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Preface

This dissertation presents techniques for estimating variable relations from small
samples, which was achieved by the author during his Ph.D. course at the Division of
Electrical, Electronic, and Information Engineering, Graduate School of Engineering,
Osaka University. The dissertation is organized as follows.

Chapter 1 describes recent background in a field of machine learning. Moreover,
past frameworks for estimating variable relations are reviewed and their difficulties are
discussed. The frameworks can fall roughly into two categories. One is a technique
to obtain some knowledge on the directed network representing the ordering of effects
among all observed variables. This technique aims to find important variables in the di-
rected network or to identify an entire structure of the directed network. We discuss this
technique in Chapter 2 and Chapter 3. The other is to estimate undirected relations be-
tween a particular variable (a label variable) and the other explanatory variables, which
we discuss in Chapter 4. Both techniques are important and utilized in bioinformat-
ics, economics, marketing and so on. In this chapter, the outline of these techniques is
described. Then, we clarify a position of our works.

In Chapter 2, we first present a linear non-Gaussian acyclic model (LINGAM model),
which is one of the models to represent variable relations including the orderings of the
effects. Conventional methods based on this LINGAM model enable a robust estima-
tion of the network of all variables including their orderings. However, the accuracy
of the estimation becomes worse for data containing the huge number of variables and
small samples (e.g. gene datasets). In our work, instead of estimating the entire struc-
ture of the directed network, we focus on exogenous variables that work as origins
activating a state change of other variables in the network. We propose a method for
estimating them from small samples. In this chapter, we investigate performance of the
proposed method by numerical experiments with artificial datasets. Moreover, we apply
the method to gene datasets and confirm its practicality by comparing the results from
domain knowledge.

Chapter 3 proposes another LINGAM-model-based method for a more accurate esti-

mation of the directed network under a situation with noisy and small sample data. Our
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proposed method is achieved by an improvement of a statistical independence measure
and introducing a more sophisticated solution search algorithm into the conventional
method. In numerical experiments, we compare the proposed method with the conven-
tional method and show an advantage of our method under the situation with noisy and
smaller sample data.

In Chapter 4, we further review techniques for estimating the relations between a
label variable and explanatory variables. This technique is known as regression. In con-
trast to Chapter 2 and 3 which focus on the situation that the number of samples of all
the observed variables are small, we focus on the situation that all samples have values
of their explanatory variables but only small number of the samples have their label
variable. For example, in a car insurance company, an insurance fec (a label variable)
is determined by its company’s employees based on car information, driver’s driving
records and so on (explanatory variables). Such determination by hand needs enormous
cost and time. As a result, the number of labeled samples becomes small and unlabeled
ones are large. In recent years, active learning that utilizes both labeled and unlabeled
samples in such data has been proposed. In contrast to conventional passive machine
learning algorithms, active learning selects some unlabeled samples expected to be in-
formative for learning, asks an user to label them and enables more accurate estimation
from small labeled samples. However, conventional active learning methods have an
impractical assumption that an user always gives correct labels on selected samples. In
this chapter, we propose a new active learning algorithm for estimating variable rela-
tions which works accurately even under the situation with noisy labels. We extend a
querying measure and incorporate robust divergences into the extended measure. The
proposed method is compared with conventional methods and its practicality is evalu-
ated by experiments with artificial and real-world datasets.

Chapter 5 concludes this dissertation.
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Chapter 1

Introduction

In recent years, along the development of computers, their network and their data
storage, massive data are stored and utilized to obtain useful knowledge in various fields
such as medical service, economics, marketing and so on. Techniques for obtaining
useful knowledge from such data are known as data mining or machine learning. In
studies of data mining/machine learning, one of the latest topics is to find relations
between events or objects from their associated observed data. For instance, in the field
of marketing, a relation between a price of a product and the number of its purchasers is
informative to determine a price for another product. A further example is the relation
between a distance of a house from a city center and its house rent. Such events or
objects are taken as random variables in the studies and many statistical techniques for
estimating the variable relations have been proposed in a last decade.

Techniques for estimating the variable relations can be roughly categorized into two
types. One is a technique to obtain some knowledge on the directed network, where the
vertices and the directed edges respectively represent the variables and effects propa-
gating among them. The purpose of this technique is to find important variables in the
network or to identify an entire structure of the directed network. As we mentioned
before, many empirical sciences and applications aim to estimate relations underlying
their objective systems such as natural phenomena, human social behavior and so on.
Thus, this technique is employed to know how each variable affects the others and
how observed data are generated. A representative model used in this technique is a
non-Gaussianity-based model called LINGAM model. By utilizing non-Gaussianity of
variables which is frequently observed in many real-world data, methods based on this
model achieve strong identifiability of the directed network [45, 46].



However, the conventional methods cannot estimate the entire structure of the di-
rected network accurately under a situation providing small samples only which is found
in many real-world problems. For instance, in bioinformatics, the number of samples
in a gene dataset is quite small because of ethical concerns. In such a situation, an es-
timation of relations between genes could fail and we cannot obtain any knowledge on
the network of the genes. Therefore, in Chapter 2, we will first propose a variant of
LiINGAM model based on some realistic assumptions, and present a new method based
on the model to obtain useful knowledge on the directed network from small sample
data. The key idea of this method is to find important variables which work as triggers
that activate the chain of the effect in the network. These variables are origins in the
directed network, and are called exogenous variables. Their identification is important
for various applications. |

In Chapter 3, to accurately and robustly estimate the entire structure of the directed
network from noisy and small sample data, we will present two principles to modify the
past LINGAM-model-based methods. One is to incorporate kernel based independence
measure for enhancing the robustness and the accuracy of the network estimation. The
other is to employ the beam search algorithm to avoid the local optima. Then, we
will propose variants of the LINGAM-model-based methods to estimate the directed
network accurately and robustly. In these manners, we will discuss our study based on
the LINGAM model and propose methods to obtain useful knowledge on the directed
network from small samples in Chapter 2 and 3. The study in Chapter 2 is related to the
work published in [51, 48, 50], and that in Chapter 3 is related to [49].

The other technique is to estimate undirected relations between a particular variable
and the others. The particular variable is called a label variable and otherwise are called
explanatory variables in the domain of machine learning. A representative model used
in this technique is widely known as a regression model. While the previous technique
aims to obtain some knowledge on the directed network of all observed variables in
the data, techniques based on the regression model aim to find the undirected relations
between a label variable and explanatory variables only. However, these methods based
on the model can be applied to data containing the larger number of the explanatory

variables and has been widely employed in various areas because of its applicability.



Nevertheless, the number of the samples in the data to be analyzed by the methods are
small in many applications, and the naive methods could fail to estimate the relations.
This is because cost to obtain the values of the label variable is more expensive than
one for the explanatory variables. As a result, in various applications, many samples
lack the values of their label variable while the values of the other variables are known
in all samples. For example, in medical service, a degree of severity of a patient is
evaluated by a doctor based on the patient’s blood pressure, body fat percentage and
so on which data are obtained semi-automatically by an examination. The evaluation
is time-consuming for the doctor and therefore the samples having the evaluated values
are small. Here, we note that the evaluation of the values of the label variable is called
labeling. Moreover, the samples having evaluated values are called labeled samples and

otherwise are called unlabeled samples.

Recently, a new framework called active learning has been proposed to utilize both
a set of the small labeled samples and the unlabeled ones. In contrast to the naive
technique for estimating the variable relations, active learning selects some unlabeled
samples expected to be informative for the estimation, asks a user to label their label
variable and enables more accurate estimation from small labeled samples. However,
conventional active learning methods have an impractical assumption that a user always
gives correct labels on selected samples while a real-world user is likely to be noisy and
thus makes a mistake. Therefore, the methods should be extended to be robust against
such noise of the labeling for application to the real-world datasets. Chapter 4 will
address the problem of the conventional active learning methods and propose method
to robustly estimate the relations under the noisy real-world situation. The study in
Chapter 4 is related to the work in [52, 53].

As described above, the techniques for estimating the variable relations are very
important and useful in various areas. However, the state of the art has a gap to analyze
real-world datasets which usually have small samples and are frequently noisy. Thus,
in this dissertation, we close this gap between the conventional methods and real-world
problems by addressing the problems of the small samples and the noise. A summary

of our contribution in this dissertation is as follows.



e The first contribution is to propose a non-Gaussianity-model based method to
estimate exogenous variables in a directed variable network from the data having

small samples such as gene datasets.

e The second is to propose another non-Gaussianity-model based method, which
enables more accurate and robust estimation of the directed variable network from

noisy and small sample data.

e The third is to propose a novel active learning method to robustly estimate the
relations between a label variable and explanatory variables from small labeled

samples.

In Chapter 2, we first describe backgrounds of the non-Gaussianity-based model and its
associated methods. Then, we present the first contribution for obtaining useful knowl-
edge on the variable network from small samples. In Chapter 3, we propose another
method along the second contribution to estimate the entire network more accurately
under the situation with the data having small samples. Chapter 4 reviews technical
backgrounds of active learning and the method for estimating relations between a label
variable and explanatory variables. Subsequently, we propose a new method for the

third contribution. In Chapter 5, we conclude our work.



Chapter 2

Identification of Exogenous Variables
from Small Samples

2.1 Introduction

Many methods have been proposed to obtain some knowledge on the directed network
of all observed variables in classical situations where much more samples than observed
variables are given (p<n, p: the number of variables and n: the number of samples).
Especially, most of them aim to identify an entire structure of the directed network
and use a linear acyclic model to analyze and represent effects between continuous
random variables [40, 54]. Estimation of the model commonly uses covariance structure
of data only and in most cases cannot estimate the complete structure of the entire
directed network (orderings of the variables and connection strengths) of the model
without using prior knowledge on the network [40, 54]. Recently, the authors of [45]
proposed a non-Gaussian linear acyclic model called LINGAM model. By utilizing
the non-Gaussianity which is frequently observed in the real-world data, they showed
that the full structure of a linear acyclic model is identifiable based on non-Gaussianity
without any prior knowledge. This is a significant advantage over the conventional
methods [40, 54].

However, most statistical works for the identification of the directed variable network
including the non-Gaussianity-based methods [45, 46] were established for classical sit-
uations having fewer variables than samples (p<n), whereas modern statistical analyses
using high-dimensional models tackle data containing orders of magnitude more vari-

ables than samples (p>>n) [14, 35]. For example, in bioinformatics, the number of



samples in microarray gene expression data are much smaller than the observed genes
(variables). This is because experiments with genes are restricted by ethical concerns
and cost for the experiments. Thus, we consider situations in which p is in the order
of 1,000 or more, while n is around 30 to 200. For such high-dimensional and small
sample data, the past methods are often computationally intractable or statistically un-

reliable.

In this chapter, we propose a method to obtain knowledge on the variable network
based on the non-Gaussianity-based model, which requires much smaller sample sizes
than conventional methods and works even whén p>n. The key idea is to identify vari-
ables which work as triggers that activate a chain of effects in the network instead of
estimating the entire structure of the network. These trigger variables are called as ex-
ogenous variables, and their identification leads to more efficient experimental designs
requiring practical interventions and better understanding of the objective systems. One
of promising applications is a detection of drug-target genes [14]. The new method
proposed in this chapter can be used to find genes firstly affected by a drug and trigger-
ing the gene network. The simpler task of finding exogenous variables than that of the
entire model structure would require fewer samples to work reliably. The new method
uses a non-Gaussianity measure developed in a fairly recent statistical technique called

independent component analysis [25].

This chapter is structured as follows. We first review independent component anal-
ysis and linear non-Gaussian acyclic models in Section 2.2. We then define our non-
Gaussianity-based model and propose a new algorithm to find exogenous variables in
Section 2.3. The performance of the algorithm is evaluated by using artificial data and
real-world gene expression data in Section 2.4. Section 2.5 concludes this chapter. This
chapter is related to the work published in [51, 48, 50].



2.2 Background Principles

2.2.1 Independent Component Analysis

Independent component analysis (ICA) [25] is a statistical technique originally devel-
oped in signal processing. ICA model for a p-dimensional observed continuous random

vector x is defined as
x = As, 2.1

where s is a p-dimensional continuous random vector whose components s; are mutually
independent and non-Gaussian, and A is a constant px p invertible matrix. s; are called
independent components. Without loss of generality, we assume each s; to be of zero
mean and unit variance. Let W=A"!. Then we have s=Wx. It is known that the
matrix W is identifiable up to permutation of the rows [12].

Let s=Wx. A major estimation principle for W is to find such W that maximizes
the sum of non-Gaussianity of estimated independent components ;, which is known
to be equivalent to maximize independence between the estimates when the estimates
are constrained to be uncorrelated [25]. In [24], a class of non-Gaussianity measures

was proposed:
J(3) = Jolwi) = [E[G(w]x)] - E[G(2)]], 2.2)

where w/ is the i-th row of the matrix W and is constrained so that E[5?|=E[(w] x)2|=1
because of the aforementioned assumption on unit variance of s;. G(-) is a nonlinear
and non-quadratic function and z is a Gaussian variable with zero mean and unit vari-
ance. In practice, the expectations in Eq. (2.2) are replaced by their sample means. In
the rest of this chapter, we say that a variable u is more non-Gaussian than a variable

v if J(u)>J(v). In the domain of ICA, the following conjecture is widely made [25].

Conjecture 1 The global maximum of Jo(w) is one of s; for most reasonable choices
of G(-) and the distributions of s;.

