|

) <

The University of Osaka
Institutional Knowledge Archive

. Analysis of Quasar Environments using a Galaxy
Title .
and Quasar Formation Model

Author(s) |Enoki, Motohiro

Citation |KFRKZ, 2003, EHIHX

Version Type|VoR

URL https://hdl. handle.net/11094/27623

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



THESIS

Analysis of Quasar Environments
using a
Galaxy and Quasar Formation
Model

MOTOHIRO ENOKI

Department of Earth and Space Science
Graduate School of Science
Osaka University

January 2003



THESIS

Analysis of Quasar Environments
using a
Galaxy and Quasar Formation Model

MOTOHIRO ENOKI

A dissertation submitted to
Department of Earth and Space Science
Graduate School of Science

Osaka University

January 2003



Abstract

In this thesis, we construct a unified semi-analytic model that includes both galaxy and
quasar formation based on a hierarchical clustering scenario and apply this model to
investigate environment of quasars, i.e. relations between quasars and underlying mass
distribution, and relations between galaxies and quasars.

We assume that a supermassive black hole is fueled by accretion of cold gas and that
it is a source of quasar activity during a major merger of the quasar host galaxy with
another galaxy. Our semi-analytic model for the galaxy formation can reproduce not only
observations of galaxies in the local universe, such as luminosity functions and the cold gas
mass fraction in spiral galaxies, but also galaxy number counts and redshift distributions
of galaxies in the Hubble Deep Field. We incorporate a quasar formation model in this
galaxy formation model. Our quasar formation model can reproduce the observed relation
between a supermassive black hole mass and a spheroid luminosity, the present black hole
mass function and the quasar luminosity functions at different redshifts. Using this model,
we investigate environmental properties of quasar.

First, we analyze the mean numbers of quasars and galaxies in a dark halo, which
provide the relations among galaxies, quasars and dark halos. We find that the dependence
of the mean numbers of quasars on halo mass is different from the dependence of the mean
numbers of galaxies. The behavior of these quantities in our model suggests that the
clustering properties of galaxies is not the same as those of quasars. This is because the
spatial distributions of galaxies and quasars depend on the mean numbers of quasars and
galaxies in a dark halo, and the mean number depends on the halo mass in a different way
for galaxies and quasars. Then, using the mean numbers, we calculate the bias parameters
of quasars and galaxies. We find that the evolution of the bias parameters of quasars is
different from that of galaxies. In our model, both the formation efficiency of galaxies and
quasars depends on the cold gas mass fraction and the galaxy merger rate in a dark halo.
However, the quasar formation efficiency depends on galaxy merger rate more strongly
and ,furthermore, depends on quasar lifetime.

Next, we show the galaxy number distribution function around quasars. At lower
redshifts (0.2 < z < 0.5), most halos with quasars have at most several galaxies. This
indicates that most quasars reside in groups of galaxies. On the other hand, at higher
redshifts (1 < z £ 2), the number of galaxies in a dark halo with quasars is from several
to dozens; quasars reside in ranging from small groups of galaxies to clusters of galaxies.
These results show that most quasars at higher redshifts reside in more various environ-
ments than at lower redshifts. In our model, we assume that galaxy major merger triggers
quasar activity. Since galaxy merger rate has a maximum in halos corresponding to groups
of galaxies, ~ 10"® M, our model predicts that most quasars populate in groups. This
model prediction at lower redshifts is consistent with the observation at z < 0.4. The
results at higher redshifts can be checked by statistics of galaxies around quasars which
will be obtained in the future.



Finally, we analyze the spatial cross-correlation between quasars and galaxies. To do
this, we combine our semi-analytic model of our galaxy and quasar formation with cosmo-
logical N-body simulation. Comparison of the quasar-galaxy cross correlation functions
with the galaxy two-point correlation functions shows that quasars populate in a similar
environment to the galaxies with Mp — 5log(h) < —19 even in high redshifts.

Comparing these predictions with observations in the future will enable us to constrain
our quasar formation model.
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Chapter 1

Introduction

1.1 Purpose

Understanding the origins and evolutions of galaxies is one of the most important prob-
lems in astrophysics and astronomy. Although observational and theoretical studies on
galaxy formation have progressed remarkably, many problems in galaxy formation have
never been completely resolved. In the deep universe, it is known that there exists another
important class of objects, called quasars. It is also important to understand processes
of quasar formation, but the origins and evolutions of quasars have also never been com-
pletely resolved. So far, many studies on quasar formation have been carried out indepen-
dently of galaxy formation problems. However, since observational evidence suggesting
close relations between galaxies and quasars has increased, a unified model which includes
the formations of both galaxies and quasars is required.

On the other hand, recently, 8m class telescopes, including the SUBARU telescope,
have began their operations for investigation of the deep universe and large surveys of
galaxy and quasar, such as the Slone Digital Sky Survey (SDSS), are advancing. Thus, we
will be able to obtain more detailed information not only on the local universe but also on
the deep universe. Then, many observational data about galaxies, quasars and relations
between them will be obtained in the near future. In order to predict these properties
and to interpret the observational data coming in the near future, a unified model which
includes the formations of both galaxies and quasars based on the cosmological context
is necessary.

In this thesis, we construct a unified model for galaxy and quasar formation based
on the standard cosmological structure formation theory. Then, we investigate properties
of quasars using this model to explore the possibility to constrain quasar formation pro-
cesses by comparison with observational data that have been obtained until now and will
be obtained in the near future. As explained in detail later, various physical processes are
intricately involved in galaxy formation and quasar formation. Therefore, first, we con-
struct galaxy formation model that can reproduce some fundamental observed properties
in the local universe. Next, we incorporate a quasar formation model into this galaxy
formation model and investigate properties of quasars.
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1.2 The hierarchical clustering scenario

A galaxy consists of stars and gas. The galaxy contains also dark matter. Some galaxies
themselves tend to clump together into groups or clusters. Since galaxies are the basic
elements in the universe, we must consider the formation of galaxies in the framework of a
cosmological structure formation scenario. The modern scenario of cosmological structure
formation is as follows.

First, small amplitude Gaussian density fluctuations, which might be originated from
quantum fluctuations in the very early universe, grows via the gravitational instability.
As the density fluctuations grow, overdense regions break away from the background
cosmological expansion. Then, they collapse and form bound virialized objects. Behavior
of growth of density fluctuations depends on a cosmological model. In this thesis, we
adopt the cold dark matter (CDM) model as a cosmological model because predictions
of this model can explain a number of current observations of large scale structure of
the universe and this is widely accepted as a standard model of structure formation. In
the CDM model, the amplitude of the density fluctuations decreases with increasing with
scales. Thus, virialized objects which are called dark halos start to form on smaller scales
in the earlier stage. Then, they cluster gravitationally and merge together. Thus, they
are successively incorporated into larger dark halos. Therefore, the structure formation
scenario in the CDM universe is called the hierarchical clustering scenario. A

Growth of dark halos is due to purely gravitational interactions. On the other hand,
in order to form luminous objects, such as galaxies, baryonic gas processes play essential
roles. The basic scenario of galaxy formation in the hierarchical clustering universe (e.g.
White & Rees 1978; Blumenthal et al. 1984; Cole 1991; White & Frenk 1991) is as
follows: Before an overdense region forms a bound virialized object, baryonic gas behaves
almost identically to dark matter. Once a dark halo has formed, the gas within the halo
is shock-heated to about its virial temperature and then cools via radiative process. The
gas cooling is very efficient on galactic and sub-galactic scales and, in the absence of
heating source, the gas is expected to lose its pressure support quickly and concentrate
in the center of the dark halo. Then, eventually the cooled gas turns into stars. After
stars form, massive stars with short lifetime explode as supernovae (SNe) and they heat
up surrounding gas. In this process, they release metals into the gas and regulate the
subsequent star formation process. This process is called supernova feedback. As the
stars evolve, stellar populations in galaxies are varied and chemical enrichment of stars
and gas advance. These processes affect luminosities and colors of galaxies. When dark
halos merge together into the new common halo, the halo may have some galaxies. In
this case, these galaxies lose their energy resulting from the dynamical friction and fall
into the center of the common halo. They may eventually merge and form more massive
galaxy if the time scales of the dynamical friction are short enough.

As explained above, various physical processes are intricately involved in galaxy forma-
tion. The evolution of dark matter distribution is now well understood, and the evolution
of individual stars is also mostly understood once they have formed. However, there
are still very poorly understood processes of gaseous components evolution, such as star
formation and feedback.
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1.3 What is a quasar ?

Besides the problems of galaxy formation, problems on quasar formation have been also
completely unsolved. The first discovery of quasars was brought by identifying optical
counterparts of radio sources. It was initially believed that quasars were some strange new
kind of stars in the Milky Way because they appeared as stellar-like point sources. Schmidt
(1963) found that quasars were not Galactic stars but extragalactic objects because of
their enormous redshifted line features. Estimating their distances using observed redshift
and flux, it was found that luminosity of the quasar is more than about 10*erg s~!, and is
brighter than 100 or more times luminosity of typical galaxies. It is possible to estimate
the size of region emitting the radiation from the changing timescale of the radiation
pattern. It turns out that the energy from the quasar is emitted from a very compact
region, about 10'%cm, corresponding to the size of the solar system. It is impossible to
produce high luminosity of quasars from such a compact region by nuclear fusion occurred
in stars. ‘

It has been widely accepted that quasars are luminous active galactic nuclei (AGN),
and that they are fueled by accretion of gas onto supermassive black holes (SMBHs) in the
nuclei of host galaxies since Lynden-Bell (1969) proposed. Because infalling gas into the
galactic center has non-zero angular momentum, it forms an accretion disk. The viscosity
in the disk causes the gas to lose angular momentum and hence spiral into the SMBH.
The viscosity also heats up the disk, and then this heat energy is radiated away. In order
to maintain the quasar activity, a large amount of gas needs to fall continuously into
the central black hole. The black hole then grows if supply of gas is enough. However,
a quasar will cease to radiate when the gas fueling stops. Most elliptical galaxies and
massive bulge of spiral galaxies in nearby universe seem to contain SMBHs. This suggests
that such galaxies experienced the quasar phase in a stage with their evolution. ,

While the understanding of the physical processes in quasars has made remarkable
progress, fundamental problems, that is, how and when quasars were formed and how the
quasar formation to the galaxy formation is related, are still not completely answered.

1.4 Relations between quasars and galaxies

In the recent years, there has been mounting observational evidence that the evolution of
quasars and galaxies are closely related. It is observationally suggested that the evolution
of quasar luminosity density shows a striking similarity to the evolution of the cosmic
star formation rate and the spatial density of starburst galaxies. As well as the cosmic
star formation rate, the redshift distribution of quasars has a maximum at z ~ 2 (Boyle
& Terlvechi 1998; Franceschini et al. 1999). This similarity suggests that the mechanism
of producing quasar activity is closely related to star formation processes. Observations
of stellar kinematics in galactic centers suggest that many nearby galaxies have central
black holes, and that their estimated masses correlate with the properties of spheroids® of
their host galaxies. The estimated mass of SMBH in a galactic center is in proportion to
the mass of the spheroid. The ratio of Mpy/Mspheroia is 0.001 — 0.006 in each galaxy (e.g.

YThroughout this thesis, we refer to bulge or elliptical galaxy as spheroid.
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Kormendy & Richstone 1995; Magorrian et al. 1998; Merritt & Ferrarese 2001b). The
ratio correlates with the velocity dispersion of stars in the spheroid as Mgy o og,peroias * =
3.7—4.7 (e.g. Gebhardt et al. 2000; Merritt & Ferrarese 2001a). The connection between
SMBHs and their host spheroids suggests that the formation of SMBHs physically links
to the formation of the spheroids that harbor the SMBHs. Moreover, the observed images
of quasar host galaxies show that they are mostly elliptical galaxies or bulge-dominated
galaxies (e.g. Bahcall et al. 1997; McLure et al. 1999). These findings imply that the
formation of quasars, the growth of SMBHs and the evolution of galaxies, especially of
formation of spheroids, are all closely linked. Thus, the quasar formation should be
analyzed together with the galaxy formation.

So far, many studies on quasar formation problems based on the hierarchical clustering
scenario have been carried out with an assumption that the formation of quasars is linked
not to the host galaxies but to the first collapse of dark matter halos with galactic mass,
although these models can explain the decline of the quasar number density at z R 2 (e.g.
Efstathiou & Rees 1988; Haehnelt & Rees 1993) and properties of luminosity functions of
quasars (e.g. Haiman & Loeb 1998; Haehnelt, Natarajan & Rees 1998; Hosokawa et al.
2001). Since quasars are directly linked to spheroids of host galaxies rather than to dark
matter halos, the approximation of the one-to-one relation between quasar hosts and dark
matter halos would be very crude, especially at low redshift. Therefore, in order to study
the formation of quasars, it is necessary to construct a model related to the formation of
galaxies, especially of spheroids, directly.

1.5 Semi-analytic models of galaxy formation

As previously mentioned, various physical processes are involved in the formation of galax-
jies. In order to predict properties of galaxies, direct numerical simulations that include
the effects of gravity and the hydrodynamics in the cosmological context have been specif-
ically developed (e.g. Cen & Ostriker 2000; Pearce et al. 2001). However, even with the
best computer facility available today, the calculation accuracy is not still sufficient to
resolve the formation and internal structure of individual galaxies in the cosmological nu-
merical simulations. Furthermore, since some physical processes, like star formation and
supernova feedback, are very poorly understood in details, phenomenological models are
required to include such processes even in the simulations. Recently, a complementary
approach to modeling galaxy formation in the CDM universe has been developed. This
approach is referred to as semi-analytic models (SAMs) of galaxy formation.

In the CDM universe, since the mass fraction of baryonic component is small (~ 10%
to the total mass), the dynamics of dark matter plays an important role in structure
formations. Therefore, in the SAMs, we divide galaxy formation processes into the fol-
lowing two step. First is virialization and hierarchical merging of dark halos, and second
is evolution of baryonic components within the dark halos. At the first step, the merging
histories of dark halos are realized using a Monte-Carlo algorithm or N-body simulation,
and in the second step the evolution of baryonic components within dark halos is calcu-
lated using simple analytic models for gas cooling, star formation, supernova feedback,
and other mechanisms. Stellar population synthesis models are used to calculate the lu-
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minosities and colors of each galaxy. It is therefore straightforward to understand how
galaxies form and evolve within the context of this model. An important advantage of
SAMs is its flexibility. This allows the effects of varying assumptions or parameter choices
to be readily investigated, and makes it possible to calculate a wide range of observable
properties. SAMs successfully have reproduced a variety of observed features of galaxies
in the local universe such as their luminosity functions, color distribution, and so on (e.g.
Kauffmann, White & Guiderdoni 1993; Cole et al. 1994, Cole et al. 2000; Somerville &
Primack 1999; Nagashima, Gouda & Sugiura 1999; Nagashima et al. 2001, Nagashima et
al. 2002).

