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High-power semiconductor die-attachment:
Application of Zn with minor metal additions

Abstract

Wde-gap semiconductor devices have been developed for next generation power electronics applications due

to their excellent physical and electrical properties. [r particular, SiC devices are expected to realiz-e higher

operating temperature than that of Si devices available today, and reduce the size of cooling system, or even

eliminate it. The elevated operating temperature also requires firrther improvement of die-bonding materials in

their physical properties, e.g. melting temperature, thermal stess relaxation, heat tansfer, to assure the

reliability and durability of the application devices. One of the prospective candidate materials is pure Zn,

showing excellent joining properties, as well as the low cost of the material. However, some concems of the

brittleness and oxidation of the material has not yet clarified especially used in elevated tempoature. This thesis

investigates the joining characteristics and thermo-mechanical properties of metal Zn for SiC die-attactr,

particulmly in the effect of minor addition of other metal elements (Ca, IVfir, Cr, and Ti) in ptne Zn. As well, a

discrete application of pure Zn to non-metalTwation Si wafer bonding process is presented to show further

potential of the bonding material.

It is found that the minor element additions effectively enhances the ductility of Zn; Ca, Mn, Cr achieves

eight times higher ductility than that of pure Zn without degrading the stength under thermal-mechanical stress.

Slightly less ductility is obtained by Ti addition than others due to fine precipitates formation on grain

boundaries. These minor metal additions, particularly Cr, bring considerable oxidation resistance in Zn. This is

because the active metal element like Cr forms a compact and stable barrier layer at the surface or subsurface of

Zn, preventing further oxidation.

The interface of the 7n alloys with Cu substrate is investigated in detail, focusing on the growth of

inter-metallic compounds (IMCs). The brittle nature of thicker IMCs degrades the joining reliability. Two

reaction layers of y-Cu5Zq and e-CuZn5 phases are observed at the interface, and the growth rate of the IMCs is

reduced by the minor element addition, particularly Cr addition. The shear stength degradation by thermal

agngat 150 ' C is accordingly moderated. Zn with 0.1 ttrf/o Cr has recorded a remarkable suppression of IMCs

growth during the aging test at250 "C.

Based on the improved bonding characteristics as described above, Zn-\.ICr alloy has been tested for SiC

chip attachment to SirN+ direct bonded copper (DBC) substratg followed by thermal cycle reliability tests

carried out in comparison with ptre Zn, and with conventional high+emperature solder Pb-5Sn. The Zn-0.lCr

solder shows a sound bonding interface between SiC die with a metallization of TiN/Au and the DBC substrate.

Moreover, the bonding structure of SiC and DBC provides excellent heat-cycle resistance between -50 oC and

300 'C without cracking, while Pb-5Sn solder encounters severe cracks.

The minor element addition in Zn explored in ttre present study confirms the great potential of Zn alloys as a

die-attachment material for high+emperature power devices.
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Abstract

In this chapter, the technology background about next-generation wide-gap semiconductor devices

and their packaging technologies such as die-attach materials is reviewed. Wide-gap semiconductors,

such as SiC, Ga\ and InP have been receiving considerable attention as an alternative technology to

replace Si power semiconductor devices. These compound semiconductors possess excellent physical

and electrical properties, such as a higher breakdown voltage, lower power loss and higher thermal

conductivity, which are suitable for power devices. Among the wide-gap semiconductors, this thesis

focuses on the die-attach of SiC wide-gap semiconductors due to the superior physical and electuonic

properties of SiC. The SiC wide-gap semiconductor devices are prospected to realize higher operating

temperature, and reduce the size of cooling systenr, or even eliminate it from the product devices. The

high operation temperature requires improved die-bonding materials with higher melting point and

higher thermal conductivity. Particularly for automobiles, ceasing the use of radiators is critical to

reduce both the total weight and number of fragile parts. In the following sections of chapter 1, the

current die-attachment technologies would be discussed, and shows no existing lead-free materials

can be applied to SiC power devices operated at high temperatures around 300 "C. The major

objectives of this thesis are hence to study the characteristics of Zn as one of the prospective

candidates for SiC die-attachment materials, and to enhance the physical properties with minor

additions of other elements together with detailed investigations of the joining properties.

-2-
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1.1 Die-attach technologies for power semiconductor devices

1.1.1 Power semiconductor device packaging

Semiconductor switching devices are key components in the power electronics technology. Various

tlpes of power semiconductor devices have been applied for on/off switching, current/power

conversio4 and energy storage tU. tn other words, powetr semiconductor e,nables to control the

various forms of electic energy (e.g. AC or DC and the magnitude of currents and voltages). These

semiconductor switching devices for electrical power conversions are simply called as "powetr

device", which performs the functions like rectifying (AC to DC), inverting (DC to AC), boosting

(DC to DC), and frequency conversion (AC to AC) [1-3] of electicity. Since electricity and

electuonics are the fundamental technologies of the modern human society, power devices can be

found in diverse application fields in our daily life as shown in Fig. 1.1 [4].
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The application ofpower devices have widely been used for controling and converting electronics.

With the continuous progress IIl technologies,■ e power devices have faced increased demands for

cost― efFective9 high powerp high density and high operating temperature,partlcularly in high power

electronics systems,like electrical automotives,since the main target of the power devices is tO

transfer power iom an electtical source to an electtical bad.To mea the requrements,the pacЦ ging

technology of these devices have impomnt r01es suCh as mechanical support, device protection,

cooling and electtical collnection and isolation.Controning and reducing power loss■ om packaging

materials is thus becoming more and more impomnt[1,3].

Until recendy power de宙 ces had been studied and developed almott exclusively on Srbased

selniconductor technologies. As mentioned abovQ however9 the development of power deviOes is

necessary to operate at hiま cllrrent denstties,high intemal electric flelds ant cOnsequently9 high

temperatwes envrollment for energy and cost erlciency.To achieve the required energy and cost

erectiveness, ■e rescarch of power devices places emphasis on more poweril, caEcic血 っdurable,

downsizing,and lighter in weight.A1l of these bring us new mot市ation to present Si based Power

electtonics technology.The requielnents of advanced performance cause high operating temperatures

due to integratiolll and dowllsizing of de宙 ces.For applications at high temperatures,■ is very

challenging to use conventional Si base semiconductor electtonics because they are generally lim■ ed

to operating temperatures below 150° C due to the limitations ofthe physica1/electtical properties and

the absence ofadvanced packaging technology[1,3].

The detailed limitations of Si power devices are described in the following paragraph[1,3,5]:

A. Small band gap energy

Band-gap energy is a fundamental characteristic of semiconductor materials. The small band-gap of

only 1.12 eV for Si semiconductor causes to lose the designed p-n junction characteristics around at

200 - 350 'C according to their doping conditions. Increasing leakage current with increasing

4̈¨
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temperature is also a challenge, and this may requires to use silicon-on-insulator (SOI) process for an

operating temperatures approaching 200 oC. Therefore, the small band-gap fails to satisfu the

requirement for power devices in future.

B. Low breakdown voltage

The small band-gap energy of Si as described above causes the low breakdown voltage of devices,

because the voltage blocking capacrty of discrete Si devices is less than 12 kV. One way to achieve

higher breakdown voltage is serial stacking package, but such workaround inevitably results in higher

on-state resistancg larger energy-loss, less current density, and lower switching frequency, and higher

cost of devices as well. There is hence a strong motivation to develop power semiconductor devices

that intrinsically have gteater breakdown voltage.

C. Low thermal conductivity

The operation temperature of Si power devices is also limited by the low thermal conductivity of Si

to effectively spread and transfer the generated heat. The critical thermal dissipation of power

applications thus needs cooling system like heat-sint which typically occupies one-third of the total

volume of power converters. Developing a power electronics that can withstand higher temperature is

one way of decreasing the cooling requirements to reduce the size and cost of the converter. Wide

band-gap semiconductor materials with higher thermal conductivity have been proven to be good

candidates to replace Si.

The constraints of the present power devices thus come from the intrinsic materials' properties of Si.

Post-Si power devices will be introduced in the following sections, to solve the facing requirements of

future power devices.

-D-
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1.1.2 Next generation power semiconductor devices: Silicon Carbide (SiC)

As mentioned in the previous section, Si is the most commonly used semiconductor material in

manufacturing power devices mainly due to its high availability and low production cost. For the

application, however, under high frequency, high temperature and high voltage condition, wide

band-gap compound materials (e.9. SiC, GaN, or InP) are demanded as replacements of Si [6-10].

Among these wide band-gap semiconductors, SiC receive attention because of the relatively high

qualtty crystal subsftates available by the progressing epitaxial growth technology. SiC exhibits a

wide variety of poly-types, but only 4H-SiC and 6H-SiC are commercially available to date. It has

been found that SiC offers a higher thermal conductivity, higher breakdown electric field larger

band-gap, and higher saturation velocity than Si. These principal physical properties are listed in

Table 1.1 l7,Il,l2l.

Table 1.1 Physical properties of wide band-gap semiconductor materials. [12]

Si 3C‐SiC 4H‐SiC 6H―SiC GaN

Band Gap (eV) 1.12 2.23 3.26 2.93 3.39

Break down Voltage (MV/cm) 0.3 1.2 2.5 2.8 3.3

Themal conductivity (WcmK) 1.5 4.9 4.9 4.9 2.0

Saturated velocity (cm/s) 1.7 x 107 2.0 x 107 2.2 x 107 1.9 x 107 2.7 x 107

‐
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The superior physical and electronic properties of SiC make it the foremost semiconductor material

for short wavelength optoelecbonics, and high-power/trigh-frequency electronic devices. Particularly

because of the excellent heat resistant with high breakdown voltagg SiC is expected to open up a new

market of power conversion devices for severe conditions of high-voltage (>10 kV), high temperature

(>150 oC), and high-frequency (20 kl{z) applications where Si technology is fundamentally

inadequate.

The detailed merits of SiC are recited in the following paragraph [6-8, 13-14]:

A. Wide band-gap energ)

Due to the wide band-gap over 3eV, electronic devices formed on SiC can operate at elevated

temperatures without suffering performance degradation of the intrinsic properties from increasing

thermal carriers. Also, this property allows SiC to IGBT for use in electric vehicles, short wavelength

optoelectronics.

B. High breakdown voltage

SiC withstands a large voltage gradient (i.e. high electric field) over seven times greater than Si

without breakdown (see Table 1.1). This high breakdown electric field enables the fabrication of

high-voltage, high-power devices such as diodes, and power transistors, as well as high power

microwave devices. Additionally, it allows the devices placed close to each other, providing high

density device packing for integrated circuits.

C. High thermal conductivity

The thermal conductivity of SiC is excellent. Heat flows faster through SiC than other

semiconductor materials. This property enables SiC devices to handle extremely high power current at

severe high-temperature environrnents. Additionally, the high thermal conductivity is also beneficial

-'t -



Chapter I
Introdaction

to maximize device packaging density due to efficient thermal dissipation.

D. High saturationvelocity of electron

SiC devices can operate at high frequencies (RF and microwave) due to its high saturation electron

drift velocity.

As discussed abovg the thermo.physical properties allow SiC to offer hemendous benefits over

other available semiconductors for a large number of industrial and military applications, such as

IGBT for hybrid or electric vehicles, distributed controls for aircraft and so on. Table 1.2 summarizes

the advantages and application field of SiC power devices.

Table 1.2 Application field and advantages of SiC power devices.

Device Characteristics Advantages Application field

High breakdown voltage Large power capacity Electric ships, HEV/EV

High current density High reliability, downsizing Space craft, Satellite

High operation temperature Small cooling system
Power

transmis sion/dishibution

High switching speed
Reduced passive

components
Energy exploring

Low power losses High effrciency HEV/HV. Motor drives

-8-
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1. 1.3 Die-attach technologies

In electronic packaging technology, interconnection materials are commonly categorized into

firstJevel and second-level packaging. The former provides direct interconnection to the intergrated

circuit (IC) chip, which is generally called as "die". The latter, in confrast bonds the components on a

printed wiring/circuit board (PWB, PCB) [15-16]. A schematic illusfration of typical packaging

structure is displayed in Fig. L2. Die-attachment to a substate like PCB is one of the first-level

packaging technologies that can be applied to integrated circuits (ICs), insulated gate bi-polar

transistors (IGBTs), light emitting diodes (LBDs), quad flat packages (QFPs), and many other device

components. It is thus a fundamental and necessary element of any packaging approach of

semiconductor devices, as illushated schematically in Figure 1.3.

In the electronic packaging technology, the die-attrach interconnections require sufficiently higher

melting point to assure that the bonded interface should not be re-melted during following assembly

processes such as reflow soldering. For example, the melting point of die-attachment materials

typicalty need to be above 280 "C when the reflow temperature is 210 - 250 "C. The die-attach layer

supplies a major heat dissipation path into the devices, so that the relaxation of thermo-mechanical

stress caused by the mismatch of the coefficients of thermal expansion (CTE) between die and

substate is critical issue in the production. The die-attach layer sandwiched between the devices and

subsfrate not only needs to withstand cycled thermal stress, but also to buffer mechanical stress to

protect more brittle parts like semiconductor crystals to ensure the proper function of device.

To obtain the aforementioned functions, high temperature solder is the most commonly used for

die-attachment. High temperature solder using lead such as Pb-5wP/oSn of which liquidus temperature

of 3I4 "C is one of the typical bonding materials used in die-attachment.

-9-
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irst-level packaging
(e.g Die attachment)

Fig. 1.2 Schematic illustration of a tlpical package structure [16].