In particular, if G(s)=s*, Conjecture 1 is true for any continuous random variable whose

moments exist and kurtosis is non-zero [24], and it can also be proven that there are no



spurious optima [13]. Then the global maximum of the measure in Eq. (2.2) should
be one of s;. However, kurtosis often suffers from sensitivity to outliers. In practice,
G(s)=exp(—s?/2) is a suitable candidate for the function G(-) [25].

2.2.2 A Linear Non-Gaussian Acyclic Model (LINGAM Model)

Relationships between continuous observed variables z; (¢ = 1, - -, p) are typically
assumed to be linear and acyclic [40, 54]. Each relation can be represented as a lin-
ear combination of the variables (Linearity), and each variable never affect itself even
through the other variables (Acyclicity). For simplicity, we assume that the variables x;
are of zero mean and unit variance. Let o(7) denote such an ordering of z; that no later
variable affects any earlier variable and b;; denote the connection strength from z; to x;.

Then the relationship in the linear acyclic model can be expressed as

zi= Y byzite, (2.3)

o(5)<o(i)

where e; are external influences associated with z; and are of zero mean and unit vari-
ance. Furthermore, ‘faithfulness’ [54] is typically assumed. In this context, the faithful-
ness implies that correlations between variables z; are entailed by the graph structure
only, i.e., the zero/non-zero status of b;;. Finally, the external influences e; are assumed
to be independent, which means there are ‘no unobserved confounders’ [54]. Here, un-
observed confounders are unobserved variables behind the multiple external influences
to statistically change their values. If such unobserved confounders exist, some e; are
not mutually independent.

We emphasize that z; is equal to e; if it is not influenced by any other observed
variable z; (1), i.e., all the b;; (j#i) are zeros. In other words, an external influence
e; is observed as x;. Then, such e; or z; are called exogenous variables. Otherwise, ¢;

is called an error. For example, consider the model defined by

T = €1,
T9 = 1.5:61 + €2,

Ty = 081‘1 - 13.’172 + es. (24)
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Figure 2.1: An illustration of the linear acyclic model

x; is equal to ey, i.e., it is not influenced by either x5 or x3. Moreover, x, is influenced
by z; and z3 is influenced by both z; and x5. Thus, x;(=e;) is an exogenous variable,
and e, and e; are errors. Note that there exists at least one exogenous variable x;(=e;)
because of the model assumption of the acyclicity and no unobserved confounders.
Fig. 2.1 shows an illustration of the linear acyclic model of the example Eq. (2.4).
Recently, the authors of [45] proposed a linear non-Gaussian acyclic model called
LiNGAM model, where the external influences ¢; are assumed to be non-Gaussian while
conventional models have assumed that the external influences are Gaussian. Methods
based on the LINGAM model have strong identifiability of the entire variable network
under the classical situation with p<<n. In the next section, we will define a variant of

the LINGAM model to identify exogenous variables from small sample data.

2.3 A New Method to Identify Exogenous Variables

2.3.1 A Variant of Linear Non-Gaussian Acyclic Structural Equa-
tion Model
We make an additional assumption on the distributions of ¢; in the model (2.3) and

define our non-Gaussian linear acyclic model, which is a variant of LINGAM model

[45]. Recall that the set of the external influences e; consists of both exogenous variables
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and errors. To characterize the difference between exogenous variables and errors, we

make the following additional assumption.

Assumption 1 External influences are non-Gaussian but errors are less non-Gaussian
than exogenous variables, i.e., J(e;) > J(e;) if x;=e; and e; is an error associated with

an endogenous-variable x;.

The only difference between LINGAM model and our model is the assumption that er-
rors are less non-Gaussian than exogenous variables. Let a p-dimensional vector x be a
set of the observed variables x; and a p-dimensional vector e be a set of external influ-
ences ¢;. Let a pxp matrix B consist of the connection strengths b;; where the diagonal
elements b;; are all zeros. Then we write our model (the model (2.3) + Assumption 1)

in a matrix form as:
x=Bx+e. 2.5

Assumption 1 reflects three facts: i) observed data are often considerably non-Gaussian
in many fields [25]; ii) exogenous variables are directly affected by an external factor,
which usually has non-Gaussianity; iii) in statistics, errors have been typically con-
sidered to arise as sums of a number of unobserved non-Gaussian independent vari-
ables, which is why classical methods assume that errors are Gaussian resorting to The-
orem 1 [9] in the next subsection, though in reality, many variables are not exactly
Gaussian. Therefore, we assume the errors to be non-Gaussian as long as they are less
non-Gaussian than exogenous variables each of which is directly affected by the non-
Gaussian external factor only. This distinction between exogenous variables and errors
leads to a simple estimation of exogenous variables proposed in Subsections 2.3.3 and
2.3.4.

2.3.2 Central Limit Theorem for Independent and Non-Identically
Distributed Random Variables

Assumption 1 which states that external influences are non-Gaussian but errors are less

non-Gaussian than exogenous variables is motivated by Theorem 1 below. The classical
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central limit theorem states that the probability distribution of the sum of a large number
of independent and identically distributed random variables will be less non-Gaussian
than the original variables. However, the identicality among the distributions does not
always hold in many practical cases, and thus less non-Gaussianity of the summed vari-
ables is not obviously ensured by the central limit theorem. A past study assessed a
wider condition called Lindeberg’s condition where the sum of such random variables
will be less non-Gaussian [9]. Let us assume that z;, (/ = 1,--- , L) are independent
random variables following their own probability density functions f,(-) each of which
has a finite mean y, = F[z,] and a finite variance o7 = Var[z,]. We denote the sum of

the variances by Dy, = ZZL:l o2. Then, the Lindeberg’s condition is as follows.

Theorem 1 (Lindeberg’s condition) If random variables satisfy the Lindeberg’s con-
dition:

1 L

lim —

/ (ze — pe)? fe(ze)dze = O for Va >0,
Dy ¢=1 * lTe—pe|>avDr

the sum of the independent random variables will converge in distribution to Gaussian

as L — o0.

It can be expected that random variables hardly have distributions other than ones hav-
ing the Lindeberg’s condition in most cases. Therefore, if errors are sums of many
unobserved independent variables that have approximately the same magnitudes of non-
Gaussianity as exogenous variables, it can be expected that they are less non-Gaussian
than exogenous variables. Because of the limitation of the number of summed variables,
errors would not to be exactly Gaussian. These considerations motivate the aforemen-

tioned Assumption 1.

2.3.3 Identification of exogenous variables based on non-Gaussianity

and uncorrelatedness

We relate the linear non-Gaussian acyclic model (2.5) with ICA similarly to [45]. Let
us solve the model (2.5) for x and then we have an ICA model represented by Eq. (2.1)
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as follows
x = (I-B)le=Ae. (2.6)

Note that I-B is invertible since it can be permuted to be lower triangular due to the
acyclicity assumption [45] and its diagonal elements are all non-zero (unity). In the next
subsection, we propose a new algorithm to find exogenous variables z;(=e;) using the
relation (2.6). In this subsection, we present two lemmas that ensure the validity of the
algorithm.

Lemma 1 Assume that the input data x follows the model (2.5) and that Conjecture 1
(Section 2.2.1) is true. Let us denote by V, the set of all the observed variables z;. Then,
the most non-Gaussian observed variable in V,, is exogenous: J(x;) is maximum in V,

= Zi=¢€;.

Proof Eq. (2.6) shows that the model (2.5) is an ICA model, where external influ-
ences ¢; are independent components (ICs). The set of the external influences consists
of exogenous variables and errors. Due to the model assumption (Assumption 1 in Sub-
section 2.3.1), exogenous variables are more non-Gaussian than errors. Therefore, the
most non-Gaussian exogenous variable is the most non-Gaussian IC. Next, according
to Conjecture 1 that is here assumed to be true, the most non-Gaussian IC, i.e., the
most non-Gaussian exogenous variable, is the global maximum of the non-Gaussianity
measure J(w ' x)=Jg(w) among such linear combinations of observed variables w ' x
with the constraint E[(w"x)?]=1, which include all the observed variables z; in V.

Therefore, the most non-Gaussian observed variable is the most non-Gaussian exoge-

nous variable.

Lemma 2 Assume the assumptions of Lemma 1. Let us denote by E a strict subset
of exogenous variables. That is, E is a subset of exogenous variables but there exists
at least one exogenous variable not contained in E. Let us denote by Ug the set of
observed variables uncorrelated with any variable in E. Then the most non-Gaussian

observed variable in U is exogenous: J(x;) is maximum in Ug = z;=e;.
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Proof First, the set V,, is the union of three disjoint sets: E, Ur and Cg, where Cg
is the set of observed variables in V,,\ F correlated with a variable in E. By definition,
any variable in Ug are not correlated with any variable in E. Since the faithfulness is
assumed, the zero correlations are only due to the graph structure. Therefore, there is
no directed path from any variable in F to any variable in Ug. Similarly, there is a
directed path from each (exogenous) variable in E to a variable in C'z. Next, there can
be no directed path from any variable in Cg to any variable in Ug. Otherwise, there
would be a directed path from such a variable in E, from which there is a directed path
to a variable in Cg, to a variable in Ug through the variable in Cg. Then, due to the
faithfulness, the variable in E' must correlate with the variable in Ug, which contradicts
the definition of Ug.

To sum up, there is no directed path from any variable in E U Cg to any variable in
Ug. Since any directed path from the external influence e; associated with any variable
x; in V; must go through z;, there is no directed path from the external influence asso-
ciated with any variable in ¥ U Cg to any variable in Ug. In other words, there can be
directed paths from only the external influences associated with any variables in Ug to
some variables in Ug. Then, we again have an ICA model: E:A’é', where X and e are
vectors whose elements are the variables in U and corresponding external influences
in e in Eq. (2.6), and A’ is the corresponding submatrix of A’ in Eq. (2.6). Recursively
applying Lemma 1 shows that the most non-Gaussian variable in Ug is exogenous. &

To find uncorrelated variables, we simply use the ordinary Gaussianity-based testing
method [33] and control the false discovery rate [8] to 3% for multiplicity of tests.
Though non-parametric methods [33] are desirable for more rigorous testing in the non-
Gaussian setting, we used the Gaussian method that is more computationally efficient

and seems to work relatively well in our simulations.

2.3.4 ExoGenous Generating Variable Finder: EggFinder

Based on the discussions in the previous subsection, we propose an algorithm to suc-
cessively find exogenous variables, which we call EggFinder (ExoGenous Generating

variable Finder). Algorithm 1 shows a pseudo code of EggFinder. At Step 2(c) in Algo-
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Algorithm 1 ExoGenous Generating Variable Finder: EggFinder

1. Given V,, initialize E=0, US)=V;, and m:=1.

2. Repeat until no variables xz; are uncorrelated with exogenous variable can-
didates, i.e., Ug”):(/):

(a) Find the most non-Gaussian variable (™ in U™:

2™ = arg max J(z),
:z:EUI(Em)

where J is the non-Gaussianity measure in Eq. (2.2) with
G(z) = exp(—z%/2).

(b) Add the most non-Gaussian variable ™ to E, thatis, E=Eu{z(™}.

(c) Let U,(Sm“) be the subset of Ug") where variables are uncorrelated
with (™, and m=m+1.

rithm 1, we use the Gaussianity-based correlation testing method and control the false
discovery rate to 3% to remove the variables correlated with the selected candidates of

the exogenous variables.

2.4 Experiments

2.4.1 Experiments on Artificial Data

We studied the performance of EggFinder when p>>n under a linear non-Gaussian
acyclic model having a sparse graph structure and various non-Gaussianity conditions
for errors. Many real-world networks such as gene networks are often considered to
have scale-free graph structures. However, as far as we know, there is no standard way
to create a directed scale-free graph. Therefore, we randomly created a sparse directed

acyclic graph with p=1,000 variables using a software Tetrad [1]. The resulting graph
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contained 1,000 edges and /=171 exogenous variables. We randomly determined each
element of the matrix B in the model (2.5) to follow this graph structure and make
the standard deviations of z; owing to parent observed variables ranged in the interval
[0.5,1.5].

We generated exogenous variables and errors as follows. We randomly generated a
non-Gaussian exogenous variable x;(=e;) that was sub- or super-Gaussian with prob-
ability 50%. We first generated a Gaussian variable z; with zero mean and unit vari-
ance and subsequently transformed it to a non-Gaussian variable by e; = sign(z;)|z[%.
The nonlinear exponent ¢; was randomly selected to lie in [0.5,0.8] or [1.2,2.0] with
probability 50%. The former gave a sub-Gaussian symmetric variable, and the latter a
super-Gaussian symmetric variable. Finally, the transformed variable e; was scaled to
the standard deviation randomly selected in the interval [0.5, 1.5] and was taken as an
exogenous variable. Next, for each error e;, we randomly generated 4 (h=1, 3, 5 and
50) non-Gaussian variables having unit variance in the same manner as for exogenous
variables and took the sum of them. We then scaled the sum to the standard deviation
selected similarly to the cases of exogenous variables and finally took it as an error e;.
A larger h would generate a less non-Gaussian error due to Theorem 1.

