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Abstract

Systems biology is an approach to biology that seeks to understand and predict the

quantitative features of a multicomponent biological system. It requires quantitative

description of endogenous regulation networks to construct appropriate models which

can make predictions about the behavior of the interacting networks. In those interact-

ing networks, promoter activation plays a key role in driving gene transcription, which,

in turn, cause fluctuation in gene expression. Such flucfuations could determine the cell

fate or do harm to regulation networks. Thus not only the study of promoter activity

but also the activity fluctuations become important for a quantitative understanditg.

However there still lack powerful technique for accurate and comparable analysis for

promoter activation in complex endogenous networks. The clear background of lysine

biosynthesis pathway makes the promoter activation analysis a good sample involving

biological noise in systems biology. Time-dependent experiments was employed in this

study because it can result in wealth of information, which makes the model construc-

tion feasible. The ability to analyze promoter activation at single-cell level will enable

much more accurate studies of cell population homogeneity in their regulation. Using

single-cellular technique, this study aimed at setting up a method which can be used

in complex networks to conduct a transition from a qualitative to a quantitative under-

standing.

By single fluorescence experiments, we investigated the expression dlmamics of

genes involved in lysine biosynthesis in Escherichia coli cells to obtain a quantitative

V



understanding of the gene regulatory system. By constructing reporter strains express-

ing the green fluorescence protein geneffi) under the control of the promoter regions

of those genes associated with lysine biosynthesis, time-dependent changes in gene ex-

pression in response to changes in r-lysine concentration in the medium were moni-

tored by flow cytometry. Time-dependent gene expression data were fitted to a simple

dlmamical model of gene expression to estimate the parameters of the gene regulatory

system. The results provide a better quantitative understanding of the promoter dy-

namics in the lysine biosynthesis pathway.

After that a dual-fluorescence system for promoter strength analysis was developed

to involve the biological noise information. This system includes two parts, the vector

pGRFP and simulation tool. By fitting the expression and intrinsic noise getting from

pGRFP vector, simulation tool can easily get appropriate transition rate of the two state,

)o,, and )o6, for the target promoter based on a stochastic formulation of chemical ki-

netics derived by Gillespie. We applied this system to analyze the kinetics of promoters

involved in lysine biosynthesis. By well fitting not only the expression level but also the

intrinsic noise, we got the )o,, and )o6 of the promoters. We found the slow transitions

between promoter states of lysAp, which indicates the transcriptional bursting also can

be a source of noise in prokaryotic cells.

The activation of promoters involved in lysine biosynthesis were analyzedby single

fluorescence experiments and dual-fluorescence system at single cell level. By placing

the promoter regions of those gene associated with lysine biosynthesis upstrearn of gfp,

the dynamic behavior of promoter activation was well visualized and quantitatively

analyzed. This process was simulated by two fundamental ways, a simple deterministic

process and a stochastic simulation algorithm. The two group parameters gotten from

the different simulation methods, which used to describe the promoter activation, were

validated by each other. The results provide a better quantitative understanding of the

promoter dlmamics in the lysine biosynthesis.



Chapter I
Introduction

Cells are matter that dances.

Uri Alon

L.L Systems Biology

ike a sentence we understand is not only the assembly of letters but words in

a whole, a living cell is not just an assembly of genes and proteins. Its proper-

ties could not be fully understood merely by drawing diagrams of their interconnec-

tions. hr addition, pathways are traditionally drawn as separated linear entities and

then connected by the shared parts to form a comprehensive diagram. However, this

rather reflects the history of how they were discovered than their real functional context.

Therefore it is largely unknown how biological response specificity is encoded through

biochemical activation kinetics among these separated entities. How does this path-

way specify different biological responses from the others? How does these isolated

pathways in previous study work together and embedded into a network? To answer

these questions we should view a living cell as a dynamical system with integration of

pathway crosstalk and the versatility of component function. That means we should

understand biology at the system level(Kitano 2002).

