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This thesis is intended to present a full discretization process to solving numerically

advection-diffrrsion-reaction (ADR) equations and to showhowto applyto various prac-

tical models. Our approach for discretization for ADR equations bases on method-of-

lnes (MOLs) which consists of two phases, spatial and temporal discretizations. The

first phase is to discretize space variables and its result is a system ofordinary differen-

tial equations (ODEs). This system is numerically integrated in time rariables afterward

in the second phase of discretization process. Here we employ discontinuous Galerkin

(DG) methods in the former and Rosenbrock strong stability-preserving ones in the

latter phase.

The DG methods are able to be considered as an extension of classical finite element

(FE) methods. The idea of FE methods in general and DG methods in particular is to di-

vide computational domain into small pieces called elements and then to approximate

the exact solution on each element by easy-to-compute functions (e.g. polynomials,

wavelets). The main difference between theses two kind of methods is that the numeri-

cal solutions using the DG methods are allowed to be discontinuous element-to-element

while they are required to be continuous on the whole domain if the classical FE meth-

ods is in used. Such discontinuities offermore degree offreedoms (OOfs) and therefore

allow us more flexibility to design different discretization schemes for different terms in

ADR equations. The main difficulty of using discontinuous functions in DG methods is

how to transfer information such as fluxes in between elements. This task is quite triv-

ial in classical FE methods because the numerical solution is continuous and hence the

information is automatically shifted between elements. For DG methods, because of

discontinuity, transferring information has to be done manually by carefully designing

so-called numerical fluxes. With well-designed numerical fluxes, the DG methods are

able to attain high order of accuracy and stability as well.

The spatial phase results a huge system of ODEs consisting of three discretized terms

from advections, diffusion, and reaction. Each of these terms has completely different

properties that require special treatment in the temporal phase. The discretized term

corresponding to advection part as one will see is although non-stiffbut containing in

itself non-smooth operators. The non-stiffness and non-smoothness properties require



an explicit solver. Meanwhile, the discretized term associated with diffirsion and reaction

parts is smooth but very stiff. These facts mean that our solver must be explicit with the

discretized advection term and be implicit with the rest while it should be stable enough

to preserve the positivity of our problems and fast enough to be realistically applicable.

This thesis is divided into four chapters. The first chapter introduces ADR equations

and several models that lead to such kinds of mathematical equations. It also mentions

several numerical solvers dealing with such kind ofproblems so far and our motivation to

propose a whole new discretization procedure for ADR equations. The second chapter

is concerned with the spatial discretization. Several numerical fluxes for advection and

diffusion equations are investigated in this chapter. The most suitable ones are chosen

to put together and fulfill the first phase of our procedure. The third phase is completed

in the third chapter. A new class of temporal integration methods with respect to special

properties of the semi-discretized system obtained in the previous chapter is proposed.

Numerical results of the new discretization procedure are given in the last chapter. By

these results, the strength and shortcomings regarding eficiency, accurac, and robust-

ness of our methods are given.
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Introdudion

The aim of this thesis is the development of full discretization procedure for advection-

diffusion-reaction (ADR) equations. Difficulties in solving ADR equations are order

of accuracy, stability, computer memory storage, computational speed, and robustness.

This thesis is concerned with methods developed to prevail over these challenges.

Morrverron

ADR equations are used to describe various important problems in physics, chemistry,

biology, and engineering such as physicochemical hydrodynamical models [3 r ], adsor-

bate induced phase transition model lz3], and angiogenesis models Ir]. Numerical

solver for such kind of partial differential equations (nles) are usually based on an ap-

proach known as the method of lines (MOL) . For a given evolution PDE, the MOL

involves first discretizing in spatial variables resulting in a system ofordinary differen-

tial equations (ODES) called semi-discretized system. This system is then solved using

a numerical ODE integration method.

For the first phase of MOL, there are several spatial discretization methods includ-



ing finite difference [3 5], finite volume lz7), and finite element Ir6] methods. None of

them is perfect. Finite difference methods (FDMs) are fast, high order of accuracy, and

having deeply theoretical understanding. But they are inflexible with respect of bound-

ary conditions and computational domain. For FDMs, imposing boundary conditions

is not trivial task and sometimes too simple treatment with boundary conditions heavily

damages numerical solutions. Finite volumes methods are robust but dificult to achieve

high order on general grid due to extended stencils. Finite element methods are geomet-

rically flexible and high order of accuracy but not well suited for problems with direction,

e.g. advection-dominated ADR equations. Recently, a new class of spatial discretization

methods called discontinuous Galerkin (DG) method.s [zz] is being developed. These

methods base on classical finite element ones but theyallowapproximate solutions to be

discontinuous between elements. Such discontinuities make them appropriate to prob-

lems with direction. Moreover these methods inherit all advantages of classical finite

element methods such as high order of accuracy and geometrical flexibility. In this the-

sis, the DG methods are employed for spatial discretization phase. Many aspects of the

DG methods are investigated and guidelines to choose suitable DG methods are given.

Derived from spatial discretization phase, the semi-discretized system of ODEs con-

sist of three terms of which properties are completely different. The terms correspond-

ing to diffusion and reaction parts are smooth operators but stiff. Their stiffness requires

implicit methods for solving. The explicit methods in this phase are simply unpractical

because if they are used, time step size must be very small to ensure stability of numerical

solution and it makes computational cost unacceptable. The term obtained from advec-

tion part contains in itself non-smooth operators such as fluxlimiter, max, min functions.

Non-stiffness ofthis discretized operator is fit for explicit temporal integration methods.

Moreover the explicit methods are physically well-suited because speed of transporting

information caused byadvection operator is just finite. We propose in this thesis a whole

new class of methods that comprise implicit methods for discretized diftrsion reaction

terms and explicit ones for discretized advection terms. More careful treatments with

discretized advection terms are also offered in order to preserve positivity of numerical

solutions.



1.2 Ourr,rNE,

The remainder of this thesis is separated into three chapters. Full discretization proce-

dure forADRequations is given in Chapters z and 3. Some numerical results ofpractical

models are provided in Chapter 4.

Chapter z deals with the spatial discretization phase. It introduces several DG meth-

ods for advection and diffusion-reaction terms. These methods are carefully analyzed in

many aspects in order to give out a guideline for choosing DG methods to fit individual

problems with specific demands.

Chapter 3 introduces a new temporal integrations methods called Rosenbrock ex-

plicit Runge Kutta methods and their variants called Rosenbrock strong-stability pre-

serving methods. These methods are implicit for discretized difrrsion-reaction terms

and explicit for discretized advection one.

Chapter 4 demonstrates the full discretization process established in previous chap-

ters via numerical results of two practical models. One model concerns evolution of

bacteria and the other describes development of tumor-induced blood vessels.



Spatial discretization using discontinuous

Galerkin methods

Spatial discretization is the first phase of the method of lines for solving PDEs. Among

many spatially discretizing methods such as finite difference, finite volume, and finite

element methods, discontinuous Galerkin (DG) methods using high order approxi-

mation have become an attractive one for the solutions of advection-diffusion-reaction

equations. In this chapter we investigate the DG methods applying to the hyperbolic

and parabolic problems.

2.L TnB coNsnRvATroN LAws

Proposed by Chavent and Salzano Iro] and then developed by several authors 19, ,r-
r+], DG methods at first was aimed as a high resolution solver for hlryerbolic equations.

We consider the initial-boundary value problem associated with the hyperbolic con-

servation law

* div/(u) : e in (o. T) x 0. (z.r.ra)
伽

一併



whereO C IRd, u : (il,, ...,u^)r,and.fsatisfiesthatanyrealcombinationofJacobian

matrices
dat
f g,3
-1:, 

'ou

has z real eigenvalues and a complete set of eigenvectors. The initial value and boundary

condition are given as

ulo,x): uo in,C),

u(t,x) - Tin(o, T) x 0O,

夕。∈ L°
°
(Ω ),

γ∈L∞ ((o,T)× ∂Ω).

(2.r. rb)

(2. r. r c)

The simplest example for this t14re of equations is a linear advection equation

∂
“
   ∂

“
房

+α
扇

=°
'

α>o.

This equation models the advection of a tracer along with the fluid. The general solution

of this equation is very easy to determine. Any smooth function of the form u (x, t) :
uo (x - af) satisfies the above linear advection equation.

z.L.r SsMr-orscRETrzED SYSTEM

To spatially discretize the (2. r. r ), we proceed through the following phases:

i. Define a space of test functions in which the exact solution of (z.r.r) is approxi-

mated;

ii. Rewrite the original problem (z.r.r) as a finite dimensional version. It results a

system of ordinarydifferential equations (Onfs) forwhich theintegrationmeth-

ods are introduced in the next chapter.

First, we introduce a space of test functions. The domain O is approximated by nE

non-overlapping elements Dk. This division is called the triangulation of O and denoted

byTy. The space of test functions is defined as

vv : {v6 e L' (a) lul,lpt e po (Do) ,vDk e Tt} ,
l" r.\

where Po (Oo) U the space ofpolynomial functions of degree at mostp ) r onDk. Note

that the space V1 is abroken one, i. e. a test functionvT e V1, is not required to be



continuous at the boundary of a local element Dk € fr,. It means that the approximate

solution uy of u on V1 possesses more degree of freedoms (DOFs) on boundary of each

local element Dk in compare to classical finite element methods in which test functions

are continuous between local elements. These extraDOFs allowDG methods to capture

correctly wave propagations in the hyperbolic problem (2. r. r ). This is the major advan-

tage of the DG methods over classical finite element methods. It is easy to see that the

drawback of this approach cause that DG methods consume more computer memory to

store the additional DOFs than that of classical finite element methods do.

To obtain approximate solution uy of (z;'.r), the DG methods employthe Galerkint

idea that is projecting the problem onto the finite dimensional test function space V1r. To

do that we multiply (z.r.ra) by rt € Vy,, integrate over Dt € T1r, andreplace the exact

solution u byits approximationul, € V1r:

divJ @1, (t. x)) vy (x) dx : o. Yv1, € Vy,YDk e Tt .

Integrating byparts formally, we obtain

“ヵ←,→ νぁlXl激 +Σ /(“み(ち χ))・ π
l∂D:ツカ(χ )′「

'Yv6 (x) dx : o, YvyQVl,,YDk e Tr",

hャlhch∂Dζ おan edge ofぬ e bounda7 of dement Dた ,司∂畔おthe outurd untt nor

mal vectOr ofthe element Dλ to the edge∂ D:.It should notice that because ofthe lack

continuity ofthe local solution and the test functions,the quantity∫
(′ぁ(`,χ))|∂ D`iS

multやly denned.■ erefOre、
～
e need to choose■vhich solution or combination ofsolu‐

●ons k reasonaЫ e.■おchOteis knom as κ
““`″

ε湖ルχ and denoted by/(れ ).No巧

let us denne problelns ofinding the numericalsolution′ ヵ.

Dennition 2.■ .■ .動
`Sι

解,イ′scrι
`′

z`′ ッs``解
`ο

rr`Ψο
“
′

`κ

g"力
``ο

″scrック
`′

ο
“

:α″(2.1.1)

なglν
`η

 αs:F′
"′
夕み∈Ls′ cカ ルα

`ル

rα ::`ιs`ル
"`“

ο″Sνみ∈Lα
"グ
ル′αll gル解

`“
:Dた ∈π′

√
ち

＋χ
′

χχ′
ｆ
ん

′

一″

Ｄ

√

ノ
∂

ｆ
ち

′

一洗

が
　
０

∈

　

　

‘

Ｄ
　
　
　
カ

∂

　

　

′
／√

ん一



we haue

uh (t. x) vy Q) dx -t /(“た(ち χ))・ π
l∂D:ν方(χ )d「

兎たズ%回Ⅳ40歳=%同
147カι

“
働

`κ“
解ιr′εα:ノ

“
χ/1Sル

``r“

″
`′

:α

`ι`

Henc%onlything lei to■ 1■1lthe semi― discretized system(2.1.3)iStO determinethe

numerical nuxメ

2.1.2  NuMERICAL FLUX

Before specifying numerical nuxェ we g市 e out some notations.For each Pair element―

edge(Dた ,∂D:),there is a corresPondingPair(Dl,∂ D:)in lVhiCh two elements Dた ,Dえ

are attacent Ones shadng the common edge∂ D`≡ ∂Dζ o We canwrtte exPhC■ ly t“

arguments thatthe numerical lux∫ denned on edge∂ Dζ depends on

Йげア←洲Ⅲ%隔J・

For simplicity, we restrict ourselves in this section to consider the scalar case of ( z. r . r ),

i.e.m:t
The numerical fluxf is chosen such that our schemes are alike monotone schemes

because monotone schemes which although only first order of accuracy are very sta-

ble and converge to the entropy solution. More precisely, we want that in the case that

the approximate solutions a1 are element-wise constant function, i.". p - o, our semi-

discretization gives a monotone scheme. Therefore, numerical fluxJmust satisfy follow-

ing conditions:

i. fislocallyLipschitzcontinuousandconsistentwiththe fluxf,i.e.,'j@,r) : Jfu);

i. 7 ( ,.) is a non-decreasing function of its first argument and. a non-increasing func-

tion of its second argument.

