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TITLE OF THESIS
Full Discretization Process for Advection-Diffusion—Reaction Equations

PREFACE

This thesis is intended to present a full discretization process to solving numerically
advection-diffusion-reaction (ADR) equations and to showhow to applyto various prac-
tical models. Our approach for discretization for ADR equations bases on method-of-
lines (MOLs) which consists of two phases, spatial and temporal discretizations. The
first phase is to discretize space variables and its result is a system of ordinary differen-
tial equations (ODEs). This system is numerically integrated in time variables afterward
in the second phase of discretization process. Here we employ discontinuous Galerkin
(DG) methods in the former and Rosenbrock strong stability-preserving ones in the
latter phase.

The DG methods are able to be considered as an extension of classical finite element
(FE) methods. The idea of FE methods in general and DG methods in particular is to di-
vide computational domain into small pieces called elements and then to approximate
the exact solution on each element by easy-to-compute functions (e.g. polynomials,
wavelets). The main difference between theses two kind of methods is that the numeri-
cal solutions using the DG methods are allowed to be discontinuous element-to-element
while they are required to be continuous on the whole domain if the classical FE meth-
odsisinused. Such discontinuities offer more degree of freedoms (DOFs) and therefore
allow us more flexibility to design different discretization schemes for different terms in
ADR equations. The main difficulty of using discontinuous functions in DG methods is
how to transfer information such as fluxes in between elements. This task is quite triv-
ial in classical FE methods because the numerical solution is continuous and hence the
information is automatically shifted between elements. For DG methods, because of
discontinuity, transferring information has to be done manually by carefully designing
so-called numerical fluxes. With well-designed numerical fluxes, the DG methods are
able to attain high order of accuracy and stability as well.

The spatial phase results a huge system of ODEs consisting of three discretized terms
from advections, diffusion, and reaction. Each of these terms has completely different
properties that require special treatment in the temporal phase. The discretized term
corresponding to advection part as one will see is although non-stiff but containing in

itself non-smooth operators. The non-stiffness and non-smoothness properties require
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an explicitsolver. Meanwhile, the discretized term associated with diffusion and reaction
parts is smooth but very stiff. These facts mean that our solver must be explicit with the
discretized advection term and be implicit with the rest while it should be stable enough
to preserve the positivity of our problems and fast enough to be realistically applicable.

This thesis is divided into four chapters. The first chapter introduces ADR equations
and several models that lead to such kinds of mathematical equations. It also mentions
several numerical solvers dealing with such kind of problems so far and our motivation to
propose a whole new discretization procedure for ADR equations. The second chapter
is concerned with the spatial discretization. Several numerical fluxes for advection and
diffusion equations are investigated in this chapter. The most suitable ones are chosen
to put together and fulfill the first phase of our procedure. The third phase is completed
in the third chapter. A new class of temporal integration methods with respect to special
properties of the semi-discretized system obtained in the previous chapter is proposed.
Numerical results of the new discretization procedure are given in the last chapter. By
these results, the strength and shortcomings regarding efficiency, accuracy, and robust-

ness of our methods are given.
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Introdu&ion

The aim of this thesis is the development of full discretization procedure for advection-
diffusion-reaction (ADR) equations. Difficulties in solving ADR equations are order
of accuracy, stability, computer memory storage, computational speed, and robustness.

This thesis is concerned with methods developed to prevail over these challenges.

1.1 MOTIVATION

ADR equations are used to describe various important problems in physics, chemistry,
biology, and engineering such as physicochemical hydrodynamical models [31], adsor-
bate induced phase transition model [23], and angiogenesis models [1]. Numerical
solver for such kind of partial differential equations (PDEs) are usually based on an ap-
proach known as the method of lines (MOL) . For a given evolution PDE, the MOL
involves first discretizing in spatial variables resulting in a system of ordinary differen-
tial equations (ODEs) called semi-discretized system. This system is then solved using
a numerical ODE integration method.

For the first phase of MOL, there are several spatial discretization methods includ-



ing finite difference [35], finite volume [27], and finite element [36] methods. None of
them is perfect. Finite difference methods (FDMs) are fast, high order of accuracy, and
having deeply theoretical understanding. But they are inflexible with respect of bound-
ary conditions and computational domain. For FDMs, imposing boundary conditions
is not trivial task and sometimes too simple treatment with boundary conditions heavily
damages numerical solutions. Finite volumes methods are robust but difficult to achieve
high order on general grid due to extended stencils. Finite element methods are geomet-
rically flexible and high order of accuracy but not well suited for problems with direction,
e.g. advection-dominated ADR equations. Recently, a new class of spatial discretization
methods called discontinuous Galerkin (DG) methods [22] is being developed. These
methods base on classical finite element ones but they allow approximate solutions to be
discontinuous between elements. Such discontinuities make them appropriate to prob-
lems with direction. Moreover these methods inherit all advantages of classical finite
element methods such as high order of accuracy and geometrical flexibility. In this the-
sis, the DG methods are employed for spatial discretization phase. Many aspects of the
DG methods are investigated and guidelines to choose suitable DG methods are given.

Derived from spatial discretization phase, the semi-discretized system of ODEs con-
sist of three terms of which properties are completely different. The terms correspond-
ing to diffusion and reaction parts are smooth operators but stiff. Their stiffness requires
implicit methods for solving. The explicit methods in this phase are simply unpractical
because if they are used, time step size must be very small to ensure stability of numerical
solution and it makes computational cost unacceptable. The term obtained from advec-
tion part contains in itself non-smooth operators such as fluxlimiter, max, min functions.
Non-stiffness of this discretized operator is fit for explicit temporal integration methods.
Moreover the explicit methods are physically well-suited because speed of transporting
information caused by advection operator is just finite. We propose in this thesis a whole
new class of methods that comprise implicit methods for discretized diffusion reaction
terms and explicit ones for discretized advection terms. More careful treatments with
discretized advection terms are also offered in order to preserve positivity of numerical

solutions.



1.2 QUTLINE

The remainder of this thesis is separated into three chapters. Full discretization proce-
dure for ADR equations is given in Chapters 2 and 3. Some numerical results of practical
models are provided in Chapter 4.

Chapter 2 deals with the spatial discretization phase. It introduces several DG meth-
ods for advection and diffusion-reaction terms. These methods are carefully analyzed in
many aspects in order to give out a guideline for choosing DG methods to fit individual
problems with specific demands.

Chapter 3 introduces a new temporal integrations methods called Rosenbrock ex-
plicit Runge Kutta methods and their variants called Rosenbrock strong-stability pre-
serving methods. These methods are implicit for discretized diffusion-reaction terms
and explicit for discretized advection one.

Chapter 4 demonstrates the full discretization process established in previous chap-
ters via numerical results of two practical models. One model concerns evolution of

bacteria and the other describes development of tumor-induced blood vessels.



Spatial discretization using discontinuous
Galerkin methods

Spatial discretization is the first phase of the method of lines for solving PDEs. Among
many spatially discretizing methods such as finite difference, finite volume, and finite
element methods, discontinuous Galerkin (DG) methods using high order approxi-
mation have become an attractive one for the solutions of advection-diffusion-reaction
equations.‘ In this chapter we investigate the DG methods applying to the hyperbolic

and parabolic problems.

2.1 THE CONSERVATION LAWS

Proposed by Chavent and Salzano [ 10] and then developed by several authors [9, 11—
14], DG methods at first was aimed as a high resolution solver for hyperbolic equations.
We consider the initial-boundary value problem associated with the hyperbolic con-
servation law
Ou

P +divf(u) =0 in (0, T) x Q, (2.1.1a)



where Q) C Rd, u=(u,..., um)T, and f satisfies that any real combination of Jacobian

matrices
d af;
2 45,
J=1

has m real eigenvalues and a complete set of eigenvectors. The initial value and boundary

condition are given as

u(o,x) = U, in Q, u, € L (Q), (2.1.1b)
u(t,x) = yin(o, T) x 0Q, y € L ({0, T) x 0Q) . (2.1.1¢)

The simplest example for this type of equations is a linear advection equation

%_’_aau B
Ot Ox

o, a> o.

This equation models the advection of a tracer along with the fluid. The general solution
of this equation is very easy to determine. Any smooth function of the form u (x, t) =

U, (x — at) satisfies the above linear advection equation.
2.1.1  SEMI-DISCRETIZED SYSTEM

To spatially discretize the (2.1.1), we proceed through the following phases:

i. Define a space of test functions in which the exact solution of (2.1.1) is approxi-

mated;

ii. Rewrite the original problem (2.1.1) as a finite dimensional version. It results a
system of ordinary differential equations (ODEs) for which the integration meth-

ods are introduced in the next chapter.

First, we introduce a space of test functions. The domain Q is approximated by nE
non-overlapping elements D. This division is called the triangulation of Q and denoted

by 7Ti. The space of test functions is defined as
Vi = {vin € L* (Q) |vs|pr € P, (D¥) .VD* € T}, (2.12)

where P, (Dk) is the space of polynomial functions of degree at most p > 10n D¥. Note

that the space V}, is a broken one, i. e. a test function v, € Vj, is not required to be



continuous at the boundary of a local element D* € 7j,. It means that the approximate
solution uy of u on V}, possesses more degree of freedoms (DOFs) on boundary of each
local element D¥ in compare to classical finite element methods in which test functions
are continuous between local elements. These extra DOFsallow DG methods to capture
correctly wave propagations in the hyperbolic problem (2.1.1). This is the major advan-
tage of the DG methods over classical finite element methods. It is easy to see that the
drawback of this approach cause that DG methods consume more computer memory to
store the additional DOFs than that of classical finite element methods do.

To obtain approximate solution uy, of (2.1.1), the DG methods employ the Galerkin’s
idea that is projecting the problem onto the finite dimensional test function space V3. To
do that we multiply (2.1.1a) by v, € V},, integrate over D* € Ty, and replace the exact
solution u by its approximation u, € Vj,:

d
—/ up (t,x) vy, (x) dx-l—/ divf (up (t,x)) vy (x) dx = o, Vv, € Vi, VD* € T
dt Dk Dk

Integrating by parts formally, we obtain

4 Dkuh(t,x)vh(x)dx+ Z /8Dkf(u;,(t,x))-ﬁ’|aD§vh(x)dI‘

dt
8Dkecapk

B /kf(“h (t,x)) - Vv, (x) dx = o, Vv, € Vi, VD" € T,
D

in which 9D is an edge of the boundary of element D, | apk is the outward unit nor-
mal vector of the element D* to the edge ODE. It should notice that because of the lack
continuity of the local solution and the test functions, the quantity f(ux (, %)) |5px is
multiply defined. Therefore we need to choose which solution or combination of solu-
tions is reasonable. This choice is known as numerical flux and denoted by f(uy,). Now,

let us define problems of finding the numerical solution u.

Definition 2.1.1. Thesemi-discretized system corresponding to the conservation law (2.1.1)

is given as: Finduy, € Vy, such that for all test functions vy, € Vy, and for all element DFe Ty,



we have

— u;, (t,x) vp (x) dx + Z / Flup (8,%)) - 11| gpgve (x) dT

8DkcODF

flun (t,x)) - Vup (x)dx = o, (2.1.3)

Dk
where the numericalﬂux?is determined later.

Hence, only thing left to fulfill the semi-discretized system (2.1.3) is to determine the

numerical flux f.

2.1.2 NUMERICAL FLUX

Before specifying numerical ﬂux?, we give out some notations. For each pair element-
edge (Dk, oDk ) , there is a corresponding pair (Dk, (9D’é‘) in which two elements D*, D
are adjacent ones sharing the common edge oDF = 3D§. We can write explicitly two

arguments that the numerical ﬂux?deﬁned on edge OD¥ depends on

fapx Ef(uhlapfp uhlaDg) :

For simplicity, we restrict ourselves in this section to consider the scalar case of (2.1.1),
i.em=1

The numerical ﬂux?is chosen such that our schemes are alike monotone schemes
because monotone schemes which although only first order of accuracy are very sta-
ble and converge to the entropy solution. More precisely, we want that in the case that
the approximate solutions uy, are element-wise constant function, i.e. p = o, our semi-
discretization gives a monotone scheme. Therefore, numerical ﬂux_?must satisfy follow-

ing conditions:
i. fislocally Lipschitz continuous and consistent with the flux, i.e., f (u, u) = f(u);

ii. f(+,-)isanon-decreasing function of its firstargument and a non-increasing func-

tion of its second argument.

There are some examples of numerical fluxes satisfying the above requirements in one

dimensional case.



o Godunov flux:

~ mingc,<pf (u)  ifa < b,
f(a,b) = (2.1.4a)

maxpcy<af () ifa > b;

« Engquist-Osher flux:

o~

b a
f(a,b):/ min {f (), 0} du+/ max {f (u),0} du+f(o); (2.1.4b)

o} o

« Local Lax-Friedrichs flux (also known as Rusanov flux):

fla,b) = i [f(a) + £(b) + C"F (a — b)] (2.1.4¢)
with

. I(a,b) = [min{a, b}, max{a, b}];

CLF —
o If (s)

« Lax-Friedrichs flux:

Flab) = i [f(a) + £(b) + CF (a — b)], (2.1.4d)

with
LE _ .
¢ a infucglaéxsup Uo ’j, (u)l '
o Roe flux with entropy fix:
fla), iff (u) > oforu € 1(a,b),
fla,b) =< f(b), i (1) < oforu € 1(a,b), (2.1.4¢)

asin (2.1.4c), otherwise.