Systems biology is a newly emerging biological field that aims to understand var-

ious complex life phenomena at a system level(Kim et al. 2008). It studies the living

organisms as a network of interacting parts and seeks to understand how this network

gives rise to the functional aspects of life. These networks are modular, robust and
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predictable(Aderem 2005). To understand living networks at a deep level will require

the transition of biology from a descriptive to a quantitative science. This quantitative

process gives birth to the models which have to faithfully describe the biological sys-

tem and be able to make predictions about their behavior. This predictive power can

then be exploited by incorporating descriptions of perturbations of the biological sys-

tem into the model and using computational techniques to predict possible behaviors of

the system(Kolcha et al. 2005). In a short words, systems biology is an approach to biol-

ogy that seeks to understand and predict the quantitative features of a multicomponent

biological system(Kitano 2002).

In practice side, systems biology promises to personalize medicine via network-

based biomarkers that predict therapeufic effectiveness. The pathogenicify of human

pathogens varies from person to person, which makes the treatment and dosage for

sdme disease should be personal (Brynildsen and Collins 2009). Goh et aI. (2007) drew

a network map of disorders and disease genes linked by known disorder-gene associa-

tions in order to offer a platform to indicate the common genetic origin of diseases. To

acquire a deeper understanding of this graph-network structure, Chang et al. (2009) in-

troduced a systems-based approach to break down oncogenic signaling networks into

modules that predict the effectiveness of pathway-specific therapeutics.

'1..2 PromoterStrength

To get the comprehensive metabolic landscape in living cells needs the quantitative

understanding in global gene regulation networks. Although there are large mass of

biological data by use of the high-throughput omics technologies (e.9. genomics, tran-

scriptomics, proteomics, and metabolomics), there still lack the details for systems bi-

ology to generate the accurate and undubious models in the endogenous regulation

network(Kim et al. 2008).



1.3. Time-dep endent exp eriments

More and more details and steps involved in transcription were discussed(Zhou and

Yang 2A06, Mijakovic et al. 2005, CoxIII et al.2007,Wray et al. 2003). One of the most

important parts is the question how the cells initiate the transcription. The promoter,

the region of DNA with specific sequences, is known to play a central role in driving

gene transcription(Browning and Busby 2004b). The ability to determine the frequency

of initiation of transcription is called promoter strength(Lu et al. 2004). To use most

suitable model with appropriate parameters to simulate the initiation of transcription

will do great contribution in systems biology.

L.3 Time-dependent experiments

There are many functional modules, such as enhancer, boostet actlatoL insulatoq, re-

pressor, locus control region, upstream activating sequence, and upstream repressing

sequence, that contribute to the promoter strength(Wray et al. 2003). However, most of

the endogenous promoter in cell lack the information about the detail of the regulation

mechanism. But frequently researchers found a given factor could activate or repress

the promoter strength. Dynamic responses of promoter strength to various environ-

mental stimuli can be easily gotten by time-dependent experiments. Time-dependent

experiments is the experiments to monitor the change of target attribute or properties

via a time series sample in a given condition.

The time-dependent experiments can result in wealth of information such as

behavior changes when stimuli is modified, which makes the model construction

feasible(Kitano 2002). System dlmamics, one of the key properties in systems biol-

ogy, resolves how a system behaves over time under various conditions. The central

goals of system dynamics is to predict the dynamic behavior of a cell's genetic and

metabolic networks(Mettetal et al. 2006). Living organisms require a continual input

of free energy from its environment and synthesis of macromolecules for the purpose
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of maintenance of life. Sum of all the chemical reactions that take place in every cell

of living organism, providing energy for the processes of life and synthesizing new

cellular material is referred to as metabolism. Metabolism is composed of many cou-

pled, interconnecting reactions. How the intricate network of reactions in metabolism

is coordinated is the key research topic for metabolism(Berg et al. 2002). As to systems

biology, the question change to the transition from a descriptive to a quantitative un-

derstanding. Because of the complexity of biological systems, this goal requires the

use of mathematical models that provide a framework for determining the outcome of

numerous and simultaneous time-dependent and space-dependent processes(]aqaman

and Danuser 2006a). Dynamic systems responses to various environmental stimuli can

be elucidated by systems modeling of signaling pathways. The time-dependent experi-

ments can provide lots of available data for determining model parameters. After using

maximum likelihood(Ml) and least squares (LS) to regress the parameters and using

the model goodness-of-fit test(GFT) to identify most suitable model, the biological pro-

cesses can be described and predicted by mathematical models(Kim et al. 2008).