There are some examples of numerical fluxes satisfying the above requirements in one

dimensional case.
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. Godunovflux:

∫(α ,あ )
(z.t.aa)

. Local Lax-Friedrichs flux (also known as Rusanov flux):

λらの=:陶 +ズの+Cu。 明 (z.t.ac)

with
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I(a.b): [min {o,b} ,max{a, b}] ;

/(a,b) 『 (α)+∫(b)+CLF(a― b)], (z.r.ad)
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. Local Lax-Friedrichs flux:

7@,u) : ! 
lf @) +Je) + ctLFi(a- b)] , (z.r.5b)' 2v.-

with

CILF - max ln f lu€I(a.b)' - 
'

2.r.3 Wsar FoRMULATToN

After choosing a right numerical flux, the integral on Dk and the path one on 0D! in

( r.t .f ) have to be approximated by quadrature rules as follows

.nP/ s / / '-\\ / '\
l_,tt,n (t.*)) ' vvr"k) dx x,)),,f 

luo (t "tf ) ) 
-r,o (t,f) lr*t . (z.r.6a)

J ok j:t

LJfuu (t.*)) ' ilanlvn (x)dr
J aDl

nN

I 0? (u, (,.*t.)) . il,:,,,^ (xf ,) lao! | . (2.,.6b)
l-t

H""' {';' "f },,.....* is quadrature rule on element Dk and {'' "!, },,.....,N 
i' quadra-

ture rule on edge DDf . Finally we arrive at the last expression of the semi-discretized
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We call (".r.2) weak formulation corresponding to (z.r.r). These equations can be

rewritten in ordinary differential equation form as

quL

E 
: Ln\un)'

where L1 : V6 ) Vp andfor a7lv6 e V6,

dt' , I
dt Jnu"'a* 

: 
Jnt'fu1') 

vtdx'

The operator Ln (un) canbe seen as a discretized approximation of div/(u) togetherwith

boundary conditions. The following theorem I r r ] gives an estimation of the quality of

this approximation.

Theorem zt.r. Letf (u) € W+''c. (A). Let the quadrature rule over the edges be exact

for polynomiak oJ degree zp * r, and let the one over the element be exact Jor polynomials oJ

degree zp. Assume that the triangulation T7 is regular, i.e., that there is a constant o such that

U > o, ynk e Tr",
pok

where hor, is the diameter of Dk, and p or, is the diameter of the biggest ball included in Dk.

Then,

lltn(") + divf (u)llr-(o) < chp+'ll(u)l,an+",-1oy .



2.r.4 NuvrEnrc,u ExAMPLES

LtNsan A.nvEcrroN PRoBLEM

The very first problem we use to test the DG methods is the simple linear wave equation

0u 0u

**zn*=o. 
x€lo.zzrl .

with the initial value u (x, o) : sin (x) and the boundary condition is given the left end

of the interval u (o, f) : - sin (ztrt). I-1-is easyto see that the exact solution is

u (x, t) : sin (x - ztrt) .

The linear advection is spatially discretized with several element sizes

The degree of approximate polynomial on local elements is taken from r to 3. Numerical

flux is chosen as

2T r _ +r l-4 _/ f \
27tu1, : ; \uU + rn ) + 

-zTn 
\un - ut ).

in which u- , ul are respectively internal and external values of u6, i is outward normal

vector in one dimensional case. Parameter a varies from o to r in which if a : o the

numerical flux is of upwind and if A : I the numerical flux is the central one. The

upwind numerical flux is chosen for numerical computation.

The numerical results given in Table z. r. r practically confirm the order of approxima-

tion by DG methods which is p * r if the degree of approximate polynomial is at most

n

ヽ
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Й

P:T
L- error Order

P:Z
Lr error Order

p:3
LF error Order

"tt 
/ "o

"n/.t
zrf.r

zr/.2

o.0243

o.oo63 1.9578

o.oo16 1.g8or

o.ooo4 r.99o4

o.ggr2 x ro 3

0.1256xro 3 z.g8oz
o.or58 X ro-3 z.ggiz
o.oo2o x ro-3 2.99s9

o.2783 x 1o-4

o.or76 X 10-4 3.98r4
o.oo11 x 1o-4 3.gg53

o.oool x lo-4 3.gg87

Tl.sr,r z.r.r: Errors and accurate orders ofthe numerical solution att : r.o.

Buncpns' EquATroN

The second example is inviscid Burgers' equation with periodic boundary condition

0u r )uz
Ar+; U=;: o, r € [o,r],f € [o,o.o5] ,

with the smooth initial value

11
u(o,x) : I * -- sin(r (zx - r)) .

The element sizes for spatial discretization are

h e {z-a , z-s , z-6 ,2-7 }

and the degrees of local approximate polynomials varies from r to 3. Because the flux

function is nonlinear, we choose the numerical fluxas local Lax-Friedrichs one (z.r.4c).

In Table z:r.z the approximation of DG methods for the nonlinear problem are proved

via linear, quadratic, and cubic elements.

Й

P:T
Lt error Order

P:Z
Lt error Order

p:3
Lt error Order

^5

z-

o.oL47

o. oo45 r.7o6r

o.oor4 r.6472

o.ooo5 t.6zz9

o.g3g7 x ro-3
o.r8r3 x ro-3 2.3734

o.o34o x ro-3 2.4133

o.oo6r x ro-3 2.4739

o.582g X 1o -

o.o532 x ro-4 3.4s4r
o.oo4z x ro-a :.6+88
o.ooo3 x ro-4 3.6o28

Tr'ntn z.t.z.: Estimated errors and accurate ordersJor solvinginviscid Burgers' equation.



Mexwur,'s EquATroNS

The last numerical demonstration in this section is the two dimensional Maxwell's equa-

tions. Its normalized s)rstem of equations on domain O : [-t, r]' is of the form

∂■F    ∂EZ

∂`~ り '

∂iry   ∂EZ

∂ι
~∂

χ '

∂EZ  ∂LP  aF
∂
`    

∂χ    ∂ノ '

with initial values

ff (o, x, !) : rl (o, x, /) : o and E' (o, x, y) : sin (zx) sin (try) .

And the boundary condition is Ez : o on EO. The exact solution is given as

I{ (t, x, y) : -} ritt (zx) cos (21,) sin (Ji"t1 ,

v2
Il (t, x, /) : 6cos 

(zrx) sin (zy) sin (t/irt) ,

E (t, x,/) : si.t (zr) sin (zy) cos (r6"t) .

We triangulate the domain O by unstructured triangles in which sizes of triangle are in

the range

h e {z-t,z-3,2-a,z s} 
.

The degrees of approximate polynomial are the same as the two above examples and

numerical fluxes are of upwind t1rye. Observing the results shown in Table 2. r.3, we see

that the scheme possesses optimal convergence rate, i.e. 0 (nn+t1 .

z.z PenesoLrc EquATroNS

In this section we extend DG methods from first order spatial derivatives cases to higher

order spatial problems. The idea employing the DG methods for the problems with

higher spatial derivatives is rewriting the high spatial derivative as a system of first order

equations and then discretize this system. For example, if we need to solve a problem in



カ

P:T
Lt error Order

P:Z
Lt enor Order

p:3
L'error Order

2-

^ -3

^-4
25

r.06[ X ro -

z.z7os x ro-" z.zsrs

5.3955 x ro-3 z.o73r
r.3r5o x ro-3 2.o367

r.4oEE X ro -

r.6785 x ro-3 3.o692
z.o89zxro a 3.oo6z
z.6o3s x ro-s 3.oo++

^ -11.2076 Y 10 -

8.258r x ro-s 3.87c4

4,gLz4 x ro-u +.o7r3
3.037+ xro 7 4.o156

Tanr-r z. r.3: Estimated errors and accurate orders for soluing normalized. Maxwell's equations at

one dimensional case

*:,?, d)o,Llt dx'

subject to suitable boundary conditions, we applyDG methods to the equivalent system

of first order spatial differential equations

The major disadvantage of discretizing parabolic equations in this manner is to increase

the size of the problems and therefore more computational cost. But on the other side,

this approach gives us accurate approximation of derivatives used in another parts of

ADR equations and provide an unified spatial discretization for ADR equations.

z.z.r Srur-orscxrrrzED sYSTEM

For the sdke of simplicity we restrict ourselves to the model problem

〓

伽

一併
鈎
甥
伽
房

On

On

一二

一　
　
〓

伽

一ａ
　
“

伽

一侃

qLu)

8n

8rv

d) o, in .(), (z.z.ra)

(2.2. rb)

(2.2.rc)

0on,

doN,

where O is a bounded domain in lR.d with bound ary 0A :
unit normal vector to the boundary of O. As mentioned

dOpUOO1r, n'ls the outward

above, to apply DG methods



we rewrite the problem (z.z.r) as a first order system of equations

Next, broken spaces Vp and )1 associated with the triangulation fr are introduced:

our
-=- : AV 'q
dt

4: Vu

u: 8D

q'i: gN

in O.

in O,

on doo,

on Oorv.

(z.z.za)

(z.z.zb)

(z.z.zc)

(z.z.zd)

(2.2.3)

(2.2.4)

(z.z.5a)

(z.z.5b)

一一　
　
〓

Ｌ

　

Ｌ

{r^ e r'(o) luilr* e eo (nk) ,YDk e Tr"} ,

{ru . [t'(o)]' lv1,lpr, € loo (oo)]' ,vok e Tn] .

チノ} 
″力νカメχ==一αノlた 9カ

・Vν力′χ―+α ノ:D々 aあ
・πνみ′「,

ブLた
9ヵ
・σЙ′χ==―

IDた “力(▽・σヵ)′χ―+ノ
:Dた

2カ″・σヵメ「.

Following the discretization process for advection equations, the DG formulations

forthe (z.z.z) are of the form: Find u6 € Vyandqy e X1 suchthatforall elements

Dk e Tt , for all test functions ut € Vt and ay € )1, we have

Here,the numerical nuxes 9み and“みare approximations to 9ヵ and“ヵon boundary of

element Dた .They are deined in the next section to complete the I)G formulation.For

eXPreSSing aみ solelyOn“ ぁ,1″eprefertoforinallytakeintegrationbyparts.■ hen′ equation

(2.2.sb)be∞ mes:

五 た7励 =五
た
Lr赫 +ふ Oの 礼 へ 味 聯 麟 →

Equation(2.2.sC)is gOing to be used to create the sO called Primal fOrmulation in the

next section.

2.2.2 THE PRIMAL FORMULAT10N

In this section,weintroduce anotherform of(2.2.5)Called′ r′解α:/o′綱ノα″ο″.In order

to do that,we require some additiOnal notations.FOr each element― edge pair{Dた ,∂D`}



with∂D,¢ ∂Ω′thereお a coresPonang Pa士
{Dえ

,∂D:}h wlliCh two dements Dた

and Dた are adjacent via the edge∂ D:≡ ∂D:.We denote that the value Of′ ヵand 9ヵ

on edges∂D,and∂Dζ are respect市ely′
,,″ 9,,e and“

',″

9,,″ Similan"the outmrd

unit normal vectors to∂ D:and∂D:are denotedrespectivelybytt and礎 .Using these

nota●ontt r deine average and“ mphg Operators atthe hteHor edge∂ D:≡ ∂D:as

follo、vs

{′Й》=′
券
'C+“

券,0,
2

I“み]=“夕,e考 +′
,,τ考,

^k t^iqh,e T 
'1h,2

2

91,c・ 考+9夕、こ・考・

llaヵ ll=

llaヵ ] =

Notice that the jump [u1] of the scalar quantity u1 is a vector parallel to the normal, and

the jump fqrl of the vector quantity q, is scalar. These operators is going to be used in

definitions of numerical fluxes shown later.

With these notations we can set up formulation of DG methods over the whole do-

main O. Summing up (2.2.5) over all elements Dk of the triangulation Tt ,wehave: for

allvy e Vy andfor all o6 € Zy,

規

ル

Ｔ

ｆ
′
力

〓
↓
“″

Ｄ

√

ノ
∂

ｎＥ

Ｆ

ん

』

′たνЙ激=―α
lQ9ヵ

・▽Йツヵaκ .α

魯 /Lた
だ・

.た
νみ′「 ,

σ力激 =兎 ▽力
“
力・σЙ′χ+書

I聴
(2“ 力)″・σヵ′L

(z.z.6a)

(z.z.6b)

where V1u1 and V1 . dh are element-wise operators defined as follows

V 6vyl7r,, - Yun, V7'a7lp,,:Y'ah.

To simplify sums over boundary of elements DK, we employ the jump and average oper-

ators with the help of the following lemma.