Fig. 1.3 Schematic structure of electronic device with die-attachment.
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1.1.4 Conventional die-attach material: High-lead solders

High-lead solders (e.g. Pb-Sa Pb-Ag, and Pb-In) are widely used in various types of applications

in the first-level packaging t171. High-lead content solders are currently being used as

high-temperature solders in power semiconductor packages due to several favorable characteristics

such as low cost, excellent wettability, and workability [17, 18]. In particular, Pb-Sn alloys

containing 8547 vtf/o Pb exhibit superior characteristics to others, with the lowest cost among them

t18-201. Thus, the Sn-Pb solders containing over 85 wt.% of Pb are popularly used as

high-temperature solder material for the die-attachments and for bump joints in flip chip packages.

Typical compositions of Pb-Sn solders are Pb-5Sn and Pb-l0Sn, which have melting ranges of 300

-314 and268 - 301 oC, respectively [18-19, 21]. Figure 1.4 shows the binary phase diagram of

Pb-Sn allov.
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Fig. 1.4 Binary phase diagram of Pb-Sn alloy [21].
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These lead-based solders exhibit numerous excellent properties, though they need to be completely

eliminated from electronic applications in the near future under the Restriction of Hazardous

Substances (RoHS) directive, which claimes that Pb causes serious problems relating to both human

health and the environment. Despite of the great effort to find lead-free die-attach materials, no

replacement with Pb-Sn high temperature solders, partly because most of the researches have focused

on developing middle or low temFerature lead-free solders. For instance, Sn-37Pb solder has

successfully been replaced by Sn-Ag-Cu 122141 and Sn-Cu L22, 251 alloys with improved

mechanical properties. Suitable candidate alloys for high temperature lead-free solder are rarely

reported in the literature, and hence Pb-Sn solders are still being used in die-attachment. The

establishment of a high-temperature lead-free solder applicable to die-attache has become one of the

critical issues in the electronics packaging.

-L2-
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1。 1。5 Requirements forlead‐ free die¨ attach lnaterials

Solder albys suitable for selniconductor dic―amch need tO have numerous characters in their

materials properties such as thermal fatigue resistance,electl・ ica1/therlnal conduct囀,and OXidation

resistancQ as well as the basic mechanical properties ofsollndjoining.In order to replace Si with SiC

in power devlces, it is necessary to establish a standard dic‐ attadunent technology including

high… temperature lead‐■ee solder materials.Even SiC has many advantages to Si,they are basically

comected to the high∝ opttating temperatures above 300° C.Tha packa」 ng Of SiC power devices

including die― attach need to be mproved also to ensure such high temperature operation.

Considering the harsh operating envirollment of SiC Power devices,a good altemative die― auachment

material should satistt■ e f0110Wing indamental properties 122,26つ 8]:

1. Melting temperature should be higher than 300 oC to withstand at the operating peak

temperature approximately 300 "C.

2. Low elastic modulus and certain ductility to maintain a joint structure by relaxation of

thermal sfuess.

3. Small thermal expansion to minimize thermal sfiess, particularly at reflow treatment.

4. Low electrical resistivity to reduce power loss.

5. High thermal conductivity for thermal dissipation of devices'

6. Thermal and mechanical reliability and durability, especially in fatigue resistance.

7. Suffrcient workability to be thin wires or sheets.

8. Environmentally friendlywithin reasonable economical cost.

9. Airtightness not to break vacuum package.

10. Flux-less process.

11. No alpha ray emission.

‐13‐
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1.2 Candidate of lead-free solders for silicon carbide die-attachment

In spite of a wide range of service environments and reliability requirements, only a limited number

of solders have been proposed for SiC die-attachment beoause of the stict requirement of liquidus

temperature. Figure 1.5 summarizes alloy systems whioh have liquidus temperature over 280 "C. In

relation to the requirements mentioned above, fre candidate materials for SiC die-attach application

are briefly reviewed in the following section.

500・C

450°C

400・C

350・C

300°C

250°C

200°C

Fig. 1.5 Liquidus temperature of candidate of SiC dio-attachmaterials [17, 21,2910].
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1.2.1 Au-based die-attach materials

Au based solders are all Au-rich eutectic composition alloys such as Au-20Sn, Au-3Si, and

Au-l2Ge, and have melting temperature between 278 and 363 "C Ll7, 2t-221. Their properties are

summarized in Table 1.3. Application of these alloys is often limited by the high cost of Au, though

three tlpical Au-base solders are briefly discussed below.

A. Au-205n eutectic solder

The eutectic Au-Sn alloy that includes 20 wt.% of Sn corresponds to the Au rich eutectic point

with a melting temperature of 280 oC (see Fig. 1.6). It has superior properties (e.9. creep resistance,

low Young's modulus) to Pb-5Sn that has the similar melting poin! so that it is widely used as a

solder for high-temperature applications. The high thermal and electrical conductivity is particularly

attactive for flip-chip bonding. However, the Au-20Sn solder alloy shows poor workability due to

the own hard and moderately brittle nature. These properties mainly arise from the fact that it consists

of two coexisting phases: &cp substitutional alloy (6-AuSn) and orthorhombic intermetallic

compounds (MCs). According to the Au-Sn phase diagram [21] in Fig. 1.6, the composite displays

Table l.3 Au based dic―attach mterials[22,29]

Solders

(‖%)

Melting point

('c)

Thermal

conductivity

(Wm.K)

CTE

(ppm)

UTS at25°C

(MP→

Electrical

resistivity

(rAcs%)'

Au-20Sn 278 57.3 17.5 275 8.0

Au-3Si 363 27.2 14.9 220 15.6

Au-12Ge 361 44.5 13.0 185 7.2

燿 CS=動たrルηria″αJИκ″ια′θグCqψar勝雛α醐 /И γガ′9βιルθ″たα′
`θ

″グχθ′ル′ヶメうr″araJs α
“
′α′J9ガ
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(-Au5Sn + 6-AuSn microsfoucture at room temperature, and eutectic reaction of L ++ q + 6 at 280 "C.

The (-phase Au5Sn is stable over a wide range of composition, while the 5 phase of Mg-t1pe

hexagonal close packed sfructure (hcp) is mostly found at 280 oC. Consequently, the growth of the

IMC crystals in the solid phase at lower temperature limits ductility of the hcp phase, and affects both

the workability and joining property of the solder. In addition to all the problems above, the high cost

ofAu narrows the application range ofAu-20Sn alloy as high temperature solder material.

Weight percent Tin

Fig。 1.6 Au―Sn binary phase diagram[21].

B. Au4e eutectic solders

Au-Ge eutectic solder (Au-12 wt.% Ge) is one of the most athactive candidate as similar to the

Pb-Sn system because of no intermetallic phase found in the alloy, and also because of the adequate

eutectic temperature of 360 oC as seen in Fig. 1.7. Au-Ge solders can be used as ternary alloy with a
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fface amount of Sb or In [31]. Au-{.24Ge4.05Sb alloy is a promising candidate for die-attach solder

applications, where high ductility of solder alloy is required to relax thermal stresses.

Au-{.l8GgF{.101n is also an alternative lead-free solder for optoelectonic packaging because of the

high strength, the low elastic modulus, and the stable microstructure at high-temperatures.

The problem of developing Au-Ge based alloys replacing present high-lead solders is the cost

associated with the price of Au. The price of Ge is also high so that these alloy systems are less

cost-efficient. Furthermore, Au-Ge based alloys tend to form dross than the other Au-base solders.

O      SC ●●

l{eight Percent GermsIrium

Fig. 1.7 Au-Ge binary phase diagram [21].
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Atamic Percent Gerr*anium
0t ?0

so
Cermenium

Fig. 1.8 Au-Si binary phase diagram [21].

C. Au-Si eutectic solder and eutectic bonding

Au-SieutecticalloyhasacompositionofAu-3wt.%Siandameltingpointof363 oC.Itisasimple

eutectic composition, and IMCs do not form in the entire composition of Au-Si alloy as seen in Fig.

1.8. However, Au-Si alloy indicates inter-diftrsion and the liquidus line of Au-Si alloy would

become dramatically higher with a small increasing of Si content when Au-Si alloy joined with a Si

die. Special care should be taken in hot-rolling process of Au-3Si solder due to the high brittleness.

Au-Si eutectic bonding is another method of packaging but not used as a solder alloy. This is a

widely used bonding process for Si die-attach or wafer-to-wafer bonding, particulary in

microelectro-mechanical systems (MEMS) packaging t32141. However, several problems are

reported in the literature such as the formation of air voids and craters [35-37]. Void formation may

cause delamination at the interface between a Si die and Au-Si alloy [36]. Hence an adequate barrier

layer of metallization is required to avoid the mutual dissolution between a Si die and Au-Si alloy.

Otherwisq a new type of high temperature alloy should be developed.
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As reviewed above, Au-based solder alloys can be used for flux-less die-attach process of Au

metalized chips in the semiconductor packaging. Although these solders possess a proper melting

temperature around 300 oC, they have serious drawbacks that make it diffrcult to replace the high-lead

solders in commercializedbroad applications. These demerits can be summarized as follows:

- High price of Au: Au is too expensive precious metal to be used in common elecfronics device

packaging. The price of gold has been increasing rapidly about twice during the last four years

(see Table 1.4).

- Poor workability: Au-20Sn and Au-3Si solders have brittle nature to fabricate solder products

like wires, foils, or powders.

- Massive IMCs formation and inferior wettability

Table 1.4 Average price of pure metal in solder alloys [38, 39]

Metal
Price (USD/kg )

on November,2008

Price (USD/kg )

on Septemberr2012

Gold (Au) 28"646.87 57,53r

Silver (Ag) 369.28 l,l2l

Tin (Sn) 15.10 21.45

Aluminum (Al) 1.98 2.tl

Copper (Cu) 3.76 8.28

Bismuth @i) 9.86 28.45

Lead (Pb) r.47 2.32

Znc (Zn) r.t2 2.14

Antimony (Sb) 4.51 14.99
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1.2.2 Bi-Ag based die-attach materials

Owing to Bi having proper melting temperature of 27I oC, Bi and its alloys become candidate

die-attach materials for high temperature application. Unfortunately, Bi has brittle nature as common

solders, and has poor thermaVelectrical conductivity. To improve these drawbacks, Ag was generally

adopted for alloying. Bi-Ag eutectic system offers an acceptable melting point as shown in Fig. 1.9.

The eutectic temperature is 262.5 "C at the eutectic compositiorl 8i1.5 wt.% Ag. Bi-2.5Ag solder

does not form IMC, and low solubitty of Ag in Bi inhibits solid-solution strengthening. The solder

alloy are still under development to improvements the inferior thermaVelectrical conductivity as well

as poor workability, i.e., brittle Bi phase. Raising Ag content up to about II wt.% improves the

elecfical conductivity, e.g. 86.5 pf)'cm for Bi-llAg alloy, considerably reducing the higher

resistivity of 116.5 pQ'cm for Bi-2.5Ag eutectic alloy [40, 41]. The thermaVelechical properties of

pure Bi, Bi-Ag alloy, conventional Pb-5Sn solder, and Au-2OSn lead-free candidate alloys are

summarized in Table 1.5.

Despite the considerable improvements in ductility and thermaUelectrical conductivity, Bi-Ag

solder alloys show higher electrical resistivity than other solder alloys (e.g. Pb-5Sn, and Au-20Sn).

The brittle fracture and poor thermal conductivity are shown in Fig. 1.10 and 1.11, respectively.

Bi-Ag based solder alloys thus need more improvements in thermaUelectrical conductivity, as well as

brittleness for commercial applications.
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Fig. 1.9 Bi-Ag binary phase diagram [21].

Table 1.5 Pure Bi and Bi-based high temperature solders as compared with

other lead―■ee solder candidate E22,29,40].

Solders

CWt%)

Liquidus temperature

(° C)

Thennal conductivity

(Wm.K)

Electncal resお t市ity

(luξ2/Cm)

Bi 271.4 9.0 117.0

Bi-2.5Ag 263 9.2 116.1

Bi-1lAg 360 10.4 87.3

Pb-5Sn 314 34.7 18.4

Au-20Sn 280 57.3 16.1
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Fig.1.10 The typical bri■ le iacture surfaces(SEM):

(a)Pure Bi,(b)Bi-2.5Ag,and(c)Bi― HAg[42].
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1.2.3 Sn-Sb based die-attach materials

Sn has been used as primary element in most of solder alloys due to its excellent workability,

wettability, and reasonable cost. Sn-based solders are hence proposed for high temperature lead-free

solder. The addition of Sb in Sn assigns the proper melting temperature and more reliability in

soldering. As seen in Fig. 1.12, Sn-Sb binary system has no eutectic reaction, and the liquidus

temperature increases with increasing Sb content. For this reasor! numerous studies have reported the

interfacial reactions on metallic subshates, and mechanical properties of Sn-Sb solder alloys [44-46]'

Among various Sn-Sb alloys reported, Sn-5Sb is considered to have a great potential to replace

high-tead solders in application due to the excellent microstructure stability and mechanical properties

of the joining interface obtained by Sn-5Sb solder [a7]. Staying at the near-peritectic composition in

the phase diagram (see Fig. 1.12), Sn-5Sb alloy has a melting point of 245 "C, which may be too low

for SiC die-attach applications.