1.4 Reporter Genes

To determine the strength of any given promoter, a reporter gene is usually driven

under its control. Classical reporter genes include lacZ(p-galactosidase), gusA({3-

glucuronidase), cat(chloramphenicol acetyl transferase),lux(Iuciferase) arrd gfp,yfp, cfp,

rfp(fluorescent protein)(Mijakovic et al. 2005, Lu et al. 2004). These can be readily

adapted for comparative promoter studies. Fluorescent proteins are genetically en-

coded, easily imaged reporters crucial in biology and biotechnology.

Green fluorescent protein(GFP) from Aquorea victoria emits green light ()-"" 508nm)

on excitation at 395nm. It has become an invaluable tool for pure and applied biological

research. Mutagenesis of the wildtype yielded improved variants optimized for flow
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cytometer analysis(Cormack et al. 1996, Suzukj et aI. 2004). gfpua1 is the mutant devel-

oped by Suzuki et al. GFPuvS emits green fluorescence at ) 51Lnm on exitation at )
488nm(Suzuki et al. 2004), which can be easily used for quantitative analysis by flow

cytometry.

The most useful of red fluorescent protein(RFP) for dual-color experiments with GFP

is DsRed, which is derived from the coral Discosoma. The mutation dsred-TL is a fast

mafuring variants of Discosomn red fluorescent protein developed by Bevis et a1., which

emits red fluorescence at ) 586nm(Bevis and Glick 2002).

Both of the GFPuvS and DsRed have a rapid maturation, high brightness and suit-

able emission for flow cytometry analysis. And they are verified that their fluorescence

will not lead crosstalk in dual-color experiments(Bevis and Glick 2002).

L.5 Single Cell Analysis

To conduct a transition from a descriptive to a quantitative understanding, a com-

prehensive set of quantitative data is required. With the development of advanced

biotechnology, more and more accurate single cell level measurements were introduced

into systems biology. These single-cellular analysis techniques include flow cytom-

etry, optical well arrays, fluorescence microscopy, electrochemical detection, Raman

microspectroscopy, capillary electrophoresis with laser-induced fluorescence detection

(CE-LIF) biomolecules, CE-LIF organelles, matrix-assisted laser desorption/ionization

mass spectrometry (MALDI-MS), laser capture microdissection (LCM) and cDNA mi-

croaray analysis, and multiplexed real-time RI-PCR(Arriaga 2009). Flow cytometry, a

powerful technique for analyzing large populations of single cells, allows simultaneous

multiparametric analysis of the physical and/or chemical characteristics of single cells

flowing through an optical/electronic detection apparatus with high speed and low eco-

nomic cost. In the field of promoter activation analysis it is especially useful when used
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with fluorescence proteins under the control of target promoter(Ducrest et al. 2002).

Figure 1.1 showing the results of two typical experiments in which the expression

level of a fluorescent reporter protein is measured in a population of isogenic bacterial

cells. taditional population-averaged measurements would summarize the entire ex-

pression histogram by its mean value, howevet observation by flow cytometry shows

that the expression level varies from cell to cell, with a standard deviation o. As we

know stochastic mechanisms are ubiquitous in biological systems(Ozbudak et aI.2002).

Isogenic cells and organisms exhibit distinct diversity to respond to a given concen-

tration of a stimulus. Noise, or variation, in the process of gene expression (intrinsic

noise) and in cellular components (extrinsic noise) may contribute to such kind of ubiq-

uitous phenomenon in biological systems(Elowitz et aL.2002). Analyzing the data by

the technique of using flow cytometry can help us to study promoter strength more

comprehensively and accurately with respect to stochastic noise as a whole.

1.6 Biological Noise

The development of live cell and biochemical analysis methods has led to an increase in

our understanding of transcription profiles of genes. Researchers found even in a popu-

lation of genetically identical cells experiencing the same environment, protein contents

very from cell to cell. The quantitative description of such fluctuations is termed bio-

logical noise (Arr iaga 2009).

