,ifwe obtain

the fbllowing statistics:

T(″2,び＼κ)= 0.09,

T(■3,び K`)= 5.65,
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ngure 3.1:Thc LiNGAM modd constructed byぬ e redduJs可⇒

thCn,″ 2 tthC rCSiduJ r`1))is selectcd as the αθgι4θtt varlable at Step 2(→ becausc

6f the smallest valuc of T("2,び κ`)=0,09,and thc subsc五 pt λ。)=2お appended

to the end of κ at Step 2(b),J.gっ κ={1,2}.Final軌 the remaining subscript{3}is

appended to κ,and we obtain the ordering list of variables κ ={1,2,3}激 Stcp 3.

The colllnection strength matrix]B is constructed by ordinary lcast squarcs of Eq.(3.6)

based on the ordering κ at Step 4.

Similarly to ICA― LiNGAM,DirectLiNGAM callllot idcntitt thc COrrcct nchvorks

if it does not exalnine the indepelldence between variables in the ncbⅣ ork propcrly.

Therefore,a choicc of thc indcpendence l■ easurc is important. In addition,oncc Di―

rectLiNGANII selccts a wrong variable as an exogenous variable,one can nevcr flnd a

correct network.Thus,thc scarch algo五■un is also ilmportant in selecting the candidatc

cxogcnous va五 able.

Ncvertheless,DircctLiNGAM has advantages over ICA¨ LiNGAM.Onc ofthe ad‐

vantages is that E)irectLiNGAM always converges to a solution while the convergencc

OfICA― LiNGAM is not guaranteed because Of ICA algo五 価 . The other is that Di―

rcctLiNGAN〔 ensurcs the scale―invariance while ICA― LiNGANIlis strongly influenccd

by the scale at the pellllutation procedure.With these advantages,E》 irectLiNGAM can

esumate the nettork more accllrately and has wider applicability than ICA¨ LiNGAM.
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3.3 Approaches for Improving the Conventional Meth-

ods

In the previous section, we reviewed the conventional LiNGAM-model-based methods

for estimating the variable network. For both ICA-LiNGAM and DirectLiNGAM, an

accurate evaluation of the independence between the variables is required to obtain the

correct network. In addition, the search algorithm is important for DirectLiNGAM.

In this section, we focus on the independence measure and the search algorithm and

propose variants of ICA-LiNGAM and DirectLiNGAM.

3.3.1 Extending the Independence Measure

ICA-LiNGAM [45] and DirectLiNGAM [46] use only one type of nonlinear correla-

tions such as Eq.(3.5). Unfortunately, the independence measure used in ICA-LiNGAM

[45] and DirectLiNGAM [46] cannot evaluate the independence between the variables

accurately. This is because the measure used in them considers only one nonlinear trans-

formation to evaluate the independence while the variables r and E are independent if
and only if they satisfies the following condition:

COrr{∫ (π ),g(ν)}=0,  ∀∫(・ ),∀θ(。 ), (3.7)

foranynonlinearboundedtransformations/(.)andg(.). Therefore,weneedtoconsider

the correlation between various nonlinear transformations of the variables in evaluating

the independence accurately. As just described in the previous chapter, the accurate

evaluation of the independence between the variables is important to identifu the net-

work. Thus, in this subsection, we propose a variant of the LiNGAM-model-based

methods by extending the independence measures employed in [45] and [46] to cover

wider classes of the transformation for enhancing the accuracy and the robustness to

outliers.

The extension is made by introducing a kernel based independence measure pro-

posed in [6]. The measure is based on kernel canonical correlation analysis (Ker-

nel CCA). Kernel CCA is a method using kernel functions [6] to look for nonlinear
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transformations of the variables that maximize correlation in the transformed higher-

dimensional space. Here,letus denote n samples of r and Aby ri andyi (i : 1,. . . ,ft),
respectively. Then, the kernel functions are defined as inner products of the transforma-

tions:

k,(rn , ri ) : (Q*1rt1, d,1ri 17 ,

ko(vo, l.j) : (60fui1,40@j)),

where /"(.) and daO are nonlinear transformations which map u and y into higher-

dimensional space, and (., .) is an operation to take an inner product. Then, Kemel

CCA obtains n-dimensional coefficient vectors a and B that maximize the correla-

tion p,,o between the transformations of r and y in higher-dimensional space. In other

words, Kernel CCA tries to find the nonlinear correlation which is most sensitive to

the independence between the variables. The equation to compute the kernel canonical

correlation is given as follows:

p,,a : maxoTK,KoB, subject to arK?ra. : BTK2TB : l, (3.8)

where K, and Ko are n x n centered Gram matrices and

,χ
l)一

寺Σ卜1た・(″
1,ノ

)・ …

The optimization of the canonical correlation p,,y of Eq. (3.8) comes down to a gener-

alized, eigenvalue problem as follows:

I o x,K,'l fal lxZ o I f'l
L^,*" o I LBI 

: o"'u lo qj LBI

As a result, the kernel canonical correlation pr,y corresponds to the maximal eigenvalue

which can be derivedby Cholesky decomposition [6]. Then, we employ an independent

,"1)一 洗Σ卜1た・(″
n,ノ

)

,ν
l) ―轟Σ糧1んυ(ν

l,ノ
)
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measure based on Kernel generalized variance (KGV):

Lの 一 :b算 一成」, (3.9)

which is equivalent to the mutual information between the variable n andg [6]. The mu-

tual information is zero if and only if the variables are mutually independent. Therefore,

we employ KGV as our independence measure.

Though, generally, computing the higher-dimensional transformations of the vari-

ables requires high computational time and is not feasible to compute, [2] have shown

that the inner products can be replaced by the kernel functions such as Gaussian kernel

defined as follows:

/ lni - -r)2\
k,(r',ri1 : (6,@n),0,@i)) : exp ( -t" -u*' ) .

\o'/
ko(a',a) : (Qo@\,Qo(aj)) - exp ( -(Y' -Pj)'z\tt 02 /

This technique is called Kernel Trick. Therefore, we can directly obtain the inner prod-

ucts without computing each transformation Q"@n) and Qo@i) 
r. In this dissertation,

we employ this Gaussian kernel as the kernel functions k" and k, which is widely used

in the field of machine learning, and set the parameter o to the default value used in

[6j where the good performance is shown. In these manners, by using kernel functions,

we can obtain more accurate independence measure of Eq. (3.9) while maintaining its

computational feasibility.

As described in the previous section, the independence measure used in ICA-LiNGAM

and DirectLiNGAM of Eq. (3.5) focus on kurtosis of the distribution of the variable.

However, kurtosis is strongly influenced by outliers [25] which are usually contained in

real-world datasets. Therefore, the robustness to outliers ofthe independence measure is

not well ensured. In contrast, since the kernel independence measure considers various

types of nonlinear transformation and focus on not only kurtosis but also other statistics,

it is expected to robustly evaluate the independence [6]. Therefore, the independence

measure will provide more accurate and robust estimation of the network in our variants

of ICA-LiNGAM and DirectLiNGAM.
tFurther explanation of the relation between the kemel function and the high-dimensional transfor-

mation is given in [2].
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Based on these considerations, we first propose a variant of ICA-LiNGAM by replac-

ing FastICA method used at Step I of Algorithm 2 by the ICA method with KGV, which

is called KernelICA-KGV. Here we call this variant of ICA-LiNGAM as KernelICA-

LiNGAM.

Secondly, we propose a variant of DirectLiNGAM in which the independence mea-

sure used at Step 2(a) inAlgorithm 3 is replaced by the independence measure Eq. (3.9).

In other words, we propose to replace the statistic Eq. (3.5) by a statistic using the kemel

based independence measure Eq. (3.9) as

写″硼しルの=Σ fしヵr約 =jュ
:―
:b算―くりだ⊃光

を∈軌J≠′

(3.10)

where pr,,rlt) 
l: 

the kernel canonical correlation coefficient between a variable ri and

its residuals r)r/ when 14 is regressed on 13 by the least square regression of Eq. (3.a).

If a variable ri andits residuals ,li) *" independent, this independence measure has a

small value. We call the variant as Kernel-DirectliNGAM.