Finally, we randomly generated 500 datasets under each combination of h and n
(n=30, 60, 100 and 200) and fed the datasets to EggFinder. For each combination, we
computed percentages of datasets where all the top m estimated variables were actually
exogenous. In Fig. 2.2, the relations between the percentage and m are plotted. First, the
percentages generally increase when the sample size n increases. This is clear since a
larger n enables more accurate estimation of non-Gaussianity and correlation. Second,
similar changes of the percentages are observed when h is larger. This is reasonable
because a larger h generates data more consistent with Assumption 1 of the model (2.5)
as we mentioned before. In summary, EggFinder successfully finds a set of exogenous
variables up to more than m=10 in many conditions. However, EggFinder may not
find all the exogenous variables when p>>n, although it asymptotically finds all the
exogenous variables if all the assumptions made in Lemmas 1 and 2 hold.

Interestingly, EggFinder did not fail completely and estimated a couple of exogenous

variables even for the h=1 condition where the distributional assumption on errors was
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Figure 2.2: Percentages of datasets where all the top m estimated variables were actually
exogenous under (a) n=30; (b) n=60; (c) n=100; (d) n=200.

most likely to be violated. This is presumably because all the variables in the network
might satisfy the condition mentioned in Theorem 1. Therefore, due to Theorem 1, the
endogenous observed variables, which are lower in the network, are more likely to be
less non-Gaussian than the exogenous variables, even if the errors and the exogenous

variables have the same degree of non-Gaussianity.

2.4.2 Application to Microarray Gene Expression Data

To evaluate the capability of EggFinder in a real situation, we analyzed a real-world
dataset of DNA microarray data collected in experiments on a human breast cancer

~cell line MCF-7 [38], where two ligands of ErbB family receptor, epidermal growth
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Table 2.1: Candidates for exogenous genes found by EggFinder from the dataset.

Probe ID  Symbol Entrez Gene Name

203821_at HBEGF heparin-binding EGF-like growth factor
201466.s.at  JUN jun proto-oncogene
216017_s.at  NAB2 EGR1 binding protein 2

factor (EGF) and heregulin (HRG), were dosed to MCF-7 under four different concen-
trations, and the gene expression levels were measured. EGF and HRG induce distinct
kinase activity patterns and phenotypes of MCF-7 cells. It is known that EGF binds
to ErbB1 receptor (EGFR) and induces EGF-stimulated transient activation of extracel-
lular signal-regulated kinase (ERK) induced cell proliferation. While HRG first binds
to ErbB3 or ErbB4 receptor and then induces trans-activation of ErbB2 receptor, and
HRG-stimulated sustained activation of ERK induces cell differentiation. The number
of dose concentrations was eight (0.1, 0.5, 1.0, and 10.0 nmol// for either EGF or HRG).
The gene expression values were measured at seven time points (5, 10, 15, 30, 45, 60 and
90 minutes) after dosing. The total number of experimental conditions was 55 instead
of 56=8 x 7. This is because no experiment under the condition of the concentration
of EGF 10.0 nmol// at 60 minutes elapsed time was conducted. For each condition, the
expression levels of 22,277 genes were measured using Affymetrix GeneChip microar-
rays. As a preprocessing, we focused on 62 genes, which had been selected as genes
regulated by both EGF and HRG with multiplicative decomposition model [38]. To es-
timate exogenous genes under both stimulations from 62 genes, we applied EggFinder
to the data matrix of 55 conditions and 62 genes. This is a challenging situation with

p>n.

EggFinder found three candidates for exogenous genes shown in Table. 2.1. Fig. 2.3
shows temporal gene expression levels of these three candidates. As described in Fig. 2.3,
HBEGF and JUN show different expression patterns between EGF and HRG stimu-
lations; under HRG stimulation, the expressions of HBEGF monotonically more in-
creased, and JUN’s expressions achieved a higher peak at 45 or 60 min than under EGF
stimulation. Biologically, JUN binds to FOS [29], which was identified as a master
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regulator determining cell fate in [38]. Thus, the analysis of EggFinder suggested that
JUN is a candidate master regulator that determines kinase activity patterns and pheno-
types caused by EGF and HRG. HBEGF also binds to EGFR [28] and ErbB4 [16] and
then induces activation of ERK [47]. Note that HRG-stimulated sustained activation of
ERK requires consecutive formation of ErbB1(EGFR)-ErbB3 and ErbB2-ErbB3 het-
erodimers [19]. Thus, the analysis of EggFinder produced a biological hypothesis that
HBEGF plays a crucial role as an accelerator that amplifies expressions of downstream
genes of ERK pathway only when stimulated by HRG. Although expression levels of
NAB2 do not have clear differences between dose concentrations, we found that the
average expression level of NAB2 under HRG stimulation were lower than that under
EGF stimulation. NAB2 represses transcriptions induced by EGR family (EGR1 and
EGR2) [55] which are regulated by FOS. Since EGRI increases expression of human
EGFR mRNA and protein [39], decreased expression of NAB2 under HRG stimulation
also might be related with consecutive formation of ErbB family. In these manners, the

genes worth examining are suggested by EggFinder.

2.5 Conclusion

We defined the variant of conventional non-Gaussianity-based model and proposed the
method to estimate exogenous variables from data having small samples. The accuracy
of our proposed method was evaluated by the experiments with the artificial datasets
and the gene expression dataset. Particularly in the experiments on microarray gene ex-
pression data, our method suggested the genes worth examining. These results showed
the applicability of our non-Gaussianity-based model and our method. We believe this
is an important first step for developing advanced network analysis methods which can
find exogenous variables in the network even under the challenging situations p>>n.
One of the important issues for our future research is to establish a way of deter-
mining the number of valid exogenous variable candidates. Moreover, relaxing our
non-Gaussianity-based model to more general nonlinear model is also important. Fur-
ther, future work would address what is the better correlation testing procedure taking

non-Gaussianity into account to remove the correlated variables in our algorithm.
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Chapter 3

An Imprbvement of Methods for
Learning a LINGAM model

3.1 Introduction

The methods based on the LINGAM model [45, 46] have strong identifiability of the
directed network representing the effect among the observed variables. However, for
correct network identification, they practically need to properly examine independence
between variables in the network and search a correct network by using finite sam-
ples. Nevertheless, the current LINGAM-model-based methods do not meet with these
requirements sufficiently since they employ incomplete measure to evaluate the inde-
pendence and a simple greedy search algorithm. Particularly in real-world situations
having small samples such as gene data analysis, the accuracy of the estimation of the
directed network is not acceptable because of the statistical sampling fluctuation. In
addition, the robustness to outliers in real-world data is important in estimating the net-
work. Therefore more sophisticated independence measures and more advanced search
algorithms should be introduced into the methods to estimate a network of the observed
variables more accurately and robustly under small samples.

In this chapter, we propose two approaches to improve the LINGAM-model-based
methods and present our methods by unifying them to enhance their accuracy and ro-
bustness under small samples while maintaining their tractable computational time.

The first approach is to modify the independence measures to more sophisticated
ones. The methods based on the LINGAM model need to apply various transformations

to the variables and compute their correlations since two variables are independent if
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and only if their arbitrary bounded transformations of the variables have zero correla-
_tion. However, the independence measures used in [45] and [46] include a few types
of nonlinear correlations only. In the field of ICA, many independence measures that
use wider varieties of the transformations have been proposed [44, 6]. Among such
independence measures, a kernel based independence measure studied in [6] supports
much varieties of the transformations and examines the independence more strictly than
the conventional independence measures. In addition, the kernel based measure has
sufficient computational efficiency because of a technique called Kernel Trick, which
we will explain in Section 3.3.1. Under these considerations, we propose variants of
the methods based on the LINGAM model which adopt the kernel based independence
measure. In the original paper of the kernel based independence measure [6], its robust-
ness to the outliers is well ensured because of the varieties of the transformation. Thus,
the measure is expected to provide more accurate and robust estimation of the network

to our variants of the LINGAM-model-based methods.

The second approach is to use beam search [61] instead of a greedy search algo-
rithm used in [46] to more accurately assess the network structure. This beam search
algorithm always maintains the constant number of suboptimum solutions at a step in
contrast to the greedy search that always selects only one best solution at the step. This
search algorithm is expected to provide more accurate network estimation under small
samples since it uses more complete search than the greedy search. Here, we note that
the beam search algorithm is not expected to enhance the robustness to outliers. This
is because outliers statistically affects the independence measure but not to the search

process.

We briefly review the conventional methods, ICA-LiNGAM [45] and DirectLINGAM
[46] in the next section. Further in Section 3.3, we propose four variants of the LINGAM-
model-based methods by using kernel based independence measure and/or the beam
search. Moreover, we experimentally characterize the conventional methods and our
variants in terms of their accuracy, computational cost and robustness to outliers in the
section 3.4. Finally, we discuss our results and give a conclusion in Section 3.5. This

chapter is related to the work published in [49].
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3.2 Related Works

3.2.1 AnICA-based Method for Learning a LINGAM Model

Firstly, we recall the linear non-Gaussian acyclic model representing the variable net-
work. Let o(i) denote such an ordering of an observed variable x; that no later variable
affects any earlier variable and b;; denote the connection strength from z; to z;. Then,

the linear non-Gaussian acyclic model, LINGAM model, is defined as follows:

T = Z bija:j + €;, (31)
o(j)<ol(3)

where e; are non-Gaussian external influences associated with ;. Further, let a p-

dimensional vector x be a set of observed variables z; and a p-dimensional vector e

be a set of non-Gaussian external influences ¢;. Then, the LINGAM model in matrix

form is defined as follows:
x = Bx + e, 3.2)

where B is the p X p strictly lower triangular matrix each element of which is a con-
nection strength b;;. In [45], a method for estimating networks of observed variables in
the LINGAM model by using ICA was proposed which is called ICA-LINGAM. In this
subsection, we explain how the method estimates the connection strength matrix B and
identifies networks.

Let us solve Eq. (3.2) for x. Then we obtain
x = Ae, 3.3)

where A = (I — B)™! is a mixing matrix. The mixing matrix A is identifiable [12]
if the observed variables are linear, invertible mixtures of non-Gaussian independent
source variables [25] and a sufficient number of samples on the observed variables are
given. Since the external influences e; are independent of each other and non-Gaussian,
the LINGAM model Eq. (3.3) can be defined as the ICA model [25] which is known to
be identifiable.
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Algorithm 2 ICA-LINGAM

1. Given a p-dimensional variable vector x and its p x n data matrix X, apply
FastICA [26] to estimate A.

2. Find the only one W, where W denote permuted rows of W = A~! to
minimize ), 1/|W | for ensuring the non-zero diagonals.

3. Divide each row of W by its corresponding diagonal element, to yield a
new matrix W' with all ones on the diagonal.

4. Compute an estimate B =1 — W',

5. To find an ordering of the observed variables, derive the permutation ma-
trix P which yields a matrix B = PBP7 which is as close as possible to
strictly lower triangular.

Though ICA can estimate A (and W = A1), there are still indeterminacies of
permutation and scaling. In spite of these indeterminacies, the correct permutation can
be found [45] since B should be a matrix that can be permuted to be strictly lower
triangular, in other words, W = I — B is to be lower triangular and have no zeros
in the diagonal if W is correctly permuted. Additionally, the correct scaling of the
independent external influences can be found by using the unity on the diagonal of
W = I — B. Accordingly, ICA-LINGAM can estimate B = I — W and identify
networks without using any prior knowledge. Pseudo code of ICA-LiNGAM is shown
in Algorithm 2.

However, there are two potential problems that most ICA algorithms used in the ICA-
LiNGAM may not converge to a correct solution in a finite number of steps, and that
a permutation algorithm used in ICA-LiINGAM are not scale-invariant. Therefore, they
could give a wrong identification of the network. Additionally, [CA-LiNGAM doesn’t
estimate the networks correctly if it doesn’t examine independence between variables

in the network properly.
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Algorithm 3 DirectLINGAM

1. Given a p-dimensional variable vector x, its p x n data matrix X, and a set
U of subscripts of all z; € x, initialize an ordering list of variables K = 0
and m := 1.

2. Repeat until p — 1 subscripts are added to K.

(a) Regress z; on z; for all i € U\K(i # j) and, derive the residual data
matrix R\ from the data matrix X for all j € U\K by Eq. (3.4). Find
a variable 2™ which is most independent of its residuals:

A = argmin T'(z;, U\K),
JEU\K

where T is the independence measure shown in Eq. (3.5) and A\(™ is
the subscript of the selected candidate variable.

(b) Add the subscript A(™ of the variable that minimize T to the end of
K.

(c) Let X :=RA™) and m :=m + 1.
3. Add the subscript of the remaining variable to the end of K.

4. Construct the connection strength matrix B by ordinary least squares of
Eq. (3.6) based on the ordering K.

3.2.2 A Direct Method for Learning a LINGAM Model

In [46], another method called DirectLiNGAM for identifying the networks was pro-
posed. In this subsection, we explain how DirectLiNGAM estimates the networks of

the observed variables.