In order to describe the stochastic or noisy process of gene expression, coefficient of

variation, a conception in mathematics and statistics, was employed. In probability the-

ory and statistics, the coefficient of variation (cv) is a normalized measure of dispersion

of a probability distribution. It is defined as the ratio of the standard deviation to the

mean,

D(″
)

E(″
)

(1.1)
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/与
1

40    ml

LOC CFP

Figure 1.1: Illustration of steady-state sensitivity. The peaks in different color show two group
data of LOG GFP detected by Flow cytometry. Traditional population-averaged measurements
would summarize the entire histogram by the concentration of protein at peak position (p);

however, our single-cell measurements show that the expression level varies from cell to cell,
with a standard deviation o. o carLbe calculated by the peak width at half height if we fit the
bell shape curye as normal distribution. After changing the components in the environment,
the cell would respond to this change from steady state 0 to steady state L, which can be well
visualized and quantitatively analyzed by flow cytometry.

, where n(r) is mean value and o(r) is the deviation. A natural and biologically rel-

evant measure of the magnitude of gene expression noise is thus the size of protein

fluctuations compared to their mean concentration. In Figure 1.1,, the mean value (p(t))

represent the gene expression at time t. Then the noise, q(t), is grven by

η
2(t)= (P(t)2)_(P(ι ))2

(1.2)
(P(ι ))2

, where the angled brackets denote an average over the probability distribution of p at

time t.

Noise confers lots of advantages, as it brings diversity to cells. This diversity can

provide a better chance at survival in uncertain environments(Fraser and Kem 2009).

Both experiments and simulations confirmed that increased gene expression noise could

provide a significant selective advantage at high stress levels(Blake et al. 2006).The

rapid fluctuations in gene expression noise could determine the cell fate. It is re-
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ported that the competence of Bacillus subtilis was determined by the noise expression of

ComK(Maamar et a1.2007). And it was testified that the phage ) lysis-lysogeny decision

circuit has relation with biological noise(Arkin et al. 1998).

However more often it is harmful for regulation networks as it garbles cell signals,

corrupts circadian clocks and propagates unstable from one gene to a downstream tar-

get. Cell regulation networks have evolved so as to minimize the disruptive effect of

such fluctuations, in ways that are only now beginning to be understood(Ozbudak

et aL.2002).

It is expected that control of noise in gene expression is under evolutionary pressure.

Several models talking about how cell control the intrinsic noise of gene expression were

reviewed(Raser and O'Shea2004). Many simplified theoretical models were employed

to show how the difference of transcription, translation, promoter activation, gene copy

number and gene feedback loops contribute to controlling the noise.

However, most of the experimental studies have so far focused on noise property

itself. To apply this method to analysis the strength of a promoter involved in endoge-

nous gene networks, particularly in metabolism network, is seldom reported. A com-

prehensive understanding of design strategies used by endogenous transcriptional reg-

ulatory programs might require a stochastic perspective. We have barely scratched the

surface of this intriguing topic, and there is a clear need to address in greater detail how

gene expression responds to fluctuations in signal transduction, how gene-expression

noise is transmitted through regulatory circuits and control loops, and how the archi-

tecture of regulatory networks allows cells to deal with or take advantage of unreliable,

fluctuating signals(Kern et al. 2005). We need an entrance point. The clear background

of lysine biosynthesis (Figure 1.2) provides a chance of challenge in the study of stochas-

ticity in more complex regulatory systems.
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1.7 Lysine Biosynthesis

An analysis of amino acid metabolism is important for the progress of systems biol-

ogy, because the role of the metabolic system, i.e., to provide building blocks for the

entirety of cellular dynamics, is essential for the maintenance of life, and the regulation

of metabolic reactions has been thoroughly investigated. Lysine biosynthesis, one of

the important components of metabolic networks, is a pathway starting with aspartate

and runs through the diaminopimelate pathway in E. coll(Rodionov et al. 2003).