3.3.2 Extending the Search Algorithm

With small sample data, the independence statistic Eq. (3.5) is inaccurate because of

the sampling fluctuation. Particularly in DirectLiNGAM, it employs a simple greedy

search algorithm and always selects only a unique variable as an exogenous variable

that minimizes the statistic Eq. (3.5). Therefore, once a wrong exogenous variable is

selected as an exogenous variable because of the inaccurate value of 7, a widely wrong

network tends to be obtained. To alleviate this problem, a more advanced search algo-

rithm which always keeps multiple candidate orderings of the variables in the search is

expected to provide a more accurate identification of the nefworks under small samples.

Accordingly, we propose to introduce the search algorithm called beam search [61] at

Step 2(a) of DirectLiNGAM algorithm. We point out that the objective to use the ad-

vanced search algorithm is to enhance the accuracy and not to improve the robustness

against outliers because the outliers affects the independence measure only and do not

change the search process.
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Wc prescnt pscudo code of the algoridln incOrporating the bcanl search in Algo‐

rithm 4.2 Atthc■ rst step of thc itcration,initialize ttι =O and κι=O for all

ι∈{1,・ …,κ},Where κ is a width ofthe beam search tO keep κ ordcring lists κι,

and Ht is a value represcnting thc sllllmation of all statistics:r along thc ordering list

κι.In our fOmulation,the total indepcndcncc=ι  is employed since itis tO be smallif

the correct ordering ofthe vanables are identifled.NIIoreoveら prepare cOpies ofthe data

matrix Xι =X.At Step 2(の in AlgOrithm 4,one selects thc κ pairs Of the subsc五 pts

(τ
級),λ。)}(ん C{1,…・,κ})Of κι and"」 cach Of which is likely to bc indcpcndent

iom■s redduds and g市 es ic smancrtot」 hdependence measure助 十T(″ヵびヽKD
among J∈ び、為 fOr all ι∈{1,・ …,κ }.At Step 2(b),the κ cllrrent ordering lists and

mcasurcs arc storcd,″ .θ。,κ′=κι and夏′=夏ι・Then,at Step 2(c),〃 ιand κ
`are

replaced byぬ c new odering Hsts暉 。∪λ°andぬ e new to麟l hdependence mettllrcs

I:なの十 T(πλlel,υ＼κfc)),respect市 ely.Next,at Step 2(d),theん drata matHces Xι are

updtted to the regrcsscd dtta matrix R,脇 which is derivcd by thc least square rcgres―

sion of Eq.(3.4).In these mallnet one recllrs市 ely selects the κ candidatc pairs of the

ordcring list and the exogenous variable. Finally9 0ne selects the best orde五 ng´f frOm

κι which has the smallest tOtal independence measure JfF and appends the remaining

subscriptto the end of κ at Stcp 3.Silnilar to the DirectLiNGANIl algorithin,thc con―

ncction strcngth matrix B is constructcd by ordinary lcast squarcs ofEq.(3.6)based On

the Ordering Йf at Step 4.

We show an example of this new algoriJ■ m as follows. Suppose that wc have a

dataset having three obscrved variables″ 1,"2,χ3and deme κ = 2. At irst,the al―

gorithm initializes ordc」 ng lists κl=κ 2=O and the tO●l independence mcasure

〃1=Ff2=0・ Ifthe statistics ofthree possible exogenous variables are

T(κl,y)

T(″2,び )

T(33,び
)

0.13,

3.25,

0.08,

we obtain K - 2 candidates of the exogenous variables, JD1 and u3 at Step 2(a) in lst
rln this dissertation, we do not introduce this search method to ICA-LiNGAM since introducing this

beam search to ICA-LiNGAM seems not to be made in a straishtforward wav.
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Algorithm 4 Beam-DirectLiNGAM

2.

Given a Pdirnensional variable vector x, its p× η data matrix X, the positive

integer κ (κ ≦ p)fbrthe beam search and a set y of subscripts of a‖ χづ ∈ x,

initialize κ ordering lists Kt:==0,the κ totalindependence measures lfF:==0,κ

copies of data rnatrix Xι :=X and m:==1.

Repeat until ρ-l subscripts are added to each Kt.

(a)For each ι∈{1,…・,κ},regress″じon π′for allた び、κι(づ ≠プ)and dettVe
the residual data matHx R夕 )from the data mat面 x Xι for all J∈ υヽκι by
performing the least square regression of Eq.(3.4).Then,lnd κ pairs ofthe

canddate ofthe exogenous vattaЫ e χメ→ and the orde‖ ng iも t Klo)Whth

give the top κ sma‖est values ofthe totalindependence rneasure:

{τ
1/2),λ (ん)|ん ∈{1,・ …,κ}}=arg tOp κ min{夏ι tt T("′ ;び κヽι)},

{ι ,′ },

ι∈{1,… ,κ },′ ∈υヽκ′

where r is the independence measure shown in Eq.(3.5)and{τ (ん ),λ (ん )}

are the κ candidate pairs ofthe subscripts ofthe ordering list and the varト

able that give top κ sma‖est va:ues in the above measure.

(b)StOre the orde‖ ng lists and the totalindependence measures,ζ′:=κι,

・
巧 :=ffF br eachイ ∈{1,一 ,κ }・

(c)For each ι∈{1,…・,κ},update the measure,均 ==flalttr(.λ 121,び ζ`f121)・

Then,let均 =灯O and add the subsc百 pt λO to the end of灼 .

(d)For each ι∈{1,…・,κ },bt Xι :=R%l)and鶴 :=π +1.

Selectthe list Kt having the sma‖ esttotalindependence measure rfF as the best

orderingス「and add the subscript ofthe remaining variable to the end of](.

Constructthe connection strength matttx B by ordinary least squares of Eq.(3.6)

based on the ordering κ .

3.

4.
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iteration(η =1),and thc valucs of T(zll,び )and T(π 32'び)are StOred to∬l and Ff2

rcspcctively at Step 2(b). SubSequenthち each subscript λ(1)二= 1,λ(2)=3 are appcndcd

to each ordering list Kl andろ at Step 2(c).Now we have the ordering lists Kl=(1}

andろ ={3},and thC tOtal independence measllres比 =0.13 and Jf2=0・ 08.Then,

at Step 2(c),onCupdatesmedatamatricesXl andX2 tOtheresidualdatamatricesRI⊃

andRtt de五 ved by perfommg Eq.(3.4).

Ncxt,suppOse we obtain the following statlstlcs

T(″2,υ＼κl)= 0・ 02,

T(χ3,び κ`l)= 5.65,

T(χl,び＼κ2)= 485,

T(″2,び＼K・2)= 3.66.

Here,we recallthat ifthe total independence ineasure given by the pair ofthe ordering

list and the candidate vanable is small,the pair is morc feasiblc ordcring in ollr for―

mulation.Then,at Step 2(り in 2nd iteration(鶴 =2),thc κ=2 canфdatc pairs of

the subscripts ofthe ordering list and the α9gθ″θtt variable,{τ に)=1,メ)=2}and

{7。
)=2,入。)=2}are obtaincd each of which gives thc smallcr total indepcndcncc

mcasllre助 +T(π′,び＼ん).Subsequcntl"copies対 :=ん and巧 :=助 額e Crc_

atcd at Step 2(b).Then,at Stcp 2(c),Jfl,比 are replaced by〃 f+T(κ 2,び κ`f)and

=5+T(″
2,び＼κ5)・

MOreOVet the ordering listsれ ,κ2are replaced by κf and κ5,

and each subscript{λ O)=2}and{λ。)=2}arc appended to the end of κl and JЪ .

Hcrc wc have the orde五ng lists`={1,2}and為 ={3,2},and the totd indepen…

dence measures〃 1=0.15 and″2=3.74.Next,the orde五 ng κl is selected as the best

orde五ng κ because ofthc smallest measurc∬ 1=0.15.Then,the remaining subscript

are appcndcd to the orde五 ng list κ,alld wc obtain κ ={1,2,3}at Step 3.Finally thc

connection cocmcient matnx B is denved by ordinary lcast squares of Eq.(3.6)baSCd

on the obtained ordering K at Step 4.

Fig.3.2 shows all illustration ofthis procedure to select κ==2 pairs ofthe ordering

and the variable by the beanl search algo五 thmo  As can be seen in Fig.3.3,if we use

the past DirectLiNGAM algo五thm,the other ordering κ={3,2,1}is resulted which

has the large total independencc measllre because of the small difference of T(″ 1,び )
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■13,υ 角ヽ)巧 .

聯 2,

恥r3,の=0.