Pseudo code of the DirectLiNGAM algorithm is presented in Algorithm 3. At first,

it tries to find an exogenous variable as the top variable in an ordering of the network.
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Let us denote by rl(j ) the residuals when z; is regressed on x;:

P0) = g, V(20 T5)
var(z;)

zj, (1 #9)- G.4)
Then, the variable x; is exogenous if and only if it is independent of its residuals rgj )
with all z;(z # j) [46]. The independence measure used in DirectLiINGAM [46] is

T(z;,U) = Y [leorr{Q(r?), z;}| + lcorr{r, Q(a;)}], (3.5)

1€U,i#j

where U is the set of subscripts of all observed variables z;, and Q(-) is a nonlinear and
non-quadratic function tanh(-) which originally used in FastICA [26]. This original
paper [26] focuses on the variables following non-Gaussian distributions with high/low
kurtosis, and evaluate the independence between the variables. In this condition, the
function Q(-) = tanh(-) transforms the non-Gaussian variables to reduce the effect of
their kurtosis and make the Gaussianity-based correlation analysis possible to evalu-
ate the independence between the non-Gaussian variables. Further explanation of this
function is described in [25]. In many cases, such a nonlinear correlation would evalu-
ate the independence accurately enough as described in the ICA literature [25]. Thus,
DirectLiNGAM selects the variable x, () that minimize the statistics Eq. (3.5) as the
exogenous variable at Step 2(a), and added the subscript A\(™ to the end of the order-
ing list K at Step 2(b). Next, in data X, the component of the exogenous variable to
the other latter variables is removed, and we obtain the residual data matrix RO™) by
performing the least square regression of Eq. (3.4). The LINGAM model still holds
for the remaining residuals in U\{j}, and an ordering of the residuals is equivalent to
that of the corresponding original observed variables (The proof of the LINGAM model
composed of the residuals is given in [46]). Therefore, DirectLINGAM can recursively
find the second top variable as the exogenous variable in the LINGAM model composed
of the residuals. Thus, we set X =: RA™) at Step 2(c). By repeating these operations
2(a)-(c), the ordering of the observed variables K is obtained. Finally, based on the

obtained ordering K, the structure of the connection strength matrix B and its element
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bi; is estimated by ordinary least squares [41] to be:
n 2
bij = argminz zy — Z bijwy |, (G # 7)), (3.6)
b umt o(j)<o(i)

where z} is the u-th sample of the corresponding variable. In addition, we recall that
o(1) is the ordering of the observed variable x;. Since no later variable affects any earlier
variable, we set b;; = 0, (0(i) > o(j),7 # j). Further, the diagonal element b;; is zero
because each observed variable does not affect itself.

We show an example of the procedure to estimate the network by DirectLiNGAM.
Suppose we have a dataset X containing three observed variables z1, x, and z3 obtained
from the network corresponds to the LINGAM model shown in Fig. 2.1. Firstly in
m = 1 iteration, DirectLiINGAM tries to find an exogenous variable by evaluating the
independence between x; and its residuals r¥) forall j € {1,2, 3}andi € {1,2,3}\y
at Step 2(a) in Algorithm 3. Suppose we obtain the following statistics of the three

possible candidates:

T(.’El, U) = 0, 11
T(xy,U) = 5.92,

Here, we recall that if a variable is the most independent of its residuals and is likely to
be exogenous, the statistic 7' would be small. Thus, in this example, xz; is selected as
the exogenous variable in st iteration (m = 1). Subsequently, the subscript A\() = 1
is added to the ordering list of variables K, i.e. K = {1} at Step 2(b). Then, the
data matrix X is updated to the regressed data matrix R() by using the least square
regression of Eq. (3.4). As can be shown in Fig. 3.1, the network constructed by the

(1)
3

remaining residuals rél) and r3 ’ is also the LINGAM model and therefore one iteratively

tries to find an exogenous variable (residual). Secondly in m = 2 iteration, if we obtain

the following statistics:

T(xy,U\K) = 0.09,
T(xs3,U\K) = 5.65,
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Figure 3.1: The LINGAM model constructed by the residuals rlgl)

then, x5 (the residual 'rél)) is selected as the exogenous variable at Step 2(a) because
of the smallest value of T(x5, U\K) = 0,09, and the subscript A\® = 2 is appended
to the end of K at Step 2(b), i.e., K = {1,2}. Finally, the remaining subscript {3} is
appended to K, and we obtain the ordering list of variables K = {1, 2,3} at Step 3.
The connection strength matrix B is constructed by ordinary least squares of Eq. (3.6)

based on the ordering K at Step 4.

Similarly to ICA-LINGAM, DirectLiNGAM cannot identify the correct networks
if it does not examine the independence between variables in the network properly.
Therefore, a choice of the independence measure is important. In addition, once Di-
rectLiNGAM selects a wrong variable as an exogenous variable, one can never find a
correct network. Thus, the search algorithm is also important in selecting the candidate

exogenous variable.

Nevertheless, DirectLiNGAM has advantages over ICA-LINGAM. One of the ad-
vantages is that DirectLiINGAM always converges to a solution while the convergence
of ICA-LiNGAM is not guaranteed because of ICA algorithm. The other is that Di-
rectLiINGAM ensures the scale-invariance while ICA-LINGAM is strongly influenced
by the scale at the permutation procedure. With these advantages, DirectLiNGAM can
estimate the network more accurately and has wider applicability than ICA-LINGAM.
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3.3 Approaches for Improving the Conventional Meth-

ods

In the previous section, we reviewed the conventional LINGAM-model-based methods
for estimating the variable network. For both ICA-LiNGAM and DirectLiINGAM, an
accurate evaluation of the independence between the variables is required to obtain the
correct network. In addition, the search algorithm is important for DirectLINGAM.
In this section, we focus on the independence measure and the search algorithm and
propose variants of [CA-LiNGAM and DirectLINGAM.

3.3.1 Extending the Independence Measure

ICA-LiNGAM [45] and DirectLiINGAM [46] use only one type of nonlinear correla-
tions such as Eq.(3.5). Unfortunately, the independence measure used in ICA-LiINGAM
[45] and DirectLINGAM [46] cannot evaluate the independence between the variables
accurately. This is because the measure used in them considers only one nonlinear trans-
formation to evaluate the independence while the variables x and y are independent if

and only if they satisfies the following condition:

corr{f(ac),g(y)} =0, Vf(-),‘v’g(-), (37)

for any nonlinear bounded transformations f(-) and g(-). Therefore, we need to consider
the correlation between various nonlinear transformations of the variables in evaluating
the independence accurately. As just described in the previous chapter, the accurate
evaluation of the independence between the variables is important to identify the net-
work. Thus, in this subsection, we propose a variant of the LINGAM-model-based
methods by extending the independence measures employed in [45] and [46] to cover
wider classes of the transformation for enhancing the accuracy and the robustness to
outliers.

The extension is made by introducing a kernel based independence measure pro-
posed in [6]. The measure is based on kernel canonical correlation analysis (Ker-

nel CCA). Kernel CCA is a method using kernel functions [6] to look for nonlinear
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transformations of the variables that maximize correlation in the transformed higher-
dimensional space. Here, let us denote nn samples of z and y by z and y* (i = 1, - - - , ),
respectively. Then, the kernel functions are defined as inner products of the transforma-

tions:

ko(z',27) = ($a(a"), ¢u(7)),
ky(yiayj) = <¢y(yi)7¢y(yj))7

where ¢,(-) and ¢,(-) are nonlinear transformations which map x and y into higher-
dimensional space, and (-,-) is an operation to take an inner product. Then, Kemel
CCA obtains n-dimensional coefficient vectors o and 3 that maximize the correla-
tion p, , between the transformations of  and y in higher-dimensional space. In other
words, Kernel CCA tries to find the nonlinear correlation which is most sensitive to
the independence between the variables. The equation to compute the kernel canonical

correlation is given as follows:
Pry = max a'K.K,B, subjectto o Kia=p"K:g=1, (3.8)

where K, and K, are n x n centered Gram matrices and

ke(zt, zt) — %Z?:I ky(zt,27) - kg(at, ") — 23 ko2t 2)
K, = : : :
| ko (2, z') -1 Z?:l ke(z™,x?) -+ kg (™ ") — 1 Z;;l ko (z™ 27)
ky(yhy') — 5 S ke (Uh YY) e ky(yhyt) = 2300 k(v )
K, = : B :
kg™ 0 = = o k(U)o k(Y - 230 k()
The optimization of the canonical correlation p, , of Eq. (3.8) comes down to a gener-

alized eigenvalue problem as follows:

K2 O
0 K2

ajl - (8
gl s

As a result, the kernel canonical correlation p, ,, corresponds to the maximal eigenvalue

0 K.K,
KK, O

which can be derived by Cholesky decomposition [6]. Then, we employ an independent
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measure based on Kernel generalized variance (KGV):

1
[(:U; y) = _5 IOg(l - pi,y)’ (39)

which is equivalent to the mutual information between the variable z and y [6]. The mu-
tual information is zero if and only if the variables are mutually independent. Therefore,
we employ KGV aS our independence measure. 7_

Though, generally, computing the higher-dimensional transformations of the vari-
ables requires high computational time and is not feasible to compute, [2] have shown
that the inner products can be replaced by the kernel functions such as Gaussian kernel
defined as follows:

kala', ) = {$u('), 6u(a)) = exp (—ﬂ) ,

o2
ky(yiayj) = <¢y(yi),¢y(yj)> = €Xp (“wl;—;ﬂ)z) .
This technique is called Kernel Trick. Therefore, we can directly obtain the inner prod-
ucts without computing each transformation ¢,(z*) and ¢,(y*) '. In this dissertation,
we employ this Gaussian kernel as the kernel functions &, and k, which is widely used
in the field of machine learning, and set the parameter o to the default value used in
[6] where the good performance is shown. In these manners, by using kernel functions,
we can obtain more accurate independence measure of Eq. (3.9) while maintaining its
computational feasibility.

As described in the previous section, the independence measure used in ICA-LINGAM
and DirectLINGAM of Eq. (3.5) focus on kurtosis of the distribution of the variable.
However, kurtosis is strongly influenced by outliers [25] which are usually contained in
real-world datasets. Therefore, the robustness to outliers of the independence measure is
not well ensured. In contrast, since the kernel independence measure considers various
types of nonlinear transformation and focus on not only kurtosis but also other statistics,
it is expected to robustly evaluate the independence [6]. Therefore, the independence
measure will provide more accurate and robust estimation of the network in our variants
of ICA-LINGAM and DirectLINGAM.

!Further explanation of the relation between the kernel function and the high-dimensional transfor-

mation is given in [2].
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Based on these considerations, we first propose a variant of ICA-LiINGAM by replac-
ing FastICA method used at Step 1 of Algorithm 2 by the ICA method with KGV, which
is called Kernel[CA-KGV. Here we call this variant of ICA-LINGAM as KernelICA-
LiINGAM.

Secondly, we propose a variant of DirectLINGAM in which the independence mea-
sure used at Step 2(a) in Algorithm 3 is replaced by the independence measure Eq. (3.9).
In other words, we propose to replace the statistic Eq. (3.5) by a statistic using the kernel

based independence measure Eq. (3.9) as

S |
Tke’rnel 115], Z Ix]) EJ) - Z _Q'IOg(l_pij’r(j))a (310)

1eU,i#j €U i#j

where Py 1) is the kernel canonical correlation coefficient between a variable z; and
FALE .

its residuals r(] ) when z; is regressed on x; by the least square regression of Eq. (3.4).

If a variable z; and its residuals r(J ) are independent, this independence measure has a

small value. We call the variant as Kernel-DirectLiINGAM.

3.3.2 [Extending the Search Algorithm

With small sample data, the independence statistic Eq. (3.5) is inaccurate because of
the sampling fluctuation. Particularly in DirectLINGAM, it employs a simple greedy
search algorithm and always selects only a unique variable as an exogenous variable
that minimizes the statistic Eq. (3.5). Therefore, once a wrong exogenous variable is
selected as an exogenous variable because of the inaccurate value of T, a widely wrong
network tends to be obtained. To alleviate this problem, a more advanced search algo-
rithm which always keeps multiple candidate orderings of the variables in the search is
expected to provide a more accurate identification of the networks under small samples.
Accordingly, we propose to introduce the search algorithm called beam search [61] at
Step 2(a) of DirectLINGAM algorithm. We point out that the objective to use the ad-
vanced search algorithm is to enhance the accuracy and not to improve the robustness
against outliers because the outliers affects the independence measure only and do not

change the search process.
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We present pseudo code of the algorithm incorporating the beam search in Algo-
rithm 4.2 At the first step of the iteration, initialize H, = 0 and K, ¢ = 0 for all
¢ € {1,---,k}, where & is a width of the beam search to keep » ordering lists K,
and H, is a value representing the summation of all statistics 7" along the ordering list
K. In our formulation, the total independence H, is employed since it is to be small if
the correct ordering of the variables are identified. Moreover, prepare copies of the data
matrix X, = X. At Step 2(a) in Algorithm 4, one selects the & pairs of the subscripts
{7, AW} (h € {1, -+, k}) of K, and x; each of which is likely to be independent
from its residuals and gives the smaller total independence measure H, + T'(z;, U\ K,)
among j € U\K, forall £ € {1,---  x}. AtStep 2(b), the x current ordering lists and
measures are stored, i.e., Kj = K; and Hj = H,. Then, at Step 2(c), H, and K, are
replaced by the new ordering lists K¢, U A® and the new total independence measures
H¢ . + T(zy0,U\KS,), respectively. Next, at Step 2(d), the x data matrices X, are
updated to the regressed data matrix Rjﬁfi which is derived by the least square regres-
sion of Eq. (3.4). In these manner, one recursively selects the  candidate pairs of the
ordering list and the exogenous variable. Finally, one selects the best ordering K from
K, which has the smallest total independence measure I, and appends the remaining
subscript to the end of K at Step 3. Similar to the DirectLINGAM algorithm, the con-
nection strength matrix B is constructed by ordinary least squares of Eq. (3.6) based on
the ordering K at Step 4.