Weight ttrccnt A筆奪ir職 o森y

Fig.1.12 Sn―Sb binary phase diagram[21].
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To increase the melting temperature of Sn-5Sb solder some literature proposed Sn-l0Sb binary

alloy. Although Sn-l0Sb alloy has the melting point of 270 "C, the amount of Sb addition beyond 5

wt.Zo forms hard and brittle IMC phases such as B-SnSb and Sn3Sb2 as found in the phase diagram of

Fig. 1.12. Moreover, toxic sulfide or chloride of Sb can be produced through the following reaction

path [48].

2Sb + 3Oz: SbzOs

Sb2O3 + HCI: SbCl3 + I{2O

SbzOr + HNO:: Sb(NO3)3 + I{zO

SbzOr + I{zSO+: Sb(SO4)2 + I{2O

The low melting temperature for high-temperature soldering, high cost of Ag, and toxicity of Sb

thus resffict wide application of Sn-Sb solder alloys.
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1.2.4 Zn-Al based high temperature lead-free solders

Zn-based solders axe one of the attactive candidate alloys due to the beneficial cost, and typically

used with alloying Al to improve the poor wettability in the atnospheric conditions. Zn-Al solder

alloys have potential merits, as listed below f17,26, 491-

- The joining sfiength with Zn-based solders is typically 2-3 times higher than commercial high-lead

solders (5-10 MPa).

- They are cost-effrcient compared with almost all other solder alloys (see Table 1.4).

- They are light weight materials due to the low density of Zn (7.13 gl"d), which is approximately

two-Thirds of Pb-5Sn solder (11.2 glcm3).

- They posses much higher thermal and electrical conductivity.

Zn4 wt.% Al alloy with a eutectic melting temperature of 381 oC is a very interesting candidate

for high temperature applications. Ztu4lll alloys are used as high-temperature solders for various

applications, especially in die-attaching process. Despite the low cost, there are several drawbacks

when considering the use of Zn-6Al alloys as high temperature solder as following 126,50-521.

- Znis a corrosive metal and this may severely limit the lifespan under typical service conditions.

- These alloys exhibit relatively poor wetting behavior due to the high oxygen affrnrty of both

ZnandAJ.

- Zn-Al eutectic alloy exhibits a dendrite microstructure and is relatively hard in comparison to

high lead content solders.

Moreover, Zn-Al solders form and grow some intermetallic compounds (IMCs) such as B
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(disordered bcc) or B' (ordered bcc), y (Cu5Zq) and e (disordered hcp), when it is used with popular

Cu substrate. In particular, the layer thickness of y-phase rapidly increases above 200 "C.

Therefore, many researchers have discussed methods to improve the drawbacks of Zn-Al solder

alloys, and micro-alloying is regarded as one of the most effective ways. The effects of Cu, Sq Mg

and Ga additions into Zn-Al alloys have been investigated, but the data available today is still sparse.

The problems of Zn-Al solders thus have not yet been solved as review bellow.

A. Zn -Al 1u ternary alloys

Cu addition to Zn4N solder is observed to suppress the excessive consumption of substrate Cq

and results in decreased activation energy of IMC growth. Therefore, Zn-base solders hke Zn-(4--67

wt.% N- (1-5) wt.% Cu have been developed for ulfra-high temperature applications 152,53). These

solders are designed to have liquidus temperatures between 382 and 402 "C. According to Kang et

al.'s report [53], the increase of Al content from 4.0-6.0 wt.% relatively improves the spreadability

and elechical resistivity. As the Al and Cu contents increases, the fraction of cr-r1 eutectic/eutectoid

phases increases, resulting in higher Vickers hardness and tensile shength. Although Zn-Al-Cu has

excellent hardness and tensile strength, its elongation limit is below I0 yo 152,531, which implies that

Zn-AJ1u solder needs to improvement the ductility.

B. Zn -Al -Mg-X quatemary alloys

Zft4Al1INdg-3Ga has been investigated by Shimizu et al. 126l to replace Pb-5Sn solder for

die-attaching use. According to this research, Zn4Al-3Mg-3Ga alloy's solidus and liquidus are 309

and 347 oC, respectively. A small amount of voids was achieved at 320 "C or higher in the

die-attaching test case of Ag metalized lead-frame and Au plated dummy die. Although this alloy

exhibited a sound die-attach status, poor workability and a low capacity for stess relaxation at room

temperature may cause a problem. Shimizu et al. reported no failure was observed until 1000 cycles
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or until 1000 h of thermal cycle tests between -65 and 150'C [26]. However, Haque et al. reported

the formation of cracks under the same thermal cycle conditions as shown inFig. l.l3 [54]. Beside,

Ga is known to cause liquid metal embrittlement in Al by significantly reducing the cohesion between

aluminum grains, and thus lead to severe embrittlement failure [55]'

To solve the liquid metal embrittlement of Ga, Cheng et al. proposed another alloy design with the

addition of Sn instead of Ga [56]. These Zn-Al-Mg-Sn alloys can reduce the solidus and

undercooling. Such Sn additiorl however, may deteriorate the ductility of Zn4/JlMg alloy. Thus,

the amount of Sn addition should be controlled carefully.

For these reasons, Zn-Al based solders have greatly limited the adoption despite they have the

potential benefits.

Fig. 1.13 SEM micrograph of die attrach samples after 1,000 thermal cycle test

with Zn-Al-Mg-Ga solder (a) substrate side, and (b) dummy die side [54].
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1.2.5 Zn-Sn based high temperature lead-free solders

As mentioned in the former section, Zn-basedalloys possess many potential benefits such as low

cost, high strength, proper melting temperature, and thermaVelectrical conductivity. Nevertheless,

Zn-Al solder alloys are not in practical use due to their serious drawbacks (e.g. brittleness and

formation of massive IMCs). Extensive researches have been done in search of alternative Zn-based

alloys that do not form IMCs in microstructure with maintaining a sufficient ductility. Zn-*snalloys

(x: 2040 wt.%) have been proposed as a new class of high temperature lead-free solders by the

author's research group. Zn-Sn alloy possesses suitable features for high temperature solder

applications including relatively high liquidus line (seen Fig. 1.14), along with the fact that IMCs are

unable to form in the whole range of composition ratio. Fig. 1.15 shows the typical microstructure of

Zn-Sn solders where the dark and bright parts respectively represents the primary a-Zn and eutectic

Sn-Zn phases without any formation of IMCs. The alloys also show a much improved ductility

compared to other Zn-based alloys, excellent electrical properties, and oxidation resistance at high

temperature/humidity 156, 571. The thermal conductivity of Zn-xSn (x : 20,30, and 40) have been

investigated by Kim et al. [58-60], and the results demonstrate that the thermal conductivities of

Zn-Sn alloys of 100-106 Wm K are sufficiently high and superior to those of both Au-2OSn (59.1

Wm K) and Pb-5Sn (35.6 Wm K). The shear strength of soldered CalZn-SnlCu joint reaches 3014

MP4 being higher than that of a Pb-5Sn solder (26.2lvPa) [58]. Mahmudi and Eslami have studied

the high-temperature shear stength of bulk Zn-Sn solders, and concluded that the yield stress of

Zn-Sn solder alloys at298 and373 K is much higher than that of a Pb-SSn solder [61]. Impression

creep behavior of Zn1DSn, Zn-30S4 and Zn-40Sn solders have been studied by Mahmudi and

Eslami as well [62].

Zn-Sn alloys are believed to be one of the most promising lead-free candidates. However, one of

the concerns for this alloy as a high-temperature solder is the liquid formation at its eutectic
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temperature of 199 "C. Due to this reason, the eutectic Sn-Zn alloy has been used only as a

low-temperature solder. This is a critical drawback of the material to be applied for SiC

die-attrachment, because SiC power devices are supposed to have a maximum operating temperature

beyond 300 'C. The operation temperature must be kept below 200 oC when Zn-Sn high temperature

solder alloy is used.

lleight Pereeni. Tin

Fig. 1.14 Zn-Sn binary phase diagram [21].

(b)Fギ |

Fig. 1.15 Typical microsfuctures of the Zn-Sn solders;

Alomic Percenl Tin

8t:

{zn) (dsn)
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(a) Zn-40Sn, (b) Zn-30Sn, (c) Zn-20Sn, and (d) Zn-30lnalloys [57].

The die-bonding materials have a key role for device packaging of wide-gap power semiconductor

like SiC because of the severe requirements in both reliability and heat management. However, the

currently available lead-free materials introduced above do not satisfy the requirements. Therefore, it

is necessary to develop new high-temperature die-bonding materials for wide-gap semiconductors

packaging.
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1.3 Motivation and objective of the thesis

1.3.1 Pure Zn die-ilttchment

As for the conventional power devices, the maximum temperature in service should below 150 "C,

which can be reached in engine room of automobiles, it is preferably in the range of temperature

below 100 "C. The aforementioned candidates can fulfill this temperature requirement so far. SiC is

expected to replace conventional Si power devices, and be used without any cooling system causing

high operating temperatures in the range of 250 "C-300 oC, as already introduced section of 1'1.2.

Owing to the requirements of excellent reliability and heat management, the interconnection essential

to the die attachment in power device has a key role to develop such SiC applications. Unfortunately,

none of the current lead-free materials as stated in the former sections is sufficient for SiC power

devices operated at high temperatures up to 300 "C. Particularly for automobiles, ceasing the use of

radiators is favorable in reducing the total weight and eliminating a fragile part for better reliability.

The author's research group has proposed a new heat-resistant die-attachment structure for SiC on

flre Si:N substrate by using pure Zn solder, which has the great advantage of inexpensiveness, and of

excellent thermal-shock resistance between -50 and 300 oC, in compared with conventional Pb-5Sn

[63].

However, the crystal structure of Zn is widely known hexagonal close packed (hcp), which usually

have some brittleness due to the limited numbers of slip/twinning systems. In addition, pure Zn is

relatively active element resulting in easy oxidation at a typical operating temperature of SiC power

devices. Pare Znreserves certain concerns particularly in brittle and oxidation-sensitive features to be

used as an ultra-high-temperature solder. Therefore, the author evaluates the effects of adding minor

elements on the characteristics of Zn and investigates the interfacial reactions. The author selected Ca,

Mn, Cr, and Ti as minor elements because they are active metals, and hence are expected to form

fine-grain structures [21], scavenge impurities in the matrix, and form a protective oxide layer on the
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surface of Znl23\

1.3.2 Objective of this thesis

In order to establish a SiC die-attach material, the improvement of some drawbacks pure Zn solder

is considered. As described above, pure Zn may have certain drawbacks for use in high+emperature

solders, e.g. the brittleness nature and oxidation that come from the crystal structure and low

free-enerry of oxide formation. To improve such kinds of these properties of metals, many studies

have been conducted on the small amount of additives of second elements. In case of lead-free solders

or die-attach materials, these researches have been focused mainly for middle temperature Sn-based

solders. Moreover, Zn asily forms intermetallic compounds (IMCs) with metal subsftates like Cu or

Ni, and IMC growth significantly decreases the mechanical properties of the solder joints.

The primary objective of this thesis is thus to enhance the characteristics of pure Zn through minor

additions of metal elements toward SiC die-attachment application. To verifu relaxation of

thermo-mechanical stress and suppression of oxidation during the device operation, the materials

properties are investigated by tensile tests and high-temperature accelerated oxidation tests. The

interfacial reaction is also studied focusing on the IMC formations which are the major origin of poor

sfrength and reliability in metal joining. Suppression of IMCs growth in solder joints is thus important

issue to the electronics indushy. In this study, SiC die-attachment with minor element added solders

were carried out on a silicon nitide (Si3N4) direct bonded copper (DBC) substrate. The joining

properties and reliability of die-attrach have been examined with thermal cycle tests.
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Outline of the thesis

This thesis consists of six chapters including the current chapter 1. This chapter describes the

objectives of the research, as well as a brief introduction to the power devices and the die-attach

technologies. A limitation of the presently available alloys for SiC die-attachment is also reviewed,

particularly for Au, Bi, Sn, and Zn based alloys. The potential of pure Zn is also addressed on the

basis of a new concept for dieattach material.

In chapter 2, minor additions of typical active elements, namely Ca, M4 Cr, and Ti, are adopted to

enhance the ductility and oxidation resistance of pure Zn. The ductility of the modified materials is

investigated by tensile tests, and the oxidation resistance evaluated by thermal gravimetric analysis

(rGA).

In chapter 3, the interface properties between a Cu substrate and minor elements added Zn alloys is

investigate.d. IMC formations at the interface are scrutinized in connection with the degradation of

joining strength and reliability during thermal aging tests'

In chapter 4, the joining property of the SiC die-attachment by soldering with minor elements

added Zn is reported. Thermal cycling tests are caried out, and the change in interface structure and

joining strength of the solder joints are discussed.

In chapter 5, the athactive application of pure Zn for Si wafer bonding is presented. By using pure

Zn as solder, a uniform and void-free bonding process is realized without metallization of Si wafers.

The results are compared with conventional Au-20Sn solder.

In chapter 6, the results obtained in the present study are summarized, and suggestions for future

works are presented.
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Chapter 2

Enhanced ductility and oxidation resistance of Zn

by the addition of minor elements

for use in SiC die-attachment
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Abstract

Pwe Zn is one of the best die-attachment candidates for use in next-generation wide-gap

semiconductor power devices operating at temperatures up to 300 'C. However, it has certain

drawbacks when used at high operating temperatures: poor ductility and limited oxidation resistance.