From previous studies(Chenais et al. 1981 , Liao and Hseu 1998, Haziza et aI. 1982,

Richaud et al. 1986, Bouvier et al. 1992, Richaud et al. 1984, Bouvier et al. 1984,

Funkhouser et al. 1974, Jin et aI. 2004, stragier et al. 1983, Bouvier et al. 2008), we

have obtained an elementary understanding of the lysine biosynthesis network struc-

ture (Figure 1.3). As shown in Figure 1.3, the expressions of most genes involved in the

lysine biosynthesis in E. coli are repressed by lysine. Diaminopimelic acid (DAP) is the

precursorof lysine tnE.coli. Theconversionof meso-DAPtolysineiscatalyzedbyDAP

decarboxylase, the product of lysA(Chenais et al. 1981). The transcription of IysA is re-

pressed by lysine. meso-DAP is synthesized from aspartic acid through the successive

reactions of eight enzymes. The first two steps are catalyzed by the products of lysC and

asd, and they are shared by the pathways leading to lysine, threonine, and methionine.

The transcription of both lysC(Liao and Hseu 1998) and asd(Haziza et al. 1982) is re-

pressed by lysine. The other six genes belong to the DAP pathway. The first gene of this

pathway, dapA, is constitutively expressed, but the activity of its product, dihydrodipi-

colinate synthetase, is inhibited by lysine(Richaud et al. 1986). The transcriptions of

dapB(Bouvier et aL.1984) and dapD(Richaud et aL.198$ are repressed by lysine. With

regard to dapC, dapE and dapF, there is no evidence showing their expression regulation

by lysine.

Although most genes involved in lysine biosynthesis in E.coli are repressed by ly-
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Figure 1.3: Lysine biosynthesis regulation network by l-lysine. "N/A" in the figure represents

that the mechanism to regulate these genes is still unclear.

sine,little is known about their regulation mechanisms(Rodionov et al. 2003), shown as

a gray box labeled as N/A in Figure 1.3. Lysine also inhibits the activities of aspartoki-

nase III and dihydrodipicolinate synthase to regulate its synthesis by changing enzyme

structures or by other mechanisms(Kotaka et al. 2006).

L.8 Object

The use of the kinetic cell model for describing cell behavior is necessary for a quantita-

tive understanding of the metabolic regulation network, including lysine biosynthesis.

Followed the deepened research in biological noise, there is a need to develop experi-

ment in the study of promoter strength with the stochasticity property in more complex

regulatory systems, particularly endogenous gene networks.

In this study, we tried to analyze the promoter strength via single cell technique.

We analyzed the strength of promoters involved in lysine biosynthesis with single-

fluorescence experiments and dual-fluorescence experiments by flow cytometry. The

aclivat€;
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combination of reporter strains and flow cytometry provided us with a convenient and

accurate method of measuring gene expression dlmamics. By the single fluorescence ex-

periments, the dynamic response of the promoters to shift of lysine in the environment

were well visualized and quantitatively analyzed by flow cytometry. Five promoters

involved in lysine biosynthesis respond to the changes in t--lysine concentration in the

medium. For these five promoters, time-dependent gene expression data were fitted to

a simple dlmamical model of gene expression to estimate the parameters of the gene

regulatory system. The results provide a better quantitative understanding of the pro-

moter dynamics in the lysine biosynthesis pathway. The dual-fluorescence system was

verified to be useful in introducing the biological noise into the promoter strength anal-

ysis. And it can provide appropriate ko,, and ko11 for target promoter. This system can

be easily used for strength analysis of grouped promoters in an endogenous regulation

network. The parameters of ko, and kssr C&ri not only describe the activation of repres-

sion by a given factor but also provide information about the biological noise for the

promoter. This will help us to understand the initiation of transcription in a quantita-

tive way and to predict the possible level of mRNA.

1。9 0utline of the thesis

This thesis consists of four chapters.

In chapter 1, the background of this study is represented. An overview of the thesis

objective is provided.

In chapter 2, in order to conduct the transition from a qualitative to a quantitative

understanding of the promoter involved in lysine biosynthesis in E. coli cells, the combi-

nation of reporter strains and flow cytometry was employed. The kinetic parameters of

five genes involved in lysine biosynthesis were obtained by fitting the gene expression

data to a simple dynamical model.



1.9. Outline of the thesis

In chapter 3, a dual-fluorescence system for promoter strength analysis was devel-

oped to involve the biological noise information. This system was applied to analyze

the kinetics of promoters involved in lysine bioslmthesis.

In chapter 4, the general conclusion of this research was made.

13





Published as: fianhong Ou, et.al - "Dynamic change in promoter actiaation during lysine biosynthesis in
Escherichia coli cells." Molecular BioSystems, vol. 4, pp. 128-734,2008.