穐={3}

属ら=0,08 rlを ,υ 穐ヽ)=3 κ2={3,2}

74

Figure 3.2: The procedure to select the n : 2 candidate pairs of the ordering and the

variable by the beam search algorithm.

lst iteration
(m=r)

lst iteration
(zr=l)

2nd iteration

(″=2)

2nd heration

(“
=2)

Figure 3.3: The procedure to select the candidate of the exogenous variable by Di-

rectLiNGAM (Beam-DirectLiNGAM with rc : 1).
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andT(rs, U) in lst iteration (m - l).In this manner, the small difference of 7 which

could be caused by the statistical sampling fluctuation would lead the quite different

estimation of the network. Thus, the modification for the search algorithm is important

for more accurate network identification in DirectLiNGAM.

We call the variant of DirectLiNGAM using the beam search as Beam-DirectLiNGAM.

Additionally,we apply the beam search to Kernel-DirectliNGAM that we proposed in

the previous subsection and call this variant as Beam-Kernel-DirectliNcAM.

3.4 Experiments on Artificial Data

In this section, we experimentally charucteized the conventional methods, ICA-LiNGAM,

and DirectLiNGAM, and their variants, KernelICA-LiNGAM, Kemel-DirectLiNGAM,

Beam-DirectLiNGAM and Beam-Kernel-DirectliNcAM. To design the experiments in

an efficient way, we partitioned the experiments into two stages. Firstly, we compared

ICA-LiNGAM" DirectLiNGAM. KernelICA-LiNGAM and Kernel-DirectliNGAM to

investigate the accuracy, the computational cost, and the robustness to outliers which

is expected to be provided by the kernel based independence measure. Further, we ex-

amine the scale-invariance of the framework of DirectLiNGAM. Secondly, based on

the result of the previous experiments, we compared Beam-DirectLiNGAM and Beam-

Kemel-DirectLiNGAM in terms of accuracy and computational cost to examine the

effect to the accuracy by the beam search.

3.4.1 Experimental setup

We explain how artificial datasets are generated and how the accuracy of the methods is

evaluated.

At first, we employed 17 non-Gaussian distributions used in [6] from which we drew

independent non-Gaussian external influences ea. These distributions included a double

exponential distribution, an uniform distribution, a t-distribution with 5 degrees of free-

dom, an exponential distribution, mixtures of t'wo exponential distributions, symmetric

and asymmeffic mixtures of some Gaussian distributions. Then we randomly generated
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a dataset with a combination of number of variables p and sample size n as follo*s.

1. We randomly constructed p x p strictly lower triangular matrix B so that standard

deviations of variables u;, owing to parent variables ranged in the interval [0.5,
'1.51.

We generated n samples by independently drawing the external influence ei (i :
I, .,p) from non-Gaussian distributions randomly selected from the 17 distribu-

tions with zero means and standard deviations randomly selected from [0.5, 1.5].

The n sample values of the observed variables ri wete generated according to the

LiNGAM model Eq. (3.2) with n samples of the external influences.

We randomly permuted the ordering of ri, i.e., obtained the row-permuted data

matrix X.

Because of the permutation at Step 4, the true connection strength matrix to be estimated

is also permuted by the corresponding ordering of ri. Then, we denote the permuted

matrix asBp.rn.

In each numerical experiment, we evaluated accuracy of an estimated ordering as

follows. We first permuted the rows and columns of Bp.rrn according to the estimated

ordering K. If the estimated ordering corresponds to the true ordering, the permuted

Bp.r* is strictly lower kiangular. Thus, we counted the number of non-zero elements

in the strictly upper triangular part of the permuted Bo.rrn as the number of errors. The

number of errors is zero if the estimated ordering is correct. In all the experiments for

every combination of p and n,we generated 101 datasets and counted the number of

errors on each dataset and took the median of the 101 numbers of errors. In comparing

the computational time of the methods, we took the median computational time of the

101 trials.

3.4.2 Kernel-based variants

Atfirst, we testedtwo of thevariants, KemelICA-LiNGAM andKemel-DirectLiNGAM,

and made a comparison with the other LiNGAM-model-based methods. We generated

2.

●
Ｄ

4.
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datasets with combinations of the number of the variables p:3, 16 and 32, and the sam-

ple size n:100, 200, 500, 1000, 2000 and 5000. We evaluated accuracy of orderings

estimated by those four methods using the datasets. Further, we compared their com-

putational time. We did not test KernelICA-LiNGAM for p:16 and 32 since it needs

much larger computational time than other methods. The medians of the numbers of er-

rors are shown in Table 3.1. In Table 3.1, the median errors of Kernel-DirectliNGAM

are often smallest. This is because the kernel based independence measure considers

the various nonlinear transformation and evaluates the independence correctly. Further-

more, the computational times are shown in Table 3.2. The computation amount of the

Kernel-DirectliNGAM is rather larger than DirectLiNGAM. However, its computation

amount is considered to be still tractable for data consisting of dozens of variables and

a few thousand samples.

Next, we examined scale-invariance of ICA-LiNGAM, DirectLiNGAM, KernblICA-

LiNGAM and Kernel-DirectliNGAM since the algorithm of ICA-LiNGAM is known

to be scale-sensitive while that of DirectLiNGAM is scale-invariant as explained be-

fore. We first generated datasets with combinations of p : 8 and n:700,200,500,

1000, 2000 and 5000, then all the values of four randomly chosen variables from the

p variables were respectively amplified by two orders of magnitude in each dataset so

that the variables have rather different scales. Table 3.3 shows the median errors of

the four methods. DirectLiNGAM and Kernel-DirectliNGAM are advantageous over

the other two methods in terms of scale-invariance. Though both DirectLiNGAM and

Kernel-DirectliNGAM are scale-invariant, Kernel-DirectliNGAM worked best since

the kernel based independence measure considers various nonlinear transformations of

the variables and evaluates the independence more accurately.

Finally, we examined robustness against outliers. We first generated datasets with

a combination of p : 8 and 1000. Then we added a random value having either +5

or -5 up to randomly chosen 14 samples [6]. The median errors resulted by these ex-

periments were plotted in Fig. 3.4. It shows that Kemel-DirectLiNGAM achieved the

smaller number of errors and was not very much affected by the existence of outliers.

As described in Section 3.3, the kernel based independence measure considers varigus

statistics while the conventional measure focus on kurtosis of the variable which usu-
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Figure 3.4: Median numbers of errors with increasing the number of outliers.

ally suffers from outliers. Therefore, Kernel-DirectliNGAM can estimate the network

robustly.

As a result, we can conclude Kernel-DirectliNGAM is more accurate and robust

than the other methods. Moreover. Kernel-DirectliNGAM is also scale-invariant.

3.4.3 Variants employing Beam search

In this subsection, based on the result of the previous experiment, we focused on Di-

rectLiNGAM and its variant, Kemel-DirectLiNGAM which provides more accurate and

tractable network identification than ICA-based methods. In addition, as described in

Section 3.3, the beam search is expected to enhance the accuracy of the network esti-

mation. Therefore, we investigated differences of the accuracy and the computational

time between the greedy search and the be'am search in DirectLiNGAM and Kernel-

DirectLiNGAM. We generated 101 datasets with combinations ofp:8, 16 and n:100,

200, 500, 1000, 2000, 5000, and selected the width of the beam n:2,4 and 8 which is

the number to keep rc candidate orderings. In Table 3.4,the median numbers of errors

are shown. Moreover, the median computational times of the compared methods are

presented in Table 3.5. Table 3.4 shows that the variants using the beam search more

―
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accurately estimated the orderings of the observed variable. By using the kemel based

independence measure, the more accurate total independence of the ordering is evalu-

ated in the beam search, and thus the ordering is more correctly estimated even under

the situation having small samples. Therefore, the significantly accurate identification

of the ordering was made by Beam-Kernel-DirectliNcAM. However, as can be seen in

Table 3.5, the computational time of Beam-Kernel-DirectliNGAM is highest of all and

increases linearly with the width of the beam rc. There is a trade-offbetween the accu-

racy and the computational time. Nevertheless, we can control the computational time

to be feasible by choosing the width based on the characteristics of given datasets (e.g.

the number of observed variables, sample size and/or required accuracy) in applying the

method to real-world datasets.

