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abstract

Monte-Carlo method has been widely applied to study of the nuclear many-
body systems. There exist several methods of Monte-Carlo calculations: The vari-
ational Monte-Carlo method (VMC) and Green’s function Monte-Carlo method
(GFMC) are used to study of the ground state properties of light nuclei by using
the realistic nuclear force, while the shell-model Monte-Carlo method (SMMC)
and the quantum Monte-Carlo diagonalization (QMCD) are used for medium
and heavy nuclei whose structure can be described by the shell-model. Except
QMCD, the diagonalization method, all the Monte-Carlo methods are applicable
to only the ground state of the system. This is because VMC is based on the
variational principle, and GFMC and SMMC, on the imaginary-time evolution
method.

The aim of the present paper is to propose a new type of Monte-Carlo method
which enables us to calculate the excited state properties of the many-body sys-
tem. It consists of the method of continued fractions (MCF) and Monte-Carlo
random walk for the multi-dimensional integration. Convergence of MCF and its
accuracy are studied in detail for the one-dimensional model. As an application
to the realistic problem, we study the ground state of the ‘He nucleus by using
the Volkov potential. It is shown that our results on the ground state are in good
agreement with those of previous works in different formalisms in the four-body
system. This would imply that the present method opens a new world in the
study of the many-body nuclear system.
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1 Introduction

Nuclei are isolated system of an ensemble of many, but finite number of nucleons
interacting with each other through the nuclear force, and reveals many different
aspects of their structure from nuclei to nuclei. They are really quite interesting
objects as the quantum many-body systems. Although at this point the nuclear
system looks very similar to the atomic system, there are many different points:
1) Nuclear force is strong and short-range, while the Coulomb force is weak
and long-range. 2) Nuclear force is dominantly two-body force, but three-body
and many-body forces possibly exist, while the Coulomb force in atoms is two-
body force. 3) The structure of nuclear force has not been understood very
well, while the Coulomb force is well understood. 4) Nucleus has no massive
center, while center of atomic mass is, in a good approximation, a nucleus. Due
to these features, the nuclear physics provides many branches of its study in
fundamental and phenomenological ways, i.e., nuclear force and few-body system,
cluster-model, shell-model structure, collective motions, fission, exotic elements,
meson-nuclear physics, quark-nuclear physics and so on, and has revealed many
characteristic features that do not exist in atomic physics.

1.1 Background

From the fundamental points of view, the nuclear force is a kind of the effective
interactions, which should be derived from the QCD theory, but is yet far from its
goal. At present, two-body force has been rather understood theoretically and
experimentally except for the short-range region, but our knowledge of many-
body force is very limited, due to the experimental difficulties. Therefore, the
study of many-body force is necessarily reduced to the study of the nuclear bound
states and limited kinds of nuclear reactions. Furthermore, through the studies
of complex nuclei, it has been clarified that the conventional two-body force is
not attractive enough to reproduce the the binding energy of nuclei. This seems
to require the many-body force. For this purpose, it is very important to find a
way which enables us to treat the nuclear (few-body) system in exact ways. This
opened the research field of the few-body system.

The standard methods to study the three- or four-nucleons systems were
developed and now are known as the Faddeev and Faddeev-Yakubovsky (FY)
equations, respectively. In FY method, the Hamiltonian and the wave function
relevant to the system are decomposed into three subsystems. Generally, the
maximum angular momentum of the subsystems is not limited, that is, it takes
a value up to infinity. If it is allowed to treat the wave function with any values
of angular momentum, this method, in principle, will give us exact results. Al-
though,in the actual case, the maximum value of the angular momentum of the
subsystem is obliged to be limited to any several units of A, FY method gives
highly accurate binding energy of the ground state of “He when we adopt the

3



realistic spin-dependent nuclear force with a hard core [1]. Convergence of the
energy of the ground state of *He is slow, but it is achieved within the maximum
angular momentum of [™** = 6. In spite of this success, FY method requires us a
complex decomposition of the wave function. Furthermore, for nuclei with mass
number 4 > 5 the two-body force is not strong enough to reproduce the observed
binding energy of nuclei. To include the three-body force in FY method, a special
technique is also required. In this way, it seems not practical to extend the theory
such as F'Y method to any complex nuclei. We must develop any methods which
may work at least for light nuclei under the realistic nuclear force and possible
many-body force, and also enables us to calculate the excited states as well as
the ground state of nuclei. This would open a new sight to the nuclear physics
'far from stable line’.

On the other hand, from the phenomenological points of view, we have some
reliable nuclear models, such as cluster-model, shell-model and collective model
with phenomenological two-body force. (This is not the same as the two-body
force in the nucleon-nucleon scattering.) Essential point in these is that the
feature of the short-range and exchange force brings us various kinds of nuclear
structure and excitation mode. This implies that we are required to treat the
nuclear system much more in detail, which, we hope, will show new aspects of
nuclear structure. As the number of nucleons N increases, the computational time
grows up as O(M3"N) where M is number of typical mesh points at each dimension.
Therefore, the standard numerical integration method becomes almost impossible
to carry out in many-body problems.

1.2 Monte-Carlo approach

Against the above situations, a stochastically numerical approach, Monte-Carlo
method may overcome this difficulty under the recent development of the com-
puter with high speed calculation and large capacity of memory. Monte-Carlo
method has been widely applied even to the study of nuclear structure from light
to heavy nuclei.

The recent methods applied to nuclear few-body systems are variational Monte-
Carlo method (VMC) and Green’s function Monte-Carlo method(GFMC). These
have been developed mainly by J. Carlson et al. [2, 3, 4, 5]. The results for A < 7
nuclei are reviewed in Ref. [6]. VMC and GFMC have been applied to the study
of the ground state properties of nuclei with mass number of A < 7 with real-
istic potential [6]. It is now well known that the three-body force is required to
reproduce the observed binding energy of these nuclei. First of all, VMC was
applied to study of the ground state properties of 3H, 3He and “He by taking into
account three-body force [2] in addition to the Urbana vy4 two-body force [7].
Here, the three-body force used is rather realistic force with two-pion-exchange
and repulsive core. The calculated binding energies are in agreement with the
observed data with accuracy of a few percent. In VMC, the variational principle
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was applied to search the energy minimum for the trial wave function, in which
Metropolis method is used to calculate the nuclear matrix elements. In recent
study for light nuclei [6], GFMC was found to give the correct binding energy
by using the Argonne v two-body force [8] and the Urbana IX three-body force
[2]. GFMC uses a variational wave function obtained by VMC as a starting
trial function, since the VMC trial function is already good approximate func-
tion of the eigen state. Then, the imaginary-time evolution e™™# is carried out
by quantum Monte-Carlo random walk, where imaginary-time evolution opera-
tor i.e. Green’s function is taken as random walk kernel, and it makes use of the
property of diffusion equation. The operation of GFMC time evolution extracts
the true ground state from the trial wave function. In light p-shell nuclei, A =5
nuclei is unbound and A = 6, 7 nuclei have few excited unbound states with nar-
row width. The ground state of ®He (J™;T) = (0%;1) can be regard as a bound
state, since it has a mean life time 807ms, and its 1-st excited state (0%;1) has a
width of 113keV. The ground state of °Li (1%;0) is stable, and the 1st-, 2nd-, and
3rd-excited states (3%;0), (07;1), (2%;0) have a width 24keV, 8.2eV, and 1.7MeV
respectively. ®Be (0F; 1) state has a width 92keV. Then, GFMC calculations were
performed by assuming these state as bound states. Calculations for A = 7 nu-
clei were performed in a similar way. The results were shown to be generally in
good agreement with experimental values. In particular, the binding energy of
the ground states of *He, and “He were completely reproduced.

For p-shell nuclei, although the absolute values of the ground state energies
are still underestimated, relative energy spacings of low-lying excited state with
different spin-isospin quantum numbers from those of the ground state were re-
produced. Difference of the absolute binding energies between the theory and
experiment would be reduced to ambiguities in three-body force, because the
difference is much smaller than the expectation value of three-body force. Even
though GFMC seems, at a moment, to be a powerful tool for the study of the
bound states of light nuclei, it is limited to the calculation of the ground state.

For the states of the medium and heavy nuclei which are regarded to be de-
scribed by the shell-model, the Shell-Model Monte-Carlo (SMMC) was proposed
by S. E. Koonin et al [9] and has been widely applied to the study of the ground
states of sd-shell [10] and fp-shell nuclei [11, 12]. This method is a kind of ther-
mal cooling for obtaining the exact ground state energy with a partition function
Tr[exp(—7H)], H being the shell-model Hamiltonian, and is, in fact, the method
with the same restriction as that of GFMC.