In this chapter, we investigate the effect of adding minor elements - Ca,Iu[r, Cr, and Ti - for better

ductility and oxidation resistance of Zn. These additions have found to reduce the grain size in their

microstuucture, enhancing the tensile strength and the elongation limit of the material. Oxidation

resistance of pure Zn is significantly improved as well. The enhanced ductility and oxidation

resistance consequently increases the interconnection ability of Zn alloys as die-attachment

candidates.
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2.1 Introduction

From the viewpoint of energy conservatiorq wide-gap semiconductors, especially silicon carbide

(SiC) have been receiving considerable attention as an alternative technology to replace Si power

semiconductor devices. These new wide-gap SiC semiconductors possess excellent physical and

electical properties, such as a higher breakdown voltagg low power loss and higher thermal

conductivity. The wide-gap SiC semiconductor devices were prospected the high operating

temperature because they can reduce the size of or eliminate the cooling system. Therefore, die

bonding materials of wide-gap semiconductors have to need the high-melting temperature and high

thermal conductivity U, 2l.High-lead solders have been widely used for power-device packaging

owing to their beneficial characteristics [3, 4]. Although these solders exhibit numerous excellent

properties, they need to be completely eliminated from electronic applications in the near future under

the Restriction of Hazardous Substances (RoHS) directive. This is because they lead to serious

problems relating to both human health and the environment owing to lead toxicity. Therefore, several

alternatives to high-lead solders-including Au-Sn/SilGe alloys [5-8], Bi-Ag alloys [9, 10],

Zn-Al-based alloys llI, I2l, and Zn-Sn alloys [13, l4]-have been proposed. However, lead-free

alloys currently used for die attachment have several serious problems----such as the formation of

massive intermetallic compounds QMCs) [5, 6], their brittle nature 19-121, and their eutectic reaction

at about 200 "C [13]. These drawbacks make it difficult to replace conventional high-lead solders,

especially in high-temperature operation above 200 "C, and thus limit their applications.

In wide-gap power semiconductor devices, the die-bonding materials are a key role to applications

owlng to the requirements of excellent reliability and heat management. However, the current

die-attachment lead-free materials could not be applied to wide-gap SiC semiconductor devices. For

these reasons, it is necessary to develop new high temperature die-bonding materials for wide-gap

semiconductors attachment.

In a previous study, the author's research group proposed a new die-attachment structure using a
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ptrre Zn solder for SiC die attachments, which possessed the merits of being inexpensive and

exhibiting excellent thermal shock resistance between -40 and 300 oC 
[15]. However, pure Zn still

has certain drawbacks for use in high-temperature solders, e.g., brittle nature due to hexagonal close

packed (HCP) structure (see Table 2.L) and sensitivity to oxidation stem from low free energy oxide

formation.

Although many studies have been conducted to improve the mechanical and chemical properties of

Zn through the addition of trace amounts of other elements 121-241, this has been done only for

Sn-based solders. However, there is no study to increase the ductility and oxidation resistance of pure

Zn for use as a die-attachment material by the addition of minor elements. In this chapter, the author

evaluated the effects of adding minor elements on the microsfructure, tensile properties, and oxidation

resistance of Zn. The author selected Ca, Mn, Cr, and Ti as minor elements because they are active

metals, and hence are expected to form fine-grain structures [21], scavenge impurities in the matnx,

and form a protective oxide layer on the surface of Zn[23].

Table2.I Slip system and critical resolved shear stress (CRSS) of

single crystal metals at room temperature Ll610l

Crystal

structure

Punty

(%)

Slip

plane

Slip

Direction

CRSS

(MPa)

Re■

Zm HCP 99。999 (0001) [11-20] 0。 18 16

Mg HCP 99。 996 (0001) [1120] 0。77 17

Ti HCP 99。 99 (1010) [11-20] 13.7 18

Ag FCC 99.99 (111) [110] 0.48 19

Cu FCC 99。 999 (111) [110] 0。 65 19

Ni FCC 99.8 (111) [110] 5。 7 19

Mo BCC (110) [111] 49.0 20
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2.2 Experimental procedures

Preparation of minor element added Zn

The minor altoying elements were added to pure Zn(>99.99%), with the amount of each element

addition being fixed at around 0.1 masso/0. Hereafter, the composition unit "massYo" is omitted and

these alloys are simplyreferred to asZn-X alloys (X: Cg lvln, Cr, and Ti). The experimentalZn

alloys were melted with the minor alloying elements in an arc-melting furnace and allowed to cool in

the fumace. Table 2.2 shows chemical composition of prepared die-attach materials which were

arnlyzedusing inductively coupled plasma (ICP) mass spectroscopy.

Tmsile test of minor element added Zn

The ingot specimens were cold rolled into 1.2-mm sheets and were cut by an electro-spark

machine for use as specimens in tensile tests. The gauge length and width of the specimens were24

_43_

Tablez.2 Chemical composition of pure Znandminor elements added Zn

Composition (massTo)

Pu'reZn Zn―Ca ZEl―Mm Zn-Cr Zn―Ti

Pb 0.001

cd <0.001

Cu <0.001

Ag <0.005

Ca <0.001 0.086

Mn <0.001 0.092

Cr <0.001 0.087

Ti <0.001 0.089
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and 4 mm, respectively. The specimens were homogeneously heat treated at 180 "C for 3 h to remove

residual stress and defects. Then, they were polished using 3 pm AlzOs powder. Tensile tests were

performed at room temperature at a strain rate of 7.0 x 10{ s-t. Figure 2. 1 shows the illusftation of a

tensile specimen and the tensile test status.

Fig.2.l Schematic and photo image of tensile test specimen.

Micro stracture analysis

The microstructure changes were observed using a scanning electron microscope (SEI\4 JEOL,

JSM-5510S). For observation of microstructure, specimens were polished with 0.05 pm AlzOr

powders and were etched with dilute hydrochloric acid (5 vol.% HCI in C2H5OH). The fracture

surfaces of bulk specimens, and oxidation surface after TGA were also examined by SEM.

Microstucture analysis were carried out using X-ray diftaction (XRD, Rigaku, Rint-2500). An

elecfon probe microanalysis (EPMd IXA-SS0OR, JEOL) was conducted to confirm the formation of

intermetallic compounds.

High temperature ortdafion test

The high+emperature oxidation resistance of the alloys was investigated by conventional thermal

gravimetric analysis (TGA), which enabled measuring the weight changes at 400 "C up to 150 min in

a standard air environment.
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2.3 Results and discussion

2.3. I Enhancement of ductility

In order to investigate the improvement of ductility, tensile test is generally selected method.

Figure 2.2 shows the nominal stress-strain curves of each specimen during the tensile test. The

ultimate tensile strength (U-fS) and elongation of pure Zn were 48 MPa and 5olo, respectively. The

results of UTS and elongation shows the similar value compared with ref. 26.In the present study,

two significant effects due to the use of additives were identified: (l) compared with pure Zn, the

elongation of the alloys, Zn-X (X = C&, Mn, and Cr), dramatically increased from 5% to

approximately 40% and strength increased to around 90 MPa; and (2) the Zn-:fi alloy showed the

highest strength at about I25 Nlfa whereas the elongation of 25o/o was lower than that of the other

additives. The serrated flow curve of pure Zn is shown in the inset of Fig. 2.2. Thrs is a well-known

phenomenon in which the ductility of a metal decreases because of twining. A twining occurs in a

definite direction on a specific crystallographic plane for each crystal structure. Although the trvining

is not a dominant deformation mechanism in metal which possess many possible slip systems, while

pure Zn has few slip system resulting in twining. Liu et al. rqorted the inhibition of the serration on

high-purity Zn through the grain size control [25]. Their results show the improvement of ductility on

high-purity Zn. The addition of minor elements can suppress this serration and enhance ductility, as

shown in Fig. 2.3. These tensile strength and elongation data results are sununaruedFig.2.3.

Fracture specimens of pure ZnandZt-X(X: Cr and Ti) alloys are shown in Fig. 2.4(a).Pwe

Zn does not show any significant increase in length or reduction in width. In contrast, theZn-X alloys

exhibit necking and tearing as ductile fractures. The micrographs show the cross-sectional views of

the fracture sides. The decrease in width for pure Zn, Zn-Ti, and Zn& were 0.2, 0.6, and I mnl

respectively. While pure Zn showed a little width decline because pure Zn did not arise the necking,

Zn-X alloys showed a considerable decrease in width because of the necking. Thus, Fig. 2.4(bd) also

explain the existence of necking with decreasing specimen width.
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Fig. 2.2 Nominal sfress-strain curves of pure Zn andZn-X alloys (X : Ca, Mn" Cr, and Ti).

Inset shows the serrated flow of pure Zn.
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Fig.2.3 Teirsile properties of pure ZnandZt-}.|X alloys (X: Ca, Mn, Cr and Ti)
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Fig.2.4 (a) Photographs of tensile tests specimens for observing change in length,

Top-view SEM images of each material: (b) pure Zn, (c) Znlt alloy, and (d) Zn-Ti alloy.

Figure 2.5(al-c2) shows the fracture patterns of pure Zn, Zn4.lCr, andZ*-Ti after tensile tests

as the delegate of each fracture pattem. Pwe Znshows typical brittle fracture patterns such as a

cleavage plane occurring along the crystallographic plane {0001} and river markings due to a limited

slip system or twinning, as shown in Fig. 2.5(a2). On the other hand, theZn-X alloys exhibit

substantially different fracture patterns. Fig. 2.5(b1) and (b2) displays aspects of dimple patterns, and

fine voids are observed in parts of the fracture surfaces in the Zn{r alloy. The Zn-Ti alloy shows a

fracture pattern slightly different from those of pure Zn andthe Znlr alloy, as shown in Fig. 2.5(cl)

and (c2). Although micro voids were also observed in the Zn{i alloy, they were few in number. Thus,

tlre addition of the minor elements, except for Ti, to pure Znlns an excellent effect on enhancing pure

Zn ductility.
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Fig.2.5 SEM fracture surfaces: (a-1) cleavage fracture of pure Zn, (a-2) zurows in the enlarged image

of pure Zn show a cleavage plane and river markings as typical brittle fracture patterns. (b-1) Dimples

and microvoid patterns of Znlr are observed as ductile fracfure patterns, (b-2) enlarged fracture of

the Znlr alloy. (c-1) The Zn-Ti alloy shows a mixed fracture such as a quasicleavage plane and

microvoids and (c-2) the quasicleavage plane of Zn-Ti at high magnification.
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Fig. 2.6 SEM images of microstructures: (a) pure Zn exhibits a coarse gain size (over 800 pm). The

addition of minor elements refines the grain size to less than 100 pm: (b) Zn-Ca, (c) Zn-Ma (d)

Zn&, and (e) Zn-Ti alloys.
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2. 3. 2 Microstructure change

To better understand the significant improvements in the mechanical properties of the alloys, their

microstructures were observed. Fig. 2.6(a--e) shows the microstructures of each material prior to

conducting tensile tests. Pure Zn exhibits a relatively coarse grain structure whereas all Zn-X alloys

show a finer grain stuucture, as shown in Fig. 2.6(x-a). The average grain size of pure Zn was

significantly large at approximately 800 pn1 whereas those of the Zn-X alloys were less than 100 pm

(see the Fig.2.7).

1000

800

PureZn 7_n―MI     Z織―Cr     Zll― Tl

Fig.2.7 Average grain size of each material.

Thus, all minor elements exhibited effrciency as grain refiners. There are several reports on the

grain refinement effects of Mg alloys resulting from grain growth restriction caused by the dispersion

of intermetallic or nucleant fine particles 126,271; however, the grain refinement mechanism of Znby

the addition of minor elements such as Ca, Mn, Cr, and Ti has scarcely been reported. As is well

known through the general theory of metals, the effect of adding minor elements on grain refinement

can be atfibuted to the resffiction on grain growth resulting from grain boundary solidification, which
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results in solidification-front pinning mainly due to the growth restriction effect. The effect of minor

elements on growth kinetics can be understood by the reshiction of the solidification front caused by

the minor elements ahead of the solid-liquid interface. Their relatively small solid solubility in Zn

(0.5S at.%) causes a rapid enrichment of the solute in the liquid ahead of the growing solid surface

during solidification. In particular, the addition of Cr and Ti has a considerable effect on grain

refinement because their solid solubility is negligible (0.01-{.04 at.Yo) compared with other elements.

In briel the minor elements are considered to stabilize the formation of fine grains and inhibit

recrystallization. Although Fig.2.3 shows that the stress-strain curve patterns of the Zn-X alloys (X :

Ca, Mn, and Cr) are different from that of the Zn-Ti alloy, there are no substantial differences among

the microsfructures in Fig. 2.6(b--e). To clariff the difference between the stress-strain curve patterns

of Zn-X (X : Ca, Mn, Cr) and Zn-Ti in Fig. 2.3, the Ztu-Ti alloy was observed using SEM at high

magnification. Figure 2.5 (a) shows the fine precipitates along grain boundaries. X-ray diftaction

analysis could not detect the composition of the precipitate, whereas an electron probe micro analyzer

could detect a Ti-rich area. Figure 2.8 (b){d) present to the EPMA mapping results. The Ti-rich

precipitates are assumed to be IMCs such as a Zn{li, combination [28]. The existence of these IMCs

along grain boundaries has been considered the cause of brittleness, thus resulting in the lower

elongation of theZn-Ti alloy as shown in Fig. 2.3.
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Fig. 2.8 (a) SEM image of precipitates (ZnxTiy IMCs) of the Zn-Ti alloy, (b){d) EPMA element

mapping analysis image of a Zn-Ti alloy.
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2. 3. 3 Improvement of oxidation resistance

To investigate the effect of adding the minor elements on high temperafwe oxidation behavior,

the alloys were evaluated by TGA to measure any increase in weight. Although wide-gap

semiconductor power devices operate at temperatures up to 300 oC, in this study, oxidation

experiments were conducted at 400 "C to ascertain oxidation behavior more rapidly and clearly. The

relationship between weight gain and oxidation time at 400 "C in air is shown in Fig. 2.9 (a). The

curve for pureZn follows a rapid linear-rate law and a final weight gain of 0.2o/owas attained after

150 min. The weight gain rate of pure Zn slowed at around 90 min. Although the weight gain of the

Zn-X alloys increased with oxidation time, the weight gain rate is much slower than that of pure Zn.

