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Abstract

Systems biology is an approach to biology that seeks to understand and predict the
quantitative features of a multicomponent biological system. It requires quantitative
description of endogenous regulation networks to construct appropriate models which
can make predictions about the behavior of the interacting networks. In those interact-
ing networks, promoter activation plays a key role in driving gene transcription, which,
in turn, cause fluctuation in gene expression. Such fluctuations could determine the cell
fate or do harm to regulation networks. Thus not only the study of promoter activity
but also the activity fluctuations become important for a quantitative understanding.
However there still lack powerful technique for accurate and comparable analysis for
promoter activation in complex endogenous networks. The clear background of lysine
biosynthesis pathway makes the promoter activation analysis a good sample involving
biological noise in systems biology. Time-dependent experiments was employed in this
study because it can result in wealth of information, which makes the model construc-
tion feasible. The ability to analyze promoter activation at single-cell level will enable
much more accurate studies of cell population homogeneity in their regulation. Using
single-cellular technique, this study aimed at setting up a method which can be used
in complex networks to conduct a transition from a qualitative to a quantitative under-
standing.

By single fluorescence experiments, we investigated the expression dynamics of

genes involved in lysine biosynthesis in Escherichia coli cells to obtain a quantitative

\%



understanding of the gene regulatory system. By constructing reporter strains express-
ing the green fluorescence protein gene(gfp) under the control of the promoter regions
of those genes associated with lysine biosynthesis, time-dependent changes in gene ex-
pression in response to changes in L-lysine concentration in the medium were moni-
tored by flow cytometry. Time-dependent gene expression data were fitted to a simple
dynamical model of gene expression to estimate the parameters of the gene regulatory
system. The results provide a better quantitative understanding of the promoter dy-
namics in the lysine biosynthesis pathway.

After that a dual-fluorescence system for promoter strength analysis was developed
to involve the biological noise information. This system includes two parts, the vector
pGRFP and simulation tool. By fitting the expression and intrinsic noise getting from
pGREP vector, simulation tool can easily get appropriate transition rate of the two state,
Aon and Aoq, for the target promoter based on a stochastic formulation of chemical ki-
netics derived by Gillespie. We applied this system to analyze the kinetics of promoters
involved in lysine biosynthesis. By well fitting not only the expression level but also the
intrinsic noise, we got the A\, and Ao of the promoters. We found the slow transitions
between promoter states of lysAp, which indicates the transcriptional bursting also can
be a source of noise in prokaryotic cells.

The activation of promoters involved in lysine biosynthesis were analyzed by single
fluorescence experiments and dual-fluorescence system at single cell level. By placing
the promoter regions of those gene associated with lysine biosynthesis upstream of gfp,
the dynamic behavior of promoter activation was well visualized and quantitatively
analyzed. This process was simulated by two fundamental ways, a simple deterministic
process and a stochastic simulation algorithm. The two group parameters gotten from
the different simulation methods, which used to describe the promoter activation, were
validated by each other. The results provide a better quantitative understanding of the

promoter dynamics in the lysine biosynthesis.



Chapter 1

Introduction

Cells are matter that dances.
Uri Alon

1.1 Systems Biology

ike a sentence we understand is not only the assembly of letters but words in
L a whole, a living cell is not just an assembly of genes and proteins. Its proper-
ties could not be fully understood merely by drawing diagrams of their interconnec-
tions. In addition, pathways are traditionally drawn as separated linear entities and
then connected by the shared parts to form a comprehensive diagram. However, this
rather reflects the history of how they were discovered than their real functional context.
Therefore it is largely unknown how biological response specificity is encoded through
biochemical activation kinetics among these separated entities. How does this path-
way specify different biological responses from the others? How does these isolated
pathways in previous study work together and embedded into a network? To answer
these questions we should view a living cell as a dynamical system with integration of
pathway crosstalk and the versatility of component function. That means we should
understand biology at the system level(Kitano 2002).
Systems biology is a newly emerging biological field that aims to understand var-
ious complex life phenomena at a system level(Kim et al. 2008). It studies the living
organisms as a network of interacting parts and seeks to understand how this network

gives rise to the functional aspects of life. These networks are modular, robust and



2 1. Introduction

predictable(Aderem 2005). To understand living networks at a deep level will require
the transition of biology from a descriptive to a quantitative science. This quantitative
process gives birth to the models which have to faithfully describe the biological sys-
tem and be able to make predictions about their behavior. This predictive power can
then be exploited by incorporating descriptions of perturbations of the biological sys-
tem into the model and using computational techniques to predict possible behaviors of
the system(Kolcha et al. 2005). In a short words, systems biology is an approach to biol-
ogy that seeks to understand and predict the quantitative features of a multicomponent
biological system(Kitano 2002).

In practice side, systems biology promises to personalize medicine via network-
based biomarkers that predict therapeutic effectiveness. The pathogenicity of human
pathogens varies from person to person, which makes the treatment and dosage for
same disease should be personal (Brynildsen and Collins 2009). Goh et al. (2007) drew
a network map of disorders and disease genes linked by known disorder-gene associa-
tions in order to offer a platform to indicate the common genetic origin of diseases. To
acquire a deeper understanding of this graph-network structure, Chang et al. (2009) in-
troduced a systems-based approach to break down oncogenic signaling networks into

modules that predict the effectiveness of pathway-specific therapeutics.

1.2 Promoter Strength

To get the comprehensive metabolic landscape in living cells needs the quantitative
understanding in global gene regulation networks. Although there are large mass of
biological data by use of the high-throughput omics technologies (e.g. genomics, tran-
scriptomics, proteomics, and metabolomics), there still lack the details for systems bi-
ology to generate the accurate and undubious models in the endogenous regulation

network(Kim et al. 2008).
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More and more details and steps involved in transcription were discussed(Zhou and
Yang 2006, Mijakovic et al. 2005, CoxIII et al. 2007, Wray et al. 2003). One of the most
important parts is the question how the cells initiate the transcription. The promoter,
the region of DNA with specific sequences, is known to play a central role in driving
gene transcription(Browning and Busby 2004b). The ability to determine the frequency
of initiation of transcription is called promoter strength(Lu et al. 2004). To use most
suitable model with appropriate parameters to simulate the initiation of transcription

will do great contribution in systems biology.

1.3 Time-dependent experiments

There are many functional modules, such as enhancer, booster, activator, insulator, re-
pressor, locus control region, upstream activating sequence, and upstream repressing
sequence, that contribute to the promoter strength(Wray et al. 2003). However, most of
the endogenous promoter in cell lack the information about the detail of the regulation
mechanism. But frequently researchers found a given factor could activate or repress
the promoter strength. Dynamic responses of promoter strength to various environ-
mental stimuli can be easily gotten by time-dependent experiments. Time-dependent
experiments is the experiments to monitor the change of target attribute or properties

via a time series sample in a given condition.

The time-dependent experiments can result in wealth of information such as
behavior changes when stimuli is modified, which makes the model construction
feasible(Kitano 2002). System dynamics, one of the key properties in systems biol-
ogy, resolves how a system behaves over time under various conditions. The central
goals of system dynamics is to predict the dynamic behavior of a cell’s genetic and
metabolic networks(Mettetal et al. 2006). Living organisms require a continual input

of free energy from its environment and synthesis of macromolecules for the purpose
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of maintenance of life. Sum of all the chemical reactions that take place in every cell
of living organism, providing energy for the processes of life and synthesizing new
cellular material is referred to as metabolism. Metabolism is composed of many cou-
pled, interconnecting reactions. How the intricate network of reactions in metabolism
is coordinated is the key research topic for metabolism(Berg et al. 2002). As to systems
biology, the question change to the transition from a descriptive to a quantitative un-
derstanding. Because of the complexity of biological systems, this goal requires the
use of mathematical models that provide a framework for determining the outcome of
numerous and simultaneous time-dependent and space-dependent processes(Jagaman
and Danuser 2006a). Dynamic systems responses to various environmental stimuli can
be elucidated by systems modeling of signaling pathways. The time-dependent experi-
ments can provide lots of available data for determining model parameters. After using
maximum likelihood(ML) and least squares (LS) to regress the parameters and using
the model goodness-of-fit test(GFT) to identify most suitable model, the biological pro-

cesses can be described and predicted by mathematical models(Kim et al. 2008).

1.4 Reporter Genes

To determine the strength of any given promoter, a reporter gene is usually driven
under its control. Classical reporter genes include lacZ(5-galactosidase), gusA(S-
glucuronidase), cat(chloramphenicol acetyl transferase), lux(luciferase) and gfp, yfp, cfp,
rfp(fluorescent protein)(Mijakovic et al. 2005, Lu et al. 2004). These can be readily
adapted for comparative promoter studies. Fluorescent proteins are genetically en-
coded, easily imaged reporters crucial in biology and biotechnology.

Green fluorescent protein(GFP) from Aguorea victoria emits green light (A5, 508nm)
on excitation at 395nm. It has become an invaluable tool for pure and applied biological

research. Mutagenesis of the wildtype yielded improved variants optimized for flow
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cytometer analysis(Cormack et al. 1996, Suzuki et al. 2004). gfpuv5 is the mutant devel-
oped by Suzuki et al. GFPuv5 emits green fluorescence at A 511nm on exitation at A
488nm(Suzuki et al. 2004), which can be easily used for quantitative analysis by flow
cytometry.

The most useful of red fluorescent protein(RFP) for dual-color experiments with GFP
is DsRed, which is derived from the coral Discosoma. The mutation dsred-T4 is a fast
maturing variants of Discosoma red fluorescent protein developed by Bevis et al., which
emits red fluorescence at A 586nm(Bevis and Glick 2002).

Both of the GFPuv5 and DsRed have a rapid maturation, high brightness and suit-
able emission for flow cytometry analysis. And they are verified that their fluorescence

will not lead crosstalk in dual-color experiments(Bevis and Glick 2002).

1.5 Single Cell Analysis

To conduct a transition from a descriptive to a quantitative understanding, a com-
prehensive set of quantitative data is required. With the development of advanced
biotechnology, more and more accurate single cell level measurements were introduced
into systems biology. These single-cellular analysis techniques include flow cytom-
etry, optical well arrays, fluorescence microscopy, electrochemical detection, Raman
microspectroscopy, capillary electrophoresis with laser-induced fluorescence detection
(CE-LIF) biomolecules, CE-LIF organelles, matrix-assisted laser desorption/ionization
mass spectrometry (MALDI-MS), laser capture microdissection (LCM) and cDNA mi-
croarray analysis, and multiplexed real-time RT-PCR(Arriaga 2009). Flow cytometry, a
powerful technique for analyzing large populations of single cells, allows simultaneous
multiparametric analysis of the physical and/or chemical characteristics of single cells
flowing through an optical/electronic detection apparatus with high speed and low eco-

nomic cost. In the field of promoter activation analysis it is especially useful when used
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with fluorescence proteins under the control of target promoter(Ducrest et al. 2002).
Figure 1.1 showing the results of two typical experiments in which the expression
level of a fluorescent reporter protein is measured in a population of isogenic bacterial
cells. Traditional population-averaged measurements would summarize the entire ex-
pression histogram by its mean value, however, observation by flow cytometry shows
that the expression level varies from cell to cell, with a standard deviation 0. As we
know stochastic mechanisms are ubiquitous in biological systems(Ozbudak et al. 2002).
Isogenic cells and organisms exhibit distinct diversity to respond to a given concen-
tration of a stimulus. Noise, or variation, in the process of gene expression (intrinsic
noise) and in cellular components (extrinsic noise) may contribute to such kind of ubig-
uitous phenomenon in biological systems(Elowitz et al. 2002). Analyzing the data by
the technique of using flow cytometry can help us to study promoter strength more

comprehensively and accurately with respect to stochastic noise as a whole.

1.6 Biological Noise

The development of live cell and biochemical analysis methods has led to an increase in
our understanding of transcription profiles of genes. Researchers found even in a popu-
lation of genetically identical cells experiencing the same environment, protein contents
very from cell to cell. The quantitative description of such fluctuations is termed bio-
logical noise(Arriaga 2009).

In order to describe the stochastic or noisy process of gene expression, coefficient of
variation, a conception in mathematics and statistics, was employed. In probability the-
ory and statistics, the coefficient of variation (CV) is a normalized measure of dispersion
of a probability distribution. It is defined as the ratio of the standard deviation to the

mean,

(1.1)
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Figure 1.1: Illustration of steady-state sensitivity. The peaks in different color show two group
data of LOG GFP detected by Flow cytometry. Traditional population-averaged measurements
would summarize the entire histogram by the concentration of protein at peak position (p);
however, our single-cell measurements show that the expression level varies from cell to cell,
with a standard deviation ¢. o can be calculated by the peak width at half height if we fit the
bell shape curve as normal distribution. After changing the components in the environment,
the cell would respond to this change from steady state 0 to steady state 1, which can be well
visualized and quantitatively analyzed by flow cytometry.

, where E(z) is mean value and D(z) is the deviation. A natural and biologically rel-
evant measure of the magnitude of gene expression noise is thus the size of protein
fluctuations compared to their mean concentration. In Figure 1.1, the mean value (p(t))

represent the gene expression at time ¢. Then the noise, 7(t), is given by

20 _ B0 — (P())?
n(t) = B0 (1.2)

, where the angled brackets denote an average over the probability distribution of P at

time ¢.

Noise confers lots of advantages, as it brings diversity to cells. This diversity can
provide a better chance at survival in uncertain environments(Fraser and Kaern 2009).
Both experiments and simulations confirmed that increased gene expression noise could
provide a significant selective advantage at high stress levels(Blake et al. 2006).The

rapid fluctuations in gene expression noise could determine the cell fate. It is re-
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ported that the competence of Bacillus subtilis was determined by the noise expression of
ComK(Maamar et al. 2007). And it was testified that the phage A lysis-lysogeny decision

circuit has relation with biological noise(Arkin et al. 1998).

However more often it is harmful for regulation networks as it garbles cell signals,
corrupts circadian clocks and propagates unstable from one gene to a downstream tar-
get. Cell regulation networks have evolved so as to minimize the disruptive effect of
such fluctuations, in ways that are only now beginning to be understood(Ozbudak

et al. 2002).

It is expected that control of noise in gene expression is under evolutionary pressure.
Several models talking about how cell control the intrinsic noise of gene expression were
reviewed(Raser and O’Shea 2004). Many simplified theoretical models were employed
té show how the difference of transcription, translation, promoter activation, gene copy

number and gene feedback loops contribute to controlling the noise.

However, most of the experimental studies have so far focused on noise property
itself. To apply this method to analysis the strength of a promoter involved in endoge-
nous gene networks, particularly in metabolism network, is seldom reported. A com-
prehensive understanding of design strategies used by endogenous transcriptional reg-
ulatory programs might require a stochastic perspective. We have barely scratched the
surface of this intriguing topic, and there is a clear need to address in greater detail how
gene expression responds to fluctuations in signal transduction, how gene-expression
noise is transmitted through regulatory circuits and control loops, and how the archi-
tecture of regulatory networks allows cells to deal with or take advantage of unreliable,
fluctuating signals(Keern et al. 2005). We need an entrance point. The clear background
of lysine biosynthesis (Figure 1.2) provides a chance of challenge in the study of stochas-

ticity in more complex regulatory systems.
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1.7 Lysine Biosynthesis

An analysis of amino acid metabolism is important for the progress of systems biol-
ogy, because the role of the metabolic system, i.e., to provide building blocks for the
entirety of cellular dynamics, is essential for the maintenance of life, and the regulation
of metabolic reactions has been thoroughly investigated. Lysine biosynthesis, one of
the important components of metabolic networks, is a pathway starting with aspartate

and runs through the diaminopimelate pathway in E. coli(Rodionov et al. 2003).

From previous studies(Chenais et al. 1981, Liao and Hseu 1998, Haziza et al. 1982,
Richaud et al. 1986, Bouvier et al. 1992, Richaud et al. 1984, Bouvier et al. 1984,
Funkhouser et al. 1974, Jin et al. 2004, stragier et al. 1983, Bouvier et al. 2008), we
have obtained an elementary understanding of the lysine biosynthesis network struc-
ture (Figure 1.3). As shown in Figure 1.3, the expressions of most genes involved in the
lysine biosynthesis in E. coli are repressed by lysine. Diaminopimelic acid (DAP) is the
precursor of lysine in E. coli. The conversion of meso-DAP to lysine is catalyzed by DAP
decarboxylase, the product of IysA(Chenais et al. 1981). The transcription of lysA is re-
pressed by lysine. meso-DAP is synthesized from aspartic acid through the successive
reactions of eight enzymes. The first two steps are catalyzed by the products of lysC and
asd, and they are shared by the pathways leading to lysine, threonine, and methionine.
The transcription of both lysC(Liao and Hseu 1998) and asd(Haziza et al. 1982) is re-
pressed by lysine. The other six genes belong to the DAP pathway. The first gene of this
pathway, dapA, is constitutively expressed, but the activity of its product, dihydrodipi-
colinate synthetase, is inhibited by lysine(Richaud et al. 1986). The transcriptions of
dapB(Bouvier et al. 1984) and dapD(Richaud et al. 1984) are repressed by lysine. With
regard to dapC, dapE and dapF, there is no evidence showing their expression regulation
by lysine.

Although most genes involved in lysine biosynthesis in E.coli are repressed by ly-
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Figure 1.3: Lysine biosynthesis regulation network by L-lysine. “N/A” in the figure represents
that the mechanism to regulate these genes is still unclear.

sine, little is known about their regulation mechanisms(Rodionov et al. 2003), shown as
a gray box labeled as N/A in Figure 1.3. Lysine also inhibits the activities of aspartoki-
nase III and dihydrodipicolinate synthase to regulate its synthesis by changing enzyme

structures or by other mechanisms(Kotaka et al. 2006).

1.8 Object

The use of the kinetic cell model for describing cell behavior is necessary for a quantita-
tive understanding of the metabolic regulation network, including lysine biosynthesis.
Followed the deepened research in biological noise, there is a need to develop experi-
ment in the study of promoter strength with the stochasticity property in more complex
regulatory systems, particularly endogenous gene networks.

In this study, we tried to analyze the promoter strength via single cell technique.
We analyzed the strength of promoters involved in lysine biosynthesis with single-

fluorescence experiments and dual-fluorescence experiments by flow cytometry. The
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combination of reporter strains and flow cytometry provided us with a convenient and
accurate method of measuring gene expression dynamics. By the single fluorescence ex-
periments, the dynamic response of the promoters to shift of lysine in the environment
were well visualized and quantitatively analyzed by flow cytometry. Five promoters
involved in lysine biosynthesis respond to the changes in L-lysine concentration in the
medium. For these five promoters, time-dependent gene expression data were fitted to
a simple dynamical model of gene expression to estimate the parameters of the gene
regulatory system. The results provide a better quantitative understanding of the pro-
moter dynamics in the lysine biosynthesis pathway. The dual-fluorescence system was
verified to be useful in introducing the biological noise into the promoter strength anal-
ysis. And it can provide appropriate k., and k. for target promoter. This system can
be easily used for strength analysis of grouped promoters in an endogenous regulation
network. The parameters of k., and k.¢¢ can not only describe the activation of repres-
sion by a given factor but also provide information about the biological noise for the
promoter. This will help us to understand the initiation of transcription in a quantita-

tive way and to predict the possible level of mRNA.

1.9 OQutline of the thesis

This thesis consists of four chapters.

In chapter 1, the background of this study is represented. An overview of the thesis
objective is provided.

In chapter 2, in order to conduct the transition from a qualitative to a quantitative
understanding of the promoter involved in lysine biosynthesis in E. coli cells, the combi-
nation of reporter strains and flow cytometry was employed. The kinetic parameters of
five genes involved in lysine biosynthesis were obtained by fitting the gene expression

data to a simple dynamical model.
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In chapter 3, a dual-fluorescence system for promoter strength analysis was devel-
oped to involve the biological noise information. This system was applied to analyze
the kinetics of promoters involved in lysine biosynthesis.

In chapter 4, the general conclusion of this research was made.
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Chapter 2

Dynamic changes in promoter activation
analyzed by single fluorescence experiments

Abstract

We investigated the expression dynamics of genes involved in lysine biosynthesis
in Escherichia coli cells at single cell level to obtain a quantitative understanding of
the gene regulatory system. By constructing reporter strains expressing the green
fluorescence protein gene(gfp) under the control of the promoter regions of those
genes associated with lysine biosynthesis, time-dependent changes in gene expres-
sion in response to changes in L-lysine concentration in the medium were moni-
tored by flow cytometry. Five promoters involved in lysine biosynthesis respond
to the changes in L-lysine concentration in the medium. For these five promoters,
time-dependent gene expression data were fitted to a simple dynamical model of
gene expression to estimate the parameters of the gene regulatory system. Accord-
ing to the fitting parameters, dapD shows a significantly larger coefficient of repres-
sion than the other genes in the lysine synthesis pathway, which indicates the weak
binding activity of the repressor to the dapD promoter region. Moreover, there is a
trend that the closer an enzyme is to the start of the lysine biosynthesis pathway, the
smaller its maximal promoter activity is. The results provide a better quantitative
understanding of the expression dynamics in the lysine biosynthesis pathway.
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Figure 2.1: The dynamics of gene promoters involved in lysine biosynthesis in E. coli cells in
response to changes in L-lysine concentration was investigated. The results provide a better
quantitative understanding of the expression dynamics in the lysine biosynthesis pathway.
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2.1 Introduction

ystems biology is the study of living organisms as a network of interacting parts
S and of how this network gives rise to the functional aspects of life. These networks
are modular, robust and predictable(Aderem 2005). A deep understanding of these
living networks requires the transition of biology from a descriptive to a quantitative
science. This quantitative process gives birth to models that have to faithfully describe

biological systems and can predict their behavior(Kolcha et al. 2005).

System dynamics, one of the important aspects of systems biology(Kitano 2002), re-
solves how a system behaves over time under various conditions. One of the central
goals of systems biology is to predict the dynamic behavior of genetic and metabolic
networks(Mettetal et al. 2006) in a cell. Living organisms require continuous inputs of
free energy from their environment and synthesize macromolecules to maintain life.
The sum of all the chemical reactions that take place in every cell of living organisms,
providing energy for the processes of life and for the synthesis of new cellular mate-
rial, is referred as metabolism. Metabolism involves many coupled, interconnecting
reactions. The key question concerning metabolism is how it coordinates its intricate
network of reactions(Berg et al. 2002). A quantitative understanding of the reaction

dynamics associated with metabolism can help answer this question.

An analysis of amino acid metabolism is important for the progress of systems bi-
ology, because the role of this metabolic system, i.e., to provide building blocks for the
entirety of cellular dynamics, is essential for the maintenance of life, and the regulation
of metabolic reactions has been thoroughly investigated. Lysine biosynthesis, one of
the important components of metabolic networks, is a pathway starting with aspartate
and runs through the diaminopimelate pathway in E. coli(Rodionov et al. 2003). And

its elementary understanding in network structure was obtained (Figure 1.3).

Although many studies have provided insight into the “correlations” between genes
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and biological phenomena in the regulation network(Rodionov et al. 2003), little is
known concerning the connection between these genes. The use of the kinetic cell
model for describing cell behavior is necessary for a quantitative understanding of the
metabolic regulation network, including lysine biosynthesis. The promoter has the abil-
ity to determine the frequency of initiation of transcription, which makes it always a
hot spot in systems biology(Browning and Busby 2004b). This ability is denoted by the
promoter strength(Lu et al. 2004). To determine the strength of any given promoter, a
reporter gene is usually driven under its control(Mijakovic et al. 2005). If inserting a
promoter upstream of the green fluorescent protein(gfp) gene, promoter activity can be

monitored by the intensity of green fluorescence emitted by GFP(Lu et al. 2004).

Time-dependent experiments are commonly used to achieve a quantitative under-
standing, which usually involve monitoring groups of cells over their cycles or as they
respond to time-dependent changes in conditions in the extracellular medium(Sayyed-
Ahmad et al. 2007). Because most genes involved in lysine biosynthesis in E. coli are
directly or indirectly repressed by L-lysine, after changing the L-lysine concentration in
the medium, the expression of enzymes involved in lysine biosynthesis may shift from
one steady state to another. Analyses of their time-dependent expression will enable

the prediction of these phenomena associated with the dynamic variable.

In this study, we investigated the activation dynamics of gene promoters involved
in the lysine biosynthesis pathway of E. coli cells via time-dependent experiments. We
constructed nine reporter strains by cloning the promoter regions of the genes involved
in lysine biosynthesis pathway upstream of the gene encoding the green fluorescence
protein (gfp). By flow cytometry, we determined the dynamic changes in gene expres-
sions in response to changing environmental conditions (i.e., L-lysine concentration) at
single cell level. We fit these experimental data of gene expression dynamics to a simple
kinetic model with repression to estimate the parameters of the gene regulatory system.

The results provide a better understanding of the gene expression dynamics in the ly-
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sine biosynthesis pathway. But however, we failed in including noise information into

the parameters.

2.2 Material and methods
2.2.1 Strains and media

Nine reporter strains were used in this study, E. coli DH1 (K-12 endA1 recAl1 gyrA96
thi-1 glnV44 relAl hsdR17(rK-mK*) A7)/ plysCp-pGFP,.5 (lysCp in short), DH1/pasdp-
pGFP,,s (asdp), DH1/pdapAp-pGFP,.s (dapAp), DH1/pdapBp-pGFP,.s (dapBp),
DH1/pdapDp-pGFP,,5 (dapDp), DH1/ pdapCp-pGFP,,,5 (dapCp), DH1/pdapEp-pGFP .5
(dapEp), DH1/pdapFp-pGFP,,,5 (dapFp), and DH1/plysAp-pGFP,.s (lysAp) which con-
tain the promoter regions of genes (i.e. lysC, asd, dapA, dapB, dapD, dapC, dapE, dapF, and
lysA), respectively.