Nevertheless, it is possible to calculate the excited state properties by using
the Monte-Carlo method. A possible way is to use Monte-Carlo method as an
integration process or as to pick up an important part stochastically, but not to
use projection exp(—Tﬁ ) directly. This kind of method is the matrix diagonal-
ization by the bases distributed with the quantum Monte-Carlo method, known
as QMCD (Quantum Monte-Carlo Diagonalization) in the large scale shell-model
calculation[13, 14, 15]. In shell-model calculation, the number of basis for valence-
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nucleon in Hilbert space increases drastically. For example, the number of basis
are up to 1.0 x 10° ~ 2.0 x 10° for pf-shell of A = 48 nuclei in m-scheme [16].
QMCD can reduce number of basis drastically. The basis are generated stochas-
tically by using auxiliary field Monte-Carlo technique as in SMMC, and only the
important part of Hilbert space are picked up. Then the number of basis is re-
duced to ~ 1.0 x 10 for %*Ge nuclei, while the number of full m-scheme basis
of M = 0 is 1,087,455,228 [15]. The Hamiltonian within the truncated space is
diagonalized so that the energy spectra of the excited states are obtained. It is
noticed that this method cannot be applied to light nuclei, because the effective
nuclear force is assumed to non-singular, i.e., the force without hard core which
the realistic force provides with.

1.3 A new approach of Monte-Carlo method

The purpose of the present paper is to propose a new Monte-Carlo method, as
an attempt to study the excited states of light nuclei with realistic nuclear forces
by Monte-Carlo method. We put the Method of Continued Fractions (MCF) as
a central part in the new formalism. This method doesn’t limit our calculation
to the ground state properties of nuclei. MCF in nuclear physics was originally
proposed by Sasakawa et al. [17] as a fast calculational method for evaluating
the T-matrix elements for three-nucleon system. The wave functions of higher
order defined in MCF are generated so as to be orthogonal to those of lower
order. Then, the matrix elements calculated by these wave functions rapidly
converge against iteration procedure. MCF is also applicable to the bound state
problem with a little modification of the original method. It is noted that MCF
method is also applicable to the study of the excited states by using the Monte-
Carlo evaluation, because this method does not use projection procedure to the
ground state component which is in contrast to GFMC. Moreover, this method,
in principle, does not pose any restrictions on the starting trial wave function
and also nuclear force to be used.

In this paper, we carry out a first try to apply MCF with Monte-Carlo cal-
culation to the excited states of few-nucleon bound states. Our calculation is
performed in the following points of view: 1) We carry out calculations by re-
garding the binding energy as a parameter, and determine the bound state energy
by searching the parameters so as to make a expectation value of a certain oper-
ator which vanishes for the correct binding energy. 2) The integrations in MCF
which include the free Green’s function can be performed by the random walk of
quantum Monte-Carlo technique. Therefore, we expect that our method will be
a useful and powerful tool for studying few-nucleon system.

During the calculation, the wave functions of MCF are generated by using
their orthogonality condition to those of lower order. This process is carried out
by random walk of method. However, the random walk of points which have
positive and negative signs meets what is called “sign problem”. This problem
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is deeply lying in quantum Monte-Carlo method, and induces large errors in the
matrix elements calculated by these wave functions. To avoid this problem, we
introduce the “multiple cancellation” method [18] in the random walk procedure.

As a test of our method, we adopt a simple one-dimensional potential model
which produces three bound states. We calculate the bound state energies and
shapes of wave function of three bound states. As a realistic example, we study
A = 4 nuclei with Volkov potential [19]. We obtain successful results for both of
the examples.

This paper is organized as follows. In section 2, we briefly review various
Monte-Carlo methods mentioned above developed in nuclear physics. Then, in
section 3 we give a formalism for the nuclear bound state problem by the method
of continued fractions, and in section 4, show a method of Monte-Carlo random
walk how to perform the calculations obeying method of continued fractions.
In section 5, at first we apply the present method to one-dimensional problem
and examine the convergence and accuracy of the calculated results. Next, we
calculate the energy of the ground state of “He nucleus by adopting the Volkov
potential and discuss our results by comparing with other works. Summary and
conclusion are given section 6.



2 Brief review of various Monte-Carlo meth-
ods

We will briefly review various Monte-Carlo methods applied and developed in
nuclear physics. There are different fields of nuclear physics where Monte-Carlo
methods have been developed.

One is to study the few-nucleon system exactly with the realistic nuclear
interactions. Variational Monte-Carlo (VMC) and Green’s function Monte-Carlo
(GFMC) belong to this field. These works have been developed by J. Carlson et
al. in the study of A < 7 nuclei. VMC is most primitive application of Monte-
Carlo method. It uses variational principle to obtain the ground state wave
function in which Monte-Carlo method is applied for generating the weight by
Metropolis random walk procedure. GFMC is a type of diffusive quantum Monte-
Carlo method. Starting from a trial function, the ground state wave function is
extracted by time evolution e="#. Obviously, these methods are restricted to the
study of the ground state of the system.

The other is the shell-model study in the medium and heavy nuclei. Shell-
Model Monte-Carlo (SMMC) and Quantum Monte-Carlo Diagonalization (QMCD)
belong to this field. SMMC is also diffusive type of calculation as GFMC. The
time evolution operator is expanded by Hubbard-Stratonovich (HS) transforma-
tion to rewrite the two-body operator into one-body operator form. The ground
state energy is extracted by the time evolution. It is distinguished from the other
methods, QMCD can evaluate the excited states properties. It requires diag-
onalization of Hamiltonian to calculate the eigen values. Monte-Carlo method
is utilized only for choosing stochastically the basis of diagonalization. QMCD
successfully reduces the number of basis.

2.1 Variational Monte-Carlo

VMC is a method of variational calculation for finding the minimum expectation
value of Hamiltonian with varying parameters of a trial function |¥r). Hence the
accuracy of the solution depends on the functional form of the trial function to
be adopted.

The simplest form of the trial function is Jastrow type |¥;). It is constructed
by shell-model wave function |®) and the correlation functions f¢ which depend
only on the relative distance between nucleons and include variational parameters.

For s-shell nuclei, the spatial part of the trial function can be taken to be
symmetric. It is expressed as,

|¥,) = [ II {}k] [H fj] |PA(JMTTs)) . (2.1)

<j<k i<y



Here f; and ff; are two- and three-body correlation functions, respectively, and

ijk
the shell-model wave function is antisymmetrized as
|®5(5355)) = AlpTpint) for *He, (2.2)
and
[©4(0000)) = Alp tpdntny) for *He, (2:3)

where A is an antisymmetrizer.
For p-shell light nuclei (A4 = 6,7), Jastrow type |¥;) is also taken as

|U,) = A{

I sis| |15

1<j<k i<j

|® A(JMTTg))} . (2.4)

Here the different form of three-body correlation function ff;; should be taken
depending on whether the correlated nucleons i, j and k are in the same shell sss,
or different shells ssp, spp, ppp (ppp is only for A = 7 nuclei). The shell-model
wave function in Eq.(2.4) is constructed on the o particle i.e. *He nuclei and
nucleon in p-shell. For example, the form of the wave function |®¢(JMTT3)) for

A = 6 is as follows:

|@A(JMTT3)) = A[¥a(00)0p(rs,0)1p(T6,a)] X
gﬂus [[Yz(Qs,a)Yl(Qﬁ,a)]L [X5X6]5] i < [nsm6l7. 7, - (2.5)

Here x; and 7; denote spin and isospin function of i-th nucleon, respectively.

To improve the trial function furthermore, one must include correlation terms
which include spin and isospin degrees of freedom. As a simple expression, the
trial function is written as follows:

1T, . (2.6)

i<j

S I1 Fin

i<j<k

|Vr) =

Here, § is symmetrizer and F;; and Fj;j are correlation functions which include
functions whose form is similar to the potential of two- and three-body, respec-
tively.

Two-body correlation term Fj; reflects the short- and medium-range part of
nuclei. A typical form of F}; is parameterized as follows:

Fi; =

1+ > um(rij)ogy} . (2.7)

m=2,8
It depends on the interaction between inter nucleon O,

O:?: [Lai'Ujasija(L'S)ij]@[].,Ti'Tj] . (28)
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Here, the function u;; in Eq.(2.7) also includes the variational parameters. and
the dependence of u;; upon the pair distance r;; is obtained as a solution of
Schrodinger-like equation in the various two-body channels.

In principle, the structure of the three-nucleon correlations Fj;; can be quite
complicated. The most important correlation is of the three-body type like Vi,
and it is assumed to be

Fijk =1~ Vi (2.9)

where (3 is a variational parameter.

Once the form of the trial function is fixed, we must carry out the parameter
search of the trial function so as to make the expectation value of Hamiltonian
minimum. In VMC calculation, we use Metropolis random walk method [20]
to generate the distribution with a probability density W(R). W(R) is a pos-
itive definite weight function and, usually it is chosen as an absolute value of
probability of the trial function,

W(R) = [(¥7(R)|¥r(R))| . (2.10)

Here R represents the coordinates of all nucleon and sums over the spin and
isospin degrees of freedom assume to be already done.

Once we obtained the optimum (approximately exact) eigen function, we can
estimate the expectation values of any types of operators O as follows:

0y = LARIT(R)ONr(R)  Til¥r(R)|O1¥r(R:)) /W (R.)
[ dR(¥r(R)|¥r(R)) YV (Ry)|Ur(R:)) /W (R:)

Off-diagonal observables, such as momentum distributions, can be similarly eval-
uated. They simply require an additional integration variable corresponding to
the off-diagonal displacement. Experimental quantities of interest include charge
and magnetic form factors, sum rues, and so on.