Lemma z.z.r. For an! wh € V6 and rh e 2n, wehave

・τヵ′
「 (I″ヵ]・ ffτЙ》+{″み}Iτみ])′「 + ″ヵ″・τみ′

「
,

(2.2.7)

IΩ

16



where
nE

oTuo = [J aoft 1ao.

ProoJ. Wehave

石Iノ「
F ttF=西∂属メふ∈∂メ

げrπ′L

For each hternd edge∂ D夕,thereぉ 。nけ one attacent edge∂ D,suchぬ at t“ dement

Dた are Dた are adjacent via edge∂ D,and∂D:.The sum overthese edgeis

ノ:Dを
″力τ力・″′「

~+ノ

:D:″
力τ力・“

′Γ

=ノ
:D`∪∂D:(″夕;gτ夕,`・

F務
,θ

+″
i,こ
τ

;,こ
・Й務,こ )′「・

The integrand Ofthe right hand side integralis rew、 itten as

″夕
,θ

τ夕ic・ 硫,c十 ″

',こ

τ券
,こ

・硫,こ

=:硫Fじ`+け考+:け
`十
琥う考ご考

十
:磁凛 ご+け 考 +:け

`十 凋 存 考

―
:硫競ご礎―

:琥灘〆礎

:続〆考―
:硫露ご考

=I″ヵ]・ ffτみ〕十〔″Й}[τた]・

■r last equanty is obtahed by nouchg that考 =一考.         □

Nott we present 9ヵ sOlely depending on“ ヵ.Applying(2.2.7)tO(2.2.6b),we have

lQ9み
。σ力激 =IQVみ

“
Й・σヵメχ

+/:π (レ〕み―
“
″]・ {σヵ》+〔

'ぁ

―夕ヵ}IσЙ])′「    (2.2.8)

+IΩ ('た 一
“
み)π・σた′

「
.

17



for all σ″∈Σた,resped市 ely(2.2.9)Can be rewritten as

9み =▽ヵ′ヵ― r(レぁ― ,ヵ])一 :({2-′み》)一 rD(2~“ み).  (2.2.10)

Bringing this exPression of 9ヵ into(2.2.6a)after applying(2.2.7)fOr thiS formula′ 、、e

inaHy arrive at the priinal fOrmulation ofI)G methods

Dening h丘hg Operators r:卜 2(∂
η)]′

→Σゎ::L2(∂η)

L2(∂ΩD)→ Σ力by

l"'n, ' a1,dx : - Iurrr 
' {o1,} dr 

'

lr, ro' cpdx : - Iurrw [o7l dr,

ln o(r) 'a1,dx: - lun"wi' 
adr,

;:ノ(:′
みνみ′χ==α Aヵ

(“ヵ,νヵ),  ∀νヵ∈ルiた ,

At (ut , v1,) :: - l r uuu .Y nut,dx
Jr>

+ [ ({{ar}} .[,nn - Wn - unn. {{vnv1,}) dr
J aTh"

f- I ({an - u1,} [Y1,v1,\ - [a] {v1,\) dr
JaT; ."

ft+ | Qn 
. mvr,dr - | k, - u^) i .V 1,v1,df .

J aa -" Jao, '

The proposition below gives us the consistency of primal formulation.

) Zr' and 16 :

(2.2.9)

(z.z.r)

(z.z.tza)

Proposition z.zt. If the numerical flurces are consistent, then the primal formulation is

also consistent.

It means that if a is exact solution of (z.z.r) and

iy(u): u, in@):Yr, on0Tr.,



then
df
i Jn"'o*: A6(u'v6), YvY €v6'

ProoJ. Srnce u is an exact solution of (z.z.t), on all interior edges of triangulationTywe

have

{{ErO}} : vr, Wn (u) - un : o, Wr,(r)] : o, {ir, (u) - rz}} : e.

Therefore

frAtfu.vn):- IYu'Vv6dx+ | Vu.[v1,ldf
J a 16Tno

+ [ Vu.iu1,dr+ [ g*v1,dr.
Jaao Jao" ""

By integration by parts and using the formula (r.".2),we have for any vy € Vy

I vr.vyvydx : - [ L,uvydx* i i i. yuundr
Ja Ja TJnkrc:t

: -: ! [ *ra.* [ ({y,}} . [,nn + [vui {{u1}}) dr
uqLJa JATh.

f+ I Yu.ivfit
JAA

rd f f=-:;l uvndx+ | Yu.ffuy\dr
uul Ja JAT,f

ff* 
Jun,Y 

u ' iv6df * 
Jun^g*v1,dl 

.

Then,
dt
i Jn*^o* - aAr' (u'un) '

n

Recalling that the numerical fluxes are a single-valued function on each edge of }Ty
and utilizing the property ofjump operator which vanishes for single-valued inter-element



fluxes, the primal form (z.z.tza) is reduced to

r
Anfun.rn): - I Ynur.Yyvydx

Ja
r

+ I ([rn] . {Yrrr}} - {nn - uh\ fiVrrrn +Qn.[v1,]) dr
J AT;

tf- I (An - un) i .Y 1,vp,dl + | Qn 
. iv1,df .

Jaa^ Jaa-"
(z.z.nb)

2.2.3 NuMsarcat, FLUXES FoR pARABoLrc rRoBLEMS

In this part we introduce four numerical fluxes and their formulations in primal form.

These numerical fluxes are based on jumping, [.], and average, {.h operators intro-

duced before.

CSNTRAL METHoD

The problem (z.z.r) is symmetric, i.e., there is no preferred direction of propagation,

then it is natural to consider the central flux [6]:

i1, : {u1,} . Qn: {{qr}} . on7Tr,. (z.z.r3a)

ih: gn, Qt : et", on df)p, (z.z.r3b)

ih: uh, Qtr: gNi, on dOAr. (z.z.4c)

These numerical fluxes give

and

{{An - ur,b : o, hr] : o,

Qr., 
: Y r,un+ r([u1]) - rn (So - un) .



Summands of Ag (u1r, vy) are computed as follows.

ff
I qr.[v1,\dr: - I (Vn"r+ r([ull) - ro (go- uh)) .r([v1,lldx

JAT," JA
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ノ
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ん
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ｆ

ノ
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〓
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Ω

√

ノ
∂

: - I"(vrur+ 
r([u1]) - r, (so - ru))' rp (vv) dx

+IΩ
NgN″

ν力′
「

・

The primal formulation using the centrallnethod is ofthe forin

チ 1鼎
ル =司 耐

臨 哺 =く 朗
載

臨 の 十 け
就
0,い a

ln lvhich

f
1,""" (un.vn): - Jnrn"u'V1,v1,dx

f
- JnNn"n 

' r ([unn) + r ([u1]) 'Ytun) d*
(z.z.rab)

- [ (O rru . ro (vr,) * rp (u1,) .V 1,v1,) dx
Ja

- [ V([rn]) + ,nfur,))'(r([r,,]) :-_r11(v7))dx,
Ja



and

宙 tll

I
Q"'(ur,,r,,): - | sri'(Ynrn + r([u1]) *rp(v1,)) df

J )An
r

+ | grv1,dl.
J al;,*

on dop,

on 0O^r.

g*ufif '

(z.z.t4c)

(z.z.t5a)

(2.2. r 5b)

(z.z.r5c)

(z.z.fta)

INrBnron PENALTY (IP) rrmrnon

The second choice for numerical fluxes is interior penalty method Iz] devised in the late

r97os. Numerical fluxes of IP method are given as

i1, : {uy} , in: {Ynun}} - U["nn, on}T1,o,

Here, p is the penaltyparameter defined on each edge of element D'. The primal formu-

lation for IP method is obtained in the similar manner of the central method which is

“
Й=gD'

“
た =′た,

Bi'Qr,vr,): -

λ=▽Й′み―″“
ヵ考,

9カ =gN″

二1りみ激=司歌%の =バ瑚Ч%→ +αЧ硼

“

¨
つ
け

¨
軌̈

¨
¨
¨

か
肝
静

Y 1,vp) dx

and

(z.z.fib)

(z.z.ftc)cI'Qil: - Iun" ＮΩ

√

ノ
∂

十Γ′ツ▽あ



LocerDG (LDG) METHoD

The third numerical fluxes is local DG method Ir5] in which the fluxes ?1 and Q', on

interior edges are given by

i1, : {u1,}} - C,, .ffutn , Qr: {{qn}} - c,, fiqn + c- [qn] . (z.z.rza)

On the boundary edges, they are defined as

ih: En, in: 4t - C,, (u - gr) i, on dOp, (z.zt7b)

ih : uh, it": gNi, on Oory. (z.z.ryc)

Here, C' is a positive constant and C' is a vector which is determined for each interior

edge.

The primal form for LDG methods is

df
; I uyvydt : oAh'" (ut ,rr,) : o (Sho" (ur,,rt,) + Cho" (rr)) . (z.z.fia)
dt Ja

Here, the operators BrLDc and CL1.,DG are given by

f
Biu" (un,ro) - I (Vnun + r([a1]) + l(C,,. [rr,n) * rp(u7))

J{,

'(Vnrn + r([u1l) + l(c,, ' firnn) i rp(v6)) dx (z.z.r8b)

t c,, firrn .nrnnar - [ C,,u1v1,dr.

and 

LoTf Joan

Cl,'" lr^) : - [ goi.(V1.,v1,+ r([u1l) + t(C,". [rrn) i rp(u1,)) dr
J aao

+ [ c,,gor1,dr+ [ g*v1,dr.
J aao J aatt 

(2.2. r gc)
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ルvith

(z.z.ryd)
χ =|み

 :IIil軍 i.

Instead ofusing 9ヵ in the numerical nuxes,cDG introduces a newquantity9i whiCh

can be seen as a reinement of aヵ On each edge ι ofそ )7み . To express ai in terms of“ み

、ve require rnore notations caned edge_wise hfting operators.For each interior edge`∈

∂Z°′〆:[L2(`)]′ → Σゎ′:L2(`)→ Σゎand for each Dirichlet boundary edge

`∈
∂ΩD,6:L2(c)→ Σみare denned as

ルに動=ル同犯州′側t味私し司

兎物励=み国へ ぼ′OⅣ%輔 しの

14mψ =ル %・認Lぼ roⅣは私 いの



Then, for each edge e of )Tn, the expressio n of qlusolely in terms of u1 is

9i=▽ぁ
“
″+〆 (レヵ])+′ (C12・ レた1)一 ら(gD~“力)・

(z.z.z)

The primal form for CDG method is

reSPeCtMtt Char,おr」 lτヵ∈卜
2

rO=Σ 〆∈み),JレЙ)
e∈∂T

(∂η )]グ
and an″Й∈L2(∂η),確 have

=Σ Fけた),ゎけヵ)=Σ うけた)・
θ∈∂η

Э
`∈

∂ΩD

(z.z.zza)

(z.z.zzc)

in■lhich

BPC(“Й,フЙ)=ニ ー
IQ▽

ヵ
“
ヵ・▽た1/ヵ a∝

一
IQ (▽

ヵ
"ヵ

・r(Iνヵ])―■′(I″ヵ])・ Vヵル)′χ

―
IQ (Vヵ

′ヵ・:((〕 12・ Iν力1)―+:(C12・
Itrヵ ])・ ▽ヵνヵ)a∝

―
IQ (Vみ

′ヵ・rD(ν力)■ rD(“力)・ ▽たνЙ)aχ            (2.2.22b)

`翌
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2.2.4 Onosr oF AccuRAcy AND srABrt,rry

Since the discretization of equation (z.z.r) is as same as the one of the conservation law

(z.t.r), the optimal order of accuracy for numerical solution uy is ftP+t in which h is the

size of triangulation mesh and p is the order of element-wise approximate pol;momials.

The stability of three in four D G methods are also established in this section. The one

of CDG method has not been theoretically proven although this method works very

well practically. For simplicity we consider only homogeneous boundary conditions,

i.e. homogeneous Dirichlet and/or homogeneous Neumann ones. From primal forms

of DG methods we have

Af;'"t (u7,u7)

AfP (u1.,,u1,)

Af;DG (uy,u;) :

For IP method, the interior penalty parameter g is chosen such that 4" < o for all uy

[3 3]. Then, for all three numerical fluxes central, IP, and LDG, we have

d [,,z
i Jnl"ul'dx 

( o'

This inequalitymeans that the numerical solution using one ofthe three numerical fluxes

are stable. We have the following result.

Proposition z.z.z. Three DG methods corresponding to central, IP, and LDG Jluxes are

stable.
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z.z.S Nutt.snlcelRESULTS

The semi-discretizing process for (2.2. r) using DG methods leads to the system of alge-

braic differential equations ofthe form

-aSu1. (z.z.za)

Flere, the matrices M and S are respectively called mass and stiffness ones. This system

normally has to be integrated implicitly because it requires unacceptably small time step

size if the explicit integration methods are involved. Although the implicit solver are

able to offer much larger time step size but it is expensive regrading computational cost

and memory storage, especially in huge systems of ODEs. Unfortunately, our system

(z.z.za) is reallyhuge. Indeed, in d dimensional case, if the domain O is partitioned into

nE elements and polynomials of degree p are used for approximation on each elements,

then the system (z.z.za) consists of nE x (P jd) equations. This number is verybig if we

compute in higher dimensional problems and in refined mesh size of the triangulation.