In these models, it is assumed that cooled gas in the halo forms disk stars. If two
galaxies of comparable mass merge, it is assumed that starbursts occur and form the
spheroid component. Numerical simulations have shown that the merger of galaxies can
make spheroids and well reproduce their internal structure in detail (e.g. Barnes 1988;
Hernquist 1992, Hernquist 1993; Heyl, Hernquist & Spergel 1994). Kauffmann & Charlot
(1998) have demonstrated that the merger scenario for the formation of elliptical galaxies
is consistent with the color-magnitude relation and its redshift evolution (see also Na-
gashima & Gouda 2001). Moreover, it has been also shown that the morphology-density
relation for the elliptical galaxies in clusters of galaxies can be reproduced by such a merger
hypothesis (Okamoto & Nagashima 2001a, Okamoto & N agashima 2001b; Diaferio et al.
2001; Springel et al. 2001). Thus, we consider that this merger hypothesis for the origin
of spheroids is acceptable. On the other hand, hydrodynamical simulations have shown
that a merger of galaxies drives gas onto fall rapidly to the center of the merged system
and to fuel nuclear starburst (Negroponte & White 1983; Mihos & Hernquist 1994, Mihos
& Hernquist 1996; Barnes & Hernquist 1996). This suggests that the galaxy merger is a
trigger for quasar activity. Moreover, observed images of quasar hosts show that many
quasars reside in interacting systems or elliptical galaxies (Bahcall et al. 1997; McLure et
al. 1999). Therefore, it is thought that the major merger of galaxies would be a possible
mechanism for quasar and spheroid formation. Kauffmann & Haehnelt (2000) introduced
a unified model that includes the formation of both galaxies and quasars within the frame-
work of the SAM (see also Cattaneo 2001). They assumed that SMBHs are formed and
fueled during the major mergers of galaxies, and their model quantitatively reproduced
the observed relation between spheroid luminosity and black hole mass in nearby galaxies,
the strong evolution of the quasar population with redshift, and the relation between the

luminosities of nearby quasars and those of their host galaxies.

' In this thesis, we investigate photometric and spatial properties of quasars, using
a SAM incorporated a simple quasar formation model. We assume that SMBHs are
formed and fueled during major galaxy mergers; the fueling process causes quasar activity.
While this assumption is similar to the model of Kauffmann & Hachnelt (2000), our
galaxy formation model and the adopted model of fueling process are different from their
model. We use the model parameter set for galaxy formation that is determined by careful
comparison with observations of galaxies in the local universe and that can reproduce the
observational results of galaxy number counts and redshift distribution of galaxies in the
Hubble Deep Field. Furthermore, we investigate other properties of quasars, to add to
the properties considered by Kauffmann & Haehnelt (2000).
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1.6 Methodology

While there are many properties of quasars that should be resolved, we focus on the
investigation of the environments of quasars, that is, where do quasars exist? This is
because the environments of quasars provide important clues to the physical processes
of their formation and also yield important information on the relations among the dis-
tributions of quasars, galaxies and underlying dark matter in the universe. Due to their
very high intrinsic luminosities, quasars at a higher redshift are much easier to find than
galaxies at a similar redshift. Therefore, quasars can be used as a probe of the large-scale
structure of the universe at high redshift. However, it is not necessarily a trivial problem
whether quasars trace the large-scale structure or not. For more than three decades, we
have known that quasars are associated with enhancements in the spatial distributions
of galaxies (Bahcall, Schmidt & Gunn 1969). Studies on the environments of quasars in
the nearby universe (z < 0.4) have shown that quasars reside in environments ranging
from small to moderate groups of galaxies rather than in rich clusters (e.g. Bahcall &
Chokshi 1991; Fisher et al. 1996; McLure & Dunlop 2001). Furthermore, since very large
surveys of quasar and galaxy, such as the SDSS, will provide deep imaging of the quasars
and their surroundings, it will be possible to study the relationship between quasars and
their local environments for a very large number of quasars. This line of investigation will
undoubtedly yield important information on the relation between galaxy environments,
interactions, and quasar activity. '

In this thesis, we investigate environments of quasars using our SAM to explore the
possibility to constrain quasar formation processes by comparison with observations. Since
various physical processes are intricately involved in galaxy formation and quasar forma-
tion, we specify a galaxy formation model that can reproduce observations of galaxies in
the local universe. Then, we incorporate a quasar formation model into this galaxy for-
mation model and investigate properties of quasars. Here, we focus on optical properties
of quasars and attempt to consider the number of quasars in a dark halo, the effective bias
parameter of quasars, the number of galaxies around quasars and quasar-galaxy spatial
correlation function as characterizations of environments of quasars. Then we explore the
possibility to constrain quasar formation processes by comparison of the predictions of
our model with observations that were obtained until now and will be obtained in the
near future.

This thesis is organized as follows. In Chapter 2, we describe our SAM for galaxy
formation. In Chapter 3, we introduce our quasar formation model. In Chapter 4, we
present the our model results for the number of quasars per halo, effective bias parameter
of quasars, the number of galaxies around quasars. In Chapter 5, we analyze the clus-
tering galaxies around quasars. To calculate the correlation function, we incorporate our
SAM into N-body simulation. In Chapter 6, we provide a summary and conclusion. In
appendixes, we briefly review the hierarchal clustering structure formation theory.



Chapter 2

Model of Galaxy Formation

2.1 Overview

In the CDM universe, small dark halos form first and then merge together to form larger
dark halos as time passes. In each of the merged dark halos, shock-heating of baryonic gas,
radiative gas cooling, star formation, and supernova feedback occur. The cooled dense gas
and stars constitute galazies. These galaxies sometimes merge together in a common dark
halo and more massive galaxies form. In figure 2.1, we present a schematic view of this
galaxy formation scenario in the CDM universe. SAM involves known physical processes
connected with the process of galaxy formation. Our treatment of each of these processes
is described in following sections. In this subsection, we explain the procedure of how to
make predictions for the observable properties of galaxies at the redshift of interest.

In the first place, we construct merging histories of dark halos (§2.2). The merging
histories depend on the adopted cosmological model. Next, we consider baryonic matter
evolution in each merging path of dark halo in a time step of the merging history as
follows:

(i) When a dark halo is formed, baryonic gas in the halo is shock-heated and cooled via
radiative process. The amount of cooled gas that forms disk is calculated (§2.3.1).

(ii) The mass of stars formed by cooled gas is calculated (§2.3.2).
(iii) The amount of gas reheated by supernova feedback is computed (§2.3.3).
(iv) Chemical enrichment of stars and gas is computed (§2.3.4).

(v) If the halo contains several galaxies, whether the galaxies merge or not is investi-
gated. The merging timescales via the dynamical friction and random collisions are

estimated (§2.4.1).

(vi) If a major merger of galaxies occurs, a starburst is caused and a spheroid is formed
(§2.4.2).

(vii) Spectrophotometric evolutions of stellar population are calculated. The effect of
dust extinction on galaxy luminosity is also considered (§2.5).
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The above procedures are repeated until the redshift of interest. Adopted model param-
eters of cosmology and galaxy formation in this study are described in (§2.6).

Our present SAM analysis obtains essentially the same results as the previous SAM
analyses (e.g. Kauffmann, White & Guiderdoni 1993; Cole et al. 1994, Cole et al. 2000;
Somerville & Primack 1999), with minor differences in a number of details, although
our SAM can reproduce not only observations of galaxies in the local universe, such as
luminosity functions and the cold gas mass fraction in spiral galaxies, but also galaxy
number counts and redshift distributions of galaxies in the Hubble Deep Field.

2.2 Merger tree

In the CDM universe, dark matter halos cluster gravitationally and merge together in
a manner that depends on the adopted cosmological parameters and power spectrum of
initial density fluctuations. This merging history of dark halos is often referred to as a
merger tree. In order to construct merger trees, it is possible to use collisionless cosmo-
logical N-body simulations of nonlinear gravitational clustering directly. The advantage
of this approach is that we can obtain spatial distributions of dark halos. Therefore, it
provide a powerful tool to investigate the clustering of galaxies. The disadvantage is that
the computational cost is expensive and the much computational time is still required.
Thus, it is difficult to explore a wide range of models, or different realizations in the same
models. Moreover, the spatial resolution is still insufficient to follow motions of galaxies in
an individual dark halo. An alternative approach is Monte Carlo method. In this method,
merger trees are realized using an analytical formalism which represents dark halo mass
function and the distribution of progenitor halo masses. Although it does not provide
the spatial distribution of dark halos, many realizations can be performed at a lower cost
and faster compared with N-body simulations. In this section, we describe the method
of Monte Carlo realization of merger tree based on the analytical formalism called the
extended Press-Schechter Formalism developed by Bower (1991), Bond et al. (1991) and
Lacey & Cole (1993). The method using N-body simulations is introduced in Chapter 5.

Strictly speaking, in order to realize merger trees, one must know the conditional joint-
probability distribution function of a set of halos mass M3 at time ¢, that are progenitors
of a halo with mass M; at time t; (Ms < M, t; < t;) as follows:

P(M} M2, Mj, - to| Myt )dMydM2 - - - dM3 - - - . (2.2.1)

However, only the conditional one-point mass distribution function, P(Ma, ta|Mi, t;)dM,,
is obtained in the extended Press-Schechter formalism described in Appendix C. There-
fore, it is not a trivial problem to realize merger trees. There are several methods to
realize merger trees by Monte Carlo modeling based on the extended Press-Schechter for-
malism (e.g. Kauffmann & White 1993, Cole et al. 2000, Somerville & Kolatt (1999)).
These methods can reconstruct the mean quantities analytically derived from the ex-
tended Press-Schechter formalism. In this thesis, we adopt the method developed by
Somerville & Kolatt (1999) because their algorithm has practical advantages: it is simple
and computationally efficient, and can be quickly performed.
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Figure 2.1: A schematic view of the galaxy formation scenario in the cold dark matter
(CDM) universe. In this figure, cosmic time elapses from top to bottom.



CHAPTER 2. MODEL OF GALAXY FORMATION 12

%_’_ﬂ%:;“o

.—+

o

Figure 2.2: A schematic representation of a merger tree of dark halos. Circles show dark
halos. In this figure, cosmic time elapses from left-hand to right-hand. However, Monte
Carlo realization of merger tree is made from right-hand to left-hand.

The following procedure is based on Somerville & Kolatt (1999). First, we begin with
a halo mass of M; at time ¢, and consider its progenitors at earlier time t; = t; — At(t;)
where At(t;) is a time step. By using equation (C.2.1), we pick out M, randomly. Note
that equation (C.2.1) is a simple Gaussian distribution, if we change the variable to
r = (02 — 0%)/(8c2 — 81). This M, is interpreted as a mass of a progenitor halo of the
halo with M, collapsing at time t5. If M, is less than Mp;,, where My, is a minimum
mass for an object identified as an isolated halo at a corresponding time, the mass M
is considered as diffuse accretion mass. We repeat this process until the rest mass of the
halo becomes less than Mpi,. Next, each progenitor halo now become a starting halo,
and we set a new time step and repeat the whole process in the same way until all masses
picked out by equation (C.2.1) are less than the resolution mass, Myin-

In this thesis, we adopt the power spectrum for the CDM universe from Bardeen et
al. (1986) (see Appendix B.2.1). We take the resolution mass My, corresponding to the
circular velocity, Veyre = 40 km s7!, and treat halos with Vi < 40 km s™! as diffuse
accretion matter. This condition comes from the estimate of Jeans mass (~ 10'°Mp) in
the ultraviolet background radiation field (e.g. Thoul & Weinberg 1996). The evolution
of the baryonic component is followed until the output redshift coincides with the redshift
interval of Az = 0.06(1 + z), corresponding to the dynamical time scale of halos which
collapse at redshift 2. Note that Shimizu et al. (2002) recently pointed out that a much
shorter timestep is required to correctly reproduce the mass function given by the Press-
Schechter formalism. However, a serious problem exists only on small mass scales (S
101 Mg). Thus, we use the above prescription of timestep.

After construction of a merger tree, a formation time and lifetime of each halo is
assigned as follows. If a dark halo has no progenitor halo, the formation time of the
halo is defined by its collapse time. The end point of the halo’s lifetime is defined as
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the epoch when a halo mass becomes more than double of the mass at the formation
time throughout subsequent mergers. Consistent with this definition, the formation time
of newly formed halo is defined as the epoch when mergers produce a halo whose mass
exceeds twice the mass of the most massive progenitor.

2.3 Gas and stars

2.3.1 Gas cooling

The baryonic gas mass fraction of each dark halo that has no progenitor halo and a
diffuse accretion matter is given by €2,/€ , where €2y, is the baryonic density parameter
constrained by primordial nucleosynthesis calculations. At the formation time of a dark
halo, the gas in the halo is shock-heated to the virial temperature of the halo. We refer
to this heated gas as the hot gas. The virial temperature of a halo with circular velocity
‘/circ is:

T‘vir — l /l'nzp‘/;?rc
2 kg
,U' ‘/circ 2
— 35 ( )( ) K, 2.3.1
? 059/ \1 km s! ( )

where p is the mean molecular weight of the gas, m;, is the proton mass and kg is the
Boltzmann constant. Once the halo has formed, the hot gas in dense region of the halo
cools due to efficient radiative cooling, sinks to the center of the halo and settle into a
rotationally supported disk until the subsequent collapse of dark halo. We call this cooled
gas the cold gas. This cold gas is a direct material for forming stars. Assuming that the
hot gas is in collisional ionization equilibrium, the cooling timescale for the hot gas 7.l
defined as the ratio of the thermal energy density of the hot gas to the cooling rate per

unit volume is
o _3pm()  kaTh
o0 2 mwmp ng (7")A(Thot, Zhot) ’

where ppot is the density of the gas at radius r, n, is the number density of free electron,
Thot is the hot gas temperature (we assume Thot = Tvir) and A(Thot, Zhot) is the cooling
function for hot gas at temperature Ty, and with metallicity Z,;. Once the density
distribution of the hot gas is specified, we can estimate the amount of the gas that has
cooled by time t after the formation time of the dark halo. The cooling radius, 7¢eol, 18
defined as a radius at which the cooling timescale, 701, €quals to the elapsed time from
the formation time of the dark halo, ¢t. The hot gas that distributes between ro1(t) and
Teool(t + At) is cooled and added to the cold gas reservoir of the galaxy during time-step
At.