The promoter regions were amplified from E. coli DH1 genomic DNA by
PCR(Table 2.1). PCR is performed as follows: 94°C for 5 min, followed by 30 cycles
of 94°C for 30 s, 60°C for 30 s and 72°C for 1 min, and a final step of 72°C for 7 min. The
primers listed in Table 2.22 were used to amplify the regions between two adjacent open
reading frames(ORFs) with an extension of 150-200 nt upstream of the ORFs(Figure 2.2).
This definition of promoter region is the usual practice in many promoter researches
(Zaslaver et al. 2004). The promoter regions were cloned at Apal and Nhel sites upstream
of gfpuvb, which is a variant of gfp(Ito et al. 2004)(Figure 2.3). Both of the vector and
recovered promomter PCR fragments are digested for 6 h at 37°C with Nhkel and Apal
restriction enzymes(Table 2.2), and then cleaned by using Promega® gel/PCR clean-up
system into 20 uL of TE(pHS8.0). Before recover, the vector is performed one more de-
phosphorylation step that it is digested by Bacterial Alkaline Phosphatase at 37°C and
60°C one after another separately for 30 min each reaction. After that, ligation reaction

is performed overnight at 16°C(Table 2.3).
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Table 2.1: PCR reaction mixture for amplification of promoters involved in lysine biosynthesis

Components Amount(uL)
Ex taq 10x buffer 10
dNTP Mixture, 25mM 10
Escherichia coli DH1 fresh culture 5
Forward primer (20pMol/ L) 5
Reverse primer (20pMol/ ;L) 5
TaKaRa Ex Tag™ (5 units/uL) 1
Nuclease-Free water to a final volume of 100
promoter region
150-200bp
[ nunuupunm’\m mhlydmbiowm;'cm |

upstream ownstream

Figure 2.2: Definition of promoter region in this study
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Figure 2.3: Illustration for strategy of reporter strains construction. Reporter plasmid pPROLar-
GFPuv5: pPROLar contains the gene of gfpuv5. T1,t0: transcription termination sequence; p15A:
origin of replication (20-30 copies per cell); KanR: kanamycin resistance gene; GFPuv5: green

fluorescence protein gene uv5 mutant, which fluorescence excited at A 511nm and emit at A
488nm
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Table 2.2: Enzyme digestion reaction mixture for vector and PCR fragments

Components Amount(uL)
pPROLar-GFPuv5 or PCR products 5o0r10
L Buffer(Takara) 2
Nhel(Takara) 1
Apal(Takara) 1
Nuclease-Free water to a final volume of 20

Table 2.3: Ligation reaction mixture

Components Amount(uL)
pPROLar-GFPuv5(30ng/ ;L) 1
PCR products(25ng /L) 4
Takara Ligation Kit I 5

Competent E. coli DHI cells were prepared by Z-competent E. coli transformation
kit(Zymo™ Research, USA) and buffer set as manual. 0.5 mL of fresh overnight E.
coli DH1 culture grown in M9 minimal medium with an amino acid solution (M9A
medium)(Ford et al. 1994)(Table 2.23) was inoculated to 10 mL M9A in 2 test tubes and
shaken vigorously at 24°C until ODgg reaches around 0.2-0.3. Before collecting, the
culture was cooled down on ice for 10 min, and then the cells were pelleted at 2500g for
6 minutes at 4°C. After removing the supernatant the cells were resuspended gently in
5mL of ice cold 1x Wash Buffer, and re-pelleted at 2500 g for 6 minutes at 4°C. Then
the supernatant was removed completely and resuspended gently in 5mL of ice cold
1x Competent Buffer. Aliquot 0.1 mL of the cells was put into sterile Eppendorf tubes
on ice. After that, competent cells were frozen as fast as possible by dropping tubes
immediately in a small liquid nitrogen container and left until they were completely
frozen and all aliquots had been made. Competent cells were stored at —-80°C freezer
before use.

While transformation, a tube of frozen competent cells was thawn on ice, 1 uL lig-

ation product was added and mixed gently. The mixture was incubated on ice for 45
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min. 400 pL. of M9A media was added and incubated at 37°C for 30 min before spread-
ing 50 uL. on M9A plates with 25 pg/mL of kanamycin. The plate was incubated at 37°C
overnight.

Positive colonies were screened by colony PCR (reaction solution as shown in Ta-
ble 2.4 and picked the colony into the solution by yellow tip) using primers designed
for the outer regions of the two restriction sites, Apal and Nhel. Primer sequences are

shown in Table 2.5. PCR conditions were 94°C for 5 min, followed by 30 cycles of

Table 2.4: Colony PCR reaction solution

Components Amount(uL)
Ex taq 10x buffer 2
dNTP Mixture, 25mM 2
PROCHECK-F (20pMol/ uL) 1
PROCHECK-R (20pMol/ nL) 1
TaKaRa Ex Taq™ (5 units/uL) 0.2
Nuclease-Free water to a final volume of 20

Table 2.5: Primer sequences for colony PCR

Primer name Sequences

PROCHECK-F: TCCTTGGCGGCAAGAAAGCC
PROCHECK-R: CTGACAGAAAATTTGTGCCC

94°C for 30 s, 60°C for 30 s and 72°C for 1 min, and a final step of 72°C for 7 min. The
size of PCR products were analyzed by agarose gels. Frozen stocks (15%(w/v) glycerol)
of the reporter strains were prepared. 4 randomly selected clones for each promoter
were sequenced and the reporter strains with no mutations were selected. 100 uL of
plasmid prepared for sequencing by Mini Plasmid DNA Purification Kit(Labopass®)
was treated by adding an equal volume of buffer-saturated phenol:chloroform (1:1) to
the DNA solution, mixing for 10 s by vortex and then spinning in a microfuge for 15

min at 15,000 rpm. The aqueous layer was carefully removed to a new tube, and the
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salt concentration was adjusted by adding 1/10 volume of 3M sodium acetate, pH 5.2,
(final concentration of 0.3 M). The plasmids were precipitated by 2 to 2.5 volumes of
cold 100% ethanol (calculated after salt addition). After cooling treatment on ice or at
-20°C for over 20 min, the plasmids were collected 20 min at 15,000rpm. Supernatant
was discarded and the plasmid was washed by 1 mL 70% ethanol by mixing. Pellet was
dried by vacuum. After resuspending the pellet in 30 uL of TE (pH 8.0), the sample
for sequence was cleaned up. A 20 pL reaction was prepared by adding the following

reagents into the 5 pL of thawed Big Dye Ready Reaction Mix(Table 2.6).

Table 2.6: Sequencing reaction solution

Component Amount
thawed Big Dye Ready Reaction Mix 5 uL
PROCHECK-F or PROCHECK-R (0.8 pmol/ uL) 4 pL
Template fragment for sequencing 100~200 ng
Nuclease-Free water to a final volume of 20 uL

After well mixing by flicking tube, PCR reaction was run as follow condition: 96°C
for 2 min, followed by 25 cycles of 96°C for 10 s, 50°C for 5 s and 60°C for 4 min. 2 uL
of 3 M sodium acetate was added, pH 5.2 into the PCR product. The amplified DNA
was precipitated by cold 100% ethanol at —20°C for 30 min. The precipitation was col-
lected by 20 min at 15000 rpm and then washed by 70% ethanol. After briefly vacuum
drying, the pellet was added into 20 uL of TSR (Template Suppression Reagent, Ap-
plied Biosystems™), mixed thoroughly on a vortex mixer and denatured for 2 min at
100°C. Then samples were chilled on ice for 5 min, vortexed to mix and spined at 13,000
rpm for 30 s to collect volume at bottom of tube. Entire volume of sample was trans-
fered to sample tube and caped with grey rubber gasket. Sequencing was done by ABI
Prism 3100 Instrument(Applied Biosystems™) within several hours. Before sequencing,
the sequencing buffer and MilliQ water were changed for sequencing. All the reporter

strains were confirmed by sequenceing.
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Reporter strains were cultured in M9A media and kanamycin (25 pg/mL). It should
be noted that the L-lysine in the amino acid solution was prepared separately, and the
need to add L-lysine to the medium was decided according to the experimental condi-

tion.

2.2.2 Sample preparation

Before sample preparation, the growth rates of all the reporter strains were determined
to ensure that the growth rates were stable at approximately 1.2 h~!. The reporter strains
were streaked on M9A minimal medium plate (1.5%[w/v] agar) from the stock and in-
cubated at 37°C for 15 h. Preculture was carried out by picking a colony and inoculating
it into 2 test tubes containing 5mL of fresh M9A medium (one test tube contained 0.3-
mM L-lysine, while the other contained no L-lysine). The inoculated test tubes were
then reciprocally shaken at 37°C and 160 rpm until the ODgqg value reached 0.6-0.7. Af-
ter the preculture, all the cells were collected by centrifugation at 6000 rpm for 5 min,
followed by a re-suspension of the pellet in ImL of M9A medium (with or without L-
lysine, depending on the next culture step). The suspension were inoculated into test
tubes containing 5 mL of M9A medium with or without L-lysine to make the initial
ODyg0=0.01 for main culture. The test tubes were reciprocally shaken at 37°C and 160
rpm. Every 15 min, samples for flow cytometry were prepared by sampling 1 mL of the

culture and the samples were stored at —80°C until use.

2.2.3 Data acquisition and analysis

The samples were thawed before being analyzed using a flow cytometry (COULTER®
EPICS® XL™, Beckman Coulter, Fullerton, CA) and then diluted with phosphate buffer
solution (PBS, pH 7.0)(Table 2.7) to set the cell concentration at 107 cells/mL (ODgg =
0.01). Fluorescence measurements were obtained using flow cytometry. 20,000 cells

from each sample were analyzed. GFP excitation was achieved using a 488-nm argon
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(Ar™) excitation laser and the fluorescence was measured with a 52520 nm emission
filter for GFP. The flow cytometry generates log-scale values using a 10-bit analog-to-
digital converter, yielding integers in the range of 0 to 1,023 for each of three measure-
ments: fluorescent intensity, forward-scattering (FSC), and side-scattering (SSC). The
Imd files produced by the flow cytometry were converted into a Microsoft® Excel®© doc-
ument using EXPO® 7.0 (Beckman Coulter, Fullerton, CA). And use Equation (2.1) to
convert the log scale values to fluorescent intensity. The GFP protein concentration
(p;) for each sample used in the data fitting was determined according to the peak po-
sition in the events histogram of GFP fluorescence after discrete wavelet transforma-
tion(AppendixB.1). To confirm the reproducibility of the changes in the fluorescence
distribution dynamics, we performed two experiments under the same environmental
conditions, and found that the measurement results were robust in these independent

experiments. Thus, here we showed the results of one of these experiments.

GFP-intensity = 37.814 x g(0-01x10¢ CFF) (2.1)

Table 2.7: Recipe of 1xPBS
Components Company Final Concentration(g/L)

K2 HPO4 Wako 10.5
KH,PO, Wako 4.5

2.24 Real-time reverse-transcription polymerase chain reaction
(Real-time RT-PCR)

The culture of each strain and sampling were performed as described above. The RNA
was isolated from these cultures using the RNeasy Mini kit (Promega™, Madison, WI)
and then treated with DNase I (TaKaRa, Japan) at 37°C for 30 min (Table 2.8). The RNA
purified by burrer-saturated phenol:chloroform (1:1) and precipitated by 100% ethanol.
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Table 2.8: DNasel digestion reaction solution

Components Amount(uL)
Total RNA 30

10x DNasel buffer 5

RNase inhibitor 0.5

DNasel (RNase-free) 2

DEPC water 12.5

The RNA integrity was electrophoretically verified by ethidium bromide staining and
by verifying that the ODsg0/ODssonm absorption ratio was greater than 2.0. After carry-
ing out reverse transcription with random primers using the Promega® Reverse Tran-
scription System (Promega™, Madison, WI) (Table 2.9), real-time PCR analysis was per-
formed. In the real-time PCR analysis, the first-strand cDNA pool was mixed with
SYBR® Green PCR Master Mix (Applied Biosystems™, Foster, CA) and a pair of highly
purified salt-free primers, as shown in Table 2.22, to amplify the target or reference gene
using the GeneAmp® 5700 Sequence Detection System (Applied Biosystems™, Foster,
CA) with the following parameters: 50°C for 2 min and then 95°C for 10 min, followed
by 40 cycles of 95°C for 15 s and 60°C for 1 min, and a final step starting from 60°C
for generating the dissociation curve. To obtain calibration curves, seven serial two-
fold dilutions of the first-strand cDNA pool were used as templates for the real-time
PCR analysis. To confirm the accuracy and reproducibility of the real-time PCR anal-
ysis results, three independent experiments and three repeats within each LightCycler
run were performed. The mathematical model used in the real-time PCR analysis was

that of Pfaffl(Pfaffl 2001).

2.2.5 Western Blotting

The culture of each strain and sampling were performed as described above. 5 mL
of cultures were collected by centrifuge and then the pellet was resuspended in 500

KL of PBS containing 1% protease inhibitor cocktail (SIGMA™, Louits, MO). The cell
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Table 2.9: Reverse transcription reaction solution

Components Amount(uL)
MgCl;,25mM 4

Reverse transcription 10x buffer 2

dNTP mixture, 10mM 2
Recombinant RNasin® ribonuclease inhibitor 0.5

AMYV reverse transcriptase (High Conc.) 15u
Random primers (0.5ug/ L) 1

Total RNA (200ug/ L) 5
Nuclease-Free Water to a final volume of 20

Table 2.10: 30% Acrylamide solution (Filtered and kept away from light)

concentration reagent

29.2% Acrylamide
0.8% N,N’-Methylene bisacrylamide

suspension was sonicated with 10 short burst of 10 s followed by intervals of 30 s for
cooling. After that cell debris were removed by centrifugation at 4°C for 20 min at
15000 rpm. The protein concentration was determined by Bradford method(Bio-Rad™).
15 g of protein in loading buffer were incubated at 95°C for 10 min, cooled and then
loaded per lane. Gel electrophoresis was performed using 12.5% gel (Table 2.18) with
0.1% (w/v) SDS under a constant voltage of 100 V and then transferred to HybondTM-
P® membrane (GE Healthcare Bio-Sciences™ Corp. Piscataway, NJ) under a constant
current of 40 mA for 1.5 h. The membranes were blocked for 1 h at room temperature
with 5% milk in PBS(Table 2.21). Membranes were incubated with primary antibody
(Promega™, Madison, WI) dilution overnight at 4°C. After wash, the membranes were
incubated with secondary antibody (Promega®™, Madison, WI) at room temperature
for 1 h. After wash, the proteins were detected with the ECL Plus™ (GE Healthcare
Bio-Sciences™ Corp. Piscataway, NJ). Densitometric intensity of the exposed film was

determined by Image]© (Wayne Rasband, National Institutes of Health, USA).
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Table 2.11: 4x Running gel buffer (1.5M Tris-HCl, 0.4% SDS, pH8.8)

Tris base 36.4g
SDS 0.8g
Adjust pH to 8.8 with HCl

MilliQ up to 200mL

Table 2.12: 4 x Stacking gel buffer (0.5M Tris-HCl, 0.4% SDS, pHé6.8)

Tris base 6.8g
SDS 0.4g
Adjust pH to 6.8 with HCI

MilliQ up to 100mL

Table 2.13: 3x Sample buffer(Add 6% (-mercaptoethanol before use)

4 x Stacking gel buffer 37.5mL
Glycerol 30mL
SDS 6g
Bromophenol blue (BPB) 1.5mg
MilliQ up to 97mL

Table 2.14: 50mM Sodium phosphate buffer(pH7.0)

Na,HPO,-12H,O 2.185g
NaHQPO4-2H20 0608g
MilliQ up to 200mL

Table 2.15: Running Buffer

Tris base 1.8g
Glycine 8.64g
SDS 0.3g

MilliQ  up to 300mL

Table 2.16: CBB staining solution

CBB 0.5g
Methanol 100mL
Acetate 20mL
MilliQQ 80mL
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Table 2.17: CBB destaining solution

Methano! 125mL
Acetate 50mL
MilliQ 325mL

Table 2.18: 12.5% SDS Running gel

30%Acrylamide solution 3.33mL
4 xRunning gel buffer 2mL
MilliQ 2.67mL
Total 8mL
10%Ammonium persulfate (APS) 0.096mL

TEMED*(Add just before making gel)  0.01mL

Table 2.19: Stacking gel

30%Acrylamide solution 0.5mL
4 xRunning gel buffer 1mL
MilliQ 2.5mL
Total 4mL
10%APS 0.05mL

TEMED*(Add just before making gel) 0.01mL

Table 2.20: Western blotting transfer buffer

Tris base 0.909¢g
Glycine 4.32¢g
MilliQQ up to 240mL
Methanol (add just before use) 60mL

Table 2.21: Western blotting phosphate buffered saline

Na,HPO,  28.65g
NaHgPO4 240g
Na(l 5.84¢g
MilliQ up to 1L
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Table 2.22: Oligonucleotides used in this study

Primer name

Primer sequence (5'—3’)

Apal-lysCp-f
Nhel-lysCp-r
Apal-asdp-f
Nhel-asdp-r
Apal-dapAp-f
Nhel-dapAp-r
Apal-dapBp-f
Nhel-dapBp-r
Apal-dapDp-f
Nhel-dapDp-r
Apal-dapCp-f
Nhel-dapCp-r
Apal-dapFp-f
Apal-dapFp-r

CTACTAGGGCCCCAGCATCTGATCGTCGAAGG
CTACTAGCTAGCCATAACTACCTCGTGTCAGGGGA
CTACTAGGGCCCCACCAGGAGAGCAATAAGCA
CTACTAGCTAGCCATAAGCGTTTTTTTCCTGCAAA
CTACTAGGGCCCATGACGGGTGATGGTGTTCA
CTACTAGCTAGCCATGGGCCATCCTCTGTGCAAAC
CTACTAGGGCCCGTGGAAACTCAGGGCGAATT
CTACTAGCTAGCCATAGCTATTCTCTTTTGTTAAT
CTACTAGGGCCCCTTCATGGTGCCCGAATTAC
CTACTAGCTAGCCATTGTTAAACTCTTTTCATATC
CTACTAGGGCCCGCGTGCTTTGACGTGACGGC
CTACTAGCTAGCCATCTCATGATCACCCTGTTACG
CTACTAGGGCCCAGCGAAAGATTTGTCTCTTC
CTACTAGCTAGCCTTACTCCAATCACGCGGGTA

Apal-lysAp-f CTACTAGGGCCCAATTTCAGCCCGATCACCT
Apal-lysAp-r CTACTAGCTAGCCATAACAAACTCCAGATAAGTGC
Apal-lysRp-f CTACTAGGGCCCGCGCACCACATCAAACTGTT
Apal-lysRp-r CTACTAGCTAGCCATTAGCGCTCTCTCGCAATCCG
Primers for real-time RT-PCR  Primer sequence (5’ —3’)

lysC-f TGG CGA GCG ATT CGA AA

lysC-r CCA GAA TGG CAA ACT GGA TGT

asd-f CGG CTG GCG CGG TAT

asd-r AAG TCG CGC TCT TCA ACC AT

dapA-f GGG TTATITCCGTTACGG CTA A

dapA-r TGC TGC CAG TTT GCA CATCT

dapB-f ACGCTG AACCATCTCGCTTT

dapB-r CCC CGT AGT GCC GAT CAC

dapD-f TGC GTG TAG CGG AAA AAATTG

dapD-r GCAGCACCGCITTITTCAA

dapC-f TGG TCG CTC GCT GTTTACC

dapC-r CCC AAA GCC GTC GGA AT

dapF-f GGA AAGCCACGAGCGTITT

dapF-r GCTCGCGCTTAACCACTTG

lysA-f CGA TCT CACCGC CGA AAA

lysA-r ACA CCGGGC AGCCAAA

rrsH-f GTC GTC AGC TCG TGT TGT GAA

rrsH-r CACTGG CAG TCT CCT TTG AGT TC

gapA-f AAA GGC GCT AACTTC GAC AAAT

gapA-r GCA GTT GGT GGT GCA GGA A

gfp-f TCG ACA CAATCTGCCCITTTG

gfp-r

TCA TCC ATG CCA TGT GTA ATC C
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Table 2.23: Recipe of M9A medium
Components Company Final conc. Molecular weight Weight
Amino Acid Sol. 10x (mM) (mg/500 mL)
L-a-Alanine Nacalai 0.47 89.09 209.36
L-Arginine-HCl Nacalai 0.60 210.66 631.98
L-Asparagine-H,O Nacalai 0.32 150.13 240.21
L-Aspartate Nacalai 0.30 133.10 199.65
L-Cysteine-HCI-H,O Nacalai 0.30 175.64 263.46
L-Glutamine Wako 5.00 146.15 3653.75
L-Glutamate-Na-H,O Wako 5.00 187.13 4678.25
Glysine Wako 0.13 75.07 48.80
L-Histidine-HCI-H,O Nacalai 0.10 209.63 104.82
L-Isoleucine Nacalai 0.30 131.17 196.76
L-Leucine Wako 0.30 131.18 196.77
L-Methionine Wako 0.30 149.21 223.82
L-Phenylalanine Nacalai 0.30 165.19 247.79
L-Proline Nacalai 2.00 115.13 1151.30
‘L-Serine Wako 4.00 105.09 2101.80
L-Threonine Wako 0.30 119.12 178.68
L-Trytophan Wako 0.10 204.23 102.12
L-Tyrosine Wako 0.10 181.19 90.60
L-Valine Wako 0.30 117.15 175.73
Lysine Sol. 1000 x (g/50 mL)
L-Lysine-HCl Nacalai 0.30 182.65 2.7398
M9 Salt Sol. 10x (g/L) (g/100 mL)
Na,HPO,-12H,0O Nakarai 171 358.14 17.1
KH,PO, Wako 3 136.09 3
Na(l Nakarai 0.5 58.44 0.5
NH,Cl Wako 1 53.49 1
Metal Mix Sol. 100 x (g/100 mL)
MgSO,-7H,O Wako 2mM 246.48 492
CaCl;y-2H,0O Nacalai 0.1lmM 147.01 0.147
Thiamine-HCl Wako 10mg/L 337.27 0.1
Carbon Source 50 x (g/50 mL)
Glucose Wako 5g/L(0.5%) 180.16 12.5
Fe?* Sol. 1000 (g/10 mL)
FeSO,4-7H,0 Wako 10uM 278.02 0.278
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Figure 2.4: The self-fluorescent intensity of E.coli DHI strain without any plasmid checked by
flow cytometer

2.3 Results and discussion
231 Data acquisition and analysis

Nine reporter strains were constructed by cloning the promoter region of genes in-
volved in lysine biosynthesis upstream of gfp. Before analyzing GFP expression by flow
cytometry, the specific growth rates of these reporter strains were compared and con-
firmed to be similar (1.2+0.1/h).

Firstly, the background of flow cytometry was evaluated by E. coli DH1, which do
not contain any plasmid. The LOG GFP value of E. coli DH1 is maintained at 229+12,

which can be seen as background for the flow cytometry in this study.

We first studied the dynamics of the promoter activity of genes involved in the ly-
sine biosynthesis pathway after replacing the defined medium without L-lysine with
that supplemented with 0.3 mM L-lysine and vice versa. We measured the gene expres-
sions every 15min for 3 h from the start of the medium change. Among the nine genes,
the expression levels of five genes (lysCp, asdp, dapBp, dapDp, and lysAp) changed with

the addition or removal of L-lysine from the medium (Figure 2.5). To determine how the
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responses depend on the L-lysine concentration in the medium, we changed the final L-
lysine concentration from 10~ to 3 mM and kept all the other conditions constant. As
results, we found that when the L-lysine concentration is larger than 0.3 mM, there was
no difference in the results of flow cytometry analysis(Figure 2.6). Thus, we adopt two
environmental conditions, i.e., 0.3 mM and 0 mM L-lysine concentrations to investigate
the change of expression dynamics in lysine biosynthesis pathway. We then focused on
the detailed activation dynamics of genes involved in the lysine biosynthesis by chang-
ing the sampling interval from 15 to 6 min. The dynamic behavior of promoter acti-

vation was well visualized and quantitatively analyzed by flow cytometry (Figure 2.7).

2.3.2 Data fitting

We assume that each cell is well mixed system. There are sufficiently many molecules
that the number of molecules can be approximated as continuously varying quantity
that varies deterministically over time. And the process is fast compared with the time
scale of interest. Because all the promoters have same regulation sign, lysine concen-
trations, we fit the time-dependent expression data to a simple Michaelis-Menten-type
model developed by Ronen et. al.,(Rosenfeld et al. 2005) estimate the parameters of

regulatory dynamics.

d{pi) _ 1 '
a ~PTrR@E W (22)

The GFP protein concentration (p;), which was regulated by i*" promoter, was bal-
anced in terms of its expression rate and dilution by cell growth, where o represents cell
growth rate. We assumed that the GFP lifetime was much longer than the cell cycle thus,
we neglected the degradation of GFP protein. We adopted the peak value of the fluo-
rescence distribution as (p;), because the fluorescence distribution is asymmetric such
that the average and median fluorescence distributions are inadequate to describe the

expression dynamics. The parameters i and k; are the maximal promoter activity and
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Figure 2.5: Raw gene expression data at 15min intervals when L-lysine concentration was
changed from 0 to 0.3mM. (a) lysCp,(b) asdp, (c) dapAp, (d) dapBp, (e) dapDp, (f) dapCp, (g)
dapFp, (h) lysAp and (i) lysRp
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Figure 2.6: Peak position of GFP fluorescence in the reporter strain lysAp cultured in the medium
with different L-lysine concentration
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Figure 2.7: Promoter activation of genes that dynamically change their expression levels accord-
ing to the change in L-lysine concentration as determined by plotting the peak position of GFP
in log scale as a function of culture time. Error bars represent the standard deviations of three
independent experiments. The L-lysine concentration in the medium was changed from (a) 0 to
0.3 mM and (b) 0.3 to 0 mM. The lines represent fitting results of promoter activation according
to a simple dynamical model. The model parameters are shown in Table 2.24
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the repression coefficient of the i** promoter, respectively. The repression coefficient k;
represents the repressor concentration needed for 50% repression, which provides infor-
mation on the strength of RNA polymerase binding and complex combinations of the
binding affinity of the repressor to its cis-regulatory site. The R(t) represents the active
repressor level mediated by the intracellular L-lysine concentration. We assumed that
the change in R(t) induced by changing the environmental condition was faster than
the change in gene expression level thus, we set R(¢) as a constant with respect to time
and considered environmental condition as the only variable. Using the Equation (2.2),
we fit the time series expression data to determine the parameters in the equations. In
this fitting process, a, R(t), i, and k; were used as fitting parameters. The fitting results

are shown in Figure 2.7 and the parameters used in the fitting are listed in Table 2.24.