Variational principle ensure that we can obtain the upper bound of binding
energy for the ground state of Hamiltonian with varying the variational param-
eters in the trial function. Simultaneously, we can also obtain the ground state
wave function with analytic functional form. However, it is obvious that the cal-
culatable observables are restricted to the only ground state for given spin-isospin
channel.

(2.11)

2.2 Green’s function Monte-Carlo

Green’s function Monte-Carlo (GFMC) is a diffusive method to project out the
ground state of Hamiltonian with imaginary-time time evolution. Starting from a
trial function |¥r) which is not orthogonal to the ground state, the time developed
wave function |¥(7)) converges into the ground state wave function |@):

[¥(r)) = lim exp(~H)|¥r)
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= TILI&ZGXP(_TEn)Wn)(qsnI\I'T)
= exp(—Eo7)|¢do) - (2.12)

The main task of GFMC is the iteration of infinitesimal time step A7 until the
wave function converges into the ground state,

| (7 + AT)) = exp(—ATH)|¥(7)) . (2.13)

The infinitesimal time development is carried out with the propagator induced
by imaginary time evolution operator exp(—A7H).

At first, we consider a spin-isospin independent Hamiltonian with two-body
central potential V' (r;;),

H=T+V
h2 A )
= —% Z Vri + Z V(’I"ij) . (214)
=1 1<j

Then the infinitesimal time A7 propagator is written as follows:

(R|exp(—ATH)|R') = G(R, R'; A7)
= (R|exp(-AT{T + V})|R))
~ (R| exp(—AT)|R')(R'| exp(—AV)| R')
= Go(R - R')exp(—AV(R)) . (2.15)

Here, R represent A-nucleon coordinates, R :{ri,rs,-++,74}, and Go(R — R/)
is the free one-body imaginary-time propagator, given by

Go(R—R) =N, ﬁexp [—m(ﬁi#] , (2.16)

=1
where N, is a normalization factor. This equation is valid for O(A7?). The in-
finitesimal time evolution is carried out by random walk form R’ to R with the
Gaussian probability distribution in Eq.(2.16). The potential term, exp(—AV (R/)),
is regarded as a “weight” at point R. Therefore the imaginary-time evolution
operator for 7 is written as

(Rpr; 7| exp(—7H)|Rp; 0) = (R 7| exp(—ATH) | Rpr—1){Rps—1| exp(—ATH)|Ras—s) X

... X (Ry| exp(—ATH)|Ry; 0)

M
= H G(R'n, R’n—l; AT) ’
n=1

where R, represents the coordinates at the time 7 = nA7. Hence starting from
a trial function |¥7(Ry); 0), time developed wave function |¥(R; 7)) is obtained
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as

U(R); 7) = /dRO .- dRyG(R, Ry; A7) ﬁ G(Rn, Ru_r; AT)|Ur(Ry); 0) -

" (2.18)
Integrations on dRy - - - d Ry are replaced by the Gaussian random walk in Eq.(2.16).
For more realistic case, Hamiltonian includes the spin-isospin dependence,
non-local forces and three-nucleon potentials. Its random walk kernel from R,y
to R',x' becomes complicated form [6], and is approximated as follows:

(R, x'|exp(~HAT)|R, x) = G(R, B; AT) » [ II Goi(lri - T%I)}

i=1,A

AT 955 (55, Ti5)
< S 0l 1= AT S v ®)| b als [———— o)
)az,;cz [ 2 i<JZ<k ! E 90,i5(T3;> Tij)

AT

1—
2

X (Xz2|
i<j<k

> Vz-jk(R)] Ix) , (2.19)

where x represents the spin-isospin states with A-nucleons, Go; and go;; are
the free one- and two-body imaginary-time propagator, respectively. The free
propagator are of a simple Gaussian form as,

I _ )2
Go; = My exp [—m(r—BA—?)—] , ,(2'20)
Tl — )2
o,i; = Naexp l_m(J4—AMJ)_] : (2.21)

with normalization factors M.

gij is the exact imaginary-time propagator, and it is a matrix in the two-body
spin-isospin space and must be calculated numerically. The propagator satisfies
the time-evolution equation,

0
vl [y + HijJ 9i(r', 75 7)) = 0 (2:22)
where
Hij = —(1/m) Vi + vy (2.23)

and x;; and x;; stands for two-nucleon spin-isospin states. The g;; also satisfies
a boundary condition,

(Xisl9i3 (T, 737 = 0)xig) = 6(r — 7') 01, - (2.24)

Once the infinitesimal time-evolution propagator G(R, R'; AT) is obtained, the
time evolution is carried out in a similarly way to Eq.(2.18). Since the wave func-
tions are vectors and propagator are matrices in spin-isospin space. In principle,
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any set of paths can be taken to calculate the matrix elements or expectation
values. However it is useful to perform the importance sampling to minimize the
variance of calculation rather than taking “any” set of paths. The importance
sampling is an acceleration technique to generate the configuration R into the
importance function (weight) I(R). Usually, the importance function is taken as
probability density of the trial function with the sum of spin-isospin degrees of
freedom,

(Tr(R)|x) (x| ¥(R; 7))

(2.25)
where ¢ is a small positive coefficient. The second term ensures that all paths
are allowed to take positive probability. The expectation values can be obtained
similarly as in Eq. (2.11), and is evaluated between the trial function |¥7) and
time developed wave function with GFMC manner |¥(R;; 7)) as

Zi(¥r(R:) |01 (Ri; 7)) /1[¥(R), ¥(R, 7)]
Zi(Ur(R)|V(Ri; 7))/ 1[¥7(R), ¥(R, 7)]

The matrix element in Eq. (2.26) is a “mixed” estimate. It is of the form,

I[¥r(R),¥(R,T)] = Z(‘I’T ) (X (R; 7)) |+

€2

X

(0) ~ (2.26)

(\IIT|Oexp( H7)|¥r)
Odmix = T exp(—Fr) )

(2.27)

The value (O)mix is the matrix element of the trial function and the true ground
state obtained by GFMC calculation. The mixed estimate is sufficient to evaluate
the ground state energy, since the Hamiltonian commutes with the propagator.
Indeed, an upper bound to the true ground-state energy Ej is obtained for any
value of 7,

(Ur|exp(—HT/2)H exp(—H7/2)|¥r)
(Ur|exp(—HT/2) exp(—HT/2)|¥T)

(HYmix = > Ey. (2.28)
Of course, the actual convergence of calculation depends on the accuracy of the
trial function |¥r) and the structure of the spectrum of the Hamiltonian. The
knowledge of the spectrum tells us that we can proceed the calculation only for
a finite 7 in light nuclei. For quantities other than the energy, one typically esti-
mates the true ground-state expectation value by extrapolating from the mixed
and variational estimates,

(Ur|O|¥7)

(0) 20N~ g

(2.29)

However, for momentum-dependent operators O, the statistical uctuations as-
sociated with this estimate can be quite large.
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VMC provides upper bound of the energy and the approximately true wave
function for the ground state. GFMC makes use of this wave function as a
trial function. After time evolution according above description, the true ground
state wave function is extracted out from the trial function due to exp(—7H).
Therefore, GFMC calculation is also restricted to the ground state properties.

2.3 Shell-model Monte-Carlo

The medium and heavy nuclei are well described by the shell-model picture. Usu-
ally, the shell-model wave function is constructed by valence nucleon and hole in
medium and heavy nuclei. However, the number of basis which is required for full
diagonalization of the Hamiltonian increases so fast. Because the total number of
states is 2™ with m = 12, 24,40 in the p-, sd- and pf-shells, respectively. It is ob-
vious that a problem of this magnitude lies beyond the capability of computers at
the present time. In this limitation, the traditional approach to circumvent it is
ad hoc truncation on the number of basis. However, since the residual interaction
is strong enough, calculations of this nature can be unreliable and significant re
normalizations of the residual interaction and transition operators are required.
The Shell-model Monte-Carlo (SMMC) which was proposed by S. E. Koonin
et al. [9] and has been developed to study the ground states of sd-shell [10]
and fp-shell {11, 12] nuclei. This method can derive the exact ground state
energy of the nuclear shell-model Hamiltonian. SMMC is a method of Monte-
Carlo evaluation of the canonical expectation value of a operator O with finite
temperature 1/7 as
() = Tr[O exp(—7H)]
Trlexp(—7H)]

Here, Tr[exp(—7H)] is the canonical partition function for fixed number of nu-
cleons.

Suppose that the Hamiltonian is written in terms of “convenient” one-body
operators O, as follows:

(2.30)

=S €O+ .;_2 V.02 . (2.31)

We can expand the time evolution operator by Hubbard-Stratonovich transfor-
mation [21]. Here, the Hamiltonian doesn’t include the three-body or many-body
potentials. The two-body potential term, %Za VaOAg, is obtained by the decom-
position method from the original shell-model potential [9]. Although, any types
of potentials can be used, the repulsive potential induces “sign problem” for
Tr[exp(—7H)] which will be used as weight function [11].