In our SAM, assuming a singular isothermal density distribution of the hot gas,
Phos (1) o 772, and using the metallicity-dependent cooling function by Sutherland &
Dopita (1993), we calculate the amount of cold gas which eventually falls onto a central
galaxy in the halo. In order to avoid the formation of unphysically large galaxies, the
above cooling process is applied only to halos with V. <400 km s™*. This handling would

(2.3.2)
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be needed because the simple isothermal distribution forms so-called monster galazies due
to the too efficient cooling at the center of halos. While this problem will probably be
solved by adopting another isothermal distribution with a central core (Cole et al. 2000),
we take the above approach for simplicity.

2.3.2 Star formation

The cold gas that accumulates at the center of halo will eventually start to form stars.
We assume that stars are formed from the cold gas at a rate of M, = M,q /7., where
M_o1q is the mass of cold gas and 7, is the time scale of star formation. We assume that
7. is independent of z, but dependent on V., as follows:

V. Qi
0 circ
0 Yere )T 2.3.
=T (300krn s-l) (2:33)

The free parameters of 70 and a, are fixed by matching the observed mass fraction of
cold gas in the neutral form in the disks of spiral galaxies. This scaling laws were first
introduced by Cole et al. (1994). The free parameters of 70 and «, are determined by
matching the observed cold gas mass fraction in spiral galaxies. It should be noted that
Cole et al. (2000) modified their original form (eq. [2.3.3]) as

V::irc a. Tdisk (Z)
L =70 2.3.4
A (200km s_l) [Tdisk(O) ’ ( )

by multiplying a factor proportional to the dynamical timescale in the galactic disk,
Taisk- Nagashima et al. (2001) found that, although both models can reproduce the local
luminosity function by adjustment of their free parameters, the latter model predicts
too many high-z galaxies to be consistent with the observed redshift distribution of faint
galaxies. This is because in the latter model more stars are formed at high redshift
according to much a shorter 7, as compared with the former model. Other recent SAM
analysis on the evolution of damped Lya systems (Somerville, Primack & Faber 2001)
supports this result. Therefore, we adopt the former model (eq. [2.3.3]) as the star
formation timescale.

2.3.3 Supernova feedback

Stars with masses larger than 10M explode as Type II supernovae (SNe), and then, they
heat up the surrounding cold gas and drive it into the halo. The removal of cold gas
from the galaxy acts as a feedback process, which regulates the star formation rate. This
SN feedback reheats the cold gas to hot gas at a rate of M,gpear = BM,, where 3 is the
efficiency of reheating. Since gas should be able to escape more easily from galaxies with
smaller gravitational potentials, we assume that § depends on V., as follows:

‘/circ —Ohot
= . 2.3.5
ﬂ ( Vilot ) ( )

The free parameters of V},o; and Qpet are determined by matching the local luminosity
function of galaxies. With these M, and M ehea, thus determined, we obtain the masses
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of hot gas, cold gas, and disk stars as a function of time during the evolution of galaxies
(see §2.3.4).

2.3.4 Gas and chemical evolutions

Stars produce metals and release them into cold gas by stellar winds and SNe explosions.
These metals become incorporated into later generations of stars and are also returned
to hot gas in halos by SNe feedback. Since metal enrichment of the hot gas decreases the
cooling timescale defined in equation (2.3.2), more gas can cool at later times. Metal en-
richment of stellar component affects the color and the luminosity of stellar populations.
We adopt a simple instantaneous recycling approximation (Tinsly 1980). In this approx-
imation, we assume that all stars with masses smaller than 10M, live forever whereas all
stars larger than 10M die and eject material instantaneously. The gas and metal ex-
change is schematically shown in figure 2.3. The following differential equations describe
the evolution of the mass of cold gas M_.,q, hot gas M, and long-lived stars M, at
each time step.

Mge = —(1+8-R)M,, (2.3.6)
My = (M, (2.3.7)
My = (1—R)M,, (2.3.8)

where M, = Mg /T« is star formation rate, § is the efficiency of reheating and R is the
gas mass fraction returned from mass ejection by evolved stars to cold gas. The solutions
of these equations are the following:

t
Mea = Miexp |- (1+6-R)=|, (2.3.9)
My = M, + BAM,, (2.3.10)
My = M3, + (1 - R)AM,, (2.3.11)

where M2y, MY, and MJ, are the masses of cold gas, hot gas and long-lived stars
from the previous time step, ¢ is the time since the start of the time step, and AM, =
(M2 Mcoa)/(1 — R+ ) is the mass of total formed stars. The differential equations

cold —
for the evolution of the metallicity of cold gas Z.,q and hot gas Z) at each time step

are:

Mco]chold = Q’y(l“'Zco]d).A.J*, (2312)
MyotZnot = B(Zeold — Zhot) M, (2.3.13)

where y is yield and « is defined by o« = 1 — R. The solutions of these equations are given

as follows:

t
Zeoa = 1—(1- Zgold)exp <—a'y;—> , (2.3.14)

All?ot
]whot

MOBL =20 ([ d] r
T My 1+ 7= (R - ay)] {e"p[ (1+06-(R ‘“JDT*] 1},(2.3.10)

Zhot = 1- (1 - Zl?ot)
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Figure 2.3: Schematic description of gas and metal recycling in star formation.

where Z2 4 and ZJ, are the metallicities of cold gas and hot gas from the previous time
step. The gas fraction returned by evolved stars, R, and yields, y, are chosen for a given

stellar initial mass function (IMF).

2.4 Galaxy merging

2.4.1 Dynamical friction and random collisions

When several progenitor halos have merged, the newly formed larger halo should contain
at least two or more galaxies which had originally resided in the individual progenitor
halos. We identify the central galaxy of the most massive progenitor halo as the central
galaxy of the new common halo. Other galaxies are regarded as satellite galaxies. These
satellites lose energy and angular momentum due to the dynamical friction against the
halo and spiral to the center of the halo. The timescale of the dynamical friction is given

by

1.17 REVeirc
Tiric = f mergem G lsat

260 [ Ru\?/ Ve M )7
mer = G s 2.4.1
! &1n A, (Mpc) (103 km s 1) <1012 M@) r ( )

where fierge is a dimensionless parameter described below, Ry and Vg are the radius
and the circular velocity of the new common halo, respectively, In A, ~ In[1+ (My/Ma)?]
is the Coulomb logarithm, My is the mass of the common halo, and Mg, is the mass of
the satellite galaxy, including its dark matter halo (Binney & Tremaine 1987). Above
derivation of the merger timescale is based on several assumptions (e.g. tidal stripping
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of the satellite halo is ignored). Therefore, we introduce the parameter fuerge and adjust
the time scale. Note that, since the halo dynamical timescale is 7ayn = Ru/Viirc, the
dynamical friction time scale is proportional to the halo dynamical timescale, 7g;. o
TaynMu/(Msay In Ac). When the time elapsed after merging of progenitor halos exceeds
Tric, the satellite galaxy is made to merge with the central galaxy. If the lifetime of the
common halo is shorter than the time 7g;., a new g of new common halo is calculated
and begins the whole process.

In addition, there will be collisions between satellite galaxies as they orbit within
the halo. From a simple mean free path argument, satellites collide with the timescale
Teol ~ 1/nov where n is the mean density of galaxies, ¢ is the effective cross section
for a single galaxy and v is a typical velocity of galaxy. From high-resolution N-body
simulations, the mean free time scale of random collision is given by

_ o _ 800 ( Ry e\
et = N2 \Mpc/ \0.12 Mpc
-4 3
Ogal Thalo > I 242
X (100 km s_l) (300 kms 1) U0 (24.2)

where N is the number of satellite galaxies, g, is their radius, and o1, and oy, are the
1D velocity dispersions of the common halo and satellite galaxies, respectively (Makino
& Hut 1997). With a probability of At/7.., where At is the timestep corresponding to
the redshift interval Az, a satellite galaxy merges with another randomly picked satellite.
Note that since the collision timescale decreases with number of galaxies in the common
halo, but increases with the common halo velocity dispersion, there will be a peak in the
collision rate for a halo size about the mass of a group, ~ 1013M¢,. This process was first
introduced in a SAM by Somerville & Primack (1999).

2.4.2 Spheroid formation

If two galaxies of comparable mass merge, it is assumed that starbursts occur and form
the spheroidal component in the center of the galaxy. N-body simulations of collisions
between equal mass disk galaxies have shown that a merger hypothesis for the origin of
spheroids can explain their detailed internal structure (e.g. Barnes 1988; Hernquist 1992,
Hernquist 1993; Heyl, Hernquist & Spergel 1994). Consider the case that two galaxies of
masses m; and mo(> m;) merge together. If the mass ratio, f = m,/my, is larger than a
certain critical value of fiuge, We assume that a starburst occurs, and that all the cold gas
turn into stars and hot gas, which fills the halo, and all of the stars populate the bulge
of a new galaxy. In this case, the merger is called major merger. On the other hand, if
J < fouige, nO starburst occurs and a smaller galaxy is simply absorbed into the disk of a
larger galaxy. In this case, the merger is called minor merger.

When a starburst occurs, stars are formed in a very short timescale. Thus, the star-
burst corresponds to 7,/t — 0 in equations (2.3.9)-(2.3.11). In this case, the masses after
a starburst are given by

Maga = 0, (2.4.3)



CHAPTER 2. MODEL OF GALAXY FORMATION 18

Myt = MY, + T%‘f_‘—dﬁ (2.4.4)
Myo = M3, + (_11;_1;)44_%@ (2.4.5)

and the total star mass formed at starburst becomes
AM, purst = %E—R (2.4.6)

We classify galaxies into different morphological types according to the B-band bulge-
to-disk luminosity ratio, B/D. In this thesis, following Simien & de Vaucouleurs (1986),
galaxies with B/D > 1.52, 1.52 > B/D > 0.68, and B/D < 0.68 are classified as
ellipticals, SOs and spirals, respectively. The parameters of fmerge a0d foulge are determined
by agreement with the ratio of observed morphological types.

2.5 Luminosity of galaxy

2.5.1 Stellar population synthesis

Given the star formation rate as a function of time, the absolute luminosity and colors of
individual galaxies are calculated using a stellar population synthesis model. This model
provides the Spectral Energy Distribution (SED) of a stellar population of a single age
and metallicity per unit mass of stars, ®,(¢, Z). To compute ®,(t, Z), we must choose the
Initial Mass Function (IMF), which indicates the fraction of stars created with a given
mass. The resulting SED of each galaxy, Ly(t), at time ¢ is given by convolving the star
formation rate with single stellar population SEDs:

L = [ " B[t — 7, Z.(r)| M. (r)dr, (2.5.1)

where Z,(t) is the metallicity of stars forming at time ¢, and M, (t) is the star formation
rate at that time. In the case of a galaxy which formed by merging, we also sum the
contributions to Ly(t) from progenitor galaxies. We use the population synthesis code
by Kodama & Arimoto (1997). The stellar metallicity grids in the code cover a range
of Z, = 0.0001 — 0.05. The IMF that we adopt is the power-law IMF of Salpeter form
with lower and upper mass limits of 0.1Mg and 60Mg, respectively. Since our knowledge
of the lower mass limit is incomplete, there is the possibility that many brown dwarf-like
objects are formed. Therefore, following Cole et al. (1994), we introduce a parameter
defined as T = (Myyn + Mpp)/Miym, where My, is the total mass of luminous stars with
m > 0.1Ms and Mpp is that of invisible brown dwarfs.

2.5.2 Dust extinction

Since dust grains in the cold gas absorb and scatter light, they can significantly attenuate
the optical luminosity of galaxies. The resultant SED of a galaxy is given by L{vst =
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fateaLr. Here fuu ) is the attenuation factor of galactic light, and it depends on the dust
optical depth and the spatial distribution of dust in a galaxy. To account for extinction
by dust in each galaxy, we adopt a simple model by Wang & Heckman (1996) in which the
optical depth in B-band, 7p, is related to the luminosity as 7 = 0.8(Lp/1.3 x 101°L)%®.
The optical depths in other bands are calculated by using the galactic extinction curve,
and the dust distribution in disks is assumed to be the slab model considered by Somerville
& Primack (1999). In the slab model, it is assumed that stars and dust distribution are
the same, and the attenuation factor is given by

1 —exp(—7y)

fattn = (2.5.2)

Tx
where 7, is a dust optical depth. In this dust model, while the extinction in B band is
typically Ap = —2.5log(fait.8) ~ 1 mag at the bright end of the local luminosity function,
our results in the K band are not significantly affected by the details of the dust model.

2.6 Setting parameters of the galaxy formation model

The above procedure is a standard one in the SAM for galaxy formation. Galaxy formation
model parameters are determined by comparison with observations of galaxies in the
local Universe. In this study, we use the galaxy formation model parameters determined
by Nagashima et al. (2001) from observations of galaxies in the local universe such as
luminosity functions and the cold gas mass fraction in spiral galaxies. The adopted
parameters of this model are tabulated in table 2.1 and 2.2. The model with these
parameters can reproduce galaxy number counts and photometric redshift distribution of
galaxies in the Hubble Deep Field.

Before the galaxy formation parameters are determined, we must specify the cosmo-
logical parameters; the present density parameter, {25, the cosmological constant, Ag, the
Hubble constant in units of 100 km s~! Mpc™?, h, and the present rms density fluctuation
in spheres of 84~!Mpc radius, os. The cosmological model that we have chosen is a flat,
low-density CDM model with a cosmological constant (ACDM model). The adopted pa-
rameters are tabulated in table 2.1. The ACDM model with this set of model parameters
is currently favored by quite a range of observational evidence. The location of the first
acoustic peak in the angular power spectrum of fluctuations in the temperature of the
cosmic microwave background (CMB) implies that the universe is flat, Qp + Ao ~ 1 (e.g.
de Bernardis et al 2002). The data on the distance-luminosity relation of type Ia SNe
imply that 0.8Q — 0.6A¢ ~ ~0.2 (Perlmutter et al. 1999). The result from the Hubble
Space Telescope Key Project to measure galaxy distance is h ~ 0.7 (Freedman et al 2001).
The observations of the CMB temperature fluctuations on large scale imply that og ~ 1
(Bennett et al 1996). The adopted baryonic density parameter (), = 0.015h72 is con-
strained by primordial nucleosynthesis calculations (e.g. Suzuki, Yoshii & Beers 2000).
Note that a recent measurement of the anisotropy of the CMB by the BOOMERANG
project suggests a slightly higher value, £, ~ 0.02h72 (Netterfield et al. 2002). Cole et al.
(2000) have already investigated the effect of changing ), and showed that this mainly
affects the value of the invisible stellar mass fraction parameterized by T. We also checked
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Table 2.1: Cosmological Model Parameters

Qo )\0 h 0g Qb
03 07 07 1 0.03

whether our results are changed or not in the case of Q, ~ 0.02h2 and found that this
does not much affect them.