We also give out some examples of numerical fluxes in two dimensional case with f =

[F.p)" andf = [7.7):



¢ Godunov flux:

R min f*(u) ifa<b, min f (u) ifa < b,
fc (a’ b) _ asu<b fy (a’ b) — a<u<h
b?jgaf (u) ifa > b, blgféafy (u) ifa > b.
(2.1.52)

o Local Lax-Friedrichs flux:

Fla,b) = i [f(a) +£(b) + C"Fii(a — b)] , (2.1.5b)

with

ILF __ =
C _ueml(?,{b)|n f"

2.1.3 WEAK FORMULATION

After choosing a right numerical flux, the integral on D¥ and the path one on 9D¥ in

(2.1.3) have to be approximated by quadrature rules as follows

nP

flup (t,x)) - Vg, (x) dx =~ ij(uh <t, xf)) -V (xf) |Dk| . (2.1.62)

k
D =

Fun (£,%)) - il ypvn () dT

oDk
nN
9 k = k k
~ Z Orf (un (t, x51)) '”lx’;lvh (x,) |ODE|. (2.1.6b)
= '
Here, {w]-, x;‘} is quadrature rule on element DFand {91, x’e‘ 1} is quadra-
j=1,...,nP ) l=1,...,nN

ture rule on edge OD¥. Finally we arrive at the last expression of the semi-discretized



equations

%/Dk up (t,x) vy, (x) doe + iwif(uh (t,xj-‘)) -V (x;c> }Dkl

=1

nN
= D D 0f (un (tx5)) Al i () [ODE =0, Ww, € Vi, VDF € T

OD*eODF 1=1

(2.1.7)

We call (2.1.7) weak formulation corresponding to (2.1.1). These equations can be

rewritten in ordinary differential equation form as

duy,
- =1
dt h (uh)v

where Ly, : V, — Vi andforallv, € Vy,

d

— | upvpdx = / Ly (up) vudx.

The operator Ly, (up) can be seen as a discretized approximation of divf () together with
boundary conditions. The following theorem [11] gives an estimation of the quality of

this approximation.

Theorem 2.1.1. Letf(u) € WPT>%° (Q). Let the quadrature rule over the edges be exact
for polynomials of degree 2p + 1, and let the one over the element be exact for polynomials of
degree 2p. Assume that the triangulation Ty, is regular, i.e,, that there is a constant o such that

it

Pp-

>0, vD* € T;,

where hpy is the diameter of DF, and ppr is the diameter of the biggest ball included in D*.
Then,

L4 () + divf ()l () < CH [ () [y a0 ) -

10



2.1.4 NUMERICAL EXAMPLES
LINEAR ADVECTION PROBLEM

The very first problem we use to test the DG methods is the simple linear wave equation

Ou Ou
+a271— = o, x € [0,27],

ot o
with the initial value u (x, 0) = sin (x) and the boundary condition is given the left end
of the interval u (o, t) = — sin (27t). It is easy to see that the exact solution is

u(x,t) = sin (x — 27t) .

The linear advection is spatially discretized with several element sizes

2T 2T AT 2T
247 257 267 97 )7

The degree of approximate polynomial on local elements is taken from 1 to 3. Numerical
fluxis chosen as

@zﬁ(u;-ﬁ-u:)—i—l:aznﬁ(u;—u:),
2

in which 4™, u™ are respectively internal and external values of uy, 7 is outward normal
vector in one dimensional case. Parameter a varies from o to 1 in which ifa = o the
numerical flux is of upwind and if a = 1 the numerical flux is the central one. The
upwind numerical flux is chosen for numerical computation.

The numerical results given in Table 2.1.1 practically confirm the order of approxima-

tion by DG methods which is p + 1 if the degree of approximate polynomial is at most
p.

11



p=1 p=2 pP=3

h L*>® error Order L error Order L error Order
/34 | 0.0243 0.9912 X 103 0.2783 X 10”4
27/ys 0.0063 1.9578 | 0.1256 X 10”3  2.9802 | 0.0176 X 10°*% 3.9814
27/, 0.0016 1.9801 | 0.0158 X 1073 2.9952 | 0.0011 X 10~ *  3.9953
/37 | 0.0004  1.9904 | 0.0020 X 107 %  2.9959 | 0.0001 X 10~ %  3.9987

TABLE 2.1.1: Errors and accurate orders of the numerical solution att = 1.0.

BURGERS’ EQUATION

The second example is inviscid Burgers’ equation with periodic boundary condition

Ou n 1 Ou? €lo].te] ]

— + -— = 1], 0, 0.05],

ot 2 Ox % Xl 5
with the smooth initial value

u(o,x) = 14 isin(:rr(7.x—1)).
4 2

The element sizes for spatial discretization are
he {2_4, 275,276, 2—7}

and the degrees of local approximate polynomials varies from 1 to 3. Because the flux
function is nonlinear, we choose the numerical flux as local Lax-Friedrichs one (2.1.4¢).
In Table 2:1.2 the approximation of DG methods for the nonlinear problem are proved

via linear, quadratic, and cubic elements.

p=1 p==2 p=3
h | L* error Order L* error Order L? error Order
274 | o.0147 0.9397 X 103 0.5829 X 10”4
275 | 0.0045 1.7061 | 0.1813 X 1073  2.3734 | 0.0532 X 10 *  3.4541
279 | 0.0014 1.6472 | 0.0340 X 1073 2.4133 | 0.0042 X 10° 4 3.6488
277 | 0.0005§ 1.6229 | 0.0061 X 10°3 2.4739 | 0.0003 X 10 % 3.6028

TABLE 2.1.2: Estimated errors and accurate orders for solving inviscid Burgers” equation.

12



MAXWELL'S EQUATIONS

The last numerical demonstration in this section is the two dimensional Maxwell’s equa-

tions. Its normalized system of equations on domain Q = [—1, 1]* is of the form

OH*  OF
—87——8))’
OHY  OF
ot Ox

OFF OH O
ot ox 0Oy’

with initial values
H* (0,x,y9) = H (0,x,y) =0 and E®(o,x,y) = sin(7x)sin (my) .

And the boundary condition is E* = o on 0£). The exact solution is given as

H* (t,x,y) = —% sin (7x) cos (y) sin (v/27t)

1

H (t,x,y) = 7 cos (7x) sin (wy) sin (v/27t)

E* (t,x,y) = sin () sin (zy) cos (v/27t) .

We triangulate the domain Q by unstructured triangles in which sizes of triangle are in
the range
he {2_2, 273,274, 275} .

The degrees of approximate polynomial are the same as the two above examples and
numerical fluxes are of upwind type. Observing the results shown in Table 2.1.3, we see

that the scheme possesses optimal convergence rate, i.e. O (h?7*).

2.2 PARABOLIC EQUATIONS

In this section we extend DG methods from first order spatial derivatives cases to higher
order spatial problems. The idea employing the DG methods for the problems with
higher spatial derivatives is rewriting the high spatial derivative as a system of first order

equations and then discretize this system. For example, if we need to solve a problem in

13



r=1 p=2 P=3

h L* error Order L? error Order L? error Order
27% | 1.0811 X 107} 1.4088 X 107 * 1.2078 X 1073
273 | 22705 X 107%  2.2515 | 1.6785 X 1073 3.0692 | 8.2581 X 1075  3.8704
274 | 53955 X 1073 2.0731 | 2.0892 X 10 ¥ 3.0062 | 4.9124 X 10°°  4.0713

27% | 1.3150 X 1073 2.0367 | 2.6035 X 10”° 3.0044 | 3.0374 X 10" 7  4.0156

TABLE 2.1.3: Estimated errors and accurate orders for solving normalized Maxwell's equations at
t= o.s.

one dimensional case
Ou 0*u
a— a> o,

ot “ow
subject to suitable boundary conditions, we apply DG methods to the equivalent system

of first order spatial differential equations

Ou  Oq
ot “ox’
_ Ou
q—a-

The major disadvantage of discretizing parabolic equations in this manner is to increase
the size of the problems and therefore more computational cost. But on the other side,
this approach gives us accurate approximation of derivatives used in another parts of

ADR equations and provide an unified spatial discretization for ADR equations.

2.2.1 SEMI-DISCRETIZED SYSTEM

For the sdke of simplicity we restrict ourselves to the model problem

% _ an > in Q (2.2.12)
— = alu, 2.1a
5 = U a>o, in Q, 2.2.1
u=gp on 0Qp, (2.2.1b)
% =gy on 0Qn, (2.2.1¢)

where () is a bounded domain in R with boundary 9Q = 9QpUOQy, iiis the outward

unit normal vector to the boundary of (0. As mentioned above, to apply DG methods
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we rewrite the problem (2.2.1) as a first order system of equations

% =aV g in Q, (2.2.2a)
qg=Vu in Q, (2.2.2b)
u=gn on 0Qp, (2.2.2¢)

q-1=gy on 0Qp. (2.2.24d)

Next, broken spaces V}, and =4 associated with the triangulation 7, are introduced:

Vy, = {vh € L*(Q) |Uthk €P, (Dk) ,VD* € 77,} , (2.2.3)

d
¥, = {0';, € [L* ()] |vm|px € [P (D¥)]",¥DF € 77,}. (2.2.4)
Following the discretization process for advection equations, the DG formulations

for the (2.2.2) are of the form: Find uy, € Vj and g, € X, such that for all elements
D* € Ty, for all test functions vy, € Vi and oy, € 23, we have

d

— upvpdx = —a/ g, - Vvpdx + a/ qy,  fivpd, (2.2.52)
dt Jpx DF oDk
/ gy, - ohdx = — / up (V - op) dx + / Upit - opdl. (2.2.5b)
oDk Dk oDk

Here, the numerical fluxes g, and uj, are approximations to g, and u; on boundary of
element D¥, They are defined in the next section to complete the DG formulation. For
expressing q, solely on uy,, we prefer to formally take integration by parts. Then, equation

(2.2.5b) becomes:

/ qp, - ohdx = / Vuy - ondx +/ (tp — up) 71 - opds, VYon € Zp. (2.2.5¢)
D* DF oDk

Equation (2.2.5¢c) is going to be used to create the so called primal formulation in the

next section.

2.2.2 THE PRIMAL FORMULATION

In this section, we introduce another form of (2.2.5) called primal formulation. In order

to do that, we require some additional notations. For each element-edge pair {Dk, 3D§}
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with ODF ¢ 00, there is a corresponding pair Dk, OD \ in which two elements D
e P g p €

and DF are adjacent via the edge 9D* = aDg. We denote that the value of uj, and g,
on edges DF and 8Dl;° are respectively uﬁ’ o qﬁ, . and uE,E) qi‘l’é. Similarly, the outward
unit normal vectors to OD¥ and 8Di are denoted respectively by ¥ and Fig Using these
notations, we define average and jumping operators at the interior edge oDk = 3Dk as

follows

fuy = e {an) = —

e la] = ‘ih,e : ﬁ’; + Qﬁ,a :

k k
h

:"?r'r

Nl:?{“ i

2
[n] = wj o7 +

Notice that the jump [[uy,] of the scalar quantity uy, is a vector parallel to the normal, and
the jump [[qh]] of the vector quantity g, is scalar. These operators is going to be used in
definitions of numerical fluxes shown later.

With these notations we can set up formulation of DG methods over the whole do-
main Q. Summing up (2.2.5) over all elements DF of the triangulation 7y, we have: for

allvy, € Vyandforall oy, € 3y,

nE
d
— | upvpdx = —a/ gy, - Vivndx +a E / 7l q,vpdl, (2.2.6a)
dt Jo ol ', J oDk g

/ g, - ondx = / Viuy - opdx + Z/ (U — up) # - opdl, (2.2.6b)
Q Q

where Vv, and Vy, - o, are element-wise operators defined as follows
Vvl pr = Vg, Vi oulpr = V- op.

To simplify sums over boundary of elements D, we employ the jump and average oper-

ators with the help of the following lemma.

Lemma 2.2,1, Foranywy € Vj, and 1, € Xy, we have

; /E)Dk wpil - 7pdl = /67;" ([wn] - =} + {wi} [7a]) dT + /aQ wil - TpdT,
(2.2.7)
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where
nE

a7y = Jopk\ oa.

n=i

Proof. We have

nE nE
S wmear=3 S [ s
k—, Y OD* ODkedD*

k=1 9pkeaDk

For each internal edge BD’;, there is only one adjacent edge 8D1;c such that two element

D¥ are D are adjacent via edge 9D¥ and BDE. The sum over these edge is

/ wpTh - Adl + / wyTy - Adl
apk 8D
_ kK ko =k kK _k
= » (Wh.,e’fh,e et WhsThe
apkudDk

The integrand of the right hand side integral is rewritten as

—k k ko -k
WheThe " Hhe T WhzThe " Mhg
_ k k k % 1 k k ko =k
S Whe (Th,e + Th,é) et (Wh et wh,é) The " Me
1 7 7 T 1 T 7 1
Pk k k PR
+ E: (Th,é + Th,e) g + N (Wh et Wh,é) The Mg
1 i 1 7
Kk ok A"
T TWheThe " Me T TWphEThe " Ne
2 2
1 3 A 1 i 7
k ok ok K ko
— TWheThe " Me T "WheThie e
2 2
= [wa] - =t + Lwn} (=] -
The last equality is obtained by noticing that ¥ = —7%. O

Now, we present g, solely depending on u;,. Applying (2.2.7) to (2.2.6b), we have

/ qy - Chdx = / Viuy - opdx
Q o)

+ /W [ — ] - fond + {in — w} [l AT (228)
+/3 (ﬁh — uh)ﬁ-ﬁhdr.
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Defining lifting operators r : [L2 (87?)]‘1 — X, 1 L? (87?) — X, and rp
L"(@.Qp) — 2y by

/Qr('r)-ahdx: —/BTOT-{U;,}}dF,

h

/ I{(w) - opdx = — / w [on] dT, (2.2.9)
Q ot
/ rp(w) - opdx = — / wii - odT,

o 9Qp

forall g, € j, respectively, (2.2.9) can be rewritten as

9, = Viuy — r ([dp — wn]) — L0 — wn}) — ro (Gn — un) - (2.2.10)

Bringing this expression of g, into (2.2.6a) after applying (2.2.7) for this formula, we

finally arrive at the primal formulation of DG methods

d
— | upvpdx = aAp (up,v), Vv, € Vi, (2.2.11)

where
Ap (up,vy) = —/ Vup - Vyvpdx
o)

[ () b~ - ) (V)
o (2.2.12a)

- / (£, — un} [Vivn] - [3,] {vu}) 4T
aTe

b
+ / Gy, - fivedl — / (gp — un) 7 Vyvudr.
o 9Qp
The proposition below gives us the consistency of primal formulation.