3.5 Conclusion

We proposed turo ideas to improve accuracy and robustness of the conventional LiNGAM-

model-based methods. One is to use a more sophisticated independence measure than

that in ICA-LiNGAM and DirectLiNGAM, which provides both accuracy and robust-

ness to outliers. The other is to use beam search instead of greedy search which en-

hances the accuracy of DirectLiNGAM. In the experiments, we firstly examined the

LiNGAM-model-based methods and our methods using kernel based independence

measure in terms of the accuracy, the computational cost, the robustness to outliers

and scale-invariance. Based on the result of the first experiment, we compared the ac-

curacy and the computational cost of DirectLiNGAM, Kernel-DirectliNGAM, Beam-

DirectLiNGAM and Beam-Kernel-DirectliNcAM. The result of these numerical ex-

periments implies that the variant using both kernel method and the beam search pro-

vides the more accurate and robust network identification than the previous LiNGAM-

model-based methods even under the various real-world situations such as small sam-

ple and noisy data. Though the computational time of Beam-Kernel-DirectliNGAM is

higher than the conventional methods, it is tractable and controllable.

An important topic for future research is to investigate how other meta-heuristics

including tabu search could be used in our method. Moreover, we can incorporate other
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independence measures such as Fast kernel ICA [44] into our method. These further

investigation could lead more accurate and/or time-efficient methods for estimating the

variable network.



42

Table 3.1: Median errors of the conventional methods based on the LiNGAM model

and their variants under (A) 8 variables; (B) 16 variables; (C) 32 variables.

(A) 8 variables

π

Kemel―Direct  Direct  KemeICA―   ICA‐

LiNGAM  LiNGAM LiNGAM LiNGAM

100 6 7 7 8

200 イ 6 8 4

500 3 6 3

1000 2 3 1

2000 0 0 0 0

5000 0 0 0 0

(B)16 variables

η

Kemel―Direct  Direct  KemelICA―   ICA‐

LiNGAM  LiNGAM LiNGAM LINGAM

100 30
り

， 29

200 ′∂ 24 33

500 7 14 33

1000 イ 8 22

2000 2 4 14

5000 6

(C) 32 variables

π

Kemel―Direct  Direct  KernelICA―   ICA―

LiNGAM  LiNGAM LiNGAM LiNGAM

100 145 130         -         ′25

200 93 ∂7 88

500 5イ 80 161

1000 29 41 157

2000 ′2 27 138

5000 5 56
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Table3.2: Median computational time (sec) to estimate the ordering by the conventional

methods and their variants under (A) 8 variables; (B) 16 variables; (C) 32 variables.

(A) 8 variables

η

Kemel―Direct  Direct  KernelICA―   ICA―

LiNGANII  LiNGAM LiNGANII LiNGAM

100 0.63 θ.θイ 19.68 1.30

200 0.70 θ.θイ 22.60 1.18

500 0.90 θ.θ5      29.41 1.15

1000 1.24        θ.θ 7      39.14      1.18

2000 2.01         θ.′ ′       41.85       1.18

5000 5.53        θ.27      77.58      1.19

(B) 16 variables

η

Kcrnel― Direct  Direct  KernelICA―   ICA―

LiNGAM  LiNGAM LiNGANI LiNGAM

100 4.94        θ.2ア 0.54

200 5.61       θ.3θ 0.66

500 7.18 θ.J9        -        0.94

1000 10.05       θ5_5        _         0.59

2000 16.09 0.86        -        θ.イ ′

5000 43.02       1.96         -         θ.イθ

(C) 32 variables

η

Kemel―Direct  Dむ ect  KemelICA―   ICA―

LiNGANI  LiNGAM LiNGANII LiNGAM

100 40.52       1.99        -        θ.97

200 45.79       2.25         -         r.イ イ

500 58.17 2.99        -         ′.∂2

1000 81.97       4.27        -        _2.イ ア

2000 131。48       6.78        -        3.5イ

5000 346.20      17.07        -        ′.9θ
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働

Kemel,Direct  Direct  KemcICA‐   ICA‐

LINGAM  LiNGAM  LiNGAM  LiNGAM

100 6 13 19 19

200 イ 19 17

500 ′ 8 18 17

1000 ′ 5 17 16

2000 θ 2 16 16

5000 θ 16 16
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Table 3.4:lⅥ edian erors of the variants using thc beam search with thc width of tlle

beam κ=2,4 and 8 under(A)8 vaHable、 c)16 va五 ables.

(ハo8vaHables

η

Dircct

LiNGAM

Bcam‐

DicctLiNGANI

(κ =2)(κ =4)(κ =8)

Kemel‐

D[cct

LiNGANI

Beam¨Kcmel

DircctLiNGAM

(κ =2)(κ =4)(κ =8)

100 7 7 8 7 6 j 5 5

200 6 6 6 7 4 J 3 3

500 3 2 2 2 ′ ′ ′

1000 2 1 1 1 1 θ θ θ

2000 0 0 0 0 0 0 0 0

5000 0 0 0 0 0 0 0 0

(B) l6 variables

η ｍ　ｍ
Ｌ

Bcam‐

DicclLiNGAM

(κ =2)(κ =4)(κ =8)

Kemcl―

Dicct

LiNGAM

Bcam―Kcrnel‐

DirectLiNGAM

(κ =2)(κ =4)(κ =8)

100 31 29      29      29 30 27      22      2′

200 24 23      20      20 18 15 15 ′イ

500 14 13 12 12 7 6 j 5

1000 8 5 5 5 4 3 3
つ
‘

2000 4 3 2 2 2 ′

5000 1 1 1 1 l θ θ θ
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Table 3.5: Median computational time (sec) of the variants using the beam search with

the width of the beam n:2,4 and 8 under (A) 8 variables; (B) 16 variables.
(A) 8 variables

η

Direct

LiNGANll

Bcam中

DircctLiNG劇

(κ =2)(κ =4)(κ =8)

Kemel‐

Direct

LiNGAM

Beam―Kernel

DirectLNGAM

(κ =2)(κ =4)(κ =8)

100 a“ 0,09 0.17 0.35 0.80 1.60 3.20 6.42

200 aθ5 0.09 0.18 0.37 0.94 1.88 3.77 7.55

500 aθ6 0.12 0.Z 0.48 1.33 2.65 5.24    10.66

1000 aθ∂ 0.16 0.33 0.66 1.90 3.83 7,71    15.47

2000 ar3 0.27 0.53 1.07 3.12 6.22    12.59    25.53

5000 a29 0.57     1.15    2.30 10.74 21.90    43.95    88.36

(B) l6 variables

η

Direct

LiNGAM

Bcam―

DIcctLiNGAM

(κ =2)(κ =4)(κ =8)

Kemel‐

Direct

LiNGAM

Beam-Kemel-

DirectLiNGAM

(n:2) (n: 4) (rc : 8)

100 agθ 0.59 1.19 2.38 6.52 13.00    25.95 - 51.94

200 ag3 0.66 1.33 2.66 7.55 15.07    30.14    60.31

500 aィィ 0.87 1.75 3.51 10。73 20。98    42.90    86.35

1000 a63 1.26    2.51     5。 04 ４
フ 30.14   61.00   122.70

2000 ′.θ3 2.05 .4.10
8.21 25.36 50.52   101.78   205.07

5000 2イイ 4.87     9.74    19.49 86.68 170。83   344。 21   696.70
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Chapter 4

Robust Active Learning for Linear

Regression宙a Density Power

Divergence

4.1 Introduction

In Chapter 2 and3, we proposed the methods to obtain some knowledge on the directed

variable network. Besides them, estimating a relation befween an important variable and

the other observed variables, which is known as a linear regression, is also important

in many applications. In the context of the linear regression, the particular variable is

called a label variable and otherwise are called explanatory variables. Here, we note that

a sample which has values associated with both the label variable and the explanatory

variables is called a labeled sample. Otherwise, a sample which has only values of the

explanatory variables is called an unlabeled sample. In contrast to the technique for

estimating the entire network shown in Chapter 3 which can apply only to less than

100 dimensional data, the linear regression technique can be applied to more than 100

dimensional data. Because of its applicability, the linearregression model is widely used

to represent the relation between the label variable and the other explanatory variables

in many domains such as medical service [60, 30], social science [55, 17], marketing

120,91and so on.