The final weight gains of the Zn-Ca, Zn-Mn, and Zn-Ti alloys are about half that of pure Zn, which

is approximately 0.lo/o.ln addition, the rate of weigh-gain declined about 60 min. Among the alloys,

the Zn& alloy showed least change in weight of about 0.03%, and the stabilized time against

oxidation was much lower than that of the other specimens. These results imply that the oxidation

resistance of the Zn-X alloys is better than that of pure Zn. Figwe 2.9(b) shows the final weight

chanse results at 400 C.
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It has been assumed that the minor elements are concentrated at the surface or subsurface of Zn

and form a compact and stable oxidation banier, thus protecting materials from further oxidation due

to the penetration of oxygen. Several studies have explained the protection mechanism by the addition

of elements to steels [29]. This theory bas been generally interpreted as oxidation behavior suppressed

by the addition of elements to metals. All minor elements indicate oxidation suppression because they

form a compact and stable oxidation barrier. ln particular, the addition of Cr shows the best inhibition

effect on oxidation behavior. Figure 2.10 shows the oxidation surface of each specimen. All of

specimens exhibited severely oxidize surface. The morphology of oxide products is similar to

whiskers, though they are very short about 200nm and thin about sub-nanometer, as shown in inset of

Fig. 2.10. ln case of the Zn-O.lCr alloy, the density of needle-shape oxide is the lowest because of less

oxidation as shown Fig. 2.10(c). From the results of high temperature oxidation, it can be concluded

that the Zn-\.lCr alloy can effectively prevent oxidation.

Fig. 2. l0 SEM images of oxidation surface (a) pure Za b) Zn-Ca alloy, (c) Zn-Cr alloy,

and (d) Zn-Ti alloy. The inset images are high magnification SEM image of oxidation products.
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2.4 Conclusions

The interconnection technologies, such as die-bonding, ductility is the very important

characteristics because the ductility is relaxing external and thermal expansion stress. In addition, the

oxidation resistance has relation to durability and reliability in high-temperature operation beyond 200

'C. Owing to its brittleness and poor oxidation resistance, pure Zn has been a concern for use in

interconnection technologies. Therefore, the present chapter sought to enhance the ductility and

oxidationresistance of pure Znby the addition of minor elements for use in die-bonding materials.

From the obtained tensile data and microstructure informatio4 this chapter concluded that the

addition of minor elements effectively improved ductility without degrading strength. Moreover, the

formation of coarse grain structures was suppressed and the brittleness of pure Zn was reduced. The

addition of Ti resulted in lower elongation than that for other additives because fure precipitates exist

along grain boundaries as brittle ZnxTiy intermetallic compounds. The addition of all minor elements

to pure Zn results in oxidation resistance improvement. It is possible that minor elements

preferentially form a compact and stable barrier layer atthe surface or subsurface of Zn, and that these

layers inhibit oxidation. Among the alloys obtained by adding minor elements, the Zn-Cr alloy

showed the slowest oxidation ratio.

From these results, improvement of ductility by inhibition of serration and oxidation resistance

by a compact and stable barrier layer with the addition of the minor element Cr is superior to that with

all other elements. Therefore, the addition of minor elements to fabricate new Zn-based die-bonding

materials is expected to be applicable to the interconnectivity of wide-gap semiconductor devices for

use at high operating temperatures.
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B. Wide range of fracture surfaces of all specimens.

C. DSC curves of all specimens for investigation of melting temperature change.
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Chapter 3

Effects of minor elements on the reaction between

Zn andCu substrate during thermal aging
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Abstract

In the present chapter, the minor elements added Zn alloys is scrutinized when applied as a high

temperature lead-free solder based on the finding in the previous chapter. Since the thickness of IMC

layers at joining interface has an apparent relation to the joint reliability, understanding IMC growth

mechanisms is an important key for die-attach bonding. Hence the properties of interface between a

Zn alloy and Cu substrate are investigated in detail, focusing on MC growth and shear strength

degradation by thermal aging tests. At every solder/Cu interfacg the reaction layers pre confirmed to

include two types of Cu-Zn intermetallic compounds: y-Cu5Zns and e-CuZns phases identified at the

Cu side. The joint interface with minor elements added Zn reduces the grolvth rate of IMCs. In

particular, 0.1 wt.% Cr addition in pure Zn solder remarkably suppresses the IMC growth, and

improves the shear stength after thermal aging at 150 "C. This effect appears more clearly at the

higher aging temperature of 250"C. During the aging test at 250 "C for I 00 h, a considerable number

of cracks has been developed inside the y-CusZns phase at Cu/Zn joining interface. On the other hand

no crack has been confirmed atZn-U.ICrlCu interface. After the thermal aging tests at250 "C for 500

h, the specimens with pure Zn lose the original shape of bonding interface due to the excessive

consumption of Cu atoms by IMC forming reaction. In contrast, the interface with Zn-0.lCr remains

the solder structure even after the thermal aging due to the suppressed IMC growth. Since the IMC are

brittle material with a much different density from the solder alloys, the excessive thickness of IMC

layer is the major source to hinder the solder joint reliability. In sum, the additive Cr shows beneficial

effects for suppressing IMC growth and improves shear strength after the thermal aging. Zn-\.ICr

solder alloy is hence expected to enhance the joining reliability in SiC die-attachment.
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3. l lntroduction

In a previous chapter, the ductility and oxidation resistance of Zn die-attach materials were

enhanced its drawbacks e.g. poor ductility and limited oxidation resistance through the addition minor

of elements such as Ca, M& Cr, and Ti. Consequently, because of improved ductility and oxidation

resistance the interconnection ability of Zn alloys as die-attachment candidates was significantly

enhanced. However, Znbased solders still has certain drawbacks for die-attachment, e.g., formation

of slightly thicker intermetallic compounds (IMCs) with metal substrate [1-3]. Among the metal

subsfate, the Cu subsfrate is the most wildly used as the thermal interfacial material (Tn@ in the die

altach bonding, which plays the important functions as the heat hansfer and keeping of the

construction. Therefore, to establish the die-attach materials, an understanding of the interfacial

properties and IMC growth with substrate are very important. The thickness of IMCs between a solder

and a Cu substrate has relationship on the strength and joint reliability. For instancg excessively thick

IMCs layers can significantly degrade the physical and mechanical properties of the solder joints,

particularly in harsh environment [4]. The suppression of IMCs growth in solder joints is important

issue to the elechonics industry. The several reports carried out for suppressing the IMCs growth only

for the Sn-base solders t5-71. There are scarcely reports the inhibition of IMCs growth between pure

Zn solder and Cu subsfrate by element doping as SiC die-attach materials. Thereforg to apply

die-attach process, the newly designed minor elements added Zn (Zn-\.IX,X: Ca, Mn, Cr, and Ti)

should be evaluated interfacial properties and IMCs growth.

The growth rates of IMC and the interdiffusion coefficients of atomic species in them have been

widely determined by estimating the thickness change of the IMC layer [8-10]. The objective of

present chapter is to study and evaluate the effect of different minor elements on interfacial reactiorl

particularly growth of IMCs layer betweenZn die-attach material and Cu substuate during thermal

aging.
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3.2 Experilnental procedures

The die―auach materials used in this chapt領 ,Zn-0.lwt.%M餌 =Ca,Mn,Ct and Ti)and pure Zn

were fabricated using the same procedures ofthe arc melting in Ch.2.The alloy ingots were prepared

as solder sheets(4 mm× 4 mm× 0.2 mm)by C01d rolling,and their faces were polished with 3 μm

aluIIuna powden Herca■ et the composition unit of``wt.0/0''is omitted in the notation. The copper

substrates and copper duIIImy chわ s Were prepared,and■el surfaces were degreased in a 5 vol.%

aqueous HCI solution.A■ er picklin3 these Substrates were cleaned in ethanol and dried in aL The

a1loys were soldered under H2 reduCtion atmosphere. The soldered spccllnens were heated at peak

temperatwe 430°C which was 20°C higher than melting temperatures for 120s(Hcating rate of 85

°C/mlo.Figure 3.l shows the schematic soldermg structure and temperature proflle.

Fig. 3.I (a) Schematic of the present bonding structure, and (b) soldering temperature profile.
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To investigate the rate of IMCs growth, we carried out thermal aging at 150 and 250 "C for 100 -

500 hours. In order to observe the growth of IMCs, the specimens were etched by using 2 vol.Yo

HCI-98 vol.Yo CzHsOH solution for 1-3 s after polishing. Then, the interfacial reaction layer was

observed using scanning electon microscopy (SEM JEOL, JSM-5510S instrument). The interface

layers and reaction products were analyzed by x-ray diffraction (XRD) specfroscopy (Rigaku,

Rint-2500) and elecfron probe microanalysis (EPMA; JEOL, IXA-8800R). The shear tests was

carried out performed at a head speed of I pm/s and a height of 200 pm as shown in Fig. 3.2. Five

specimens were tested for each data point.

Fig.3.2 Schematic diagram of the shear tests with Cu/solder/Cu joints.
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3.3 Results and discussion

3. 3. I Bonding interface as soldered

To investigate of the interfacial reaction" the microstructures of ZnlCu and Zn-\.LX/Cu

interfaces are observed by SEM. Figure 3.3 displayed the Back scattered (BS)-SEM micrographs of

the intermetallic layers formed between the solders and Cu substate after solderin g at 430 oC for 120s.

Generally, the Cu substrate is consumed by Zn and the formation and growth of the intermetallic

compounds (IIWC) formed simultaneously at the soldered interface during the soldering [1, 2]. An

interfacial reaction layer is observed in all specimens, and the interfacial reaction layer has irregular

interface (like scallop shape interface) with the solders side while the interface with Cu substate side

is relatively flat, as shown in Fig. 3.3 and enlarge images are displayed Fig 3.4. Three white broken

lines are superimposed on the BS-SEM micrograph as shown in Fig. 3.4;the lower one corresponds to

the initial surface of the Cu substrate, central one displays boundary of scallop type and flat type IMC

phase, and the upper one indicates the interface of Zn solder/IMC phase. The total thicknesses of

ZnlCureaction layer is about 35pm while minor element added ZnlCureaction layer is significantly

thinner thanZnlCu interface about 15pm. To clariff their reaction layer phases, polished surfaces of

the interface were examined by X-ray diffraction analysis (XRD). Atypical result is illustrated in Fig.

3.5; this result indicates that e-CuZns and y-Cu5Ztu &re mainly formed by solder. From the binary

CuZn phase diagranl three intermetallic compounds, i.e., B'-CuZn, y-Cu5Zng, and e-CuZn5, c&r b€

expected for this reaction system. Suganuma et al. also reported that two CuJn intermetallic

compound layers, such as y-Cu5Zng and B'-CvZn, are formed at reflow temperature for the Sn-Zn

eutectic solder/Cu interface [9]. The B'-CuZn phase cannot be identified in the XRD due to the

reaction thickness of B'-CuZn is very thin, less than 1 pm as seen in Ref. 11. The amount of Zn is

much larger than in the Sn-Zn eutectic alloy/Cu reaction system, which can easily promote the

formation of e-CuZn5.
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Fig. 3.3 SEM micrographs of reaction interface as soldered on a Cu substrate; (a) with pure Zn, (b)

with Zn-0.lCa, (c) with Zn-O.lMn, (d) with Zn-0.lCr, and (e) with Zn-0.lTi.
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Fig. 3.4 Enlarged SEM micrographs of Fig.3.3; (a) with puireZn, (b) with Zt-D.lCa,

(c) with Zn-0.lMn, (d) with Zn-I.lCr, and (e) with Zn-0.lTi.
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For the present reaction systern, it can be said that Cu dissolution into the liquid solder forms the

scallop-shaped e-CuZns layer. Moreover, the growth of scallop-shaped *CuZns is expected that the

Cu is predominantly transported to molten solder along the e-CuZns grain boundaries during soldering.

This reaction shows the same tendency of Sn-Pb solder/Cu interface [11-15]. Figure 3.6 shows the

thickness change of the reaction layers following addition elements. The y-Cu5Zn8 reaction layer was

thicker formed as compared with x-CvZns compound. In case of the pure Zn, the thickness of the

y-Cu5Zns reaction layer is over twice that of the e-CvZns one, i.e., about 6 to 11 pm for e-CuZn5 and

23 to 27 pm for y-CusZu layer. On the other hand Zn-0.l)VCu reaction layer is significantly thinner

thanZn/Cu interface. The thickness of reaction layer is about2 to 4 pm for e-CuZn5 and 10 to 15 pm

for y-Ca5Zry layer.