Therefore, we have to make an investigation through all four numerical fluxes to examine

several aspects that concern to practical performance.

Spa-n"srry PATTERNS

The first property we would like to look into is sparsity. Stiffness matrix S is giant with

its size .f (ne " (T') ) x ("E , (o;o)) but it has a lot of zero entries. The number

of zero entries in S depends on which kind of numerical flux in use. Obviously the more

zero entries matrix S has, the cheaper computational cost is.

To discussing the sparsitypattern, we assume that nodal bases are used to span spaces

Vy and Zp. For illustration purpose, we use the test domain which is made up of four

triangles as shown in Figure z.z. r. On this triangulation, the approximate polynomials is

of third degree. The total number ofDOFs is 40 corresponding to r o DOFs per element.

The sparsitypatterns of central, IR LDG, and CDG methods are shown in Figure z.z.z.

From these patterns, the CDG and IP methods are both compact in the sense that

they connect only neighboring triangles. Meanwhile the LDG and central methods are

non-compact and they give connections between some non-neighboring triangles. In

the test domain, the LDG method allows connections between some DOFs in element

〓
れ
一ル

Ｍ



Frcunr z.z.r: The test domain for investigating sparsity patterns

3 and some in element +. The central method even connects all four elements of the

test triangulation. Connections between elements are decided via stabilization terms in

primal forms of each methods. For IP and CDG methods, the stabilization terms are

respectively

l"u[*n'[u7\drθ∈∂Z°

and

r
)- | V'tlunn)+f (C"'[,nn)+fo4i]

,Jar," J n

. 1" ([rnn) + f (C,,. [rnn) + fp (v7)) dx.

Summands of these two stabilization terms are non-zero only on the common edge of

two adjacent elements and therefore there are only connections between two adjacent

elements appearing in stiffness matrix. In contrast, the stabilization terms of central and

LDG methods are respectively

Σ
鋼

レら(レみ])+■ (“ヵ)]・ r2(Iッヵ])+冶 (νヵ)]激Σ
釘

√
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nz _ 303

(,t) Central method with 8o8 non-zeros

entrtes.

(c) LDG method with 644 non-zeros

entries.

(B)IP″
`働

ο′″jЙ 688 40′ ź`″OS

`″
`″

′
`s.

nz - 604

(o) COC method with 6o4 non-zeros

entries.

Frcun-E z.z.z: Sparsity patterns oJJourkinds of numericalJluxes



and

[rθ

l(レヵ])+:θl(C12・
I′力])+rЪ (“ヵ)]

.レθ2(IνЙ])+:e2(c12・ Iν力])+6(ツヵ)]′χ・

It can be clearly seen in these terins that there are connections bet、 veen arbitrary t、 vo

elements and this fact results the non‐ cOmpactness of stifFness rnatrices of central and

LDG methOds.

Moreoveち thestabilizationtermofCDGallowsonlycOnnectionsbetweenfacialnodes

on each face Ofelementandallnodes ofadjacent elementsharingthis face.Tl■ eIP meth―

ods connects facialnodes Ofeachelementto all nodes ofits adjacent elements.■ erefore

the non― zeros entries ofS concerning to CDG method areless than thOse ofIP method.

Ⅳ[ATRIX STORAGE

In ordertO estilnate rnemory requirement for storing stiflness matrices offour methods,

1ヽC COnSidersimplex elementsin′ dimensions ha宙 ng′ +l adiaCent elements.Ifappror

irnate polynomials of degree F are in usら then the number ofI)OFs on each elementis

nP=(′方
′
)and the number ofDOFs on each face ofelementis nfP=“ 古二丁

1)・

For the(〕 I)G method′ it requires to store nP2 entries for a diagonal block and′ ―+1

ofF diagonal blocks.Each ofofF‐ diagonal blocks has nP× nfP non‐ zero entries.In total

the rnemoryto store connections ofa single interior elementis

n€Ilr6p6 : nP2 + (d + r) x nP x nf P. (z.z.z5)

The IP method also has d + r off-diagonal blocks but each of these blocks has nf P x

nP * nf P x (nP - nf P). It then results

n€t!1p: nP'* (d+l x nfP x (z x nP - nfP). (z.z.z6)

The pattern of LDG is similar to that of CDG plus some additional non-local con-

nections. The number of non-adjacent elements connections depends on the mesh and

switch. This number denoted as a is equal to zero in one dimensional domain. For higher

dimensional domain, inaverage, a x rfor d: zanda: zfor d: 3. Thetotal number

√
九
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ofnon-zeros is then

I1€IIrLp6 : nP2 + (d+ r) x nfP x nP + o'LfPz (" 
".n\

For the central method, its number of non-zeros entries is relativelybig in comparison

with other methods. The connections of central method are between not only adjacent

elements but also between elements having common vertices in two dimensional case

and having common vertices or edges in three dimensional case. This number of con-

nections denoted by p depends on mesh. If uniform simplexes are used in triangulating

domainrthenp : ofor d: r,F: t.for d: z. Thetotalnumberofnon-zeros inthis

case is

ni€msga1 : nP2 + (d+ r) x nfP x (z x nP - nfP) * pnfP' (z.z.z8)

For three dimensional case, d: 3, this number has not been determined yet.

The memoryrequirementsfor d: r,2 and p : r,... )5 areshowninTable z.z.r.

We can see that the central method consume much more memory than other methods.

The CDG method has the lowest memory requirements. In two dimensional case with

polynomials of degree p : 3, memory usage of the LDG and IP are more 77,: and 3zc/a

respectively in compare to CDG method.

Dimension - y-J
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Thnrr z.z. r: Memory requirements per simplex interior element for central, lP, LDG, and CDG
methods.



SpscrRAr RADrus

Here, we compare spectral radius of stiffness matrix generated by four D G methods. The

spectral radius is very important to determine stiffness of the semi-discretized diffusion

equations and goodness ofthe approximation ofdiscretized Laplacian operator to the

original one.

We consider the following test problem

0u

*: 
o.rL,u,

0u,

-.rlao: 
Or

on

ult:o : cos (ztrx) cos lztry)

(*,y)eocR', (z.z.z9a)

(z.z.z9b)

(z.z.zgc)

The computational domian O is a unit reactangle (o, r)' and the time interval is (o, o.r).

The exact solution is

uQc,!,f) : er.P (o.t:r-'t)u(x,y,o) (z.z.zed)

The domain O is triangulated byunstructured mesh with triangles of variable sizes which

are h € {z-t , z-t , z-4 , z-s}. The four triangulations are shown in Figure 2.2.3. On

each triangulationt mesh size, we use polynomials of degree from r to 4 to approximate

the exact solution of (z.z.z9).

V\
(")

Frcun-e

(s)h:r-r. (c)h:r-o. (o)h-z-s

z.z3: Triangulation meshes of the domain g : [o, r1'.

We have total r 6 test problems of the form (z.z.z4). Spectral radius of DG methods

are determined as the maximum of absolute value of eigenvalues of stiffness matrix S.

Sixty four spectral radius corresponding to four DG methods and r6 test problems are



Degree Method -3

4.4588e+oz
r.8oo5e+o3

9.7945e+oz

9.5 87oe+oz

3.1 2 r 3e+o3
r.2707e+o4

6.zz4ze+o3

6.z3ore+o3
8.or44e+o3

3.+8tze+o4
r.77o3e+o4

r.77o4e+04

1・974Se+04

7・4910e+o4

3・9921e+04

3・ 9921e+04

-4

r.79o8e+o3

6.46r5e+o3

+.oo72e+o3

3.9z6ze+o3
r.z3z6e*o4

+.r947e+04
z.649re+o4
2.5686e+o4

3.r 57oe+o4
r.1 3 88e+os

738o8e+o4
7.2837e+o4

7.9593e+o+
z.456re*o5
r.6468e+o5

r.6373e+os

― s

7.r 548e+o3
2.5 868e+o4

r,6oz9e*o4
r.5723e+04

4,92roe+04
r.68 r7e+o5

1.o5 79e+os
r.o2 57e+o5
r.2634e+os

4.567oe+oS
2.9+7oe+o5

2.gLzoe+o5

3. r 879e+o5

9.8498e+o5
6.5 75oe+o5
6.56+ze+os

Central

IP
′=l  LDG

CDG
Central

IP
′=2   LDG

CDG
Central

IP
′=3  LDG

CDG
Central

IP
P: 4 LDG

CDG

r.L20 te+oz

4.o8o4e+02
z.463ze*oz
2.4255e+02

7.6687e+oz
2.73ore+o3

r,66zre*o3
t.6z46e+o3
r.995 5e+o3

7.+254e+o3

+.66+7e+oz

4.6r7ze+o3
5.o4o8e+o3
r.6oo8e+o4
1 043 8e+04

1.o3 9oe+04

Tr^nt-n. z.z.z: Spectral radius oJ DG methods, scaled by (t'f )'.

shown rnTable z.z,z.

Observing spectral radius of DG methods, we realize that the semi-discretized ODEs

of the linear diffusion (z.z.zg) is very stiff. Explicit methods are unable to apply effi-

ciently to solve these ODEs because if one does those, time step size is required to be

unacceptably small to avoid spurious oscillations. It is preferred to employ A- or L- sta-

ble ODE solvers for these problems.

Table z.z.z shows that the spectral radius of LDG and CDG methods are almost the

same while IP method possesses double size of spectral radius and central method gives

5o% smaller spectral radius. It means that the IP method approximates physically the

Laplacian operator better than other ones. Eigenvalues of discretized Laplacian opera-

tors of central, IP, and LDG methods are all negative that is high agreement with the sta-

bility of these methods proved in Section 2.2.4. Although the stability of CDG methods

has not been proven theoretically yet, but CDG method also gives all negative eigenval-

ues. This fact suggests that CDG method is applicable to parabolic equations.



OnpgR. oF ACCURACY

To test the spatial order of accuracy,we semi-discretize (z.z.z9) using all four DG meth-

ods which are central, IP, LDG, and CDG. For integration in time, we use a L-stable

singly diagonal implicit Runge-Kutta method which is of five-stage, fourth-order and

denote such method as SDIRK54. The Butcher table of SDIRKs+ method is given in

Table 2.2.3. Time step size is taken to be small such that temporal error has not any re-

markable effect to the error estimation. Absolute errors and estimated order of accuracy

of fourDG methods are given in Tables z.z.4and 2.2.5, respectively.

'/ 4

'/ 4

I

,lo

'l'
Lzl so

3nf 46o
zs/ z+

zsl t+
sef +a

oooo
tlo o o o

-,1 ts tl + o o

-r37/ zzzo ,sf s+4 ,/ o o

- +ef +8 rzs/ fi -Bs/ tz ,/ +

- +ef +a

-vls6

tzs/rc -8s/r" 'l o
zzs/ zz -8s/r, o

Trnrn 2.2.3: The Butcher table of L-stable SDIRK5a.

By order of accuracy, all four D G methods generally attain the optimal order which is

p -t r If polynomials of degree p are in use. The central method approximates quite well

in coarse triangulations but it becomes worse than other ones in more refined meshes,

The LDG and CDG methods'behaviors are quite similar but CDG is slightlybetter than

LDG. In the tough test with h : z-s andp : 4, IP method is the only one maintaining

the optimal order ofaccuracy. Another ones, especiallyLDG method, lose their optimal

orders. It hints that the constant oferror estimation ofLDG method is smaller than those

of other methods so that the temporal error affects significantly the spatial error.

CoupuranroNAr SPEED

To compare computational speeds, we remove thetime step size limitation and let SDIRKS+

solver decide automatically time step size.

Central method is the slowest because of its too big memory storage. IP method

which requires moderatelybigger memorystorage than CDG but its computational times
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ルIethod

Central

IP

LDG
CDG

Central
IP

LDG
CDG

Central
IP

LDG
CDG

Central

IP

LDG
CDG

′=2

3.6z5ze-or
+.L7 r+e-or

3.5145e-or

3.5oo9e-o r

3.8o8 re-oz

4.4674e-oz

3.99 8 8e-oz

3,gz99e-02

3・ 2573e‐ o3

3・ 8170e― o3

3・ 498se― o3

3・ 4243e‐ o3

5.928 8e-o4

6.6r 59e-o4
6.oztze-o4

5.g4LLe-o4

Central
IP

LDG
CDG

Central

IP

LDG
CDG

Central

IP
LDG
CDG

Central
IP

LDG
CDG

4.r3 r2e-o3

4.9 3 56e-o3

4.37 r7e-o3

4.2693e-o3

-5

6.69oze-o3

8.4999e-o3

63947e-o3
6.3 84oe-o3

4.49+oe-o5

5.6z7oe-o5

5.2448e-o5

5.o5 48 e-o 5

r.99r3e-o6

9.864oe-o7
8.8o6 r e-o7

8.6668e-oz

r.664oe-o8

r.z6 5 r e-o8

6.r387e-o8
z.tzgze-o8

力=23 Й=2 4
L.23r7e-Or 2,7rroe-Oz
r.5577e-o1 3.+344e-oz
t.zrz6e-ot z.6o74e-oz

L.zo74e-oL z.6ot7e-oz

3.7965e-o4

4.7726e-o4

+a638e-o4
+.22oSe-o4

3・ 5454e― o4

3・ 8978e― o4

3・4729e-04

3・ 4237e― o4

2.o845 e-o5

r.7 r 8ze-o5

1.5 134e-o5

r.4999e-o5

I .7o3 r e-o5

r.8689e-o5

r.6576e-os

r.635re-o5

3.S 3 98e-o7

4.o3 5 3e-o7

3.6414e-o7

3,6ozte-o7

-I;anr-z 2.2.4: Absolute errors of numerical solutions at t : o.t.