The galaxy formation model parameters are constrained as follows: First, the SN
feedback-related parameters (Viot, 0not) are determined by the location of the knee of the
luminosity function and the faint-end slope, respectively. It should be noted that the mass
fraction Y of invisible stars determines the magnitude scale of galaxies, so that changing Y
moves the luminosity function horizontally without changing its overall shape. Therefore,
coupled with Vj,o¢, T determines the bright portion of the luminosity function. In figure
2.4 we plot the results of local luminosity functions of galaxies represented by the solid
lines. Note that the resultant luminosity functions hardly change if the SMBH formation
model is included (dashed lines; see the Chapter 3). The symbols with errorbars indicate
observational results from some B-band redshift surveys (APM, Loveday et al. 1992; 2dF,
Folkes et al. 1999) and from some K-band redshift surveys (Gardner et al. 1997; 2MASS,
Cole et al. 2001). As can be seen, the results of our model using these parameters are
generally consistent with the observed local luminosity functions.

Next, the star formation-related parameters (72, o) are determined by using the cold
gas mass fraction in spiral galaxies. The gas fraction depends on both the SN feedback-
related parameters and on the star formation related ones. The former parameters deter-
mine the gas fraction expelled from galaxies and the latter parameters determine the gas
fraction that is converted into stars. Therefore, before determining the star formation-
related parameters, the SN feedback-related parameters must be determined by matching
the local luminosity function. Figure 2.5 shows the ratio of cold gas mass relative to the
B-band luminosity of spiral galaxies as a function of their luminosity. The thick line shows
the result of the model without SMBH formation and the short dashed line shows the
model with SMBH formation. We here assume that 75% of the cold gas in these models
is comprised of hydrogen, i.e., My = 0.75Mcqq. Open squares with error bars indicate
the HI data, taken from Huchtmeier & Richter (1988). Since their data do not include
the fraction of Hy molecules, the observational result should be regarded as providing a
lower limit of the cold gas mass fraction.

Finally, the merging-related parameters of fierge and fouige are determined by match-
ing the observed morphological type mix. The gas fraction returned by evolved stars, R,
and yields, y, are chosen for the Salpeter IMF and determined by matching observed met-
allycity in galaxies. Comparison of model predictions with the observed galaxy number
counts and photometric redshift distribution of galaxies in the Hubble Deep Field con-
strains star formation model as is mentioned in §2.3.2. Detailed analysis and discussions
are described in Nagashima et al. (2001), Nagashima et al. 2002.
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Table 2.2: Galaxy Formation Model Parameters

Vhot (kll’l S—l) Ohot TS (Gyr) Q. fmerge fbulge R Yy *
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Figure 2.4: Local luminosity functions in the (a) B-band and (b) K-band. The thick
line shows the result of the model without SMBH formation. The short dashed line
shows the model with SMBH formation. The symbols with errorbars in (a) indicate the
observational data from APM (Loveday et al. 1992, filled squares) and 2dF (Folkes et al.
1999, open circles). Symbols in (b) indicate the data from Gardner et al. (1997, open
inverted triangles), and 2MASS (Cole et al. 2001, filled triangles).
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Figure 2.5: Cold gas mass relative to B-band luminosity of spiral galaxies. The thick
line shows the result of the model without SMBH formation and the short dashed line
shows the model with SMBH formation. The open squares with errorbars indicates the
observational data for atomic hydrogen taken from Huchtmeier & Richter (1988). In the
models, cold gas consists of all species of elements. Thus, we take My = 0.75M_q4q,
which corresponds to the fraction of hydrogen. Because the observational data denote
only atomic hydrogen, they should be interpreted as lower limits of the ratio.



Chapter 3

Model of Quasar Formation

3.1 The growth of black hole

In this chapter, we introduce a quasar formation and evolution model into our SAM. As
mentioned in Chapter 1, the masses of SMBHs have tight correlation with the spheroid
masses of their host galaxies (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998;
Merritt & Ferrarese 2001b) and the hosts of quasars found in the local Universe are giant
elliptical galaxies or galaxies displaying evidence of major mergers of galaxies (e.g. Bahcall
et al. 1997; McLure et al. 1999). Moreover, in SAMs for galaxy formation, it is assumed
that the major merger of galaxies leads to the formation of a spheroid. Therefore, we
assume that SMBHs grow by merging, and are fueled by accreted cold gas during major
mergers of galaxies. When host galaxies merge, pre-existing SMBHs sink to the center of
the new merged galaxy owing to the dynamical friction, and finally coalesce. The timescale
for this process is unknown, but for the sake of simplicity we assume that SMBHs merge
instantaneously. Gas-dynamical simulations have demonstrated that the major merger of
galaxies can drive substantial gaseous inflows and trigger starburst activity (Negroponte
& White 1983; Mihos & Hernquist 1994, Mihos & Hernquist 1996; Barnes & Hernquist
1996). Thus, we assume that during a major merger, some fraction of the cold gas that
is proportional to the total mass of stars newly formed at starburst is accreted onto the
newly formed SMBH. Under this assumption, the mass of cold gas accreted on a SMBH

is given by

Macc = fBHAM*,burst
Mgy
— 1.1
BHY 3-R (3.1.1)
where fpy is a constant and AM, purst i the total mass of stars formed at starburst.
A M, purst is derived in §2.4.2. The gas recycling for the model including SMBH formation
is schematically shown in figure 3.1. The free parameter of fgy is fixed by matching the
observed relation between a spheroid luminosity and a black hole mass found by Magorrian
et al. (1998); we find that the favorable value of fpy is nearly 0.03. In figure 3.2 we show
scatterplots (open circles) of the absolute V-band magnitudes of spheroids versus the
masses of SMBHs of the model for fgy = 0.03. The thick solid line is the observational

23
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Figure 3.1: Schematic description of gas recycling in burst star formation including black
hole formation.

relation and the dashed lines are the 1o scatter in the observations obtained by Magorrian
et al. (1998). The obtained gas fraction (fsg = 0.03) is so small that the inclusion of
SMBH formation does not change the properties of galaxies in the local Universe. In figure
2.4 and 2.5, the dashed lines show the results of the model with SMBH formation. This
result differs negligibly from the result of the model without SMBH formation. Therefore,
we use the same galaxy formation parameters tabulated in table 2.2 regardless of including
the SMBH formation model. Figure 3.3 (a) shows the black hole mass functions in our
model at a series of redshifts. This indicates that the number density of the most massive
black holes increases monotonically with time in the scenario where SMBHs grow by
the accretion of cold gas and by merging. In figure 3.3 (a), we superpose the present
black hole mass function obtained by Salucci et al. (1999). They derived this black hole
mass function from the observed radio luminosity function of nearby radio-quiet galaxies
and the empirical correlation between radio luminosities from the nuclei of radio-quiet
galaxies and the mass of their black holes. The present mass function in our model is
consistent with the mass function obtained by Salucci et al. (1999). For a comparison,
we also plot the mass functions of the bulge and disk for all galaxies in figure 3.3 (b) and
(c), respectively. The steep slopes at low masses of the mass functions of black hole and
bulge are mainly due to random collisions between satellite galaxies in this model. For
fer S 0.3, varying fpy shifts the black hole mass almost linearly. This tendency is shown
in Figure 3.4.

3.2 Evolution of quasar luminosity

Next, we consider the light curve of quasars. In this study, we define a quasar as a galaxy
with the SMBH which is powered during the major merger of galaxies in the manner
described in the previous section. We assume that a fixed fraction of the rest mass energy
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Figure 3.2: Relation the absolute V-band spheroid magnitude to mass of SMBH. The
open circles are an absolute V-band magnitude limited sample of spheroids in our model.
The thick solid line is the observational relation obtained by Magorrian et al. (1998). The
dashed lines indicate the 1o scatter in the observations.

of the accreted gas is radiated in the B-band, and that the B-band luminosity of a quasar
at time t after a major merger as follows:

Lg(t) = Lp(peak) exp(—1/tig), (3.2.1)

where tje(2) is the quasar lifetime. We assume that #g(2) scales with the dynamical
time scale, tqyn, of the host galaxy, where t4yn X 7ga1/0gal X Rt/ Veire A;i:/ 2; A, is the
ratio of the dark halo density to the present critical density given in Appendix B.3. The
peak luminosity, Lg(peak), is given by

M, .
Lp(peak) = e_BT;,c_c_’
M, tie \
= 1.49 x 10" 2 e 3.2.2
*Aen (1071\4@) (107yr) Lo (3.2.2)

where ep is the radiative efficiency in the B-band, t)¢ is the quasar lifetime and c is the
speed of light. The absolute B-band magnitude at the peak Mp(peak) is given by:

M, tie \
Mp(peak) = —2.5log [€B< ) ( hfe ) } — 27.45. (3.2.3)

10"Mg ) \ 107yr

In order to determine the parameter eg and the present quasar lifetime, #.(0), we chose
them to match the estimated luminosity function in our model with the observed abun-
dance of bright quasars at z = 2. We obtain eg = 0.0048 and #j(0) = 3.0 x 107yr.
The resulting luminosity functions at four different redshifts are shown in figure 3.5. We
superpose the luminosity functions derived from the 2dF 10k catalogue (Croom et al.
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Figure 3.3: (a) Black holes mass function of models for fgy = 0.03 as a function of the
epoch. The solid, short-dashed, and dot-dashed lines indicate the results at z = 0,1,
and 2, respectively. The symbols with errorbars are the present black hole mass function
obtained by Salucci et al. (1999). (b) The bulge and (c) the disk mass functions of model
galaxies as a function of the epoch. The solid, short-dashed, and dot-dashed lines indicate
the results at z = 0,1, and 2, respectively.
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Figure 3.4: The effect on black hole .mass functions of varying fpy. Results are shown
for fey = 0.01 (dotted line), fgg = 0.03 (solid line), and fay = 0.09 (dashed line). The
symbols with errorbars are the present black hole mass function obtained by Salucci et
al. (1999).

2001) for a cosmology with Q¢ = 0.3, Ao = 0.7, and h = 0.7, which is analyzed and kindly
provided by T. T. Takeuchi. He used the method of Efstathiou, Ellis & Peterson (1988)
to estimate the luminosity functions. In order to reanalyze the error with greater accu-
racy, they applied bootstrap resampling according to the method of Takeuchi, Yoshikawa
& Ishii (2000). The absolute B-band magnitudes were derived for quasars using the k-
corrections derived by Cristiani & Vio (1990). Our model reproduces reasonably well the
evolution of the observed luminosity functions. Thus, in the next chapter, we use these
model parameters in order to investigate the environments of quasars (table 3.1).

For a comparison, we also plot the result of model with eg = 0.0048 and tje(0) =
3.0 x 10%r in figure 3.5 (dot-dashed lines). In this case, the abundance of luminous
quasars decreases. To prolong the quasar lifetime affects the quasar luminosity function
due to the following two factors: a decrease in the peak luminosity, Lg (eq.[3.2.2]), and
an increase in the exponential factor, exp(—¢/tue), in equation (3.2.1). For the majority
of bright quasars, the elapsed time, t, since the major merger is much smaller than the
quasar lifetime tyg, t/tye < 1. Therefore, the former factor dominates the latter, and
the number of luminous quasars decreases. Thus, a long quasar lifetime results in a very
steep quasar luminosity function. Note that if we change the radiative efficiency, ep, the
quasar luminosities simply scale by a constant factor in our model. Thus, changing ep
shifts the luminosity function horizontally.

Kauffmann & Haehnelt (2000) also introduced a unified model which includes the
formation of both galaxies and quasars in the framework of SAM. In their model, they
also assumed that SMBHs are formed and fueled during major mergers. While their
approach is similar to ours, they adopted another model of fueling process. They assumed
that the ratio of the accreted mass to the total available cold gas mass scales with halo
circular velocity in the same way as the mass of stars formed per unit mass of cooling
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Table 3.1: Quasar Model Parameters

faH e tite(0) (107yr)
0.03 0.0048 3.0

gas. Therefore, their resultant model description is slightly different from ours in equation
(3.1.1). Furthermore, their models for star formation and feedback are different from ours,
and they did not consider random collisions. On the other hand, in our model, luminous
quasars could reside inside a dark halo in three possible ways: (i) A major merger between
a satellite and the central galaxy in the halo drives cold gas onto a SMBH in the bulge
of the central galaxy, causing the quasar to light up. (ii) A random collision between
satellites leads to a merger and a quasar episode if there is a burst of star formation.
(iii) A quasar is still shining when its dark halo merges with a larger halo. The case (iii)
hardly happens because of the short lifetime scale of quasar. Both the case (i) and the
case (ii) can occur simultaneously. Thus, it is possible that a dark halo contains several
quasars. On the other hand, since Kauffmann & Haehnelt (2000) did not consider the
random collision, the case (ii) never happens in their model. Thus, in their model, a dark
halo contains only one quasar at most. However, their model also reproduced well the
observed relation between spheroid luminosity and black hole mass in nearby galaxies,
and the evolution of the quasar luminosity functions. Therefore, in order to constrain
our model for quasar formation, we will consider other properties of quasars in the next
chapter.
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Figure 3.5: B-band quasar luminosity functions at (a)z = 0.25, (b) z = 0.5, (c)z = 1.25,
and (d)z = 2.0. The solid lines are t(0) = 3 x 107yr and the dot-dashed lines are
tite(0) = 3 X 108yr. The symbols show the results from the 2dF 10k catalogue (Croom et
al. (2001)) reanalyzed by Takeuchi for a cosmology 2o = 0.3, Ao = 0.7, and h = 0.7.