To confirm the reaction layers at the interface, EPMA was also carried out for all samples. Figure

3 .7 shows a typical EPMA element mapping results of the soldered joints with pure Zn and Zn-\.tCr

solder, respectively. Zn-U.lCr/Cu interface clearly indicates the significantly thinner IMC thickness

than ZnlCu interface. Although BS-SEM images could not observed the B'-CuZn phase, EPMA

mapping image shows ttre very thin (less than I pm) B'-CuZn phase as marked in the Fig. 3.7(a-2),

accordingly the report of Suganuma et al. l9l. From the results of the EPMA element mapping,

however, it was found that these reaction layers contain only Cu and Zn and not minor elements as

shown in Fig. 3.7(b1 - b3), Combining the results of XRD analysis and quantitative EPMd as

summarized in Table 3.1, the thinner reaction layer was confirmed as e-CuZn5 and the thicker reaction

layer was confirmed as y-CusZns. The atomic percentage ratio between Cu and Zn is approximately

1:5 (points 1 - 3) and 5:8 (points 4 - 5) for bothZnlCuandZn4.lX/Cu couples. Thus, there is only

y-Cu5Znsand e-CuZn5 in interfacial reaction layer, which is consistent with the XRD results.
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Fig. 3.7 EPMA mapping analysis of the interface (a) between pure Zn and Cu subsftate: (a-1)

SEI image and mapping images of (a-2\ Zn, and (a-3) Cu. (b) between ZnA.ICr and Cu substate:

(b-1) - (b-3) have the same means to (a-1) - (a-3).

(b‐
2)

Table 3.1 EPMAquantitative analysis ofreaction layers.

Point Average Zn atomic"/o Identified phase

Pure ZnノCu

A1 -A3 82.32± 1.31 e-CttZn5

A4_46 64.43± 0.69 y-Cvszns

Zn…0.lCr′Cu

Bl― B3 81.34± 0.94 e-CvZns

B4-B6 61.27± 0.57 γ
~Cu5Zn8
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3.3.2IMC growth during thermal agrng

Due to the high operation temperature, thermal exposure test (e.9. thermal agng) is an important.

To investigate the growth rates of IMC, therefore, thermal aging was carried out at 150 "C and 250 "C

for 100-500 hours. In this sessio4 the solid-state anttealing behavior of pure Zn solder and minor

elements added Zn(Zn-{.lX, X:Ca,I\rIn, Cr, Ti) were compared.

Fig. 3.8 SEM microgaphs of reaction interface on a Cu substate after thermal aging at 150 "C for

100b (a) with pure Zn, @) with Zn-0.lCa, (c) with Zn-0.lMq (d) with Zn-0.lCr, and (e) with

Zn4.lTi.

-72-



C確響 er3

胸 ぽ鷲壼露θ′′″ι陥
“
ts θたFrr`raFr醸餞 ゎιみなar2 2物 Frz″ C″ sめs″α″機繭奪議erttrrr″ r26/

For aging 100h at 150° C,as shown in Fig.3.8,IMC layer at the interface was much thicker than

(abOut tWiCe)as s01dered interface.The total thicknesses of Zn/Cu reaction layer is about 65μ
nlp and

Zn-0。 lX/Cu reaction layers are about 40μ m9 respectiveし The interfacial reaction between the solder

and Cu substrate continues during isotherlllal agin3 which can be e宙 denced by thickness increase of

鵬 IMC.The mtthology of the scallop type c¨CuZn5 gradually ttansforlllls to flat type 7-Cu5Zn8

phase.The minor element added solders,oll the other hant the■ cu5Zn8 1ayer exhibted a slower

grow性 . Figure 3.9 slЮws the comparison of IMC ■ickness for Zn/Cu, Zn-0.1ヽ ■yCu and

Zn-0.lCr/Cu couples after isothermal aging at 150° C for 200 L and 500 h.The IMC thickness of

ZゴCu interface after aging for 200h,and 500h is about 84 μm,and 130 Hm9 respect市 eし In Case of

minor elements added Zn such as Zn-0.lMn(59,and 92 μo and Zn―o.lCr“8,and 63 μm)

displayed thinner IMC ttα,■ imply the minor element addition shows the depressing erect on the

IMC groMh.Among the addition element,Cr addition indicates the slowest gro価 rate during■ e

thermal aging because the assulned ZttCry IMC phase existing in solder」 m廿Ⅸらwhich can block

dittlsion.These IMC formations can be explailled iom the Cr Zn binary phase diagam[16].

According to the phase diagratt Cr― Zn IMC fomation occurs for O.03 wt.%of Cr concentration.

Although the Zn-0.lCa and Z卜 0.lTi with Cu interfaces show■ e thilllle“ IMC layer9■ causes tte

delamination after aging 200h between solder and IMC layer as shown in Fig.3.10。
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F聴。3.10 Delaminated interface between solder andIMCs during theFmal aging江 150°C for 200h:

(→ Zn-0。 lCa/Cu m鮨JⅢt and O)Zn-0。 lTi/Cu int∝ねce.
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Fig. 3.11 The relationship ourves between MC thickness and aging time (ht2).
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The IMC thickness of solder/Cu interface is plotted as a function of aging time and temperature, as

illustrated in Fig. 3.11. It is found that the IMC thickness increases monotonically with aging time at

150 "C. To realize the effect of minor elements addition on growth rate, the IMC growth rates were

calculated by the following Arrhenius equation 12,7, l7-I9f.

X=Xo+Atn g零 {一Qβ磯昨 (1)

where X and Xo are the IMC thickness at t time and the initial IMC thickness as-soldered,

respectively. Q is the activation energy, R denotes the gas constant, T and t mean the aging

temperature and aging time, respectively. Ameans a constant and n is growth exponent. n was defined

as 0.5 because the process is diffirsion-controlled reaction as reported by Subbarayan [20].

Consequently, Equation (1) can be simplified as followed Equation (2):

X=XO十 轟

where T is the aging time, X denotes the IMC thickness at t time, Xo means the initial IMC thickness

as-soldered" D is the coefficient of IMC growth rate. The values of IMC growth rate, D, were

calculated by the slope of experimental results in Fig. 3.11. In this study, the growth rates were

determined as3.77 x 10-15 nf ls,2.82 x 10-15 m2ls, and 1.16 x 10-r5m2/s for ZnlCu,Ztt-0.llvIn/Cu, and

ZnA.lCr/Cu, respectively. From the results of diffirsion rate calculatiorl it is noteworthy that the

IMC groMh rate of Zn-U.lCr exhibits only a-third of pure ZnlCu couple.

(2)
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Fig.3.l2 Joining strength change of the Cu/solder/Cu joints during the thermal aging.

Figure 3.12 shows the result of shear strength testing for the Cu/solder/Cu joints with Zn and minor

elements added Zn solders during the thermal aging. The shear stength of a joint with all solders is

about 60 MP4 which is significantly higher than that of reported Au-20Sn solder (41.8 MPa) [3,2I]

or that of Pb-5 Sn solder (26.2 lvPa) f3, 21, 221. Wrth an increase in aging time, the shear strength of

the joint with all solders decreases sharply, except with Zn-0.lCr. The decline of shear stength with

Zn-0.1X (X : Cq Mn, Ti) after aging causes the brittle nature of IMC layer, which gradually grow

during aging time. During the aging time, the hrgher shear strength of the Zn-I.lCr alloy can be

attributed to its thinner IMC thickness. In case of the joints with Zn4.lCa and ZnA.ITL they show

the lowest shear strength aging for only 200h, it could agree the delaminated interface microstructure

as shown in Fig. 3.10.
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Fig. 3.13 SEM micrographs of reaction interface on a Cu substate after thermal aging at250 "C for

100h; (a) with pure Zn, (b) with Zn-0.lCa, (c) with Zn-0.lMn, (d) with Zn-0.lCr, and (e) with

Zn-\.lTi. The insets indicate the enlarged imases.

To describe the high temperature environment i.e. SiC power device operating temperature, thermal

aging at 250 'C was carried out. During aging treatment at higher temperatures for 100tq the

formation of a considerable crack was observed inside the y-Cu5Zns IMC phase, except Zn-\.lCrlCu

interface as shown in Fig. 3.13. To investigate the duration of Zn-O.lCr/Cu interface, thermal aging

was canied out continuously until 500h compared with ZnlCujoining specimen. Figure 3.14 shows
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the interface images after thermal aging for 500h at250 "C. For aging 500h at250 oC, the pure Zn

loses its own shape as solder due to completely consume the reaction with Cu atom' Although the

Zn-1.ICr shows the crack at the y-CusZnslayer, it can retain the sfucture as solder. In case of ZnlCu

specimen, the Cu atom migration occurs to a whole of the solder side as mentioned above but the Cu

was not reached at a top of solder side in the minor Cr addition specimen during solid-state aging

process. A too-thick IMC layer deteriorates the solder joint reliability because the IMC are brittle and

have different densities from the solder alloys [1, 3]. It is imply that the addition of Cr is benefit for

restraining interfacial IMCs. It is quite reasonable to consider that reliability of Zn-O.lCr/Cu joint

would be better than ZnlCujoint because of thinner intermetallic compound layer. From the result of

thermal aging, it is concluded that the usage of Zn-\.lCr alloy has more improved characteristics than

pure Znas a high temperature solder on Cu substrates from the present session. Therefore, the joints

reliability of SiC die-attach could be anticipated to improve. In order to establish more reliable solder

alloys, further works are required to assess the compatibility various plating or metallization

substates.

Cu difiusion range

'.t..":

-
100 pm Cu dillilsion rtlnge

Fig. 3.14 Different appearance after thermal aging at250 "C for 500h; (a) with pure Zn, and (b) with

Zn-I.lCr.
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3.4 Conclusions

ln the present chapter, pare Zn and Zn-0.1X (X : Ca lvfrU Cr, and Ti) alloys were joined on Cu

substrate, especially to focuse on the growth of intermetallic compounds during the thermal aging.

The results can be summarized as follows:

1) The thicknesses of ZnlCu IMC layer is about 35p.q andZn-}.LX/Cu reaction layers are about

15t., respectively, after soldering at 430 'C. Two reaction layers were formed at the solder/Cu

interface, and identified as scallop shape e-CuZns phase adjacent to the solder, and layer tlpe

y-CasZns formed facing to the Cu subsfrate, respectively.

2) For aging 100h at 150 oC, the total thicknesses of ZnlCu reaction layer is about 65prn, and

Zn4.lXlCu reaction layers are about 40pm, they are much thicker than (about twice) as soldered

interface. However, the growth rate of the scallop type e-CuZn5 is significantly slower than layer type

y-Cu5Zns due to gradual transition fuomy-Cu5Zq phase to the scallop qipe e-CttZn1 With aging time

for 100h, the joints interface with minor element added solders exhibited a slower growth thanZn/Cu

joining specimens.

3) The IMC thickness of ZnlCu interface after aging at 150 "C for 200h, and 500h is about 84 prn,

and 130 pm, respectively. In contras! joint interface of minor elements added Zn such as Zn-0.lMn

and Zn4.lCr displayed thinner IMC layer. The calculated IMC growth rates during thermal aging

indicated as3.77 x 10-15 nfls,2.82 x 10-15m2/s, and 1.16 x 10-r5m2/s forZn/Cu,ZnA.IMnlCu, and

Zn-0.ICr/Cu, respectively. The minor Cr exhibited the slowest growth rate during the thermal aging

due to the formation of small Zn*Crr IMC phase in solder matix, which can block diffi.rsion. It

implies the minor Cr has an effect of the depressing on the IMC growth.

4) The shear strength of an as solder joints with all solders (Cu/solder/Cu) exhibited about 60 MPa.

With an increase in aging time at 150 oC, the shear sfrength of the joint with all solders significantly
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decreases except with Zn-0.lCr. The shear strength drop with ZnA.lX (X: Cq M4 Tt) after aging

stem from the thick IMC layer, which has a brittle nature. During the aging time, the higher shear

shength of the Zn-O.lCr alloy can be attributed to its thinner IMC thickness.

5) For aging at 250 "C, the formation of a considerable crack was observed inside the y-CusZnt

IMC phase, except Zn-\.lCr/Cu interface. The interface after thermal aging for 500h at 250 oC, the

ptxe Znjoining specimens lost its own shape as solder due to completely consume the reaction with

Cu atom. The interface with Zn-\.ICr could remain the solder structure due to, but the inevitable

crack was observed. Atoo-thick IMC layer is the well-known state to hinder the solder joint reliability

because the IMC are brittle and have different densities from the solder alloys. In the present chapter,

the additive Cr shows a benefit for restraining interfacial IMCs'

Thus, it is concluded that the usage of Zn-0.lCr alloy has more improved characteristics than pure

Zn as ahigh temperature solder on Cu substates and the joints reliability of SiC die-attach could be

anticipated to improve. In order to establish more reliable interconnection, further works are required

to assess the compatibility between improved alloys and various metalized subshates and to attzch

SiC die to substrates.
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Appendix

A. Fracture surface of

(a) low magnification xl00 and

Zn-0.lCr/Cujoints;

(b)high magnification mlage.