Table 2.24: Optimal parameters of gene expression model. The parameter values of o and
Riys—0.3/ Riys=0 are shared in expression dynamics of all genes.

*Ryys=0.3 is the active repressor level when the L-lysine concentration is 0.3mM, while Rj,s—o is
that in the L-lysine concentration is 0mM.

gene a/min™' fG/mM min™' ki/mM Rige—g.3/R%,.

lysC 14.4 1.60
asd 68.2 0.55
dapB  0.025 463 0.69 0.95/0.001
dapD 152.2 2.98
lysA 570.1 0.22

From the fitting parameters, we found that dapD, one of the genes involved in the ly-
sine biosynthesis pathway, showed a significantly larger repression coefficient (k;) than
the other genes involved in the pathway. Our experimental results show that although
the absolute expression level of dapD is relatively high, the change of the expression
between environmental conditions is small. Thus, the regulation driven by L-lysine
concentration should be “weaker” than other regulated genes, as represented larger ;
value for dapD, which indicated the weak binding activity of the repressor to the dapD

promoter region. The repression coefficient of lysC was also large. However, this result
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of GFP expression controlled by the IysC promoter region was too close to the back-
ground level as determined by flow cytometry, and the results of RT-PCR showed a
large ratio of relative expression level in the absence of L-lysine to that in the presence
of L-lysine. Thus, we need to carry out more analyses before drawing any conclusion
concerning the lysC promoter. We also found a trend that the closer an enzyme is to the
start of the lysine biosynthesis pathway (Asp), the smaller its maximal promoter activity
(8;) is. This trend may suggest a design principle of the biosynthesis pathway(Zaslaver
et al. 2004).

As shown in Figure 2.7, there is some deviation from fitted line and experimental
data. Of course, we can adopt more complicated models with many parameters to fit
our experimental data well. However, to use such complicated models makes the dif-
ference of characteristics among gene regulations obscure. The merit to use the simple
kinetic model is that we can easily compare the characteristics of regulations. Although
to discuss these characteristics quantitatively is rather difficult, it is possible to identify
difference among promoters, as dapD in our study. Note that, our result that the regula-
tory parameters of dapD are different from other genes in lysine biosynthesis is robust
with respect to changing the model to be fitted. For example, the same result can be

obtained when we introduce higher Hill coefficient to the kinetic model.

This promoter dynamics include not only the steady states but also transient states.
In experiments, the reporter strains were reached steady-state in preculture, and then
were moved into a environment with different lysine concentration. Before they reached
next steady-state in GFP expression, the changes in gene expressions are determined by
the time series data in transient state. All these data in transient and steady states were
used in fitting the parameters. Thus the model with parameters used in this study
can predict the promoter activation not only in steady state but also in transient state.
It provides biologists with tools to better understand and describe processes of lysine

biosynthesis.
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2.3.3 Real-time RT-PCR and Western Blotting

To validate the expression dynamics obtained by flow cytometry, we performed real-
time RT-PCR and western blotting experiments. We extracted mRNA and protein sam-
ples from reporter and wild-type strains of E.coli cultured under different environmen-
tal conditions (i.e., 0 or 0.3 mM L-lysine). Results showed that the relative changes in the
gene expression levels obtained by real-time RT-PCR and western blotting experiments
(Figure 2.8) are consistent with those determined by flow cytometry (Figure 2.9). We
confirmed that the mRNA and protein expression levels of lysC, asd, dapB, dapD, and
lysA increased with the removal of L-lysine from the medium, while those of the other
4 genes were unchanged. Of course, there are some differences in the ratio of expres-
sions measured by flow cytometry compared to those obtained by RT-PCR and western
blotting. One reason for the difference is experimental error. Furthermore, as for the
difference between flow cytometry and RT-PCR analysis, it is well known that the cor-
relation between expression levels of mRNA and proteins is not always proportional,
instead, there is some deviation from proportionality due to difference in transcript ef-
ficiency. For example, in the previous report(Ghaemmaghami et al. 2003), it was shown
that the amount of mRNA molecules and protein molecules per cell is well correlated,
but the significant deviation from the linear relationship exists. In comparison with the
previous studies, the correlations between results of flow cytometry, RT-PCR and west-
ern blotting analysis shown in our manuscript are acceptable. Our Real-time RT-PCR
and western blotting results also showed that, for each reporter strain, changes in the
expression level of GFP and the endogenous protein under the control of the same pro-
moter correlated well indicating that our selection of promoter regions was adequate

for investigating gene expression dynamics.

In the studies of gene expression dynamics, the combination of reporter strains and

flow cytometry provided us with a convenient and accurate method of measuring gene
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Figure 2.8: Western blotting analysis of the expression level of GFP in different strains cultured
in different L-lysine concentration (0 or 0.3 mM)
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Figure 2.9: Ratio of gene expression level in the absence of L-lysine to that in the presence of L-
lysine calculated using the reference gene gapA (results were similar to those using the reference
gene rrsH; data not shown).

* calculation method: GFP expression levels of cells cultured in the medium without L-lysine
divided by those of cells cultured in the medium with L-lysine as determined by flow cytometry
(FCM).

expression dynamics. The reporter strain, in which fluorescent protein expression is
controlled by the promoter of the target gene, is relatively easy to construct. Moreover,
we found that the measurements of expression dynamics using these reporter strains

were consistent with those obtained by real-time RT-PCR analysis and western blotting
analysis.

One important merit of using this system is that measurements using a small number
of cells (e.g., 20,000 cells) are possible. In contrast, it is difficult to analyze samples ob-
tained from such a small cell number by real-time RT-PCR analysis or using microplate
reader.

Another important merit of using flow cytometry is the possibility of single-cell-

level analysis, which provides information on stochastic fluctuations in gene expres-
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sion dynamics. Recently, stochastic fluctuation and its propagation in cellular reaction
dynamics have been studied extensively(Raser and O’Shea 2004). In these studies, ar-
tificially synthesized networks are generally used to investigate stochastic fluctuations
in gene expression. In contrast, gene expression fluctuations and the propagation of
these fluctuations in native regulatory and metabolic networks can be analyzed using
our reporter strains. The results of the stochastic fluctuation analyses using our reporter

strains will be reported elsewhere.

2.3.4 Noise Properties

By flow cytometry, not only the average expression can be determined, but also the
distribution of the expression in the population can be described. By treating the distri-
bution of expression as normal distribution, we got the phenotypic noise strength(PNS)
of each promoter by Equation (1.2). There is no relationship between fluctuations and
estimated parameters of expression dynamics, but negative correlation between the bi-
ological noise and their average expression instead (Figure 2.10). We failed in including

noise information into the parameters.

2.4 Conclusions

Nine reporter strains were constructed by cloning the promoter region of genes in-
volved in lysine biosynthesis upstream of gfp. Time-dependent changes in green fluo-
rescence intensity under the control of the target promoter region were determined after
changing the environmental condition (i.e., the L-lysine concentration in the medium).
By flow cytometry, the gene expression dynamics were quantitatively analyzed. The
differences in the expression levels of genes involved in the lysine biosynthesis at vari-
ous L-lysine concentrations were confirmed by real-time RT-PCR analysis and western
blotting analysis. The expressions of five genes corresponded to the changes in L-lysine

concentration in the medium. For the promoters of these five genes, time-dependent ex-
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Figure 2.10: Noise properties when plot phenotypic noise strength to their average expression
levels. DH1: E.coli DH1; Ic: lysCp; asd: asdp; da: dapAp; db: dapBp; dd: dapDp; dc: dapCp;
df: dapFp; la: lysAp; 00, 11: L-lysine concentration maintained at 0OmM or 0.3mM; 01: L-lysine
concentration shift from OmM to 0.3mM; 10: L-lysine concentration shift from 0.3mM to OmM.

pression data monitored by gfp fluorescence were fitted to a simple dynamical model of
gene expression. The fitting parameters enabled an elucidation of the gene expression

dynamics in the lysine biosynthesis pathway:.
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Chapter 3

Analysis of stochasticity in promoter activation
by dual-fluorescence system

Abstract

Stochastic dynamics of promoter activity in bacterial cells were studied by using
a dual-fluorescence reporter system of protein expression. The dual-fluorescence
reporter system enabled us to calculate the amplitude of intrinsic noise generated
during transcription and translation. By fitting the experimental data to a simple
stochastic model of protein expression, we could estimate parameters representing
the stochastic transition between the active and inactive states of a promoter. Using
the system, we analyzed the stochastic dynamics of promoter activation of genes
in the lysine biosynthesis pathway in Escherichia coli. We found that the promoter
of lysA has a significantly slower transition rate between active and inactive states
than other promoters in the lysine biosynthesis pathway. The infrequent switch-
ing between active and inactive states can be a dominant source of noise in lysA
expression. Analysis using the dual-fluorescence reporter system provided a better
understanding of stochastic dynamics in promoter activation.
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Figure 3.1: Dual-fluorescence system includes two parts, the vector pGRFP with two reporter
fluorescence gene and the simulation tool used for getting appropriate Aon and Ao for the target
promoter.
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3.1 Introduction

ingle fluorescence experiments provide quantitative evaluation of dynamics of pro-
S moter activation in a continuous manner. However, recent studies have revealed
that changes in promoter activity do not always occur in a continuous manner. In-
stead, promoter activity often obeys on-off type stochastic dynamics, regarded as a ma-

jor source of gene expression noise.

3.1.1 Transcriptional bursting model

In the transcriptional bursting model, slow promoter kinetics cause infrequent tran-
sitions between active and inactive promoter states, which, in turn, cause multiple
mRNA templates to be synthesized in rapid succession at irregular intervals, if it fol-
lowed with a high transcription rate(Raser and O’Shea 2004, Ozbudak et al. 2002, Blake
et al. 2006). At any instant the promoter is thought to be either “switched on” by hav-
ing a transcription complex bound to it, or “switched off” by not having a transcription
complex bound (Brunner and Bujard 1987, Ko 1991, Kepler and Elston 2001, Pirone
and Elston 2004, Lipniacki et al. 2006). There are two important parameters in these
on-off stochastic dynamics: activation rate and inactivation rate; these represent the
probability that an inactivated promoter will be activated and vice versa, respec-
tively(Figure 3.2). If these two parameters are low enough and the time scale of their
alternation is slower than the time needed for transcription and translation, the switch-
ing of promoter activity can be a dominant source of expression noise. The equilibrium

promoter strength, which is determined by the gene expression mainly, can also be cal-

don(t)
Aoft (t)

(Brunner and Bujard 1987, McClure 1980). Pairs of A,, and ).g can reach the same K.

culated from the ratio of A,, and A.¢ in the steady state(t) and shown as Koq:Koq =

For example K., = 1 can be gotten from any pair of A\, and A,g when Ay, = Aog. That is

to say, the same promoter strength with a different \,, and A\, can lead same expression
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but different cell-cell variability. Only with K., it can not include the information about
the biological noise. Thus, to achieve a detailed understanding of stochastic dynamics
of promoter activity, it is necessary to evaluate the parameters of switching activity.
But most of prokaryotic gene expression assume that the transition rates are so fast
that the promoter states are always in steady state and the rate of transcription is con-
stant. And the translational bursting is probably a dominant source of stochasticity in
the process of prokaryotic gene expression(Keaern et al. 2005). This was mainly sup-
ported by the Ozbudak’s report. They used single copy of gfp as reporter to monitor
the effect of transcriptional and translational efficiency on biological noise(Ozbudak
et al. 2002). That is the most possible reason why we fail in including noise informa-

tion into the parameters by single fluorescence reporter.

3.1.2 Intrinsic noise and extrinsic noise

As reported by Elowitz et al. (2002), biological noise has two sources, intrinsic and ex-
trinsic; promoter activity mainly contributes to intrinsic noise (Shahrezaei et al. 2008).
The inherent stochasticity of biochemical processes such as transcription and transla-
tion generates “intrinsic” noise, denoted 7;,;, which fundamentally limits the precision
of gene regulation. Such stochastic effects are set locally by the gene sequence and the
properties of the protein it encodes. Living cells possess very low copy numbers of
many components, including DNA, mRNA templates and regulatory molecules. The
small numbers of gene copy and mRNA template results in discrete biochemical reac-
tions involved in gene expression. Such discrete events can be explained by probability
theory. The probability of each reactions in a defined interval is determined by the affin-
ity of molecules such as regulatory proteins and polymerases, and so on, binding to the
active sites, which is affected by the space structure and regulation module of the gene
sequence or the protein it encodes. For example, there are many functional modules in

promoter, such as enhancer, booster, activator, insulator, repressor, locus control region,
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Figure 3.2: The two state of promoter. If the promoter is in active state, the transcription can
start. Otherwise, it can not. There list three cases that can not start transcription. Case I, re-
pression by steric hindrance. The repressor-binding site overlaps core promoter elements and
blocks recognition of the promoter by the RNA polymerase holoenzyme. Case II, repression by
modulation of an activator protein. The repressor binds to an activator and prevents the acti-
vator from functioning by blocking promoter recognition by the RNA polymerase holoenzyme.
Case III, repression by looping. Repressors bind to sites and interact by looping, repressing the
intervening promoter.(Browning and Busby 2004a)
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upstream activating sequence and upstream repressing sequence, that contribute to the
initiation of transcription. Moreover, the interaction of chromatin remodeling complex,
transcription co-factors, transcription factors and chromosome can shift the states of
promoter between open and close in a given probability determined by the space struc-
ture and promoter sequence. In addition, fluctuations in the amounts or states of other
cellular components lead indirectly to variation in the expression of a particular gene
and thus represent “extrinsic” noise, denoted 7.,:. Thus, extrinsic sources of noise arise
independently of the gene but act on it. Such stochastic effects are controlled by the
concentrations, states, and locations of molecules such as regulatory proteins and poly-
merases, and so on. Although for different genes there are different regulators who
will take effect on them, the extrinsic noise is defined as the environment all the genes
faced. And the difference in regulation mechanism of different genes will generate the
intrinsic noise. So the extrinsic noise is global to a single cell but vary from one cell to
another. The extrinsic fluctuations can dominate the total noise and they are sensitive
to fluctuations in the transcription and translation rate(Shahrezaei et al. 2008). To dis-
tinguish between the two noise sources, it is not sufficient to monitor the expression
of a single gene using fluorescent proteins. Instead, it is necessary to monitor the ex-
pression levels of two genes at a single-cellular level, as demonstrated by Elowitz et al.
(2002). If we failed in separating the intrinsic noise from the extrinsic noise, the relia-
bility of assumption that all the prokaryotic promoters have very high A., and A.g faces

the challenge.

Intrinsic noise and extrinsic noise of promoter can be measured and distinguished
with two report genes controlled by same copy of it(Elowitz et al. 2002). By analyzing
the correlation in the expression levels of two genes, we can obtain the amplitude of
extrinsic noise, and then, by subtracting the extrinsic noise from the total noise, we
can estimate the amplitude of intrinsic noise. With the data regarding intrinsic noise

and an appropriate model, the parameters representing infrequent stochastic transition
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between active and inactive promoter states can be estimated. This method was widely
used in biological noise analysis(Mettetal et al. 2006, Pedraza and van Oudenaarden
2005).

However, most of the experimental studies have so far focused on noise property
itself. To apply this method to analyze the strength of a promoter involved in an en-
dogenous gene networks, particularly in metabolism network, is seldom reported. In
the transcriptional bursting model, the size of the ‘burst’ in transcription depends on
the average number of transcripts produced between promoter activation and deac-
tivation (the ratio Amrna/Xog), referred to as the transcriptional efficiency(Raser and
O’Shea 2004, Keern et al. 2005). To master the promoter transition rates is definitely
helpful in predicting gene expression with noise property. Naturally, the gene expres-
sion noise might necessitate counteracting noise reduction mechanisms preserving the
fidelity of regulatory signals. On the other hand, the probabilistic features afforded by
gene expression noise lead to the evident possibility that evolution has fine-tuned noise-
generating mechanisms and genetic network architectures to derive beneficial popula-
tion diversity(Fraser and Keern 2009). To get the appropriate ), and A\.g can help us
understand the promoter strength at a deep level and be able to make predictions about

promoter behavior with biological noise property.

3.1.3 Stochastic Simulation Algorithm(SSA)

In order to get the \,, and \.¢ for target promoter, a simulation tool is necessary.There
are two fundamental ways to view coupled systems of chemical equations: as continu-
ous, represented by differential equations are concentrations, or as discrete, represented
by stochastic processes whose variables are numbers of molecules.

Solving the differential equations results in concentration of each substance as a
function of time. There is an assumption for the differential equations is that the num-

ber of molecules can be approximated as a continuously varying quantity that varies
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deterministically over time. Although this assumption holds for most systems, it does
not hold in very small systems. And solving these differential equations, sometimes,
one assumes that the system is in equilibrium. It is not true in general.

The stochastic processes regards the time evolution as a kind of random-walk pro-
cess which is governed by a single differential-difference equation. The SSA allows one
to numerically simulate the transient behavior of well-mixed systems in which many
molecular species participate in many highly coupled chemical reactions(Gillespie
1977). The SSA is exact in the sense that it is rigorously based on the same microphysical
premise that underlies the chemical master equation(CME)(Gillespie 1992). The SSA is
widely used in biological noise analysis(Shahrezaei and Swain 2008).

In SSA, a putative time for each potential reaction in the system is calculated, and
the reaction whose putative time is first is implemented. Simulation time is then incre-
mented by this reaction time. Each putative reaction time is calculated from the propen-
sity of the reaction: the probability of the reaction per unit time multiplied by all ways
of selecting the reactants. If a fixed volume V contains a spatially uniform mixture of N

chemical species which can inter-react through M specified chemical reaction channels,

h, =number of distinct R, molecular reactant combinations available

in the state (X1, Xo, ..., Xn) (u=1,.... M)

a,dt =h,c,dt=probability that an R, reaction will occur in (¢, ¢ + dt),

given that the system is in the state (X3, X5, ..., Xy) at time t (u=1,...,M)

The probability density function for reactions is,

M
P(7, 1) = a,exp (—TZ@U> (3.1)

v=1
where, 7 is a uniform random number between 0 and 1, which will introduce the
stochasticity into the simulation. By getting the p and P, the questions which reaction

occurs next and when does it occur are resolved.
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Gillespie developed two different, but equivalent formulations; the direct method
and the first reaction method(Gillespie 1977). Since it was born, there has been count-
less attempts to improve its computational efficiency. But the main steps to run the

algorithm are not change so much. They are:

1. Initialization: Initialize the number of molecules in the system, reactions con-

stants, time and random number generators.

2. Monte Carlo step: Generate random numbers to determine the when and which

reaction to occur next.

3. Update: Increase the time step by the randomly generated time in Step 2. Update

the molecule number based on the reaction that occurred.

4. Tterate: Go back to Step 2 unless the number of reactants is zero or the simulation

time has been exceeded.

3.1.4 Object

In this study, we developed a dual-fluorescence system to understand the stochastic
dynamics of promoter activity. This system includes two parts; the vector pGRFP, con-
taining two fluorescent proteins, GFP and red fluorescent protein (RFP), for measuring
intrinsic noise, and a simulation tool to estimate the parameters describing stochastic
dynamics. In this system, the expression of GFP is controlled by the target promoter
to be inspected, while the expression of RFP is controlled by the common constitutive
promoter. The amplitude of extrinsic noise is obtained by the correlation between the
intensities of GFP and RFP fluorescence. Thereafter, the intrinsic noise of the target pro-
moter can be obtained by subtracting the extrinsic noise from the total noise of GFP
expression. By adjusting for the parameters in the model to not only the expression
level but also the intrinsic noise amplitude, the activation and inactivation rates of pro-

moter activity can be estimated. Using this system, we investigated the characteristics
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of promoters involved in lysine biosynthesis pathways in E. coli. We found that the ac-
tivation and inactivation rates of the lysA promoter are significantly lower than those
of other promoters involved in the lysine biosynthesis pathway, which indicates that
infrequent switching can be a dominant source of noise in IysA expression. Analysis us-
ing the dual-fluorescence reporter system provided a better understanding of stochastic

dynamics in promoter activation.

3.2 Material and Methods
3.2.1 Plasmid

The plasmid pGRFP(Figure 3.3) contains genes encoding two fluorescent proteins, GFP
and RFP. The gfpuv5 gene, a variant of gfp, was obtained from the plasmid pPROLar-
GFPuv5(Ito et al. 2004), and rfp-T4 (DsRed) was obtained from the plasmid pQE31-
T4 (Bevis and Glick 2002). A strong constitutive promoter P Pr was obtained from
the plasmid pCL476 (Love et al. 1996). The kanamycin gene and the p15A origin of
replication were obtained from pPROLar (Ito et al. 2004). The promoter was inserted

upstream of gfpuv5 in the Apal-Nhel site.
Construction of pGRFP

The whole strategy is shown as Figure 3.4. The primers used in these construction is
shown as Table 3.1 and the primers used for sequencing is shown as Table 3.2.

The DsRed and stop codon were amplified by PCR with primer T4-f and T4-r. The
amplification mixture is shown as Table 3.3. The amplification was performed in a DNA
thermal cycler using a program set to denature at 94°C for 5min, followed by 30 cycles
of 94°C for 10s, 60°C for 30s and 72°C for 1min, and a extension step of 72°C for 7min.
The PCR product was recovered, digested by Ndel and Nhel (Table 3.4) and then insert
into the MCS region of pCL476 vector by Ndel-Xbal(Table 3.5) sites. The construction of

pCL476 was checked by sequencing.
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Figure 3.3: The dual-fluorescence reporter system. The plasmid pGRFP contains two genes that
code for fluorescent proteins, GFP and RFP. The promoter region under investigation is inserted
upstream of GFP, while the expression of RFP is controlled by the promoter P Pg.

Table 3.1: Oligonucleotides used for pGRFP construction

Primer Name Primer sequence (5'—3’)

T4-£ GGAATTCcatatgGCCTCCTCCG

T4-r CGgctagc TTGGATTCTCACC

P1-T4-f GCGcctaggCGGTGTTGACATAAATAC
Pl-T4-r GCGcctaggacgtcTAGCTTGGATTCT
PIPr-T4-f GCGcctaggTAACACCGTGCGTG

pSC101*-f GCATGCaagcttGGCGTAATCATGGTCATAG
pSC101* -r TGATAATTactagtCCTTTTcccgggagatct GGGTATCTG
par-pSC101*-f TCCCCGCGGACAGTAAGA

par-pSC101*-r CCTATTAATCATCTGTGCATATGGACA

Table 3.2: Oligonucleotides used for sequencing

Primer Name Primer sequence (5'—3’)

grfp-101-f
grfp-101-r
grip-1441
grfp-1929
grfp-2928
grép-rfp-f
grip-rfp-r

GCTCTCCTGAGTAGGACA
GCTGACTTCAGGTGCTA
CAGCTTTGAATGCACCA
GCCTCGCTTATCAACCA
GCTTGCGAGGGTGCTA
TGTAGCACCTGAAGTCA
GGAGGAGTCCTGGGTCA
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Figure 3.4: The strategy for pGRFP construction.
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Table 3.3: Plasmid construction amplification mixture

Components Amount(uL)
plasmid (10ng/ 1) 5
forward primers(20pM) 5
reverse primers(20pM) 5
dNTP Mixture, 25mM 10
Ex taq 10X buffer 10
Takara Ex Taq(5 units/ul) 1
Nuclease-Free water to a final volume of 100

Table 3.4: Restriction enzyme digestion mixture for DsRed insertion

Components Amount(uL) Components Amount(uL)
pQE-T4 PCR result 20 PCR result digested by Nhel 38
Buffer M 5 Buffer H 5
Nhel 1 Ndel 1
DW to a final volume of 50 DW to a final volume of 50

Table 3.5: Double restriction enzyme digestion mixture for pCL476 vector

Component Amount (uL)
pCL476 plasmid (0.18ug/ 1L) 20
Buffer T 5
Xbal 1
Nhel 1

Nuclease-Free water to a final volume of 50
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Table 3.6: Restriction enzyme digestion mixture for Pl-rfp-t0 and PIPr-rfp-t0 insertion

Component Amount (uL)
PCR amplicon 20
NEB 2 5
Avrll 1
Nuclease-Free water to a final volume of 50

Table 3.7: Restriction enzyme digestion mixture for pPROLar-GFPuv5 vector

Component Amount (uL)
pPROLar-GFPuv5 plasmid 10
Buffer M 5
Spel 1
Nuclease-Free water to a final volume of 50

After amplificating Pl-rfp-t0 and PIPr-7fp-t0 fragment by PCR using primer P1-T4-f,
PIPr-T4-f and P1-T4-r(Table 3.3), the amplicon was recovered, digested by Avrll (Ta-
ble 3.6) and then inserted into pPROLar-GFPuv5 by Spel site (Table 3.7).

The low copy plasmid (pGRFP-pSC101*) was also constructed using par-pSC101*
to replace the p15A. par-pSC101* was come from pMW119 with site-mutation. The
primers(shown in Table 3.1) used for amplification of par-pSC101* was designed to am-
plify the segment of pMW119 DNA between the Hindlll site of the MSC and the Spel
site. The forward primer (pSC101*-f) was complementary to pSC101 DNA origin ex-
cept for five-base mismatch creating Smal and BgIII. This primer also contained the Spel
site. The original replicon was replaced by this amplicon by HindlIll-Spel site to make
pPMW119* with par-pSC101*. The par-pSC101* was gotten from plasmid pMW119* by
enzyme digestion between the Accll and Xbal site, and then inserted into pGRFP* by
Asel-Avrll site to construct pGRFP-pSC101*.