Proposition 2.2.1. If the numerical fluxes are consistent, then the primal formulation is

also consistent.

It means that if u is exact solution of (2.2.1) and

Uy (u) =u, g, (u)=Vu, on 0Ty,
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then p
— / uvpdx = A (u, vh) , Yo, € V.
dt g

Proof. Since u is an exact solution of (2.2.1), onall interior edges of triangulation 7}, we

have
{{Ejh (u) }} = Vu, [up (u) — u] = o, [[fjh (u)]] =o, {un(u) —ul} = o.

Therefore

Ap (u,vp) = — /Q Vu - Vvpdx + /37'0 Vu- [vp] dl’
N

+ Vu - sivydT + / gnvrdr.
9Qp 90N

By integration by parts and using the formula (2.2.7), we have for any v;, € V,

nE
/ Vu- - Viyvdx = —/ Auvpdx + Z/ # - Vuvpdl
Q Q s ¥ D"
d
= —i—/ uvhdx+/ ({Vu} - [vn] + [Vu] {vn }) dr
a dt .Q, 87;10

+ Vu - div,dI’
a0

d
= —i—/ uvpdx + Vu - [vn] dT
a dt Io) 87;(0

+ / Vu - fiv,dl + / gnVhdl.
0Qp 0Qn

Then,

dit ; uvpdx = aAyp (4, vp) .

O

Recalling that the numerical fluxes are a single-valued function on each edge of 0T,

and utilizing the property of jump operator which vanishes for single-valued inter-element
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fluxes, the primal form (2.2.12a) is reduced to

Ay (up,vi) = —/ Viup - Vivpdx
+ /8T° (Tl - €Vnon} — {in — un} [Vivu] + G, - Ton]) dr

- / (4p, — up) A - Vyvpdl +/ qy, - fivpdr.
9Qp oQ

(2.2.12b)
2.2.3 NUMERICAL FLUXES FOR PARABOLIC PROBLEMS

In this part we introduce four numerical fluxes and their formulations in primal form.
These numerical fluxes are based on jumping, [[-], and average, {-}, operators intro-

duced before.

CENTRAL METHOD

The problem (2.2.1) is symmetric, i.e., there is no preferred direction of propagation,

then it is natural to consider the central flux [6]:

up, = {un}, q, = {{qh}}, on 97, (2.2.13a)
Un = gp, 9, = 4, on 0Qp, (2.2.13b)
Uy = up, 9 = g7 on OQN. (2.2.13¢)

These numerical fluxes give

£y — unf = o, [[?jh]] =o,

and

a, = Vi + r ([un]) — o (gp — un) -
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Summands of Ay, (uy, v) are computed as follows.

/ Gy [vn]dl = —/ (Vs +r ([un]) — 7o (gp — wn)) - r ([va]) dx
Ty Q
= /Q(thh + r([un]) + ro (un)) - r([va]) 4

~ | g r(ubar
0Qp
/ Huh]] . {{th;,}} dl = —/ r([[u;,]]) - Vivndx,
ot o

—/ {{ﬁh - uhB [[V;,vh]] dI‘ =0,
oT?

and

/ q,, - ivpdl = / gy, - fivpdl +/ gnvhdl
I Jo} 0Qp 90N

= [ (Tt (D) = 1o (85— 1)) ()

+ / gNr_z'v;, dr.
0N

The primal formulation using the central method is of the form

d_t upvpdx = aACent (up,vp) = a (Bﬁent (up, vy) + Cﬁe“t (v;,)) , (2.2.14a)

in which
Bgent (uh vh /thh Vivndx

(Vaup - ([va]) + r ([un]) - Viow) dx
(2.2.14b)

(thh D (v;,) + rp (u;,) . thh) dx

r ([un]) + 7o (un)) - (r ([val) + rp (va)) dx,

b\o\b\
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and

Cie™ (up, vy) = — / gpft - (Vuvn +r ([vn]) +rp (v)) dl

9Qp
+ / gyvhdr.
QN

INTERIOR PENALTY (IP) METHOD

(2.2.14¢)

The second choice for numerical fluxes is interior penalty method [ 2] devised in the late

1970s. Numerical fluxes of IP method are given as

up = {un}, 9, = {Vaun} — uflun], on 97}, (2.2.152)
= gp, q, = Viauy — yuhﬁf, on 0Qp, (2.2.15b)
U = uy, q, = g7 on OQN. (2.2.15¢)

Here, y is the penalty parameter defined on each edgé of element D*. The primal formu-

lation for IP method is obtained in the similar manner of the central method which is

%/ upvpdx = aAy’ (up,vi) = a (B (un,vn) + CFF (vh)) (2.2.16a)
Q
with
B (up,vp) = -—/ (Vaun - Vivn + Vaug - r ([vi]) + 7 ([un]) - Vi) dx
Q

— / (Vwun - rp (vi) + rp (un) - Vioy) dx
Q

- / p [un] - [vn] dr — / uupvydr,
T 200
(2.2.16b)

and

CFF (w) = —/ gpit- thhdf+/ gnvndr. (2.2.16¢)
BQD GQN
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LocaL DG (LDG) METHOD

The third numerical fluxes is local DG method [15] in which the fluxes %, and g, on

interior edges are given by

up = funf — Coo - ], q, = {{qh }} — Cy, [un] + Caa th]] . (2.2.17a)

On the boundary edges, they are defined as

Up = gp, q, = q;, — Cu (u — gD) , on 9Qp, (2.2.17b)
Up = up, q, = g on JQy. (2.2.17¢)

Here, C,, is a positive constant and C,, is a vector which is determined for each interior
edge.
The primal form for LDG methods is

d
d—t/ upvpdt = aArC (up,vp) = a (BEDG (up, vy) + CEPC (vh)) . (2.2.18a)
Q
Here, the operators B;"% and C}."¢ are given by

BE (uy, vy) — /Q (Faitn + 7 ([un]) +1(Con - [is]) + o (1))
(Tavn (D) + 1o []) + 70 () dx (2.2.18b)

— / C, [[u;,]] . [[v;,]] dl' — / C,upvydrl,
aT?° 0Qp

h

and

CE® () = — /8 ot (Van () +1(Co - []) + 7o () T

—0—/ CngDuhdl"—{—/ gnvhdl.
9Qp OON

(2.2.18¢)
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Compact DG (CDG) METHOD

The CDG method [29] is similar to LDG one with more careful treatment on inter-

element numerical fluxes. The numerical fluxes are given as

{un} — Coo - [un] onOT?,
U = 9 gp on 8Qp, (2.2.10a)

up, on 3Qy,
\

£ai} — Culun] + Ci [42] oneachedgee € TR,
9 = § 95 — Cu (u;, - gD) n on each edge e € 0Qp, (2.2.19b)

gnTt on 0Qy.

Here, for each edge e € 07Ty, qj, is defined by: forall o3, € Xy, forall elements D*e Ty,

/k q; - opdx = /k Viuy - opdx + / ) (4, — up) 71 - opdl, (2.2.19¢)
D D oD

with
u, onedgee,
uy, = 8 (2.2.19d)
up otherwise.

Instead of using g, in the numerical fluxes, CDG introduces a new quantity g; which
can be seen as a refinement of g, on each edge ¢ of 07y. To express g, in terms of up,
we require more notations called edge-wise lifting operators. For each interior edge e €
T2, ¥ : [L*(e)]" — =i, F : L* (¢) = X4, and for each Dirichlet boundary edge
e € 0Qp,r} : L* (e) — Iy, are defined as

/ 1y, - opdx = — /‘rh - {on}dl, 1 €[L? (e)]d,‘v’a;, €3n, (2.2.20a)
[0 e

F(wp) - opdx = — /wh [ow] dr, whp € L*(e) ,Vop, € 2y, (2.2.20b)
Q e
(wn)

e
Q

copdx = — /whcr;, - 1dl, wy € L* () Vo, € Iy, (2.2.20¢)
[4
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respectively. Clearly, forall 7, € [L" (87;l°)]d andallwy € L? (87;" ), we have

r(ty) = Z * (tn), I(wp) = Z F(ty), rp(wy) = Z 5 (wh) .

eCOT? ecdT? e€I0p

Then, for each edge ¢ of 7}, the expression of g, solely in terms of uy, is

g, = Viun +1* ([un]) + F (Coa - [n]) — 75 (gp — un) - (2.2.21)
The primal form for CDG method is
% /Q unvndx = aASP (s, vg) = a@ (B (o vp) + C¥% (), (2.2.220)
in which
B2 (uy,, vp) :—/thuh-vhvhdx
= [ (Ta (D) + () - Vi) d
- /Q (Vittn - 1(Coa - [1h]) + 1(C - [1]) - Vivi) dix
—/ﬂ(vh”h"’D (vh) + b (un) - Vavy) dx (2.2.22b)
= > (Lun]) + B (Ca - [un]) + 7 (un))

ecaT; ’ &

(" ([vn]) + £ (Coa - [vn]) + 5 (v4)) dx

- / Cu H“h]] : [[Vh]] dr — / Chupvydr,
Ty oQp

and

CgDc (v) = _/ gDﬁ- (Vivy +rp (vg)) dT
0Qp

+/ CngDv;,dI“+/ ng;,dr.
BQD aQN

(2.2.22¢)
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2.2.4 ORDER OF ACCURACY AND STABILITY

Since the discretization of equation (2.2.1) is as same as the one of the conservation law
(2.1.1), the optimal order of accuracy for numerical solution uy, is h* ™ in which h is the
size of triangulation mesh and p is the order of element-wise approximate polynomials.

The stability of three in four DG methods are also established in this section. The one
of CDG method has not been theoretically proven although this method works very
well practically. For simplicity we consider only homogeneous boundary conditions,
i.e. homogeneous Dirichlet and/or homogeneous Neumann ones. From primal forms

of DG methods we have
AST (4 ) = —/ Vain + r ([un]) + 7o ()| d, (2.2.232)
Q
AR (up,up) = —/ (IVaunl® + 2Vpup - r (Jun]) + 2Vuup - rp (up)) dx
Q

—/ y|[[uh]]|zdf—/ .z dT, (2.2.23b)
oTy

8Qp
AP (up, up) = —/ |Viun + 1 ([un]) +1(Cys - [ur]) + rp (un)|* dx
Q
- / Cu |[un]|* dr - / Cyupdl. (2.2.23¢)
o7y 90p

For IP method, the interior penalty parameter y is chosen such that ATF < o forall uy,

[33]. Then, for all three numerical fluxes central, IP, and LDG, we have

d
—/ |up|* dx < o.
it /.,

This inequality means that the numerical solution using one of the three numerical fluxes

are stable. We have the following result.

Proposition 2.2.2. Three DG methods corresponding to central, IP, and LDG fluxes are
stable.
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2.2.5 NUMERICAL RESULTS

The semi-discretizing process for (2.2.1) using DG methods leads to the system of alge-
braic differential equations of the form
dup,

MW = —aSu,. (2.2.24)

Here, the matrices M and 8 are respectively called mass and stifiness ones. This system
normally has to be integrated implicitly because it requires unacceptably small time step
size if the explicit integration methods are involved. Although the implicit solver are
able to offer much larger time step size but it is expensive regrading computational cost
and memory storage, especially in huge systems of ODEs. Unfortunately, our system
(2.2.24) isreally huge. Indeed, in d dimensional case, if the domain € is partitioned into
nE elements and polynomials of degree p are used for approximation on each elements,
then the system (2.2.24) consists of nE x (Pji'd) equations. This number is very big if we
compute in higher dimensional problems and in refined mesh size of the triangulation.

Therefore, we have to make an investigation through all four numerical fluxes to examine

several aspects that concern to practical performance.

SPARSITY PATTERNS

The first property we would like to look into is sparsity. Stiffness matrix § is giant with
its size of (nE X (p:d)) x (nE X (psd)) but it has a lot of zero entries. The number
of zero entries in § depends on which kind of numerical flux in use. Obviously the more
zero entries matrix § has, the cheaper computational cost is.

To discussing the sparsity pattern, we assume that nodal bases are used to span spaces
Vi and Zy. For illustration purpose, we use the test domain which is made up of four
triangles as shown in Figure 2.2.1. On this triangulation, the approximate polynomials is
of third degree. The total number of DOFs is 40 corresponding to 10 DOFs per element.
The sparsity patterns of central, IP, LDG, and CDG methods are shown in Figure 2.2.2.