B. EPMAmapping images of the precipitates inside solder.
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C. Joining strength shange of the Cu/solder/Cu joints during the thermal aging at 250"C.
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Chapter 4

Joining properties and thermal shock reliabilify of

SiC die-attached joints
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Abstract

In the present chapter, SiC die-attachment with using Zn4.lCr solder is evaluated by thermal

shock resistance, in comparison with the conventional Pb-5Sn solder joining. The pure Zn and

Zn-0.ICr solders exhibit excellent heat-cycle resistance for the DBC die-attach structure in the

temperature range from -50 oC to 300 oC. In spite of the apparent thermal cycle resistance

confirmed by the experiments, the enhancement mechanism has not yet been clarified in the Cr added

Zn solder. Further study to clarifu the reason of the improved thermal cycle reliability is suggested to

establish the solder application in future.
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4. I Introduction

In die-attach applications to power devices, the selection of solder material is crucial for reliable

mechanical integrity of the metal-semiconductor joint and packaging [1-3] Because of considerable

thermo-mechanical stresses resulting from a mismatch in the coefficients of thermal expansion (CTE)

on both sides of the solder layer seriously affect the thermal and mechanical reliability of the solder

joints [3, 4]. Due to the power device applications are usually subjected to temperature variation in a

wide range during the operation, new high-temperature Pb-free solders are required to have gteater

joint reliability at higher operating temperature, as compared with the present high-Pb-content solders'

SiC semiconductor power devices, the required considerable wider operating temperature ranges from

-50 to 300 'C than Si power devices (from -40 to 150 "C) [5, 6]. Thermal cycling (or thermal shock)

reliability test are commonly used to evaluate the thermo-mechanical fatigue reliability of elecfronic

assemblies. The thermal cycling test is uniformly heated up and cooled down in order to induce

thermo-mechanical strains and stresses in interconnections and interfaces of the devices.

The previous chapter, pureZnwas improved through minor elements addition. Among the minor

elements added Zn, Zn-\.lCr solder is one of the best choice because it improves the ductility,

oxidation resistance, and intermetallic compounds growth as explained in the Ch. 2 and 3. In the

present chapter, for confirming the potential of die-attach materiaf SiC die-attachment is carried out

and evaluated the thermal fatigue reliability of joints minor using minor Cr added Zn. These results

were compaxed pure Znand those of the currently used high-temperature solders, i.e., Pb-SSn.
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4. 2 Experimental procedures

SiC die attachment on direct bond copper (DBC) substrate

The solder alloys used in this chapter, Zt-I.ICr, Exe Zno and Pb-5Sn were prepared as sheets

(4x4 mr& F0.2 mm), and the sheet faces were polished with 3 pm alumina powders. SiC dies (4 mm

x 4 mnr, Fl mm) were coated with 800 nm titanium ninide (TiN) and 200 nm Au layer using a radio

frequency (RF) sputter. Silicon nitride (SrsN4) direct bonded copper (DBC) was used as substrate

because SirN+ has excellent high temperature stability, high thermal conductivity and a coefficient

thermal expansion (CTE) (CTE:3.5 ppm/K) closely matching that of SiC. ATiN diffirsion barrier was

adopted to increase the reliability of die attachment to a Cu substrate, and its effrcacy was evaluated.

Because titanium nitride is a stable compound, there was no reaction phase between titanium nitride

and zinc, while zinc and copper formed two intermetallic compound layers as the reaction products,

i.e., q-Cu5Zns/x-Ctrzn5, which is identical to the Zn-Sn/Cu interface.

For SiC die attachmenl the prepared solder sheets and a SiC die were set up on a DBC substrate as

shown in Fig.4.1. The die-attached specimens for the Znbased solders were heated to soldering

temperatures of 450 "C, which are 30 'C higher than their melting temperatures, and held for 120 s.

The die was attached with the Pb-SSn solder at 340 oC, which is 26 'C higher than its liquidus

temperature of 3I4oC, and held for 120 s. The SiC die was soldered at peak temperature 450 "C in an

atunosphere of formic acid reflow. The temperature profile of soldering illustrated Fig. 4.2.
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200mmAuノ
800mmTN

Fig. 4.1 Schematic structure of SiC die-attach struchlre and its photo.
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Thermal shock reliability test

In a thermal cycling tes! the SiC dieattached joints were put into a thermal cycling chamber and

exposed to a temperature range of -40 "C to 300 "C with a heating/cooling rate of +1 "g7r uo4 u

holding time of 30 min at each peak temperature. The thermal cycling profile presented Fig. 4.3.

Figure 4.4 shows the schematic image of the shear test using a bond tester (Dage-4000) for evaluating

the joining sfrength. The shear test was performed at a head speed of 1 pm/s and a height of 200 pm.
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Fig. 4.3 Temperature profile of thermal cycling for the evaluation of SiC joint reliability.
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4.3 Results and discussion

4.3. I Interfacial reaction of the SiC die-attached joints

Figure 4.4 shows the typical interfacial microsfructures of the SiC die-attachment to a DBC

subsftate with Zn-O.lCr solder that was soldered at 450 oC for I20s. Zn-\.lCr solder wetted both the

SiC die and DBC substate well. The interface microstructure observations confirm that a sound die

attrachment on a SirM-DBC substate can be achieved with the prepared solders.

To establish Zn-\.lCr solder as a SiC die-attach material, understanding of interfacial reactions

with a substrate is required. In this chapter, however, the basis of interfacial reaction is insufficient'

Therefore, the analysis of interfacial microstructure using a tansmission elecfron microscope (TEM),

and electron probe X-ray microanalyzer (EPMA) for could be carried out. In the observation of TEIVI,

ttre interface between TN and a-Znphase and the effect of minor Cr could be investigated. From the

EPMAresults are expected the definition of reaction layer composition and the migration or tansition

of interfacial microsftucture during the die-attach process.
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Fig. 4.4 SEM micrographs of SiC die-attachment on a DBC substate: (a) a low magnification image

of die-attach interfaog (b) the interface of SiC die side, and (c) the interface of DBC substrate side.
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4.3.2 Thermal cycle reliabilitY

Fig. 4.5 shows the changes of the die-shear strength of the SiC/DBC joints as a function of thermal

cycling timg where the joint shength with Zn-0.lCr solder was compared with that with

conventional Pb-5Sq and pure Zn The initial strength of the joints with ZnA.ICr and pure Znwas

about three times higher than that with Pb-5Sn. The joints with Zn-0.1Cr and pure Zn maintain their

high strength up to 500 cycles without serious degradation. Thus, the excellent thermal shock

resistance of the current die-attach stucture was proved by the fact that high shear strength of the die

attach can be maintained even after severe thermal shocks. ln conhast, the joint with Pb-5Sn

decreased its strength to half of the initial strength, about 12 MPa. It is much lower strength than those

with other solders.

Figure 4.6 shows the interface of the die-attached joints with pttre Zn, Zn-|.ICt, and Pb-5Sn

solders on the TN coated DBC substrate after 50Ocycles. In the die-attached joints with pure Zn and

Zt-y.lCr, it is noteworthy that no crack as shown in Fig. a.6@) and (b). Although the joint with pure

Zn was not observed the crach a little deformation of microstructure was observed due to

thermo-mechanical stresses resulting from a mismatch in the CTE. The joints with Zn-0.lCr solder

showed no change of microstuucture even after 500 cycles but just a small IMC growth inside the

solder layer as shown inset of Fig. a.6@). In case of the Pb-SSn solder joint (Fig. 4.6(c)), severe

vertical and horizontal thermal fatigue cracking were observed inside solder layer. The cracks are link

together to form a network on the entire joint region.

Although the present chapter presents a thermal cycle resistance SiC die-attachment with Zn-0.lCr

solder, the mechanism is not cleared. In the further study, the reason for the improvement of thermal

cycle reliability will be investigated and established suggested.
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4.4 Conclusions

In the present chapter, some properties of pure Zn based high temperature solders and thermal

shock resistance of the DBC die-attach structure were evaluated. The results are sunmarized as

follows:

1) Although the SiC die-attachment to a DBC substate with Zn-0.lCr solder shows a sound

bonding interface, the reaction mechanism of die-attachment is not cleared. Therefore, the interfacial

reaction can be investigated in the further study.

2) Pure Zn and Zn-X solders provide excellent heat-cycle resistance for the DBC die-attach

structure between -50 
oC and 300 oC without cracking. The die-attach structure with minor Cr added

Zn andthe TN metallization interfaces has potentially the relaxation of thermo-mechanical stress.

Thus, Zn-0.lCr solder with sisN+-DBC exhibits quite excellent thermal shock resistance as compared

with the conventional Pb-5Sn solder. Pure Zn based solder (minor Cr added Zn) has the great

advantages of inexpensiveness compared with other candidates such as Au-based alloy solders or

silver nano-particles.

Although the new process and thermal cycle reliability of SiC die-attachment have been studied, a

mechanism of enhanced reliability is a necessary aspect for future study. Moreover, to optimize the

packaging the tradeoff considerations among materials selection (DBC substrate change to DBA),

thermal dissipation design, electrical performance test (power cycle), and manufacturability should be

introduced into the further evaluation.
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A. )(PS result to investigate possible surface Zn contamination onside the SiC.

B. XPS quantitative analysis of reaction layers.

Pure Zn Zn―Ti Zn―Cr

Mg 0.06 0.04 0.11

Na 0.51 0.12 0.46

Zn 0.72 0.35 0.65

0 18.35 18.55 16.30

C 53.75 57.85 51.59

Si 26。 60 23.09 30.88
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Abstract

The present chapter introduces a world-first application of pure Zn used as interconnection material

for Si wafer bonding. This bonding process can be carried out in the atmospheric pressure without

metallization of Si surface. Resulting shear strength of the bonding exceeds 50 MPa, significantly

"hieher 
than the typical strength of conventional Au-20Sn solders. The superior results are ascribed to

uniform and void-free interface created by self-regulated Si-Zn eutectic reaction. In addition to the

scientific finding of the unique eutectic reactio4 the cost-efficient wafer bonding method has a wide

range ofapplications in Si based devices.
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5.1 Introduction

Si wafer-to-wafer bonding is recognized as a key technology for three dimensional system

integrations, such as multi-tip large-scale integration (LSI) devises, stacked memories, and

micro-electromechanical systems (MEMS) t1-3]. Considerable number of Si wafer bonding

methods have been proposed in the literature [4-8], classified into two categories: direct fusion, and

intermediate layer bonding [6]. The former process requires heat featnent at high temperature about

1000 "C to create a fusion layer between directly contacted Si wafers [1, 2]. The latter, in contras! can

be processed at considerably lower temperature by adopting an intermediate bonding layer of

polymeric [4] or metallic [5-8] material inserted between Si wafers under certain pressure. In this

category Au-Si eutectic bonding has been used for integrated circuits packaging and MEMS

applications t5-71. The typical drawbacks of this metho4 however, are the formation of air voids and

facet pits caused by uncontrolled Si dissolution into the Au layer in the Au-Si eutectic reaction [5-7,

91. These typical defects show the Fig. 5.1 and2. A sound bonding interface with high stength, i.e.

uniform interface without any voids/defects formation, is rarely achieved by the Au-Si eutectic

method and may usually require more metallization layers on Si wafer, such as Ni, Pt, or Cr.

Nevertheless, the high cost of Au causes another drawback of the Au-Si bonding in application to

commercial products. The high demand for establishing a substantial but cost-efficient wafer-to-wafer

bonding technique in the vast field of Si technologies has motivated us to develop an ideal bonding

process based on our recent achievements particularly on lead-free solder materials [10,11]. In this

letter, we hence propose a novel bonding process of Si wafers by utilizing self-regulated Si-Zn

eutectic reaction. Using pure Zn as intermediate solder material our bonding method is processed in

air, at the atnospheric pressure, without surface metallization of Si wafers. The self-regulated Si-Zn

eutectic reaction provides a thin and uniform bonding layer, resulting in a higher bonding strength
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than that achieved by other competing techniques. As well as the low cost of the process, the present

method demonstrates promising interconnection features of bonded Si wafers.

Fig. 5.1 Tlpical defects of Si wafer bonding using Au or Au-Si 17 ,91.

Fig. 5.2 Morphology of reacted Si surfaces:
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(a) Au/Si bonding and (b) Au/amorphous Si bonding [12].

5.2 Experimental procedures

Pure Zn (> 99.99%) cold-rolled into 100 pm thick sheet, and a mirror polished 525 pm thick Si

(100) wafer were prepared for the present study. The Zn sheet was cut into 10 x lQ mm specimens.

Each surface of them was then mechanically polished and finished using 0.1 pm ADO3 abrasive

powders. The final dimensions of the Zn sheets were 10 x 10 x 0.05 mm. Two types of Si specimens

of 10 x 10 mm (top) and 15 x 15 mm (bottom) were cut from the prepared Si (100) wafer. Before

bonding these Si ardZn specimens were degreased in acetone, and20 vol.o/o aqueous HCI solution,

and then rinsed in ethanol, de-ionized water, and dried in high pressure air. The prepared Zn sheet was

inserted between two Si wafers (larger one at bottom), and held under the slight pressure ( 2 kPa) of

20 g Ni weight bloch as schematically shown in the Fig. 5.2.The prepared specimens were heated in

an oven for 20 min. at 450 "C, which is 30 oC higher than the melting point of pure Zn (Tm = 419.58

"C). For comparison, Si wafer bonding tests with using commercial Au-20Sn solder were carried out

with the similar processing conditions, but at the lower bonding temperature of 310 "C, which is also

30 "C higher than the liquidus temperature (280 "C) of the eutectic solder.

Fig. 5.3 Schematic ofthe present bonding structure.