However, because the RFP signal of reporter strains which contain pGRFP* or

PGRFP-pSC101* is not high enough from the background, only pGRFP was selected
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for further research. And the promoter P, ..,.,.-; in pGRFP was replaced by PzP;, from

plasmid pCL476 to finish the construction.

3.2.2 Strains and Media

Nine reporter strains were used in this study, E. coli DH1 (K-12 endAl
recAl gyrA96 thi-1 gInV44 relA1 hsdR17(rK-mK*) A7)/plysCp-pGRFP (lysCp in
short), DH1/pasdp-pGRFP (asdp), DH1/pdap Ap-pGRFP (dapAp), DH1/pdapBp-pGRFP
(dapBp), DH1/pdapDp-pGRFP (dapDp), DH1/pdapCp-pGRFP (dapCp), DH1/pdapEp-
pGRFP (dapEp), DH1/pdapFp-pGRFP (dapFp), and DH1/plysAp-pGRFP (lysAp) which
contain the promoter regions of genes (i.e. lysC, asd, dapA, dapB, dapD, dapC, dapE, dapF,
and lysA), respectively. The promoter regions were amplified from E. coli DH1 genomic
DNA by PCR. The primers listed in Table 2.22 were used to amplify the regions between
two adjacent open reading frames (ORFs), with an extension of 150-200 bp upstream of
the ORFs. The promoter regions were cloned at Apal and Nhel sites upstream of gfpuv5.
Reporter strains were cultured in M9 minimal medium with an amino acid solution
(M9A medium) and kanamycin (25 pg/mL) (Ford et al. 1994). It should be noted that
the L-lysine in the amino acid solution was prepared separately, and the addition of
L-lysine to the medium was determined according to experimental conditions. All the

details please refer Charpter 2.

3.2.3 Sample preparation

The reporter strains were streaked on an M9A minimal medium plate (1.5%[w/v] agar)
from the stocks and incubated at 37°C for 15 h. Pre-culture was performed by picking a
colony and inoculating it into 2 test tubes containing 5 mL of fresh M9A medium (one
test tube contained 0.3-mM lysine, while the other contained no lysine). The inoculated
test tubes were then reciprocally shaken at 37°C and 160 rpm until the ODg value

reached 0.6-0.7. After the pre-culture, cells were collected by centrifugation at 6,000
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rpm for 5 min, followed by re-suspension of the pellet in 1 mL of M9A medium (with or
without lysine, depending on the next culture step). The suspensions were inoculated
into test tubes containing 5 mL of M9A medium with or without lysine to make the
initial ODggo = 0.01 for the main culture. The test tubes were again reciprocally shaken
at 37°C and 160 rpm. Every 15 min, samples were prepared for flow cytometry by

extracting 1 mL of each culture; samples were stored at —-80°C until use.

3.2.4 Data acquisition and analysis

The samples were thawed before analysis with flow cytometry (COULTER® EPICS®
XL™, Beckman Coulter, Fullerton, CA, USA) and then diluted with phosphate buffer
solution (PBS, pH 7.0) to set the cell concentration at 107 cells/mL (ODgy = 0.01). Flu-
orescence measurements were conducted using flow cytometry, and 20,000 cells from
each sample were analyzed. The excitation of GFP and RFP was achieved using a 488
nm argon excitation laser, and fluorescence was measured with a 525120 nm emission
filter for GFP and a 575420 nm emission filter for RFP. The flow cytometry generated
log-scale values using a 10-bit analog-to-digital converter, yielding integers in the range
of 0 to 1,023 for each of four measurements: two kinds of fluorescent intensity, forward-
scattering (FSC), and side-scattering (55C).

The Imd files produced by the flow cytometry were analyzed by a program FCSMul-
tiOu(AppendixB.2) developed for noise analysis by us. The program can handle hun-
dreds of Imd files in the same time. In order to handle the list mode data, a class named
as fcmdata was constructed. In “fcmdata” class, there are eleven public members. Mem-
ber “fslog” is for FSC log-scale signal, “sslog” for SSC log-scale signal, “gfplog” for GFP
log-scale signal, “rfplog” for RFP log-scale signal, and “flag” for data gating for each
cell. Since the raw data include signals from non-living particles in the medium, we
remove them using gates of FSC and SSC intensities. We determined the average FSC

and SSC, and used these coordinates to define radial regions (gates, » = 50) in the 2D
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scattering plots. These gates were then used to select the cells used in the GFP and
RFP fluorescent intensity distributions. The gates were realized by “rFilter” method in
“fcm” class. The log-scale data were converted into fluorescence intensity by ”fluores-
enceConvert” method in “fem” class. The intrinsic noise was calculated by “g_intNoise”
method in “fem” class.

To obtain intrinsic noise amplitude, we adopted the following formula published in

Elowitz et al. (2002):
. _ rg) = (o) 62

S CI A

where, 7nex shows the amplitude of extrinsic noise; (g) and (r) represent the means of
GFP and RFP intensity, respectively; and (rg) indicates the correlation between GFP and
RFP over cells. The amplitude of total noise for GFP 7,_., is represented as follows:

71§_tot = (g)2
In our reporter system, GFP expression is controlled by the target promoter under in-
vestigation, while RFP expression is controlled by the constitutive promoter P Pg. As
these two genes are expected to share the same extrinsic noise value 7.y, in one cell, we
can distinguish between intrinsic and extrinsic noise by comparing the two. Thus, the
intrinsic noise of the target promoter can be calculated by subtracting extrinsic noise

from the total noise, as follows:

né—int = n;—tot - T/G2Xt’ (34)

where, 7,_i,,, represents the amplitude of intrinsic noise.

For the fluorescent measurements, the background signal (auto-fluorescence of cells)
was subtracted by assuming that the background signal distribution follows a Gum-
bel distribution with appropriate parameters, which could represent the distribution of
auto-fluorescence of cells without GFP and RFP. To confirm the reproducibility of the
changes in the fluorescence distribution dynamics, we performed two experiments un-

der the same environmental conditions and found that the measurement results were
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robust in these independent experiments. In this paper, we show the results of just one

of the experiments.

3.2.5 Stochastic Model

Based on Gibson’ s Next Reaction Method algorithm (Gibson and Bruck 2000), which
extends Gillespie’ s First Reaction algorithm (Gillespie 1977), a program was built to
simulate the intrinsic noise of GFP expression. This simulation allowed us to investigate
the characteristics of stochastic active-inactive switching in the target promoter. Our

algorithm to simulate intrinsic noise is as follows:
1. Initialize:
(a) Set initial numbers of molecules, sett — 0.

(b) Generate a dependency graph Ggre for GFP and Ggee for RFP.

i. Calculate the propensity function, a;, for all :.

ii. For each i, generate a putative time, ¢;, according to an exponential dis-

tribution with parameter a;.

iii. Store thet; valuesin the heap Psre and FPrre for GFP and RFF, respectively.

2. Let t.p: ¢ be the time for change culture condition point. If ¢ = ¢n: ¢, change the

promoter Ag,.

3. Compare the roots of heap FPgrp and Pare. Let u be the reaction whose putative
time, t,,, is smaller. Because the heap queue is an indexed queue sorted by putative

time, ¢, is the least putative time.
4. Lett be t,.
5. Change the number of molecules to reflect execution of reaction w.

6. For each edge(u, w) in the dependency graph Geze OF Grrp,
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Figure 3.5: Gene expression model used in this study. Each step represents the biochemical re-
actions, associated with the transition between promoter states and the production and decay
of mRNA and proteins. Ao, and Ao indicate the promoter” s activation and inactivation rates.
Transcription can begin only when the promoter is in the active state. Anrna and Apr, repre-
sent mRNA and protein production rates, respectively, while dy,rna and dpro show mRNA and
protein degradation rates.

(a) Update a,,.

(b) Generate a random number, ¢, according to an exponential distribution with

parameter a,, and set t,, «— ¢t + t'.

(c) Replace the old t, value in P or Prrp with the new value.

7. Go to Step 2.

The model of gene expression used in our simulation is illustrated in Figure 3.5.
This is a three step gene expression model, which include the two states of promoter
(Figure 3.2), transcription and translation. The two states of promoter are used for in-
troducing biological noise coming from )., and \.¢ in simulation.

The source code is listed in AppendixB.3. Multiple thread is used to increase the
simulation efficiency for such big amount particles. Binary tree is employed to store the
time & reaction in pair using time as the sorting order (from low to high). The time
& reaction in pair are gotten by Equation (3.1). The reaction whose putative time is
first is performed. Simulation time is then incremented by this reaction time. Same as
experiment, we add long enough preculture step to gain the initial condition for noise
analysis. To measure the extrinsic and intrinsic noise in the simulation, we used same

method as in the experimental data analysis (Equation (3.4)).
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Lots of parameters can be set during initialize step, which include the growth speed,
the active and inactive reaction rate of target promoter, the transcription rate, the trans-
lation rate and the degradation rate. All the noise distribution can be controlled by these
values. The repression rate of degradation rate émrya and dpr should equal In(2)/7,,
where 74 represents the half-life of the mRNA or protein. Eighty percent of mRNA half-
lives are in the range of 3-8 min; for simplicity we set the average half-life of mRNA as
3 min, dnrna = 0.23min~"' for GFP and mRNA. The GFP and RFP half-lives are long
enough to ignore; thus, cell division dominates the protein degradation rate (,,,). In
our independently measured generation, time 7, = 40 min, so that §,,, was set to 0.02
min~!. For simplicity, the constitutive synthesis rates of mRNA, A\,grna, and protein,
Apro, are set by the average transcription rate and translation rate of genes in E.coli. If
the promoter is in the active state, transcription and translation can occur at any time.
The average transcription rate is approximately 25 nt/s and the average translation rate
is approximately 30 aa/s (Golding et al. 2005). Thus, the parameters obtained were
as follows: AmrNag, = 708 nt/25 nt - 57! = 2.1 min~!, AprNa,, = 675 0t/25 nt - 571 =

2.2min"", Apro,, = 236 aa/30 aa-s~! = 7.5 min ™!, Ao, = 225 2a/30 aa-s”' = 8 min™'.

3.3 Results

Nine reporter strains were constructed by cloning the promoter region of genes in-

volved in lysine biosynthesis upstream of gfp of pGRFP.

Based on previous study(Ou et al. 2008), among the nine promoters the expression
levels of five promoters (lysCp, asdp, dapBp, dapDp, and lysAp) changed with the addi-
tion or removal of L-lysine from the medium. The noise behaviors also show the same

changes. We then focus on the noise behaviors of this five promoters.
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Figure 3.6: The event counts of GFP and RFP expression in log-scale of report strains with
different promoters involved in lysine biosynthesis in late log phase.

3.3.1 Compensation in flow cytometry

The term ”“compensation”, as it applies to flow cytometric analysis, refers to the pro-
cess of correcting for fluorescence spillover, i.e., removing the signal of any given flu-
orechrome from all detectors except the one devoted to measuring that dye (Roederer
2002). In order to determine the GFP and RFP abundance correctly, the green and red
fluorescence of reporter strains were checked by flow cytometry during late log phase
without lysine in the media. As it shown in Figure 3.6, with different activation strength
from different promoters, the fluorescent intensity of GFP is different, but that of RFP
is similar in the same culture phase. This result indicated the interaction between GFP

and RFP fluorescent intensity can be ignored.

3.3.2 Self-fluorescence background

The fluorescent intensity measured by flow-cytometry include two parts, one is the self-
fluorescence of the Escherichia coli DH1, another part is the fluorescent intensity emitted
by fluorescent protein. The background of self-fluorescence of reporter strains was eval-
uated by detecting GFP and RFP fluorescent intensity of E.coli DH1, which do not con-

tain any plasmid. The background of the self-fluorescence was simulated as Gumbel
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Figure 3.7: The comparision between linear scale data and log scale data

distribution (minimum).

The circuits of flow-cytometry have two kinds, one is linear circuits, whose output
signal is proportion to the sum and/or difference of their input signal, and another is
logarithmic circuits, whose output signal is in logarithmic scale. Usually in the output
file, the signal will be saved as channels but not the pulse output. Flow-cytometry am-
plify signals to values ranging between 0-10V before performing a digital conversion.
And then use a 10 bit ADC (Analog-to-Digital Converter) to convert the linear analog
signals. So there are 1024 channels of range (2") (2'° = 1024) corresponding to the range
0-10V. Channels difference is 10/1024=9.8mV per channel. Sometimes we are more fo-
cus on the small-side signal, the log-scale data is required. Figure 3.7 show the ideal

comparison between linear and log data in flow-cytometry.
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With 4 decates, converting the linear scale to a log scale is given by the equation,

Y =log(X) x 1024/ log(10*)
= log(X) x 1024/4
= log(X) x 256 (3.5)
= In(X) x log(e) x 256
= C x In(X)
where Y is the log-scale value, X is the linear scale value and C = log(e) x 256.

Set the self-fluorescence linear analog signals in flow-cytometry follow an approxi-

mate exponential distribution,

Ae ™ >0
flx;A) = (3.6)

0,z <0

The quantile function (inverse cumulative distribution function) for Exponential(}) is

Fﬂmﬂzig%:@ 3.7)

for 0 < p < 1. So to generate exponential variates we can use,
_ —In(1-0)

T =
)
@) (3.8)

A

,given a random variate U drawn from the uniform distribution on the unit interval

(0,1). Then the log-scale values are,

Y =cxIn(T)

—In(U)

A ) (3.9)
= C x (In(— In(1)) = In(N))

= C x In(

= C x In(—In(U)) + CO
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,where CO = —C x In()). This equation is same from the quantile function for Gumbel
distribution (minimum),

X =p+ Bln(—1n(U)) (3.10)

,where p is location parameter, 3 is scale parameter and given a random variate U drawn
from the uniform distribution on the unit interval (0,1).

That is to say the log scale value list in listmode file follow the Gumbel distribu-
tion (minimum). And the simulation result testified this distribution. The probability

density function of the Gumbel (minimum) distribution is,

1
f@) = 52e”
s (3.11)
Z=e7

where 4 is the mean parameter and (3 is the scale parameter.

In stochastic simulation algorithm (SSA), different from systems of chemical equa-
tions as continuous, represented by differential equations are concentrations, the vari-
ables are numbers of molecules. So what I get from the algorithm based on Gillespie
algorithm is the numbers of GFP and RFP. To calculate the average RFP or GFP fluores-

cent intensity, the following equation is employed,

= (RFP RFP BRE‘P
(r) =« X fare + Baep) (312)

(9) = (GFP X foep + Brep)
,where RFP and GF P denote the number of RFP and GFP, respectively. fxre and feep
is the intensity of single protein molecule for RFP and GFDP, respectively. And Bz and
Bgrr denote the self-fluorescence of the cell. When the reporter genes are controlled by
promoter P, Py, the fluorescent intensity comes from the reporter fluorescence protein is

far larger than the self-fluorescence,

RFP X fRFP > BRFP and RFP X fRFP > BRFP (313)
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Equation 3.12 can be simplified as,

(ry =(RFP X frrp)

(3.14)
(g) = (GFP x forp)
Then, the total noise for GFP can be calculated as,
772 _ <92> - <9>2
g-ret (9)?
- 2
(GFP X ferp) (3.15)

<GFP2> X fG2FP - <GFP>2 X szFP
(GFP)? X fée
(GFP?% — (GFP)?
(GFP)?

The reporter strain, whose gfp and rfp both are controlled by promoter P, Py can help us
to set the appropriate fore and frer after the biological noise being fitted. The fer» was
set as 10 and fzrp is set as 3.35, which compare well with the results gotten in Sugiyama

et al. (2005).

After setting the intensity of single protein molecule of GFP and RFP, the background
was fitted. Because the self-fluorescent intensity detected as green fluorescence and red
fluorescence have no correlation, the experiment data of the background can be fitted
by two unrelated group of data in Gumbel distribution (minimum) (Figure 3.8). And
the expression of gfp and intrinsic noise can be well fitted (Figure 3.9). But also in the
experiment data we found a negative extrinsic noise. This indicated that there is neg-
ative correlation between the GFP fluorescent intensity and RFP fluorescent intensity.
This may be the slight stochasticity in experiments. This background of self-fluorescent
intensity was directly added to each cell when I simulated the gene expression based
on Gibson’s Next Reaction Method algorithm, and it followed the Gumbel distribution

(minimum).
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Figure 3.8: The background of E.coli DH1 self-fluorescent intensity was simulated as two unre-
lated group of data in Gumbel distribution (minimum)

3.3.3 Intrinsic noise of promoters involved in lysine biosynthesis

We measured the expression of GFP and RFP at the single-cell level using flow cytome-
try. Using the reporter strains, we investigated the change of GFP abundance caused by
removal of L-lysine from the medium. In Figure 3.10, we plotted the protein abundance
according to time after removing L-lysine from the medium. As shown, the protein
levels increased when L-lysine was removed and settled into different states 120-150
min after removal. Then, as described in the materials and methods section, we cal-
culated the amplitude of intrinsic noise in this process. In Figure 3.11, we plotted the
relationship between protein abundance and the amplitude of intrinsic noise. As shown

1

in the figure, the amplitude of the fluctuations approximately obeys 77, « z~!, where

x represents the protein abundance. This result was consistent with previous studies
(Bar-Even et al. 2006), in which the intrinsic noise caused by the stochasticity within
transcription and translation generally follows a Poisson distribution; thus, the rela-

1

tionship 72, « z~' was expected. However, it should be stressed that in the IysAp
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Figure 3.9: The noise of negative control. DH1: E.coli DH1; PIPr: both of the two fluorescent
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Figure 3.10: Time series showing GFP abundance after changing the environment from a
medium containing lysine to one without lysine. The dots represent experimental data, while
the lines represent simulation results after fitting parameters Ao, and A.g for each promoter.

strain, the amplitude of intrinsic noise was significantly higher than that expected from
the trend line. Moreover, the noise amplitude in the dapDp reporter strain was slightly
smaller than the trend line predicted, even though the expression levels of GFP in lysAp
and dapDp strains were similar. Since only the difference between these two strains
is the promoter region upstream of gfp and thus transcription and translation kinetics
were identical, the difference in the noise characteristics should be due to promoter ac-
tivity dynamics. That is, this result strongly suggests that stochasticity in the promoter

activation process is a major source of noise in protein expressions in prokaryotes.
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Figure 3.11: The experimentally obtained relationship between protein abundance and the in-
trinsic noise amplitude. The solid line represents the relationship n2,, o z71.

3.3.4 Correlation between )\, ¢¢ and intrinsic noise

Next, to quantitatively evaluate stochasticity in the promoter dynamics, we performed a
simple stochastic simulation of protein expressions. The schematic representation of the
model is presented in Figure 3.5. As discussed above, the only difference among strains
was the variation in the promoter region upstream of the gfp gene. Therefore, the differ-
ences in protein abundance and the amplitude of intrinsic noise should be described by
the parameters \,, and A.¢¢, while other parameters (Aurua,Apro,Onrya, and d. in Fig-
ure 3.5) were set to identical values among the strains. Of course, the model presented
in Figure 3.5 contains only a simplified version of the process, and we have omitted
several complicated transcription and translation processes. However, this simplified
model helps us make a quantitative evaluation for the essential processes, especially for

the stochastic dynamics represented by parameters A., and \.::.

Let X1, X5, X3, N be the amounts of active promoters, mRNAs, proteins and plasmid

copy number, respectively. For the model in Figure 3.5, the amounts of active promoters,
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mRNAs and proteins can be calculated as follows:

dX
d—tl Z)\on X (N—Xl)—)\oﬂ" XXl,
X
% = AmrNA X X1 — dmrNa X X, (3.16)
X
S8 = o X X — Gyeo X X
The average number of the molecules at stationary state is:
N x A
X.) = 2V X Aon
< 1> /\on + /\offj
Am
(Xo) = 5 e (X1), (3.17)
mRNA
>\ ro
<X3> = 5P <X2>;
pro
Thus,
N /\on /\m )‘ ro
(Xa) = oo T mBNA X T (3.18)

. ()‘on + )‘off) X (6mRNA X 5pro)
The copy number of plasmids as set as 30(Lutz and Bujard 1997). Using the determined

AmRNA; Apro; dmrNA and &y, we simulated the correlation between expression and intrin-
sic noise for different A,¢. As it shown in the Figure 3.12, at same expression level, to
get the smaller intrinsic noise needs smaller \,s. We traced the number of active pro-
moter and mRNA with low and high A,s. The transcriptional bursting caused by slow

promoter kinetics was well visualized (Figure 3.13).

3.3.5 Data fitting

Using this model, we fitted the parameters )., and A.¢r of the model to reproduce
the experimentally obtained abundance of proteins and the intrinsic noise amplitude
shown in Figure 3.10 and Figure 3.14. In this experiment, we changed the culture con-
dition from a M9A medium containing L-lysine (0.3 mM) to one without L-lysine after
pre-culture. For simplicity, we assumed that the promoter dynamics have the same A
in the two environmental conditions, and changes in protein abundance and the intrin-

sic noise amplitude are represented by the change of the parameter A, between these
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Figure 3.12: The correlation between expression and intrinsic noise for different \.g.

environmental conditions. The fitting results of the protein abundance and the intrinsic
noise are also shown in the Figure 3.10 and Figure 3.14. As shown, the fitted results
showed good agreement with the experimentally obtained data. The fitted parameters
are shown in Table 3.8 with column header as ‘removal of L-lysine’. The fitted results
showed that lysC and dapD have high \,, and A\.s. In contrast, lysA has low A, and g,
indicating that the promoter transitions infrequently between active and inactive states.
The difference in the stochastic dynamics of the promoter activity might suggest that
the molecular machineries of activation and repression in the various promoter regions
have different characteristics. Moreover, the variation in noise amplitude among the
promoters might be linked to their different roles in the lysine biosynthesis pathway.
For example, as reported by Blake et al. (2006), increase in gene expression noise could

provide a significant selective advantage at high stress levels, while a strain with lower
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Figure 3.13: The transcriptional bursting caused by slow promoter kinetics.
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Table 3.8: Parameters used in simulation (min—!).

Addition of L-lysine Removal of L-lysine
Promoter Aongaov Aonomm  Moff  Aongsmy  Monoma Aoft
lysC 028 0.018 323 036 0.017 323
asd 021 0046 55 0.145 0.043 55
dapB 0.25 0.025 100 013  0.01 88
dapD 458  3.22 880 458 322 880
lysA 0.011 0.0025 0.70  0.013 0.004 0.825

noise would have greater fitness than the high-noise strain at low stress levels. Thus,
the larger noise amplitude in IysA expression might play a role in survival in severe en-
vironments. As reported in our previous study (Ou et al. 2008), it should be noted that
the parameters for stochastic promoter dynamics, A., and A.¢s cannot be obtained by
using the single-fluorescent reporter system, because the analysis of the intrinsic noise
in the protein expression requires a multi-color reporter system.

~ The finding of slower transition rate for the promoter lysA can provide a novel in-
sight into the source of stochasticity in the gene expression dynamics. In the expression
dynamics in prokaryotic cells, it was generally assumed that the translational bursting
is a dominant source of stochasticity in the process of expression (Keern et al. 2005),
while the transition of promoter activation are assumed to be enough fast and the
rate of transcription is almost constant. However, our result suggested that the at
least in lysA expression, the transcriptional bursting (Raser and O’Shea 2004, Ozbudak
et al. 2002, Blake et al. 2006) can be a dominant source of intrinsic noise. This finding
contributes to the further understanding of stochastic nature in the expression dynam-

ics.

3.3.6 Validation of the parameters

To evaluate the accuracy of parameter estimation, the same parameter values were ob-
tained by using data of an independent experiment. In that experiment, the change of

lysine concentration in the environment was in opposite direction to that used in Fig-
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Figure 3.14: Time series showing the intrinsic noise amplitude after changing the environment
from a medium containing lysine to one without lysine. The dots represent experimental data,
while the lines represent simulation results using the same fitting parameters as in Figure 3.5
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Figure 3.15: Time series showing GFP abundance and intrinsic noise amplitude after addation of
L-lysine into the culture media. The dots represent experimental data, while the lines represent
simulation results after fitting parameters A\, and Az for each promoter.

ure 3.10 and Figure 3.14, i.e,, the change of promoter activity was quantify when lysine
was added to the environment. The experimental and fitting results are presented in
Figure 3.15, and the parameter values estimated by using this experiment is also listed
in Table 3.8. As shown in the Table 3.8, the parameter values obtained by two indepen-
dent experiments showed a good agreement between each other. This result suggested

that the parameter estimation used in our study was enough accurate to evaluate the

stochastic dynamics of promoter activity.

3.3.7 Comparison between single and dual fluorescence experiments
results

Mathematical models are an essential tool in systems biology, linking the behavior of

a system to the interactions between its components. Parameters in empirical mathe-
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matical models must be determined using experimental data. As models are approx-
imations of reality, it is likely that more than one model fits the data to an acceptable
degree(Jagaman and Danuser 2006a).

As mentioned above, the promoter strength of genes involved in lysine biosynthesis
pathway were described by two different model with different parameters. The model
used in single fluorescence reporters are simple and that used in dual-fluorescence sys-
tems can involve the information of biological noise. Both of them can fit the expression
data well. Here come the questions, is there any relationship between the two group pa-
rameters? Are they consistent with each other? Or do they contradict with each other?

In single fluorescence experiments, we used Michaelis-Menten-type model to fitting
the data (Equation (2.2)). The average number of the molecules at stationary state can

be obtained as

dlp) 1
i - PTYROE o(p)
1
= ﬁmm — a(p) (3.19)
3 1
)= X T ROk

We already got the average protein number at stationary state in dual-fluorescence sys-
tem (Equation (3.18)).