We show an example of this new algorithm as follows. Suppose that we have a
dataset having three observed variables z1, zo, z3 and define K = 2. At first, the al-
gorithm initializes ordering lists K; = K, = () and the total independence measure

H, = H, = 0. If the statistics of three possible exogenous variables are

T(z,U) = 013,
T(z2,U) = 3.25,
- T(z3,U) = 0.08,

we obtain k = 2 candidates of the exogenous variables, x; and z3 at Step 2(a) in 1st

?In this dissertation, we do not introduce this search method to ICA-LiNGAM since introducing this
beam search to ICA-LiNGAM seems not to be made in a straightforward way.
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Algorithm 4 Beam-DirectLINGAM

1. Given a p-dimensional variable vector x, its p x n data matrix X, the positive

integer x (x < p) for the beam search and a set U of subscripts of all z; € x,

initialize x ordering lists K, := 0, the « total independence measures H, := 0,

copies of data matrix X, := X and m := 1.

2. Repeat until p —- 1 subscripts are added to each K.

(@) Foreach ¢ € {1,--- ,k}, regress xz; on z; for all : € U\K,(i # ) and derive

(b)
(c)

(d)

the residual data matrix Rﬁj) from the data matrix X, for all j € U\ K}, by
performing the least square regression of Eq. (3.4). Then, find « pairs of the
candidate of the exogenous variable z, ) and the ordering list K_.) which
give the top x smallest values of the total independence measure:

{T(h),)\(h)|h €{1,---,k}} = arg top k min {Hy + T(z;;U\Ky)},
Ze{1,~-~,n’i,j’eU\Kl
where T is the independence measure shown in Eq. (3.5) and {r("), \(W)}

are the « candidate pairs of the subscripts of the ordering list and the vari-

able that give top « smallest values in the above measure.

Store the ordering lists and the total independence measures, Kj := K,
Hf:=H;foreach{e {1, - ,k}.

Foreach ¢ € {1,--- , x}, update the measure, Hy = H’,, +T(z ), U\K () ).
Then, let K, = K°,, and add the subscript A¥) to the end of K.

Foreach{e {1,--- ,k}, let X, := R(’\(e)) and m :=m+ 1.

7(£)

3. Select the list K; having the smallest total independence measure H; as the best

ordering K and add the subscript of the remaining variable to the end of K.

4. Construct the connection strength matrix B by ordinary least squares of Eq. (3.6)

based on the ordering K.
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iteration (mm = 1), and the values of T'(z,,U) and T(z3,,U) are stored to H; and H,
respectively at Step 2(b). Subsequently, each subscript A1) = 1, A\?)=3 are appended
to each ordering list K, and K at Step 2(c). Now we have the ordering lists K; = {1}
and K, = {3}, and the total independence measures H; = 0.13 and H; = 0.08. Then,
at Step 2(e), one updates the data matrices X; and X to the residual data matrices Rgl)
and Ré‘” derived by performing Eq. (3.4).

Next, suppose we obtain the following statistics

Tz, U\K,) = 0.02,
T(zs,U\K,) = 5.65,
T(z1,U\K>) = 4.85,
T(zy, U\Ks) = 3.66.

Here, we recall that if the total independence measure given by the pair of the ordering
list and the candidate variable is small, the pair is more feasible ordering in our for-
mulation. Then, at Step 2(a) in 2nd iteration (;m = 2), the x = 2 candjdate pairs of
the subscripts of the ordering list and the exogenous variable, {7() = 1, \) = 2} and
{r® = 2,1 = 2} are obtained each of which gives the smaller total independence
measure Hy + T(z;, U\K,). Subsequently, copies K§ := K, and Hf := H, are cre-
ated at Step 2(b). Then, at Step 2(c), H;, H, are replaced by Hf + T'(z2, U\ K¥) and
HS + T(z2, U\KS). Moreover, the ordering lists K3, K are replaced by K7 and K3,
and each subscript {\(!) = 2} and {A\(® = 2} are appended to the end of K; and K.
Here we have the ordering lists K; = {1,2} and K; = {3, 2}, and the total indepen-
dence measures H; = 0.15 and H, = 3.74. Next, the ordering K is selected as the best
ordering K because of the smallest measure H; = 0.15. Then, the remaining subscript
are appended to the ordering list K, and we obtain K = {1, 2, 3} at Step 3. Finally, the
connection coefficient matrix B is derived by ordinary least squares of Eq. (3.6) based
on the obtained ordering K at Step 4.

Fig. 3.2 shows an illustration of this procedure to select x = 2 pairs of the ordering
and the variable by the beam search algorithm. As can be seen in Fig. 3.3, if we use
the past DirectLiNGAM algorithm, the other ordering K = {3, 2,1} is resulted which

has the large total independence measure because of the small difference of T'(z;,U)
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Figure 3.2: The procedure to select the £ = 2 candidate pairs of the ordering and the

variable by the beam search algorithm.
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Figure 3.3: The procedure to select the candidate of the exogenous variable by Di-
rectLINGAM (Beam-DirectLINGAM with k = 1).
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and T'(x3,U) in Ist iteration (m = 1). In this manner, the small difference of T which
could be caused by the statistical sampling fluctuation would lead the quite different
estimation of the network. Thus, the modification for the search algorithm is important
for more accurate network identification in DirectLiNGAM.

We call the variant of DirectLiINGAM using the beam search as Beam-DirectLINGAM.
Additionally, we apply the beam search to Kernel-DirectLINGAM that we proposed in

the previous subsection and call this variant as Beam-Kernel-DirectLINGAM.

3.4 Experiments on Artificial Data

In this section, we experimentally characterized the conventional methods, ICA-LINGAM,
and DirectLiNGAM, and their variants, KernellCA-LiINGAM, Kernel-DirectLiNGAM,
Beam-DirectLiNGAM and Beam-Kernel-DirectLINGAM. To design the experiments in
an efficient way, we partitioned the experiments into two stages. Firstly, we compared
ICA-LiINGAM, DirectLiNGAM, KernelICA-LiNGAM and Kernel-DirectLiNGAM to
investigate the accuracy, the computational cost, and the robustness to outliers which
is expected to be provided by the kernel based independence measure. Further, we ex-
amine the scale-invariance of the framework of DirectLINGAM. Secondly, based on
the result of the previous experiments, we compared Beam-DirectLiNGAM and Beam-
Kernel-DirectLINGAM in terms of accuracy and computational cost to examine the

effect to the accuracy by the beam search.

3.4.1 Experimental setup

We explain how artificial datasets are generated and how the accuracy of the methods is
evaluated.

At first, we employed 17 non-Gaussian distributions used in [6] from which we drew
independent non-Gaussian external influences e;. These distributions included a double
exponential distribution, an uniform distribution, a ¢-distribution with 5 degrees of free-
dom, an exponential distribution, mixtures of two exponential distributions, symmetric

and asymmetric mixtures of some Gaussian distributions. Then we randomly generated
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a dataset with a combination of number of variables p and sample size n as follows.

1. We randomly constructed p x p strictly lower triangular matrix B so that standard
deviations of variables z;, owing to parent variables ranged in the interval [0.5,

" 1.5].

2. We generated n samples by independently drawing the external influence e; (1 =
1, -, p) from non-Gaussian distributions randomly selected from the 17 distribu-

tions with zero means and standard deviations randomly selected from [0.5, 1.5].

3. The n sample values of the observed variables x; were generated according to the

LiNGAM model Eq. (3.2) with n samples of the external influences.

4. We randomly permuted the ordering of z;, i.e., obtained the row-permuted data

matrix X.

Because of the permutation at Step 4, the true connection strength matrix to be estimated
is also permuted by the corresponding ordering of x;. Then, we denote the permuted
matrix as Bpeyn,.

In each numerical experiment, we evaluated accuracy of an estimated ordering as
follows. We first permuted the rows and columns of B,.,, according to the estimated
ordering K. If the estimated ordering corresponds to the true ordering, the permuted
Byerm, is strictly lower triangular. Thus, we counted the number of non-zero elements
in the strictly upper triangular part of the permuted B,.,,, as the number of errors. The
number of errors is zero if the estimated ordering is correct. In all the experiments for
every combination of p and n, we generated 101 datasets and counted the number of
errors on each dataset and took the median of the 101 numbers of errors. In comparing
the computational time of the methods, we took the median computational time of the
101 trials.

3.4.2 Kernel-based variants

At first, we tested two of the variants, KernelICA-LiNGAM and Kernel-DirectLiNGAM,
and made a comparison with the other LINGAM-model-based methods. We generated
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datasets with combinations of the number of the variables p=8, 16 and 32, and the sam-
ple size n=100, 200, 500, 1000, 2000 and 5000. We evaluated accuracy of orderings
estimated by those four methods using the datasets. Further, we compared their com-
putational time. We did not test KernelICA-LiNGAM for p=16 and 32 since it needs
much larger computational time than other methods. The medians of the numbers of er-
rors are shown in Table 3.1. In Table 3.1, the median errors of Kernel-DirectLINGAM
are often smallest. This is because the kernel based independence measure considers
the various nonlinear transformation and evaluates the independence correctly. Further-
more, the computational times are shown in Table 3.2. The computation amount of the
Kernel-DirectLiNGAM is rather larger than DirectLINGAM. However, its computation
amount is considered to be still tractable for data consisting of dozens of variables and
a few thousand samples.

Next, we examined scale-invariance of ICA-LINGAM, DirectLINGAM, KernelICA-
LiNGAM and Kemel-DirectLiNGAM since the algorithm of ICA-LINGAM is known
to be scale-sensitive while that of DirectLiNGAM is scale-invariant as explained be-
fore. We first generated datasets with combinations of p = 8 and n=100, 200, 500,
1000, 2000 and 5000, then all the values of four randomly chosen variables from the
p variables were respectively amplified by two orders of magnitude in each dataset so
that the variables have rather different scales. Table 3.3 shows the median errors of
the four methods. DirectLiNGAM and Kemel-DirectLiNGAM are advantageous over
the other two methods in terms of scale-invariance. Though both DirectLiINGAM and
Kernel-DirectLiNGAM are scale-invariant, Kernel-DirectLiNGAM worked best since
the kernel based independence measure considers various nonlinear transformations of
the variables and evaluates the independence more accurately.

Finally, we examined robustness against outliers. We first generated datasets with
a combination of p = 8 and 1000. Then we added a random value having either +5
or -5 up to randomly chosen 14 samples [6]. The median errors resulted by these ex-
periments were plotted in Fig. 3.4. It shows that Kernel-DirectLINGAM achieved the
smaller number of errors and was not very much affected by the existence of outliers.
As described in Section 3.3, the kernel based independence measure considers various

statistics while the conventional measure focus on kurtosis of the variable which usu-
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Figure 3.4: Median numbers of errors with increasing the number of outliers.

ally suffers from outliers. Therefore, Kernel-DirectLiINGAM can estimate the network
robustly.
As a result, we can conclude Kernel-DirectLINGAM is more accurate and robust

than the other methods. Moreover, Kernel-DirectLiNGAM is also scale-invariant.

3.4.3 Variants employing Beam search

In this subsection, based on the result of the previous experiment, we focused on Di-
rectLiNGAM and its variant, Kernel-DirectLiNGAM which provides more accurate and
tractable network identification than ICA-based methods. In addition, as described in
Section 3.3, the beam search is expected to enhance the accuracy of the network esti-
mation. Therefore, we investigated differences of the accuracy and the computational
time between the greedy search and the beam search in DirectLiNGAM and Kernel-
DirectLiNGAM. We generated 101 datasets with combinations of p=8, 16 and n=100,
200, 500, 1000, 2000, 5000, and selected the width of the beam x=2,4 and 8 which is
the number to keep ~ candidate orderings. In Table 3.4, the median numbers of errors
are shown. Moreover, the median computational times of the compared methods are

presented in Table 3.5. Table 3.4 shows that the variants using the beam search more
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accurately estimated the orderings of the observed variable. By using the kernel based
independence measure, the more accurate total independence of the ordering is evalu-
ated in the beam search, and thus the ordering is more correctly estimated even under
the situation having small samples. Therefore, the significantly accurate identification
of the ordering was made by Beam-Kemel-DirectLiINGAM. However, as can be seen in
Table 3.5, the computational time of Beam-Kemel-DirectLiNGAM is highest of all and
increases linearly with the width of the beam «. There is a trade-off between the accu-
racy and the computational time. Nevertheless, we can control the computational time
to be feasible by choosing the width based on the characteristics of given datasets (e.g.
the number of observed variables, sample size and/or required accuracy) in applying the

method to real-world datasets.

3.5 Conclusion

We proposed two ideas to improve accuracy and robustness of the conventional LINGAM-
model-based methods. One is to use a more sophisticated independence measure than
that in ICA-LINGAM and DirectLINGAM, which provides both accuracy and robust-
ness to outliers. The other is to use beam search instead of greedy search which en-
hances the accuracy of DirectLINGAM. In the experiments, we firstly examined the
LiNGAM-model-based methods and our methods using kernel based independence
measure in terms of the accuracy, the computational cost, the robustness to outliers
and scale-invariance. Based on the result of the first experiment, we compared the ac-
curacy and the computational cost of DirectLINGAM, Kernel-DirectLiINGAM, Beam-
DirectLiINGAM and Beam-Kernel-DirectLINGAM. The result of these numerical ex-
periments implies that the variant using both kernel method and the beam search pro-
vides the more accurate and robust network identification than the previous LINGAM-
model-based methods even under the various real-world situations such as small sam-
ple and noisy data. Though the computational time of Beam-Kernel-DirectLINGAM is
higher than the conventional methods, it is tractable and controllable.