Chapter 4

Environment of Quasars

4.1 Introduction

Because of their very high intrinsic luminosities, quasars can be used as probe of the large-
scale structure in high redshift universe. For more than three decades, we have known
that quasars are associated with enhancements in the spatial distributions of galaxies
(Bahcall, Schmidt & Gunn 1969). However, it is not obvious problem whether quasars
trace underlying dark matter distribution or not. In this chapter, we investigate the en-
vironments of quasars using our model. We consider the halo mass dependence of the
mean number of quasars in a dark halo, the effective bias parameter of quasar, and the
probability distribution of the number of galaxies around quasars, as characterizations of
the environments of quasars (Enoki, Nagashima & Gouda 2003). This is because the for-
mer two quantities are the measures of the relationship between quasars and dark matter
distributions, and the latter provides the relationship between galaxies and quasars.

4.2 The halo mass dependence of the mean number
of quasars in a dark halo

In this section, we consider the mean numbers of quasars and galaxies in a dark halo. We
can compute these quantities directly from our model. In figure 4.1, we plot (Nga(M)) and
(Ngso(M)), which denote the mean number of galaxies and quasars in a halo with mass,
M, respectively, at (a) z = 0.5 and (b) z = 2.0. We select galaxies with Mp — 5log(h) <
—19 and quasars with Mg—5log(h) < —21, where Mp is the absolute B-band magnitude.
It should be noted that changing the selection criteria of the magnitude for galaxies and
quasars would alter these results, but qualitative features are not altered. As can be seen
in figure 4.1, there are more galaxies and quasars at high z. At higher redshift, halos have
more cold gas available to form stars and to fuel SMBHs because there has been relatively
little time for star formation to deplete the cold gas at these redshifts. Thus, the number
of luminous galaxies grows. Furthermore, at higher redshift, both the timescales of the
dynamical friction and the random collisions are shorter because the mass density of a
halo is higher. Therefore, the galaxy merging rate increases. Consequently, the number of
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Figure 4.1: Mean numbers of galaxies with Mp —5log(h) < —19 (solid lines) and quasars
with Mp —5log(h) < —21 (dot-dashed lines) in a dark halo with mass, M, at (a) z = 0.5
and (b) z = 2.0. The horizontal dotted line marks (Ng) = 1 and (Nggo) = 1

quasars also grows. Moreover, the decrease in the quasar lifetime, tj5,, with a redshift also
contributes to the increase in the number of quasars because quasars become brighter as a
result of the decrease in tyg (eq. [3.2.2]). From figure 4.1, we find that the dependence of
(Ngso(d)) on halo mass, M, is different from the dependence of (N, (M)). Furthermore,
figure 4.2 shows that the ratio of (Ngso(M)) to (Ng.(M)) varies with redshift and halo
mass.

The mean numbers of quasars and galaxies in a dark halo provide the information
of the relations among galaxies, quasars and dark halos. However, these quantities are
not observable because it is very difficult to identify dark halos observationally. Then,
using these quantities, we will calculate the bias parameter in the next section. The bias
parameter is the ratio of galaxy or quasar density fluctuation to dark matter density
fluctuation. Then, this quantity gives the relations the relation among quasar distribu-
tion, galaxy distribution and dark matter distribution. Furthermore, the bias parameter
predicted by models can be compared with the one obtained by observation.

4.3 Quasar bias

The spatial distribution of dark matter need not be the same as the spatial distribution of
quasars, galaxies and dark halos. In other words, the distributions of quasars, galaxies and
dark halo may be biased realizations of the underlying dark matter density fluctuation,
dpm. A simplified view of bias is that the two density fluctuation are simply proportional
each other,

fq = bodom, (4.3.1)

dc = badpwm, (4.3.2)
ou = budpm, (4.3.3)
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Figure 4.2: Ratio of the mean number of galaxies with Mg — 5log(h) < —19 to the mean
number of quasars with Mg — 5log(h) < —21 in a dark halo with mass , M, at z = 0.5
(solid line) and z = 2.0 (dot-dashed line).

where dq, d¢ and dy are the density fluctuations of quasars, galaxies and dark halos,
respectively. Here, bq, bg and by are the linear bias parameters of quasars, galaxies and
dark halos, respectively. In this case, the bias parameter of quasar is obtained by

2 €Qq

b= (4.3.4)
where £qq is the quasar two-point correlation function of and {pym is the dark matter
correlation function (see B.2.2). Once cosmological parameters are specified, we can
obtain £py from a result of N-body simulation or an approximated fitting formula of e.g.
Peacock & Dodds (1996). If bq is calculated by quasar formation model, we can obtain
observable quantity £qq. Therefore, here we calculate the bias parameter using our quasar
formation model.

Generally, the quasar spatial distribution does not necessarily coincide with the galaxy
spatial distribution. Benson et al. (2000) used a combination of cosmological N-body
simulation and semi-analytic modeling of galaxy formation, and showed that the galaxy
spatial distribution is sensitive to the efficiency with which galaxies form in halos with
different mass. Seljak (2000) also obtained the same conclusion using an analytic model
of galaxy clustering (see also Cooray & Sheth 2002). These results are applicable to the
quasar spatial distribution. Therefore, our result in the previous subsection indicates that
the clustering properties of galaxies are not the same as those of quasars, and that the
bias in the spatial distribution of galaxies relative to that of dark matter is not the same
as the bias in the spatial distribution of quasars.

One method for investigating the distributions of galaxies and quasars is to use a
cosmological N-body simulation. Combing SAM for galaxy formation and cosmological
N-body simulations certainly provides a powerful technique to investigate the galaxy
distribution. However, since the number of quasar is a factor 10®° ~ 10? smaller than
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the number of galaxy, it would be impossible to obtain a robust measurement of £qq
from N-body simulations. Therefore, we use a simple analytic model to compute the bias
parameter (Baugh et al 1999).

If we assume that the biases are independent of the scale, we can calculate the effective
biases of objects (galaxies or quasars) using the method of Baugh et al (1999), as follows:

[ou(M, z)(N(M, z))n(M; z2)dM
beg(z) =

I E T N(M, 2)n(M: 2)dM (4:3.5)

where by(M, z) is the bias parameter for dark matter halos of mass, M, at z, (N(M, 2))
denotes the mean number of objects (galaxies or quasars) that satisfy the selection criteria
in a halo of mass, M, at z, and n(M; z) is the dark halo mass function at z. This effective
bias parameter is the mean of the bias of dark halos weighted by the number of objects in
a dark halo and the number density of the dark halo. Note that these effective biases are
valid for large scale ( ~ a few Mpc) where objects (galaxies or quasars) which contribute
a two-point correlation function populate different halos.
Our SAM adopts the Press—Schechter mass function, which is given by

2 po 0c(2)

n(M;z)dM = = M 52(M)

J dM, (4.3.6)

do (M) 1 82(2)
dM 'ex [_502(1\4)

where pp is the present mean density of the universe, o(M) is the rms linear density
fluctuation on the scale M at z = 0 and §.(z) = §./D(z). D(z) is the linear growth
factor, normalized to unity at the present day and 4. is the linear critical density contrast
at the collapse epoch (see Appendix B.3). Here, we use an approximate formula of 4,
for a spatially flat cosmological model (Nakamura & Suto 1997). The bias parameter for
dark matter halos is given by Jing (1998),

2 p 0_4 (0.06—0.02n.g)
bu(M,z) = {1 + 51; [:20((1\4)) - 1}} [25§J(\Z; + 1] , (4.3.7)

where n.g is the effective spectral index of the power spectrum, dln P(k)/dInk, at the
wavenumber defined by the Lagrangian radius of the dark matter halo, k = 27 /r; and
ri = (3M/4mpe)*"? (see Appendix C.3). Figure 4.3 shows the evolution of effective bias for
galaxies with Mp—5log(h) < —19 and quasars with Mp—5log(h) < —21. As can be seen
in figure 4.3, quasars are higher biased tracers than galaxies. Furthermore, the evolution
of quasar bias is different from that of galaxy bias. This is because that the dependence
of (Ngso(M, z)) on the halo mass and the redshift is different from the dependence of
(Nga(M, 2)). The mean number of objects in a dark halo, (N(M,2)), is the increasing
function with M. On the other hand, the mass function of dark halos, n(M; z), is the
decreasing function with M (see figure C.1). Therefore, (N (7, z))n(M; z) has maximum
at some halo mass, M,. Equation (4.3.5) indicates that the main contribution for bes(2)
comes from the halo with mass M,,. In our model, M, for quasars is about 10'3M, and A,
for galaxies is about 10'2M,. Thus, the bias parameters for quasars are larger than those
for galaxies because the bias parameter for halos, by (M, z), is the increasing function with
halo mass.
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Figure 4.3: Effective bias parameter of galaxies with Mp — 5log(h) < —19 (squares with
solid line) and quasars with Mp — 5log(h) < —21 (triangles with dot-dashed line) at
z2=10.25, 2=10.5, z=1.25, and z = 2.0.

4.4 The probability distribution of the number of
galaxies around quasars

Next, we formulate the conditional probability that a halo with Nggo quasars has Ngy
galaxies. This provides the relationship between galaxies and quasars. The number
density of the halos which contains Ng,; galaxies and Nggo quasars at z is obtained from
the following expression:

(Ngat, Naso3 2) = | N(Neai, NasolM; ) n(M; 2)dM, (4.4.1)

where N(Nga1, Ngso|M; 2)dNgaidNgso denotes the number of halos with mass M which
contains Nga) ~ Nga1+dNg,) galaxies and Ngso ~ Ngso +dNgso quasars at z and n(M; 2)
is the dark halo mass function at z. The number density of the halos which contain Ngso
quasars at z is obtained from:

n(Noso; z) = / N(NosolM; 2)n(M; 2)dM, (4.4.2)

where N(Ngqso|M, z)dNqso denotes the number of the halos with mass M which contain
Ngso ~ Ngso + dNqgso quasars at z. From equations (4.4.1) and (4.4.2), the conditional
probability that the halo with Nqgo quasars has Nga ~ Nga 4+ dNga galaxies at z is given
by

n(Ngal, Ngso; 2)

n(Ngso; 2)

As can be seen in the above formulation, given N(Ngu, Ngso|M;z) and N(Ngsol|M; 2)
from the quasar formation model, one can calculate the probability distribution for the
number of galaxies around quasars. Figure 4.4 shows these galaxy number distribution

P(Nga|Nqso; 2)dNgat = dNga. (4.4.3)
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functions around quasars estimated by our model. The results are shown for quasars
brighter than Mg — 5log(h) = —22 and for galaxies brighter than My — 5log(h) = —19.
Note that at z = 0.25 and z = 0.5 P(Nga|Ngso = 2) = 0 and P(Ng|Ngso = 3) = 0 for
all Nga (Fig. 4.4(a) and (b)) and that at z = 1.25 P(Nga|Ngso = 3) = 0 for all N, (Fig.
4.4(c)). At lower redshift, a halo has at most one quasar. Figures 4.4(a) and (b) show
that the halo which has one quasar contains several galaxies by high probability. These
results indicate that most quasars tend to reside in groups of galaxies at 0.2 < z < 0.5,
which consistent with the observation at z < 0.4 (e.g. Bahcall & Chokshi 1991; Fisher et
al. 1996; McLure & Dunlop 2001). On the other hand, at higher redshift, the numbers of
galaxies in the halo with one or two quasars is from several to dozens (Fig 4.4(c) and (d)).
These results indicate that quasars locate over a range from small groups of galaxies to
clusters of galaxies although most quasars locate in groups. Thus, at 1 < z < 2 quasars
seem to reside in more varied environments than at lower redshift. The results at higher
redshift may be tested by statistics of galaxies around quasars which will be obtained in
the future. In our model, we assume that quasar activity is triggered by galaxy major
merger. From equation (2.4.1), the dynamical friction timescale is expressed as follows:

My 1

o , (4.4.4)
Mooy 1) [1 + (3%)2]

Ttric

where My is the mass of dark halo, and M, is the mass of the satellite galaxy. This
expression shows that 7gic increases with My/Mg,. Moreover, since collision timescale
decreases with number of galaxies in a dark halo, but increases with the velocity dispersion
of the dark halo, there will be a peak in the collision rate for a halo size about the mass
of a group, ~ 10'®M. Furthermore, in our model, adopted quasar life timescale #y is
much shorter than the dynamical time scale of the dark halo where quasars and galaxies
populate. Therefore, quasar activity reflects galaxy merger event directly. Thus, our
model predicts that most quasars populate in groups.

The mean number of quasars per halo, (Ngso(M)), and probability distribution of
the number of galaxies around quasars, P(Nga|Nqso), used in this study can provide
some useful features of the quasar environments. Furthermore, the spatial quasar-galaxy
correlation function is used in order to quantify the galaxy environments around a quasar
because this quantity can be observed directly. Therefore, in order to constrain the quasar
formation model more quantitatively, it is also necessary to predict spatial distribution
of galaxies and quasars. We will show the results using the combination of cosmological
N-body simulation and SAM for formation of galaxy and quasar in the next chapter.
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Figure 4.4: The probability distribution for the numbers of galaxies around quasars (a)z =
0.25, (b) z = 0.5, (c)z = 1.25 and (d)z = 2.0. The selected galaxies are brighter than
Mg — 5log(h) = —19 and the selected quasars are brighter than Mg — 5log(h) = —22.
Long-dashed, solid, dot-dashed and short-dashed lines show results for Nggso = 0, 1,2 and
3 respectively.



Chapter 5

Clustering of Galaxies around
Quasars

5.1 Incorporation with N-body simulation

In this chapter, we investigate the spatial cross-correlation between quasars and galax-
ies because this quantity can be observed directly. To do this, we must obtain spatial
distributions of quasars and galaxies, especially on small scales (less than a few Mpc).
Therefore, we combine our SAM of our galaxy and quasar formation, described in Chapter
2 and Chapter 3, with cosmological N-body simulations. In this study, we use a result of
a cosmological N-body simulation given by Yahagi (2002), in which he adopted a scheme
of adaptive mesh refinement (AMR). The simulation was carried out on the VPP5000
supercomputer installed at the National Astronomical Observatory, Japan. Our adopted
cosmological model is a ACDM model with ¢ = 0.3,y = 0.7,08 = 1.0 and h = 0.7.
The simulation contains 5123 dark matter particles of mass about 108M( in a periodic
box of L = 70h™! Mpc. The resolution of this simulation is now the highest among the
cosmological N-body simulations in the world.