N x )\on X )\mRNA X )\pro

Xa) =
( 3> (/\On + /\off) X (5mRNA X 5pro)

(3.20)

As we know, the @ & d,r and in both systems, the expression level should be similar

({p) x (X3)). If we set

B=Cxw;C:Nx)\—m%\I—AR—:%r—° (3.21)
Thus,
w Aon
(p) x (X3) = (3.22)

T+ R@)/K:  don + don
Then we get the correlation between the two groups of parameters. We can determine

the maximal promoter activity (3) and repression coefficient(k;) by the parameters of .,
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Table 3.9: repression coefficient(k;)

gene single-fluorescence dual-fluorescence

lysC 1.6 0.046
asd  0.55 0.40
dapB  0.69 0.63
dapD 298 2.26
lysA  0.22 0.29

and \.g. After calculation, the results are shown in Table 3.9 and Table 3.10. From the
results, except lysCp, all the k; are consistent with each other and there is a constant ratio
in 4. As we know, the maximal we got from the single fluorescence experiments are not
the real number of proteins but the green fluorescent intensity. So this constant ratio in-
dicates the fluorescent intensity per GFP in single fluorescence experiments. However,
in the dual-fluorescence simulation, the fluorescent intensity per GFP is set as 10, which
is smaller than the ratio(15.43+2.26) we got here. This is caused by the difference in
treating with the self-fluorescence background. In single fluorescence experiment, we
directly substrate the background from the intensity data, while in dual-fluorescence
systems, we simulated the background in Gumbel distribution(minimum). This differ-
ence will lead the distance of the fluorescent intensity between different culture condi-
tion larger in single fluorescence experiments. And the larger distance will increase the
maximal promoter activity. The result of GFP expression controlled by lysCp was too
close to the background as determined by flow cytometer. This background noise may
interfere with the signal. So the result of lysCp still need discussion. The parameters
for the same promoter we got from single fluorescent experiments and dual-fluorescent
system were compared to find the correlation between them. The validity of parame-
ters of promoter strength determined by dual-fluorescence system was verified by the
results gotten from single fluorescence experiments. This result tells the parameters of
promoter strength we got from dual-fluorescence system can include the information

gotten from single fluorescence experiments.
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Table 3.10: maximal promoter activity(3)

gene single-fluorescence dual-fluorescence ratio

lysC  14.4 2.19 6.57

asd 68.2 5.18 13.17

dapB  46.3 2.90 15.94

dapD 152.2 10.19 14.93

lysA  570.1 30.55 18.66
15.43+2.26

3.3.8 Application of dual-fluorescence system

To discuss the stochasticity in more complex regulatory systems, the first problem is that
how to detect the noise in comparable system. If we construct all the regulatory circuits
in one plasmid, we need lots of reporter fluorescence as much as the number of genes in
the regulatory circuits. Not only multiple fluorescence proteins but also separating them
by single cell analysis are problem. Another method is that we construct only one gene
in the regulatory circuits in one plasmid and make a group of such kind of plasmids.
By this method, the dimension of the circuits becomes unlimited. The dual-fluorescence
system is based on this method. There is an endogenous control in each plasmid (the
rfp controlled by P, P;) to make the system comparable and the distinguishing intrinsic
from extrinsic noise possible. This feature provides the possibility to analyze the big

complex metabolism network in system level.

The dual-fluorescence system, which includes two parts: the vector pGRFP and sim-
ulation tool, was well developed for the promoter strength analysis. The pGRFP vector
contains two distinguishable fluorescent report genes. It can separate the intrinsic noise
from extrinsic noise for target promoter. By fitting the expression of gfp and the noise
of the expression, the simulation tool, which is based on a stochastic formulation of
chemical kinetics derived by Gillespie, can easily get appropriate \,, and ¢ for the tar-

get promoter. This system can be used for enriching the acknowledge of endogenous
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promoters and complex regulation network. It is helpful for recovering the relation-
ship between promoter sequence and promoter strength, which is impossible because
of lacking data(Wray et al. 2003). Because the \,, and Ao also contain the information
about the possibility of transcriptional bursting noise, the promoter strength gotten by

this system also can be used for further noise analysis and prediction.

3.4 Conclusion

The dual-fluorescence system for promoter strength analysis was developed. This sys-
tem includes two parts, the vector pGRFP and simulation tool. The reporter strains
is constructed by cloning the promoter region of target genes into pGRFP vector. The
green and red fluorescent intensity of the reporter strains is analyzed by flow-cytometry
in order to get the expression and noise of gfp and rfp. The intrinsic noise of the pro-
moters is determined by subtracting extrinsic noise from the total noise. After that the
simulation tool is used for getting appropriate A,, and g by fitting the expression and
noise based on Gibson’s Next Reaction Method algorithm.

We applied this system to analyze the \,, and A, of promoters involved in lysine
biosynthesis. Time-dependent experiment was performed after changing the culture
condition (L-lysine presence and L-lysine absence). The dynamic change in expression
and noise of five promoters, which respond to the L-lysine shifting, was fitted well by
a group of Ao, and Aog. We found that lysAp has low A, and M. The slow transitions
between promoter states of lysAp indicates the transcriptional bursting also can be a
source of noise in prokaryotic cells.

The dual-fluorescence system firstly introduced the biological noise into the pro-
moter strength analysis and it can provide appropriate A, and Ao for target promoter.
This system can be easily used for strength analysis of grouped promoters in an en-

dogenous regulation network. The parameters of Ao, and Aor can not only describe the
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activation of repression by a given factor but also provide information about the biolog-
ical noise for the promoter. This will help us to understand the initiation of transcription

in a quantitative way and to predict the possible level of mRNA.






Chapter 4

General conclusion

ystems biology is an approach to biology that seeks to understand and predict the
S quantitative features of a multicomponent biological system (Kitano 2002, Hartwell
et al. 1999, Jagaman and Danuser 2006b). However there is still lack of powerful tech-
nique for acurrate comparable analysis of complex endogenous networks. Followed
the deepened research in biological noise, there is a need to develop experiment in the
study of promoter strength with the stochasticity property in more complex regulatory
systems, particularly endogenous gene networks (Kern et al. 2005). In order to con-
duct a transition form a descriptive to a quantitative understanding, which can assign
kinetic parameters that capture the dynamics of the network within both deterministic
and stochastic model, in endogenous regulation network of Escherichia coli, we tried to

perform the single-cellular analysis in lysine biosynthesis.

In Charpter 1, the background and significance of the research was described. Sys-
tems biology requires quantitative description of endogenous regulation networks to
construct appropriate models which can make predictions about the behavior of the in-
teracting networks. Promoter strength plays a key role in driving gene transcription,
which, in turn, cause fluctuation in the interacting networks. The clear background
of lysine biosynthesis pathway makes the activation analysis of promoter involved in
lysine biosynthesis a good sample involving biological noise in systems biology. Time-
dependent experiments was employed in this study because it can result in wealth of
information, which makes the model construction feasible. Using flow cytometry, a

comprehensive quantitative description of activation of promoters involved in lysine
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biosynthesis was analyzed at single cell level.

In Charpter 2, by single fluorescence experiments, we investigated the expression
dynamics of genes involved in lysine biosynthesis in E. coli cells to obtain a quantitative
understanding of the gene regulatory system. By constructing reporter strains express-
ing the green fluorescence protein gene(gfp) under the control of the promoter regions
of those genes associated with lysine biosynthesis, the dynamic behavior of promoter
activation was well visualized and quantitatively analyzed by flow cytometry. Accord-
ing to the fitting parameters within a deterministic model, dapD shows a significantly
larger coefficient of repression than the other genes in the lysine synthesis pathway,
which indicates the weak binding activity of the repressor to the dapD promoter region.
Moreover, there is a trend that the closer an enzyme is to the start of the lysine biosyn-
thesis pathway, the smaller its maximal promoter activity is. The results provide a better
quantitative understanding of the changes in promoter activation over time in the lysine
biosynthesis pathway.

In Charpter 3, a dual-fluorescence system for promoter strength analysis was devel-
oped to involve the biological noise information. This system includes two parts, the
vector pGRFP and simulation tool. By fitting the expression and intrinsic noise get-
ting from pGRFP vector, simulation tool can easily get appropriate transition rate of the
activation/inactivation state, A\, and A.g, for the target promoter based on a stochastic
formulation of chemical kinetics derived by Gillespie. Multiple thread is used to increase
the simulation efficiency for such big amount particles (e.g., 20,000 cells). A new meth-
ods in treating with self-fluorescence background was introduced. This background of
the self-fluorescence was simulated as Gumbel distribution (minimum). During sim-
ulation, this background of self-fluorescent intensity was directly added to fluorescent
intensity from fluorescent proteins and contributed to the noise calculation same as in
experiments. Our algorithm developed Gibson’s Next Reaction Method algorithm by

simulating the process same as experiments, which includes the transfer point in cul-
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ture condition and dual-fluorescent protein genes in one cell. We applied this system to
analyze the kinetics of promoters involved in lysine biosynthesis. We found that lysAp
has low Ao, and A.g. The slow transitions between promoter states of lysAp indicates

the transcriptional bursting also can be a source of noise in prokaryotic cells.

In conclusion, an experimental and data-analysis technique for quantitative and
comparable analysis of promoter activation at single cell level for endogenous regu-
lation networks is developed. The single fluorescence experiments can determine the
kinetic parameters within a deterministic model of the regulation network by using ac-
curate promoter-activity measurements. These parameters can be used to compare the
difference among different promoter involved in one biosynthesis pathway. The dual-
fluorescence system firstly introduced the biological noise into the analysis of promoter
strength in endogenous metabolic network and it can provide appropriate A,, and Ayg
for target promoter. This system can be easily used for strength analysis of grouped
promoters in an endogenous regulation network. The parameters of A,, and A,s can
not only describe the activation of repression by a given factor but also provide infor-
mation about the biological noise for the promoter. This will help us to understand
the initiation of transcription in a quantitative way and to predict the possible level of
mRNA. It also provides the possibility to analyze the big complex metabolic network in

system level.

The transition from a qualitative to a quantitative understanding of promoter ac-
tivation involved in lysine biosynthesis in E. coli was conducted. The results provide
a better quantitative understanding of the changes in promoter activation over time
in the lysine biosynthesis. Previous The parameters within a deterministic model can
provide the possibility in accurate prediction of lysine biosynthesis in metabolic engi-
neering when the cells face different concentration of lysine. The significantly higher
intrinsic noise in lysA indicates the transcriptional bursting also can be a source of noise

in prokaryotic cells. This finding contributes to the further understanding of stochastic
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nature in the expression dynamics. As reported by Blake et al. (2006), increase in gene
expression noise could provide a significant selective advantage at high stress levels.
The further finding of transcriptional bursting by using the dual-fluorescent system in
other metabolic network can help us to understand the importance of the gene in evo-

lution.
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Appendix A

Appendix: Biological Noise

A.1 What is biological noise?

Traditional population-averaged measurements would summarize the entire histogram by its
mean value (P(t)) (brackets represent the population average) at time ¢, however, the single-cell
measurements (such as flow cytometry) show that the expression level (P(t)) at time ¢ varies
from cell to cell. These fluctuations in the amount of protein product are the result of fluctua-
tions in the rates of transcription and translation of its gene. In order to descript the stochastic
or nosiy process of gene expression, coefficient of variation, a conception in mathematics and
statistics, was employed. In probability theory and statistics, the coefficient of variation (CV) is
a normalized measure of dispersion of a probability distribution. It is defined as the ratio of the
standard deviation to the mean,

_ StandardDeviation

V= ExpectedReturn
_ vD(X)
= "B (A1)

_ VEXT - EX)?
E(X)

;where E(X) is expected return and D(X) is the deviation. A natural and biologically relevant
measure of the magnitude of gene expression noise is thus the size of protein fluctuations com-
pared to their mean concentration. Then the noise, n(t), is given by

(P2 — (P(1)?
PO (A.2)

, where the angled brackets denote an average over the probability distribution of P(¢) at time t.

n’(t) =

A.2 What are the commponents of biological noise?

Typically the source of the noise is separate into two ways, intrinsic noise and extrinsic noise.
The inherent stochasticity of biochemical processes such as transcription and translation gener-
ates “intrinsic” noise, denoted 7int, which fundamentally limits the precision of gene regulation.
Such stochastic effects are set locally by the gene sequence and the properties of the protein it
encodes. In addition, fluctuations in the amounts or states of other cellular components lead
indirectly to variation in the expression of a particular gene and thus represent “extrinsic” noise,
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denoted 7jex¢. Thus, extrinsic sources of noise arise independently of the gene but act on it. Such
stochastic effects are controlled by the concentrations, states, and locations of molecules such as
regulatory proteins and polymerases, and so on. The extrinsic noise is global to a single cell but
vary from one cell to another.

A.3 How to describe the two types of noise?

To examine the noise for a particular gene across a cell population, let the intrinsic and extrinsic
variables for that gene be given by vectors I and E, each of whose components represent a dif-
ferent source of noise. The expression level of the gene in one cell, as measured experimentally,
is denoted P, (with % a cell label). From a snapshot of IV genetically identical cells, the Pys can be
averaged to find the moments of the protein distribution. This averaging process is equivalent

to
N

LS pra / P™(B, Dp(EDdBdl (A.3)

Here p(EI) is the probability density function for the intrinsic and extrinsic variables, and
P(E,I) is the measured expression level for particular values of E and I. Using the product
rule of probabilities, this becomes

N
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The second integral is an average over the intrinsic variables with the extrinsic variables held
fixed and shall be denoted by angled brackets:

-

(Pm(B)) = [ alPm(E.Dp(TE) (A5)

Averages over the extrinsic variables will be indicated with an overbar, so that Equation (A.4)
becomes

L
]—V‘ZPIT:<PIT> (A.6)
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That is, an average over both intrinsic and extrinsic noise sources.
Hence, the measured noise, 701, defined empirically by
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is equivalent to
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This can be written as
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Here, the averages over the extrinsic variables are indicated with an overbar. In another word,

there are only intrinsic variables indicated by (P2) — (P)2/ ( )) The intrinsic noise, 7y, is

proportional to the variance of the intrinsic distribution, calculated for a particular value of
the extrinsic variables and then averaged over all possible valuses of these variables. And The
extrinsic noise, 7ext, vanishes as extrinsic distributions become more and more spiked. That is
to say, the square of the experimentally measurable noise is a direct sum of the intrinsic, 7in,and
extrinsic, next, contributions.

A4 How to calculate the exirinsic noise and intrinsic
noise in dual-fluorescence system?

As reported by M.B. Elowitz et al., intrinsic noise and extrinsic noise can be measured and dis-
tinguished with two genes controlled by identical regulatory sequences. Consider what would
happen if two identical copies of the gene were present in the same (k**) cell, and their protein

products, labeled P,gl) and P,EZ), were measured simultaneously. These will have different values
of the intrinsic variables, but, because both are present in a single cell, they will be exposed to the
same intracellular environment and so have the same value of the extrinsic variables. Therefore,
by summing their product, we obtain

N
N PR ~ [[[ PE.R)PE B ERE)ELaT,
k=1
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, precisely the average needed. And similarly we obtain
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Experimentally, two distinguishable variants of fluorescent protein, corresponding to P{(})) and

- N2
P(2), would allow estimation of {P)2 and ((P)) . We can calculate the extrinsic noise (Equation
(A.9)) shared by the two protein by
o \2
, PP (1P)
Mext = — 2
() (A.14)
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In dual-fluorescence systems, there are two distinguishable fluorescent proteins, GFP and RFP.
The two proteins are products of two fluorescent protein genes, rfp-T4 and gfpuv5, which are
obtained from the plasmids pPROLar-GFPuv5 and pQE31-T4 separately. The rfp-T4 is controlled
by a strong constitutive promoter P;,Pr and terminated by t0 from pCL476, where the gfpuv5
is controlled by the target promoter in which we are interested. If the i*" element of vectors r
and g contain the average RFP or GFP intensity, respectively, of the i*" cell in the sample and

angled brackets denote means over the cell population, the extrinsic noise (Equation (A.14)) in
the dual-fluorescence systems can be rewritten as

Text =0 g)

, and as the definition of noise (Equation (A.7)), the total noise for target promoter can be ob-
tained by

2 (rg)—(r){g) (A.15)
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The intrinsic noise of target promoter can be calculated by subtracting extrinsic noise from the
total noise.

T]i2nt = 77t20t - 77e2xt (A17)






Appendix B

B.1

FCSGettingPeakOu

B.1.1 getPeak.cpp

#include
#include
#include
#include
#include
#include
#include
#include
#define
#define
#define
#define

<origin. k>

<page.h>
<wksheet . k>
<data.h>

<graph.h>
<NAG\OCN.g01. h>
<math. k>

<string .h>

hQ 0.4829629131445341
h1l 0.8365163037378079
h2 0.2241438680420134
h3 —0.1294095225512604

string o.fcounts (}

//creat a new worksheet to store all the LOG GFP
Worksheet wks;

wks. Create (} ;

string wksName="fGFP”;

wks. GetPage () . Rename (wksName) ;

string bName;

int colNum=2;

string total=",”;//to set a counter for killing the noise dataset.

Project prj;

PageBase pg:;
Collection<PageBase>pgcoll;
foreach (pg in pgcoll)

{

bName = pg.GetName() ;
total=total+”,”+bName;
Worksheet o.wks (bName) ;
wks . AddCol{” co” +bName) ;
Dataset dsx;

if (dsx.Attach{bName, 4))

Dataset dss;
if (dss.Attach(wks.GetPage () .GetName (), colNum))

dss=dsx;
colNum++;

//
1

Appendix: Source code

}
}

{{creat column to store xpeak, hWidth, and area.
wks. AddCol(“xc”);

wks. AddCol( “mean”) ;

wks . AddCol("hWidth”) ;

wks. AddCol(”sd2");

wks. AddCol(”area”);

wks. AddCol("gzero”);

wks. AddCol(“cv”);

wks . AddCol(”cv1”);

//create graphpage to draw the raw data.
GraphPage r.grph;

r_grph.Create (NULL, CREATE.VISIBLE SAME) ;
r-grph . Rename(”rdata”);

int timer;

int ytemp=0;

string cName;

int flag=0;

if (wks.GetNumCols () <25)
flag=1;

for (int i=0;i<wks.GetNumCols() —11;i++)
{
Worksheet c.nwks;
c_nwks. Create () ;
timer=ix*6;
ifli<?)
timer=i%10+i*5xflag;
else
timer=(i—6)%15+6x10+6x5xflag ;
cName=wksName+timer;
c.nwks . GetPage () . Rename (cName) ;
Dataset dsRaw{wksName, i+2};
int rowNum=dsRaw . GetSize () ;

Dataset idxData(cName,0) ;
Dataset freqData(cName,1);
double xmax, xmin;

int sucess;

int num-.class = 1024;

int iclass = 0;

int n = rowNum;



}

}

return

Nag_ClassBoundary iclass_enum;
iclass_enum = Nag.ClassBoundaryUser;
vector<double>a = dsRaw;
vector<double>c;

c.SetSize(1024);

for (int 2=0;2<1024;z++){c[z]=2+1;}
vector<int>ifreq;

ifreq.SetSize (1024);

sucess = nag-frequency_table(n, a, num.class, iclass_enum, c, ifreq,

&xmin, &xmax );
//write the result back to the worksheets.
freqData = ifreq;
for (z=0;2<1024;z++){c[z]=2;}
idxData = ¢;
//plot the fGFP
ytemp=o_plot(cName, timer , ytemp) ;
//copy peak hWidth and area to worksheet fGFP.
cdata (cName, i, timer) ;

total;

int o_plot(string sName,int i,int ytemp)

string sA=sName+”_A”;

string sB=sName+”_B”;

string sC=sName+” _Result”;

Worksheet wks(sName) ;

Dataset sdata(sB);

string timer="raw”+i+”min”;

int raw=wks. AddCol(timer);

Dataset daRaw(sName,raw);

daRaw=sdata ;

//do wavelet smooth.

daub(sB);

daub(sB);

invDaub(sB);

invDaub(sB);

wks. AddCol(”Result”); //Create a column for results
//do FFT smooth
LT.execute(”curve.reset()”); //initialize
LT.execute(”curve.data\$.=."+sB);

LT _execute ("curve. result\$_=."+sC);
LT_execute(”curve.il.=.10");
LT_execute(”curve.i2_=_"+sdata. GetSize () };
LT_execute(”curve.smoothpts.=.25");
LT_execute(”curve.derivdeg.=.1");
LT_execute(”curve . FFTSmooth()”);

int ymax=f.peak (sName) ;

//draw the similation graph.

GraphPage grph;

grph. Create (NULL, CREATE_VISIBLE_ SAME) ;

grph. Rename(” gr”+sName) ;

Curve cc(sA, sName+” _”+timer);

Curve dd(sA, sC);

lay . AddPlot(cc, IDM_PLOT.LINE);

int nPlot = lay.AddPlot(dd, IDM_PLOT.LINE);

lay. DataPlots{(nPlot). SetColorRGB(0xFF,0,0);// make a red curve
resetY (ymax,” gr”+sName) ;

GraphLayer rawlay(”rdata”);
int rPlot = rawlay.AddPlot(cc, IDMPLOT.LINE};

if (ymax>ytemp)

resetY (ymax, “rdata”);
else

ymax=ytemp ;
return ymax;

}
void daub(string sB)
{
Dataset y(sB);
int n=y.GetSize();
vector<double>a;
a.SetSize(n);
int i, j;
int half = n/2;
vector<double> tmp;
tmp. SetSize (n);
a=y;
al0l=a[1];
for (i =0, j =0; j<n=3j+=2, i++) {
tmp[i] = al[j]+*h0 + a[j+1]*h1 + a[j+2]*«h2 + a[j+3]«h3;
// tmplivhalf] = aljl«h3 — alj+11xh2 + alj+2]xhl — alj+3]xh0;
tmp[i+half] =0;
}
tmp[i} = a{n—2]xh0 + a[n-1]xh1 + a[0]*h2 + a[1]xh3;
/! tmpli+vhalf] = aln—2]xh3 — aln—1]xh2 + al0)«h1 — a{l1]xh0;
tmp{i+half] =0;
y=tmp;
}

void invDaub(string sB) {
Dataset y(sB);
int n=y.GetSize();
vector<double> a;
a.SetSize(n);
int i, j;
int half = n/2;
vector<double> tmp;
tmp. SetSize(n);

a=y;
tmp(1]= a[half ~1]xh2 + a[n—1)xhl + a[0]+h0 + a[half]«h3;
tmp[2]= a[half —1}xh3 — a[n—1}*h0 + a[0]«hl — a[half]xh2;
for (i =0, j = 2; i< half =1; i++) {
tmp[j++] = ali]*xh2 + a[i+half]*hl + a[i+1]*h0 + a[i+half+1]xh3;
tmp{j++] = a[i]*h3 — a[i+half]*xh0 + a[i+1]*hl — a[i+half+1]*h2;
y=tmp;

}

int f_peak(string sName)

Worksheet wks(sName) ;
wks. AddCol(” Baseline”);
wks. AddCol(”IntRes”);
wks . AddCol(“Peak”);

BOOL bErr;
Curve cvMyCurve( sName+”_A”, sName+” _Result” );
curve object to integrate

Curve cvMyBaseline ( sName+”_A”, sName+” .Baseline”
y

curve object of integration baseline
IntegrationResult irMyResults;
structure to store integration results

// Create
) // Create

// OriginC
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Dataset dsCumlIntRes( sName+”_IntRes” ); // Cumulative

integration result
dsCumlIntRes. SetSize ( cvMyCurve. GetSize () );
of dsCumlniRes to size of cuoMyCurve

bErr = Curve.integrate( &vMyCurve, &irMyResults , &cvMyBaseline, &

dsCumlIntRes, TRUE ); // Perform integration
Dataset res(sName+”_Peak”);

int iSize;

Dataset dsInd(wks,0});

Dataset dsRaw(wks,2);

Dataset dsDataln(wks,4);
dsDataln=dsRawxdsInd ;

iSize=dsDataln. GetSize () ;

double suml=0;

double sum2=0;

for (int i=0;i<iSize;i++) { suml=suml+dsDataln[i L}
for (i=1;i<iSize;i++) { sum2=sum2+dsRaw]i 1}
BasicStats bsStat;

bsStat.mean=suml/sum2;

double sigma=0;

double count=0;

for (i=1;i<iSize;i++)

sigma=dsInd[i}]-bsStat .mean;
sigma=sigmax*sigma;
sigma=dsRaw [ i]*sigma;
count=count+sigma;

}
bsStat.sd=count/sum2;

vector<double>a;
a.SetSize (7);
a[0]=irMyResults . xPeak;
a[1]=irMyResults . yPeak;
a[2]=irMyResults . Area;
a[3]=irMyResults . dxPeak;
af4]=wks.Cell(0,2);
a[5]=bsStat.mean;
a[6]=bsStat.sd;

res=a;

int y=(int)irMyResults. yPeak;
return y;
}

void resetY (int y_value, string gName)

GraphLayer glay (gName) ;
string str;

str.Format(”layer.x.from=\%d;layer.x.to=\%d;”, 0, 1024);

glay . LT_execute(str);

str.Format(”layer.y.from=\%d;layer.y.to=\%d;”, 0, y-value+50);

glay.LT_execute(str);

}

void cdata (string sName, int i, int timer)
{
Dataset sData(sName+” _peak”);
Worksheet r-wks ("fGFP”) ;
int Col=r.wks.GetNumCols () —8;
r.wks. SetCell(i, 0, timer);
r.wks.SetCell(i, Col++, sData[0});
r.wks.SetCell(i, Col++, sData[5]);
r.wks.SetCell (i, Col++, sData[3]);

}

r.wks.SetCell (i, Col++, sData[6]);

r.wks.SetCell (i, Col++, sData[2]);

r.wks.SetCell (i, Col++, sData[4]);

r.wks.SetCell (i, Col++, sData{3]/sData[0]);

r.wks. SetCell (i, Col, sDatal6]/(sData[5]=sData[5]));

void plot.peak.width()

}

GraphPage grph;

grph. Create (NULL, CREATE.VISIBLESAME);
grph.Rename(”PeakWidth"};