An important topic for future research is to investigate how other meta-heuristics

including tabu search could be used in our method. Moreover, we can incorporate other



41

independence measures such as Fast kernel ICA [44] into our method. These further
investigation could lead more accurate and/or time-efficient methods for estimating the

variable network.
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Table 3.1: Median errors of the conventional methods based on the LINGAM model

and their variants under (A) 8 variables; (B) 16 variables; (C) 32 variables.

(A) 8 variables

Kernel-Direct  Direct  KernellCA- ICA-

" LINGAM  LINGAM LiNGAM LiNGAM
100 6 7 7 8
200 4 6 8 4
500 1 3 6 3

1000 1 2 5 1
2000 0 0 0
5000 0 0 0
(B) 16 variables
Kernel-Direct  Direct = KernellCA- ICA-

" LINGAM LiINGAM LiINGAM LiNGAM
100 30 31 - 29
200 18 24 - 33
500 7 14 - 33

1000 4 - 22
2000 2 4 - 14
5000 / - 6
(C) 32 variables
Kemel-Direct  Direct  KernellCA- ICA-

" LINGAM  LINGAM LiNGAM LiNGAM
100 145 130 - 125
200 93 87 - 88
500 54 80 - 161

1000 29 41 - 157
2000 i2 27 - 138
5000 3 11 - 56
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Table 3.2: Median computational time (sec) to estimate the ordering by the conventional

methods and their variants under (A) 8 variables; (B) 16 variables; (C) 32 variables.

(A) 8 variables

Kernel-Direct  Direct = KernellCA- ICA-

" LINGAM  LiINGAM LiNGAM LiNGAM
100 0.63 0.04 19.68 1.30
200 0.70 0.04 22.60 1.18
500 0.90 0.05 29.41 1.15
1000 1.24 0.07 39.14 1.18
2000 2.01 0.11 41.85 1.18
5000 353 0.27 77.58 1.19

(B) 16 variables
Kernel-Direct Direct KernellICA- ICA-

" | LINGAM LINGAM LINGAM LiNGAM
100 4.94 0.27 - 0.54
200 5561 0.30 - 0.66
500 7.18 0.39 - 0.94
1000 10.05 0.55 - 0.59
2000 16.09 0.86 - 0.41
5000 43.02 1.96 - 0.40

(C) 32 variables
Kernel-Direct  Direct  KernelICA- ICA-

" LiINGAM LINGAM LiINGAM LiNGAM

100 40.52 1.99 - . w7
200 45.79 2.25 - 1.44
500 58.17 299 - 1.82
1000 81.97 427 - 247
2000 131.48 6.78 - 3.54
5000 346.20 17.07 - 1.90




Table 3.3: Median errors with the different scale variables.

Kemel-Direct  Direct  KernellICA- ICA-

" LINGAM  LINGAM LiNGAM LiNGAM
100 6 13 19 19
200 4 11 19 17
500 1 8 18 17
1000 1 5 17 16

2000 0 2 16 16
5000 0 1 16 16
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Table 3.4: Median errors of the variants using the beam search with the width of the

beam x=2, 4 and 8 under (A) 8 variables; (B) 16 variables.
(A) 8 variables

. Beam- Kernel- Beam-Kernel
Direct -
n . DirectLINGAM Direct DirectLINGAM
LiINGAM )
(k=2 (k=4) (k=8)|LINGAM |(k=2) (k=4) (r=298) |
100 7 7 8 7 6 5 5 5
200 6 6 6 7 4 3 3 3
500 3 2 2 2 ! / / 1
1000 2 1 1 1 1 0 0 0
2000 0 0 0 0 0 0 0
5000 0 0 0 0 0 0 0 0
(B) 16 variables
) Beam- Kernel- Beam-Kernel-
Direct
n . DirectLINGAM Direct DirectLINGAM
LINGAM ) i
(k=2) (k=4) (k=8)|LINGAM | (k=2) (k=4) (k=23

100 31 29 29 29 30 27 22 21
200 24 23 20 20 18 15 15 14
500 14 13 12 12 7 6 5 5
1000 5 5 5 4 3 3 2
2000 4 3 3 2 2 2 1 1
5000 1 1 1 1 1 0 0 0
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Table 3.5: Median computational time (sec) of the variants using the beam search with

the width of the beam ~=2, 4 and 8 under (A) 8 variables; (B) 16 variables.
(A) 8 variables

. Beam- Kernel- Beam-Kernel
Direct
n . DirectLINGAM Direct DirectLINGAM
LINGAM ]
(k=2) (k=4) (k=8 |LINGAM | (k=2) (k=4) (k=28
100 0.04 0.09 0.7 0.35 0.80 1.60 3.20 6.42
200 0.05 0.09 0.18 0.37 0.94 1.88 397 7.55
500 0.06 0.12 0.24 0.48 1.33 2.65 5.24 10.66
1000 0.08 0.16 0.33 0.66 1.90 3.83 Tl 1 15.47
2000 0.13 0.27 0.53 1.07 3.12 6.22 12.59 25.53
5000 0.29 0.57 1.15 2.30 10.74 21.90 43.95 88.36
(B) 16 variables
. Beam- Kernel- Beam-Kernel-
Direct
n DirectLINGAM Direct DirectLINGAM
LINGAM '
(k=2) (k=4) (k=8)|LINGAM | (k=2) (k=4) (k=23)
100 0.30 0.59 1.19 2.38 6.52 13.00 25.95 51.94
200 0.33 0.66 1.33 2.66 7.55 15.07 30.14 60.31
500 0.44 0.87 1.75 3.51 10.73 20.98 42.90 86.35
1000 0.63 1.26 251 5.04 1511 30.14 61.00 122.70
2000 1.03 2.05 4.10 8.21 25.36 50.52  101.78  205.07
5000 2.44 4.87 9.74 19.49 86.68 170.83 34421 696.70
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Chapter 4

Robust Active Learning for Linear
Regression via Density Power
Divergence

4.1 Introduction

In Chapter 2 and 3, we proposed the methods to obtain some knowledge on the directed
variable network. Besides them, estimating a relation between an important variable and
the other observed variables, which is known as a linear regression, is also important
in many applications. In the context of the linear regression, the particular variable is
called a label variable and otherwise are called explanatory variables. Here, we note that
a sample which has values associated with both the label variable and the explanatory
variables is called a labeled sample. Otherwise, a sample which has only values of the
explanatory variables is called an unlabeled sample. In contrast to the technique for
estimating the entire network shown in Chapter 3 which can apply only to less than
100 dimensional data, the linear regression technique can be applied to more than 100
dimensional data. Because of its applicability, the linear regression model is widely used
to represent the relation between the label variable and the other explanatory variables
in many domains such as medical service [60, 30], social science [55, 17], marketing
[20, 9] and so on.

Recent development of information technology has made it possible to collect huge
amount of data automatically in various domains. Nevertheless, in most cases, such

data are composed of majority unlabeled samples and minority labeled samples. This
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is because labeling tasks by human experts or additional experiments called oracles
are usually expensive or time-consuming. For example, in a car insurance company,
an insurance fee is determined by its company’s employees based on car information,
driver’s driving records and so on. However, such determination by hand needs enor-
mous cost and time. Unfortunately, under the small labeled sample data, the estimation
of the linear regression model is often statistically unreliable. For this issue, a technique
called active learning has been discussed to make learning processes with majority un-
labeled samples and minority labeled samples more efficient [10] in recent years. In
contrast to passive learning that estimates a model from given labeled samples only, the
active learning algorithm selects some unlabeled samples expected to be informative as
queries for learning and asks an oracle to label them. This active learning framework
has been widely applied successfully in various regions such as speech recognition [19],
classification [35] and regression [56].

One of the most important problems in the active learning framework is how to select
unlabeled samples called queries, and several querying measures have been discussed
over the last few decades [31, 42]. These conventional active learning methods com-
monly assume that the oracle always follows a true labeling distribution and gives cor-
rect labels on samples. In the real-world, however, human experts might give incorrect
labels because of their conditions or additional experiments might make mistakes be-
cause of their environments. Such an oracle giving noisy labels is called a noisy oracle
which usually follows the noisy labeling distribution called the contaminated distribu-
tion. With the noisy oracle, an accuracy of a model estimation by the active learning
method could become worse. Thus, in this chapter, we propose a new active learning
algorithm for the linear regression to tackle this problem caused by a noisy oracle.

Among various types of querying measures, in this chapter, we employ Variance
Reduction Approach (VRA) [41], which is based on an asymptotic variance of parame-
ters (estimators) since its validity is well ensured by the statistical asymptotic analysis.
In this approach, active learning algorithms select queries that are expected to mini-
mize the difference between the true parameter and the estimated parameter. A con-
ventional method based on VRA use Kullback-Leibler (KL) divergence in estimating

a model parameter (ML-estimator), and employ the asymptotic variance based on the
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ML-estimator in determining queries [62]. However, the KL-divergence-based methods
do not consider noisy-oracles and thus work worse if there are noisy labels. Therefore,
in this chapter, through the asymptotic analysis on M-estimator which is a wider class of
estimators including the ML-estimator, we extend the conventional VRA-based query-
ing measure and incorporate robust divergences called density power divergence into
our querying measure to achieve the robust estimation of the linear regression model.

Based on these backgrounds, in this chapter, we firstly propose an active learning
method to robustly estimate the variable relation from the noisy small labeled samples
and the large unlabeled samples. Then, we examine robustness of our proposed meth-
ods by the numerical experiments with artificial datasets. Further, by using real-world
dataset, we investigate its behavior under more realistic situation.

The remainder of the chapter is organized as follows. In Section 4.2, we first briefly
review the linear regression model, the pool-based active learning framework and the
conventional active learning method based on VRA. In Section 4.3, we extend VRA
through an asymptotic analysis on M-estimator and apply it to the density power di-
vergence. Then, in Section 4.4, we propose a practical querying measure based on the
discussion in the previous section. Finally, we investigate the robustness of our ac-
tive learning method for the linear regression model by using artificial and real-world
datasets in Section 4.5, and we conclude this chapter in Section 4.6. This chapter is
related to the work published in [51, 52].

4.2 Background

4.2.1 Linear Regression Model

As we explained in Section 4.1, the linear regression model has been widely used to
represent the relation between the label variable and the explanatory variables because
of its applicability. Therefore, in this chapter, we discuss the general linear regression
model.

Let us denote the label and the explanatory variables by the continuous scalar vari-

able y and p-dimensional continuous vector X, respectively. Then, the linear relation is
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defined as the following equation:
y= w X + wy + €,

where w is a p-dimensional coefficient vector, wg is a constant term and ¢ is a Gaus-
sian noise with zero mean and its variance o2. The probabilistic model of this linear

regression model is expressed as:

e ~ p(ylx; w, wo,0°) =

o (=X

2mwo? o?
In the rest of this chapter, we denote the collection of these parameters by @ and the

probabilistic model of the linear regression by pg(y|x) for simplicity.

4.2.2 Pool-based Active Learning

Active learning techniques are divided into main three branches. The first is Member-
ship query Synthesis [4] where the oracle generates any arbitrary unlabeled sample on
demand and give the label on it. The second is stream-based selective active learning
[2] where unlabeled sample is generated sequentially from its true distribution and the
oracle decides whether to select as a query or discard it. The third is pool-based active
learning [33] which is a frequently-discussed framework in machine learning for situ-
ations where the distribution of unlabeled samples is unknown but unlabeled samples
from their true distribution are given [35]. To estimate the linear regression model, the
pool-based active learning is more appropriate to real-world situations where we have
small labeled samples and large unlabeled samples. Therefore, in this section, let us
consider the pool-based active learning framework to robustly estimate the linear rela-
tionship (the linear regression model) from small labeled samples and large unlabeled
samples.

Formally, in pool-based active learning framework, it is assumed that one has a small
set of labeled samples £ = {(x;, yi), -+« , (Xn,, Yn,) } and a large set of unlabeled sam-
plesUd = {Xp; 41, * »Xny+ny } (1 <€ ny). Then, one tries to find a set of queries from
U that is expected to be informative for estimating a’good’ model. An overall procedure

of the pool-based active learning algorithm is described in Algorithm 5. At Step 2(a), a
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Algorithm § Pool-based active learning algorithm

1. Given a set of labeled samples £, a set of unlabeled samples I/, the number of
queries per an iteration () and the number of querying iteration R, and initialize

m =0,
2. Repeat the following procedure R times.

(a) Estimate the model pg(y|x) from the labeled sample set L.

(b) Select a set S of () unlabeled samples as queries based on the estimated

model pyem (yx).
(c) An oracle gives a label on each query in S.
(d) Add the labeled sample set S to L.
(e) Remove the queries in S from U and m := m + 1.