Degree Method 2~3  ヵ -4 ―-5

3・204S

3・ 1781

3・ 1933

3・ 2024

3・ 1996

3・2917

3・ 332S

3・ 3222

1・ SS74

1・4553

1・ 5352

1・ 5358

5・ 1215

S・ 1457

5・ 1829

5・ 1833

2.r838 z.or87
z.r8r3 z.o146

z.zL74 2.o277

2.2r44 z.oz69

3.+q8 3.o786

3.37 04 3.o 843

3.3245 3.o566

3.3385 3.o6r7
4.o882 34829
4.5037 4.1225

4.5203 +.ro32
4.5r26 4.1r32
5・ 5884   4・ 4109

5・ 5333   4・ 9954

5・ 5084   2.5685

5・ 5044   4・ 08os

Tenlr 2.2.5: Estimated order oJ accuracy of numerical solutions at t : o.r,



Degree Method
Central

IP
LDG
CDG

Central

IP

LDG
CDG

2.9689e-or

3.2532e-o1

3.zz6ze-ot
33647e-or

3.3 57ze-or

3.7 t48e-or

3.3 oo6e-o r

3.43S8e-or

5.7+6rc+18
r.17o4e+ t8

3・ 5176e+18
1・568oe+18

3.6429e+rB

7.zor7e*r8
7.6642e+18
L,3o79e+19

-3

5.26o re-o r

4.8565e-or

+.9977e-or

5.zoz8e-o t
6.7468e-or

6.4973e-ot

6.o63ze-or

6t5r7e-or

7 4768e+ t 8

6.r6roe+r8
r.4r o5e+2o

t.778oe*r9
z.r9zoe+rg

5. ro68e+ r9

r.45 5 6e+ r9

2.9976e+ry

1.9 5 5 2e+oo

1.5 597e+oo
L.3777e+oo

t.3872e+oo

3.6o3 8e+oo

3. r 498e+oo
z,47z8e+oo

2.4og5e+oo

2.532re+Lg

6.9r4re+19
2.354Se+20

6・ 599Se+19

r.oo8ze*zo

43875e+ry
6.zozze+19

8.443 8e+ r 9

-5

9.6656e+oo

7.gr46e+oo
6.o831e+oo

7,rc-63e+oo
2.029 3 e+O r

r.5 5 8oe+o r

r.3352e+ol
r.39 r 8e*o r

948rye+t9
r,2333e+2o

r.oz 83 e+z r

z.gTgoe+2o

2.627 5e*zr
r.89o8e*zo

3.9855e+zo

4.556re+2o

-4

′=4

Ttnr-e z. z. 6 : C o mp ut ati onal tim e of D G m eth o ds s olu in g pr ob I e m ( z. z. z 9 )

are not different so much from CDG method. LDG method is still faster than CDG in

most test problems. One of the reasons for unimpressive CDGt computational time is

the cost to compute the CDG fluxes is more expensive than others.

The poor performance of central method is caused not only by memory storage but

also byits stiffness ratio. The stiffness ratio of the semi-discretize problem (z.z.za) is

defined by

Stiffness r"tio : l1-'"1
l}-irl

in which l-"* is the largest magnitude eigenvalue of S and tr-6 is the smallest magni-

tude eigenvalue of S. Table 2.2.7 gives stiffness ratios of central and IP methods in test

problems.

Ⅳ【ethod -3 力=2 4 ―-5

′=1

′=2

′=3

Central
IP

Central
IP

Central
IP

Central
IP′=4

Trnrn 2.2.7: Suffness ratios of central and LDG methods.

We can see that even the spectral radius of central method is about a quarter of LDG

method but its stiffness ratio is roughly equal to that of LDG method. It means that the



semi-discretized equation using central fluxes contains very slow transients in compare

to that equation of using LDG fluxes. These transients decay slowly and therefore the

time step size must be smaller even when f ) o in order to maintain accuracy.

To see this phenomena more clear, we extend the time interval to (o, o.5) and plot out

in Figure z.z.4the time step size of four DG methods during solving processes. Because

of smaller time step size, central method needs 4z steps to complete the integration pro-

cess while CDG and IP methods finish after z7 steps and this number is z6 for LDG

method.

Frcunr 2.2.4: Time step size oJJour DG methods.

Corvcr,usroN

After investigating four DG methods, we can conclude that

Despite of simplicity, the central method is the worst in every aspect. It is small

spectral radius but large stiffness ratio, slow, and ravenous in memory storage.

The CDG has as many prettyproperties as LDG method but its stability must be

proven theoretically.

― Centra method wlh 42 steps
A IP method wnh 27 steps

B LDG method with 26 steps
e CDG method wnh 27 steps



The IP method is not so good as LDG but its compactness is a big advantage if
one wants to employ it to construct a parallel solver of parabolic equation.

The LDG is the best choice so far for conventional computing.

2.3 AovrcrroN-DrrpusroN-RlecrroN EquATroNS

In this section, we present how to apply D G methods to the general advection-diffusion-

reaction (ADR) problem. We consider a well-posed ADR equation of the form

多+▽・PN O=▽・ノおに▽→+ゴК0 (2.3・ 1)

(z3.za)

(z.3.zb)

(r.r'r 
")

(".r.rb)

in a domain O C Rd with state variables rz, inviscid flux function Fitu, viscous flux

functionF*t=,andsourcetermF€tc. Theboundaryconditionandinitialr,aluearegiven.

First, we transfer this equation which is of second order spatial derivatives of. u to a

system offirst order by introducing additional variables e : V u,

一一　
　
〓

伽

一ａ
　
９

―▽・F・
nv(′

)+▽ ・ノ・
S(“

,9)+FSrc(′ ),

▽′.

Next, we consider a triangrrlation of the spatial domain O denoted by fr which is of

size h. On this triangulation we define approximation finite element broken sapces V1,

and )1 as same as in (2.2.3) and (z.z.a). The DG formulations for (23.2) read: Find

uy e V1, and qy € Z1 such that for all elements Dk e Ti, for all v7 € V1r, and for all

o6 e Zy, we have

df f r
- l,uyv1,dx: LF'"'(u1,).Yv6dx- | .Fi"u(rr) .iv1,df
u.JDk JDk 

f 
JaDk 

f ^
- / . Fu'" (ur.qr).Yv1,dx+ | tt" (rr. q)-iv1,df

Jnk JADk

+兎た
「

¶0%れ

ノ}9ヵ・σた激=―ノ:た ′ヵ▽・%′χlttDた 'Й

″・σヵメ「.

Here, the numerical fluxes Fltt, F i=, and i6 are approximations to Fitu, I'ui= , and u1r,



respectively, on the boundary dDk. As investigated so far, the numerical inviscid fluxes

Fltv are approximated using consistency ones of which some of them are proposed in

(r.r.+).For the numerical viscous fluxes F i", any of four numerical fluxes in Section z

is a good candidate.

To obtain (".1.1) as an original ODEs system, infact, we compute (".t.1) directly

rather relying on primal forms. We suppose th"t { rf } - is a d-dimensional poly-
(- / J y-1....,np

nomial basis of degree p of Vy on each element Dk. Then the approximate solution u1

can be expressed as

nE nP

uh\x.r): (D u7,1x.t)loo inwhich ur,G.t) lo- : f ul67rl1*1 . Q.t.+^)
k:r j:,

Basis on each elemen t Dk of Zlderived from one of V1, is {";' 
- 

},:, 
d, 

ir, -hich

x;.k I t lT k. ./.r\,i''" : 
Lo. 

. ... o. ui. o. . ... oj ui is atthel(th) position.

IIqt : lq|',..., q|o),thenforeach ifrom rto d,qf'ispresentedsimilarlyas u1:

nf

-xit..L\ /T\-r,r ,rl . i.r xil...\l \- -*,.k(r\,,k(-\
Qn' \x.t) : tt7 q1,'\x.r) le* Inwhrch qh \x-tl loo: ) 4i (IJui \x,.

ノ==1

(2.3・4b)

rrherefore“ Й and 9芽 ,′ =1,…・,′ On each element Dた are represented by coemcients

ロプ熟がmdレ」ノ熟i br msreaЮ
nw∝d面れした宙ぬ∞hmnでd∝

[“
夕

]プ=、_,i and“
ヵwtth v「dorヒ

'…
°
'′

IP,・・・,イ
E,...,“

lF]T・ The same nota● ons

areapphedto171Dた and 9芽 .

For each i=1,_,′ ,the computation of 9静 readS:fOr:=1,… 。,nP′

兎たこ
棚 激

規 た言硼
激+兎

Dた 言
引 ∂♂ わR国

Here′ the numedc」 luxes tt at∂Dた aヽppro対 mated by Σ拝1考考|∂Dk and♂ おthe

,(th)element ofthe outward normal″ to element Dた .If we denote 10cal mass matrix



Mk, local stiffness matrix St''k, and lifting matrix L*',t whose entries are

Mf i: [ "y"yo. E;n: [ #,F* 4';n: I r,,f,lar.L) Jou" tt Jp*dxit I't 
Jaou

then the matrix form of (2.3.5 ) is

・lfた 9鶏 'た =― s対
,たが +L鶏 ,たが ,  `=1,_.ノ 。    (2.3・ 6)

Here′ が おcchdded宙th cohmnで dor階 ,っ 鳩 ]T.It ζ"威
h to note that Mた お

symmetric and invertible.

APPlying the same manner as(2.3・ 3a),we have

Mたζ′=土 ユ゙∈血っれた一ゞb♂
工
(郷 )れ

た

一ゞbゞ
よば・)枯

た
+ゞbL札

た
0=≧ )名

た 3゙功

+Mた (FSrc)た ,
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Gathering all equations (".1.2) on all elements Dk, we arrive the following ODEs

)l

MT : I r'' (Fi"u,*, _ Lt ,(r'-,)"
i:r i- r

d d ("':'s)

f t., (r"'","' + I." (F-)'' + M.F'..
rli:r

Here, M, Sxi ) Lxi are block-diagonal matrices in which their on-diagonal blocks are Mk , S' ,k 
,

and L','k,respectively. vectors (Fr"u,'' (t*)" . (r""r*' (F-)", and F.. are

defined as

(rr"u)' : 
[{{"-")"',')',.... ({r'"")' 

*)'],

(F).' : l((t*)*")' ((F*)''*)'l'
L" ' / \\ ' / )

(r"r"r' : 
[{{o.")',,')",.... (ir"'=).'.*)"] 

t,

('*)" : f((*)*'')' ((,".)",*)'l'
L \ ./ I

r".. : [tto.")')t..... ((r"..)"t)t]t.

The semi-discretized system of oDEs (r.t.a) is final form we obtain afterthe first

phase of our full discretization process. The second phase ofthe process will be discussed

in the next chapter.



Ro s enbro ck ftro ng- Stability pre s erving metho ds

The second phase of discretization process for ADR equations is considered in this chap-

ter. In the last chapter, spatial discretization using DG methods for the ADR equation

results a system of ODEs. There are many barriers for solving this system. Three parts

in the system derived respectively from advection, diffusion, and reaction terms of the

original ADR equations possess different properties which require very different tem-

poral dis.cretization approach to deal with. The spatial order of accuracy would be high

if approximate polynomials of high order is used. That fact demands temporal order of

acoracy must be adequate for. Moreover, the size of this system is very big so that a

fast solver is necessary. Ail of these matters are able to be overcome with a new class

of methods, which we will call the Rosenbrock strong stabillty preserving (Ross-SSP)

method, introduced in this chapter.

N-rn.e'e THEoRY

Methods introduced in later sections need some conditions for their coefficients to achieve

the specific order of accuracv. Order conditions of numerical methods for conventional
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ODEs is quite confused and it becomes amazingly complex if the ODE are partitioned

in several terms and each of these terms is treated with distinguished manner. There-

fore we present in this section N-theory which is a powerful tool to possibly list order

conditions of a solver for our semi-discretized system.