GraphLayer lay (grph.GetName() ) ;

string sA="fGFP.A";

string sB="fGFP.xc”;

string sC="fGFP_hWidth”;

Curve  cc(sA, sB);

Curve dd(sA, sC);

lay . AddPlot(cc, IDM.PLOT.SCATTER) ;

int nPlot = lay.AddPlot(dd, IDM_PLOT.LINE);

lay . DataPlots (nPlot) . SetColorRGB(0xFF,0,0) ;

string str;

str.Format(”layer .x.from=\%d; layer .x.to=\%d;”, -5, 185);
lay .LT_execute(str);

str.Format(”layer .y.from=\%d; layer.y. to=\%d;”, 100,1000);
lay .LT.execute(str);

lay.LT_execute(”layer.y.type=2;");

void plot_cv_zero(string gName, int flag)

}

GraphPage grph;

grph. Create (NULL, CREATE.VISIBLE.SAME);
grph. Rename (gName) ;

GraphLayer lay (gName) ;

string sA="fGFP_A”;

string sB="fGFP_"+gName;

Curve cc(sA, sB);

lay . AddPlot(cc, IDM_PLOT.SCATTER) ;
string str;
str.Format(”layer.x.from=\%d; layer.x. to=\%d;”, -5, 185);
lay . LT_execute(str);

if(flag)

{

str.Format(”layer.y. from=\%d; layer.y.to=\%d;”, 0,1);

¥

else

str.Format(”layer.y.from=\%d; layer.y. to=\%d;”, 0,6000);

lay . LT_execute(str);

void getstart()

{

string sName="fGFP”;
Worksheet wks(sName) ;
Dataset res(sName+”_xc”);
Dataset tag(sName+”.B");
int n=res.GetSize();

wks. AddCol(“FFTres”);

//do FFT smooth

LT.execute (“curve.reset()”); //initialize
LT_execute(”curve.data\$_=."+sName+"” _xc”);
LT.execute(”curve. result\$.=."+sName+” _FFTres");
LT _execute(”curve.il._=.0");

nOyvagSu199s04 ‘1'd
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LT.execute(”curve.i2.=."+n);
LT_execute (“curve.smoothpts.=.3");
LT.execute (“curve.derivdeg.=.1");
LT.execute (”curve.FFTSmooth()”);

Dataset sdata(sName+” _FFTres”);

vector<double>a;
a.SetSize(n);
al0]=0;
for (int i=0;i<n—2;i++)
{
ali+1]=sdatali+1]—sdata[i];
}
tag=a;

GraphPage grph();

grph. Create (NULL, CREATE_VISIBLE SAME};
grph.Rename(” gfpshift”);

GraphLayer lay(”gfpshift”);

Curve cc(”fGFP_A” ,"fGFP_B”);

lay . AddPlot(cc, IDM_PLOTSCATTER);

lay . LT.execute(”Rescale;”);

string gName="fcm”;

Project prj;

PageBase pg;
Collection<PageBase>pgcoll;
foreach (pg in pgcoll)

{

pg. Destroy () ;
}

LT.execute(”run. file (openExcel)”);
string nn=o.fcounts():
plot_peak_width () ;
plot_cv_zero("cv” ,1);
plot_cv_zero(”gzero”,0);
getstart ();

Page pp = Application.Pages(1);
string strFile=pp. Label;
if(strFile.IsFile(}))
{
string strFolder=GetFilePath(strFile);
string strName=strFolder;
strName . TrimRight ("\\");
string strNamel=strName. Right(2);
string conl=strNamel.Left(1);
string con2=strNamel.Right(1);
string from, to;
if (conl.Replace(’1",'2"))
from="0.3";
else from=conl;
if (con2.Replace(’1",°2"))
to="0.3";
else to=conZ;
strName . TrimRight (”\\”+strNamel) ;
string strName2=strName . Right(4) ;
string rawlabe]:strNameZ+"..lysine.~from._”+from+”nivl_to_.”+to+"nM’,'

GraphLayer lay(“rdata”);
lay . GroupPlots (0, lay.DataPlots .Count());

lay . LT.execute(”lab —d_800.400..("+rawlabel+”}”};
lay . LT.execute ("legend”);

// Project.Save(strFolder+gName+".opj”};
out_str(”save.”+strFolder+gName+”.0pj”);

// Project. LT execute(”save "+strFolder+gName+” opj”

}

//kill the source data because it is too large.
for(int i=2;i<on.GetNumTokens(’, ) —1;i++)

{
string pgName=nn.GetToken(i, ,");
Worksheet wks(pgName) ;
wks. Destroy () ;

}

}

B.1.2 openExcel.ogs

fdlog .ShowComment = 0;

fdlog . UseGroup{ Ascii);

fdlog . UseType (XLS) ;

if (fdlog.MultiOpen() != 0/0)

for (ii=fdlog.MultiOpen.Count; ii >=L ii—-)

win —t data Origin;
FDlog. Get(A, ii);
open —w %A;

B.2 FCSMultiOu
B.2.1 fcmdata.h

#ifndef FOMDATAHH
#define FOMDATAHH
class fcmData

public:
unsigned int fs;
unsigned int ss;
unsigned int fslog;
unsigned int sslog;
unsigned int gfplog;
unsigned int gfplin;
unsigned int rfplin;
unsigned int rfplog;
int flag;
float gip;
float rfp;
femData ()
{

flag=1;

gip=0;

rip =0;
}:

#endif
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B.2.2 fcm.h

#ifndef RCM.HH
#define KM HH
#pragma once

#include

”fcmdata . h”

#include <math.h>

class fcm

public:

femData *fcmdata;

int size;

int redEvents[1024];
int greenEvents[1024];
int sslogEvents[1024];
int fslogEvents[1024];
int i;

fcm(void)

)
fem(int dataSize, unsigned int =datalist)

int j;

size=dataSize;

fcmdata=new fcmData|dataSize /14);
for(i=0,j=0;i<dataSize /16;1+4)

femdata(i ). fs=datalist[j++];
femdata[i]. ss=datalist]j++];
femdata[i]. fslog=datalist[j++];
femdata[i]. sslog=datalist[j++];
femdata[i]. gfplog=datalist[j++];
fcmdata{i]. gfplin=datalist{j++];
femdata[i]. rfplin=datalist [j++1
femdata[i]. rfplog=datalist [j++1;

}
int getTotalEvents ()

int events=0;
for(i=0;i<size /16;i++)

if (fomdata[i]. flag)
events++;

}

return events;

}

void redCount(int step)
for(i=0;i<1024;i++)
{redEvents[i]=0;}
for(i=0;i<size /16;1++)
if (femdatali]. flag)
{
redEvents ((int) (femdata[i]. rfplog)[++;
}
}

for(int i=0;i <(1024/step);i++)

{
int events=0;
for{int j=0; j<step; j++)
{
events+=redEvents [step*i+j];
redEvents[i]=events;
}

}

void greenCount(int step)
for (i=0;i <1024;i++)
{greenEvents[i]=0;}
for(i=0;i<size /16;i++)

if (femdata[i]. flag)
{

greenEvents [(int) (femdata(i]. gfplog)J++;

}
for(int i=0;i<(1024/step);i++)
{

int events=0;
for(int j=0; j<step; j++)

events+=greenEvents|step*i+j];
greenEvents[i]=events;
}
veid sslogCount(int step)
for(i=0;i<1024;i++)
{sslogEvents[i]=0;}
for(i=0;i<size /16;i++)
if (femdata[i]. flag)
{

sslogEvents [(int) (femdata[i]. sslog)|++;

N }
for(int i=0;i <(1024/step);i++)
{

int events=0;
for(int j=0; j<step; j++)
{

events+=sslogEvents[stepxi+j];
sslogEvents[i]=events;
}
void fslogCount(int step)
for(i=0;i<1024;i++)
{fslogEvents[i]=0;}
for(i=0;i<size /16;i++)
if (femdata[i]. flag)
{

fslogEvents [(int) (fcmdatali]. fslog)]++;
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for(int i=0;i1<(1024/step);i++)
{

int evenls=0;
for(int j=0; j<step; j++)
{

events+=fslogEvents[stepxi+j];
fslogEvents[i]=cvents;

}

int getFSPeak ()

{
int peak=0;
int peakV=0;
fslogCount (1) ;
for(i=0;i<1000;i++)

if (peakV<fslogEvents[i])
{

peakV=fslogEvents[i];
peak=i;
}
}
return peak;

}

int getSSPeak ()

{
int peak=0;
int peakV=0;
sslogCount (1) ;
for(i=0;i<1000;i++)

if (peakV<sslogEvents[i])

peakV=sslogEvents[i];
peak=i;
}
}
return peak;

}

float meanred (}
{
float sum=0;
float meanred=0;
int counter=0;
for(i=0;i<size /16;i++}

if (fcmdata[i]. flag)
{

sum+=fcmdata[i]. rfp;
counter++;

¥

if (counter) meanred=sum/counter ;
return meanred;

I
float meangreen()
float sum=0;

float meangreen=0;
int counter=0;

for(i=0;i<size /16;i++)
if(fcmdata[i]. flag)
{

sum+=fcmdatali]. gfp;
counter ++;

}

if (counter) meangreen=sum/counter;
return meangreen;

}
float meandif()

float sum=0;

float meandif=0;

int counter=0;
for(i=0;i<size /16;i++)

if (fcmdata[i]). flag)
{

sum+=(femdata[i]. rfp—femdata[i]. gfp) *(femdata[i]. rfp
—femdata(i]. gfp);
counter++;

}

if (counter) meandifssum/counter;
return meandif;

float meansqr()
{
float sum=0;
float meansqr=0;
int counter=0;
for(i=0;i<size /16;i++)

if (fcmdata[i]. flag)
{

sum+=(fcmdata[i]. rfp+femdatali]. rfp) +(femdatafi]. gfp
+fcmdata[i]. gfp);
counter++;

}

if (counter) meansqr=sum/counter ;
return meansqr;

float redmeansqr()
float sum=0;
float meansqr=0;
int counter=0;
for(i=0;i<size /16;i++)
if (femdata[i]. flag)
{

sum+=(fcmdata[i]. rfpxfemdatali]. rfp);
counter++;

}

if (counter) meansqr=sum/counter;
return meansqr;

float greenmeansqr()

float sum=0;
float meansqr=0;
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int counter=0;
for(i=0;i<size /16;i++)

if (fomdata[i]. flag)
{

sum+=(fcmdata[i].gfpxfcmdatali]. gfp);
counter++;

}

if (counter) meansqr=sum/counter;
return meansqr;

float meanmul()

}

float sum=0;
float meanmul=0;
int counter=0;
for(i=0;i<size /16;i++)
{
if (femdata[i]. flag)

sum+=fcmdata[i]. rfpxfemdatali]. gfp;
counter++;

}

if (counter) meanmul=sum/counter;
return meanmul;

float intNoise()

{

}

float intNoise;

float meandif;

float meanred;

float meangreen;

meandif=fcm :: meandif () ;

meanred=fcm :: meanred () ;

meangreen=fem :: meangreen () ;

return intNoise=meandif /(2* meanred*meangreen) ;

float extNoise()

{

}

float

{

float extNoise;

float meanmul;

float meanred;

float meangreen;

meanmul=fcm : : meanmul() ;

meanred=fcm : : meanred () ;

meangreen=fcm : : meangreen 0,

return extNoise =(meanmul-meanred«meangreen) /(meanred+meangreen) ;

total ()

float totalNoise;

float meansqr;

float meanred;

float meangreen;

meansqr=fcm :: meansqr () ;

meanred=fcm :: meanred () ;

meangreen=fcm :: meangreen () ;

return totalNoise =(meansqr—2+meanredxmeangreen) /(2* meanredxmeangreen

float correlation ()

float correlation;

float meangreen;

float meanred;

float meanmul;

meangreen=fcm :: meangreen() ;

meanred=fcm eanred () ;

meanmul=fcm : : meanmul (} ;

return correlation=(meanmul-meangreenxmeanred) / (meangreenxmeanred ) ;

float correlationred ()
{
float correlation;
float meanred;
float redmeansqr;
meanred=fcm :: meanred () ;
redmeansqr=fcm :: redmeansqr (} ;
return correlation=(redmeansqr—meanred«meanred) /(meanred+meanred) ;

float correlationgreen()

float correlation;

float meangreen;

float greenmeansqr;

meangreen=fcm :: meangreen () ;

greenmeansqr=fcm :: greenmeansqr () ;

return correlation=(greenmeansqr—meangreenxmeangreen) /(meangreens
meangreen) ;

}
float g.intNoise ()

float g-intNoise;

float correlationgreen;

float correlation;

correlation=fcm:: correlation();
correlationgreen=fcm:: correlationgreen(});
return g.intNoise=correlationgreen—correlation;

}

float meanfslog()

{
float sum=0;
float meanfslog=0;
for(i=0;i<size /16;i++)
{

sum+=fcmdata[i]. fslog;

meanfslog=(sum=*16)/size;
return meanfslog;

float meansslog()

{
float sum=0;
float meansslog=0;
for(i=0;i<size/16;i++)
{

sum+=fcmdata[i].sslog;

meansslog=(sumx16)/size;
return meansslog;

}
float meangfplog()
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float sum=0;
float meangfplog=0;
for(i=0;i<size /16;i++)

sum+=fcmdata[i]. gfplog;

meangfplog=(sumx16)/size;
return meangfplog;

float meanrfplog ()

{
float sum=0;
float meanrfplog=0;
for(i=0;i<size /16;i++)

sum+=fcmdata[i]. rfplog;

meanrfplog =(sum=16)/size;
return meanrfplog;

float variancefslog(}
{
float meanfslog=0;
float variancefslog=0;
meanfslog=fcm:: meanfslog () ;
for(i=0;i<size /16;i++)
{
variancefslog+=(fcmdala[i].fslog—meanfslog)*(fcmdala[i].
fslog—meanfslog) ;

variancefslog=(variancefslog+16)/size;
if (variancefslog>=0) variancefslog=sqrt(variancefslog);
return variancefslog;

float variancesslog()

float meansslog=0;

float variancesslog=0;
meansslog=fcm :: meansslog () ;
for(i=0;i<size /16;i++)

variancesslog+=(fcmdata[i]. sslog—meansslog) *(fcmdata[i].
sslog—meansslog);
}
variancesslog=(variancesslog«16)/size;
if (variancesslog >=0) variancesslog=sqrt(variancesslog);
return variancesslog;

float variancegfplog()

{
float meangfplog=0;
float variancegfplog=0;
meangfplog=fcm:: meangfplog () ;
for(i=0;i<size /16;i++)

variancegfplog+=(fcmdata[i]. gfplog—meangfplog) =(femdatali].
gfplog—meangfplog) ;
}
variancegfplog=(variancegfplog*16)/size;
if (variancegfplog >=0) variancegfplog=sqrt(variancegfplog);
return variancegfplog;

float variancerfplog ()

float meanrfplog=0;

float variancerfplog=0;
meanrfplog=fcm :: meanrfplog () ;
for(i=0;i<size /16;i++)

variancerfplog+=(fcmdata[i|. rfplog—meanrfplog) «(femdata[ i |.
rfplog—meanrfplog) ;
}
variancerfplog=(variancerfplog x16)/size;
if (variancerfplog >=0) variancerfplog=sqrt(variancerfplog);
return variancerfplog;

void resetFilter ()

{

for(1=0;i<size /16;i++)
fcmdata[i]. flag=1;
}

float expmeanmul()

float meanred;

float meangreen;

float expmeanmul;

meanred=fcm :: meanred () ;
meangreen=fcm : : meangreen () ;

return expmeanmul=meanred*meangreen;

float parCorrelation()

float meanmul;

float meanred;

float meangreen;

float greenmeansqr;

float redmeansqr;

float greenstd;

float redstd;

float parCorrelation;

meanmul=fcm : : meanmul () ;

meangreen=fcm :: meangreen() ;

meanred=fcm : : meanred () ;

greenmeansqr=fcm :: greenmeansqr() ;
redmeansqr=fcm:: redmeansqr () ;
greenstd=greenmeansqr—meangreenxmeangreen;
if (greenstd >=0) greenstd=sqrt(greenstd);
redstd=redmeansqr—meanred*meanred ;

if (redstd>=0) redstd=sqrt(redstd);

if (greenstd >=0&&redstd >=0)

{

return parCorrelation =(meanmul-meanredxmeangreen) /(redstd=*
greenstd) ;

else
return parCorrelation=0;

}

void fluoresenceConvert(beol convert=0, bool 0=0, int fslogCenter=415, int
sslogCenter=636, bool yamada=1)
{

int fslog=0;
float a=0;
if (convert)
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for(i=0;i<size /16;i+4)

{
femdata(i]. gfp=(float)fcmdata[i]. gfplog;
femdata[i]. rfp=(float)fcmdatali]. rfplog;
}
}
else
{

if (yamada)

for(i=0;i<size /16;i++)

{ if (femdata[i]. gfplog>0&fcmdata[i]. rfplog >0)
{ fcmdatali). gfp=(float)43.177«exp
(0.009 % fcrndatali]. gfplog);
fcmdata[i]. rfp=(float)43.177xexp
(0.009* fcmdatali]. rfplog);
}
else
{fcmdata{i]. flag=0;}
}
else
{

for(i=0;i<size /16;i++)

a=(float)fcmdatafil. gfplog/1024;

a=ax*4;

a—=1;

femdata[i]. gfp=a;

femdatali). gfp=(float)pow (10, fcmdatali]. gfp)

femdata[i]. gfp=fcmdata[i].gfp*1.024;
a=(float)femdata[i].rfplog/1024;

a=ax*4;

a—=1;

femdatali]. rfp=a;

femdata[i]. rfp=(float)pow(10,fcmdata[i]. rfp)

fcmdatla[ i] rfp=fcmdatafi]. rfp+1.024;
if (0)
{

fslog=fcmdata{i]. fslog—fslogCenter;
if (0<fslog)

for (int j=0; j<fslog; j++)
{

fcmdatal(i]. gfp=
fcmdata[i]). gfp
/2;

fcmdata[i]. rfp=
femdata(i]. rfp
/2;

else
if (0>fslog)
{
fcmdatali). gfp=

femdata[i]. gfp
*2;

}i
#endif

}

fcmdata[i]. rfp=
fecmdata[i]. rfp
*2;

void rFilter(float r=12, int fslogCenter=415, int sslogCenter=636)

}

J/how to set the center?fslog=414.787466,5slog=636.196521
float radius;
for(i=0;i<size /16;i+4)

if (fcmdatali]. flag)
{

radius=(fcmdata[i]. fslog—fslogCenter) »(fcmdata[i].
fslog—fslogCenter)
+(fcmdata[i]. sslog—sslogCenter) »(fcmdata[i].
sslog—sslogCenter);
radius=sqrt(radius);
if (radius>r)
{fcmdata[i]. flag=0;}

“fem{void)

}

B.2.3 FCS2View.h

// FCS2View.h :

interface of the CFCS2View class

//
JITIEIIITIIIIIP0IIITE7 170001700 11700010077007010771700070071010017000111¢071111

#pragma once

#include

class CFCS2View :
{

public:

"fem  h”

public CWindowlmpkCFCS2View, CRichEditCtrl>

unsigned int xrawdata;

CString
CString
CString
CString
CString
CString

outPut;

forSave;
CounterGFPOutPut;
CounterRFPOutPut;
CounterFSOutPut;
CounterSSQutPut;

fem *femi;
int m.wflag;

DECLARE WND.SUPERCLASS(NULL, CRichEditCtrl:: GetWndClassName () )

CFCS2View ()
{

m.wflag=0;
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}

forSave="";
outPut="";
CounterGFPOutPut="";
CounterRFPOQutPut="";
CounterFSOutPut="";

CounterSSQutlut="";

BOOL PreTranslateMessage (M3G+ pMsg) ;

BEGIN.MSG MAP (CFCS2View)

MESSAGE HANDLER (WMRBUTTONDOWN, OnRButtonDown)

COMMANDIDHANDLER (ID_EDIT.CUT, OnEditCut)

COMMANDID HANDLER(ID.EDIT_COPY, OnEditCopy)

COMMANDID HANDLER(ID_EDIT_PASTE, OnEditPaste)
1D HANDLER( IDM.TEST , OnTest)

ALTMSGMAP(1)

COMMANDID HANDLER(ID_FILE.OPEN, OnFileOpen)
COMMANDID HANDLER( ID_FILE_SAVE, OnFileSave)
COMMANDID HANDLER(ID_EDIT_CUT, OnEditCut)
COMMANDID HANDLER(ID_EDIT_.COPY, OnEditCopy)
COMMANDID HANDLER(ID__EDIT PASTE, OnEditPaste)
COMMANDID HANDLER(ID_EDIT_UNDO, OnEditUndo)

ENDMSGMAP()

// Handler prototypes (uncomment arguments if needed):
LRESULT MessageHandler (UINT /*uMsgx/, WPARAM /xwParam =/, LPARAM /xIParam =/,

/7
//
/7

}

BOOILE /+ bHandled x/)

LRESULT CommandHandler (WORD /+wNotifyCode =/, WORD /+wiDx/, HAND /«hWndCtix/,

BOOLE /+bHandled «/)

LRESULT NotifyHandler{(int /+idCtrl«/, LIPNMHDR /«xpnmh=/, BOOL& /[« bHandled =/)
LRESULT OnFileQOpen(WRD /x wNotifyCodex/, WIRD /+wIDx/, HAND /+hWndCtlx/,

BOOL& /x bHandled x/);

LRESULT OnCount(int counter);

B.2.4 FCS2View.cpp

/! ECS2View.cpp

implementation of the CFCS2View class

HESIEIIIITIIIETLET LI 7100 P I01 201000070077 0077000000001777114071711117717

#include
#include

#include

“stdafx . h”
"resource .h”

"FCS2View . h”

BOOL CFCS2View :: PreTranslateMessage (MSGx pMsg)

{

Msg ;

pMsg
return FALSE;

LRESULT CFCS2View :: OnFileOpen(WORD /* wNotifyCode+/, WORD /+wIDx/, HAND /+hWndCtl+/,

{

BOOL& /*bHandled x/)

CString strFolderPath="";

CString strFileName=

o,
i

LPSTR chBuffer;
chBuffer=new char[65535];
*chBuffer=0;

//
/7

CFileDialog fileDig (TRUE,0,0 ,0FN.ALLOWMULTISELECT| OFN_EXPLORER) ;

fileDlg .m.ofn. lpstrFilter="KCM.File (».Imd) \O*.Imd\OAIl_Files (*.%)\0*

fileDlg.m_ofn. IpstrFile=chBuffer;
fileDlg . m.ofn. nMaxFile=65535;
if (IDOK==fileDlg .DoModal())

{

CounterGFPOutPut="";
CounterRFPOutPut="";
CounterFSOutPut="";
CounterSSOutPut="";
strFolderPath.Format("%s” ,chBuffer);
int nStart=strFolderPath.GetLength() +1;
int nEnd=nStart;
if (GetFileAttributes (strFolderPath }==FILE_ATTRIBUTE.DIRECTORY)
{
CRichEditCtrl pEdit(mhWnd);
pEdit. AppendText(”LMDFileName\ t.intNoise\ t.extNoise\t.
totalNoise\t.g_intNoise\t.g-totNoise\t.gr_extNoise\t.
greenMean)\ t .redMean\ t.greenVariance\t.redVariance\t.
meanfslog\t.meansslog\r\n”);
for(int nindex=nStart;nindex <6144;nlndex++}{
if (chBuffer[nIndex]==0)
{
nEnd=nlndex;
if (nStart== nEnd){break;}
strFileName . Format("%s” ,&chBuffer[ nStart]);
pEdit. AppendText(strFileName);
pEdit. AppendText("\t");
strFileName=strFolderPath+"\\”+strFileName;
HANDLE hFile;
hFile=CreateFile(/«fileDig . m_szFileTitle =/
strFileName ,
GENERIC READ,
g,
NULL,
OPENL_EXISTING,
FILE.ATTRIBUTE.NORMAL,
NULL) ;

char ch[59];

DACRD dwReads;

ReadFile ( hFile ,ch,58,&dwReads ,NULL) ;

ch[dwReads]=0;

CString textStart ,textEnd ,dataStart ,dataEnd,
analysisStart ,analysisEnd;

int iTextStart,iTextEnd, iDataStart,iDataEnd,
iAnalysisStart ,iAnalysisEnd;

int i;

for(i=10;i<18;i++)

{

textStart+=chli];

iTextStart=atoi(textStart);
for(i=18;i<26;i++)

textEnd+=chl[i];

iTextEnd=atoi(textEnd);
for(i=26;1<34;i++)
{

dataStart+=ch[i];
iDataStart=atoi(dataStart);

for(i=34;i<42;i++)

{

#\0\0";
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dataEnd+=chfi];

}
iDataEnd=atoi (dataEnd) ;
for(i=42;i<50;i++)

analysisStart+=ch[i};

iAnalysisStart=atoi(analysisStart);
for(i1=50;i<58;i++)

analysisEnd+=ch[i];

}
iAnalysisEnd=atoi(analysisEnd);

char *textBuf;

textBuf=new char[iTextEnd+1};

SetFilePointer ( hFile ,0 ,NULL, FILE_BEGIN) ;

ReadFile (hFile , textBuf , iTextEnd ,&dwReads,
NULL) ;

textBuf [dwReads]=0;

//to find the sample name.

char *split="!";

char *sample="SRC”";

char *textTemp=strstr(textBuf ,sample)+strlen
(sample)+strlen(split);

int indexOfSample=strstr (textTemp, split)—
textTemp;

textTemp [ indexOfSample]="\0";

pEdit. AppendText (textTemp) ;

pEdit. AppendText{”\t");

CounterGFPOutPut=CounterGFPQutPut+textTemp+”
\t”;

CounterRFPOutPut=CounterRFPOutPut+textTemp+”
\t”;

CounterFSOutPut=CounterFSQutPut+textTemp+"\t

CounterSSOutPut=CounterSSOutPut+textTemp+"\ t

;