Recent development of information technology has made it possible to collect huge

amount of data automatically in various domains. Nevertheless, in most cases, such

data are composed of majority unlabeled samples and minority labeled samples. This



48

is because labeling tasks by human experts or additional experiments called oracles

are usually expensive or time-consuming. For example, in a car insurance company,

an insurance fee is determined by its company's employees based on car information,

driver's driving records and so on. However, such determination by hand needs enor-

mous cost and time. Unfortunately, under the small labeled sample data, the estimation

of the linear regression model is often statistically unreliable. For this issue, a technique

called active learning has been discussed to make learning processes with majority un-

labeled samples and minority labeled samples more efficient [10] in recent years. In

contrast to passive learning that estimates a model from given labeled samples only, the

active learning algorithm selects some unlabeled samples expected to be informative as

queries for leaming and asks an oracle to label them. This active learning framework

has been widely applied successfully in various regions such as speech recognition [19],

classification [35] and regression [56].

One of the most important problems in the active learning framework is how to select

unlabeled samples called queries, and several querying measures have been discussed

over the last few decades [31,42]. These conventional active learning methods com-

monly assume that the oracle always follows a true labeling distribution and gives cor-

rect labels on samples. In the real-world, however, human experts might give incorrect

labels because of their conditions or additional experiments might make mistakes be-

cause of their environments. Such an oracle giving noisy labels is called a noisy oracle

which usually follows the noisy labeling distribution called the contaminated distribu-

tion. With the noisy oracle, an accuracy of a model estimation by the active learning

method could become worse. Thus, in this chapter, we propose a new active learning

algorithm for the linear regression to tackle this problem caused by a noisy oracle.

Among various types of querying measures, in this chapter, we employ Variance

Reduction Approach (VRA) [41], which is based on an asymptotic variance of parame-

ters (estimators) since its validity is well ensured by the statistical asymptotic analysis.

In this approach, active leaming algorithms select queries that are expected to mini-

mize the difference between the true parameter and the estimated parameter. A con-

ventional method based on VRA use Kullback-Leibler (KL) divergence in estimating

a model parameter (Ml-estimator), and employ the asymptotic variance based on the
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Ml-estimator in determining queries [62]. However, the Kl-divergence-based methods

do not consider noisy-oracles and thus work worse if there are noisy labels. Therefore,

in this chapter, through the asymptotic analysis on M-estimator which is a wider class of

estimators including the Ml-estimator, we extend the conventional VRA-based query-

ing measure and incorporate robust divergences called density power divergence into

our querying measure to achieve the robust estimation of the linear regression model.

Based on these backgrounds, in this chapter, we firstly propose an active learning

method to robustly estimate the variable relation from the noisy small labeled samples

and the large unlabeled samples. Then, we examine robustness of our proposed meth-

ods by the numerical experiments with artificial datasets. Further, by using real-world

dataset, we investigate its behavior under more realistic sifuation.

The remainder of the chapter is organized as follows. In Section 4.2, we first briefly

review the linear regression model, the pool-based active learning framework and the

conventional active learning method based on VRA. In Section 4.3, we extend VRA

through an asymptotic analysis on M-estimator and apply it to the density power di-

vergence. Then, in Section 4.4, we propose a practical querying measure based on the

discussion in the previous section. Finally, we investigate the robustness of our ac-

tive learning method for the linear regression model by using artificial and real-world

datasets in Section 4.5, and we conclude this chapter in Section 4.6. This chapter is

related to the work published in [51, 52].

4.2 Background

4.2.1 Linear Regression Model

As we explained in Section 4.l,the linear regression model has been widely used to

represent the relation between the label variable and the explanatory variables because

of its applicability. Therefore, in this chapter, we discuss the general linear regression

model.

Let us denote the label and the explanatory variables by the continuous scalar vari-

able y and p-dimensional continuous vector x, respectively. Then, the linear relation is



50

defined as the following equation:

g:wTxftugt€,

where w is a p-dimensional coefficient vector, u6 is a constant term and e is a Gaus-

sian noise with zero mean and its variance o2. The probabilistic model of this linear

regression model is expressed as:

い力RЪ‰め=洗岬←
ヽ

１

′

ノ

_υ
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Ｘ
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σ２

(ν ― W

In the rest of this chapter, we denote the collection of these parameters by 0 and the

probabilistic model of the linear regression by pe(Al") for simplicity.

4.2.2 Pool-based Active Learning

Active learning techniques are divided into main three branches. The first is Member-

ship query Synthesis [4] where the oracle generates any arbitrary unlabeled sample on

demand and give the label on it. The second is stream-based selective active learning

[2] where unlabeled sample is generated sequentially from its true distribution and the

oracle decides whether to select as a query or discard it. The third is pool-based active

learning [33] which is a frequently-discussed framework in machine learning for situ-

ations where the distribution of unlabeled samples is unknown but unlabeled samples

from their true distribution are given [35]. To estimate the linear regression model, the

pool-based active learning is more appropriate to real-world situations where we have

small labeled samples and large unlabeled samples. Therefore, in this section, let us

consider the pool-based active learning framework to robustly estimate the linear rela-

tionship (the linear regression model) from small labeled samples and large unlabeled

samples.

Formally, in pool-based active learning framework, it is assumed that one has a small

set of labeled samples 4 : {(*r, Ar), . .. , (*,,, g*r)} and a large set of unlabeled sam-

plesl'(:{x,r+r,...,Xnr+n*}(nr<n,).Then,onetriestofindasetofqueriesfrom

U thatis expected to be informative for estimating a 'good' model. An overall procedure

of the pool-based active learning algorithm is described in Algorithm 5. At Step 2(a), a
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Algorithm 5 Pool-based active leaming algorithm

1. Given a set of labeled samples L, aset of unlabeled samples l,l,the number of
queries per an iteration Q and the number of querying iteration R, and initialize

m::0.

2. Repeat the following procedure R times.

(a) Estimate the model pe(Alx) from rhe labeled sample ser .C.

(b) Select a set S of Q unlabeled samples as queries based on the estimated

model n6an(Ulx).

(c) An oracle gives a label on each query in 5.

(d) Add the labeled sample set.S to 4.

(e) Remove the queries in .S from U andm :: m 17.

3. Estimate the model pu(yl*) from the labeled sample set 5 and obtain the final

model pa^@lx).

model with parameter 0, denoted as pe(glx), is estimated from the small set of labeled

samples 4. Next, based on the estimated model pe_(Alx), the algorithm selects the most

'informative' subset of unlabeled samples S as queries at Step 2(b). Subsequently, each

query is labeled by an oracle and added to .c as labeled samples at step 2(c) and (d).

Then, the samples in 5 are removed fromu at Step 2(e). These learning and querying

steps are repeated iteratively.

As mentioned above, the selection of an informativeness measure for queries is an

important problem in developing pool-based active leaming algorithms. One of the

promising measures is based on the asymptotic variance which evaluates an efficiency of
an estimator 0. The strategy for minimizing this asymptotic variance is known as VRA

[41]. However, a conventional method, which will be explained in the next subsection

does not consider mis-labeled samples.
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4.2.3 A Conventional Method using Kl-divergence

In this subsection, we review the conventional active learning method based on VRA

[62]. This active learning method estimates a model under an assumption that the model

pe(yl*) with a parameter 0 includes a true distribution q(glx) , i.e., q(ylx) : pe.(yl*)

where 0* is a true parameter. The model parameter 0 is obtained by minimizing the

Kl-diversence:

DKLuレの=∬ 9o9ωtt bg滅居dνd為 (4.1)

(4.2)

where q(x) is a true input distribution of the explanatory variables. This is a well-known

statistical measure to evaluate a difference between two probabilistic distributions. Now,

suppose that we have n labeled samples {(xr, gr), ' . . , (*,,, y,)} generated from a true

distribution q(x, g) : q(x)pg.(ylx). Then, the model parameter 6" which minimizes

the above Kl-divergence is obtained by solving the following equation:

Σあbgpは L;θ紛=0,
i:)-

where E6 denotes the partial derivation with respect to 0. The left side of this equa-

tion is derived by the derivative of the Kl-divergence with respect to the parameter and

replacing the expectation over q(x,a) with the samples, i."., I q(x,y)h(x,E)dgdx to

*D::rh(xr,At), where h(*,0 is some function of x and A. The parameter d, esti-

mated by solving Eq. (a.2) is called a maximum likelihood estimator (Ml-estimator)

and converges to 0* sufficiently if n -+ oo. An estimator which converges to the true

parameter with infinite samples is called a consistent estimator in statistics.