From these patterns, the CDG and IP methods are both compact in the sense that
they connect only neighboring triangles. Meanwhile the LDG and central methods are
non-compact and they give connections between some non-neighboring triangles. In

the test domain, the LDG method allows connections between some DOFs in element

27



FIGURE 2.2.1: The test domain for investigating sparsity patterns

3 and some in element 4. The central method even connects all four elements of the
test triangulation. Connections between elements are decided via stabilization terms in
primal forms of each methods. For IP and CDG methods, the stabilization terms are
respectively

> [ ulu] - [w]ar

e€OT? €

and

> /Q [ ([n]) + 7 (Coa - L) + 75 ()]

ecdT®
[ ([vn]) + #(Cs - [vn]) + 75 (v4)] dax.

Summands of these two stabilization terms are non-zero only on the common edge of
two adjacent elements and therefore there are only connections between two adjacent
elements appearing in stiffness matrix. In contrast, the stabilization terms of central and

LDG methods are respectively

ST [ Tl + i )] - B ([ond) + s ()]

6 €OTP 6,02 ¥
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(a) Central method with 808 non-zeros
entries.

25

20
nz =644
(c) LDG method with 644 non-zeros
entries.

hzzfsaﬂ
(B) IP method with 688 non-zeros
entries.

(D) CDG method with 604 non-zeros
entries.

FIGURE 2.2.2: Sparsity patterns of four kinds of numerical fluxes.



and

S % [ D (o Tl + )

e, €0T, e,€0T,°
[ ([onl) + 1 (Coa - [va]) + 75 (va)] dx.

It can be clearly seen in these terms that there are connections between arbitrary two
elements and this fact results the non-compactness of stiffness matrices of central and
LDG methods.

Moreover, the stabilization term of CDG allows only connections between facial nodes
on each face of element and all nodes of adjacent element sharing this face. The IP meth-
ods connects facial nodes of each element to all nodes of its adjacent elements. Therefore

the non-zeros entries of § concerning to CDG method are less than those of IP method.

MATRIX STORAGE

In order to estimate memory requirement for storing stiffness matrices of four methods,
we consider simplex elements in d dimensions having d 41 adjacent elements. If approx-
imate polynomials of degree p are in use, then the number of DOFs on each element is
nP = (pji'd) and the number of DOFs on each face of element isnfP = (P;ril_‘).

For the CDG method, it requires to store nP* entries for a diagonal block and d + 1
off-diagonal blocks. Each of off-diagonal blocks has nP x nfP non-zero entries. In total

the memory to store connections of a single interior element is
memcpg = nP* + (d +1) x nP x nfP. (2.2.25)

The IP method also has d + 1 off-diagonal blocks but each of these blocks has nfP x
nP + nfP x (nP — nfP). It then results

menrp = nP* + (d+1) X nfP x (2 x nP — nfP). (2.2.26)

The pattern of LDG is similar to that of CDG plus some additional non-local con-
nections. The number of non-adjacent elements connections depends on the mesh and
switch. This number denoted as a is equal to zero in one dimensional domain. For higher

dimensional domain, in average, a &~ 1 ford = 2and a = 2 for d = 3. The total number
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of non-zeros is then
memipg = nP> + (d +1) x nfP x nP + anfP?. (2.2.27)

For the central method, its number of non-zeros entries is relatively big in comparison
with other methods. The connections of central method are between not only adjacent
elements but also between elements having common vertices in two dimensional case
and having common vertices or edges in three dimensional case. This number of con-
nections denoted by  depends on mesh. If uniform simplexes are used in triangulating
domain, then § = oford = 1, = 12 for d = 2. The total number of non-zeros in this

case is
meMcent = NP> + (d+1) X nfP x (2 x nP — nfP) + pnfP”. (2.2.28)

For three dimensional case, d = 3, this number has not been determined yet.

The memory requirements ford = 1,2 andp = 1,...,5 are shown in Table 2.2.1.
We can see that the central method consume much more memory than other methods.
The CDG method has the lowest memory requirements. In two dimensional case with
polynomials of degree p = 3, memory usage of the LDG and IP are more +% and 32%
respectively in compare to CDG method.

Dimension | Method | p=1 p=2 p=3 p=4 p=35
Central 10 19 30 43 58
d=1 1P 10 19 30 43 58
LDG 8 15 24 35 48
CDG 8 15 24 35 48

Central 81 22§ 484 900 1521

= 1P 33 117 292 600 1089
LDG 31 99 236 475 855

CDG 27 90 220 450 819

TABLE 2.2.1: Memory requirements per simplex interior element for central, IP, LDG, and CDG
methods.
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SPECTRAL RADIUS

Here, we compare spectral radius of stiffness matrix generated by four DG methods. The
spectral radius is very important to determine stiffness of the semi-discretized diffusion
equations and goodness of the approximation of discretized Laplacian operator to the
original one.

We consider the following test problem

0
a—l: = 0.1Au, (x,y) € Q C R, (2.2.29a)
Ou
?‘89‘ = o, (2.2.290b)
7
u|t=o = cos (27x) cos (27y) . (2.2.29¢)

The computational domian Q is a unit reactangle (0, 1)* and the time interval is (o, 0.1).

The exact solution is
u(x,y,t) = exp(—o.87t)u(x,5,0). (2.2.29d)

The domain Q is triangulated by unstructured mesh with triangles of variable sizes which
areh € {272,273, 274 275}, The four triangulations are shown in Figure 2.2.3. On
each triangulation’s mesh size, we use polynomials of degree from 1 to 4 to approximate

the exact solution of (2.2.29).

VAVAVAVAVAVAVAVAVAVAY
A'A'AVAVAVAVAVAVAVAVAVAVAV%‘A‘L

/ \v/ \\v / | \ \ / / ‘
(A) h =272 (B)h =273 (c)h=2"" (D) h =275,

FIGURE 2.2.3: Triangulation meshes of the domain Q = o, 1]”.

We have total 16 test problems of the form (2.2.24). Spectral radius of DG methods
are determined as the maximum of absolute value of eigenvalues of stiffness matrix S.

Sixty four spectral radius corresponding to four DG methods and 16 test problems are
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Degree Method h=2"2 h=2.73 =27% h=273
Central | 1.1201e+02 4.4588e+02 1.7908e+03 7.1548e+03
. 1P 4.0804e+02 1.8005e+03 6.4615e+03 2.5868e+04
p=1 LDG 2.4632e402 9.7945e4+02 4.0072e+03  1.6029e+04
CDG 2.4255e+02  9.5870e+02  3.9262e+03 1.5723e+04
Central | 7.6687e+02 3.1213e+03 1.2326e+04 4.9210e+04
B 1P 2.7301e+03 1.2707€+04 4.1947e+04 1.6817e+0§
p=2 LDG 1.6621e+03 6.2242e+03 2.6491e+04 1.0579e+0§
CDG 1.6246e+03 6.2301e+03 2.5686e+04 1.0257e+05§
Central | 1.9955e+03 8.0144e+03 3.1570e+04 1.2634e+05
. 1P 7.4254e+03 3.4812e+04 1.1388e+05 4.5670e+05
P=3 1LDG 4.6647e+03 1.7703e+04 7.3808e+04 2.9470e+05
CDG 4.6172e+03 1.7704e+04 7.2837e+04 2.9120e+05§
Central | 5.0408e+03 1.9745e+04 7.9593e+04 3.1879e+0§
_ 1P 1.6008e+04 7.4910e+04 2.4561e+05 9.8498e+05
P=4 LDG 1.0438e+04 3.9921e+04 1.6468e+05 6.5750e+05§
CDG 1.0390e+04 3.9921e+04 1.6373e+05 6.5647e+05§

TABLE 2.2.2: Spectral radius of DG methods, scaled by (/p)*.

shown in Table 2.2.2.

Observing spectral radius of DG methods, we realize that the semi-discretized ODEs
of the linear diffusion (2.2.29) is very stiff. Explicit methods are unable to apply effi-
ciently to solve these ODEs because if one does those, time step size is required to be
unacceptably small to avoid spurious oscillations. It is preferred to employ A- or L- sta-
ble ODE solvers for these problems.

Table 2.2.2 shows that the spectral radius of LDG and CDG methods are almost the
same while IP method possesses double size of spectral radius and central method gives
50% smaller spectral radius. It means that the IP method approximates physically the
Laplacian operator better than other ones. Eigenvalues of discretized Laplacian opera-
tors of central, IP,and LDG methods are all negative that is high agreement with the sta-
bility of these methods proved in Section 2.2.4. Although the stability of CDG methods
has not been proven theoretically yet, but CDG method also gives all negative eigenval-

ues. This fact suggests that CDG method is applicable to parabolic equations.
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ORDER OF ACCURACY

To test the spatial order of accuracy, we semi-discretize (2.2.29) usingall four DG meth-
ods which are central, IP, LDG, and CDG. For integration in time, we use a L-stable
singly diagonal implicit Runge-Kutta method which is of five-stage, fourth-order and
denote such method as SDIRKs4. The Butcher table of SDIRK 54 method is given in
Table 2.2.3. Time step size is taken to be small such that temporal error has not any re-
markable effect to the error estimation. Absolute errors and estimated order of accuracy

of four DG methods are given in Tables 2.2.4 and 2.2.5, respectively.

/s 14 ) o o o
3/4 1/2 1/4 (o] (o} o
11/2.0 17/50 —‘/25 1/4 o] [o}
1/2. 371/1360 — 137/2720 15/5451 1/4 o)
1 25/24 —49/48 1256 —35/nn 14
e fw e e s

59/48 —17/g6 228/ 85/, o

TABLE 2.2.3: The Butcher table of L-stable SDIRK 5 4.

By order of accuracy, all four DG methods generally attain the optimal order which is
p + 1if polynomials of degree p are in use. The central method approximates quite well
in coarse triangulations but it becomes worse than other ones in more refined meshes.
The LDG and CDG methods’ behaviors are quite similar but CDG is slightly better than
LDG. Inthe tough test with # = 275 and p = 4, IP method is the only one maintaining
the optimal order ofaccuracy. Another ones, especially LDG method, lose their optimal
orders. Ithints that the constant of error estimation of LDG method is smaller than those

of other methods so that the temporal error affects significantly the spatial error.

COMPUTATIONAL SPEED

To compare computational speeds, we remove the time step size limitation and let SDIRK 54
solver decide automatically time step size.
Central method is the slowest because of its too big memory storage. IP method

which requires moderately bigger memory storage than CDG but its computational times
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Degree Method | h =277 h=273 h=274 h=2"5
Central | 3.6252e-01 1.2317€-01 2.7110€-02 6.6902€-03
. 1P 4.2714€-01 1.5577e€-01 3.4344€-02 8.4999e-03
p=1 LDG 3.5145e-01 1.2126e-01 2.6074e-02 6.3947€-03
CDG 3.5009e-01 1.2074e-01 2.6017e-02 6.3840e-03
Central | 3.8081e-02 4.1312€-03 3.7965e-04  4.4940€-05
. 1P 4.4674e-02  4.9356e-03  4.7726€-04 5.6270e-05
p=2 LDG 3.9988e-02  4.3717e-03 4.3638e-04 5.2448e-05
CDG 3.9299€-02  4.2693€-03 4.2205€-04 5.0548e-05
Central | 3.2573e-03  3.5454€-04 2.0845€-0§ 1.9913e-06
. 1P 3.8170e-03 3.8978e-04 1.7182e-05 9.8640e-07
p=3 LDG 3.4985€-03  3.4729e-04 1.5134e-05 8.8061e-07
CDG 3.4243€-03  3.4237€-04 1.4999e-05 8.6668e-07
Central | 5.9288e-04 1.7031e-05 3.5398e-07 1.6640e-08
. 1P 6.6159e-04 1.8689e-05 4.0353e-07 1.2651e-08
p=4 LDG 6.0212e-04 1.6576e-05 3.6414e-07 6.1387e-08
CDG 5.9411€-04 1.6351e-0§ 3.6021e-07 2.1292e-08

TABLE 2.2.4: Absolute errors of numerical solutions at t = o.1.

Degree Method | h =273 h=27% h=27°%
Central 1.5574 2.1838 2.0187

. 1P 1.4553 2.1813 2.0146
p=1 LDG 1.5352 2.2174 2.0277
CDG 1.5358 2.2144 2.0269

Central 3.2045 3.4438 3.0786

p=2 1P 3.1781 3.3704 3.0843
LDG 3.1933 3.3245§ 3.0566

CDG 3.2024 3.3385 3.0617

Central | 3.1996 4.0882 3.3879

p=3 1P 3.2917 4.5037 4.1225%
LDG 3.3325 4.5203 4.1032

CDG 3.3222 4.5126 4.1132

Central | s5.1215 5.5884 4.4109

=14 P 5.1457 5.5333 4.9954
LDG 5.1829 5.5084 2.5685

CDG 5.1833 5.5044 4.0805

TABLE 2.2.5: Estimated order of accuracy of numerical solutions at t = o.1.
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Degree Method h=2? h=273 h=274 h=275
Central | 2.9689e-01 §5.2601e-01 1.9552e+00 9.6656e+00
_ 1P 3.2532e-01 4.8565e-01 1.5597e+00 7.9146e+00
p=3 LDG 3.2262€-01 4.9977e-01 1.3777e+00 6.0831€+00
CDG 3.3647e-01 §.2028e-01 1.3872e+00 7.1063€+00
Central | 3.3572e-01 6.7468e-01 3.6038e+00 2.0293e+01
B 1P 3.7148e-01  6.4973e-01 3.1498e+00 1.5580e+01
pP=4 LDG 3.3006e-01 6.0632e-01 2.4728e4+00 1.3352e+01
CDG 3.4358e-01 6.1517e-01 2.4095e+00 1.3918e+01

TABLE 2.2.6: Computational time of DG methods solving problem (2.2.29)

are not different so much from CDG method. LDG method is still faster than CDG in
most test problems. One of the reasons for unimpressive CDG’s computational time is
the cost to compute the CDG fluxes is more expensive than others.