BYTE =dataBuf;

int dataSize=iDataEnd—iDataStart+1;

dataBuf=new BYTE|dataSize];

SetFilePointer ( hFile , iDataStart ,NULL,
FILE.BEGIN) ;

ReadFile (hFile ,dataBuf, dataSize ,&dwReads,
NULL) ;

unsigned int xdatalist;

datalist=new unsigned int[dataSize/2];

int j;

for(1=0,j=0;i<dataSize /2;i++,j+=2)

datalist [ i}=MAKBNORD(dataBuf[j1,(
dataBuf[j+1)&0x03)),;

rawdata=datalist; //send the rawdata to
public

fcml=new fcm(dataSize, datalist);
m.wflag=1;

CloseHandle ( hFile) ;

else

OnCount (1) ;
OnCount(0) ;
nStart = nEnd + 1;

HANDLE hFile;
hFile=CreateFile(fileDlg.m.szFileTitle,

GENERIC READ,

0,

NULL,

OPEN.EXISTING,

FILEATTRIBUTE NORMAL,

NULL) ;

char ch[59];

DWCRD dwReads ;

ReadFile ( hFile ,ch,58,&dwReads,NULL) ;

ch[dwReads }=0;

CString textStart ,textEnd, dataStart ,dataEnd,
analysisStart ,analysisEnd;

int iTextStart,iTextEnd,iDataStart ,iDataEnd,
iAnalysisStart ,iAnalysisEnd;

int i;

for(i=10;1<18;i++)

textStart+=ch[i];

iTextStart=atoi(textStart);
for(i=18;i<26;i++)

textEnd+=ch[i];

iTextEnd=atoi(textEnd);
for(i=26;1<34;i++)
{

dataStart+=ch[i];

iDataStart=atoi(dataStart);
for(i=34;1<42;i++)
{

dataEnd+=ch[i};

}

iDataEnd=atoi (dataEnd};
for(i=42;1<50;i++)

{

analysisStart+=ch[i];

iAnalysisStart=atoi(analysisStart);
for(i=50;i <58;i++)

analysisEnd+=ch[i];
iAnalysisEnd=atoi(analysisEnd);
char xtextBuf;

textBuf=new char{iTextEnd +1];
SetFilePointer ( hFile ,0 ,NULL, FILE_BEGIN} ;

ReadFile( hFile , textBuf ,iTextEnd ,&dwReads ,NULL) ;

textBuf {dwReads])=0;
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}

//to find the sample name.

char *split="1";

char xsample="SRC”";

char *textTemp:strstr(textBuf,sample)+strlen
(sample)+strlen(split);

int indexOfSample=strstr (textTemp, split)—
textTemp ;

textTemp [ indexOfSample]="\0";

CRichEditCtrl pEdit (mhWnd) ;
pEdit. AppendText(/x fileDlg . m_szFileTitle */textTemp);
pEdit. AppendText(”\r\n");

BYTE =dataBuf;

int dataSize=iDataBEnd—iDataStart+1;

dataBuf=new BYTE[dataSize];
SetFilePointer (hFile, iDataStart ,NULL, FILE.BEGIN) ;
ReadFile ( hFile ,dataBuf, dataSize ,&dwReads,NULL) ;
unsigned int xdatalist;

datalist=new unsigned int{dataSize/2];

int j;

fnr(i=0,j=U;i<dataSize/2;i++,j+:2)

datalist{i]=MAKBMIRD(dataBuf[j],(dataBuf[j
+1}&0x03)) ;

rawdata=datalist; //send the rawdata to public

fcml=new fcm(dataSize ,datalist);
m._wilag=1;

CloseHandle ( hFile);

pEdit. AppendText(”intNoise\t.extNoise\t-totalNoise\t
.g-intNoise\t.g-totNoise\t.gr.extNoise\t.
greenMean\ t .redMean\t.greenVariance\t..
redVariance\r\n");
OnCount(1);
OnCount (0) ;
}

delete chBuffer;

CRichEditCtrl pEdit(mhWrd);

pEdit. AppendText ("GFP..Events .\ r\n"+CounterGFPOutPut) ;
pEdit. AppendText(”"RFP.Events.\r\n"”+CounterRFPOutPut) ;
pEdit. AppendText(”FS.Events.\r\n”+CounterFSOutPut) ;
pEdit. AppendText (“SS.Events.\r\n"+CounterSSOutPut) ;

return 0;

LRESULT CFCS2View :: OnCount(int counter)

{

/!

if (m_wflag)

CRichEditCtrl pEdit(mhWnd);
if (! counter)

int step=1;
foml—>resetFilter ();
CString str;
feml->greenCount (step);
feml—=>redCount(step);
fcml->fslogCount (step) ;

/!

else

fcml—>sslogCount(step);

for(int i=1;i<(1024/step);i++)

{
str.Format("%i” ,fcml->fslogEvents[i]);
CounterFSOutPut=CounterFSOQutPut+str+’\t";
str.Format(“%i” ,fcml—>sslogEvents[i]);
Counter$SOutPut=CounterSSOutPut+str+’'\t’;
str.Format("%i"” ,fcml->greenEvents[i]);
CounterGFPOutPut=CounterGFPOutPut+str+'\t’;
str.Format(”%i” , fcml—>redEvents[i]);
CounterRFPOutPut=CounterRFPOutPut+str+"\t";

CounterFSOutPut=CounterFSOutPut+”\r\n";
CounterSSQutPut=CounterSSOutPut+"\r\n”;
CounterGFPOutPut=CounterGFPOutPut+”\r\n";
CounterRFPOutPut=CounterRFPOutPut+”\r\n";

float intNoise;
float extNoise;
float totNoise;
float correlation;
float g.intNoise;
float correlationgreen;
float redmean;

float greenmean;
float redvariance;
float greenvariance;
float parCorrelation;
int fslogPeak;

int sslogPeak;

char xch;

ch=new char[256];
CString str;

fslogPeak=fcm1->>getFSPeak () ;
sslogPeak=fcml—>getSSPeak () ;

feml—>fluoresenceConvert(l, 0, fslogPeak, sslogPeak, 1);
fem1->rFilter (50, fslogPeak, sslogPeak);
intNoise=fcml—>intNoise () ;
extNoise=fcml->extNoise () ;
totNoise=fcml->total () ;
correlation=fcml—>correlation();
g-intNoise=fcm1->g.intNoise () ;
correlationgreen=fcml—>correlationgreen();
redmean=fcm1->meanred () ;
greenmean=fcml->meangreen() ;
redvariance=fcml->variancerfplog () ;
greenvariance=feml—>variancegfplog () ;

sprintf(ch, "%8f\ t . %8f\ t. %8f\ t %8\t %8\ t %8\t Y%Bf\t %8f\t.
%8\t YeBF\ t Jd\ t Yed\t”,
intNoise , extNoise , totNoise , g_intNoise ,
correlationgreen , correlation , greenmean , redmean,
greenvariance , redvariance , fslogPeak , sslogPeak);
str . Format{“%s” ,ch);
outPut=str;

pEdit. AppendText(outPut);

int events=0;

events=fcm1->getTotalEvents () ;
str.Format(”Events.total: %d.\r\n” ,events);
pEdit. AppendText(str);
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else {MessageBox(”please.open.a_fcm.file.first.before.do.counter” ,”Cannot.
finish_your_operation.” ,MBICONWARNING) ; }
return 0;

B.3 Dual-fluorescence system simu-
lation tool
B.3.1 dualFluGil.cpp

JIIIIITITIIII 100 000070000070011717707007001007001071011077011711717711771111771
// gillespieMulti.cpp Gillespie algorithm using the Next Reaction Method 1/

// invented by Gibson and Bruck, for exact stochastic //
/1 simulations of di—fluorescence system. /!
// Description: /7
// Di—fluorescence system is a system with to different fluore— 7/
// scences , one is from green fluorescence protein (GFP)and the 1/
/! other is red fluorescence protein (RFP). The RFP is controled  //
/7 by the PIPr promoter, which comes from lambda bacteriophage. //
/! The GFP can be controled by any interested target promoter of  //
// Escherichia coli. This di—fluorescence system provides the //
// possibility for complex gene network analysis and dynamical //
7/ process during unsteady state. /!
1/ Use binary tree to store the time \& reaction in pair use time /7
1/ as the sorting order (from low to high). /!
/7 Because the extrinsic noise is shared by all the genes in the //
// same cell , the GFP and RFP share the same random seed for each //
7/ particle simulation. 1/
// Multiple thread was used to increase the simulation efficiency [/
// for such big amount particles. /7
7/ The reaction rate of RFP is determined by reallity data. //
/7 Lots of parameters can be set during initialise step, which 7/
// include the growth speed, the active and inactive reaction rafe //
7/ of target promoter and the noise properties. /!
1/ The grwoth noise is followed the normal distribution. /1
// The extrinsic noise for each step of the reaction is followed /!
// log—normal distribution. 1/
1/ All the noise distribution can be controled by the lambda value ,//
// which defined same as in the normal distribution. 1/
// The cell will first incubate in one condition till steady state.//
/7 Then thransfer to another condition. To reach the steady state //
/! in preculture please make sure to set the precultrue time big 174
// enough. //
// Reference: Gibson, Bruck, "Efficient Exact Stochastic Simulation of Chemical//
// Systems with Many Species and Many Channels” /!
/! Fox, Gatland, Roy, Vemuri, "Fast accurate algorithm for numerical//
1/ simulation of exponentially correlated colored noise.” /!
// Shahrezaei, Ollivier , Swain, "Colored Extrinsic Fluctuations and //
// stochastic gene expression.” /!
/7 Sugiyama, Kawabata, Sobue, Okabe, "Determination of absolute //
// protein numbers in single synapses by a GFP—based calibration 1/
/7 technique.” //
7/ Golding , Paulsson, Zawilski , Cox, "Real—time kinetics of gene //
// Activity in individual bacteria.” /7
// Author: Jianhong Ou //
// Current Version : 1.0 //
// Date: 2009/02/11 I/

// Class Needed in This File: BTree in BTree.h /7

JIIEIIIIIIIEIEE0ITI117007700117007007100000077000111000100077107110001117711117

#include "BTree.h”

#include <pthread.h>

#include <math.h>

#include <sys/time.h>

#define MAXTHREAD 50

#define RN 6 //reaction number;

#define KRM 5 //kind of reaction molecular;

#define IntensityRatio 0.335//the fluorescence intensity ratio of I(RFP):I(GFP);
measured by negative control.

#define IntensityPerProtein 10//determined by laser power;

#define background 260//involve background can easily increase the extrinsic noise.

#include <string>

#include <iostream>

#include <fstream>

#include <stdio.h>

using namespace std;

double »c=NULL; //reaction constants for GFP;

double *cRed=NULL; //reaction constants for RFP;

int **R=NULL; // molecular numbers for each reaction of GFP;

int *+«RRed=NULL; // molecular numbers for each reaction ofRFP;

int *+O=NULL; //dependency graph for GFFP;

int **ORed=NULL; //dependency graph for RFP;

int Linit[5];

int IinitRed [5];

bool division=0;//the flag indicate including the cell division or not.

double cycleTime0=0;//set by the growth rate.

bool extrinsic=0;//the flag indicte including the extrinsic noise or nof.

bool extFlag[61;//the noise flag for each step.

double lambda[6]; //the noise strength for each step of GFPGRFP.lambda>1;

double deltaT=0.01;//time step used in gaussian.

double cActiveNoLys=—1;//reaction constants of inactive to active if there is no
lysine;

double.cActiveLys=-—1;//reacfiDn constants of inactive to active if there is lysine;

double cActiveRed=—1;//reaction constants of inactive to dactive of PLPR;

int Counter=1000;//set sample number, less than 12000;

int sampleNo=10;//sample number for each paticle;

double multiTime=1;//factor for changing simulation time to real time.

double ShiftTime=0;//set the preculture time.

double CultureTime=0;//set the culture time;

double tMax=0;//calculated by preculture time and culture time.

double interval=0;//the interval for sampling calculated by culture time divided by
the sample number.

bool noLys0=0;//set as in main culture;

pthread._t thread [MAX-THREAD]; // create multiple thread;
pthread _mutex.t mut,muta;//use mute to protect the data.

ofstream ofsRFP; //for recording the RFP data;
ofstream ofsGFP; //for recording the GFP data;
ofstream ofsA;//for reacording the a data;

struct A{
int reactStep;
double valueA;
A(int bb=0, double cc=0){
reactStep = bb; valueA=cc;
}

}:

void write(ofstream& out, A value){
out.write(reinterpret_cast<char*>(&value),sizeof(A));

void read (ifstreamé& in, A& value){
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in.read(reinterpret.cast<char«>(&value) ,sizeof(A});

}

double propensity(int i, int xxReact, double «reactConst, int xInit)//calculate the
propensity function

{
double ai=1;
for(int j=0;j<KRM;j++)
{
double hi=1;
double h2=1;
if (React{i][j]>0)
{
for(int w=0;w<React[i][j];w++)
hls=(Init[j)-w);
h2x=(w+1);
}
ai*=(h1/h2);
if(ai<0) ai=0;
}
}
ai=aixreactConst{i]);
return ai;
}

double gasdev(unsigned int *seed, double D, double E, double &prev, bool &iset,
double &gset, bool white=0)

{
static double epsilon=0;
double h, fac, rsq, vl, v2;
if (tiset)
do
{
v1=2.0%rand_r(seed) /(RANDMAX+1.0) —1.0;
v2=2.0%rand.r(seed) / (RANDMAX+1.0) —1.0;
rsq=vI*xvi+v2xv2;
}while(rsq>=1.0 || 0==rsq);
fac:sqrt(D*log(rsq)/rsq);
gset=vixfac;
h=v2xfac;
iset=1;
}
else
{
h=gset;
iset=0;
}
if (white)
epsilon=h;
}
else
{
epsilon=prev«E+h;
prev=ecpsilon;
}
return epsilon;
}

double gumbelMini(unsigned int xseed, double miu, double beta)

double
do

{

}while
double
return

}

double getTime(double a, double &t0, unsigned int xseed)//gencrate random time;

double
do
{

x=0;

x=rand.r (seed) / (RANDMAX+1.0) ;
{x==0]]1==x);
y=0;
y=log (log(1.0/(1.0 —x)))*beta+miu;

t=0;

t=rand._r(seed) / (RANDMAX+1.0);

}while(0>=t);
t=t0+log(1/t)/a;

return

}

void initialise (BTree<double> *PP, int **React, double xreactConst, int =Init,

t;

double &t0, unsigned int xseed2)//initialise heap map for each reaction

{
double *a=NULL;
a=new double(RN};
double x1t=NULL;
t=new double[RN];
for(int i=0;i<RN;i++)
{
//calculate the propensity function, ai, for all i,
a[i]:propensity(i,React,reactConst,Inil);
//for each i, generate a putative time, ti, according to an
exponential distribution with parameter ai;
if (a[i]>0)
tli]l=getTime(ali],t0,seed2);
else
{
do
{
t (i [=RANDMAX/* rand_r (seed? ) /(RANDMAX+1.0) +/;
}while (0>=t[i]);
PP—>Insert(t[i],a[i],i);
}
delete a;
a=NULL;
delete t;
t=NULL;
}

veid runReaction(int *+00, int uu, int xInit)

for(int i=0; i<KRM; i++)

}

Init[i}—=00[uu][i];

void recalculatePropensity (BTree<double> *PP, int #+Q0, int **React, double x
reactConst, int *Init, double &t0, unsigned int xseed2)

{
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int u;

u=PP—>root—>reaction;

//execute the

reaction;

runReaction{(OO, u, Init);
//recalculate the propensity fuction;

int *pf;

pf=new int[RN];

for(int i=0;i<RN;i++)

pflil=0;

//the others

for(int i=0;i<kKRM; i++)
{

if (01=00[u]{i])

}

//the reaction
pflul=2;

for(int j=0;j<RN;j++)
if (0'=React[j]I[i])

pfljl=1;

itself

for(int j=0;j<RN;j++)

if(pf(j1>0)
{

}
)
delete pf;

double a=0;

double t2=0;

double pro=0;

double t3=0;

pro=PP->findby (j )->propensity ;
t3=PP—=>findby (j)}—>time;

a=propensity (j , React, reactConst , Init);
if (a>0)

;f(2==pfli]| |0==pro)

t2=getTime(a, t0,seed2);

t2=RANDMAX/* rand_r (seed2 ) /(RANDMAX+1.0) x/;

else
t2=(pro/a) *(t3—-t0}+t0;

}
else
{

do

{

}while (0>=t2);

t2=1t2+t0;
}

PP—>delby (j);

PP—>Insert(t2,a,j);

pf=NULL;

double ChangeReactionRate(double gau, double reactl, int i, BTree<double> PP, int
*+React, double xreactConst, int *Init, unsigned int xseed2, double &t0)
{

if (extFlag[i])
{

reactConst[i]=reactl*gau;
if (reactConst[i]<0)

cout<<reactConst<0"<<endl;
exit(0);

}

}

double t=0;

double pro=PP—findby (i}>>propensity;

double t1=PP—>findby (i)}->time;

double a=propensity (i, React,reactConst,Init);

if (a>0)
{
if (!pro)
{
t=getTime (a,t0,seed2);
}
else
t=(pro/a)*(t1—t0)+t0;
else
{
do{

t=RANDMAX/* rand.r (seed2 ) /(RANDMAX+1.0) x/;
}while(@>=t});
t+=t0;

}

PP—>delby (i);
PP—>Insert(t,a,i);
return reactConst[i];

string InitParameter()//initialise the parameter for simulation

string fname;//filename for parameters saving.

string str;
cout<<”Please.input.the._filename.for_saving.simulation.result:."<<endl;
cin>>fname;

str=fname+” . xls”;

ofstream ofs(str.c.str(),ios::app);

char ch;
do
{
cin.clear();
cout<<’Do.you_want.tooset theccell.division.time.(default_is _40min)?
“{y/n):."<<endl;
cin>>ch;
switch(ch)
case 'y’:
case 'Y':
division=1;
cin.clear (ios:: goodbit);
break;
case 'n’:
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case 'N’:
division=0;
cin.clear(ios:: goodbit);
break;
default:
cout<<”the._wrong.parameter! “<<endl;
cin.clear(ios :: badbit);

}
}while(cin. fail());
ofs<<”division.\t."<<division<<endl;
if (division)

do
{

cout<<"How.long.it . takes.for.one.generation.(min)

cin>>cycleTime(;
}while (! cycleTime0) ;
ofs<<”cycleTime. \t."<<cycleTimeO<<endl;

cin.clear();

tL<<endl;

cout<<"Do_you.want.to.include..the_.extrinsic.noise?.(y/n):."<<endl;

cin>>ch;
switch(ch)
{ ey ?
case 'y’:
case 'Y’:
extrinsic=1;
cin.clear (ios:: goodbit);
break;
case ‘n’:
case ‘N’:
extrinsic=0;
cin.clear (ios :: goodbit);
break;
default:
cout<<”the_wrong.parameter!"<<endl;
cin.clear(ios:: badbit);

}
}while(cin. fail());
ofs<<” extrinsic.\t."<<extrinsic<<endl;
for(int i=0; 1<6; i++)

extFlag[i]=0;
s
double extlambdaPre[6]={—-1,—1,—1,—-1,—1,—1};

for(int 1=0; i<6; i++)

{

lambda| i]=extlambdaPre[i]; //set the lambda for generate normal

distribution random number for GFP.

if (extrinsic)

{
int setEx=1;
while(setEx)
{

cout<<"which.step.do.you.want.to.include.the_extrinsic.noise
?.please.select. the.number"<<endl;

cout<<’\tulofromuactiveoplasmid.tooinactive wplasmid ; "<<endl;

cout<<”\t.2 fromuinactive plasmid.tocactiveoplasmid ; "<<endl;

cout<<”\t.3.transcription;"<<endl;

cout<<”\ t.4.RNA_Degradation; “<<end};

cout<<”\t.5otranslation ; "<<endl;

cout<<”\t6.protein.degradation; “<<endl;

cout<<”\t.0.for.quit; "<<endl;

cin>>setEx;
switch (setEx)
case 0:

{

}
case 1:

{
case 2:
case 3:
case 4:

}
case 5:

break;

extFlag[0]=1;

do
{
cout<<”Please.set.the.lambda_for.
generate.colored.noise.of.step.
1.(from.active.plasmid.to.
inactiveuplasmid):.”;
cin>>lambda [0];
}while (lambda[0] <0);
break;

extFlag[l]=1;

do
{
cout<<” Please.set.the.lambda.for.
generate.colored..noise_of.step.
2.(from.inactive.plasmid.to.
active.plasmid):.”;
cin>>lambda[1];
}while (lambda[1] <0);
break;

extFlag[2]=1;
do
{
cout<<”Please.set.the.lambda_for.
generate.colored.noise.of.step.
3.(transcription):.”;
cin>>lambda[2];
}while (lambda[2] <0);
break;

extFlag[3]=1;
do
{
cout<<”Please.set_the.lambda_.for.
generate.colored.noise~of.step..
4_(RNA_degradation):.";
cin>>lambda[3];
}while (lambda[3] <0);
break;

extFlag{4]=1;
do
{
cout<<”Please_set.the.lambda.for.
generate.colored.noise.of.step..
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5.(translation):.”;
cin>>lambda [4];
}while (lambda(4] <0);
break;

case 6:

extFlag[5]=1; 7/
do
{
cout<<”Please.set . .the.lambda_for.
generate.colored.noise.of.step.
6.(DNA_degradation):.”;
cin>>lambda[5]);
}while (lambda(5]} <0);
break;

default:
cout<<”Please.select.the.right._number:.."<<end!;
}

}

}

for(int i=0;i<6;i++)
if (extFlaglil])
{

ofs<<” extFlag [ "<<i<<”].\t."<<extFlag[ij<<endl;
ofs<<’lambda[ "<<i<<” ]|\ t."<<lambda[ il <endl;

}

c=new double[RN];
cRed=new double[RN];
do
{
cin.clear ();
cout<<”Pleaseinput.the_raction.constant.of.inactive_plasmid_.to.
activeoplasmid.if_there.is No.lysine:."<<endl;
cin>>cActiveNoLys;
}while (cin. fail () ||—1==cActiveNoLys) ;
ofs<<”cActiveNoLys. .\t ."<<cActiveNoLys<<endl;
do
{
cin.clear();
cout<<”Please.input.the.raction.constant.of.inactive..plasmid.to.
activeoplasmid.if _there.is.lysine:."<<endl;
cin>>cActivelys;
}while(cin. fail {)|]—1==cActiveLys);
ofs<<”cActiveLys.\t."<<cActiveLys<<endl;
do
{
cin.clear ();
cout<<”Please.input.the_raction.constant_.of.inactive.plasmid.to.
active.plasmid.for.RFP:."<<endl;
cin>>cActiveRed ;
}while (cin. fail () || —1==cActiveRed};
ofs<<”cActiveRed. .\ t."<<cActiveRed<<endl;
double react{6]={2.4,0.0015,2.1,0.24,7.5,0.02};//active2unactive ,
unactivelactive ,active2rna ,rnaDegrade ,rna2protein ,proteinDegrade.
int setlnt=1;
while(setlnt)
{
cout<<”which.reaction.constant.do_you.want.to_change?.please_select.
the .number”<<endl;

cout<<”\t.l.from.active_plasmid.to.inactive.plasmid:."<<react[0]< <
endl;

/! cout<<"\t 2 from inactive plasmid to active
plasmid : "<<react{l]<<endl;

cout<<"\t.3_transcription: . <<react[2]<<endl;

cout<<”\ t.4.RNA_Degradation: ."<<react[3]<<endl;

cout<<"\t.5.translation:.'<<react[4]< <endl;

cout<<™\t 6 protein degradation: "<<react[bl<<endl;

cout<<”\t.0uforoquit; "<<endl;

cin>>setint;

switch(setInt)

{
case 0:
break;
case 1:
{
do
{
cin.clear();
cout<<”Please.input._the_reaction.constant.
from.active.plasmid.to.inactive .plasmid
cin>>react [0];
}Ywhile(cin. fail());
break;
case 2:
/¥ do
cout<<"Please input the reaction constant from
inactive plasmid to active plasmid: ”;
cin>>react[1];
Ywhile(cin. fail ());+/
cout<<”this.part.defined. .already "<<endl;
break;
}
case 3:
do
{
cin.clear ();
cout<<”Please.input.the.reaction.constant.
forotranscription:.”;
cin>>react[2];
}while(cin. fail ());
break;
case 4:
{
do
{
cin.clear{);
cout<<”Please.input.the.reaction.constant.
for RNA..Degradation:.”;
cin>>react[3];
}while(cin. fail ());
break;
case 5:
do
{
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cin.clear();

cout<<"Please.input..the.reaction.constant.

forotranslation:.”;
cin>>react[4];
}while(cin. fail ());

break;
}
case 6:
do
{
cin.clear();
cout<<"Please input the reaction constant
for protein degradation: ”;
cin>>react {5];
Ywhile (cin. fail());
break ;
I/
default:
cout<<”PleaseoselectotheLright _number: ."<<endl;
}

}
double reactRed[6]={2.4,0.024,2.2,0.24,8,0.02};
if (cycleTime0)

reactRed[5]=0.693/ cycleTime0;
react{5]=reactRed [5];

}
reactRed[1]=cActiveRed;
for(int i=0; i<RN; i++)

ofs<<”reactionConstant ["<<i<<”].\t."<<react[ilk<endl;
cli]=react|i]);//reaction sonstants;
cRed|i]=reactRed[i];

int init[5}={0,30,0,0,0};//active,unactive ,rna,degraded rna, protein, cannof

have 0;
int initRed[5]={0,30,0,0,0};
for(int i=0; i<KRM; i++)
{

Iinit{i]=init(i];

IinitRed [i]=initRed [i];
}
R=new int*[RN];
for(int i=0;i<RN;i++)

Rfi]=new int[KRM];

}
RRed=new int=*[RN];
for(int i=0;i<RN;i++)

RRed[i]=new int[KRM];

int mn[6][5]=

1,0,0,0,0,
0,1,0,0,0,
1,0,0,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,0,0,1

}s
int mnRed[6]]5]=

}:
for(int i=0;i<RN;i++)
{
for(int j=0;j<kKRM;j++)
R[il1jl=mn[i]{j]; //molecular numbers for each
) RRed[1][j]=mnRed(i][]];
}
O=new int=[RN];
for(int i=0;i<RN;i+4)
{
Ol i]=new int[KRM];

}
ORed=new int=*[RN];
for(int i=0;i<RN;i++)

ORed| i }=new int[KRM];

}

int dgl[61[5]=

{
1,-1,0,0,0,
-1,1,0,0,0,
0,0,-1,0,0,
0,0,1,-1,0,
0,0,0,0,-1,
0,0,0,0,1

1,-1,0,0,0,

-1,1,0,0,0,

0,0,-1,0,0,

0,0,1,-1,0,

0,0,0,0,-1,

0,0,0,0,1

}
for(int i=0;i<RN;i++)
{

for(int j=0;j<KRM;j++)

{
Olilljl=dglillj];//dependency graph;
ORed[i][j]=dgRed[i]]]];

}

}
do
{

cout<<”Please.input_how.many_particles .do.you.want.to_simulate.for.

one.group.of.parameters.(1710000):";
cin>>Counter;
}while (Counter <=0||Counter >10000) ;
ofs<<”Counter.\ t."<<Counter<<endl;
do

{

cout<<”Please .input_how.many_samples.do.you.want_.to.take.for.each.

paticles .with_same.interval.(1720):";
cin>>sampleNo;

reaction;
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}

}while (sampleNo <=0} |sampleNo >20) ;
ofs<<”sampleNo.\ t ."<<sampleNo<xendl;

do
{
cout<<”Please_input.‘the_preculture...time..(m'm) 2,
cin>>ShiftTime ;
ShiftTime*=multiTime ;
}while (! ShiftTime) ;
ofs<<”ShiftTime ..\ t-"<<ShiftTime<<endl;
do
{
cout<<”Please_input_the-culture_time..(mir\) e
cin>>CultureTime ;
CultureTime*=multiTime;
}while (! CultureTime) ;
ofs<<”CultureTime o\ t."<<CultureTime<<endl;
tMax=CultureTime+ShiftTime; // use time as stop condition.
interval=(double)CultureTime/sampleNo;

do
{
cin.clear();
cout<<"Is..there..lysine..or..no(..in..main_culture..media?_(y/n) u<<end];
cin>>ch;
switch (ch)
{
case 'y
case 'Y':
noLys0=1;
cin, clear (ios:: goodbit);
break;
case ‘n’:
case 'N’":
noLys0=0;
cin.clear (ios:: goodbit);
break;
default:
cout<<”the.wrong.parameter!"<<endl;
cin.clear(ios :: badbit);

’.