The conventional method selects queries based on the asymptotic variance of the

Ml-estimator, IEe.[@"- e)(4.- 0.)'1, where lE6.[.] is the expectation over a set

of {x,g} with respect to q(x, a) : q(*)pr.(gl*), and selects queries to minimize the

difference between 0^ and, g*. This measure is called an asymptotic variance and cor-

responds to the Fisher information I (0) 162l:

Er. [(d, - e.)(A, - 0.)'] : I(0)-' - tEe. l06togp(ylx)0e logp(ylx)t] -' @.3)

By using Kl-divergence, we can estimate the model parameter from finite samples effi-

ciently [22]. However, it is known that such efficient estimation is strongly affected by
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/,-True distribution
( aistribution estimated

by KL-divergence
Noisy

--- - -1-- --- tauets

Figure 4.1: An illustration of the contaminated distribution and the weighted likelihood

estimator

the existence of noisy labeled samples. We show an illustration of the model estimation

based on the Kl-divergence in Fig. 4.1 . As can be seen in Fig. 4. 1, the estimation by

Kl-divergence fits all the samples including noisy samples and provides a wrong distri-

bution. In these manners, if the sample with the noisy label exists, the method based on

the Ml-estimator tends to overfit to the data involving the noisy samples and therefore

to behave worse.

4.3 Extending a Querying Measure by Asymptotic Anal-

ysis

In this section, we extend the conventional VRA scheme to utilize the other consistent

estimator which are based on more robust divergences against the noisy labels than KL-

divergence. Here, we recall that the consistent estimator converges to the true parameter

if infinite samples are given from the true distribution. A general class of such the

consistent estimators is called M-estintator in statistics.

In Section 4.3.1, we show the notion of the M-estimators and their statistical charac-

teristics, which are basis of our querying measure. In Section 4.3.2,we introduce robust

estimators based on the density power divergence, and propose new querying measures

Influence to the estimation by
the density power divergence
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which provide us the robust estimation of the model in the noisy oracle situations.

4.3.1 Asymptotic Analysis on M-estimator

The M-estimator is a general class of the consistent estimators which includes the ML-

estimator shown in Section 4.2.3. Through a discussion of the general class of estima-

tors, we describe common statistical characteristics of various M-estimators.

Suppose we have i.i.d. n labeled samples {(*t, yt), . . . , (*,, y^)} generated from a

distribution q(x,A) : q(x)q(Alx) : q(*)pu-(*,a). Now, let us denote a vector function

by ,!@1";0), the dimensionality of which corresponds to that of the parameter 0. The

vector function is called an estim,atingfunction when it satisfies the following conditions

for any 0:

Eθ [ψ (ν lX;θ )l=0,

detlEθ [%ψ (ν lX;θ )]|≠ 0,

Eθ
[|lψ (ν lX;θ)|12]<∞ ,

(4.4)

(4.5)

(4.6)

(4.7)

where Ee[.] and detl . I denote the expectation with respect to pg(x, A) : q(x)pa(yl*)

and a determinant of the matrix, respectively. Here, we note that 1sl\(ylx;0) is the

square matrix, where the numbers of row/column is equal to the dimensionality of the

parameter g. If the estimating function exists, an estimato. d,, is obtained by solving

the following estimating equation:

Σψ幌区;θ紛=0・
こ=1

A solution of Eq. (4.7) is called an M-estimator in statistics [22]. The following propo-

sition states a convergence of the M-estimator, 0n -+ 0* if n -+ oo (consistency) and

an existence of its asymptotic variance.

Proposition 2 Suppose we have i.i.d. n labeled samples {(*t, yt), . . . , (*,, A)} een-

eratedfrom a distribution Q(x, y) and afunction tl:(ylx;0) satisfies the conditions (4.4)-

(4.6). Then, if n -+ 6, the M-estimator An rorrrrg"s to 0* in probabiliry. Moreover,

面(θη―θ
*)～ χ(0,Aメ Mθネ(Aメ )T), (4.8)
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where Af (p,2) denotes a Gaussian distributionwith mean p, and covariance matixE
and

A伊 =Eθ*[%ψ
(ν lX;θ

*)],

Mθ*=Eθ *[ψ
(ν lX;θ

*)ψ
(ν lX;θ

*)丁

]

The proof of this proposition is given in [59]. Proposition 2 remarks if we find an

estimating function ,tt(gl*;0), we can obtain an M-estimator 0n with the asymptotic

variance:
'I

Er.[(d, - o.)Gt,- g-)t] : _a;Jvrr.(AJ.')'.
TL

(4.9)

(4.10)

(4.11)

For example,lf rp(ylx;0):0e logpe(Elx), it satisfies the conditions (4.4)-(4.6) and the

M-estimator 6, given by Eq. (4.7) corresponds to the Ml-estimator Further, the vari-

ance Eq. (4.1 1) corresponds to the inverse of Fisher information matrix of Eq. (4.3). In

these manners, the results in Proposition 2 allow us to generalize the conventional VRA

scheme so as to utilize not onlv the Ml-estimator. but also any M-estimators.

4.3.2 Density Power Divergence

As described in Section 4.2.3,the weakness of the conventional Kl-based VRA is that

overfitting often occurs in the estimation if noisy labels exist. Moreover, the querying

measure based on overfitted parameters might give inaccurate queries. To alleviate this

weakness of the Kl-based VRA, we incorporate robust divergences, p-divergence [6]

and 7-divergence [6], into VRA. These robust divergences are called the density power

divergences, and they enable the robust estimation with the noisy labels. The estimators

based on the density power divergences are known as M-estimators. Therefore, we

incorporate the robust divergences into the extended querying measure obtained from

the discussion on the M-estimator in the previous subsection.

B-divergence

The density power divergence is a class of statistical measures to evaluate the difference

between two probabilistic distributions. This divergence has been developed to provide

a robust estimation against unanticipated noisy labels.
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Now, let us denote the contaminated labeling distribution of the noisy oracle by:

s@) : (t - rif fu) + n6(a),

where 4 is a mixture ratio, /(.) is a true distribution and d(.) is a distribution of noisy

labels. Then, the density power divergence can estimate the true distribution /(y) from

the samples given by the contaminated distribution 9(9) if the contaminated distribution

satisfies the following assumptions:

Assumption 2 q is sufficiently small, and

Assumption 3 f (A.) is sufficiently small for any noisy label g*.

The illustration of the contaminated distribution is shown in Fig. 4.1, where the left side

of the mountain stands for the true distribution and the other mountain is the distribution

of the noisy labels.

Under the above assumptions, one of the density power divergences called p-divergence

has been proposed in t6l. The divergence between q(glx) and pe(glx) is defined by

DB(qllpe): tr+e {i II qtuE)'*Pdaq(x)dx

ff ^ ff . ^ )
- ll q@l*)pu@1")Pdaq(x)dx + ll eefulx)1+Bdsq(x)d* | ,JJ JJ )

where p is a positive constant. Note that the p-divergence converges to the Kl-divergence

If B -+ 0. Therefore, this can be regarded as a generalization of the Kl-divergence of

Eq. (4.1).

Estimation of the model parameterbased on the p-divergence can be achieved through

the minimization of this divergence. The minimizer of the p-divergence is obtained by

the derivative of P-divergence:

AeD p(qllpe) : F,e* [rlt B(al";0)l ,

where the vector function tp B@lx;0) is:

ψβ(ν lX;θ)=pθ (ν lX)β %10gPθ (ν lX)

一
//ρ
θしDβ+1%bgpθωDdν90dX・ (4.12)
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Now,supposethatasetof labeledsamples{(*r,gr),...,(*,,,a"))arc obtainedfrom

the true distribution q(*,y).Then, the p-divergence-based estimator is given as a solu-

tion of the following estimating equation:

|力
p∂π協区ア%bgpθηし区)一

t==1

ν
ｄＸνｐｇＯ％

十β
Ｘνθ^ρ

√
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η
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Ｈ
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工
一
η

=0,

(4.13)

which is derived by replacing the expectation over q(x,il with the samples. Here,

we note that the function ,hB@l*;O) satisfies the conditions (4.4)-(4.6) and therefore

B-divergence-based estimator obtained from Eq. (4.13) is an M-estimator [6].

The common property of all density power divergence is to take the self-weighted

log-likelihood estimating equation, such as Eq. (4.13). These weighted estimating equa-

tions allow us to estimate the parameters robustly against noisy labels. Fig. 4.1 demon-

strates how the density-power-divergence-based estimator reduces the influence of noisy

labels. Since noisy labels have lower probabilities with the model pe because of As-

sumption 2 and 3, the weights on noisy labels automatically become small in the esti-

mating equation. This characterizes the density power divergence as a robust estimator.