The time evolution operator exp(— —TH ) is expressed by a product of the prop-
agator with time slice so A7,

N

U(r) = exp(—7H) = [exp(—ATfI)] , (2.32)
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where 7 = N;A7. The infinitesimal time evolution operator exp(—ArH) contains
the two-body operator in H. This fact makes it difficult to evaluate the time
evolution operator. Fortunately, by applying the HS transformation with the
auxiliary field o4y, we can express the infinitesimal time evolution operator in
the form which contains only one-body operator, shown as

exp(—ATH) 2/_ Hd Gan (Aﬂ: I)

1 A A
X exp {—AT (Z §|Va0§n| + €404 + saVaaanOa> }(2.33)

a

Here, s, is related with the sign of the potential in the original Hamiltonian, and
it takes
So =Fx1for Vo, <0, and s, =+1forV, >0.

Finally, the imaginary time evolution operator U (7) is given as an integral of the
functional of the one-body operator h,(7:,) in auxiliary field {c} :

A~

U(r) = [exp(~ArH)] " = / D™[0]G(0) exp[—AThy (y,)] - - - exp[— AThy (11)]
~ (2.34)
with

DM[g] = H I doan (AT’: ') , (2.35)

n=1 «

where the Gaussian measure of auxiliary field is given by

G(o) = exp (—Z%Wawin) , (2:36)

an

and, one-body operator ﬁ,, ()5

iLU(Ttn) = Z(ea + SaVaaan)Oa . (2.37)

«

The HS transformation enables us to calculate easily the weight function (o),

¢(o) = T, (7)] - | (2.38)

For a set of auxiliary field {o}, the calculation of the matrix element (2.30) is
carried out by the integration for auxiliary fields {c}:

. [D[]G(0){0(0))C(0) |
O = = DbiGE)ce) (239)
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In order to evaluate Eq.(2.39) by Monte-Carlo method, we need the weight func-
tion W, to generate {c}. The weight function W, must be normalized and chosen
positive definite. Then we choose it as follows:

W = |G(0)¢(0)] - (2.40)

To generate {o} with the weight W, the Metropolis random walk method [20]
is most appropriate.

In thermal approach, we can calculate only the expectation values on the
ground states. It is due to imaginary-time evolution exp(—TfI ) in the partition
function.

2.4 Quantum Monte-Carlo diagonalization

SMMC successfully calculate the expectation value on the ground state in nuclear
shell-model nuclear. It uses thermal approach which includes exp(—Tﬁ ) in its
partition function. This term strongly project out the ground state component
for large 7, hence this projection, as similar to GFMC, prevents us to study the
excited state of Hamiltonian.

The excited state properties may be studied by the non-projection method.
Diagonalization of Hamiltonian is one of the most plausible ways. Quantum
Monte-Carlo Diagonalization (QMCD) is the diagonalization method to study
the excited state of the shell-model Hamiltonian in medium or heavy nuclear
physics.

As discussed before, it needs a huge number of basis for full diagonalization of
the Hamiltonian. QMCD reduces number of basis by using a stochastic method.
QMCD base states are generated with auxiliary field Monte-Carlo technique as
SMMC. The imaginary-time evolution operator is expressed as a product of Ny
times sliced evolution operator:

N A
exp(—7H) = [] exp(~ATH)™ | (2.41)
n=1
where A7 = 7/N; and H is a shell-model Hamiltonian which consists of the one-
and two-body operators as follows:

~ ~ 1 ~
H=Y 0+:> 0%. (2.42)
a=1 2 «a
For small time-step evolution exp(—A7H), we use the Hubbard-Stratonovich

transformation to convert the “two-body” Hamiltonian into the effective “one-
body” form in a similar way to SMMC,

1
N o0 2
exp(—ATH) ~ /—ooHdaa" (A;L:/J)
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1 N R
X exp {—AT (Z §|Va02n| + €404 + saVaaanOa) } .(2.43)

a

If we have performed the integration on the auxiliary field {o4,} completely, the
time evolution operator exp(—7H) projects out the ground state component in
the trial function. Therefore, in QMCD, instead of the integration for {04}, we
regard {o,,} as parameters of basis,

13(0)) o I_ilexp(—mh(an))mfo) . (2.44)

Here, h{o,) is the one-body operator obtained by the HS transformation,

how) = D (€a + 5aVaTanOa) (2.45)

[4]

and |Uy) is a trial function. The Hamiltonian is diagonalized in the Hilbert space
spanned by these basis |®(0)).

The actual calculation is proceeded as follows. Starting from the trial function
|Wo), we calculate the initial energy Ey as

Uo| H|¥y)

Fo= ( (o[ o) (246)

The following procedure is iterated until the ground state energy E converges. We
generate auxiliary fields {o} in a stochastic way and calculate a time developed
wave function |®(c)) as Eq.(2.44). A new basis |®'(¢’)) is determined so as to
be ortho-normal to all other basis {®}. We diagonalize the Hamiltonian with
these basis plus a new set of basis |®(¢”)). Then we obtain the eigen values and
functions. Adding a new basis, in principle, reduces the ground state energy. If
the new basis is chosen well in Hilbert space, energy difference AE between with
and without the new basis becomes large. When AF is small, the new basis |®)
is discarded.
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3 Method of continued fractions

Method of continued fractions (MCF) has been developed as an efficient method
to study scattering problems for atomic physics and three-body system of nuclear
physics. Lately, this method is improved to study the bound state problem. It
enables us to calculate quickly the binding energies and the wave functions of the
bound states. We briefly review the method of continued fractions.

3.1 Modified Green’s function approach

The Schrodinger equation of multi-nucleon system can be written as

(Ho +V)|¢) = E|¢) (3.1)

Here, Hy is a kinetic energy operator and V is nuclear potential between nucleons.
For the bound state, Eq.(3.1) can be written as

4) = Go(E)V|¢) (3.2)
where Go(E) is a free Green’s function,

1
Go(F) = o (3.3)
There are two ways to perform the calculation using continued fractions form
of the bound state problem. The one is to introduce modified potential approach
(MCFV) [22] and the other is modified Green’s function approach (MCFG) [23].
Both methods are equally useful in general. In this work, we use the MCFG ap-
proach, which is easy to implement in Monte-Carlo evaluation, while the original
formalism in [23] was developed in the first approach. In this section, we will
show the idea of modified Green’s function of MCFG.
We introduce arbitrary functions |Fy) and |f) which are non-orthogonal to
the bound state wave function |¢) and possess the same symmetry as |¢).
First of all, we start the calculation from |Fp), and define a new function |F})

as
|F1) = Go(E)V |F) (3.4)
and modified Green’s function G;(E) as
_ _ R

G1(E) is chosen so as to operate on only the space which is orthogonal to V|Fy)
as

GLE)V|Fy) = (GO(E) - %) VIF)
= |Fy) — |FY)

=0. (3.6)
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Eliminating Go(E) from Eq.(3.2) with aid of Eq.(3.5), the bound state wave
function |¢) is written as follows:

(flVlg)
VIS (3.7)

In the next step, we introduce the second order wave function |F3) as

4) = GL(E)V|¢) + | F1)

|[F2) = G1(E)VI|F) , (3.8)
and also a modified Green’s function as

Now the second order Green’s function Go(F) is orthogonal to both V|Fp) and
V|F1>I

Ga2(E)V|Fy) = Go(E)V|F1) =0. (3.10)
Therefore, the bound state wave function is written as ,
flVié
8) = Ga(EYVIg) + 3 |F) IO (3.11)

i=1,2 <f|V|-Fz 1>

By this modification of Green’s function, the wave function can be expressed by
a sum of orthogonal basis |F;). The modified Green’s function always operates
on the space which is orthogonal to the lower order wave functions. Therefore,
the higher order modified Green’s function is expected to become smaller, and
the iteration procedure may converge quickly.