The poor performance of central method is caused not only by memory storage but

also by its stiffness ratio. The stiffness ratio of the semi-discretize problem (2.2.24) is

defined by
|Amax|
|Amin‘

in which Ay is the largest magnitude eigenvalue of 8 and Ayin is the smallest magni-

Stiffness ratio =

tude eigenvalue of S. Table 2.2.7 gives stiffness ratios of central and IP methods in test

problems.

Degree Method | h =277 h=273 h=27% h=273
. Central | 5.7461e+18 7.3768e+18 2.5321e+19 9.3817e+19

p=1 1P 1.1704e+18 6.1610e+18 6.9141e+19 1.2333e+20
_ Central | 3.5176e+18 1.4105e+20 2.3545e+20 1.0283e+21

p=2 IP 1.5680e+18 1.7780e+19 6.5995e+19 2.9790e+20
. Central | 3.6429e+18 2.1920e+19 1.0082e+20 2.6275e+21

pP=3 1P 7.2017e+18  5.1068e+19 4.3875e+19 1.8908e+20
. Central | 7.6642e+18 1.4556e+19 6.2022e+19 3.9855e+20

p=4 1P 1.3079e+19 2.9976e+19 8.4438e+19 4.5561e+20

TABLE 2.2.7: Stiffness ratios of central and LDG methods.

We can see that even the spectral radius of central method is about a quarter of LDG

method but its stiffness ratio is roughly equal to that of LDG method. It means that the
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semi-discretized equation using central fluxes contains very slow transients in compare
to that equation of using LDG fluxes. These transients decay slowly and therefore the
time step size must be smaller even when ¢t >> o in order to maintain accuracy.

To see this phenomena more clear, we extend the time interval to (o0, 0.5) and plot out
in Figure 2.2.4 the time step size of four DG methods during solving processes. Because
of smaller time step size, central method needs 42 steps to complete the integration pro-
cess while CDG and IP methods finish after 27 steps and this number is 26 for LDG
method.

0.06

—— Central method with 42 steps
—~A— |P method with 27 steps
—&— LDG method with 26 steps
—6— CDG method with 27 steps

0.05

1 L 1 3

1 1 L L L
0 0.05 01 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

FIGURE 2.2.4: Time step size of four DG methods.

CONCLUSION

After investigating four DG methods, we can conclude that

« Despite of simplicity, the central method is the worst in every aspect. It is small

spectral radius but large stiffness ratio, slow, and ravenous in memory storage.

+ The CDG has as many pretty properties as LDG method but its stability must be

proven theoretically.
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» The IP method is not so good as LDG but its compactness is a big advantage if

one wants to employ it to construct a parallel solver of parabolic equation.

+ The LDG is the best choice so far for conventional computing.

2.3  ADVECTION-DIFFUSION-REACTION EQUATIONS

In this section, we present how to apply DG methods to the general advection-diffusion-

reaction (ADR) problem. We consider a well-posed ADR equation of the form

du . .

T +V -F* () =V -F?* (u,Vu) + FF™ (u) (2.3.1)
in a domain Q C R with state variables 4, inviscid flux function F™ viscous flux
function F'*%, and source term F5*°. The boundary condition and initial value are given.

First, we transfer this equation which is of second order spatial derivatives of u to a

system of first order by introducing additional variables g = Vu:

%:_V_Finv (u)+v_Fvis (u7Q)+Fsrc (u), (2.3.23)
g = Vu. (2.3.2b)

Next, we consider a triangulation of the spatial domain Q denoted by 75 which is of
size h. On this triangulation we define approximation finite element broken sapces Vj
and X, as same as in (2.2.3) and (2.2.4). The DG formulations for (2.3.2) read: Find
up € Vi and g, € X such that for all elements D* € T, forall v, € Vy, and for all

on € Xy, we have

d . —
— upvpdx = / F™ (uy) - Vopdx — / F™ (up) - fivpdT
dt Dk Dk 5D*
— / F'* (w,,q,) -Vv;,dx—l—/ F3S (1, q,) - fivgdD
Dk Il
+/ F°™¢ (uy) vpdx, (2.3.3a)
Dk
/ g, - opdx = —/ u,V - cr;,dx+/ upn - opdr. (2.3.3b)
Dk Dk 8Dk

— —

Here, the numerical fluxes F*»Y, F'3S and @), are approximations to F**, F'*%, and uy,
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respectively, on the boundary OD*. As investigated so far, the numerical inviscid fluxes
FA are approximated using consistency ones of which some of them are proposed in
(2.1.4). For the numerical viscous fluxes F/‘;i\s, any of four numerical fluxes in Section 2
is a good candidate.

To obtain (2.3.3) as an original ODEs system, in fact, we compute (2.3.3) directly

rather relying on primal forms. We suppose that {v;‘ is a d-dimensional poly-
j=1,...,nP

nomial basis of degree p of V}, on each element DF. Then the approximate solution uy,

can be expressed as

wp (x.t) = P un (x.6) | inwhich uy (%, | =D (9of (%), (2.3.42)
k=1 =1

) i=1,...,d
Basis on each element D* of £, derived from one of Vj, is ok in which
]

j=t,....nP
x,-,k k T k. H )
o = [o, ce 0,15, 0, o] » vjlsat the](th) position.
Ifg, = [q;‘, e q:d], then for each i from 1 to d, g}, is presented similarly as uy,:

£ nP
t) = @ q: x, t) IDk in which qh (x, t) D“ — Z qx., k (x)
k=1 Py

(2.3.4b)

Therefore uy, and q:i ,i = 1,...,d on each element D* are represented by coefhicients

[uﬂ and [qf" ] . For this reason we coincide uhy with column vector
j=1,....,nP j=1,....nP DF

uk " and uy, with vector [ u uE unE] T The same notations
Ijx - h T N S I B

are applied to g’ « . and q; -
D

Foreachi =1,...,d, the computation of g} reads: for/ =1, ...,nP,

/ qu,,k kvi‘dx: / Z ) 15;% /@Dkz ‘8Dkn vldI‘ (2.3.5)

Here, the numerical fluxes %), at D is approximated by Z ‘ opk and #™ is the

i(th) element of the outward normal 7 to element D*. If we denote local mass matrix
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MF, local stiffness matrix S¥* , and lifting matrix L* * whose entries are

v ovk ) v
M= [ kg, seko [ 2 e, L = kR ar,
l,} 1 j ’ l’] 1 j 3
Dk 8Dk

8x, Lj

then the matrix form of (2.3.5) is
MEgER = _grkyk o prokgk i=1,....d. (2.3.6)

. L . i~ ~ T . .
Here, #* is coincided with column vector [uf, ceey uﬁp] . It is worth to note that M is
symmetric and invertible.

Applying the same manner as (2.3.3a), we have

kduh ZSC’C;, Flnv xi,k ZLx” (Flnv) xk

- Z gk (pris) k4 Z Lok (F/v?s)"ka (23.7)
i=1 i=1
4 Mk (Fsrc)k 7
in which
nP )
(Finv)x{ ‘D" Z (Flnv)}xl ok v]k, (Finv)xf’k — _(Finv)-:i k (Plnv)npk] T7
=
P r
(F) I = 32 () ()™ = () ()]
j=1 L
nP - .
(Fvis)xi |Dk ~ Z (Fvis);ciqk U;-c, (Finv)xi,k _ _(Fvis)ic,-,k . (FVls):pk} ’
j=t
P -
() o S ) () [ (7
Dk oY R "

and

Fsrc‘ Z (FsrC)jc ]k7 (Fsrc)k _ [(Fsrc)f: . (Fsrc)ﬁp}T
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Gathering all equations (2.3.7) on all elements D* , we arrive the following ODEs

d d d &
% - st,- (Finv)xi _ ZLx; (Finv) '

i=1 =1

d d
—_——\ X
— S¥i (Fvis)xi + L% (Fvis) + MESTC,
= =

(2.3.8)

Here, M, §*, L™ are block-diagonal matrices in which their on-diagonal blocks are Mk, gxk
) e N e b

and L*F, respectively. Vectors (Fm")x’ , <Fm"> , (F"ls)x' , (F"ls) , and F°7¢ are

defined as

~

(F™)" = [((F=)"")", ... ((Finv)x;,n];)i] T’

(F/i;’)"" _ ((Ei;,)m)T,m’ <(1;;,)xhnE)T:|T’

= [y ()]

Fore = :<<P“°)‘>T, s (Uﬁ")"E)T}

The semi-discretized system of ODEs (2.3.8) is final form we obtain after the first
phase of our full discretization process. The second phase of the process will be discussed

in the next chapter.
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Rosenbrock strong-stability preserving methods

The second phase of discretization process for ADR equations is considered in this chap-
ter. In the last chapter, spatial discretization using DG methods for the ADR equation
results a system of ODEs. There are many barriers for solving this system. Three parts
in the system derived respectively from advection, diffusion, and reaction terms of the
original ADR equations possess different properties which require very different tem-
poral discretization approach to deal with. The spatial order of accuracy would be high
if approﬁmate polynomials of high order is used. That fact demands temporal order of
accuracy must be adequate for. Moreover, the size of this system is very big so that a
fast solver is necessary. All of these matters are able to be overcome with a new class
of methods, which we will call the Rosenbrock strong stability preserving (Ross-SSP)

method, introduced in this chapter.

3.1 N-TREE THEORY

Methodsintroduced in later sections need some conditions for their coeflicients to achieve

the specific order of accuracy. Order conditions of numerical methods for conventional
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ODE:s is quite confused and it becomes amazingly complex if the ODE are partitioned
in several terms and each of these terms is treated with distinguished manner. There-
fore we present in this section N-theory which is a powerful tool to possibly list order
conditions of a solver for our semi-discretized system.

We consider a decomposed system of the form

Y1) =310, (31)

vEA

in which A is a finite index-set and f = ZveAfM : U — R9are supposed to be smooth
and defined in a R%. To determine order conditions, one can use the Taylor expansion

of the solutions of (3.1.1) in term oij which is

&y — Z if}{”]if{t']xj’ (3.1.2a)

de: VUEA j71

d3 : - vi,i H v).i H

d_t{: S % (é,ﬁ’ﬁ”*’fmﬂ’wﬁLf}f‘”ﬂ*), (3.12b)
v,4AEA j k=1

in which

o A e o
o J

Ox; ko OOy,

Inacase of A = {v, u}, we have

B )+ ),

dt

a2y n i gl Vi ey Pl

dtyz - Z (ﬁ]*f[]v)+ﬁ}fﬂﬂ]el+ﬁ“}fﬁ]’l+é4‘} f{m,;>,
j=

&y - v]\i dv],j dv v].i dv],j v].i Jv].j dv

d_tys -y (f}’gﬁ},;f{ Ve feligelifil o geligedi o
j.k=1

& frhiflifx
+ ik g felifelag kg gl
_*_f}ﬂv'ﬁt‘]df{y],k v ) '

We associate to the summands on the right hand a graph whose nodes are double
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labelled. Such graphs are called N-trees.

2-tree Elementary differential

0 ¥
vy i ﬂ“

v, i , v, i ﬁv]‘rif{"]s]— ,'év}’if{f‘}ﬂj

u,i )y, i f]{_u},iﬁv],j, fj{ulvffy]-j

Vv, i ) V1 ,évlllf[V] ,jﬁ;/],k,'évl]cs'f{y] ,jf{v],k

v,i e i 'éV],ifg]Jﬁv},k, ﬁV]vﬁV]aif{y]»k

TABLE 3.1.1: Double labelled graphs and corresponding elementary differentials.

3.1.1 N-TREES

Definition 3.1.1. Let g be a positive integer and Ay be an order chain of q indices, A; =
{i<j<k<l<...}

a. A monotonically labelled N-tree of order q is a pair of maps t = (', t"):
A\ (i} 25 a4, 45 A

such that A (z) < zforallz € A\ {i}. The order of t is denoted by p (t) = q.
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b. The monotonically labelled N-tree of order o is denoted by ().
c. The set of all monotonically labelled N-trees is denoted by LTN.

d. The node with label i is called root.

The A, is called number indices set and A is called alphabet indices. Any element
of LTN can be represented as a graph in which its nodes are the indices for A; and its
edges are the pair (¢ (z) , z) forz € Ay \ {i}. The second label of each node is t’ (z) for
z€ Ay

In Figure 3.1.1 we draw down some element of LTN. The maps t = (¢, t’) for the
7th-tree in this figure are given by

o Vi {jk} = {i,j,k}isdefinedas?t (j) =i, ¢ (k) = j;
o "2 {i,j,k} — {v,u}isdefinedast’ (i) = v,¢’ (j) = y,and ¢’ (k) = v.

In comparison to the 8th-tree, these two graphs differ from each other only in the label-
ing of number indices. It means that by rearranging the number indices, these two tree

would be identically the same.

vij W Vi W) ovij gk ouj vk

NS N\

Vi Wb oviovii Wi v, i v, i
FIGURE 3.1.1: Sone element of LTN.