There are two approaches to combine SAMs with N-body simulations. In the first
approach, the merger trees of dark halos are extracted directly from the N-body simula-
tions (e.g. Roukema et al. 1997, Kauffmann et al. 1999; Okamoto & Nagashima 2001a,
Okamoto & Nagashima 2001b). In the second approach, the mass and the spatial co-
ordinates of each dark halo is extracted from the N-body simulation at the redshift of
interest, and the merger tree of each dark halo is generated using the Monte Carlo method
based on the extended Press-Schechter formalism (e.g. Kauffmann, Nusser, & Steinmetz
1997; Benson et al. 2000). In our study, we adopt the first way. One of the advantages of
the first approach is that this approach circumvents any possible discrepancy between the
extended Press-Schechter predictions and the merging histories in the N-body simulation.

The construction of merger trees from the simulation outputs involves the following
steps. First, we obtain clusters of particles at each time step using the friends-of-friends
method (FoF). FoF connects pairs of particles whose separation is smaller than the prede-
fined linking length. We adopt the linking length that is 0.2 times the mean interparticle
separation. Only clusters containing at least 10 particles (~ 10°My) are defined as dark
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halos. Next, we search the offspring halo of a dark halo. Not all particles in a dark halo
at some time step may belong to one halo in the next time step. Thus, the offspring of
a dark halo is defined as the halo containing the most of particles in the progenitor halo.
This procedure repeats until the redshift of interest. _

Then, we identify the positions of galaxies as follows: We assume that the position of
the central galaxy of a halo is identical with that of its marker particle which is the most
gravitationally bound particle in the dark halo. When several dark halos have merged, the
properties of the central galaxy in the most massive progenitor of the halo are transferred
to the central galaxy of the offspring halo. The central galaxies of less massive progenitors
become satellite galaxies. The marker particles of satellite galaxies then remain fixed.
Since the mergers of galaxies due to the dynamical friction or the random collision cannot
be followed by this simulation, we use the galaxy merger criteria described in §2.4. After a
merger of galaxies, the marker particle of the lager galaxy becomes the marker particle of
the merged galaxy. More detailed description of construction of merger trees is in Yahagi
et al. (2003).

The mass functions and merger trees of dark halos derived using the extended Press-
Schechter formalism differ from those found in the simulation, although the difference of
the mass functions is only a factor of a few in the number of halos. In figure 5.1, we show
the mass functions obtained by the simulation and the mass functions of Press-Schechter.
These differences affect galaxy formation histories, especially for faint galaxies. Therefore,
we reset galaxy formation model parameters to reproduce local observations. For example,
since the low mass dark halo abundances decrease in the N-body simulation, the strength
of feedback should be deduced. It should be necessary to investigate in more detail about
the effect of the difference of merger trees on the formation of galaxies and quasars as
future work. Moreover, in this study, we also change the timescale of star formation for

simplicity as follows,
7o = 72(1 + B3), (5.1.1)

where (3 is the efficiency of reheating.

The newly adopted parameters of this SAM+N-body simulation are tabulated in
table 5.1 and 5.2. In figure 5.2 we plot the results of local luminosity functions of galaxies
represented by solid lines. Figure 5.3 shows the ratio of cold gas mass relative to B-band
luminosity of spiral galaxies as a function of their luminosity. Figure 5.4 shows the black
hole mass function in our model at z = 0. In figure 5.4, we plot the black hole mass
function in our model at z = 0. The resultant luminosity functions of quasars at two
different redshifts are shown in figure 5.5. The model shows a broad agreement with
observations. Slight difference in the luminosity functions would disappear if we chose
a parameter set more carefully, but the conclusions in this chapter do not significantly
change by slightly changing the parameters.
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Table 5.1: Galaxy Formation Model Parameters for SAM+ N-body simulation

Vhot (km S-'l) Qhot 7?(Gyr) fmerge fbulge R ) T
80 4 2 1.8 0.5 5/3 0.038 1.5

Table 5.2: Quasar Model Parameters for SAM+ N-body simulation

feH e tite(0) (107yr)
0.012 0.0023 1.0
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Figure 5.1: Mass functions of dark halos in the ACDM universe with Qg = 0.3, Ag = 0.3,
h=0.7, and g5 = 1.0, at (a)z =0, (b) 2 =1, (¢)z = 2, and (d)z = 3. The solid lines are
the Press-Schechter mass functions and the symbols are the mass functions obtained by
the N-body simulation of Yahagi (2002).
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Figure 5.2: Local luminosity functions in the (a) B-band and (b) K-band. The thick lines
show the results of the model of SAM+ N-body simulation. The symbols with errorbars
in (a) indicate the observational data from APM (Loveday et al. 1992, filled squares) and
2dF (Folkes et al. 1999, open circles). Symbols in (b) indicate the data from Gardner et
al. (1997, open inverted triangles), and 2MASS (Cole et al. 2001, filled triangles).
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Figure 5.3: Cold gas mass relative to B-band luminosity of spiral galaxies. The thick
line shows the result of the model of SAM+ N-body simulation. The open squares with
errorbars indicates the observational data for atomic hydrogen taken from Huchtmeier
& Richter (1988). In the models, cold gas consists of all species of elements. Thus,
we take My = 0.75M_q4q, which corresponds to the fraction of hydrogen. Because the
observational data denote only atomic hydrogen, they should be interpreted as lower limits

of the ratio.
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Figure 5.4: Black holes mass function of model at z = 0. The solid line indicates the
model result of SAM+N-body simulation. The symbols with errorbars are the present
black hole mass function obtained by Salucci et al. (1999).
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Figure 5.5: B-band quasar luminosity functions at (a)z = 0.5, and (b)z = 2.0. The
solid lines show the results of SAM+N-body simulation. The symbols show results from
the 2dF 10k catalogue (Croom et al. (2001)) reanalyzed by Takeuchi for a cosmology
Q0 =03,2=07 and h =0.7.
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5.2 Quasar-galaxy correlation

Figure 5.6 shows the distributions of quasars and galaxies in our simulation volume
(703 h=3 Mpc®) at z = 1.24. The dots show the galaxies with Mp — 5log(h) < —19
and the circles show the quasars with Mg — 5log(h) < —20, where Mg shows the abso-
lute B-band magnitude. The resultant quasar-galaxy cross-correlation function {g¢ does
not much differ from the galaxy two-point correlation function £gg (the cross-correlation
and the two-point correlation are defined in B.2.2). Figure 5.7 shows {g¢ and {gg at z = 2,
z=1.24 and z = 0.53. The crosses show {g¢ for quasars with Mp — 5log(h) < —20 and
for galaxies with Mp — 5log(h) < —19. The open squares show {g¢ for galaxies with
Mp — 5log(h) < —19. At each redshift, £q¢ is about a factor of two larger than égg on
small scale (about several hundreds kpc). On the other hand, £qg is a similar to {gg on
large scale (more than a few Mpc). Therefore, these results show that quasars populate in
a similar environment to the galaxies with Mp — 5log(h) < —19 even in high redshift. In
our model, we assume that the merger of galaxies triggers the quasar activity. Therefore,
as is discussed in the previous chapter, our model predicts that most quasars populate in
groups of galaxies because the galaxy merger rate has maximum in halos corresponding
to groups of galaxies, M ~ 10¥M. The galaxies with Mg — 5log(h) < —19 tend to
populate in the halo with mass about several 10'?M,, (see figure 4.1). Thus, these re-
sults are qualitatively consistent with the conclusion of analysis for the galaxy number
distribution function around quasars in the previous chapter, although the merger trees
extracted from N-body simulations are different from the merger trees generated from
extended Press—Schechter formalism. The selection criteria in magnitude for quasars,
Mg — 5log(h) < —20, is lower than usual criterion Mg — 5log(h) S —21. This is because
our simulation volume is so small that the number of sample quasar was too small if the
latter criterion was adopted. Larger volume simulations are needed for more quantitative
investigation of luminous quasar environment.

Kauffmann & Haehnelt (2002) also combined their SAM with cosmological N-body
simulations and investigated the properties of {gg. However, in their SAM, they assumed
that the quasar is always located at the position of central galaxy in the halo because
they do not consider the random collision of galaxies. Therefore, {gc becomes large at
small scale. In our model, since quasar activity is triggered by galaxy merger due to
both dynamical friction and random collision, quasars do not always locate in the center
of the halo. Thus, our results of {g¢ on small scale are different from the results of
Kauffmann & Haehnelt (2002). Therefore, comparing the model predictions about {oi
with observational results is a good test to constrain processes of galaxy merging and
quasar formation scenarios.
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Figure 5.6: Spatial distributions of galaxies and quasar at z = 1.24 in the simulation box
(70® h=3 Mpc®). The dots show galaxies with Mp — 5log(h) < —19. The circles show
quasars with Mp — 5log(h) < —20.
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Figure 5.7: Evolution of quasar-galaxy cross-correlation functions and galaxy two-point
correlation functions at three redshifts: z = 2 (a), z = 1.24 (b) and z = 0.53 (c). The
crosses show quasar-galaxy cross-correlation function for quasars with Mp — 5log(h) <
—20 and for galaxies with Mp — 5log(h) < —19. The open squares show galaxy two-
point correlation functions for galaxies with Mp — 5log(h) < —19. Horizontal lines mark

£(r) = 1.



Chapter 6

Summary and Conclusion

We have constructed the unified semi-analytic model (SAM) for galaxy and quasar forma-
tion based on the hierarchical clustering scenario, and investigate environment of quasars
using this model. First, we have predicted the mean number of quasars in a dark halo
with mass M, (Ngso(M)), and the effective bias parameter of quasars besqso(z) be-
cause they provide the relation between quasars and underlying mass distribution. Next,
we have predicted probability distribution of the number of galaxies around quasars,
P(Nga1|Ngso), and quasar-galaxy cross-correlations, {qa(r), because they provide the re-
lationship between galaxies and quasars. These quantities reflect the processes of quasar
formation such as the amount of cold gas available for fueling, the galaxy merger rate and
the quasar lifetime. Therefore, by comparing these predictions with observations coming
in the future, one will be able to constrain quasar formation models.

Our SAM for the galaxy formation can reproduce not only local observational results
such as luminosity functions and the cold gas mass fraction in spiral galaxies, but also
galaxy number counts and photometric redshift distribution of galaxies in the Hubble
Deep Field (Chapter 2). Based on this galaxy formation model, we introduce a quasar
formation model under the assumption that SMBHs are formed and fueled during major
mergers of galaxies; the fueling process causes quasar activity. This model can reproduce
not only the observed relation of the SMBH mass to spheroid luminosity, but also the
quasar luminosity functions at different redshifts (Chapter 3). Using this model, we have
investigated environmental characteristics of quasars (Chapter 4, Enoki, Nagashima &
Gouda 2003).

First, we have shown (Nqso(M)) and (Ng.i(M)). We found that the dependence of
(Ngso(M)) on halo mass M is different from the dependence of (Nga(M)). Moreover,
we found that the ratio of (Ngso(M)) to (Nga(M)) varies with redshift and halo mass.
The mean numbers of quasars and galaxies in a dark halo provide the relations among
galaxies, quasars and dark halos. However, these quantities are not observable. Their
behavior of them in our model suggests that the clustering of galaxies is not the same as
the clustering of quasars. This is because the spatial distributions of galaxies and quasars
are sensitive to the mean numbers of quasars and galaxies in a dark halo, and the mean
number depends on the halo mass in a different way for galaxies and quasars. Therefore,
we have calculated the effective bias parameter of quasars which is observable and we have
shown that its evolution is different from that of galaxies. This reason is as follows. Both
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the mean numbers of galaxies and quasars in a dark halo depend on the cold gas mass
fraction in the halo. In our model, the major merger of galaxies leads to quasar activity,
so the number of quasars strongly depends on the merger rate of galaxies. Therefore, the
number of quasars in a dark halo is different from the number of galaxies in a dark halo.

Next, we have shown the galaxy number distribution function around quasars, P(Ngu|Ngso)-
At lower redshifts (0.2 S z < 0.5), most halos that have quasars have at most several
galaxies. This indicates that most quasars reside in groups of galaxies. On the other
hand, at higher redshift (1 < z < 2), the number of galaxies in the halo with quasars is
from several to dozens; quasars reside in ranging from small groups of galaxies to clus-
ters of galaxies. These results show that most quasars at higher redshift reside in more
various environments than at lower redshift. This model prediction at lower redshift is
consistent with the observation at z S 0.4 (e.g. Bahcall & Chokshi 1991; Fisher et al.
1996; McLure & Dunlop 2001). The results at higher redshift are checkable by statistics
of galaxies around quasars which will be obtained in the future. In our model, we as-
sume that the major merger of galaxies triggers quasar activity. As is described in §2.4,
the galaxy merger rate has maximum in dark halos corresponding to groups of galaxies,
M ~ 103 M. Therefore, our model predicts that most quasars populate in groups.

Finally, we have analyzed the spatial cross-correlation function between quasars and
galaxies, {qg, and the galaxy two-point correlation function, {gg. To do this, we must
obtain spatial distribution of quasars and galaxies, especially in small scale (less than a few
Mpc). Therefore, we combine our SAM for galaxy and quasar formation with cosmological
N-body simulation (Chapter 5). Comparison of quasar-galaxy cross correlation function
with galaxy two-point correlation function shows that {qg is a factor ~ 3 larger than
écc on small scale (about several hundreds kpc). On the other hand, {q¢ is a similar to
€ag on large scale (more than a few Mpc). The above predictions are also resulted from
the fact that quasars tend to populate in groups of galaxies. Although the merger trees
extracted from N-body simulations are slightly different from the merger trees generated
from extended Press—Schechter formalism, this conclusion is consistent with the conclusion
of analysis for the galaxy number distribution function around quasars. It should be
necessary to investigate in detail about the effect of the difference of merger trees on
galaxy and quasar formation as a future work. To do this, we need to quantify the
difference between the merger trees extracted from N-body simulations and the merger
trees obtained from extended Press-Schechter formalism.

Our predictions about the galaxy number distribution and quasar-galaxy cross corre-
lation at low redshift are consistent with observations. The results of observations coming
in the near future at high redshift will constrain our quasar formation model. The quasar
bias parameter of our model results may be tested by forthcoming data from the 2dF
quasar redshift survey (Croom et al. 2001) and the Sloan Digital Sky Survey (York et al.
2000). Moreover, since the SDSS will provide deep imaging of all of the quasar fields, it
will be possible to study the relationship between quasars and their local environments for
a large number of quasars. Comparing the observational results with our model prediction
about the galaxy number distribution and quasar-galaxy cross correlation will enable us
to constrain our quasar formation model.