In general, the modified Green’s functions and the wave functions are defined
as following iteration procedure,

|Fiy1) = Gi(E)VI|F) (3.12)
e R
Gi(E) = Gi1(E) — GVIFES (3.13)

where G;(E) satisfies the following orthogonality relation,
Gi(E)WVIF)=0 (i>7). (3.14)

Finally, the bound state wave function is expressed in terms of the MCF wave
functions as
(FIV]9)

Z |F><flV|F, 5 (3.15)
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3.2 A new equation for the bound state problem and its
solution
In this section, we show how the bound state energy can be obtained by using

the iteration formula in the previous section.
Eq.(3.2) is rewritten as

- R
9= (G5 + L vy
_ 1 {(fIVie)
@V " VIR
(flVl¢>
= |¢1 ><f|V|F> (3.16)
where we define |¢;) as
1
|¢1) = m‘ﬂﬂ) . (3.17)

Multiplying {(f|V to Eq.(3.16) from left, we obtain the following condition for
determining the eigen value E and the wave function of the bound state,

{fIVign)
(fIVIFo)

Therefore, the bound state condition is equivalent to the equation,
(fIVIFo) = (fIVI$1) = 0. (3.19)

In order to solve this equation, we have to obtain |¢;). This can be done by
MCFG iteration formula in the previous section. We define the i-th order wave
function |¢;) as

(fIVI$) = Frmmy (fIVIe) - (3.18)

. 1
|¢:) = WIE) : (3.20)
We can rewrite Eq.(3.20) as
|ps) = |F3) + Gi(E)V|é5) (3.21)
We substitute Eq.(3.13) into Eq.(3.21), and obtain
T . |Fis1)(f] .
|6i) = |F3) + (Gz+1(E) + —(f|V|E>) Vi) (3.22)
which is reduced to the equation:
R (VD)
|¢:) = |F3) + |¢’+1>(f|vm) : (3.23)
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Here we use an orthogonal relation of Green’s function as

G = L+ G (B)V 4 IF)
= |Fi) (3.24)
We multiply (f|V form left to Eq.(3.23), and obtain
VIR
VIS = TRy — (Vi) (3:25)
The above formula is explicitly written for ¢ =1 as
(VR
IVIen = TvTmy — (V1)
IVIFY?
- T UVIER?
VI = Ty — (Vg
VIR
= 3 3.26
L L Y
VIR —

As a result, the bound state condition Eq.(3.19) can be also written as the form
of continued fractions:

(FIVIF) — (fIV]$1) = z0 — p (3.27)
I — 2 xQ
Tg — 8
T3 —
= Q(F),
where the matrix elements z; are defined as
z; = (f|[V|F) . (3.28)

The condition Q(E) = 0 is equivalent to the original Schrodinger equation for
bound state Eq.(3.1) and determines the bound state energy.

In the iteration procedure, the Green’s function project the states which is
orthogonal to the lower order wave functions, as Eq.(3.14). We expect that z;
becomes smaller for higher ¢. Since this method is not restricted on the ground
state, we can use the continued fractions form to study the excited state. Here,
it is noticed again that we must adopt trial function |Fp) and |f), which are not
orthogonal to the eigen function.
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3.3 Wave function of the bound state

Once the eigen energy is determined, the bound state wave function is determined
simultaneously from Eq(3.16) as

0) = o1 'V'¢>

= N|¢1> ) (3.29)

where A is a normalization constant. Using Eq.(3.23) and Eq.(3.25), we can
express the state |@) as

16) = Nor)
- {1Vier)
— N [lFo +lo S ]

GIVIFY
=N [|F1>+|¢2><flVl Yy~ <f|V|¢2>]' (3.30)

Further, by using Eq.(3.23) and Eq.(3.25) iteratively, we obtain the bound state
wave function |¢) as follows:

|6) = N [|F1) + 01| F2) + 1y2|F3) + nhyays|Fa) + - -] (3.31)

where y; is given by the following continued fraction series:

T;

Y =
- — {f|V|piy1)
- o (3.32)
Tit1
Tr; — 5
Tir1 — Tit2
' Tiy2 —
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4 Continued fractions and Monte-Carlo method

In order to solve the bound state problem in the previous section, we start from a
trial function |Fp), and generate MCF wave functions | F;) by the iteration formula
(3.12) and the modified Green’s functions G;(F) by the iteration formula (3.13).
Since both G;(E) and |F;) are given by the iteration formula, and moreover the
form of G;(E) is separable,

Gi(E) = Gin(B) - B (1)

Z;

the original form of MCF is not suitable for Monte-Carlo evaluation. Hence, we
modify the iteration formula (3.12) by using the orthogonality (3.14) as follows:

Fius) = G(E)VIF)
=GM@VDE%ﬂE4>

Ly
ﬂ?i—1] . (4.2)
Advantage of this formula is that a higher order wave function |Fj;;) is always
given by the free Green’s function Go(E) which has a simple analytical form.
Because we know the technique of random walk used in Green’s function Monte-
Carlo, the distribution according to the free Green’s function Go(FE) is easily
obtained. In this work, we will show the coordinate space representation for
random walk formula.

However it should be noticed that the iteration formula (4.2) is not simply
related to the diffusion equation,

[4) = Go(E)V9) - (4.3)

The diffusion equation guarantees that the wave function obtained by iteration of
Eq.(4.3) converges into the ground state, iteration being carried out by random
walk Go(FE) with the weight V. The difference between MCF iteration formula
(4.2) and diffusion equation (4.3) is in wave functions obtained by iteration, since
Eq.(4.2) can be regarded as

1) = Go(E)V 4o} , (4.4)

where [¢1) and [¢o) correspond to |Fii1) and [|F;) — ;%-|Fi1)], respectively.
Therefore we can not use naive procedure as the diffusion equation.

In addition, [1) is given by a subtracted form of the wave functions, [|F;) —
|Fi—1>z_ff7]7 so that the sampling with positive and negative points causes the
problem in the iteration procedure of MCF. This problem will be solved by using
the multiple cancellation [18], which will be discussed later on.
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4.1 Free Green’s function in dimensionless coordinate

We consider the random walk by free Green’s function Go(F) in configuration
space. N-body Schrodinger equation for the bound state in the coordinate space
z;:(1=1,---,N) is written as

N

1

[— E 2m.V2wi + V(xy,-- -,mN)] V(xy,- -, xy) = —BY(xy,---,2y), (4.5)
i=1 41

where B is the binding energy of the system. By separating out the center of

mass coordinate, we rewrite the equation in terms of the relative coordinate r;

and reduced masses y;:(i =1,---,N — 1) as

N-1
[— Z EEV%’ +V(ry,--- ,TN_l)] ¢(r1, -, rNn) = —Bo(ry,---,ry-1) , (4.6)
i=1 ?

where the potential V is as function of only the relative coordinate r;. Then

we denote V(xy,---,xy) as V(ry,---,ry_1). We introduce the dimensionless
coordinates as

z; = \/2u; B/h?r; (4.7)

W(zy,+,zy-1) = =V (ry,---,7n1) /B, (4.8)

The Schrédinger equation (4.6) reads as

N-1
<— Z V,Zzi + 1) P21, -+, 2n-1) = Wz, -+, 2n-1) (21,0, 2h-1) - (49)
=1 .

To solve Eq.(4.9), we define a free Green’s function Gy(R, R') which satisfies
the equation,
(=V2+1)Go(R,R') = 6(R, R') (4.10)

where R denotes 3(IN —1) coordinates i.e. R = {21, +-,2y-1}. It is noticed that
the energy dependence of Go(R, R') is included in the dimensionless coordinates
r; and dimensionless potentials W.

Hence the Schrédinger equation (4.9) is expressed as an integral equation:

8(R) = / Go(R, R)W (R)$(R')dR' . (4.11)

- In MCF calculation, a wave function |F;) is generated by Eq.(4.2) expressed
properly in terms of the corresponding dimensionless quantities.
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4.2 Random walk with free Green’s function

We consider to apply the random walk with free Green’s function Go(R, R') to
the integration of non-diffusion type:

¥u(R) = [ Go(R, R)W (R io(R)dE . (412)

For simplicity, we assume that wave functions ¢;(R) and ty(R), and potential

W (R) are positive definite. Notice that positive sign of W(R) stands for the

attractive potential. The general case will be discussed in the next subsection.
Since the free Green’s function Go(R, R') is normalized as

/ Go(R, R)dR' = / Go(R,R)dR =1, (4.13)

Go(R, R') can be regarded as a probability function of the random numbers dis-
tributed according to Go(R, R'). The algorithm of random walk with Go(R, R')
is provided by M. H. Kalos [24] (see Appendix A. for detail). The ground state
wave function is obtained by the iteration of Eq.(4.11) with random walk method
[24] using the feature of the diffusion equation.