We consider a decomposed system of the form

夕=∫0=ΣノJO, (3・ 1・ 1)

t€A

in which A is a finite index-set andJ : D"rnj"l : U -+ lRd are supposed to be smooth

and defined in a Rd. To determine order conditions, one can use the Taylor expansion

of the solutions of (3.r.r) in term off"l *nt.n tt

寡=νこを房・ソ由,

寡=4淫
A層 01μゲ・た+"響ッ4た

),

in which
^ J,,t ;

J,l.i ._ cU')" 
rlul.i ._Ji 0*i ' Ji.k

In a case of A : {r, t}, we have

4 : jt,, U) + jd,, 0) ,dtJ

#: i Ui")'ti'4,i 
+ fl'tJlur,i + ju)'tir'i + iu)'tqa'i) ,

)-r

# : L (1:I' tl i ll"t 
* + j:l't i")' i iut'r' + J"t't l';t'i 1"t't

j k:r

+ i"t''l;t'i4a'r

+ 1"1ji'Alt'"t* * j")'iid;JIut'k + iriidlJI"t'k

+l'aliut;1oo * )

We associate to the summands on the right hand a graph whose nodes are double

(3. r.za)

(3. r.zb)

∂ブ」'i

∂χブ∂χた
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Iabelled. Such graphs are called N-trees.

z-tree

ν、ι

″,:

ν,ノ  μ・/

1 1
ν,:  ν,`

ν,ノ  ″,ノ

| |
μ,` μ,ι

ν,ブ  ちた ″,ノ  ν,た

ν,た  ″,た

| |
ν,ノ  ν,ノ

| |
ν:ι   ν,:

Elementarv differential

メ ツ
」

'′

,1ツ
」ツJ'た

,Jl'ソ
』ツ」'た

房1'搾]ツJ'た
,J」 '常 l'メ』

'た

T,rnr.r 3.r.r: Doublelabelled graphs and correspondingelementary dtfferentials.

3.r.r N-rnsss

Definition 3.r,r, Let qbe a positiue integer and Au be an order chain of q indices, A,

{i<j<k<r<...}.

a. A monotonically lab elled N-tree of order q is a pair of maps s : (/ . /' ) :

ar\{;} !.or!.t

suchthatA(z) < zJorallze A, \ {i}.TheorderoJtisdenotedby p(t): q.



b. The monotonically labelled N-tree oJ order o is denoted by A.

c. The set of aII monotonically labelled N-trees is denoted by LTN.

d. The node with label i is called root.

The An is called number indices set and A is called alphabet indices. Any element

of LTN can be represented as a graph in which its nodes are the indices for Au and its

edges are the pair ({ (") , z) for z € A, \ {i}. rhe second label ofeach node is lt (z) for

z€Ar.
In Figure 3.r.r we draw down some element of LTN. The maps t : ({ , //) for the

7th-tree in this figure are given by

. / t {j,k} --+ {i,1,k}isdefined as{ Q): i,/ (k): i;

. /' : {i,i,k} -+ {v,p} isdefined as{' (i) : v,{t U) : tt,and{t (k) : v.

In comparison to the 8th-tree, these two graphs differ from each other only in the label-

ing of number indices. It means that by rearranging the number indices, these two tree

would be identicallv the same.

ν,ノ  μ,ノ  ν
,ノ  ″,ノ  ν,ノ  μ,た  μ,ノ  ν,た

| | | | ＼∨// 
｀
∨

/

ν,1 ″,: ν,` ν,: μ,` μ,ι   ν,'    ν,1

Frcunl 3.r.r; Sone element of LTN.

Definition g.r.z. Let t, : (/,, (') and t, : ({,, /l) be elements of LTN. An equiualence

relation on LTN which is denoted as t, - t, is defned byt u - v if and only if

a.Pft'):p(t'))u

b. Thereexistsapermutationt : A, -+ Ansuchthata(i) : iand (ox o) (f) :
(a x a) (t) on (t, \ {r}) x ar.

Definition g.r.g. The set of all equivalence classes under the relation - is denoted by TN :
LTN f - . The elements oJ TN are called N-trees. The order and the root oJ a N-tree is defned

by the order and the root oJ a representative, respectiuely. The notations are p (t) for the order

and r (t) for the root. The cardinality of t k denoted by a (t).

45



Examples of N-trees are graphically represented in Figure 3.r.2. Next, we discuss

recursive representation of N-trees.

岬∨
〉̈
ν，

v ltlt

||l
vUv!U

岬

∨

ツ

Frcunr 3.t.2: Examples of N-trees

Definition 1.t.4. The f,, . . . , t^ be N-trees with non-zero orders and let v € I\. Then we

denote

f = [f,. ....t^)u

the tree that is obtained by connectingthe roots of trees t1, . . . , t^ to the new node which is

labelled as v. This node becomes the root of the new tree t.

We use notation zu for the N-tree of order r with root v, for v € A. For given N-

tree of the form f : [f,, . . . , t^)u, its parameters such as order, root, and cardinality are

computed with the help from the following lemma.

Lemma 3.r.t. For a givenN-tree t : lfr, . ..,t^]u,wehaue

rlt):v,
p(t) :r + p (t,) t ... p G^),
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and the cardinality oJ t is computed recursiuely as Jollows:

a(a) : L,

alrr): r, u e 1\,

olt) : (,. l(t)- 

".,) 

a(t,)...d(t^)-r:-
\p(r,) .....p(t^)/ [t,t(,!...

where 1tr, y, are the numbers of mutually equal N-trees amongtr, . . . , t^.

For trees in Figure 3.r.3 we have

a(t'): (,:,) " < r x 
u h: ''

a(t,): (r:,) xzYL',' , j-:4o.

3.L.2 Er,sIi{Er.Irerv DIFFERENTTALS

We are now apply N-trees to express the Taylor expansion of the functi onJ : U J Rd,

U C IRd which is assumed to be arbitrarily differentiable and be decomposed to several
J.,t

parts,J : LuettJ''t,

Definition 3.r.5. Fort € TNwiththerepresentationt: lfr, ..., t^frwedefneafunction

F (t) : U -+ Rd recursiuely in thefollowingway:

F (a) $) : yi,

tr (',) (i : i"l'' (Y) ,

d ^)"1i, '
F(r) (r) : t #P'(r,)(r) .. P^\t^)\il.

J, J^:1 'tr 'tm

The function F (f) ,s called elementary dffirentials.



The elementary differential corresponding to the N-tree f, in Figure 3. r .3 is

s

F (t,) (y): t 1"1'r O"l 117 f ('p) U)
j.k:'

: \- lv).ilyl.iAttl.k- -"''ot 
t

We now showyou how exact solution of (3. r.r ) and its derivatives can be expressed by

elementary differentials.

Lemma 3.r.2. Lety(t) : h'(4,... ,/(t))r beasolutionoJ Qt.r). wehaue,for

Q) ot

/.,i\(s) - \- e, /r\ /,,) - 
\- , r -i ,,r ,.\) | /, ' \'/ v/ - L o(u) f'(r) (y)' (l't':)

'frlY' ;fi!,
Proof. We prove the first equality by induction on 4. For t : (/ ,l') e LTN, p G) : q,

we have

lr'{t) ty) : I Fi (r,) 0) .dyi
where the sum is taken over all trees f, € LTN of order ql r such that 4lartg) : { and

1'l^":{'.Hence

t r'(4 o) : t r'(a) (r)
r€LrN t-(tt,ft)€LrN t,-({,lt),p(t,):q+tp(t)-q ' p1):q l1ort'tiy:l ,/,'l^n-t'

\- tit+try;.
L ' \'r)\

';f'3y,

The second equalityis obvious because ofthe definition ofthe a (t). n

Denoting LTI\la and TM as monotonically labelled N-tree and N-tree with alphabet

root v, the equation ( r.t .t ) can be rewritten as

(v')"': I t r'(, (/) : t I a(t)r' (r) (r) (:.'.+)
t)€1.t€LTIt/ r€A r€TM

p(t)-q p(t):q
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Using Lemm a 3.1.2, the Taylor expansion of a solution of ( r. r. r ) is given by

:t I "(r;F(r)(/") + (r.,.sb)
v€At€r,v "'P(f)l

3.1.3 N-spxrcs

Definition 3t.6. Letf : D"rnj"l : IJ -+ Rd andy e U. AN-series associatedwith

j') it th, series of the form

Nl"l'i(o,/) : to(r)a(4F'(40) #. i-t,...,n,
0ltl!

ICTNA

where Q : TN -+ R. is an arbitrary mapping and v € It. The N-series associated with J k of

the form
tV (a,r) : tNt"l,' (O,/).

v€IY

fhe A ft) are called coeficients.

Definition 3t.7. Letg:(-so,so) e JRd bearbitrarilydiferentiable,so ) o andg:

fd, . ., {l' . a, said that g can be represented as a N-series at y w.r.t. J iJ and only if there

exists a map Q : TN -+ R such for all q )- o

(g')'n' (o):I f oG)a(tttr(t)(il. i-t.....n.
"'" to?[\,

We denoteg(r) - N(O,f).

We now reach the central theorem of N-tree theory.

IIheorem 3・ ■・■・ L``g(S)～ N(0,ノ )″ ″みた力Φ (τν)=1″ ′ル ッ∈ A.動
`″

△♂
J(g(△s))飩
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N (O', y) where

o'(0) : o,

o'(ru) - r,

@'(4 : p (4 o (r,) . ..o (t-) ,

Jor t: ltr,. ..,t^lu.

Proof. Firstly, we have to show that

((1,'og) t'))'" '': It'(r) t,) (r.r.o)\\ / /
tes'

P\t):q

in which

ai(r; 1s; : f j,il' 
,-1E,ts))\p(u'\)) ...(d'(r) ltpru^t1

j,,...,j^:t

where u : fur, . . . , u^)ubelongs to Su, a special class oflTM-trees. The set S consists of

monotonically labelled N-trees which have no ramification except root and the alphabet

indices of the nodes except root are not important. We can formally define Su as follows

Su : {f : (/ ,{') € LT^/ suchthat card (r'-') (k) ( t fork I j

andttt (k) : /' U) if k + ij ,

and denote Si is the subset ofSu and oforder q.
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We prove ( f .r .6) by induction . For q: r and z, we have

F"''' 
(r(,))]"' =Σノ.は 0)ぱ )° ,

ノ==1

こΣ″(00
,∈ Sr

=レ醐可1

=ΣイツυO)° ぽo)° +Σ″J「
CO)°

ブ,た=1                      ノ=1

=Σ″00・
`∈

Sζ

レJ懺019=Σ ″(00・

`∈

Sittl

Thenおrt=L,_,端
Iν
∈S`′ we have

げ00′ =隊 九朧釧m
: t ft ; i 1nr,1r11(nrt')t (i^t,tltplt^)) t i, rr/

L .,1.....,a.,a]., ,- ... (g- (s// ' (g-+' (s)/
tm+r -

mm

+\,1,,:' ,,^fI ly' (s;]{n{t'tt [d- t't](p(rt)rr)k:r 
l=i,

The sums of the right hand side are taken all over tree i € Sla, which is received from r.r

in one of two following ways:

i. Add a new node to the root (u, i);

ii. Increase the branch corresponding to the node lu one more node, k : rt . . . , m.

Therefore the derivative

レJ焔 01け
1)=Σ ″00・

`∈

S考 +2

V't'' G('))]'''

Suppose that

...Id- is;lintt-tt1'l



Putting s=o,we get

P焔。))1°

)=Σ ″(う (→

F∈ S`+1

=Σ Σ〃lJ"Π け。))u集
))・

=∈
S:+1ノ 1, ,ノ″=1     た=1

Using the fact that g(s)～ N(Φ ,夕 )′

(d- (")){n{tt)) - f t e e1,) Ft (70) tyt ,

μた∈AL∈ LTN14た

ρ(1)=ρ
“
た

then tt remrn a cOmphcated expressbnお r卜J'J億
(→ )](a):

PF鮭 (→ 1° =Σ ttЁ Σ Φ侮)

f€Si*, k:r f1€A Ju611.1gt'1

p(to):p,,
n

,. \- 
"i

" ,,l^:,Iil' i^Po (4) (/)

The set {t,Ir, . . . ,1*} corresponds to the tree w € LTI{ such that each branch of f is

replaced by the tree i,. . . . . i.. He.rce

Pは倒
°=鳳 鰐Ц00・

ρ(″ )=q+1

3.2 RosnNrnocK Expr,rcrr RuNcs-Kurre METHoDS

After spatial discretization, the ADR equations are reduced to an ordinary differential

s'Stem 
* : in 1u) +J") (r1 (:.'.,)
dt

□



in which./4 is obtained by discretizing V . .F'i" + F"' in ( 2.3. r ),y''l .o.."tponds to the

discretization of - V . F'nu , and initial value is given.