}
}while (cin. fail ());
ofs<<” LysineInMainCulture_\t."<<noLys0<<endl;
ofs.close();
return fname;

void sthreadx(void= arg)//simulation thread.

unsigned int seedl[6], seed2; //store the random seed for different use.
seedl for extrinsic noise, seed2 for intrinsic noise;

timeval tim;

gettimeofday(&tim, NULL);

for(int i=0; i<6; i++)

seed1[i]=(unsigned) (tim.tv_usec+70%1i);

}

bool noLys=noLys0;//set as in main culture .
bool flag=1;//use for transfer state record.
(noLys)?(c[l]:cAc{iveNoLys):(c[l]:cActiveLys);

int init [KRM];
int initRed [KRM]);
for(int i=0; i<kKRM; i++)

init{i]=linit[il];
initRed [i]=TinitRed [i];

}

int *I, xIRed;

I=new int[KRM];

IRed=new int[KRM];

I=init;//initial molecular population numbers ;
IRed=initRed;

double t0=0;//initial time;
double t1=t0;//store the last time.

int step=0;
double interTime=ShiftTime;
int gfpj=0;

gettimeofday (&tim, NULL);
seed2 =(unsigned) tim . tv_usec;//initialize random array for intrinsic noise;

double reactl[6], reactRedl[6];
for(int i=0; 1<6; i++)
{
reactI{i]=c[i];
reactRedI[i]=cRed|[i];
}

double *react, xreactRed;
react=new double[RN];
reactRed=new double[RN];
for(int i=0; i<6; i++)
{
react[i]=c[i];
reactRed{i]=cRed[i];
}

//store the ti values in an indexed priority queue P.
BTree<double> P;
initialise (&P,R, react,],t0,&seed2);

J/store the ti values in an indexed priority queue P.
BTree<double> PRed;
initialise (&PRed,RRed, reactRed ,IRed, t0,&seed2) ;

bool expFlag;

int *GFP, =RFP;

GFP=new int[sampleNo];
RFP=new int[sampleNo ];
for(int i=0; i<sampleNo; i++)

GFP[i]=0;
RFP[i]=0;
}

double interValX=(double)CultureTime /1000;

double interTimeX=ShiftTime;

double deltaT=0.01;

double interTimeO=0;

double maxExt[6]={0};

double minExt[6]={RAND_M.AX,RAI\H3MAX,RANDMAX,RANDMAX,RANDMAX,RANDMAX};
char ch[256];

sprintf(ch,”%d.ou” . tim. tv_usec);

ofstream ofsa(ch,ios::applios::binary);

double D[6]={—-2};

1003 uoyINULS WasAs oUaIsalonlf-in( €'q

Gl



double E[6]={0};
double white[6]={0};
double mean[6]={1};
if(extrinsic)
for(int i=0; i<6; i++)
if (extFlag[i])
{
if (O==fambdal[i])
{

white[i]=1;

D[i]=-2;
E[i]=0;
mean[i]=1;
}
else
{
white[i]=0;
E[i]=exp(—deltaT+lambda[i]);
Dli}=(E[i]*E[i]—1)*2«lambda[ i ];
mean[i]=exp (E[i]*lambda[i]/2);
}

}

}

double prev[6]={0};
bool iset{6]={0};
double gset[6]={0};

while (t0<tMax)

tI=t0;

double gau=0;

if (P.root&&PRed. root)
{

/I Shift the reaction rate when there the media changed .
if (t0>ShiftTimed&flag)
{

noLys:!noLys;

flag =0;

if (noLys)

react[1]= cActiveNoLys;
else

react[1]=cActiveLys;

}

//Include the extrinsic noise.
if (extrinsic)

for(int i=0; i<é; i++)
if (extFlag[i])
if (t0>interTimeQ)

gau=exp (gasdev(&seed1[i], D[
il, E[i], prev[i], iset
[il, gset[i],white[i]))
/mean[j};

ChangeReactionRate (gau,
reactl[i], i, &P, R,

react, I, &seed2, t0);
ChangeReac(ionRate(gau,
reactRedI[i], i, &PRed,
RRed, reactRed, IRed,
&seed2, t0);
interTimeO+=(deltaT *10);

}
if( t0>interTimeX &&(!flag))

A a(i,react[i]);

write{ofsa,a);

if (maxExt[il<react]i])
maxExt{i]=react[i];

if (minExt{i]>react[i])
minExt[i]=react[i}];

interTimeX+=interValX;

}

(P.r00t7>time<PRed.rootf>time) ? (expFlag=1) : (expFlag=0);
if (expFlag)
{

t0=P.root—>time; //change time to next reaction time ;
rccalculatePrupensity(&l’, O, R, react, I, t0,&seed?2)

;

}
else
1 ,
tO:PRed.mm—>time;//change time to next reaction
time ;
recalculatePropensity (&PRed, ORed, RRed, reactRed,
IRed, t0,&seed2);
}

//store protein number and time.
if (t0>interTimedkgfpj<sampleNo)

{
if (I [KRM-1]>0)

GFP[ gfpjl=1[KRM-1];
if (IRed [KRM-1]>0)

RFP[ gfpj)=IRed [KRM—1];
gfpj++;
interTime=intervalxgfpj+ShiftTime;

}

else{cnut<<"root-—>time=0"<<”\r”;}

}

pthread _mutex.lock(&mut) ;
for(int i=0; i<sampleNo; i++)

ofsGFP<<GFP[ il <"\ t." ;
ofsRFP<<RFP[ i}<<"\t " +

}
ofsGFP<<end];
ofsRFP<<endl;

pthread.mutex_unlock(&mut) ;

delete GFP;
GFP=NULL;
delete RFP;
RFP=NULL;

ofsa.close();
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if (extrinsic)

ifstream ifsa{ch,ios::binary);
A evelé];

int eventA[6]{1001]={0};

A a{0.0};

int record[6}={0};

for(int j=0; j<6; j++)

{

eve[j].reactStep=j;
while (! ifsa.eof())
read(ifsa ,a);

record[a. reactStep J++;
evefa.reactStep ] valueA+=a.valueA;

eventAla. reactStep }[(int)(1000+(a.valueA—minExt{a.reactStep

1) /(maxExt]a. reactStep}—minExt{a. reactStep ]))1+=1;

}

pthread.mutex_lock{&muta);
for(int i=0; 1<6; i++)

if(record{i]}
{

eveli].valueA=eve{i].valueA/record(i];
ofsA<ximinExt] i} <"\t “<<maxExt] ik <endl;

ofsA<<eve[i]. reactStep<<”\t."<<eveli]. valueA<"\ t "

<<record [ il<<endl;
for(int 0=0; 6<1001; o++)

ofsA<<leventA| i o< "\t.";

}
ofsA<<endl;
}

pthread _mutex_unlock{&muta) ;
remove(ch) ;

pthread.exit (NULL);

int thread.create (int maxThread=MAXTHREAD) // create simulation thread .

{

}

int counter=0;

int temp;

memset{&thread, 0, sizeof (thread));
for(int i=0; i<maxThread; i++)

if {0=={temp=pthread.create(&thread{i], NULL, threadx, NULL)))

counter++;

}

cout<<<"created ."<<counter<<”.simulatiion.threads . "<<end!;
return counter;

void thread wait(int maxThread=MAXTHREAD) //wait for each simulation thread to

finish.
for(int i=0; i<maxThread; i++)

if (D)=threadfi])

pthread._join{thread{i], NULL);

int main() //do simulation.

string fname; //filename for parameters saving .
string str;
frame=InitParameter () ;

pthread. mutex_init{&mut,NULL) ;
pthread_mutex init(&muta ,NULL) ;

str=fname+"RFP. x]s”;

ofsRFP .open(str.c.str () ,ios ::app);
str="";

str=fname+"GFP. x1s” ;

ofsGFP .open(str.c.str(} ,ios ::app);
str=""

str=fname+” _Aevent.xls”;
ofsA.open(str.c.str(),ios::app);
int maxThread=MAXTHREAD;

int left=Counter;

for{int gfpi=0;gfpi<Counter;)

{

int succeedThread=¢;
timeval start, finish;
double duration;
gettimeofday(&stact , NULL);

if (left MAXTHREAD)
{

}

succeedThread=thread_create {(maxThread) ;
gfpi+=succeedThread;
thread_wait{maxThread) ;
left=Counter—gipi;

maxThread=left ;

gettimeofday(&finish , NUIL);
duration = (double)(finish.tv_sec ~ start.tv_sec);

int durationHour=(int) (duration({left}/succeedThread) /3600;

int durationMin=(int)(duration*{left)}/succeedThread~durationHour
*3600) /60;

cout<<” Already.simulated . "<<gfpi<<”.paticles.\ t.last Joopocost.”<<
duration<<”seconds ; ."<<"Time.left.."<<durationHour<<” .h. <<
duratienMin<<’ umin”<<endl;

}

ofsGFP. close () ;
ofsRFP. close () ;
ofsA . close();

double s+multiple, smultipleG, «multipleR , =r, *g;//get and evaluate
statistics

multiple=new double[sampleNo]);

multipleG=new double (sampleNo |;

multipleR=new double{sampleNo];

r=npew deuble]sampleNo J;

g=new double[sampleNo };

int «xeventGFP;
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int xxeventRFP;

eventGFP=new intx[sampleNo];
eventRFP=new intx*[sampleNo];
for(int 1=0; i<sampleNo; i++)

multiple[i]=0;
multipleG[1i]=0;
multipleR[i]=0;

r{i]=0;

glil=0;

eventGFP[i]=new int[1001];
eventRFP[i]=new int{1001};
for(int j=0; j <1001; j++)

{

eventGFP[i][j]
eventRFP[i][j]=0;
}
}
str=fname+”"GFP. x1ls”;
ifstream ifsGFP(str.c_str());
str="";
str=fname+”RFP. x1s”;
ifstream ifsRFP(str.c_str());
str="";
int GFP=0;
int RFP=0;
double DGFP=0,DRFP=0;
unsigned int xseedBck,xseedBckR;
seedBck=new unsigned int[sampleNo];
seedBckR=new unsigned int[sampleNo];
double miu=background, beta=5xbackground/16;
double miuR=1.8xbackground, betaR=background;
double bg=0,bgRed=0;
timeval tim;
gettimeofday(&tim, NULL);
for(int i=0; i<sampleNo; i++)
{
seedBck[i]=(unsigned) (tim.tv_usec+50*1);
seedBckR{ i]=(unsigned) (tim.tv_usec+75+50%1i);

str=fname+“G. xls"”;

ofstream Gtmp(str.c_str(),ios::app);

str=fname+”R. x1s";

ofstream Rtmp(str.c.str (), ios::app);

double eventMax=0;//to record the max value of cvent as 1024,
double eventMin=RANDMAX; //to record the min value of event as 0.
far(int 1=0; i<Counter; i++)

for(int j=0; j<sampleNo; j++)

ifsGFP>>GFP;
ifsREP>>RFP;
if (background)

bg=gumbelMini(&seedBck[j ], miu, beta);

bgRed=gumbeiMini(&seedBckR[j ], miuR, betaR)*
IntensityRatio;

if(0>=bg)

{bg=0,}

else {bg=43.177xexp(0.009bg);}

if(0>=bgRed)

{bgRed=0;}

else {bgRed=43.177xexp(0.009+bgRed);}

DGFP=GFP«IntensityPerProtein+bg;

DRFP=RFPxIntensityPerProtein«IntensityRatio +bgRed;

1
else
{
DGFP=GFPxIntensityPerProtein;
DRFP=RFPx+IntensityPerProtein*IntensityRatio;
}
if (DGFP>eventMax)

eventMax=DGFP;
if (DGFP<eventMin)
eventMin=DGFP;
if (DRFP>eventMax)
eventMax=DRFP;
if (DRFP<eventMin)
eventMin=DRFP;
GHnp<<DGF<<"\ t " ;
Rmp<<DRFP<<”\ t”;

}

Gtmp. close () ;
Rtmp. close () ;
ifsGFP.close () ;
ifsRFP . close();

str=fname+"G. xIs”;
ifsGFP.open(str.c.str());
str=fname+”R. x1s”;

ifsRFP .open(str.c_str());

int *counter(;

counter=new int[sampleNo];
for(int i=0; i<sampleNo; i++)

{ counter0[i]=0;
lf (eventMax >1000)
for (int i=0; i<Counter; i++)
¢ for (int j=0; j<sampleNo; j++)
{ ifsGFP>>DGFP;
ifsRFP >>DREP;

int dgfp=(int)(1000%(DGFP-eventMin) /(eventMax—
eventMin) ) ;

int drfp=(int)(1000*(DRFP—eventMin) /(eventMax—
eventMin});

if (dgfp <0(ldgfp >1000}

{

cout<<"dgfp“<<dgfp<<endl;
exit (0);

}
if (drfp <0[|drfp >1000)
{

cout<<” drfp"<<drfp<<endl;
exit(0);

}

eventGFP[j ][ dgfpl+=1;

eventRFP[j |[drfp|+=1;

if (DGFP>08&DRFP>0)

{
counter0[j]+=1;
r[jl=r[j]1+(DRFP—r[j])/counter0[j];
glj1=gli]+(DGFP—g[j1)/counter0[j];
multiple{j]=multiple [ ]+(DRFPxDGFP-multiple [

j1)/counter0[j};
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multipleG[jl=multipleG[ j | + (DGFP+DGFP—
multipleG[j])/counter0{j];

multipleR[j]=multipleR [ j ]+ (DRFP+«DRFP-
multipleR[j])/counter0[j];

else
for (int i=0; i<Counter; i++)
for (int j=0; j<sampleNo; j++)

ifsGFP>>DGFP;
ifsRFP>>DRFP;

int dgfp=(int) (DGFP);
int drfp=(int)(DRFP);
if (dgfp <0{{dgfp >1000)
{

cout<<"dgfp<<dgfp<<end!;
exit (0);

}
if (drfp <0||drfp >1000)
{

cout<<" drfp<<drfp<<endl;
exit (0);

}
eventGFP ([ |[dgfpl+=1;
eventRFP[j ][ drfp]+=1;
if (DGFP>0&&DREP> 0)
{
counter0[j]+=1;
r[jl=r[j]+(DRFP-r[j ])/counter0fj];
gljl=gl))+(DGFE—g[j 1) /counter0 [ 1;
multiple[j]:multiple[j]+(DRFP*DGFP—mu1!iple[
j1)/counter0[j1;
multipleG[j1=multipleG[j ]+ (DGFP+DGFP—
multipleG[j])/counter0[j1;
multipleR[j]=multipleR ] ]+(DRFP«DRFP—
multipleR[j])/counter0[j];

}

delete counter0;
counter0=NULL;

delete seedBck;
seedBck=NULL;

delete seedBckR;
seedBckR=NULL,;
ifsGFP.close () ;
ifsRFP.close () ;
remove(str.c.str());
str=fname+"G.tmp”;
remove (str.c.str());

str=fname+” _event.xls”;
ofstream ofs(str.c_str (), ios::app);

double intNoiseG=0;
double intNoiseR=0;
double extNoise=0;
double totalNoiseG=0;

double totalNoiseR=0;
for(int j=0; j<sampleNo; j++)

ofs<<g[jl<<"\t-";
for(int j=0; j<sampleNo; j++)
{

ofs<<r[jl< \t.";

ofs<<”mean\t"<<endl;
for(int j=0; j<sampleNo; j++)

totalNoiseG =(multipleG[jl-gljl*glj]) /(glil*glil);
ofs<<totalNoiseG<<"\t."”;

}
for(int j=0; j<sampleNo; j++)

totalNoiseR=(multipleR{jl—r[jl*xc[j]) /(r[jI*r[j]);
ofs<<totalNoiseR<<"\t.”;

ofs<<” total .Noise\t"<<endl;
for(int j=0; j<sampleNo; j++)

extNoise=(multiple[jl-r[jI«gli D} /(x(jl*glj D)
ofs<<extNoise<<”\t."”;

ofs<<”extrinsic..Noise\t"<<end!;
for(int j=0; j<sampleNo; j++)

intNoiseG=(multipleG[jl—g[jl*glj1) /(gljl*glj 1) —(multiple [j1-r[j]*gl]
D/(xljl=gliD;
ofs<<intNoiseG<<”"\ t.";

for(int j=0; j<sampleNo; j++)

intNoiseR=(multipleR[jl~r[jl=r[j1) /(r[jl*r[j])—(multiple[jl—r[jl=gl]j
D/(elilxgliD;
ofs<<intNoiseR<<’\t.";

ofs<<” intrinsic.Noise\t"<<endl;

delete multiple;
multiple=NULL;
delete multipleG;
multipleG=NULL;
delete multipleR;
multipleR=NULL;
delete r;
r=NULL;

delete g;
g=NULL;

ofs<<”eventMax=\ t "<<eventMax<<”\ t "<<”eventMin=\ t "<<eventMin<<endl ;
for(int j=0; j<sampleNo; j++)

ofs "GP << <"\t
for(int j=0; j<sampleNo; j++)

ofs <" RFP"<<j<<"\ t "5

}
ofs<<endl;
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for(int i=0; i<1001; i++)

for(int j=0; j<sampleNo; j++)
ofs<<eventGFP[j ]{ijc<"\t.";

for(int j=0; j<sampleNo; j++)
{ ofs<<eventRFP[j ][ ilc<"\t.";
Lfs<<endl;

ofs.close ();

delete eventGFP;

eventGFP=NULL;

delete eventRFP;
eventRFP=NULL;

) return 0;
B.3.2 BTree.h
/%

% FileName:BTree. h

« Description:binary tree with insert, delete, find
* Date:2008—11—4

*/

#ifndef BTree-H.H

#define BTree-H_H

#include<iostream>
#include<deque>
using namespace std;

//binary node with parent node
template<typename T>
class node

public:

node(const T &v, const T &p, int &r, node<I> xL=NULL, node<T> *R=NULL, node<T> x
P=NULL) : left (L), right(R),par(P)

{ .
time = v;
propensity = p;
reaction = r;
}
public:
T time;

T propensity;
int reaction;
node<T> =left , xright, =par;
1

// binary tree
template<typename T>
class BTree

public:
BTree (node<T> *R=NULL) : root(R)

{1}
“BTree ()
{

if (root)
delall();
}

node<T> =findby (int v};
void Insert(const T &v, const T &p, int &r);
bool delby(int v);

node<T> =findleave (node<T> *cur);
void delall();
void display(node<T> xr);
void heapify (node<T> *cur);
void swapnode(node<T> *a, node<> *b);

public:
node<T> *root;
b

template<typename T>

void BTree<T>::swapnode(node<T> *a, node<I> xb)

{
T propensity;
int reaction;
T tmptime;
propensity=b—>propensity ;
reaction=b—>reaction;
tmptime=b—>time ;
b—>propensity=a—>propensity;
b—>reaction=a—>reaction;
b—>time=a—>time;
a—>propensity=propensity;
a—>reaction=reaction;
a—>time=tmptime;

}

template<typename T>
void BTree<T>: heapify (node<I> »cur)

{
node<T> xleft, *right, xsmallest;

if (cur)

left=cur—>left;

right=cur—>right;

if (left&&left —>time<cur—>time})
smallest=left;

else
smallest=cur;

if (right&&right—>time<smallest—>time)

smallest=right;

}

if (smallest!=cur)
swapnode(cur, smallest) ;

heapify (smallest);

}

template<typename T>
node<T> *BTree<T>:findby(int v)

deque< node<T>x > Q;
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bool isfind;
node<T> *tmp;

if(root)
Q.push_back(root);
else

{
}

isfind = false;

tmp = NULL;

while (!Q.empty () &k !isfind)
{

return NULL;

tmp = Q. front ()
Q.pop.-front();

if (tmp—>reaction == v)
isfind = true;
else

if (tmp—>left)

Q. push.back (tmp-—>left});
if (tmp->right)

Q. push.back (tmp—>right);

}

if (!isfind)
tmp = NULL;

return tmp;

template<typename T>
void BTree<T>:Insert(const T &, const T &p, int &r)
{
deque< node<T>x > Q;
node<T> =cur, xpar;
bool flag=1;

if (root)
Q. push.back(root);
else

{
root = new node<T>(v, p, r, NULL, NULL, NULL);
return;

}
while (!Q. empty ()&&flag)
{

cur = Q. front();
Q.pop_front();

if (cur—=>left)
Q.push_back (cur—=>left);
else
{
cur—>left = new node<T>(v, p, r, NULL, NUIL, cur);
flag =0;
par=cur;
cur=cur—>left;

if(flag)

{
if (cur—>right)
Q. push.back(cur—>right);
else
{
cur—>right = new node<T>(v, p, r, NULL, NULL, cur);
flag =0;
par=cur;
cur=cur->right;
}
}

while (par&&par—>time>cur—>time)
{

swapnode(cur, par);
cur=par;
par=par—>par;

}

template<typename T>
bool BTree<T>::delby(int v)
{
node<T> =cur, *tmp, *par;
tmp=NULL;
par=NULL;
bool isleave;

isleave = false;
cur = NULL;
cur = findby(v);
if (!cur)

return false;
else

if (cur~>left &% cur—>right)

tmp = findleave(cur);
tmp—>left = cur—>>left;
tmp—>right = cur—>right;

if (cur—>left)
cur->left—>par = tmp;

if (cur—>right)
cur->right—>par = tmp;

else if(cur—>left)
tmp = cur—>left;
else if (cur—>right)
tmp = cur—>right;
else

{
(cur == cur->par—=>left) ? (cur—>par—>left = NULL) r(cur->par—=>right =

isleave = true;

}
if (!isleave)
tmp—>par = cur->par;

if (cur—>par)

(cur == cur—>par—>left) ? (cur—>par—>left = tmp) :(cur—>par->right =

top) ;
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if(root == cur)

root = tmp;
root—>par = NULL;

if (tmp) par=tmp->par;

while (par&&par—>time>tmp—>time)
{

swapnode (tmp, par) ;

tmp=par;
par=par->par;

}

heapify (tmp) ;
}

delete cur;

return true;

template<typename T>
node<T> *BTree<T>::findleave (node<T> =cur)
{

deque< node<T>* > Q;

node<T> *tmp;

bool isfind;

if (‘cur)
return NULL;
else
Q. push_back(cur);

isfind = false;
while (1Q.empty () & !isfind)

tmp = Q.front();
Q.pop_front();

if (!tmp>left && !tmp—>right)
isfind = true;
else if (tmp—>left)
Q. push_back (tmp—>left);
else
Q. push_back (tmp—>right);

if (tmp—>par)

(tmp == tmp->par—>left) ? (tmp—>par—>left = NULL)

;

return tmp;

template<typename T>
void BTree<T>: delall()

{
deque< node<T>x* > Q;
if (root)
Q.push_back(root);
else
return ;
while (!Q.empty ()}
{
root = Q. front();
Q.pop-_front();
if (root—>left)
Q. push.back(root—=>left);
if (root—>right)
Q.push.back(root—>right);
delete root;
root = NULL;
}
}

template<typename T>
void BTree<T>:: display(node<T> xr)
{
if(r)
cout << r—>time << 'L’
display (r->left);
display (r—>right);

}
#endif

(tmp—>par—>right

NULL)
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