From Proposition 2, an asymptotic variance of the p-divergence-based estimator is

as follows:

(4.14)

where

Aβ
,θ
*=Eθ *[のψβ(ν lX;θ

*)1,

Mβ
,θ
*=Eθ *[ψβ(ν lX;θ

*)ψ
β(ν卜;θ

ホ
)丁 ]

Then, we call our active learning method based on p-divergence-based estimator and its

asymptotic variance as p-AL.

wr.l@- - 0.)(O^- 0.)'] : ,loab.r p,u,(Ap,'r.)' ,
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7-divergence

The 7-divergence, a variant of the B-divergence, is defined as follows [16]:

1 (1 rf
D"(qllpu) : - { : los I I q(al")'*7dsq(x)dx

'y -f1 [7 JJ

- rcr [ [ nfrl*)pr(yl*)'dsq(x)dx + bs [ [ er(al{'*'dyq(*)d*],JJ JJ )

where 7 is a positive constant. The 7-divergence also converges to the Kl-divergence if
.y + 0.The parameter estimation based on the 7-divergence, as well as p-divergence,

is obtained by the derivative of the divergence with respect to the parameter:

o"Dr(qllpe) : IEe* lrlt^'(al*; o)l ,

where the vector function l:.,(ylx;0) is

,lr rful*; q : +os bg ps(ylx).
J J P e. (Y l*) P u fu l*) 1d3/q (x) ax

―

//

pθ
(ν lX)γ

+1

0 6 los p s (s lx) dsq(x) dx.
Jソ

・
ρθ(υ lX)Pθ (ν lX)γ

+ldν9(X)dX

(4.1s)

Supposethatwehaveasetof i.i.dralabeledsamples {(*r,yt),... ,(*,,... ,a^)} ob-

tained from the true distribution q(x, y). Then, the estimating equation of 7-divergence-

based estimator is given by replacing the expectation over q(x, y) with the sample mean:

$ / or'(snl*')' \
k\*ffi)oetogn6^(snl*n)

1nf/lt\ry+l\

-lf I(.-='uo\'l*i)."'
n fr J \,''D-_JpuJg|*,P* y ) 

0erosn6*(vlx1)dv - 0' (4'16)

This can be regarded as the weight-normalized version of Eq. (4.13) and can robustly

estimate the model under Assumption 2 and 3. Similar to the B-divergence-based es-

timator, 7-divergence-based estimator obtained from the above equation is also an M-

estimator since the function ,[^,fu\*;0) satisfies the conditions (4.4)-(4.6) t161.

From Proposition 2, an asymptotic variance of the'y-divergence-based estimator is

also as follows:

nr. [(d, - e\(O*- e.)'] : 
*o.,-,].*.,,r. 

(A,-,'r.)', (4.17)



59

where

Aγ
,θ
*=Eθ *[あψγ(ν lX;θ

*)],

Mγ
,θ
ネ=Eθ *[ψγ(ν lX;θ

*)ψ
γ(ν lX;θ

*)T]

Although characteristics of the 7-divergence are similar to those of p-divergence, be-

haviors of these divergences may be different from each other in active learning context.

Therefore, we propose both B-divergence-based and 7-divergence-based active learning

methods and empirically assess their properties in comparison. Hereafter, we call the

active learning method based on 7-divergence-based estimator and its asymptotic vari-

ance as yAI-.

4.4 Empirical Measures for Querying

Based on the asymptotic variance of Eqs. (4.14) and (4.17) in the previous section, we

explain empirical querying measures in our active learning methods. For simplicity, we

collectively denote the estimating functions Eqs. (4.I2) and (4.15) by tl:(y$;e).

4.4.1 Approximation of Querying Measure

Our strategy for selecting queries in active learning is to minimize the variance Eq. (4. I 1 ).

However, since the true distribution q(x, y) : q(x)pe. (*, g) is not known, Ae. and Me.

of Eqs. (4.9) and (4.10) cannotbe calculated directly. Therefore, similar to the exist-

ing work 162f, we approximate .4'6. and Mo. by using the estimated parameter 0^ and

replacing the expectation by queries:

Ae,(s) : 
2l o u^@l*n) oerl, (ylx6; O.)dy,

爾θρ=エルぬ°区)ψし陽θttψO陽θπアむ
(4.18)

(4.19)

where S is a set of the queries selected at Step 2 in Algorithm 5.

If a model consists of an unique parameter, the above equations are scalars. In this

case, the variance of the parameter given as the product of Eqs. (4. I 8) and (4. 19) is also
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scalar. Therefore, by selecting a set of queries ,S, we minimize the scalar value of the

variance. However, in our case, the regression model has not less than two parameters

(the coefficient w and the variance o2) and therefore our querying measure needs to be

optimized over a matrix. This optimization for the matrix is not trivial. In this study, we

take the trace norm of the matrix and derive the querying measure as follows:

S*: argmin Z(S;0),
sctl^lsl:8

where | . I is a cardinality of a set, Q is the number of queries and

Z(S;θn)= (4.20)

The trace norm of the matrix stands for the sum of the diagonal element of the matrix,

i.e.,the variance of each parameter. Therefore, this empirical measure minimizes the

sum of the differences between the estimated parameter and the true parameter. The

procedure of taking a trace norm is known as A-optimality and, is popular in active

leaming [21,4l).

Unfortunately, the empirical querying measure based on the 1-divergence still cannot

be calculated directly because of the integration in it. Therefore, we employ Monte

Carlo integration method to compute the querying measure.

4.4.2 Optimization of Querying Measure

In the case with the number of the queries lSl : 1, this active learning algorithm is

a simple one-by-one active learning method. For the online method, it requires many

iterations of querying and estimating step (Step 2, Algorithm 5) to obtain an accurate

model. In applications, such the iteration is time-consuming and bothersome since the

oracle has to give a label in each iteration. Hence, in practice, we prefer to use batch-

mode algorithms, l.e., l.Sl > 2 [21]. However, optimizing .S is a combinatorial problem

which is difficult to solve. In this case, the greedy algorithms are usually used to solve

the combinatorial problems. Therefore, we naively employ the greedy algorithms to

optimize a set of queries as shown in Algorithm 6.
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Algorithm 6 Greedy algorithm for selecting queries.

1. Given a set of unlabeled samples L,the estimated model parameter 9," and the

number of queries Q, and initialize a set of queries S :: 0.

2. Repeat until Q queries are added to 5.

(a) Select a query that minimi ze the querying measure of Eq. (4.20):

*(-) - argmin Z(S u xr;0n),
x;€Ll\5

where x(-l is an unlabeled sample selected as the query.

(b) LetS::Sux(*).

3. Obtain the set 5 containing Q queries.

4.5 Experiments

In this section, we show some experimental results to illustrate the robustness of our

active leaming method by using artificial and real-world datasets. In these experiments,

we compared the following six methods.

KL-RAND A standard algorithm which leams by the Kl-divergence and selects queries

randomly.

P-RAND A algorithm which learns by the B-divergence and selects queries randomly.

7-RAND A algorithm which learns by the 7-divergence and selects queries randomly.

KL-AL The conventional active learning algorithm based on the Kl-divergence ( [62]

applied in the linear regression model ).

B-AL Our proposed active leaming method based on the p-divergence.

7-AL The other proposed aclive learning method based on the 7-divergence.
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As for KL-AL and KL-RAND, the parameters were estimated by solving Eq. @.7)

analytically. On the other hand, for the other methods, we solved nonlinear equations

Eqs. (4.13) and (4.16) by quasi-Newton's method [26] which is one of the gradient-

based methods. In contrast to the naive Newton's method, the quasi-Newton's method

need not to compute the inversion of the gradient matrix (Hessian matrix). Without the

time-consuming computation of the inversion matrix, the method is expected to estimate

the model parameter rapidly.

Moreover, in these experiments, the sample size for the Monte Carlo integration in

7-AL was set to be 250 to maintain the tractable computational time for comparison

with the other methods. Furthermore, the parameter values B and 7 were set to be 0.1

based on the preceding work on the parameter analysis [6, 16].