Definition 3.1.2. Lett, = (£, 1)) and t, = (t,,t]) be elements of LTN. An equivalence

17 27 72

relation on LTN which is denoted as t, ~ t, is defined by: u ~ v if and only if

aplt)=pt)2y
b. There exists a permutation 0 : Aq — A, such that o (i) = iand (0 x 0) (t) =

(o x a) (t) on (Ag\ {i}) x A,

Definition 3.1.3. The set of all equivalence classes under the relation ~ is denoted by TN =
LTN/ ~. The elements of TN are called N-trees. The order and the root of a N-tree is defined
by the order and the root of a representative, respectively. The notations are p (t) for the order
and r () for the root. The cardinality of t is denoted by a (t).
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Examples of N-trees are graphically represented in Figure 3.1.2. Next, we discuss

recursive representation of N-trees.

v ou

V

v

_=— R

v
v

FIGURE 3.1.2: Examples of N-trees

¢
|
v

v H#

Definition 3.1.4. Thet,, .. .,t,, be N-trees with non-zero orders and letv € A. Then we
denote

t=[t,... tm],
the tree that is obtained by connecting the roots of trees t,, . . . , ty, to the new node which is

labelled as v. This node becomes the root of the new tree t.

We use notation 7, for the N-tree of order 1 with root v, forv € A. For given N-

tree of the form t = [t,, ..., ty],, its parameters such as order, root, and cardinality are

computed with the help from the following lemma.

v
¥ N
=" Ty:“, th=[rntdv= ¥ , t=[huv],= Vs

FIGURE 3.1.3: Some recursive representation of N-trees

Lemma 3.1.1. For a given N-treet = [tl, cees tm]v, we have
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and the cardinality of t is computed recursively as follows:

a(0) =1,
a(ty) =1, vEA,
p(t)—1 ) 1
a(t):< a(ty)...a(ty) ——
p(t) ..., p(tm) TRITRI
where y , u, are the numbers of mutually equal N-trees among t,, . . ., tm.

For trees in Figure 3.1.3 we have

a(t,) = . X1X1X G =2,
a(t,_):<5>xz><1x1x; 40.

3,1,1 ! x ! x !

3.1.2 ELEMENTARY DIFFERENTIALS

We are now apply N-trees to express the Taylor expansion of the function f: U — R,
U C IR? which is assumed to be arbitrarily differentiable and be decomposed to several
parts, f = ZveAfM .

Definition 3.1.5. Fort € TNwith therepresentationt = [t,, ..., t,,] we define afunction
F(t) : U — R recursively in the following way:

F(0)(y) =y,
F () () =10,
9

. d o | |
FO = Y, @_ﬁi(gip‘ () (3) ... P (t) (3) -
Jioeorfm=1 (ARRR f

m

The function F (t) is called elementary differentials.
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The elementary differential corresponding to the N-tree ¢, in Figure 3.1.3 is

P =Y FVF (7) 0) F () )

jk=1

Y

jk=1

We now show you how exact solution of (3.1.1) and its derivatives can be expressed by

elementary differentials.

Lemma 3.1.2. Lety () = [ (t),...,»" (t)}T be a solution of (3.1.1). We have, for

q> o
V=S Fp= > awFH (). (3.1.3)
tcLTN teTN
p(t)=q p(t)=q

Proof. We prove the first equality by induction on g. Fort = (¢, ') € LTN, p (t) = g,

__Ft Z Ft

where the sum is taken over all trees t, € LTN of order g + 1 such that t”Aq\{j} =t and
tﬂAq = t’. Hence

S FOm= X 2. F®)0)

we have

teLTN t=(¢',¢')ELIN t,=(£,¢/).p(t)=q+1
p(t)=a ph=a  Elap (=t lag=t’
= > Ft)0).
t,ELTN
p(t)=q
The second equality is obvious because of the definition of the a (¢). 0

Denoting LTN" and TN as monotonically labelled N-tree and N-tree with alphabet

root v, the equation (3.1.1) can be rewritten as

9 Z Z Fi( Z Z t’)Fl (3.1.4)

vEAtcLTN" vEA teTNY
p(t)=q plt)=q
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Using Lemma 3.1.2, the Taylor expansion of a solution of (3.1.1) is given by

y(to + At) = Z Z Z a(t)F(t) (y,) Ar (3.1.52)

!
g20 \ vEA teTN’ T
p(t)=q

(1)
=303 w0F bo) S (31.5)

VEAtETN

3.1.3 N-SERIES

Definition 3.1.6. Let f = ZveAfM : U — R%andy € U. A N-series associated with
fM is the series of the form

AP

N (@.9) = > o (Ha(t)F (1) (y) o Tueen
teTNY pAb:
where ® : TN — R is an arbitrary mapping and v € A. The N-series associated with f is of
the form
N (@,5) = Y NFMi(D,y).

VEA

The O (t) are called coefficients.

Definition 3.1.7. Let g : (—so,80) € R be arbitrarily differentiable, s, > o and g =
[g‘, o ,gd] T Wesaid that g can be represented as a N-series at y w.rt. f, if and only if there
exists amap ® : TN — Rsuch forallg > o

(gi)(q)(o)zz Z O(W)a(F () (y), i=1,...,n

vEA teTN'
p(t)=q

We denote g (s) ~ N(®,y).
We now reach the central theorem of N-tree theory.

Theorem 3.1.1. Letg (s) ~ N(®,y)inwhich® (1,) = 1withv € A. Then Asfl (g (As)) ~
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N(®',y) where

o' (0) = o,
o' (7,) =1,
() =p(t) D (1) ... D (tm),

fort=1[t,,... tm),

Proof. Firstly, we have to show that

(o5 )"

Il

T
—
=
—
N

(3.1.6)

tcs”
p(t)=q
in which
~ (plu) (plu))
HO6) = > 4 @)™ (g ()
Joseeesfpy =1
whereu = [uy, ..., u,), belongsto S’,a special class of LTN-trees. The set S consists of

monotonically labelled N-trees which have no ramification except root and the alphabet

indices of the nodes except root are not important. We can formally define §" as follows

§' = {t= (f,t") € LTN" such that card ('™*) (k) < 1fork # j

and ¢’ (k) = ¢’ (j) ifk # j} ,

and denote Sj is the subset of §” and of order g.
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We prove (3.1.6) by induction. For g = 1and 2, we have

1)
[ g (o] ™ = Zf” (5(5) ()" |
—éﬁ?@@) +Z} (¢ ()™
- ZEH (0 ()
Suppose that
Wwwri§wmw
Thenfort = [f,, ..., ty], € S}, we have -

wwwwﬁﬁ%w@wwmwwwwy
= Z B i (@ ()P (g () P (gt (5))

1m+,—1
+ Z /,yl-u,;m H g” S)J [ k( )J pte)+1)
k=1 1=

Ik

The sums of the right hand side are taken all over tree t € S“; ., which is received from u

in one of two following ways:

i. Addanew node to the root (v, i);

ii. Increase the branch corresponding to the node j, one more node, k = 1,

Therefore the derivative

#ie)] = Y Ho .

v
tes
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Putting s = o, we get

[ e )] = 3 H (o)

g+1
= Z Z f{v]'l H (g”‘ (o))(P(tk))
tGS“;_H jl ..... Jp =1 ' " k=1

Using the fact that g (s) ~ N (D, y),

(gjk (O))(P(tk)) _ Z Z @ (n) Flk (Ek) () .

€A [ CLTN
p(B)=p,,

' _ Wi (9)
then we return a complicated expression for [f[ (g (o))J :

[ o))" = 3 Iy 3 @

teS,;_,_l k=14, €A {,cLTNH
p(B)=p.,

The set {t, t, ... ,Em} corresponds to the tree w € LTN" such that each branch of t is
replaced by the tree t, ...ty Hence

Frgen]” = 2 T ().

wELTNY P (W)
p(w)=q+1

3.2 ROSENBROCK EXPLICIT RUNGE-KUTTA METHODS

After spatial discretization, the ADR equations are reduced to an ordinary differential

system
du

= =1+ (w (32.1)
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in which {7 is obtained by discretizing V - F'*® 4+ F5™€ in (2.3.1), f/ corresponds to the
discretization of —V - F*7, and initial value is given.

The properties of these two terms are unfortunately completely different. The term
fm derived from diffusion and reaction terms is a smooth and stiff operator which con-
tributes real and relatively large scaled eigenvalues as shown in Section 2.2, see also [22,
p- 262]. Meanwhile, the term f{e] attained from convection term has predominately
imaginary eigenvalues [22, p. 102]. Moreover, fM is normally non-smooth because it
usually contains itself non-smooth operators such as maximum, minimum functions and
limiter functions to avoid spurious oscillations [ 16] and to preserve positivity property
[24].

Because of these differences, temporal integration Runge-Kutta (RK) methods for
(3.2.1) are normally of partitioned form. Many authors [4, 30, 38] use explicit RK
(ERK) methods for f{e] , implicit ones for jﬂ , and then combine the two methods in
proper ways. There are some compromises in these approaches. The implicit methods
are often of diagonally implicit RK (DIRK) which offer great stability for stiff term but
solving nonlinear large system at every stages is really costly. Alternatives to DIRK is
Rosenbrock family of methods, [21, p. 102], [32]. But the associated ERK methods are
embedded implicitly in Rosenbrock methods and this situation causes difficulties to find
high order of accuracy solvers [39]. Even if ERK methods are accompanied with DIRK
directly [26], such combination does not guarantee strong stability-preserving (SSP)
property and as a consequence they have to integrate within smaller time step-size.

In this section, we propose a new class of integration methods solving (3.2.1). These
methods are affordable in computational cost, having explicit conditions for order of
accuracy, and assuring good stability properties. Our approach employes Rosenbrock

methods for the stiff term fm combining with ERK methods for non-stiff one fM directly.

Definition 3.2.1. An s-stage additive Rosenbrock explicit Runge-Kutta (Ros-ERK) scheme
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solving (3.2.1) is given by

K = agf! u-i-zk] Z

k—1
+ At]m Zﬂ,:]]K][ + Zﬁ,[:]}K}[e] , k=1,...,5s, (3.2.2a)
j=1

k k—1
K = 8 [+ 3ol 3ok k=as (32ab)
j=1 j=t
" ( plil il [¢] 7 le]
nt1 = Uy + Z K. +b. K, (3.2-2¢)

Here, u,, is approximation of u at timet = t,, ][i] is the Jacobian offm att, and a,[i., a,[:]}., ﬂ,[:]j,
ﬁk;’ 7,”, 7,[:]}, b[i] and b,[:] are determining coefficients.

Each stage of the method (3.2.2) consists of only a linear system with unknown stage
values K,[Ci] and with matrices I — Aﬂ,[ﬂk][i]. So, ifﬁy}l == ﬁ,[;]k = ﬂm, there is only

one LU-decomposition required per time step.

3.2.1 ORDER CONDITIONS

To specify order conditions for Ros-ERK methods (3.2.2), we use N-trees theory intro-
duced in the previous section. Because the system (3.2.1) consists of two terms,fm and
f¢!, we consider from now only 2-trees with A = {i, e}.

Suppose that
K][:] ~ N[l] ((Dkﬂ.yn) ’ Kl[:] ~ NM ((Dk’y”) :

It means that for g 2> o we have

(K)o = X @alFw ().

(K ) lpee = D Pe(wa(u)F(u)(y,),
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where the coefficient @y satisfies

D (0) =0 and O (1) = Oi(7.) = 1.

Then,
LT Z ak]K[l] + Z ak]K}[e (‘I’k,yn) ,
yn+zyk1 +Z k; (\Yk’yn>a
j:x
Zﬁk] +Zﬁk11<}[e Yk’yn)’
in which
T ={" ot o=
Sh el ) ip () >,
1 ifu=49,

Vi (u) = Z;‘:l 7’1[5,-(1);‘ () ifp(u) =1, r(u) =i,
P 71[5,];‘1’;' (u) ifp(u) >

(o ifu=70,

Vi(w) = {508 1/32‘1 O () ifp(w) > 1, r(u) =i,

S B (W) i p () > 1, r(w) =

Applying Theorem 3.1.1, we obtain

k

Ag <y,, S ol agJ,ngJ) N (&)
j=1

o (s S S ) - 5)



in which

p () ¥i () .. Vi () iftt = [ty ..., i), -

k k—1
it S SR < v (T,
j=1 j=1

with
pu) ¥ (v) ifu=[];, p(v) >1,

o otherwise.

el
Y (u) =
Gathering all together we come to

Left hand side of (3.2.2a) ~ Nt (Ek,yn
Left hand side of (3.2.2b) ~ NI (Ek. 3,

).
)

in which ifr (u) = i,

o ifu=o,

1 ifu =7l

ifu=[v);, p(v) =1,

p(u) Ve () ... Y (um) ifu={uy, ... upn);, m=>a2,

~/
and Z; (u) = Y (u)ifr(u) =e.
Because Z; and @y are identical, we conclude that the coefficient @y, are defined as

follow
o O (u) = oifu=0;

e @y (u) = 1ifu € {71 <M1}
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o Forp(u) > 2andr(u) = ethen

mo ek 7’1[:} Q; (w), ifr(u)
Ou (4) = p (1) = Ty
s gz”%u i (1)

.

withu = [u,, ... Uy, andm > 3;
« Forp(u) > 2andr(u) = ithen

- Ifu = [v];and p (v) > 1then

p () S5 (el + B @5 () ifr (v) = e,

Pl = p(u) [Z = <“1[<l]; + 31[:];) @) (v) + B (")} irv) =1

- Ifu=[u, ..., up|;and m > 2 then

k—1

o) = p ) [ 3 el ™o,

=1 j=1

For the numerical solution we have

yn+1 ~ N((D’yn)

where

' if p (u) = o,

S b0k (w) i (u) > 0

Comparing the N-series of the exact solution, we are able to derive the local trunca-

tion error of the Ros-ERK method (3.2.2) as

O (u) =

()
Y == XX (- 0W)awF) () S

velie} ueTNl

Therefore, order conditions for Ros-ERK method (3.2.2) to be of order p are determined

in the following proposition.