‐103‐



Chupter 5
Non-metnllizatian Si wt{br bonding by se(-7gg146ed eutectic reuction with pare Zn

5.3 Results and discussion

5.3.1 Bonding strength

Quality of a wafer bonding can generally be evaluated by the mechanical properties since high

bond strength is the fundamental issue for device packaging. Hence we first evaluate the mechanical

properties of the bonded specimens by shear tests using Dage 4000 where the head speed is set to 5

prn/s and the fly height to 50 pm from the base tip surface. As displayed in Fig. 5.3, the typical shear

stength of pure Zn bonding exceeds 50 MPa significantly higher than other methods compared with;

the conventional Au-20Sn eutectic solder gives below 8 MPa, and Au-Si about 20 MPa reported in

the literature [7]. The measurements may even underestimate the bonding strength of pure Zn because

Si wafer always exhibits fractures around 50 MPa during the tests (see the picture presented in the

inset of Fig. 5.3). The breakage of Si wafer implies that pure Zn bonding exhibits sufficient

mechanical strength as a soldering material for Si wafer. It is noteworthy that the process using pure

Zn as an intermediate material does not require any metallization layer on Si surface to achieve such a

high bonding sfrength.
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image shows a typically broken specimen ofpure Zn by ttacture during the shear tetts.

5.3.2 Microstructure of wafer bonding interface

To reveal the origin of the high bonding strength of Sr/Zn interface, we have observed the

cross-section microstructure of the bonding interface by field-emission scanning elecfron microscopy

(FE-SEM). The SEM images in Fig.5.4 present a typical interface microstructure of Si and pure Zn

bonding and that of Au-20Sn soldering. The interface morphology resulting from the two bonding

methods is different each other; ptxe Zn appears to wet well on the wafer surfaces of the both sides,

and creates uniform and void-free reaction layers with Si (see Fig. 5.a(a)). In contrast, no reaction

layer is found at the Au-20Sn/Si interface as shown in Fig. 5.4(b). Instead massive air void and

delamination area are observed at the place. Higher magnification images in Fig. 5.4(c) and (d)

confirm that the reaction layer at the ZnJSi interface is about 500 nm thich but no reaction layer

formed at Au-20Sn/Si interface. In the literature, similar air void formation at bonding interface

between Si and intermediate materials have been reported" and those air voids are considered due to

excessive Si dissolution into Au layer, particularly when Au-Si eutectic reaction occurs [9, 12]. The

differences of interface morphologies observed seen in SEM images may explain the variation of

joining strength registered in the shear tests. The uniform reaction layer between pure Zn and Si

causes the high shear strengtlg while the absence of such a reaction layer in Au-20Sn solder results in

poor mechanical bonding. These FE-SEM cross-section observations in Fig. 2(a) - 2(d) thus conclude

ttrat the presence of an intact reaction layer is essential to achieve high joining strength of wafer

bonding processes.

Transmission X-ray imaging was utilized to observe air void formation at the Si and intermediate

material interfaces of the bonding test specimens in the present study. However, there was no

detectable void or defect confirmed in the pure Zn bonded wafer specimens (see Fig. 5.5(a)' In

contras! the specimens of Au-20Sn bonding typicalty display many defects as shown in Fig. 5.5O),

supporting the poor connection areas of the bonding interface as observed in the FE-SEM image of
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Fig. 5.a(d). The void-free interface recorded by X-ray transmission imaging again demonshates the

sup€rior feature of our Si wafer bonding with pure Zn. To examine the reacted Si surfaces with pure

Zn, dilute HCI solution was used to remove the pure Zn bonding layer on bonded Si wafers. Figure

5.6(a) shows the exposed Si surface for the pure Zn bonding. The craters could not be seen on the

bonding surface. Although Fig. 5.5 (c) displayed a small crater, it is very small size (l0pm) and few

while the big craters was reported using Au-Si [12]. We supposed that Si (100) planes are the most

resistant to dissolvingnZn and have slower dissolution rate than Au. Due to a slow dissolution rate

did not have enough time to form the craters, the interface of non-metallization bonding with pure Zn

could obtain few or no craters wafer surface.

Fig. 5.5 Cross-section images of bonding interface (a) with pr,lr.e Z\ and (b) with Au-20Sn.
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(c) and (d) are the magnified images of (a) and (b), respectively.

Fig. 5.6 (a) Transmission X-ray images with no air void in pure Zn bonding; (b) that with

many defects in Au-2OSn soldering. (c) shows the no crater of Si wafer surface after etching.
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Detailed investigation of the intcrface reaction layer has bcen made by electron-probe

microanalyzer (EPMA) observation on the cross-section of the jointed specimens. The obtained

EPMA mapping images in Fig. 5.6 (a) and (b) confirm that the reaction layer contains both Si and Zn,

supporting that Si-Zn eutectic alloy is formed by the diffirsion of Si into the molten Zn during the

bonding process. The only trace amount of oxygen concentration detected in Zn side (see Fig. 5.6)

indicates that the atomic diffirsion occurs only frorn solid Si to liquid Zn during the bonding process.

Due to the low-surface energy and poor adhesion [5], natural SiO2 layer on Si surface appears to be

dissolved and diffused into the molten Zn. Thus the natural oxide laycr on Si wafer does not affect the

pure Zn bonding process, but may causc a slight oxidization of intermcdiate Zn bonding layer.

(a) Si

5卜 1111

Fig. 5.7 EMPA mapping of a

image of the mapping region.

Si wafer/pure Zn interface: (a) Si, (b) Zn, (c) O, and

Dotted lines indicate the range of reaction layer.
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5.3.3 Self-regulated eutectic reaction

The formation process of the uniform reaction layer can be explained from the Si-Zn binary phase

diagram near the eutectic point as presented in Fig. 5.7 lI4l.In the diagrarn, one can find that Si-Zn

eutectic fransformation occurs at Te = 419.33 oC for 99.981 wt.Yo of Zn concentration, which is very

close to the melting point of pure Zn (Zm : 419.58 'C) [13].The bonding process temperature Zp :

450 "C higher than both Zm and 7e (see Fig. 5.7) ensures that the majority of atomic diffirsion occurs

from solid Si to molten Zn because of the large difference in the diffrrsion velocities of liquid and

solid metal. This unique condition of Zn-Si eutectic phase leads to a scenario of the uniform reaction

layer formation consisting of the following three steps; first, the molten pure Zn spreads well on wafer

surface due to the good wettability of liquid Zn on naturally oxidized Si, and make a sound contact at

ZnlSi interface. Second Si starts diffirsing nto Zn to build up a Si-Zn eutectic liquid (see line A in

Fig. 5.7). Third and finally, the increased amount of Si in liquidZn shifts the liquidus line to high

temperature side (line B in Fig. 5.7), andthen the eutectic mixture solidifies to form the reaction layer

of uniform thickness determined by the diffirsion velocity of Si in Zn at Tp. The solid eutectic reaction

layer once formed at the interface does not melt during the process, and the dissolution rate of Si into

the bondiqg layer is regulated by the diffirsion velocity of Si atoms in the solidified Si-Zn eutectic

alloy. The reaction layer thus plays as a diffirsion barrier to limit excess Si consumption in the

bonding process. The high bond strength registered by the present study hence originates from the

self-regulated eutectic reaction of Si and pute Zn.
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Tr: 450 "C

Tnr:419.58'C

T,:419.33 'C

I

100%

Weight percent Zn

Fig. 5.8 Si-Zn phase diagram of near the eutectic point. The Zp, 7", and Z- denote the

processing temperature, Si-Zn eutectic point, and the melting point of pure Zn, respectively.
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5.4 Conclusions

In summary, the present study reports a uniform and void-free Si wafer bonding process without

metallization of wafers, realized by using ptne Zn as solder. The achieved bonding strength is

significantly higher than that by conventional Au-20Sn eutectic soldering. The formation of uniform

Siln eutectic reaction layer essentially prevents the air voids at the bonding interface. Moreover, the

present bonding system needs not to concern crater formations on Si surface because the eutectic

reaction regulates excessive Si dissolution into Zn. The proposed cost-efficient wafer bonding method

thus provides a sound bonding interface, and is hence expected to have a wide range of applications

for Si based devices with wafer bodings.
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6. I Conclusions

In this thesis, the ductility and oxidation resistance of Zn were enhanced through the addition of

minor elements for use in SiC die-attachment and were investigated the interfacial reaction with Cu

subsftate. Additionally, pareZnwas proposed as a wafer bonding material with self-regulated eutectic

reaction.

Chapter I introduced the necessity of SiC power device and the die-attach technologies. For the

die-attachment, lead-free die-attach materials are required because lead has the serious problems to

both human health and the environment. Chapter 1 also reviewed the present lead-free die-attach

materials and pointed out its drawbacks and limitation. In the previous study, although pure Zn shows

a great potential as die-attach material, it has a brittle nature and oxidation sensitivity. Supposing the

improvement of pure Zry the SiC die-attrachment reliability can progress. Thus, the chapter 1

described the purposes.

In chapter 2, the ductility and oxidation resistance of pure Zn were enhanced by the addition of

minor elements for use in die-attach materials. The results of tensile test we concluded that the

addition of minor elements effectively improved ductility without degrading strength and suppressed

twining. The coarse grain could be refined preventing from the brittle fracture of pure Zn without

coarse intermetallic compounds in the microstructure. The addition of all minor elements to pure Zn

could obtain the advanced oxidation resistance. It is possible that minor elements preferentially leads

to formation a compact and stable ba:rier layer at the surface or subsurface of Zn, and that these layers

could stem the propagation of oxygen inside the metals. Among the alloys obtained by adding minor

elements, the Znlr alloy showed the slowest oxidation ratio. Thereforg the addition of minor

elements to new Zn-based die-bonding materials is expected to be applicable to the interconnectivity
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of wide-gap semiconductor devices for use at high operating temperatures.

Chapter 3 discussed the interfacial reaction on Cu substrate with minor elements added Zn focusing

on the intermetallic compounds (IMCs) growth and shear sftength during thermal aging because the

IMCs thickness is ttre important issue on the joint reliability.

Two reaction layers were observed at the solder/Cu interface, and they were identified as y-CusZnr

ande-CaZn5 phases. As soldered IMCs thicknesses of Zn-\.lXlCu was about 15pm, which were

much thinner than that of ZnlCureaction layer.

After thermal aging 100h at 150 oC, the IMC layer grew at the interface (about twice) in thickness.

However, extended aging time until 500h indicated a considerable distinction between ZnlCu and

Zn-0.1X, especially Zn-\.lCr/Cu interface. The IMC thickness of ZnlCu and Zn-I.lCr interface

after aging for 500h were about 130 1un, 63 pm respectively. In case of the Ca and Ti additions, the

delamination to be operated at high temperature, was occurred after aging 200h, it implies the addition

of Ca or Ti is not a good choice for using high operation temperature devices. The growth rates were

calculated as3.77 x 10-15 d/s,2.82 x 10-15 m2ls, and 1.16 x 10r5m2/s for ZnlCu,Zn-0.LlvIn/Cu, and

Zn-y.ICr/Cu, respectively, which indicates that the IMC growth rate of Zn4.lCt is significantly

slower than pure ZnlCu couple. Although shear stength of Cu/solder/Cu joints with Zn and minor

elements added Zn solders showed almost the same value, about 60MPa, the shear stength of the

joint with all solders decreases rapidly during the thermal aging, except with Zn-0.lCr. The result of

the IMC thickness and shear stength, it is supposed that the higher shear stength of the Zn-D.ICr

alloy can be attributed to its thinner IMC thickness.

Thermal aging at 250 "C was carried out in order to examine the SiC power device at realistic

operating temperature. During aging treatnent for 100h, the formation of a considerable crack was

observed inside the y-CusZnr IMC phase, except Zn-}.ICrlCu interface. Thermal aging for 500h the

ptneZn lost even its own shape as solder while the Zn4.lCr remained the solder structure though

crack was existed. The additive Cr had a beneficial effect for suppressing IMCs growth.
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In chapter 4, SiC die-attachment was canied out. A sound SiC die attachment (with the

metallization layer of Au/TiN) onto a direct bonded copper (DBC) substate was obtained with

ZnA.ICr solder. The TN diftrsion barrier layer suppressed the IMC growth between DBC substrates

and solder. The thermal cycle (between -40 - 300 'C) reliability of SiC die-attached joints with

Zn4.ICr solder was evaluated. After 500 cycles, pure Zn and Zn-}JCr solders provide excellent

heat-cycle resistance for the DBC die-attach sftucture without cracking. Thus, cost-efficient Zn-\.lCr

solder exhibits quite excellent thermal shock resistance as compared with the conventional Pb-5Sn

solder. It is innigueing to investigate the mechanism behind the improvemen! in a further study,

though it is beyond the scope of this study.

Chapter 5 proposed the other application of pure Zn in packaging technologies, e.g. Si wafer

bonding. Auniform and defect-free interface was obtained, realtzed by using pure Zn as solder. This

bonding method gained significantly higher sfrength than that by conventional Au-20Sn eutectic

soldering. Moreover, the formation of uniform interface was obtained using pare Zn due to Si-Zn

self-regulated eutectic reaction layer excessive Si dissolution into Zn. The proposed cost-efficient

wafer bonding method thus provides a sound bonding interface, and is hence expected to have a wide

range of applications for Si based devices with wafer bonding.

In conclusion, it is found from a series of systematic investigations that addition of minor elements

significantly improved Zn-based materials for die-attachment of SiC. The improved performance and

reliability obtained are following: Improved ductility and oxidation resistance were expected to

relieve thermo-mechanical stress and high temperature oxidation. In particular minor Cr showed

depressing effect of IMC growth and excellent thermal cycle reliability. The SiC die-attached joints

with Zn-O.lCr solder were found to be more suitable than those with the currently used solders, e.g

Au-2OSn and Pb-SSn.
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