Now, we consider the mechanism of random walk in Eq.(4.12). The function
Y1 (R) generated by integration of Eq.(4.12) is represented by distribution of
points {R;} using the probability of the functional form 4, and the weights
{Wy,} as

1 (R) = / Go(R, R)W (R')to(R')dR'

N
= E WO,iGO (R7 RO,'i) ) (414)

i=1

where N is a number of sampling points.
We assume that v;(R) is represented by the points {R;;} and the weights
{W1,;}. Then integration of an arbitrary function F'(R) is represented as

[ F(RyW(R)AR = S Wi F(Ry) (4.15)

The question is how {R,;} and {W;;} in Eq.(4.15) are generated from {Rp;}
and {W ;}.
From Eq.(4.12), the integration in Eq.(4.15) is rewritten as

/ F(R)$:(R)dR = / F(R) i WoiGo(R, Ro,)dR . (4.16)
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The right hand side of Eq.(4.16) is rewritten as

Go(R, X)

Go(®, X) 1

| @) fj Wo:Ga(R, Ro;)dR = [ F(R) fj WoiGo(R, Roy)

= / A(R, X)Go(R, X)dR . (4.17)

where X can be an arbitrary value in 3(N — 1) dimensional space. We assume
that Go(R, R') satisfies the hyperspherical boundary condition,

Go(R,R)=0 : R,R' - . (4.18)

This means that Go(R, R') is a function of only a variable |R — R'|. Hence we
define a vector R in the 3(/V — 1) hyperspherical coordinate as R = R — X, and
rewrite the free Green’s function as

Go(R, X)dR = Go(R)dR . (4.19)

We can generate the random number R with probability of Go(R) by using
GFMC random walk technique in [24]. The integration including Go(R, X) is
carried out with the set of random numbers {R,} generated by Go(R) as follows:

/ A(R, X)Go(R, X)dR = / AX +R, X)Go(X + R, X)dR
= / A(X + R, X)Go(R)dR
N1
=y —AX+R;X). (4.20)
—~ N
Therefore the right hand side of Eq.(4.17) is rewrite as follows:
N
Go(R, Ro;)
A(R, X)Go(R, X)dR = ; ,X)dR
[ AR X)Go(R, X)aR = [ F(R) S Wosgg o GolR, X)
N
GO(X + Rj, Ry 1)
F(X+R; ; ’
X+ R) L Wi G X TR, X)

>iWo,iGo(X + Rj, Ro;)
NGo(X + R;, X)

F(X +R))

(4.21)

We notice that Eq.(4.21) holds for any values of X. Therefore, we replace X in
F(X +R;), Go(X +Rj, X) and Go(X + R, Ro;;) by

X=Ry; (j=1,---,N), (4.22)
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and finally obtain,

> Wo,iGo(X +Rj, Ros)
NGy(X +R;, X)
> Wo,iGo(Roj + Rj, Roji)
NG()(R(),J' + Rj, Rg,j)

[ PRy (R)aR i F(X +R;)

J
N
Z F(Rg,j + 'R,J)

i
M= -

F(R1 ;)W . (4.23)

LY

Here, {R; ;} and {W, ;} are defined as

Rl,j = Ro,j + Rj (424)
>i Wo,:Go(Ro; + R, Ro ;)

By comparing Eq.(4.15) with Eq.(4.23), we can regard 1, (R) as the distribution of
the points {R; ;} which are generated by the points { R, ;} and random numbers
{R;} with probability of Go(R) and each point has the weight W ; as Eq.(4.25).
From this reading, the integration (4.12) is carried by using random walk form
{Ro;} to {Ry;} with probability of Go(R).

We mention difference between our random walk method and the diffusion
equation method. In the diffusion equation, a weight of new point W ; is taken
to be the same value as that of old point Wy ;, so that the component of the
ground state in the trial function is extracted during the iteration. In contrast,
in our method for Eq.(4.12), a weight W1 ; of new point R;; is generated by
using all the other old points {Ry;} in the random walk. For non-diffusion type
integration formula like Eq.(4.2), weights of new points must be generated by
using our method, otherwise the ground state component is enhanced in the
iteration. For study of the excited state calculation, it should be kept in mind.

W, (4.25)

4.3 Multiple cancellation

If 1o(R) and W (R) are not positive definite, we must add the sign so; to the
weight Wy ; as
Wo,j = So’jWO,j . (4.26)

Similarly, W ; should include the sign

i 80,iWo,:Go(Ro; + Rj, Ro,i)

Wi = s1,Wh; = NGy(Ro; + R, Ro;)

(4.27)

This is required, since a potential term W (R) is not positive definite.
A higher order wave function |F;.;) is generated by Eq.(4.2). Since Eq.(4.27)
shows that a weight of a new point is generated by taking into account of all the
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other weights and signs of old points, the points which have positive and negative
signs are canceled according to weigh counting in Eq.(4.27). If we carried out
the random walk for points of positive signs and negative signs independently,
the weights of each points grow up and destructive interference of these wave
functions induces large errors in the matrix elements z;,; calculated with wave
function |Fj.;). In this way, Eq.(4.27) play a important and critical role of this
random walk procedure.

The weight cancellation of Eq.(4.27) can be regard as a sort of “multiple
cancellation” by J. B. Anderson et al. [18]. Multiple cancellation method has
been applied to, developed in the atomic physics, and provided very accurate
results for the two- and three-electron bound system. Since our random walk
method is the same procedure of multiple cancellation, the validity of our method
may be confirmed.

4.4 Improvement of the accuracy

In MCF calculation, a higher order wave function is generated with Go(E)V

random walk as
Z;

Fus) = Go(B)V llﬂ) - |m_1>] . (4.28)

Ti—-1

A subtraction procedure on the right hand side of is carried out by “multiple
cancellation”, as shown previously. However, the first large error in generating
|F3) is due to a large large cancellation between wave functions. In order to
improve accuracy of calculation, we modify the equation for |F3) into the analytic
form of subtraction as

F) =GBV ||F) - 2R
=GBV [GaE)V IRy - 2 |Fo)
= Go(E)VGo(E) [V|F0) - %GO(E)‘IIF())]

= Go(EWVGo(E) [V = 2Go(E) ™| IR . (4.29)

Since |Fy) is analytic and known function, the operation [V — :JOGO(E)‘l] can
be carried out as analytic calculation. Then the accuracy of |Fy) is improved.
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5 Applications to the bound state problems

The procedure in our method is summarized in order.

1. Assume an appropriate form of the trial function and determine its param-
eters by variational method or numerical fitting.

2. Distribute the points by Metropolis method according to the probability of
absolute value of the trial function |Fp).

3. Calculate a matrix element (f|V'|F;) by |F;).

4. Generate |F;,;) by random walk Go(E).

5. Iterate steps 3 and 4 until the z; and Q(E) converge.
Binding energy B(= —FE) is determined by searching the energy which satisfies
the condition Q(E) = 0.

5.1 One-dimensional model

As a simplest example, we studied 1-dimensional potential model. In the 1-
dimensional problem, we can use other accurate numerical methods such as Simp-
son integration method, and test our method by comparing with them.

We solve the 1-dimensional Schrodinger equation as follows:

n? d?
- %@qﬁ(w) + V(z)¢(z) = —Bo(z) , (5.1)
where B(= —F) is the binding energy and nucleon mass m is fixed as m =

940MeV. V(z) is chosen as follows:
V(z) = Vo exp(—pz) (5.2)

with
Vo = —69.3(MeV) , u = 140(MeV ) . (5.3)

The potential is assumed to be of the simple exponential type so as to produce
three bound states (—38.7, —10.6 and —2.01 MeV). The binding energy of the
2nd-excited state is very small, and is compared with the deuteron binding energy
(= —2 MeV). Since this model is 1-dimensional and doesn’t contain any other
degrees of freedom (spin and isospin), the wave function of the bound states are
classified by their parity. The ground and the 2nd-excited states are even parity
states, and the 1st-excited state is odd parity state. Usefulness of our method will
be examined for the 2nd-excited state, with the same symmetry as the ground
state.
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In order to use random walk with a free Green’s function Go(E), we transform
the Schridinger equation (5.1) into an equation with dimensionless variable z as
follows:

[—d—2 ; 1} 8(z) = W()4(2) (5.4)

dz?
with
z=1/2mB/h’z , W(z) = -V (2)/B . (5.5)

The Green’s function for Eq.(5.4) satisfies the equation,

(3 + )Gz, ) = 8(z— 7). (5.6)

Then, the wave function (z) satisfies the integral equation,

é(2) = / d2'Gol(z, 2 )W () 6() . (5.7)

The free Green’s function Gy(z,2') with boundary condition, Gy — 0 for z —
Fo0, is given by

Go(z,2') = %exp(——lz —2)). (5.8)

Therefore, the algorithm to generate 2z’ from z according to the random walk
kernel Gy is simply given by

z =27 +log€ - (random sign). (5.9)

Here, £ is an equidistributed random number in (0, 1), and “random sign” means
to take + or — sign randomly.

We take a Gaussian form as a trial function for the even-parity states, and a
Gaussian form multiplied by an odd parity term for the odd parity states,

2

1
exp(—x—2) , for even parity,
/ b \/7? 2b

2 z2 o
= Hmz exp(—ﬁ) , for odd parity. (5.11)

We assume b = 3(fm) for the ground and the 1lst-excited state, and b = 10(fm)
for the 2nd-excited state.

In the Monte-Carlo calculation, number of sampling points we used is 20,000,
70,000 and 100,000 for the ground, the Ist- and the 2nd-excited state, respec-
tively. The excited states need more points than the ground state. The initial
distribution of points with the probability |Fg) is generated by Metropolis method
[20]. Typically number of thermalization step is 1, 000.

|Fo) = (5.10)

30



The convergence of z; defined in Eq.(3.28) against the iteration steps is shown
in Fig. 1, 2, and 3, for the ground, the 1st- and the 2nd-excited states, respec-
tively. In the case of the ground state energy, numerical values of z; are given in
Table 1. Since G;(FE) is generated so as to be orthogonal to the lower order term
VI|F}) (i > j), x; decreases quickly after a few times of iterations. The ground
and the 1st-excited states are the lowest states with positive and negative par-
ity, respectively, and x; converges with 3 times of iteration. For the 2nd-excited
state, x; converges after 6 times of iteration. Since we used a simple Gaussian
form as the trial function for the 2nd-excited state which should have nodes, the
convergence of x; for the 2nd-excited state is more slowly than for the ground
and the 1st-excited states.