4.5.1 Evaluation of Robustness

In the first experiment, we investigated the robustness of the proposed methods using

artificial datasets. The procedure for generating the datasets is as follows: First, we

randomly generated samples x4 from a uniform distribution in the range of [-1, l], where

the dimensionality and the number of samples are respectively 5 and 300. Next, we

randomly generated five-dimensional coefficient vector w and the constant term tlrs

from a uniform distribution in the range of f-2.5,2.51. Moreover, noises e; in the linear

regression model were randomly generated from a Gaussian distribution with zero mean

and unit variance. Finally, we determined labels at as At: wTxi 't 'txo 't €,i.

Each of the generated datasets is randomly partitioned into the training set Tt otn

withS}Vo samples and the test set fr""twith20Vo samples. 10 samples were randomly

selected from the training setTt,orn as initial labeled samples .C. Then, noises t5 are

added to q%(n : 0,0.2,. . . 
, 5) of randomly selected labels in the remaining samples U

as noisy labels given by the noisy oracle. In this experiment, the number of iterations for

querying R in Algorithm 5 was set to be 2, and the number of queries Q in Algorithm 6

is set to be 5. We evaluate a mean-squared error (MSE) between the true label and the
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Figure 4.2: Difference among the five methods under various amounts of noisy labels.

Table 4.1 : Specifications of Datasets

concrete

forestfires

imports

machine

elevator

stockvalues

8           1030

8          517

14

7

6

159

160

209

9517

1813

(νづ
_命丁xt_00)2,

estimated label in the test setTt 
"t 

as follows:

M錮 =高
(

Σ
xを ,yt)Cπ est

where frl is the p-dimensional estimated coefficient vectbr and tDo is the estimated con-

stant term.

Fig. 4.2 shows MSE between the true labels and the estimated labels by the com-

pared methods. The values in the graph are averaged over 2000 random trials for nu-
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merical stabilization. As can be seen in Fig. 4.2, with the increasing of noisy labels,

the average errors by the Kl-divergence-based methods grow more rapidly than the

A lfdtvergence-based methods. Also, in most cases, the active learning methods seem

to perform better than the random-query methods. However, the performance of 1-AL
was worse than B-AL and the other random-query methods. This would be because the

querying measure of 7-AL selects less informative samples by an approximation of the

Monte Carlo integration. Although one could improve the approximation by increasing

the number of samples, it usually leads severe increase of computational costs. Thus,

these results seem to show that p-Al- practically achieves the robust estimation of the

regression model.

4.5.2 Evaluation with Real-world data

Next, we conducted experiments with six real-world datasets provided from [3, 58, 36]

to examine the robustness of our proposed methods. The summaries of the datasets

are given in Table 4.1. First, each of the datasets is partitioned into an initial set ,C, an

unlabeled set U and a test set Tt "t 
in the same manner with the previous experiment.

Then, noisy labels were generated by adding +5 to q%(n : 0,5) samples randomly

selected from U. For this experiment, if the cardinality of ?,/ is more than 300, 300

samples were subsampled from U as candidates for the unlabeled samples in selecting

queriesl. In this experiment, we set the number of learning iteration R and queries Q to

5, respectively. Similar to the previous experiment, we evaluated the average MSE of

1000 random trials by using the test set 7t""r.

The gr.aphs in Fig. 4.3 show the errors at each learning step of the methods. Note

that the result of 7-AL with the "stockvalues" dataset could not be obtained because

of its high computational cost of the numerical integration. As can be seen in Fig. 4.3,

the error of p-N- is comparable with KL-AL without the noisy labels. On the other

hand, in cases where the noisy labels exist, the errors of KL-AL become larger than p-

AL. Especially in the case of the high-dimensional "stockvalues" dataset with the noisy

lAlthough it would have been better to utilize all samples in practice, we subsampled to compare all

the methods in this experiment.
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labels, KL-AL completely fails to estimate the regression model. Similar to the result

of the previous. experiment, 7-AL seems to work worse than the other methods in most

cases because of the numerical integration. Thus, our proposed method p-AL seems to

work more robustly than the other methods in this experiment.

4.6 Conclusion

We proposed the robust active leaming methods for the linear regression model. Our

querying measures were obtained by extending the conventional measure through the

asymptotic analysis of the M-estimator and incorporating the p- and 1-divergence-based

estimators into the extended measure. The proposed methods can achieve robust results

under the situation with the noisy oracle because of the characteristics of the robust

divergences. We investigated the performance of our methods by the experiments with

the artificial datasets and the real-world datasets. From these experiments, we confirmed

that it could estimate the regression model accurately and robustly from the small la-

beled samples even under the situation with the noisy oracle.

In this chapter, we applied our robust active learning measure to a linear regression

model and achieved the robust estimation of the relation between the variables. How-

ever, our framework is not restricted to the linear regression model. We can also apply

it to the other models such as a logistic model for discovering a relation between a bi-

nary variable and the other continuous variables. Therefore, one of our future works

is to apply our robust active learning framework to the other models and investigate

their behaviors. In addition, the procedure for optimizing the queries can be improved

by using discrete optimization techniques. Recently, a study on the conventional KL-

based active learning method using VRA [21] showed that its querying measure have

a property called submodularity fl4). This property provides an efficient algorithm to

solve the discrete optimization problem. Because of this propertj, we expect that the

optimization of the queries can be performed more efficiently [291.
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Chapter 5

Conclusion
In this dissertation, we presented three methods to estimate the variable relations.

They are categorized into main two branches. One is the technique to obtain some

knowledge on the directed network representing the ordering of the effects among the

variables. A basis of this technique is the linear non-Gaussian acyclic model called

LiNGAM model. The other is the technique to estimate the relation between the label

variable and the other explanatory variables, which is known as the linear regression.

The past methods for estimating these variable relations cannot achieve the good per-

formance under real-world datasets consisting of small samples and/or noisy samples.

In this dissertation, we tackled this problem.

First, we attacked the problem that the past LiNGAM-model-based methods can*

not obtain sufficient knowledge on the network in the analysis with high-dimensional

and small sample data. To solve this problem, we proposed a variant of the linear

non-Gaussian acyclic model based on some realistic assumptions. Subsequently, we

proposed a method called EggFinder to estimate the exogenous variable in the network.

With the numerical experiments, we confirmed that our proposed algorithm can estimate

the exoger,rous variables from the high-dimensional and small sample data. Further, we

investigated the applicability of our method by using the gene microarray data with

small samples. The genes found by EggFinder is likely to be exogenous in the gene

network according to the domain knowledge in bioinformatics.

Second, we proposed the LiNGAM-model-based method which can estimate the en-

tire network more accurately and robustly from noisy and small sample data than the

past non-Gaussianity-based methods. To estimate a correct network, the evaluation of

the independence between the variables and the solution search algorithm are impor-
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tant. Thus, we presented the two principles to modify the past methods on these points.

One is to incorporate kernel based independence measure for enhancing the robustness

and the accuracy of the network estimation. The other is to employ the beam search

algorithm to avoid the local optima. Based on these modifications, the four variants

of the past methods were proposed. Then, we investigated their robustness and ac-

curacy through the numerical experiments. Furthermore, we discussed the trade off

between the accuracy and the computational cost. From the results, we concluded that

the method, Beam-Kernel-DirectliNcAM is the best in terms of accuracy, robustness

and tractability for the network estimation even under the noisy and small sample data.

Third, we focused on the linear regression model and its active leaming by using

small labeled samples and large unlabeled samples. Conventional active learning meth-

ods cannot estimate the model under the situation with the noisy oracle giving noisy

labeled samples. Therefore, we proposed a more robust active leaming method for es-

timating the regression model. Firstly, we extended the conventional querying measure

based on M-estimator. Subsequently, we incorporated the robust divergences into the

extended querying measure. Then, our proposed methods and the conventional method

are compared by the numerical experiments with the artificial datasets and the real-

world datasets. From the results of these experiments, we confirmed that our proposed

method can estimate the linear resression model robustlv from the small noisv labeled

samples.

This dissertation aims to close some gaps between the real-world problems and the

techniques for estimating the variable relations. This objective was achieved by our

three proposal. However, more extensions may be possible. One is the extension to in-

corporate nonJinearity of the relations in both the LiNGAM model and the regression

model. It is worth for the real-world problems where many relations are non-linear.

Second is introducing the more sophisticated independence measure and rapid search

algorithm into the network estimation method. Third is to consider efficient optimiza-

tion algorithm so that the robust active learning method for the regression model can

deal with much higher-dimensional datasets. These extensions will enhance the appli-

cability of our proposed methods to wider practical problems.
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