It is still controversial whether the environments of quasars depend on their optical
and radio luminosities. Some authors have claimed that radio-loud quasars were located
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in richer environments than radio-quiet quasars at z < 0.6 (e.g. Yee & Green 1984; Yee &
Green 1987; Ellingson, Yee & Green 1991; Hintzen, Romanishin & Vlades 1991). However,
other people obtained different results. For example, Hutchings, Crampton & Johnson
(1995) observed the galaxy environment of radio-loud quasars and radio-quiet quasars and
concluded that there is no significant difference in the richness. Recent studies support
this conclusion (e.g. Wold et al. 2001). The discrepancies between different studies may be
caused partly by too small quasar samples and by differences in sample selection of quasars
and galaxies. This situation will soon improve with the availability of a new generation of
very large quasar surveys such as the 2dF quasar redshift survey and the SDSS. Although
we do not deal with radio properties of quasars in this thesis, our investigation about
quasar environments will also provide a clue for understanding the radio characteristics
of quasars from their environments.

In this thesis, we fix the parameters in the model of galaxy formation, when we incor-
porated a quasar formation model and investigated properties of quasars. The parameters
are determined by comparison with some observational results. However, since various
physical processes are intricately involved in galaxy formation, there may be some pa-
rameters which can reproduce the observational results. Therefore, the parameters in the
model may be changed by comparing with other new observational results which will be
obtained in the future. Moreover, the model of galaxy formation will be improved as
the understanding of each physical process in galaxy formation makes a progress. In our
quasar model, the resultant properties of quasar depend on some properties of galaxy
formation such as the amount of cold gas and the galaxy merger rate. Thus, change of
the galaxy formation model may also lead to the change of the quasar formation model.
Comparing with observational results which will be obtained in the future, and improv-
ing models of each physical process , we will be able to understand galaxy and quasar
formation step by step. Our study would be a milestone for understanding problems of
galaxy and quasar formation.
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Appendix A
Background Cosmology

A.1 Homogeneous and isotropic universe

Our Universe is observed to be homogeneous and isotropic on scales much larger than
about 100 Mpc. Therefore, in modern cosmology, it is widely accepted that the funda-
mental assumption is the global homogeneity and isotropy of our Universe. This idea
is called Cosmological Principle. The spatially homogeneous and isotropic universe is
described by a metric of the Robertson-Walker metric:

2

1-Kr?

where c is the speed of light, a(t) is the scale factor, and K is the spatial curvature con-
stant. The behavior of scale factor a(t) is determined by the Einstein equation. Because
of the homogeneity and isotropy, the energy-momentum tensor 7, has the same form as
perfect fluid:

ds? = —c*dt* + a(t)? + r?(df? + sin® 0d¢?) | , (A.1.1)

T* = diag(—pc?, p, p, p), (A.1.2)
where pc? is the energy density and p is pressure. The Einstein equation reduces following
equations:

a\? 8rGp K& Ac?

) _ Al3

(a) 3 a? + 3’ ( )
e = 3 () (pe? Al4
pc 3 (a) (pc +p), ( )

where A is the cosmological constant and dots denote the time derivative, d/dt. These
equations are Friedmann equations.
If an equation of state is p = wpc?, equation (A.1.4) becomes p ox a~30+%) . For
relativistic matter (w = 1/3) and non-relativistic matter (w = 0), we have
p. = poa~* = po(1+ 2)* :relativistic matter, (A.1.5)
p = poa~®=po(l+2)* : non-relativistic matter. (A.1.6)

Here z = ap/a — 1 is cosmological redshift, and ao is the present scale factor and we
normalize ag = 1.

I'Throughout appendixes, a scripts 0 denotes the present value, z = 0
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Next, we define cosmological parameters as follows:

H= —Z— : Hubble parameter, (A.1.7)
Q= p((tt)) = %Gz—p : density parameter (A.1.8)
Pe
= (g}i : curvature parameter, (A.1.9)
Ac? . :
= normalized cosmological constant. (A.1.10)

Here p. = 3H?/87G is called the critical density of the universe. The present critical
density is p.o = 3HZ/87G = 1.9 x 107%h%*gcm™3 where h is the dimensionless Hubble
constant in units of 100 km s~ Mpc~!. Note that normalized cosmological constant A is
no longer a constant but varies with time. Using these cosmological parameters, equation
(A.1.3) can rewritten as

Q) + AMt) —k(t) = 1. : (A.1.11)

In this thesis, collisionless and non-relativistic dominated Universe is focused on. In this
universe, cosmological parameters at z are described as follows:

87Gpo af Hy
3H? a® H?
H2
= Qo(1+ 2)3#;,
Kc? a2H?
aZHE a2 H?
H?2
= ko(l + Z)ZF(;
AZ H?
3HZ H?’
1
= )‘Oﬁ'

From equation (A.1.11)-(A.1.14), one obtains the dynamical equation of the universe:

Q(z) =

(A.1.12)
(A.1.13)

(A.1.14)

H? Qo 1-—0Q— X
W osT T e th

= {Qo(14+ 2%+ (1—Q — Xo)(1+2)%*+ Ao}, (A.1.15)
and the evolution of the density parameter:

Qo(l + 2)3

Uz) = Qo1+ 25+ (1— 2 — M)(1+ 22+ ho (A.1.16)
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A.2 Solutions of Friedmann equation

We show the exact solutions in some representative cases in following three cosmological
models.

1)

(i)

Einstein-de Sitter Universe : Qg =1, kg = Xy =0
From (A.1.3), we have

3 2/3
From (A.1.15), the Hubble parameter is given by

2
and from (A.1.16), the density parameter is given by

Q2) = Qo = 1. (A.2.3)

Open Universe : 25 <1, Ag=0, kg = —-1<0
In this case, note that —c?K = a?H?*(1 — Q) = agHZ(1 — Q). From (A.1.3), we
obtain the parametric solution of a and ¢ as follows:

a = (coshn — 1), (A.2.4)

_ B
2(1 - Qo)

Hoyt = (sinhnp — 7). (A.2.5)

0
2(1 — )32

From (A.1.15), the Hubble parameter is given by

HZ

= = Q(l+2°+(1—Q)(1+2)°
H;

= (14 Qo2)(1+2)%, (A.2.6)
and from (A.1.16), the density parameter is given by

_ Qo(l + Z)S _ Qo(l + Z)
T Q14234+ (1-Q)(1+2)2 14+ Q2

Q(z) (A.2.7)

Next, we derive the relation between ¢ and z. From (A.2.4), we obtain

coshn = 2X +1,
sinhn = 2X1/2(1+X)1/2,
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Here, we define the variable X as

1 1 1
X=—<-1= ——1) . A.2.10
Q(Z) <QO 1+ 2 ( )
Then, we obtain
n=2In X"+ (1+X)"]. (A.2.11)
From these equations and (A.2.5), the relation between ¢ and z is given by
0
Hot = ——{X"2(1+ X)"? + In [X"2 + (1+ X)"?]} . (A.2.12)
1—-Q

(iii) Spatially Flat Universe : ko =0, 2 <1, Qo+ Ao =1
From (A.1.3), we obtain

QO 1/3 ) 9/3 3
o= (1 l QO) sinh?/ (5,/1 - QoHot) . (A.2.13)

From (A.1.15), the Hubble parameter is given by

2
% = (14 2)% + do = Do(1+2)° +1 - Q (A.2.14)
0

and from (A.1.16), the density parameter is given by

QQ(]. +Z)3 _ Qo(l +2)3

Q2) = = . A2

() = St 2P+ h ~ Dol 2 + 1= (A-2.15)

From (A.2.13), the relation between t and z is given by
_ 2 1/2 1/2
Here, we define the variable X as

1 1 1

XE——-—1=(——-1> , A2.17

(z) Qp (1+2)° ( )

and we use sinh™' z = In(z + V22 + 1).



Appendix B

Inhomogeneous Universe

In this section, we summarize the gravitational evolution of density fluctuations after
non-relativistic matter dominates in the universe. Since, the fluctuation scale which we
interested in is much smaller than the horizon scale of the universe, Newtonian gravity is
a good approximation.

B.1 Linear perturbation theory

The proper separation of two points varies with time as
r = a(t)x, (B.1.1)

where r is the physical coordinate and x is expanding coordinate comoving with back-
ground universe. This yields the relations for velocity as follows:

r=ax+ax = Hr +v(x,t), (B.1.2)

where the first term on the right hand side is the global uniform expansion and the second
term is the peculiar velocity. For non-relativistic ideal fluid, the evolution equations of
density fluctuation are continuity equation, Euler equation of motion and Poisson equation
of gravitational field (e.g. Peebles 1980) are describe as follows:

06 1
ov 1 . Vp 1
V3¢ = d4npya®s. (B.1.5)

where V is the derivative with respect to x, and p and ¢ are respectively the perturbed
pressure and gravitational potential. The density contrast § and its Fourier decomposition
are defined by

S(x,1) = P(X,Z)b(-;)ﬂb(t) (B.1.6)
_ (er)g / i (£) explik - x)d%k (B.L.7)

=
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where py(t) is the mean density of background universe, which simply by p in the previous
section. p(x,t) means the local density at x and t.

If the perturbed quantities are small enough, above equations are linearized. Taking
the Fourier decomposition of density contrast, the evolution of density contrast is describe
as:

e . 2 2
o +2H b = <47erb L ) Ok, (B.1.8)

where ¢, = /0p/0p is the sound speed, and k = |k|. In the equation (B.1.8), the first
term on the right hand side denotes the destabilizing effect of gravity and the second term
denotes the stabilizing effect of gas pressure. On small scales (corresponding to large k),
pressure dominates and density contrast does not grow and oscillate. On the other hand,
on the large scales (corresponding to small k),, gravity dominates and density contrast
grow monotonically. The border between these two regimes is presented by the Jeans
wave number defined by

47erba
k3= —or (B.1.9)
For k < kj, the solution of equation (B.1.8) can be written as
d(t) = A(k)D4(t) + B(k)D_(t). (B.1.10)

The growing mode D, and decaying mode D_ are given in term of scale factor by
o da
D, « H(a)/ mda (B.1.11)
D_ « H{a) (B.1.12)

where H(a) is the Hubble parameter at z = 1/a — 1. We consider only the growing
mode and neglect decaying mode. The expressions for this growing mode D(t) for three
cosmological models mentioned in A.2 are:

(i) Einstein-de Sitter universe : Qo =1, kg = Ao =0
D(t) = a(t)D(to) (B.1.13)
(ii) Open universe : Qy < 1, kg >0, Ao =0

3sinhn (sinhy —n)

-2 B.1.1
Dit) o (coshn — 1)2 ( 4
(iii) Flat model with positive A : Qo+ X =1, ky =0
14— / d 11
+ X3 v 2 + u3 (B.1.15)

where X is defined by X = (5! — 1)3a(t
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For spatially flat universe, the approximative expression is known as follows (Carroll,
Press & Turner 1992):

9(2)
D(t) = af(t Dt B.1.16
where ¢({2) is a growth suppression factor given by
Q=2 1,209 & o h B.1.17
IVI=9270 T 140" 140 ‘ (B.1.17)
and € is (1 B
o(1+2) (B.1.18)

- Qo(1+2)3+1—90‘

B.2 Statistics of density fluctuation

B.2.1 Power spectrum

In this subsection, we describe statistics of density fluctuations. Let us Fourier expand
d(x,t) as

i(x,t) = (—2#/61((15) exp(ik - x)d’k, (B.2.1)
k(t) = /5(x, t) exp(—ik - x)dx, (B.2.2)

and define the power spectrum P(k,t) as
P(k,t) = (|&(t)). (B.2.3)

From the isotropy and homogeneity of the universe, power spectrum does not depend a
preferred direction: P(k) = P(k). It is generally assumed that the primordial density
field is random Gaussian. The Gaussian density field is completely characterized by its
power spectrum, P(k). For lack of any better assumptions, it is usually assumed that the
primordial power spectrum of mass density fluctuation was a simple power-law

Pi(k) o k™ (B.2.4)

where n; is the initial spectral index. The growth of density fluctuations is affected several
physical processes and the power spectrum is altered from its primordial spectral shape.
The processed power spectrum is then given by

P(k) = P,(k)T2(k), (B.2.5)

where T'(k) is a transfer function which represents the changes in the primordial spectral
shape.
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Next, we define a density fluctuations that is averaged over a volume V' containing
mass M = p,V as

6(Mxt) = [ 8y, W (ix—y)a

(73?)5 / 5k(t)ﬁ/]\1(k) eXp(Zk . X)d3k’ (B26)

where Wy (r) is window function and Wy (k) is the Fourier components of Wy (r). One
example of the window function is a top-hat form:

Wi (r) = {8/ (4n %) :ig, (B.2.7)
W (k) = (kj’%) {sin(kR) — kR cos(kR)}, (B.2.8)

where R = (3M/4np,)}/? is the filtering length. Then, the variance of the smoothed
density fluctuation over the mass scale M at t is given by

o?(M,t) = (|5(Mxt)|2)
/ P(k, )W (k)d®k. (B.2.9)

2)3

In this thesis, we adopt the power spectrum of mass density fluctuation in the CDM
universe and assume n; = 1. The power spectrum in the CDM universe is well described
by fitting formula of Bardeen et al. (1986):

P(k) = AKT2(K), (B.2.10)

1/4

] 34 -
Rt [1+3.89g+ (16.19)* + (5.469)* + (6.71¢)*] ",  (B.2.11)

2.34q

where A is the proportional constant and ¢ = k/(Th Mpc™'). Here, T is the shape
parameter given by Sugiyama (1995)

T(k) =

I'= Qhexp [—Qb (1 +V2h le)} , (B.2.12)

where €, is baryonic density parameter. Effects of baryon density on the CDM transfer
functions have been included by this shape parameter. In this study, the amplitude of
power spectrum, the proportional constant A in (B.2.10), is fixed by the present variance
of the smoothed density fluctuation over the scale R = 8h~1Mpc:

og = o(R = 8h™'Mpc, ty). (B.2.13)
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B.2.2 Two-point correlation function

The two-point correlation function is defined as the joint ensemble average of the density
fluctuation at two different points,

£(r) = (6(x)8(x + 1)), (B.2.14)

which depends only on r = |r| due to the isotropy and homogeneity of the universe. The
two-point correlation function is the Fourier transform of the power spectrum as follows

1 N
E(r) = Ok /P(k) exp(tk - x)d’k. (B.2.15)

The physical interpretation of £(r) is that it measures the excess probability for finding
two particles at volume element dV; and dV, that are separated by distance r = |z; — x5},

dPyo(r) = A2[1 + £(r)]dVidV; (B.2.16)

where 71 is the mean density. Since the probability of finding a particle in dV; is fidV4,
the conditional probability that there is a particle at dV5 given that there is one at dV] is

dP(2(1) = 5[l + £(r)]dVa. (B.2.17)

A related quantity is the cross-correlation function. Here, one considers two different
classes of objects (A and B, say), and the cross-correlation function £4p(r) is defined as
the probability for finding for a object A at volume element dV; and a object B at dV,
that are separated by distance r,

dPap(r) = nafip[l + {4p(r)]dV1dV5, (B.2.18)

where 714 and fip are the mean densities of objects A and B, respectively.