The properties of these two terms are unfortunately completely different. The term

lil d"rirr"d from diff.rsion and reaction terms is a smooth and stiff operator which con-

tributes real and relativelylarge scaled eigenvalues as shown in Section z.z, see also lzz,
p. z6zl. Meanwhile, the term l'l att"ined from convection term has predominately

imaginary eigenvalues 1"", p.roz]. Moreover, j') is normally non-smooth because it
usuallycontains itself non-smooth operators such as maximum, minimum functions and

limiter functions to avoid spurious oscillations I r 6] and to preserve positivity property

l"+).
Because of these differences, temporal integration Runge-Kutta (RK) methods for

(f.".t) are normally of partitioned form. Many authors [4, 30, 38] use explicit RK

(SRK) methods for j.") , implicit ones for ftJ, and then combine the two methods in

proper ways. There are some compromises in these approaches. The implicit methods

are often of diagonally implicit RK (DIRK) which offer great stability for stiffterm but

solving nonlinear large system at every stages is really costly. Alternatives to DIRK is

Rosenbrockfamilyofmethods, lzr,p. toz), Irz]. guttheassociatedERKmethodsare

embedded implicitlyin Rosenbrockmethods and this situation causes dificulties to find

high order of accuracy solvers [39]. Even if ERK methods are accompanied with DIRK

directly [26], such combination does not guarantee strong stability-preservng (SSP)

property and as a consequence they have to integrate within smaller time step-size.

Inthis section, we propose a newclass of integration methods solving (3.2.r). These

methods are affordable in computational cost, having explicit conditions for order of
accuracy, and assuring good stability properties. Our approach employes Rosenbrock

methods for the stiffterm.,14il .o*O'ning with ERK methods for non-stifforrey'" directly.

Definition g.z.r. An s-stage additive Rosenbrock explicit Runge-Kutta (Ros-ERK) scheme
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Here, un is approximation of u at time t - sn, lil is the Jacobian ofi\ at tn ord o[l].,, ,t[],i, \lt.i,

Ff],,rLil., rt[.],, alil and bl are determining coeficients.

Each stage of the metho d (l.z.z) consists of only a linear system with unknown stage

lr"l.r.rffl andwithmatrices t - ryllSll. So,ifpl'l : ... : Flil.u: pliJ,thereisonly

one LU-decomposition required per time step.

3.2.L Onon,n coNDrrloNS

To specify order conditions for Ros-ERK methods (1.r."), we use N-trees theory intro-

duced in the previous section. Because the system (r.r.t) consists of two terms,ftl and

j") ,we consider from now only z-trees with A : {i, e}.

Supposb that

rd'l - Nt4 (an,y^), 
"i:l - ry['1 (ao,y,) .

It means that for q 2 o wehave

/ lr\lq/ , r
("f )''' lr,:o : t @r (,) a(u)r(") (t^),

ue rNf'l

t r;:,(q) r r
("ll')''' lo,:o : t or (,) a(u)r(") (y^),

,e rNl"l

S4
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Then,
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For the numerical solution we have

/n+,-N(o,/,)

where
(, ifp(u) = e.(u\: (

It; , bl[t"))Qr,tu) if p (u) 2 r.

Comparing the N-series of the exact solution, we are able to derive the local trunca-

tion error of the Ros-ERK method (3.2.2) as

! lt"+,) - !n+,: Σ
中

Σ

仰

←一∝劾バ→Цのし』
:(II・

}“

Therefore, order conditions for Ros-ERK method k.r.r) to be of orderp are determined

in the following proposition.

Proposition 3.2.r. The Ros-ERK method (t.".") solving (t.".t) is of order p if and only
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if it holds true that

O (4 : rJor all r € TN satkfyingp (r) ( p.

Explrcrr coNDrrroNs up ro rHIRD oRDER oF AccuRAcy

Here we give explicit formulas of the order conditions up to the third order of accuracy.
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The linear stability function for an s-stage Ros-ERK method is obtained by applying it
to the linear test equation
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Then the stability function for the Ros-ERK method (l.t.r) is given by
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3.2,3 Exa.r"rpr.E,s oN RosslJnl.ocK ExpLrcIr RuNcs-KurrA METHoDS

Two examples belonging to the Ros-ERK methods are introduced in this section. They

arealls-stage,s - r orderofaccuracyand denotedbyRos-ERKs,s - rfors : zand3.

The first one is Ros-ERKz, r which is given by

卜明=
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RRottERKゝ 2(ZH,Z□
)=

ヽ

１

，

ノ

同

た
，

β
Ｚ

一

／

′

―

ヽ

ｓ

Π

』

〓

ヽ
―

′
ノ

ρ

ド
Ｚ

一

／

′

―

ヽ
〓

Ｏ
　
　
Ｏ

　

ｎ
ｉ
‐
‐
‐
‐
‐
‐
コ

０
　
　
０

　

Γ
‐
‐
‐
‐
‐
」

〓

‐

Ｌ

Ｉ
〓

硼

隊

―

　

　

〓

０

　

　

１

一
２

１

一
２

　

　

０

ｒ
ｌ
ｌ
ｌ
ｌ
ｌ
Ｌ
　
　
Ｏ
　
　
Ｏ

〓
同
時
　
ｒ
ｌ
ｌ
Ｌ

ｌ
β

　
　
　
〓

・，
　

同
時

１

１

１

Ｊ

　

　

γ

Ｏ
　
　
Ｏ

０

　

　

１

一
２

０

　

　

１

一
２

一
一

　

　

・―

ｌｉｌ
り
　
　
・Ｌ
ｒ

α

Its stabilty inction is

喘町・9→ =ポ ・

The next oneis Ros― ERK3,2■VhiCh is denned by

昨 |:::|‥ 囲刊 =|::

問=|:::1洲 =|:::1刷 判

The stability function ofthis method is

０
　
　
０
　
　
０
　
　
　
　
　
　
〓

1+脚 +:凶ソ十をしリー←一貴→リソ
←_ャ→

3

6s



It is impossible to require that these methods are L-stable for all value of 11"J. But

under the assumption that z 'l : () (t) , the stability firnctions tend to zero as z [i] terrds

to - oc. This damping property at infinity assures the -L-stability of our methods for large

and negative eigemalues of stiffterm.

3.3 Aoortrvs RosBt{snocK srRoNG srABrLrry-pREsERvrNG METHoDS

As mentionedbefore, thef'J is resulted from a method of lines approximation of the

advection part - V . Fi" where the spatial derivative is discretized by a total variational

diminishing (TVD) finite difference or finite element approximation. To solve the sys-

tem

窃=押 0, ( l.l.t )

the strong stability-preserving (SSP) methods is preferred Ir9] because they do not in-

crease the computational cost so much and have the extra assurance of stability.

To employ SSP methods for integrating the termf'J in the full system (3.2.r), the

formulas (z.r.ra1and (3.z.zc) must be rewritten as
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with given 7rr,i )r- o satisfying Df:l U,i : r, we have
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(3・ 2.2)iSヽ Tヽitten in the equ市 alent form

で―♂〔計言4ず鷲伊→
‥♂に4ず鷲ψ呵……m

Ⅵ=“
"+θ114],                    (3・ 3・2b)

珠=Σ
(η旬乃+△″:ン」(乃))+Σθじで,た =為 …S+、 (}}20

フ=1                       ノ=1

“"+1=埃
+1.                    (3・ 3・ 2d)

Under some assumptions inentioned lateち this scheme■vOuld be caned RosenbrOck

strongly stability‐ preser宙 ng(Ros‐ SSP)methods.

clean"ifall θ
:)'S are nonnegative,the intermediate stages n COnsist ofconvex com―

bhauOns Ofお rmrd Eder opentOrs brμ  and ones ofstage vJuesお rノ].Then we
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assume that the forward Euler method applied to ( 3.3. r ), i.e.,

un*r: u^ + l,tj'l lu^) . (1.:.:)

tl
is strongly stable, 

ll"" * Otj.r tr,)ll < llu,ll with Af ( Atrs, and the stage values K1

are also strongly stable, 
| | 

af' 
I | * ll a, ll with Af ( Afros. Obviously, we get that ua1,

obtained by (r.1.") is stable with

( ,, I
Af (min{lrrr-itr}.Arn".-j ,,- }.I k'j et:t, ma*ff . lelr,l I

\ *.t --k-- z_t 1 l- k.tl )

In case there are some negativ" el'1, *" will use the same trick as ir [r+] in which an

operator so called backward operatorf'l is introduced. This can be achieved byspatially

discretizing the temporal reversed system

*:o'tr""(r) .

iJt

TheoperatorT'lirr"qrrir"dtoholdthestrongstabilityproperty,llr,+.ll ( llr,ll,forthe
backward Euler scheme,

ilntr: u^ - tl'") @) . (r.r.+)

Then we have the following proposition which may be considered as an extension of that

i" Ir+].

Proposition g,g.r. AssumethattheforwardEuler (l.l.l) andthebackwardEuler (1.1.+)

are stronglT stable, i.e.,

ll r-r , ll , tl -J-r ll ,,

llun 
+ 

^tf't 
rr,)ll < llu^ll and 

llu" - ^tf"t(a,)ll 
( lla"il .

with Lt ( Afps, and stage uoluu Xli) are strongly stablewithAf < AfRos. Then the method

(l.l.r) is strongly stable-preserving,llunlll { llr"ll, ritlt

…h幅 }



prouided tlrat ef f4 is replaced wittt etfi") whenever 0f:,1,* negatiue.

Exauprr oe Ros-SSP METHoD

The Ros-SSP3, z method derived from Ros-ERK3,z presented above is given in Table

:.:.r with its own coefficients.

ロ  レ‖1  囲

TABLE 3・ 31:COttd`4お ηた″,θ几′αれ′θ
‖ ′た≫ 2,ル しげ ″

`Rο
s―SSP3,2.

RsM,{R.x

One of important applications of the Ros-SSP methods is solvingADRequations. Such

ADR equations are often used to simulate physical and biological phenomena. In these

problems, the variables are normallypositive, e.g., the adsortbate coverage rate of the

surface by CO molecules in absorbate-induced phase transition model and the density

of bacteria in the chemotaxis model. Hence, as a natural requirement, Ros-SSP methods

are expected to preserve the positivity of these variables attaining a demanded order of

accuracy.

The diffusion and reaction part in DAR equations can be discretized as in [25] or

Il]. Th" corresponding semi-discretized term which is normally stiffare integrated by

choosing a suitable Rosenbrock method such as L-stable ones and therefore no wiggles

or spurious oscillation are produced. Consequently, a proper Rosenbrock method does

not produce any overshooting values that may deprive the methods of the positivity of

numerical results applied to the semi-discretized diffusion and reaction terms .

To guarantee the positivity, the advection part in DAR equations are discretized spa-

tially by a TVD finite difference or discontinuous Galerkin finite element methods. By

embedding the SSP method in computing the semi-discretized advection term, the Ros-
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SSP methods inherit positivity from the SSP methods Ir8, 34]. The explicit Runge-

Kutta method for the semi-discretized advection term is written as a convex combina-

tion of forward Euler steps which are TVD under a suitable Courant-Friedrichs-Lery

(CFL) condition. It results characteristic constant which is min/,1fi and the maximum
r,.i lo'i',1

time step-size for positivity of the method is proportional to the above constant.

3.+ NuivreRrcer,DEMoNSTRATroNS

In this section, we test the order of accuracy, the performance, and the robustness of

Ros-ERK3,z and Ros-SSP 3,2 via several test problems.

3.4.r Keps'px.osl-swr

The first test problem suggested by Kaps (see in I r z] ) is given as

ク1

′
`の2

′′

=― (ε

l+2)夕
1+=ε

lノ

:,

=ノ1~ノ2~ノ:'

(3・ 4・ la)

(3・ 4・ lb)

where f € [o, r] and the initial values are 2, (o) : .1, (o) : r. The exact solution for the

svstem is

ノ1(`)=ノ2(r)2,  夕2(`)=eXP(― サ)・ ( s.+.t .)

Thestiffnessof (3.a.r)increaseswhenthepositiveparameterttendstoo. Incaseof

€ : ot the system degenerates into an index- r differential algebraic system which is

y.: y:. + : y,- y,- y:.,/y ,tz, dt

The system is able to be written as of form (i.r.r)

夕=♂ 0+メ」0,
ln■vhich

片
l先 |,ソ

ω=lう∫
軌

|,メ
ω=l

(r.+.ra)
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ユ` 4

1/3(1~V3/4)

0

2-v2
1

し~√ソ2

V3/4

●~√ソ2  0
4/4  0~√ソ2

V3/4

∨3/4+ブ 3

Tanr,r 3.4. r : Butcher table of TR-BDF z methods

To solve (r.+.t) we propose two more methods which are TR-BDFz [s] and Ros-

AMF3,z lz5,p.+o+). Theformerisclassical 3-stage,secondorderL-stableRunge-Kutta

method which is a combination between the trapezoidal rule (fR) and a second order

backward differentiation formula (BDFz) method. Its coefficients is given in Table 3.4. r.