Monte-Carlo =%~

Exact —+-

-0.1

0 1 2 3 4 5

Iteration steps i (times)

Figure 1: z; versus iteration steps ¢ at the ground state energy (—38.7MeV).
“x” are obtained by Monte-Carlo method, while points “+” are obtained by
numerically exact method. The vertical axis is in unit of MeV. Lines are for
eye-guide

Convergence of Q(E) against iteration steps is shown in Figs. 4, 5, and 6, and
it is very similar to the convergence of z;.

The values of Q(E) calculated by Monte-Carlo method fluctuate due to its
sampling errors. Therefore, we performed calculations of Q(E) several times with
different sets of random numbers. The energies of bound states are determined
by averaging of these calculated results. The errors are estimated by the stan-
dard deviation. We assumed a linear or a quadratic function for Q(F), which is
determined by the least square search for the calculated values of Q(F) against
discrete values of F/, and determine the energy of bound state from the condition
QU(E) = 0. As a result, we obtain the energies of three bound states and their
errors, which are in a good agreement with exact ones. In Table 2, the eigen
energies obtained by our Monte-Carlo method are compared with those by the
numerically ‘exact’ method. Our method is found to give a good agreement with
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O ___________________________ X X
X
Monte-Cario —%—
Exact —*-
-0.05
0 1 2 3 4 5 6

Iteration steps 1 (times)

Figure 2: z; versus iteration steps ¢ at the Ist-excited energy (—10.6MeV). See
the caption of Fig. 1.

0 ------------------------------------------ r
L
xi
Monte-Carlo —%—
Exact —+-
0.4
0 1 2 3 4 5 6
i (times)

Iteration steps

Figure 3: z; versus iteration steps ¢ at the 2nd-excited energy (—2.01 MeV). See
the caption of Fig. 1.
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T
) ’exact’ | our Monte-Carlo
11 —1.44 x 107! ~1.44 x 1071
2 —1.30 x 107! —1.29 x 1071
3 —8.33x 1073 —897 %1073
4| —2.50 x 1073 —2.62 x 1073
5| —6.29 x 107° —-1.25 x 10~*
6| —9.34 x 107 —1.20 x 10~°

Table 1: Comparison of z; between numerically ’exact’ calculation and Monte-
Carlo method for the ground state energy (—38.7MeV).

Monte-Carlo —%—
Exact —+-
Q(E)
0 -
Iteration steps i (times)

Figure 4: Convergence of Q(E) versus iteration steps i at the ground state energy
with arbitrary scale. “x” (the solid line) are obtained by Monte-Carlo method,
“4+” (the dashed line) are obtained by numerically ‘exact’ method.
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Monte-Carlo —%—

Exact —+-

Q(E)

0 1 2 3 4 5 6

Iteration steps i (times)

Figure 5: Convergence of {)(F) versus iteration steps ¢ at the lst-excited state
energy (—10.6MeV). See the caption of Fig. 4.

Monte-Carlo —%—

Exact —+-

i (times)
Iteration steps

Figure 6: Convergence of Q(E) versus iteration steps ¢ at the 2nd-excited state
energy (—2.01MeV). See the caption of Fig. 4.
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the exact method. Therefore, it is shown that our method works for excited state
even though we use Monte-Carlo method.

state ‘exact’ | Monte-Carlo N

ground —-38.7| -—38.8+ 0.1 20,000
1st-excited —-106 | -10.6 £0.1 | 70,000
2nd-excited || —2.01 | —2.03 £ 0.14 | 100,000

Table 2: Eigen values (MeV) for the ground, the 1st-, and the 2nd-excited states
by Monte-Carlo method are compared with those by the numerically ‘exact’
method. N is number of sampling points.

Once we obtain the bound state energies, the eigen functions are given by
MCF wave functions |F;) and matrix elements z;. MCF wave functions |F;)
are shown in Figs. 7, 8, and 9, for the ground, the 1st-, and the 2nd-excited
state, respectively. As the iteration step ¢ increases, |F;) become smaller due to
orthogonality of G;(E) to V|F;) given in Eq.(3.14).

-10 -5 0 5 10
X (fm)

Figure 7: The wave function of MCF, |F;), for the ground state. The solid
lines are obtained by Monte-Carlo method and the dashed lines are obtained by
numerical exact method. Numbers in (0 ~ 4) specify the wave functions |F;).
Normalization of wave functions obtained by Monte-Carlo method is adjusted to
the exact ones.

The wave functions for the ground, the 1st-, and the 2nd-excited states are
shown in Figs. 10, 11, and 12, respectively. The wave functions are in good
agreements with the exact results even for the 2nd-excited state. This results
show that our method is useful to study the excited states.

35



20 15 10 -5 0 5 10 16 20
X (fm)

Figure 8: The wave function of MCF |F;) for the lst-excited state. See the
caption of Fig. 7.

Figure 9: The wave function of MCF |F;) for the 2nd-excited state. See the
caption of Fig. 7.
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-10 -5 0 5 10

Figure 10: The eigen function for the ground state. The solid line is obtained by
Monte-Carlo method. The dashed line is obtained by numerical exact method.
Normalization of wave function obtained by Monte-Carlo method is adjusted to
the exact ones.

X (fm)

Figure 11: The eigen function for the 1st-excited state. See the caption of Fig.
10. _
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Figure 12: The eigen function for the 2nd-excited state. See the caption of Fig.
10.

5.2 Realistic four-body bound system in the three-dimensional
space

As a realistic example, we study a 4-nucleon bound state in the 3-dimensional
space. The Schrodinger equation for 4-nucleon system is written as

4 h2
&

Valo) + > Vijl¢) = —Blo) . (5.12)

=1 2my i<j

We can separate the center of mass motion by introducing the relative coor-
dinates. We take Jaccobi coordinate system for this purpose, and remove the
center of mass coordinate from Eq.(5.12). We obtain 9-dimensional Schrodinger
equation as follows:

3 h2 4
= > 5~ VaIe) + 3 Vilé) = ~Blg) (5.13)
k=1 “Hk

1<j

Here, r; are Jaccobi coordinates defined as

™ Ly — 1,
T $3—($1+w2)/2,
ry = :c4—(:1:1+a:2+:c3)/3,

and py are reduced masses relevant to the coordinate system 7y,

b = m/2 3
Uz = 2m/3 s
M3 = 3m/4 .
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Here, we adopt the Volkov potential, with a repulsive short-range potential
and an attractive long-range central potential [19],

Vi = Viexp(—prs;) + Vaexp(—pary) (5.14)

with
Vi = —83.34(MeV) , p = 1.60"2(fm?),
Vo = 144.86(MeV) , pp = 0.8272(fm™?) .

The ground state energy of *He has been studied by various methods: Faddeev-
Yakubovsky (FY) method gives —30.27(MeV), which is calculated by taking into
account only S-wave component in FY wave functions [1]. The result obtained
by Stochastic Variational Method (SVM) is —30.42(MeV) [25], and, by Hyper-
spherical Harmonics (HH), —30.39(MeV) [26]. Although, this potential gives over
binding for the ground state energy of *He and is not best potential model to
describe systematically the nuclear bound state energies, it is a good example to
examine our method in the 4-body system.
The free Green’s function in dimensionless coordinates is expressed as

Go(R.R) 1 1(1 6 15 15

= mﬁz + ﬁ + @ + ﬁ) exp(—’R,) , (5.15)
where R = |R — R'| is relative distance in the 9-dimensional space. As the di-
mensionality increases, the Green’s function becomes singular at R = 0. While
it is difficult to treat the singularity of Green’s function in the conventional inte-
gration method, the random walk used in this work inverts the Green’s function
explicitly and we can obtain numerically stable results. A standard method to
generate points with probability Go(R) is given in Appendix A.

The ground state of *He is expected to be spatially symmetric and anti-
symmetric in spin-isospin space. Then we use a trial function |Fp) given by a
product of Gaussian wave function |ps) with correlation function g(r), and the
spin-isospin function |Z), as

1) = N TTarpleIE) (5.16)
with
[os) = [T exp(—r;/26°) , (5.17)

where b is a size parameter. We used the following form of correlation function

g(r), |
9(riy) = [1 — aexp(—r};/a)]? (5.18)

with
a=0.11, a=0.5(fm?) .
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The parameter of correlation function is determined to simulate the wave func-
tion of two nucleon bound state with Volkov potential. The size parameter b of
Gaussian wave function in Eq.(5.17) is chosen so as to give a minimum to the
expectation value of the energy by variational calculation. For the other trial
function (f|, we assume the same functional form as |F;), and take a slightly
larger value of size parameter b,

b= 3.0(fm): for |Fp) (5.19)
= 4.5(fm): for (f] . (5.20)

Since Volkov potential is central potential with no exchange terms, we can
take anti-symmetric spin-isospin wave function |Z) with S = 0 and T = 0, which
will not change during iteration steps of MCF. Here, the spin-isospin function
|E) for S =0, T =0 is defined as

5) = —}2- ([ ® %10 ® [xs ® Xalolo [ ® 2]y ® [1s ® el

+ [[x1 ® x2]1 ® [x3 ® xal1lp [ @ M2lo ® [13 @ maloly} ,  (5.21)

where x; and n; are spin and isospin function of particle 7, respectively.