Proposition 3.2.1. The Ros-ERK method (3.2.2) solving (3.2.1) is of order p if and only
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if it holds true that
® (t) = 1forallt € TN satisfying p (t) < p.

EXPLICIT CONDITIONS UP TO THIRD ORDER OF ACCURACY

Here we give explicit formulas of the order conditions up to the third order of accuracy.

Conditions for the first order

le
e Uy = Tet

1k:1
Conditions for the second order
. €] _ e ]
Uz |:ul 1 .
k—1 k—1
o0 (1) =3 e, () =2 X0l

j=1 j=1

s k—1

I
k=1 =1
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00 () =2 3 (sl + 89 0, (u1) =2 3 (ol + 62)
j=1 j=
IS (a4 ) =
k=1 j=1

o () = » |5 (el ) 0, () sk, (ur;a)}

j=1

=2 Z (“l[cl]; * ﬂ,[:}]) + ﬂl[cd;} !
J=1
k—1

St (5 (o) )| -
k=1 j=1
Conditions for the third order

le] le] [l

o U3y = |:u1 1, U 1] :
e

k—1 * —
o) =[St ()] - (S
=t =
k—1 z
—3 Z b,[:] (Z yil) =1
P =
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1,1

..-CD]- (u ‘

2,1] :
€

le]

u

[ _
3.4 =

o U

T
o
- -
i I .
- A >
— -
SIS Il
=
T I
IWNL—
o =R

:

) =

J—

¢|
j

i (“ :

{.

]

J
k—1
>
j=1

k—1
=33 7
j=1
—6 i by
k=1

o ()

60



AP

-

1

j

(i

2.

(e] <
k.j

jil

1

I

1

k—1
>or
=

1

k

:>62 by

0+

[
j

1]

0 g

;

jil

(i
k.j

}1)

i
k

£1

[
k

Y (u

k
3 Z Y
j=1
—6> by
k=1

k
627'
j=1

j—1

X

k

dr
=1

)+ B

j7l
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e (4) 5| (ont) o () st (41)]
j=1
[ (o + ) X (sl + ) +ﬂkkz (o4 85 )}
et |32 (e rt) £ ) o o)

j=1 =1 I=1

o (i >6{"z<aﬂ,+ﬁk,> [’z( o) ool
e[t
:6;}'} I: (ol + 81 [i( +f1) + Bl

=1 =1
b

The linear stability function for an s-stage Ros-ERK method is obtained by applying it

k—1

+ﬂ[k[2( B + B

=1

3.2.2  STABILITY FUNCTION

to the linear test equation

4 _ 4 [e]
5 Ay + A%, (323)
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and getting the relation

1-Zicll  _Zklcld [ Kl ] Al
—2GH 126 o [ gl | =y |l
AT T
e | I e A
whereI € R*** is the identity matrix, zl) = A AL 2l = AldAg,; = 1, ..., 1]T € RS,
Kl = [KE"],..., E"]r, Kl = [KW,..., s[e]r, and
C[t] — [“1[:}]' + ﬂ’[ﬂ}} c RSXS, C[E] — [al[:]] +ﬁ1[:]] e RSXS’
G[x] — [71[:” c RSXS, G[e] _ [71[:]]] € R¥S

. P (il
R<z['],z[e]) - _((Z_z__) (3.2.4)

in which

Il [Cm ., (m)T] Al 4 iy (b[e])T

26l 2y (B0) " p - o [Gm e )T} |

- Zicll il }

-

0 ) =
Q(2l1,24) = det gl - gl

If coefficients of Ros-ERK methods satisfy the additional restrictions
G[e} — C[E]’ G[i] — C[i]7
then the function R (z[i] , 2l ) reduces to

det (1 — 2l - Mt 4 2l (50) " 4 (bM)T)

det (I — Zlcll - ZMC[E])

R (Zw, ZM) -
It should be noticed that the matrix z[! Cl1 + Zlecll is triangular with diagonal entries
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z[i]ﬂ,t]k, fork = 1,...,s. Therefore, the denominator is

s

Q(Zm,z[e]) -1 (1 _ Ll ,;,lgk) .

k=1
s

In the case ofﬂ,[:}k = ﬂ[i] forallk =1,...,s, wehave Q (zm, z[e]) = (1 - z[i]ﬂm>

3.2.3 EXAMPLES ON ROSENBROCK EXPLICIT RUNGE-KUTrA METHODS

Two examples belonging to the Ros-ERK methods are introduced in this section. They
are all s-stage, s — 1 order of accuracy and denoted by Ros-ERKs, s — 1 fors = 2and 3.

The first one is Ros-ERKz2, 1 which is given by

SN ST
pi= O
| I |
—
~2
Rl
By
| E———
i
—
O w=
wi= O
—_ .
r—
W
Bty
RN
| IR |
Il
—
(o}
o}
| S|

Its stability function is

‘ + % e])?
RRos-ERKz,l <Z’m ’ z'[e]) - %‘iﬂ%{

The next one is Ros-ERK3, 2 which is defined by

o o o [0 o o -|
S R W A O R
oz ° Ly a2 °
[ﬂ[il} _ _i C: : [7[1]] _ _i Z : [b[i]q _ [b[e]J _ l_ i
k.j 6 3 ’ k.j 303 ’ k| k [ 6 j
i d ;

The stability function of this method is

Rrossnss (. 29) = 1+ 26 4+ 2 () +(§ (z[j] )[3]>_3 (2 - 224) (zm)z'
1 — =zl
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It is impossible to require that these methods are L-stable for all value of Al But
under the assumption that Zd =0 (1), the stability functions tend to zero as 2l tends
to —oc. This damping property at infinity assures the L-stability of our methods forlarge

and negative eigenvalues of stiff term.

3.3 ADDITIVE ROSENBROCK STRONG STABILITY-PRESERVING METHODS

As mentioned before, the f{e} is resulted from a method of lines approximation of the
advection part —V - -2V where the spatial derivative is discretized by a total variational
diminishing (TVD) finite difference or finite element approximation. To solve the sys-

tem

2w, (33.1)

the strong stability-preserving (SSP) methods is preferred [ 19] because they do not in-
crease the computational cost so much and have the extra assurance of stability.
To employ SSP methods for integrating the term £ in the full system (3.2.1), the

formulas (3.2.2b) and (3.2.2¢) must be rewritten as

k k—1
Ye=u+ Y GOKI+ A g (V) k=1 st
j=1 j—1

Uppy = Y54,

respectively, in which

[ yﬁ]l o ... o o] [ © o ... o o
ﬁ’; 7’52 - o o 7£e]l o ... o o
{1 _ . . . . . ] . .
{gk)J - . . . . : ’ [Zk]:| - : :
AR U 7L B byl .. o o
b[i] b[i] b['] o | b[e] b[e] b[e] o
! 2 ce s L % 2 ‘e s i

Notice that the value KE‘L is not required because onP_]H’S_i,l = o. Foreachstagek > 2
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with given My 2 o satisfying Z;‘_;‘ Mj = 1, we have
- i N
i] . li e
Ye= ) m |G- Y 4K - Ary 9 (n)
j=1 =1 I=1
k ) . k—1
DI RE M
j=1 j=1

k—1
= Z ’lk,jY;""At f[ Z '7k1§ - f{e] (YJ)
j=

vl
k A k¥1 [.] A
+ Zl[ji - by K;H-
= -

So, if we denote

k—1 _
0 =50 = D mgb 0= 00— D s
=

I=j+1

(3.2.2) is written in the equivalent form

k—
K = agfl! un+z +Atzakj

k
—l—At]m Z K[ —i—AtZﬁe]}ﬂ =1,...,8, (3.3.2a)

Y, =u,+ 9 (3.3.2b)
k—1 k ) .
=) (nk,,-Y,- ol (1)) + Dol k=2t Gaso
j=1 j=1
Upty = Ls4- (3-3'2d)

Under some assumptions mentioned later, this scheme would be called Rosenbrock
strongly stability-preserving (Ros-SSP) methods.
Clearly, ifall 9,[:]].’5 are nonnegative, the intermediate stages Y consist of convex com-

binations of forward Euler operators for f{e] and ones of stage values for fM. Then we
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assume that the forward Euler method applied to (3.3.1), i.e.,
Uniy = Up + Atf{e] (un) , (3.3-3)

tn + At (u,)|| < ||unl| with At < Atpg, and the stage values Ki

is strongly stable, ‘

are also strongly stable, K,[ci] H ||lun|| with At < Atres. Obviously, we get that uy,

obtained by (3.3.2) is stable with

Uy 1
At g min AtpErrI:m [ ] AtRos
D)

ek,] max Z} 1

o

[e]

In case there are some negative 6, e will use the same trick as in [34] in which an
operator so called backward operatorﬁeJ is introduced. This can be achieved by spatially

discretizing the temporal reversed system

Ou .

— =V -F%(u).

5 ()

The operator £l is required to hold the strong stability property, ||un+,|| < ||un|], for the
backward Euler scheme,

Upty = Uy — At}{e] (un) . (3'3-4)

Then we have the following proposition which may be considered as an extension of that

in [34].

Proposition 3.3.1. Assume that the forward Euler (3.3.3 ) and the backward Euler (3.3.4)

are strongly stable, i.e.,

un + At ()] < | — At (uy)

< lunll

with At < Atgg, and stage values K,[c1 are strongly stable with At < Atges. Then the method
(3.3.2) is strongly stable-preserving, ||un.|| < |[un]|, with

M
At < min { Atggmin—2

; 1
el maTy,




provided that GE}J{E] is replaced with 6,[:]24 whenever 9,[:]]

is negative.

ExaMPLE OF ROs-SSP METHOD

The Ros-SSP3, 2 method derived from Ros-ERK3,2 presented above is given in Table

%]

3.3.1 with its own coeflicients.

) %]

1
1 o o] o} g [¢] 1 o O
L1 4 1 0 1 l 5
2 2 2 3 2

1 1 1 1 2 1
1T 1 1 2, o =
3 3 3 3 ° 9 3

TABLE 3.3.1: Coefficients Mo 9,[:.])., and GE]]., k > 2.j > 1, of the Ros-SSP3, 2.

REMARK

One of important applications of the Ros-SSP methods is solving ADR equations. Such
ADR equations are often used to simulate physical and biological phenomena. In these
problems, the variables are normally positive, e.g., the adsortbate coverage rate of the
surface by CO molecules in absorbate-induced phase transition model and the density
of bacteria in the chemotaxis model. Hence, as a natural requirement, Ros-SSP methods
are expected to preserve the positivity of these variables attaining a demanded order of
accuracy.

The diffusion and reaction part in DAR equations can be discretized as in [25] or
[3]. The corresponding semi-discretized term which is normally stiff are integrated by
choosing a suitable Rosenbrock method such as L-stable ones and therefore no wiggles
or spurious oscillation are produced. Consequently, a proper Rosenbrock method does
not produce any overshooting values that may deprive the methods of the positivity of
numerical results applied to the semi-discretized diffusion and reaction terms .

To guarantee the positivity, the advection part in DAR equations are discretized spa-
tially by a TVD finite difference or discontinuous Galerkin finite element methods. By

embedding the SSP method in computing the semi-discretized advection term, the Ros-
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SSP methods inherit positivity from the SSP methods [18, 34]. The explicit Runge-
Kutta method for the semi-discretized advection term is written as a convex combina-
tion of forward Euler steps which are TVD under a suitable Courant-Friedrichs-Levy

(CFL) condition. It results characteristic constant which is min Z'[‘e]’ and the maximum
1

kj
time step-size for positivity of the method is proportional to the above constant.

3.4 NUMERICAL DEMONSTRATIONS

In this section, we test the order of accuracy, the performance, and the robustness of

Ros-ERK3,2 and Ros-SSP3,2 via several test problems.