The latter is also a 3-stage, second order l-stable Rosenbrock method in whichJacobian

matrices do not require to compute exactly. The computation scheme for Ros-AMF3,z

reads

(I― γ△tA)為 =

ノ"+1=

ルvhere

+ AfAlt,,fi,
j<i

),

i : 1,2,3, (r.+.:")

(r.+.sb)

詞

』

１
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‐十

十
　
　
　
れ
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、．生

Ll=一 ←γ+Ll+a42=:~恥

卜1=~「
T七瓦百け 暉2+6← +→γ+イ,一 ∋,

γ=1_=2 cosθ +=笙 豆nθ,θ =
2           2

and A is an arbitraryJacobian approximatio n of f (y 
^) 

. All three methods integrate from

f : o to r using standard automatic step size selection with several given time step size

limits. Method TR-BDFz solves with the original equation (r.+.t) while Ros-AMF3,z

and Ros-ERK3,z solve the equation (1.+.").

At first we investigate order of accuracy and stability of Ros-ERK3,z method by vary-

ing e from ro-t to ro 3 and changing time step size from o.oo4 to o.oor. Error of Ros-

ERK method is estimated by comparing numerical solutions and exact one at f : t.

√
Ｔ

ｎ

ｌ

一　

３

¨
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Table 3.+.2 shows us that Ros-ERK3,z method is of second order of accuracy in all nine

test problems. It also means that Ros-ERK3,z still remains its stability even in very stiff

test problems with e : 1o-3.

Af : o.oo4 Af : o.ooz Af : o.oor
Ｃ

　

０

　

０

こ́
　

ε

　

ε

z,oor7
r.g8g4
z.o5 68

t 416
r4zz
r48z

r.9988
1.99 17

r.893r

1725

t743

r8zr

z.ooo8

2.OOO7

z.ot46

T,rnr,n 3.4.2: Estimated order of accuracy oJ Ros-ERR3,z method.

Then we compare Ros-ERK3,z with TR-BDFz and Ros-AMF3,z in performance as-

pect. Because the size of test problem (1.+.t) is small, measuring computational time

is meaningless. Instead of doing that, we counting the number of computing the right

hand side function during the whole integration in the interval [o, r]. The results of three

test problems with E € {ro-', ro-2, ro-3} are shown in Table 3.4.3.

Ros-ERK3,z Ros-AMF3,z TR-BDFz
７

　

５

　

９

ｏ

　

９

６

４

　

３

　

３

０

　

０

　

０

ε

　

ε

　

Ｆ
）

Tenr,r 3.4.3: The number of riglrt hand side Junction calls with error tolerance is ro-u and time step

size limit is ro-' .

Table 3.4.3 illustrates the power of TR-BDFz method in solving extremely stiffprob-

lems. Its performance is much more better that these of the others. This fact is easy to

understand because Rosenbrock methods are more appropriate to mild and/or very stiff

problems rather than the extremelystiffproblem in this test. Comparing two methods of

Rosenbrock family, Ros-ERK3,z is better than Ros-AMF3,z. Its number of right hand

side function call is roughly uZcless than this number of Ros-AMF3,z.
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3.4.2 LrNpal ADVEcrroN-DTFFUSToNpRoBLEM

The second test problem is the one-dimensional linear advection-diffusion equation with

periodic boundary condition

併+α斃=′弊,χ∈。,0,

“
(χ ,0)=COS(2πb), た∈N,

(t.+.+ )

(t.+.+b)

in which a is a velocity and d ) o is a diffirsion constant. For the spatial discretization

we employthe discontinuous Galerkin methods mentioned in the previous chapter. The

semi-discretized system we get is a system of ODEs of the form (r.".t ) in whichf'J ar,4

j."l 
^r" 

from diffirsion and advection terms, respectively. As discussed so far, thef"J i5

no longer smooth andfiJ is stiff operator. Therefore TR-BDFz is unable to solve this

ODEs even though its performance in solving stiff problems is amazing. We employ

Ros-AMF3,z and the SSP version of Ros-ERK3,z, method Ros-SSP3,z, to to integrate

the semi-discretized s)'stem of (2.+.+).

Thespatialinterval (o, r) isdividedintosmallelementswhose sizeisz-7 andoneach

local element, polynomials up to third degree are used to approximate the exact solution.

Therefore, the spatial error is small enough so that it does not largely affect the temporal

integration error.

The second order of accuracy of Ros-SSP3, z is shown in Table 3.4.4. Here, the pa-

rametersin(f.+.+)arechosenask: r, a:r.o, d: o.r, f € (o,o.s).

Time step size Normalized error norm Order of accuracy

o.o05

o.oo25

o.o0125

o.ooo625

4・3071`-05
1・ 3793ι ― OS

3・394S`-06

9・ 3544`-07

t.64z8e I oo

z.ozz6e I oo

r.8595e * oo

T,xnr-n 3.4.4: The errors ofRos-SSP3,z method att : o.S.

Two methods Ros-SSP3,z and Ros-AMF3,z are compared with the same time step

size limit Af-"" : o.r using the same time step size controller [zo]. We take the ve-

locity a : r.o and test two methods with different values of the diffusion constant

d € {r.o, o.r" o.or} within the interval t : [o, r.o]. Byvarying the diffirsion constant

d from r.o to o.or and keeping the same velocity a : r.o, the problem G.+.+) transits
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from the diffusion-dominated one to the advection-dominated. The running time ofthe

two methods given in Table 3.4.5 shows that Ros-SSP3, z is faster than the Ros-AMF3, z

during such transition. This outperformance ofRos-SSP3, z can be considered as a result

of the better stability of the embedded SSP integration method. Such this embedment

allows Ros-SSP3rz integrate with bigger time step size and therefore less steps to finish

the integration process.

Elapsed time (sec.)

d Ros-AMF3,z Ros-SSP3,z Ratio

r 2.39598 r.4zrgz +o.6STc

o.1 z.663o5 z.o8z46 zt.8oYo

o.or z.81619 z.4o67r r+.547o

Tenr,n 3.4.5: Speed comparisonbetween Ros-SSP3rz and Ros-AMF j,z methods.
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Numerical results of pra&ical models

4.r Tus cnEMorAxrs PRoBLEM

Chemotaxis model is a remarkable system of equations in mathematical biology. It is

used to mathematically describe 1"8, yl the process of pattern formation of Escherichia

coli found by Budrene and Bergl7,8l. As a practical application of Ros-SSP3,z method,

we solve numericallythe chemotaxis model presented in [28],

一一　

　

〓

伽
一ａ
∂ρ
扉

aLu - 1tY - (uV xG)) + f (") ,

bLp- cplvu,

inox(o,oo),

inOx(o,-) ,

(a. r. r a)

(a.r.rb)

in which the boundary condition is of homogeneous Neumann and initial data is given.

Here O is a two dimensional bounded domain in which the bacteria are incubated. The

unknown functions u (*, !, t) and p (x, 1. f) denote the population density of the bacteria

and the concentration of chemical substance in O at time f € [o. - ), respectively. The

flux of bacteria is described by the term 1,r ("V X G)), where X (p) denotes a sensitivity

functionof chemotaxisandl ) odenotesamobilityrateofbacteria. a )> o and b > o



are the diffusion rates ofbacteria and chemical substance, respectively. c ) o and v ) o

are the degradation and production rates of p, respectiv"ly. lh" growth of the bacteria is

determined viaJ@).

All parameters for numerical computation are taken as same as in [4o, P. 3 5 3 ]. As

discussion in previous examples, the robustness of Ros-SSP3rz method is proven via

re-creating a series of patterns by varnng the chemotaxis coefficient p from small to

relatively large. This series of patterns contains honeycom\ swarn rings, continuous

stripes, and perforated stripes for small values of p as in Figure 4.r.r. When p becomes

larges the series is augmented with chaotically moving short-perforiated-lines, chaoti-

callymoving dots, and stabilized isolated dots patterns shown in Figure 4.r.2.

loneycomil (s) Swarm rings (c) Continuous (o) Perforatt

stripes

Frcunr4.r.r: ValuesoJltforthesepatternsare6.orT.zrs.z,andS.Srespertively.

(t) Chaotically mov- (n) Chaotically tnov-

ingperJoratedlines ingdots

Frcune 4. r.z: Values oJ y Jor these patterns are ro, 15 and 4o, respectiuely.

(e,) Honeycomd (s) Swarmrings (o) Perforated sffipes

(c) stabilized dots
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4.2 Tuuon-ruoucEDANcrocENESISMODEL

The tumor-induced angiogenesis model introduced by Anderson and Chaplain Ir ] de-

scribes the formation of blood vessel from a pre-vasculature during the growth of solid

tumors. This model consists of three variables which are the density of endothelial cells,

the concentration oftumor angiogenic factors (TAF), and the concentration of fibronectin.

Initially, TAFs secreted by a solid tumor diffuse and create a chemical gradient to neigh-

boring blood vessels. The endothelial cells lining these vessels response chemotactically

to these factors and begin to migrate towards the tumor. In the migration, the cells

have to pass through the extracellular matrix containing fibronectin. Fibronectin is also

synthesized and secreted by the endothelial cells and it stimulates the directed migra-

tion of the endothelial cells. This response of the cells to the gradient of fibronectin is

termed haptotaxis. Therefore, the movement of the endothelial cells is affected by two

elements. One is the chemotactic effect caused by TAF produced from the solid tumor

and the other is the haptotactic one caused by fibroneetin on the extracellular matrix and

from the cells themselves. These processes are mathematically modeled by a diffusion-

advection equation in a two-dimensional bounded domain O,

D"△″一″▽ (κ▽χ(C))一 ν▽

β4-γ

`
一ζε一η

“̀,

(a.z.rc)

in which the boundary condition is of homogeneous Neumann and initial data is given.

Theunknownfunction n(x,y,t),f (*,y,r), and ,(x,y,f) arethedensityof endothelial

cells, the concentration of fibronectin, and the concentration of TAF, respectively. This

model is modified from the continuous one proposed in I r ] .

The evolution equation ofthe endothelial cells, (4.z.ra), consists of fourterms in its

right hand side. The first term is the natural diffirsion of cells with a diffirsion parameter

Dn ) o. The chemotactic migration of cell is described by the term gV ' (nY X Q)),

where y ) o is a chemotaxis parameter and X (c) is a chemotaxis function. The hapto-

taxis behavior is expressed via the term vV ' ("Vrlt (/)), where v ) o is a haptotaxis

parameter and lr (fl is a haptotaxis function. The last term in the right hand side of

(a.z.ra) is the proliferation of the endothelial cells in which rc ) o is a capacity for

一一　
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the cells and 6 > o is a growth rate of cells. The second equation (a.2. rb) describes the

growth of fibronectin in which p > o is a production rate of fibronectin produced by

the endothelial cells and 7 ) o is an uptake parameter illustrate the uptake and binding

of fibronectin to the endothelial cells as they grow towards to the solid tumor. The last

equation (a.2.rc) describes the evolution of TAF consisting of the natural decay with a

rate ( ) o and some uptake by cells by a rate n > o.

The method Ros-SSP3,z is used to solved the model equation (+.r.r) with all fixed

Parameters

Dn: o.ooo3S, (: o.4, 6: o.l, K: t.o, F: o.o5r T: o.r, (: o.o5, 4: o.r,

except the haptotaxis one, v. The chemotaxis and haptotaxis functions are both chosen

as linear ones,

NG):cand'lrA:f.
The initial profile is given in the domain O : [o, r] x [o, r] as

f守 くバ 守 ,た =O123名

othenvise,

f (*.Y.o) : o.75e4P f-n)\ o.45,/
(

. lr ifr-(o.r,
c\x,/,oJ: {

[ (r.r - r)" otherwise.

withr:ffi.Thespatialdiscretizationisthesameasfortheabove
example with element size z-s and local approximation polynomials are of second de-

gree. The RosSSP3,z is employed for temporal integration.

At first, we consider the case of no haptotaxis, i.e., y : o. Under the effect of chemo-

taxis phenomena only, the endothelial cells migrates quickly and directly through the

extracellular matrixto the solid tumor by t : 2.5 as shown in Figure 4.2.r.

If the haptotaxis effect is included by setting v : o.zs, the movement of cells changes

as in Figure 4.2.2. It can be seen that the migration of cells toward the solid tumor is

slower than the case without haptotaxis. The aggregation of cells under the effect of

η
６０Ｐ一̈一呻
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く
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ｔ
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(e) r: r.o (n) t : z.o (c) t : 2.5

Frcune 4.2. r: Numerical simulation oJ the anlution oJ the endothelial cell density without hapto-
taxis efect. The color graduation is proportional to thd. cell density, white is high density and black
low density.

fibronectin can be observed clearly as the forming clusters at f : 3.o. After that, these

clusters merge together to form one cluster with high density of endothelial cells (t :
+.S). And this cluster migrates slowly to the solid tumor at f : 5.5.

Frcune4.z,.z: NumericalsimulationofthearclutionoJtheendothelialcelldensitywithhaptotaxis
efrect. The color graduation is proportional to the cell ilensity, white is higfu density and black low
ilensity.

(a) t: 3.o(e) t: r.o (c) r: a.t (o) t: 5.t
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