3. Estimate the model pg(y|x) from the labeled sample set S and obtain the final
model p; (y|x).

model with parameter 8, denoted as pg(y|x), is estimated from the small set of labeled
samples L. Next, based on the estimated model pg, (y|x), the algorithm selects the most
"informative’ subset of unlabeled samples S as queries at Step 2(b). Subsequently, each
query is labeled by an oracle and added to £ as labeled samples at Step 2(c) and (d).
Then, the samples in S are removed from ¢ at Step 2(e). These learning and querying

steps are repeated iteratively.

As mentioned above, the selection of an informativeness measure for queries is an
important problem in developing pool-based active learning algorithms. One of the
promising measures is based on the asymptotic variance which evaluates an efficiency of
an estimator 6. The strategy for minimizing this asymptotic variance is known as VRA
[41]. However, a conventional method, which will be explained in the next subsection,

does not consider mis-labeled samples.
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4.2.3 A Conventional Method using KL-divergence

In this subsection, we review the conventional active learning method based on VRA
[62]. This active learning method estimates a model under an assumption that the model
pe(y|x) with a parameter 8 includes a true distribution g(y|x), i.e., q(y|x) = pe+(y|x)
where 0* is a true parameter. The model parameter @ is obtained by minimizing the

KL-divergence:

Dk1(qllpe) = / / q(y|x) log ((yll ))dydx (4.1)

where ¢(x) is a true input distribution of the explanatory variables. This is a well-known
statistical measure to evaluate a difference between two probabilistic distributions. Now,
suppose that we have n labeled samples {(x1,y1), - - , (Xn, ¥n)} generated from a true
distribution ¢(x,y) = q(x)pe-(y|x). Then, the model parameter 8, which minimizes

the above KL-divergence is obtained by solving the following equation:

Zae log p(y:[xi; 6r) = 0, (4.2)

i=1
where Jy denotes the partial derivation with respect to 8. The left side of this equa-
tion is derived by the derivative of the KL-divergence with respect to the parameter and
replacing the expectation over g(x,y) with the samples, i.e., [ ¢(x,y)h(x, y)dydx to
LS L h(xi, y;), where h(x,y) is some function of x and y. The parameter 0., esti-
mated by solving Eq. (4.2) is called a maximum likelihood estimator (ML-estimator)
and converges to 8* sufficiently if n — co. An estimator which converges to the true
parameter with infinite samples is called a consistent estimator in statistics.

The conventional method selects queries based on the asymptotic variance of the
ML-estimator, Eg.[(8, — 6*)(0,, — 6*)7], where Eq.["] is the expectation over a set
of {x,y} with respect to q(x,y) = q(x)pe~(y|x), and selects queries to minimize the
difference between @, and 8*. This measure is called an asymptotic variance and cor-

responds to the Fisher information I(8) [62]:
Eo+[(6 — 6")(8, — 6")7] = 1(8)™" = Eo- [9plog p(ylx)dp log p(ylx)T] . (43)

By using KL-divergence, we can estimate the model parameter from finite samples effi-

ciently [22]. However, it is known that such efficient estimation is strongly affected by
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/True distribution
Distribution estimated

/ by KL-divergence
~ Noisy

—<—__labels

‘\R —/' F

KB Influence to the estimation by

the density power divergence

Figure 4.1: An illustration of the contaminated distribution and the weighted likelihood

estimator

the existence of noisy labeled samples. We show an illustration of the model estimation
based on the KL-divergence in Fig. 4.1. As can be seen in Fig. 4.1, the estimation by
KL-divergence fits all the samples including noisy samples and provides a wrong distri-
bution. In these manners, if the sample with the noisy label exists, the method based on
the ML-estimator tends to overfit to the data involving the noisy samples and therefore

to behave worse.

4.3 Extending a Querying Measure by Asymptotic Anal-
ysis

In this section, we extend the conventional VRA scheme to utilize the other consistent
estimator which are based on more robust divergences against the noisy labels than KI -
divergence. Here, we recall that the consistent estimator converges to the true parameter
if infinite samples are given from the true distribution. A general class of such the
consistent estimators is called M-estimator in statistics.

In Section 4.3.1, we show the notion of the M-estimators and their statistical charac-
teristics, which are basis of our querying measure. In Section 4.3.2, we introduce robust

estimators based on the density power divergence, and propose new querying measures
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which provide us the robust estimation of the model in the noisy oracle situations.

4.3.1 Asymptotic Analysis on M-estimator

The M-estimator is a general class of the consistent estimators which includes the ML-
estimator shown in Section 4.2.3. Through a discussion of the general class of estima-
tors, we describe common statistical characteristics of various M-estimators.

Suppose we have i.i.d. n labeled samples {(x1,41), - , (Xn, Yn)} generated from a
distribution g(x, y) = ¢(x)g(y|x) = q(x)pe~(x, y). Now, let us denote a vector function
by ¥ (y|x; ), the dimensionality of which corresponds to that of the parameter 6. The

vector function is called an estimating function when it satisfies the following conditions

for any 0:
Eo [¥(y[x; 0)] = 0, (4.4)
det [Eo [Oa9 (ylx; 8)]| # 0, (4.5)
Eo [|14(ylx; 0)|1%] < oo, (4.6)

where Eg[-] and det| - | denote the expectation with respect to pe(x,y) = q(x)pe(y|x)
and a determinant of the matrix, respectively. Here, we note that dg0(y|x; @) is the
square matrix, where the numbers of row/column is equal to the dimensionality of the
parameter 8. If the estimating function exists, an estimator 8, is obtained by solving

the following estimating equation:

> W(vilxi 6,) = 0. 4.7)
i=1

A solution of Eq. (4.7) is called an M-estimator in statistics [22]. The following propo-
sition states a convergence of the M-estimator, 9n — 8% if n — oo (consistency) and

an existence of its asymptotic variance.

Proposition 2 Suppose we have i.i.d. n labeled samples {(x1,y1)," -+, (Xn,Yn)} gen-
erated from a distribution q(x,y) and a function ¥ (y|x; 0) satisfies the conditions (4.4)-

(4.6). Then, if n — oo, the M-estimator 6. converges to 8* in probability. Moreover,

V(6 = 6°) ~ N(0,A51 Mg (A31)T), (4.8)
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where N (p, ) denotes a Gaussian distribution with mean p and covariance matrix 3

and

Age = Eg- 0o (y|x; 0%)], (4.9)
Mg = Eg- [9(ylx; 6*)2p(y|x;60*)7] . (4.10)

The proof of this proposition is given in [59]. Proposition 2 remarks if we find an
estimating function v (y|x; @), we can obtain an M-estimator 8,, with the asymptotic

variance:
. ~ 1
Eo-[(6, — 0")(6, — 0") 7] = ~A M. (A", (4.11)
n
For example, if 1 (y|x; 8)=0p log pe(y|x), it satisfies the conditions (4.4)-(4.6) and the
M-estimator én given by Eq. (4.7) corresponds to the ML-estimator. Further, the vari-
ance Eq. (4.11) corresponds to the inverse of Fisher information matrix of Eq. (4.3). In

these manners, the results in Proposition 2 allow us to generalize the conventional VRA

scheme so as to utilize not only the ML-estimator, but also any M-estimators.

4.3.2 Density Power Divergence

As described in Section 4.2.3, the weakness of the conventional KL.-based VRA is that
overfitting often occurs in the estimation if noisy labels exist. Moreover, the querying
measure based on overfitted parameters might give inaccurate queries. To alleviate this
weakness of the KL-based VRA, we incorporate robust divergences, 3-divergence [6]
and y-divergence [16], into VRA. These robust divergences are called the density power
divergences, and they enable the robust estimation with the noisy labels. The estimators
based on the density power divergences are known as M-estimators. Therefore, we
incorporate the robust divergences into the extended querying measure obtained from

the discussion on the M-estimator in the previous subsection.

[B-divergence

The density power divergence is a class of statistical measures to evaluate the difference
between two probabilistic distributions. This divergence has been developed to provide

a robust estimation against unanticipated noisy labels.
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Now, let us denote the contaminated labeling distribution of the noisy oracle by:

g(y) = (1 =n)f(y) +nély),

where 7 is a mixture ratio, f(-) is a true distribution and d(-) is a distribution of noisy
labels. Then, the density power divergence can estimate the true distribution f(y) from
the samples given by the contaminated distribution g(y) if the contaminated distribution

satisfies the following assumptions:

Assumption 2 7 is sufficiently small, and
Assumption 3 f(y*) is sufficiently small for any noisy label y*.

The illustration of the contaminated distribution is shown in Fig. 4.1, where the left side
of the mountain stands for the true distribution and the other mountain is the distribution
of the noisy labels.

Under the above assumptions, one of the density power divergences called 3-divergence
has been proposed in [6]. The divergence between ¢(y|x) and pe(y|x) is defined by

Dalalve) = i {5 ] ot Pavatrex

- / / g(ylx)pe(ylx)’dyq(x)dx + / / pa(yIX)”ﬂdyQ(X)dX} ,
where f3 is a positive constant. Note that the S-divergence converges to the KL-divergence
if 3 — 0. Therefore, this can be regarded as a generalization of the KIL.-divergence of
Eq. (4.1).
Estimation of the model parameter based on the 3-divergence can be achieved through

the minimization of this divergence. The minimizer of the 3-divergence is obtained by

the derivative of 3-divergence:
99 Dp(gllpe) = Ee- [¥5(ylx; 0)],
where the vector function ¥5(y|x; 0) is:

Ys(y|x; 0) = po(y|x)’Bp log pe(y|x)
- / / pe(y|x)P 19 log pe(y|x)dyq(x)dx. (4.12)
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Now, suppose that a set of labeled samples {(x1,41),- - , (Xn, ¥n)} are obtained from
the true distribution ¢(x, y). Then, the S-divergence-based estimator is given as a solu-

tion of the following estimating equation:

1< 1<
- > ", (wilx:)*9p log s (vilx:) — - Z/p@n(ylxi)"“@e log pg, (ylx:)dy = 0,
i=1 i=1

(4.13)

which is derived by replacing the expectation over g(x,y) with the samples. Here,
we note that the function tp4(y|x; @) satisfies the conditions (4.4)-(4.6) and therefore

B-divergence-based estimator obtained from Eq. (4.13) is an M-estimator [6].

The common property of all density power divergence is to take the self-weighted
log-likelihood estimating equation, such as Eq. (4.13). These weighted estimating equa-
tions allow us to estimate the parameters robustly against noisy labels. Fig. 4.1 demon-
strates how the density-power-divergence-based estimator reduces the influence of noisy
labels. Since noisy labels have lower probabilities with the model pg because of As-
sumption 2 and 3, the weights on noisy labels automatically become small in the esti-

mating equation. This characterizes the density power divergence as a robust estimator.

From Proposition 2, an asymptotic variance of the S-divergence-based estimator is

as follows:

A N 1
E,- [(o,, ~6)(8, - 0*)T] = AL Mge (A5, (4.14)

n

where

Ag o = Eo- [0p15(ylx; 0%)],
Mg g« = Eg- [9ha(y|x; 0*)s(ylx; 0")7] .

Then, we call our active learning method based on 3-divergence-based estimator and its

asymptotic variance as S-AL.
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~v-divergence

The y-divergence, a variant of the 5-divergence, is defined as follows [16]:

Dyfallpe) = — {§1og J[ o raata
o [ a(whoma(ylx)"dyatx)ex + Log [ pe(mx)mdyq(x)dx} ,

where -y is a positive constant. The y-divergence also converges to the KI-divergence if
v — 0. The parameter estimation based on the y-divergence, as well as S-divergence,

is obtained by the derivative of the divergence with respect to the parameter:

D,(qllpe) = Ee- [, (y]x; 0)],

where the vector function v, (y|x; @) is:

po(ylx)”

ylx; 0 30 log pa(uylx).

Valubai6) = I pe- (yx)pe(ylx)7dyq(x)dx 6 o(ylx)

po ylx)'Y""l
Op log pe(y(x)dyq(x)dx
// T pe(ylx)pe(ylx)1dyg(x)dx * g pe(ylx)dyq(x)

4.15)
Suppose that we have a set of i.i.d n labeled samples {(x1,¥1), -, (Xn,"** ,Yn)} Ob-

tained from the true distribution ¢(x, y). Then, the estimating equation of y-divergence-

based estimator is given by replacing the expectation over ¢(x, y) with the sample mean:

- pa, (yslx:)"
Z ( o g log py, (vilx:)

i=1 Ei:l Dy, (yi|xi)’7

lxl)’H'
n Z/ fpa ylx])’ﬁ-ld o 10gp0 (y|x1)dy = U. 4.16)
=1

This can be regarded as the wc1ght—normahzed version of Eq. (4.13) and can robustly

estimate the model under Assumption 2 and 3. Similar to the -divergence-based es-
timator, -y-divergence-based estimator obtained from the above equation is also an M-
estimator since the function ., (y|x; ) satisfies the conditions (4.4)-(4.6) [16].

From Proposition 2, an asymptotic variance of the -y-divergence-based estimator is

also as follows:

Eo- (6, —6")(6, - 6") - A7 LM, e (AZS)T, 4.17)
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where

A, o = Eg. [Og9,(y|x;0%)],
M, - = Eo- [, (y]x; 0")1p,(y|x; 0") "] .

Although characteristics of the y-divergence are similar to those of 3-divergence, be-
haviors of these divergences may be different from each other in active learning context.
Therefore, we propose both S-divergence-based and y-divergence-based active learning
methods and empirically assess their properties in comparison. Hereafter, we call the
active learning method based on vy-divergence-based estimator and its asymptotic vari-

ance as y-AL.