B.3 Spherical collapse model

B.3.1 Evolution of spherical overdense region

As density contrast grows and becomes nearly unity, the linear perturbation theory de-
scribed in §B.1 fails. It is reasonable to expect that overdense regions will break away
from background expansion, collapse and form gravitationally bound objects like galaxies
or clusters of galaxies. Generally, it is very difficult to fully trace non-liner evolution an-
alytically. However, for the case of spherically symmetric perturbations, one can obtain
exact solutions (Tomita 1969; Gunn & Gott 1972).

Suppose the motion of spherical mass shell with radius r. We assume the shell crossing
does not occur, the equation of motion for the mass shell is then

GM

P
72’

(B.3.1)
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where M = M(< r) is the mass enclosed within the radius r. Integrating this equations

gives
1, GM
-ér - = E, (B.3.2)

where E is a constant of integration. In the case of £ < 0, the mass shell collapses and a
parametric form solution of equation (B.3.2) is given by

r o= %(1 — cosf), (B.3.3)
GM )
t = m(@ — sin8), (B.3.4)

where C = —E/2 and it is assumed that 7 = 0 at t = 0. At an early epoch (§ < 1),
above solutions are expanded as a series in 6:

GMrt 1 /t\23
r= @6 ) (B33)
3 i
t = t.0°(1—-—= 3.
(1= 55); (B36)
where t. = GM/6C%/2. In this case, the mean density within the mass shell, p(t), is given
by
1 3 (t\%3
t) ~ ——— — — . 3.
D)= gom [1 T2 (t) ] (B37)

In an Einstein-de Sitter universe, the mean density varies as py(t) = 1/(67G#t?), therefore,
density contrast is described by
p(t) —po(t) 3 (t)2/3
(M) = ———"=—|— D(t), B.38
where D(t) is the linear growth factor in §B.1.

Equations (B.3.3) and (B.3.4) imply that the mass shell will reach a maximum radius
Tmax 8t @ = 7, then contract and finally collapse to a point at § = 27. In reality, shell
crossing will occur and reach virial equilibrium by a process known as violent relaxation.
The time at which the system reaches the equilibrium, t.;, is assumed to be at § = 27.
The radius of the virialized objects is obtained by the virial theorem:

Tvir = rmTa.x = G—é\{, (B.3.9)

and the mean density of the objects, pyir, is given by
. 3c®

Puir = grGEM?

The ratio of pyi; to the critical density of the universe p.(tyi:) at this epoch is defined by

(B.3.10)

Pvir
A, =
¢ Pe (tvir)

Pvir
= 2 tvir
pb(tvir) ( )
Q(zvi,)

Pvir
= . B.3.11
pc,O(l + zvir)s Q0 ( 3 )
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where 2y, is the redshift corresponding to ¢.;;. For convenience, the linear density contrast
extrapolated to this epoch, &, = &yn(tyir), is considered. If the density contrast of a region
predicted by linear theory reaches this value, d., the region is thought to have collapsed
at that time. For some specific cosmologies, A, and . are obtained in the following.

(i) Einstein-de Sitter universe : Qo =1, kg = Ao =0

A, = 1872~ 178
2/3
5 = 3—(1%21.69 (B.3.12)

(ii) Open universe : < 1, kg >0, Ao =0

(cosh 7y — 1)3
(Sil’lh Tvir — nvir)2

3 [ 3 sinh 7y (sinh Myir — Mvir) ] ( o 2/3
0 = = —-2111 —-——) B.3.13
2 (cosh nyir — 1)? + sinh Nvir — Myir ( )

Ac = 471'2 Q(tvir)

(iii) Flat model with positive A : Qo+ Ao =1, kg =0

32 .
Ac = Q(tvir)(”;in%x) u;(wr

2/3
3—(%%)——(1 +0.0123 log Qtuir)) (B.3.14)

where wyir = 1/Q(tyir) — 1, and x = M HZrd,,/(GM).
Equation (B.3.13) is derived by Lacey & Cole (1993), and equation (B.3.14) is derived by

Nakamura & Suto (1997). In practice, we use fitting formula of Bryan & Norman (1998)
for virial density:

b =~

A, = 187% 460z — 32z% for g =0
A, = 187* + 82z — 39z for kg =0 (B.3.15)

where r = Q(tyi;) — 1. This formula is accurate to 1 % in the range 0.1 S 2 < 1.

B.3.2 Properties of virialized object

Consider the virialized object with mass M formed at z,;. The virial radius of the object

is defined as
M '3
(47rpvir>

1/3
=< 3M ) , (B.3.16)

R’Vir

47fpc,oAvir
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where Avie = puie/peo = (14 2vir)*Acfl/Q(zyir). The circular velocity of the object is

defined as

GM\*/?
‘/circ = ( )
Rvir

3
Avir 1/2
= Ruo (5)
Rvir 1/2 -1
= 707 (Ejl—Mp_c) Avir kms .

Using Veirc, the mass of the virialized object, M, is written as

M = V3 _3 o
- circ 47Tpvir

) 3
= 3.26 x 10° (——lkV““_l) AR R Mo,
ms

and the virial radius, 7y, is written as

GM
Rvir - Vcirc
M Vs -2
— 435 x 10° ( ) Mpe.
35 X (1014M@) lkm s~! pe

The dynamical time of the virialized object, 7ayn = Ryir/Veirc, is given by

H ORvir
Vcirc

Ao -1/2
e

HOTdyn =

(B.3.17)

(B.3.18)

(B.3.19)

(B.3.20)



Appendix C

Extended Press-Schechter Formalism

Press & Schechter (1974) derived the number density of dark halos as a function of their
mass (mass function). Although this mass function shows reasonably good agreements
with mass function from N-body simulation, the original derivation provided by Press &
Schechter (1974) is very heuristic and has many theoretical uncertainties (e.g. Monaco
1998). Bower (1991), Bond et al. (1991) and Lacey & Cole (1993) developed an alternative
derivation of Press & Schechter (1974) mass function and extended the formalism in order
to make calculations of merger tree. This approach is based on the spherical collapse
model which is described in B.3 and the assumptions that the initial density field is
random Gaussian and that variance of density fluctuations smoothed over the mass scale
M, 0?(M), is monotonically decreasing function of M.

C.1 Mass function of dark halos

Consider an initial density field §(x, M) at some point x that is smoothed on mass scale M
and is extrapolated to the present epoch ¢y using linear perturbation theory. As M — 0,
o?(M) = (|62]) — 0 and so 8(x, M) approach zero. Here, c(M) is the rms linear density
fluctuation on the scale M extrapolated to the present epoch ¢y. As the smoothing scale
M is decreased from infinity (or increases o(M) from 0), §(x, M) begins to wander away
from zero and perform trajectory on 0% — ¢ plane. The trajectory followed by d(x, M) as
o(M) increases is determined by the ) values. For the most choice of window function,
the smoothed density field contains correlations between various scales of M. However,
if one use the sharp-k-space filtering, a simple analytic description can be obtained. This
sharp-k-space filtering window function is defined as

- 1 k< ks(M)

7 = s ,
where ks(M) is the cut off wave number corresponding to a mass scale M. In this case,
since the various Fourier modes are uncorrelated as we assume Gaussian random field, the
increment to 6(x, M) when one increases o?(M) is totally uncorrelated with previous step.
The smoothed field §(x, M) executes a random walk as the smoothing scale is changed.

61
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Therefore, the trajectory of §(x, M) is described by the diffusion equation:

0Q 10%Q
502 — 3552 (C.1.2)
where Q(0?,6)dd is the probability of a point in the universe having density contrast in
the range 6 to § + dé at o2
As described in §B.3, when the density contrast of a region predicted by linear theory
d1in(t) o< D(t) reaches 4, at time ¢, the region is thought to have collapsed and virialized
at that time. The linear density contrast of this region extrapolated to the present is

D(to)
0

8.(t) = 4, . (C.1.3)
Now suppose that at some o2(M) a trajectory of §(x, M) exceeds a critical value 6,(t) for
the first time. In this case, we consider that the point x is part of an collapsed object of
mass M at time t. Note that the point x does not belong to any lager mass than M since
§(x, M) has not exceeded 6.(t) at any lager mass than M.

To calculate the fraction of trajectories of 4 that upcross the threshold 4.(t) first is
identical to solving equation (C.1.2) with boundary condition that exists an absorbing
barrier at § = é.(t). The solution is given by Chandrasekhar (1943) as follows

Q [0%,6,6.(t)] = \/2ir7{exp (—%) — exp [—(‘S_—;jﬂ(ﬁ] } (C.1.4)

Then the probability that a trajectory exceeds d.(t) first at 02 ~ 02 +do?, Plo?,8.(t)]do?,
is calculated as

B 16Q7%®
B _[55]_«)
1 0.(t) d2(2)
= Veroson P [“202(1\4)}' (C15)

This expression indicates the fraction of mass associated with collapsed object with mass
corresponding to o?(M) at time t. Thus, the comoving number density of collapsed
objects with mass M ~ M + dM at time ¢ is described as

n(M;t)dM = %P[ﬁ, 5o(t)] ' d";](‘y) \dM
2 po O.(t) |do(M) 1 82(t)
;MUQ(M)( aM ‘ p[—§a2(M)]dM’ (C.16)

where pg is the present mean density of the universe. This is well-known expression for

Press-Schechter mass function.

In figure C.1, we plot the Press-Schechter mass functions in the ACDM universe with
Q =03, o = 0.3, h = 0.7, and og = 1.0. The number density of virialized objects
decreases with time at small masses, while it increases at large masses.
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Figure C.1: The Press-Schechter mass functions in the ACDM universe with § = 0.3,
Ao =03, h =07, and 0g = 1.0, at z = 0 (solid), z = 1 (short-dashed), z = 2 (dot-dot-
dashed), z = 3 (dashed), and z = 4 (dot-dashed).

C.2 Progenitor halo mass distributions

The above derivation of mass function is readily extended to formulate the conditional
probability that represents the fraction of mass in halos with mass M, at time ¢, that
have merged to form halo with mass M; at time ¢; (My < M, t, < t;). This is the same
problem as before. In this case, the starting point of trajectories of §(x, M) moves from
the origin to the point at (o(M;),t1) on 0 — § plane. This probability can be obtain by
simply replacing o?(M) with 62(M,) — 02(M;) and &.(t) with 6,(t,) — 6(t;) in equation
(C.1.5):

1 5(:2 5c1
V2 (0§ — of)¥?

where 0; = o(M;) and 6. = d.(;). Equation (C.2.1) yields the comoving number density
of halos in the mass range M, ~ M + dM, at time ¢; which are the progenitors of a halo
with mass M; at time t; as follows,

do?
dM,

P(Ma, o) My, t:)dM, =

exp|- S

a)®
)}sz (C.2.1)

M
n(Mz, t2|M1, tl)d]\42 = EZI—PI (]\42, tgl]\ll, tl)d]\/.fz (022)
2

This expression is derived by Lacey & Cole (1993).

C.3 Halo bias model

The clustering of dark halos is significantly different from that of the underlying dark
matter. The ratio of the density fluctuation of dark halos to that of the underlying dark



APPENDIX C. EXTENDED PRESS-SCHECHTER FORMALISM 64

matter is called halo bias. In this subsection, we review a simple model for halo bias,
applying the mass distribution of progenitor halos described in the previous subsection.

Suppose we divide space up into cells of comoving volume V. The different cells may
contain different amounts of mass M;, which means they have different densities: M;/V =
po(l + 8). Let N(My,to|Mi,t1,V)dM, denote the average number of My ~ M, + dM,
halos which collapsed at ¢, and are in cell size V which contains mass M; at t; (M, < M,
to < t1). The overdensity of dark halos in such cell is

N(Ma, t5| My, t,,V)
n(]\lz,tg)v

(SH(]\lz,tzlAll,tl,V) = —1. (031)

Since a dark halo is a region which was sufficiently overdense that it collapsed, the
number of halos within V' equals the initial size of V times the number density of regions
within it. The initial comoving size of V was M;/py = V(1 + é). Thus, we obtain
N(]\lz,tﬂ]\ll,tl, V) = 'I’L(]\lg,tzl]\ll,tl)V(l + 5), where ’I’L(A42,t2|]\ll,t1) is the comoving
number density of progenitor halos derived in the previous subsection. The equation
(C.3.1) becomes simple expression when M; > M, (so that o(M;) < o(Mp)) and |0 | <
.2 as follows (Mo & White 1996):

5H(M2,t2|1\41,t1,V) ~ bH(]M-z,tz) (5 (032)
where by(M, t) is the bias parameter of halo with mass M at ¢ as follows:

ba(M,t) = 1+ 5i [a‘}(g\t}) - 1] . (C.3.3)

Jing (1998) extended the comparison to higher resolution simulations and found that
(C.3.3) underpredicts the bias of small halos with M/M, < 1 where M, is the character-
istic mass defined by o(M,) = é.(t). He obtained more accurate fitting formula with the
slightly modified prescription:

2 o4 (0.06—0.02ng) .
bu(M, 1) = {1 +31_c [U‘Zc((;}) _ 1]} [25%)) + 1] o (C.3.4)

where ng is the effective spectral index of the power spectrum, dln P(k)/dInk, at the
wavenumber defined by the Lagrangian radius of the dark matter halo, k = 27/r;, and
r, = (3M /47rp0)1/ 3. This formula is good approximation for M R 1073M,. Note that
bu(M,t) is the increasing function with M and the decreasing function with ¢. In figure
C.1, we plot the halo bias, by(M, 2), given by Jing (1998) in the ACDM universe with
Qp =0.3, \g =0.3, h = 0.7, and 0g = 1.0. In this case, M, ~ 10" M
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Figure C.2: The halo bias, by(M, z), given by Jing (1998) in the ACDM universe with
Qo =03, 20 =03, h =0.7, and 05 = 1.0, at z = 0 (solid), z = 1 (short-dashed), z = 2
(dot-dot-dashed), z = 3 (dashed), and z = 4 (dot-dashed).
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