3.4.1 KaPS  PROBLEM

The first test problem suggested by Kaps (see in [17]) is given as

d

% = — (571 + 2) y, ey, (3.4.1a)
dy )

2y oy 4.1b
dt )’1 yz yz’ (3 4.1 )

where t € [o0,1] and the initial values are y, (0) = y, (0) = 1. The exact solution for the
system is

1) =50 ) =ep(-1). (3-4.1¢)

The stiffness of (3.4.1) increases when the positive parameter € tends to o. In case of

€ = o, the system degenerates into an index-1 differential algebraic system which is

A .
yl_yz’ dt _yl y?. yl'

The system is able to be written as of form (3.2.1)

Do+, (3.422)

dt
in which
1 i _5711+"—12 e _21+€li
yz{y 7f”(y)={ = y} ﬁlw—[ § {}
yz o yl_y},—yz
(3.4.2b)
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(o] (o] o] (o]

1- 2| VDL Vi 0
1 V34 Vils VA
Vi Vila | A

1/3 (1 - ﬁ/4) \/;/4 + 1/3 (’-*\/;)/6

TABLE 3.4.1: Butcher table of TR-BDF2 methods

To solve (3.4.1) we propose two more methods which are TR-BDFz [5] and Ros-
AMF3,2 [25, p. 404]. The former is classical 3-stage, second order L-stable Runge-Kutta
method which is a combination between the trapezoidal rule (TR) and a second order
backward differentiation formula (BDF2) method. Its coefficients s given in Table 3.4.1.
The latter is also a 3-stage, second order L-stable Rosenbrock method in which Jacobian
matrices do not require to compute exactly. The computation scheme for Ros-AMF3,2

reads

, 1
(I—yAtA) ki = Atf |y, + ;Z ki + AtAZyi_jkj, i=1,2,3, (3.432)
j<i j<i

1
Intr = In + ; (kl + k, + k3) ) (3-4-3b)

where

1
Yop = — (37/ + V3 + 73,2) RSP ; - 37

1 3 2 2 1
Yan = (67 —1ny +6 (1 -+ 73_2> Y+ 275, — ;) ,

1+27,,
2 6 1 2
y=1— ~—cosf+ —sinf, 6= —atan\—/_—,
2 2 3 4

and A is an arbitrary Jacobian approximation of f (yn) . All three methods integrate from
t = oto 1 using standard automatic step size selection with several given time step size
limits. Method TR-BDF2 solves with the original equation (3.4.1) while Ros-AMF3,2
and Ros-ERK3,2 solve the equation (3.4.2).

At first we investigate order of accuracy and stability of Ros-ERK3,2 method by vary-
ing £ from 107" to 103 and changing time step size from 0.004 to 0.001. Error of Ros-

ERK method is estimated by comparing numerical solutions and exact one att = 1.
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Table 3.4.2 shows us that Ros-ERK3,2 method is of second order of accuracy in all nine
test problems. It also means that Ros-ERK 3,2 still remains its stability even in very stiff

test problems with ¢ = 1073.

At = 0.004 At = 0.002 At=o0.001
£ =101 2.0017 1.9988 2.0008
£=10""% 1.9894 1.9917 2.0007
£ =103 2.0568 1.8931 2.0146

TABLE 3.4.2: Estimated order of accuracy of Ros-ERK3,2 method.

Then we compare Ros-ERK 3,2 with TR-BDF2 and Ros-AMFj3,2 in performance as-
pect. Because the size of test problem (3.4.1) is small, measuring computational time
is meaningless. Instead of doing that, we counting the number of computing the right
hand side function during the whole integration in the interval [0, 1]. Theresults of three

test problems with £ € {107*,107 %, 1073} are shown in Table 3.4.3.

Ros-ERK3,2 Ros-AMF3,2 TR-BDF2
£=10" 1416 1725 407
£=10""2 1422 1743 395
£ =103 1482 1821 369

TABLE 3.4.3: The number of right hand side function calls with error tolerance is 1079

size limitis 107",

and time step

Table 3.4.3 illustrates the power of TR-BDF2 method in solving extremely stiff prob-
lems. Its performance is much more better that these of the others. This fact is easy to
understand because Rosenbrock methods are more appropriate to mild and/or very stiff
problems rather than the extremely stiff problem in this test. Comparing two methods of
Rosenbrock family, Ros-ERK3,2 is better than Ros-AMF3,2. Its number of right hand
side function call is roughly 17% less than this number of Ros-AMF3,2.
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3.4.2 LINEAR ADVECTION-DIFFUSION PROBLEM

The second test problem is the one-dimensionallinear advection-diffusion equation with

periodic boundary condition

Ou + Ou dﬁlu
ot aax T T ox
u(x,0) = cos (2mkx), k€N, (3.4.4b)

x € (0,1), (3.4.4a)

in whichaisa veloc‘ity and d > o is a diffusion constant. For the spatial discretization
we employ the discontinuous Galerkin methods mentioned in the previous chapter. The
semi-discretized system we get is a system of ODEs of the form (3.2.1) in which j{i] and
jie] are from diffusion and advection terms, respectively. As discussed so far, the j{e} is
no longer smooth and f{i] is stiff operator. Therefore TR-BDFz2 is unable to solve this
ODEs even though its performance in solving stiff problems is amazing. We employ
Ros-AMF3,2 and the SSP version of Ros-ERK3,2, method Ros-SSP3,2, to to integrate
the semi-discretized system of (3.4.4).

The spatial interval (o, 1) is divided into small elements whose size is 277 and on each
local element, polynomials up to third degree are used to approximate the exact solution.
Therefore, the spatial error is small enough so that it does not largely affect the temporal
integration error.

The second order of accuracy of Ros-SSP3, 2 is shown in Table 3.4.4. Here, the pa-

rameters in (3.4.4) are chosenask =1, a = 1.0, d = 0.1, t € (0, 0.5).

Time step size Normalized error norm  Order of accuracy

0.005§ 4.3071€ — 0§
0.0025§ 1.3793€ — 05§ 1.6428¢ + oo
0.00125 3.3945¢ — 06 2.0226¢€ + 00

0.000625§ 9.3544€ — 07 1.8595¢ + 00

TABLE 3.4.4: The errors of Ros-SSP3,2 method att = o.s.

Two methods Ros-SSP3,2 and Ros-AMF3,2 are compared with the same time step
size limit Atp,y = 0.1 using the same time step size controller [20]. We take the ve-
locity a = 1.0 and test two methods with different values of the diffusion constant
d € {1.0,0.1, 0.01} within the interval t = [o, 1.0]. By varying the diffusion constant

d from 1.0 to 0.01 and keeping the same velocity a = 1.0, the problem (3.4.4) transits
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from the diffusion-dominated one to the advection-dominated. The running time of the
two methods given in Table 3.4.5 shows that Ros-SSP3, 2 is faster than the Ros-AMF3, 2
during such transition. This outperformance of Ros-SSP3, 2 canbe considered as a result
of the better stability of the embedded SSP integration method. Such this embedment
allows Ros-SSP3,2 integrate with bigger time step size and therefore less steps to finish

the integration process.

Elapsed time (sec.)
d Ros-AMF3,2 Ros-SSP3,2  Ratio
1 2.39598 1.42192 40.65%
0.1 2.66305 2.08246 21.80%
0.01 2.81619 2.40671 14.54%

TABLE 3.4.5: Speed comparison between Ros-SSP3,2 and Ros-AMF3,2 methods.
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Numerical results of practical models

4.1 THE CHEMOTAXIS PROBLEM

Chemotaxis model is a remarkable system of equations in mathematical biology. It is
used to mathematically describe [ 28, 37] the process of pattern formation of Escherichia
coli found by Budrene and Berg [ 7, 8]. Asa practical application of Ros-SSP3,2 method,

we solve numerically the chemotaxis model presented in [28],

0
a—l: = aAu — uV - (uVy(p)) + f(u) . inQ x (0,00), (2.1.1a)
% = bAp — cp + vu, inQ x (0,00), (4.1.1b)

in which the boundary condition is of homogeneous Neumann and initial data is given.
Here Q is a two dimensional bounded domain in which the bacteria are incubated. The
unknown functions u (x, y, t) and p (x, y, t) denote the population density of the bacteria
and the concentration of chemical substance in Q at time ¢t € [0, o), respectively. The
flux of bacteria is described by the term y (uVy (p)), where y (p) denotes a sensitivity

function of chemotaxis and ¢ > o denotes a mobility rate of bacteria. a > oand b > o
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are the diffusion rates of bacteria and chemical substance, respectively. ¢ > oandv > o
are the degradation and production rates of p, respectively. The growth of the bacteria is
determined via f (u).

All parameters for numerical computation are taken as same as in [40, p. 353]. As
discussion in previous examples, the robustness of Ros-SSP3,2 method is proven via
re-creating a series of patterns by varying the chemotaxis coefficient y from small to
relatively large. This series of patterns contains honeycomb, swarm rings, continuous
stripes, and perforated stripes for small values of  as in Figure 4.1.1. When y becomes
larges the series is augmented with chaotically moving short-perforated-lines, chaoti-

cally moving dots, and stabilized isolated dots patterns shown in Figure 4.1.2.

Ex

(a) Honeycomd () Swarm rings (c) Continuous (D) Perforated stripes
stripes

FIGURE 4.1.1: Values of y for these patterns are 6.0, 7.2, 8.2, and 8.5, respectively.

(A) Chaotically mov- () Chaotically mov- (c) Stabilized dots
ing perforated lines ing dots

FIGURE 4.1.2: Values of y for these patterns are 10, 15, and 40, respectively.
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4.2 TUMOR-INDUCED ANGIOGENESIS MODEL

The tumor-induced angiogenesis model introduced by Anderson and Chaplain [1] de-
scribes the formation of blood vessel from a pre-vasculature during the growth of solid
tumors. This model consists of three variables which are the density of endothelial cells,
the concentration of tumorangiogenic factors (TAF), and the concentration of fibronectin.
Initially, TAFs secreted by a solid tumor diffuse and create a chemical gradient to neigh-
boring blood vessels. The endothelial cells lining these vessels response chemotactically
to these factors and begin to migrate towards the tumor. In the migration, the cells
have to pass through the extracellular matrix containing fibronectin. Fibronectin is also
synthesized and secreted by the endothelial cells and it stimulates the directed migra-
tion of the endothelial cells. This response of the cells to the gradient of fibronectin is
termed haptotaxis. Therefore, the movement of the endothelial cells is affected by two
elements. One is the chemotactic effect caused by TAF produced from the solid tumor
and the other is the haptotactic one caused by fibronectin on the extracellular matrixand
from the cells themselves. These processes are mathematically modeled by a diffusion-

advection equation in a two-dimensional bounded domain Q,

On
i DpAn — uV - (nVyx(c)) = vV - (aVy (f)) + &n* (1 — g) , (4.2.1a)
0
—8;: = pn — ynf, (4.2.1b)
Oc
e = —{c— nne, (4.2.1¢)

in which the boundary condition is of homogeneous Neumann and initial data is given.
The unknown function 7 (x, y, t), f(x, y, t), and ¢ (x, y, t) are the density of endothelial
cells, the concentration of fibronectin, and the concentration of TAF, respectively. This
model is modified from the continuous one proposed in [1].

The evolution equation of the endothelial cells, (4.2.1a), consists of four terms in its
right hand side. The first term is the natural diffusion of cells with a diffusion parameter
D, > o. The chemotactic migration of cell is described by the term 4V - (nVx (¢)),
where ¢ > o is a chemotaxis parameter and x (c) is a chemotaxis function. The hapto-
taxis behavior is expressed via the term vV - (nVy (f)), where v > o is a haptotaxis
parameter and V¥ (f) is a haptotaxis function. The last term in the right hand side of

(4.2.1a) is the proliferation of the endothelial cells in which k > o is a capacity for
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the cellsand § > o is a growth rate of cells. The second equation (4.2.1b) describes the
growth of fibronectin in which f > o is a production rate of fibronectin produced by
the endothelial cells and y > o is an uptake parameter illustrate the uptake and binding
of fibronectin to the endothelial cells as they grow towards to the solid tumor. The last
equation (4-2-1c) describes the evolution of TAF consisting of the natural decay with a
rate { > o and some uptake by cells by a rate > o.

The method Ros-SSP3,2 is used to solved the model equation (4.2.1) with all fixed

parameters
D,, = o0.0003s, Y = 0.4, 5= 0.1, K = 1.0, ﬂ = 0.0§, ¥ = 0.1, {z 0.0§, 11 = 0.1,

except the haptotaxis one, v. The chemotaxis and haptotaxis functions are both chosen

as linear ones,
x(6) = cand v (f) = £

The initial profile is given in the domain Q = [o0,1] x [0, 1] as

exp (_o::ox) cos (671)’) 1f%:r—l SIS 21(11—3, k=o0,2,4,
h (x,y, o) =
o otherwise,
xl
f(x,9,0) = o.75exp <— 0.45> ,
1 ifr < ou,
c(x,y,0) =

(11 —r)*  otherwise,

withr = /(% — 1)*> + (y — 0.5)*. The spatial discretization is the same as for the above
example with element size 275 and local approximation polynomials are of second de-
gree. The RosSSP3,2 is employed for temporal integration.

At first, we consider the case of no haptotaxis, i.e.,, v = o. Under the effect of chemo-
taxis phenomena only, the endothelial cells migrates quickly and directly through the
extracellular matrix to the solid tumor by ¢ = 2.5 as shown in Figure 4.2.1.

Ifthe haptotaxis effect is included by setting v = 0.25, the movement of cells changes
as in Figure 4.2.2. It can be seen that the migration of cells toward the solid tumor is

slower than the case without haptotaxis. The aggregation of cells under the effect of
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(aA)t=1.0 (B)t=2.0 (€ t=12.

FIGURE 4.2.1: Numerical simulation of the evolution of the endothelial cell density without hapto-
taxis effect. The color graduation is proportional to the cell density, white is high density and black
low density.

fibronectin can be observed clearly as the forming clusters at t = 3.0. After that, these
clusters merge together to form one cluster with high density of endothelial cells (t =

4.5). And this cluster migrates slowly to the solid tumorat t = s.s.

(A)t=1.0 (B)t=3.0 @) t=33

FIGURE 4.2.2: Numerical simulation of the evolution of the endothelial cell density with haptotaxis
effect. The color graduation is proportional to the cell density, white is high density and black low
density.
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