4.4 Empirical Measures for Querying

Based on the asymptotic variance of Egs. (4.14) and (4.17) in the previous section, we
explain empirical querying measures in our active learning methods. For simplicity, we

collectively denote the estimating functions Egs. (4.12) and (4.15) by 9 (y|x; 9).

4.4.1 Approximation of Querying Measure

Our strategy for selecting queries in active learning is to minimize the variance Eq. (4.11).
However, since the true distribution ¢(x, y) = ¢(x)pe~(x, v) is not known, A g« and M-
of Egs. (4.9) and (4.10) cannot be calculated directly. Therefore, similar to the exist-
ing work [62], we approximate Ag- and My~ by using the estimated parameter én and

replacing the expectation by queries:

Ay(S)=)" / Pe, (UI%:)0pt (yxi; 0)dy, (4.18)
X; €S

My(S)=Y / P, (ylx:) W (y|xi; 0:)1 (ylxi; 6. dy. (4.19)
xX;ES

where S is a set of the queries selected at Step 2 in Algorithm 5.
If a model consists of an unique parameter, the above equations are scalars. In this

case, the variance of the parameter given as the product of Egs. (4.18) and (4.19) is also
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scalar. Therefore, by selecting a set of queries S, we minimize the scalar value of the
variance. However, in our case, the regression model has not less than two parameters
(the coefficient w and the variance ¢?) and therefore our querying measure needs to be
optimized over a matrix. This optimization for the matrix is not trivial. In this study, we

take the trace norm of the matrix and derive the querying measure as follows:

S* = argmin Z(S;6,),
SCUNIS|=Q

where | - | is a cardinality of a set, Q) is the number of queries and
.0 1 A —1INA S A —1\T
2(5:6,) = 5t {RsS) My S)(RyfS)™)T}. (4.20)

The trace norm of the matrix stands for the sum of the diagonal element of the matrix,
i.e., the variance of each parameter. Therefore, this empirical measure minimizes the
sum of the differences between the estimated parameter and the true parameter. The
procedure of taking a trace norm is known as A-optimality and is popular in active
learning [21, 41].

Unfortunately, the empirical querying measure based on the y-divergence still cannot
be calculated directly because of the integration in it. Therefore, we employ Monte

Carlo integration method to compute the querying measure.

4.4.2 Optimization of Querying Measure

In the case with the number of the queries |S| = 1, this active learning algorithm is
a simple one-by-one active learning method. For the online method, it requires many
iterations of querying and estimating step (Step 2, Algorithm 5) to obtain an accurate
model. In applications, such the iteration is time-consuming and bothersome since the
oracle has to give a label in each iteration. Hence, in practice, we prefer to use batch-
mode algorithms, i.e., |S| > 2 [21]. However, optimizing S is a combinatorial problem
which is difficult to solve. In this case, the greedy algorithms are usually used to solve
the combinatorial problems. Therefore, we naively employ the greedy algorithms to

optimize a set of queries as shown in Algorithm 6.
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Algorithm 6 Greedy algorithm for selecting queries.

1. Given a set of unlabeled samples L, the estimated model parameter én and the

number of queries @, and initialize a set of queries S := 0.
2. Repeat until ) queries are added to S.
(a) Select a query that minimize the querying measure of Eq. (4.20):

x(™ = argmin Z(S Ux;;8,,),
xieL{\S

where x(™ is an unlabeled sample selected as the query.

() Let S := SUx™.

3. Obtain the set S containing () queries.

4.5 Experiments

In this section, we show some experimental results to illustrate the robustness of our
active learning method by using artificial and real-world datasets. In these experiments,

we compared the following six methods.

KL-RAND A standard algorithm which learns by the KL-divergence and selects queries
randomly.

B-RAND A algorithm which learns by the S-divergence and selects queries randomly.
~v-RAND A algorithm which learns by the y-divergence and selects queries randomly.

KL-AL The conventional active learning algorithm based on the KL-divergence ( [62]

applied in the linear regression model ).
B-AL Our proposed active learning method based on the B-divergencé.

~-AL The other proposed active learning method based on the y-divergence.
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As for KL-AL and KL-RAND, the parameters were estimated by solving Eq. (4.7)
analytically. On the other hand, for the other methods, we solved nonlinear equations
Egs. (4.13) and (4.16) by quasi-Newton’s method [26] which is one of the gradient-
based methods. In contrast to the naive Newton’s method, the quasi-Newton’s method
need not to compute the inversion of the gradient matrix (Hessian matrix). Without the
time-consuming computation of the inversion matrix, the method is expected to estimate

the model parameter rapidly.

Moreover, in these experiments, the sample size for the Monte Carlo integration in
~v-AL was set to be 250 to maintain the tractable computational time for comparison
with the other methods. Furthermore, the parameter values 8 and y were set to be 0.1

based on the preceding work on the parameter analysis [6, 16].

4.5.1 Evaluation of Robustness

In the first experiment, we investigated the robustness of the proposed methods using
artificial datasets. The procedure for generating the datasets is as follows: First, we
randomly generated samples x; from a uniform distribution in the range of [-1, 1], where
the dimensionality and the number of samples are respectively 5 and 300. Next, we
randomly generated five-dimensional coefficient vector w and the constant term wp
from a uniform distribution in the range of [-2.5, 2.5]. Moreover, noises ¢; in the linear
regression model were randomly generated from a Gaussian distribution with zero mean

and unit variance. Finally, we determined labels y; as y; = wx; + wo + €.

Each of the generated datasets is randomly partitioned into the training set Tirqin
with 80% samples and the test set Tz.s; With 20% samples. 10 samples were randomly
selected from the training set 74, as initial labeled samples £. Then, noises +5 are
added to n%(n = 0,0.2,- - - , 5) of randomly selected labels in the remaining samples U/
as noisy labels given by the noisy oracle. In this experiment, the number of iterations for
querying R in Algorithm 5 was set to be 2, and the number of queries () in Algorithm 6

is set to be 5. We evaluate a mean-squared error (MSE) between the true label and the
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Figure 4.2: Difference among the five methods under various amounts of noisy labels.

Table 4.1: Specifications of Datasets

Dataset # of dimension p # of samples
concrete 8 1030
forestfires 8 517
imports 14 160
machine 7 209
elevator 6 9517
stockvalues 159 1813

estimated label in the test set Ty, as follows:

1 - "
|T | (yz == WTXi L wﬂ)za
i (%4,Yi) ETrest

MSE =

where W is the p-dimensional estimated coefficient vector and 0 is the estimated con-
stant term.
Fig. 4.2 shows MSE between the true labels and the estimated labels by the com-

pared methods. The values in the graph are averaged over 2000 random trials for nu-
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merical stabilization. As can be seen in Fig. 4.2, with the increasing of noisy labels,
the average errors by the KL-divergence-based methods grow more rapidly than the
B/~-divergence-based methods. Also, in most cases, the active learning methods seem
to perform better than the random-query methods. However, the performance of y-AL
was worse than S-AL and the other random-query methods. This would be because the
querying measure of y-AL selects less informative samples by an approximation of the
Monte Carlo integration. Although one could improve the approximation by increasing
the number of samples, it usually leads severe increase of computational costs. Thus,
these results seem to show that 3-AL practically achieves the robust estimation of the

regression model.

4.5.2 Evaluation with Real-world data

Next, we conducted experiments with six real-world datasets provided from [3, 58, 36]
to examine the robustness of our proposed methods. The summaries of the datasets
are given in Table 4.1. First, each of the datasets is partitioned into an initial set £, an
unlabeled set U and a test set 7., in the same manner with the previous experiment.
Then, noisy labels were generated by adding +5 to n%(n = 0, 5) samples randomly
selected from U4. For this experiment, if the cardinality of If is more than 300, 300
samples were subsampled from U/ as candidates for the unlabeled samples in selecting
queries'. In this experiment, we set the number of learning iteration R and queries @ to
5, respectively. Similar to the previous experiment, we evaluated the average MSE of -
1000 random trials by using the test set Tzes:.

The graphs in Fig. 4.3 show the errors at each learning step of the methods. Note
that the result of y-AL with the “stockvalues” dataset could not be obtained because
of its high computational cost of the numerical integration. As can be seen in Fig. 4.3,
the error of 5-AL is comparable with KL-AL without the noisy labels. On the other
hand, in cases where the noisy labels exist, the errors of KL-AL become larger than §-

AL. Especially in the case of the high-dimensional “stockvalues” dataset with the noisy

T Although it would have been better to utilize all samples in practice, we subsampled to compare all

the methods in this experiment.
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labels, KL-AL completely fails to estimate the regression model. Similar to the result
of the previous experiment, y-AL seems to work worse than the other methods in most
cases because of the numerical integration. Thus, our proposed method 3-AL seems to

work more robustly than the other methods in this experiment.

4.6 Conclusion

We proposed the robust active learning methods for the linear regression rnodel: Our
querying measures were obtained by extending the conventional measure through the
asyrﬁptotic analysis of the M-estimator and incorporating the - and y-divergence-based
estimators into the extended measure. The proposed methods can achieve robust results
under the situation with the noisy oracle because of the characteristics of the robust
divergences. We investigated the performance of our methods by the experiments with
the artificial datasets and the real-world datasets. From these experiments, we confirmed
that it could estimate the regression model accurately and robustly from the small la-
beled samples even under the situation with the noisy oracle.

In this chapter, we applied our robust active learning measure to a linear regression
model and achieved the robust estimation of the relation between the variables. How-
ever, our framework is not restricted to the linear regression model. We can also apply
it to the other models such as a logistic model for discovering a relation between a bi-
nary variable and the other continuous variables. Therefore, one of our future works
is to apply our robust active learning framework to the other models and investigate
their behaviors. In addition, the procedure for optimizing the queries can be improved
by using discrete optimization techniques. Recently, a study on the conventional KL-
based active learning method using VRA [21] showed that its querying measure have
a property called submodularity [14]. This property provides an efficient algorithm to
solve the discrete optimization problem. Because of this property, we expect that the

optimization of the queries can be performed more efficiently [29].
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Chapter 5

Conclusion

In this dissertation, we presented three methods to estimate the variable relations.
They are categorized into main two branches. One is the technique to obtain some
knowledge on the directed network representing the ordering of the effects among the
variables. A basis of this technique is the linear non-Gaussian acyclic model called
LiNGAM model. The other is the technique to estimate the relation between the label
variable and the other explanatory variables, which is known as the linear regression.
The past methods for estimating these variable relations cannot achieve the good per-
formance under real-world datasets consisting of small samples and/or noisy samples.
In this dissertation, we tackled this problem.

First, we attacked the problem that the past LINGAM-model-based methods can-
not obtain sufficient knowledge on the network in the analysis with high-dimensional
and small sample data. To solve this problem, we proposed a variant of the linear
non-Gaussian acyclic model based on some realistic assumptions. Subsequently, we
proposed a method called EggFinder to estimate the exogenous variable in the network.
With the numerical experiments, we confirmed that our proposed algorithm can estimate
the exogenous variables from the high-dimensional and small sample data. Further, we
investigated the applicability of our method by using the gene microarray data with
small samples. The genes found by EggFinder is likely to be exogenous in the gene
network according to the domain knowledge in bioinformatics.

Second, we proposed the LINGAM-model-based method which can estimate the en-
tire network more accurately and robustly from noisy and small sample data than the
past non-Gaussianity-based methods. To estimate a correct network, the evaluation of

the independence between the variables and the solution search algorithm are impor-
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tant. Thus, we presented the two principles to modify the past methods on these points.
One is to incorporate kernel based independence measure for enhancing the robustness
and the accurécy of the network estimation. The other is to employ the beam search
algorithm to avoid the local optima. Based on these modifications, the four variants
of the past methods were proposed. Then, we investigated their robustness and ac-
curacy through the numerical experiments. Furthermore, we discussed the trade off
between the accuracy and the computational cost. From the resuits, we concluded that
the method, Beam-Kernel-DirectLiNGAM is the best in terms of accuracy, robustness
and tractability for the network estimation even under the noisy and small sample data.

Third, we focused on the linear regression model and its active learning by using
small labeled samples and large unlabeled samples. Conventional active learning meth-
ods cannot estimate the model under the situation with the noisy oracle giving noisy
labeled samples. Therefore, we proposed a more robust active learning method for es-
timating the regression model. Firstly, we extended the conventional querying measure
based on M-estimator. Subsequently, we incorporated the robust divergences into the
extended querying measure. Then, our proposed methods and the conventional method
are compared by the numerical experiments with the artificial datasets and the real-
world datasets. From the results of these experiments, we confirmed that our proposed
method can estimate the linear regression model robustly from the small noisy labeled
samples.

This dissertation aims to close some gaps between the real-world problems and the
techniques for estimating the variable relations. This objective was achieved by our
three proposal. However, more extensions may be possible. One is the extension to in-
corporate non-linearity of the relations in both the LINGAM model and the regression
model. It is worth for the real-world problems where many relations are non-linear.
Second is introducing the more sophisticated independence measure and rapid search
algorithm into the network estimation method. Third is to consider efficient optimiza-
tion algorithm so that the robust active learning method for the regression model can
deal with much higher-dimensional datasets. These extensions will enhance the appli-

cability of our proposed methods to wider practical problems.
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