Convergence of z; is shown in Fig. 13 which shows three-times of iteration is
enough in this problem. Similarly, the Q(E) also converges quickly as shown in
Fig. 14. Here, we take N = 200,000 sampling points.

(] 1 2 3 4 5 6
i (times)

Iteration steps

Figure 13: Convergence of x; versus iteration steps 7 at B = 30MeV.

The bound state energy and its uncertainty are estimated in the same way
as 1-dimensional case. We assume a linear function for fitting, as shown in Fig.
15. As a result, we obtain £ = —29.88 4+ 0.59 MeV. Our results of binding
energy of “He is in good agreement with the results of the other methods within
uncertainties, shown in Table 3. Typical time of calculation is one hour for each
energy point with 200, 000 sampling points and 6-times of iterations.
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QE) [

Iteration steps i (times)

Figure 14: Convergence of Q(FE) versus iteration steps 7 at B =30MeV.

28 29 30 31 32
Binding energy (MeV)

Figure 15: Energy (B = —FE) dependence of Q(E). “x” (solid line) is obtained
by Monte-Carlo method, and dashed line is obtained by fitting.

Method Energy (MeV)
Faddeev-Yakubovsky [1] | —30.27
FH [26] ~30.39
SVM [25] —30.42
MCF with MC —29.88 + 0.59

Table 3: The bound state energy of *He
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6 Summary and Discussion

Monte-Carlo method is expected to be a useful tool for investigating the prob-
lem of the bound states in the many-body nucleon system because of its simple
treatment and good efficiency in the higher dimensional integration. The previ-
ous Monte-Carlo methods were, however, restricted to apply on the ground state
problem. In this work, we proposed a new method to investigate bound states of
a few nucleon system, not only the ground state but also the excited states.

We used a method of continued fractions. Advantages of this method is that
this method can be applied to the excited state and the continued fraction series
converges quickly. The original formula of continued fraction is modified into a
useful form for the Monte Carlo integration. The random work integration is
used to calculate the continued fraction series. The higher order wave function
in the continued fraction series should satisfy the orthogonality relation to the
wave functions of lower order. Therefore, the treatment of the sign problem
is much more important, and a naive important sampling technique cannot be
applied in this method, in contrast to the GFMC. The former problem is solved
by introducing the multiple cancellation mechanism, which occupies the most of
computational time.

Our method was examined in the 1-dimensional problem. We demonstrated
that our method works for the binding energy and wave function of the ground,
the 1st- and the 2nd-excited states. In the 4-nucleon bound state problem in the
3-dimensional space, we obtained the ground state energy with a good agreement
with the other methods. These facts suggest that our method can be one of the
powerful tools to investigate the few-nucleon bound state problems.

Application of this method to few-nucleon systems with the realistic nuclear
potential including exchange terms is one of the future problems. Here, we have to
deal with coupled channel problem on various spin-isospin components to satisfy
the exchange symmetry of the total wave function, and to take into account of
the state dependence and repulsive core of the nuclear potential. It would be
necessary to take into account the correlation of nucleons in the trial function
as far as possible. The wave function obtained by the variational or the other
method should be used as a trial function at the starting point in our procedure.
This will also help to accelerate convergence of the continued fraction series. It
could be important to maintain the correct symmetry of wave function in the
intermediate step. In the realistic case with many channel coupled, we have
to implement an efficient method to take into account the symmetry of wave
functions.

Another challenging problem will be to apply the method to the continuum
state. It should be possible to study the narrow resonance just above the thresh-
old of the breakup.
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Appendix

A Random walk in the configuration space

We consider to generate the random number according to M-dimensional free

Green’s function Go(R, R'). Here R denotes M-dimensional coordinates R {z1, 22, - - -

We assume that R is dimensionless coordinates and the Schrodinger equation
is written as

(V3 + 1)4(R) = W(R)$(F) . )
We define the free Green’s function Go(R, R') as
(=V%Z+1)Go(R,R)=6(R-R'), (A.2)
which is normalized as
/ Go(R, R")dR = / Go(R,R)dR =1 . (A.3)

Eq.(A.1) is converted to the integral equation using free Green’s function Go(R, R')

#(R) = [ dR'Go(R, R)W (R)$(R)) . (A.4)

Here, we assumed that Go(R, R') provides the hyperspherical boundary condition
with Gy — 0 as R — oco. An explicit form of Gy(R, R') is given as
1
Go(R,R) = —Ku_,(R— R|)/|[R- R|*, (A.5)
(2m)e 7
where K, (z) is a Modified Bessel function of the order ». Since the free Green’s
function depends only on the absolute value of relative coordinate R = |R —
R'|, we can work on the hyper-spherical coordinate R in order to carry out the
integration, :
dMR = RM-14RAQ . (A.6)

Hence, an integration which includes Green’s function becomes as follows:

Go(R, R)dMR = Go(R)RM1dRdN

= ﬁK%_l(R)R‘%“RM‘ldeQ : (A.7)

Right hand side of Eq.(A.7) can be separated as

NaPr(R)dRdQ (A.8)
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where Pr(R) is defined as

_ 2tores
PR = reror 1)

M
2

R

Ku ,(R), (A.9)

which is normalized as
/ Pr(R)AR =1 . (A.10)

Ng is defined as

1 D(EFT(M-1)
(2m)% 2% ~I0(ML)
The random number according to the weight of Pr(R) is generated by the fol-

NQ = (A.ll)

lowing algorithm. We generate u and v using M +1 random numbers (&, &1, -+ -, &ar)
equidistributed in the range (0, 1),
u=—1In(& x---x &), (A.12)
2
v=(1-¢&7 )z (A.13)

Then the distribution of R with Pr(R) is obtained as
R=u-v. (A.14)

Isotropic components of a unit vector {2 in M-dimension, wy, -+ ,wp is gen-
erated by the random numbers ({j - - - (3r) with the M-dimensional Gaussian dis-
tribution,

exp(=(i =G = = (i) (A.15)

then each wj is given as

wi=G (oG . (A.16)

To summarize, the algorithm to generate the random number according to
the free Green’s function Go(R) is that R is generated by the probability Pr(R),
and its direction is determined by {w;}.

The proof of Egs.(A.12) - (A.14):
The proof of the algorithm Eqs.(A.12) - (A.14) is as follows. First of all, we
define n; and u using (0,1) random numbers &; as

m=—In& : &€ (0,1), (A.17)
u=-— iln & = Xn:m. (A.18)
i=1 =1

We consider the probability distribution function (p.d.f.) of n, A(n) as
A(n)dn = dt . (A.19)
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From Eq.(A.17), we obtain A(n) as
Aln) = & _ e ". (A.20)

Since u is defined as Eq.(A.18), the p.d.f. of u, B,(u) for n = 1 is obviously given
as
Bi(u) =A(n) =eT=¢". (A.21)

Here, we assume that z and y are random numbers in the range (0, c0) dlstrlbuted
as f(z) and g( ), respectively, and define valuables z and w as

z=zx+y,and w=2xy . (A.22)

Then the probability distribution function (p.d.f.) of z and w are given by h(z)
and j(w), respectively,

he) = [ F(a)g(z - z)da, | (A.23)

and
/ f(x)g(w/z)dx (A.24)
For n = 2, we use Eq.(A.23) and obtain

By(u) = / Bi()Bi(u — z)de

==/ee"zdx
0

= ue* . (A.25)
Hence we use Eq.(A.23) up to n = M iteratively and obtain Bys(u) as
M1
=———¢". A2
Next, we consider the p.d.f. of v, C(v) as
C(v)dv = —d¢. (A.27)
From Eq.(A.13), v is inverted as
E=(1-v)"T . (A.28)
Hence we obtain C(v) as
dg
C(’U) = _%
= M2_ 121;(1 — p?)M-3)/2
=v(M - 1)(1 — v?)M-3/2 (A.29)
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Since R is defined as in Eq.(A.14), we use Eq.(A.26), Eq.(A.29) and Eq.(A.24),

finally the p.d.f. for R, Pr(R) is obtained as follows:

Pr(R) = [ ' C(0) By (R/v)dv v

- [ or = - oo (B L

M-
N z%;)/ (& )22 R gy

We changed a variable as ¢t = %, hence Pr(R) is given as

RM—-I

Pr(R) = ar=91 /;

Using the integral representation of modified Bessel function,

K& =4 5%)! (g>u/1m(t2_1)u__ “d,

,...

with
V= M _ 1
=3 ,
we obtain the functional form of Pr(R) as follows:
2T_IF(M )
Pr(R) = RTK u_4(R).

/ oo(t2 —1)M-3)/2 Rt

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

Therefore, the algorithm of Eqs.(A.12) - (A.14) gives the expected distribu-

tion.
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