Chapter 2

Dynamic changes in promoter activation
analyzed by single fluorescence exPeriments

Abstract

We investigated the expression dlmamics of genes involved in lysine biosynthesis
in Escherichin coli cells at single cell level to obtain a quantitative understanding of
the gene regulatory system. By constructing reporter strains expressing the green
fluorescence protein gene(gfp) under the control of the promoter regions of those

genes associated with lysine biosynthesis, time-dependent changes in gene expres-
sion in response to changes in t--lysine concentration in the medium were moni-
tored by flow cytometry. Five promoters involved in lysine biosynthesis respond
to the changes in rJysine concentration in the medium. For these five promoters,
time-dependent gene expression data were fitted to a simple dynamical model of
gene expression to estimate the parameters of the gene regulatory system. Accord-
ing to the fitting parameters, dapD shows a significantly larger coefficient of repres-
sion than the other genes in the lysine synthesis pathway, which indicates the weak
binding activity of the repressor to the dapD promoter region. Moreover, there is a
trend that the closer an enzyme is to the start of the lysine biosynthesis pathway, the
smaller its maximal promoter activity is. The results provide a better quantitative
understanding of the expression dynamics in the lysine biosynthesis pathway.
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Figure 2.1: The dynamics of gene promoters involved in lysine biosynthesis in E. coli cells in
response to changes in r-lysine concentration was investigated. The results provide a better
quantitative understanding of the expression dynamics in the lysine biosynthesis pathway.
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2.1 Introduction

ystems biology is the study of living organisms as a network of interacting parts

and of how this network gives rise to the functional aspects of life. These networks

are modular, robust and predictable(Aderem 2005). A deep understanding of these

living networks requires the transition of biology from a descriptive to a quantitative

science. This quantitative process gives birth to models that have to faithfully describe

biological systems and can predict their behavior(Kolcha et al. 2005).

System dynamics, one of the important aspects of systems biology(Kitano 2002), rc-

solves how a system behaves over time under various conditions. One of the central

goals of systems biology is to predict the dynamic behavior of genetic and metabolic

networks(Mettetal et aI.2006) in a cell. Living organisms require continuous inputs of

free energy from their environment and synthesize macromolecules to maintain life.

The sum of all the chemical reactions that take place in every cell of living organisms,

providing energy for the processes of life and for the synthesis of new cellular mate-

rial, is referred as metabolism. Metabolism involves many coupled, interconnecting

reactions. The key question concerning metabolism is how it coordinates its intricate

network of reactions(Berg et al. 2002). A quantitative understanding of the reaction

dynamics associated with metabolism can help answer this question.

An analysis of amino acid metabolism is important for the progress of systems bi-

oIogy, because the role of this metabolic system, i.e., to provide building blocks for the

entirety of cellular dynamics, is essential for the maintenance of life, and the regulation

of metabolic reactions has been thoroughly investigated. Lysine biosynthesis, one of

the important components of metabolic networks, is a pathway starting with aspartate

and runs through the diaminopimelate pathway in E. coli(Rodionov et al. 2003). And

its elementary understanding in network structure was obtained (Figure 1.3).

Although many studies have provided insight into the "correlations" between genes
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and biological phenomena in the regulation network(Rodionov et al. 2003), little is

known concerning the connection between these genes. The use of the kinetic cell

model for describing cell behavior is necessary for a quantitative understanding of the

metabolic regulation nefwork, including lysine biosynthesis. The promoter has the abil-

ity to determine the frequency of initiation of transcription, which makes it always a

hot spot in systems biology(Browning and Busby 2004b). This abilify is denoted by the

promoter strength(Lu et al. 2004). To determine the strength of any given promote4 a

reporter gene is usually driven under its control(Mijakovic et al. 2005). If inserting a

promoter upstream of the green fluorescent protein(6fp) gene, promoter activity can be

monitored by the intensity of green fluorescence emitted by GFP(Lu et al. 2004).

Time-dependent experiments are commonly used to achieve a quantitative under-

standing, which usually involve monitoring groups of cells over their cycles or as they

r'espond to time-dependent changes in conditions in the extracellular medium(Sayyed-

Ahmad et aL.2007). Because most genes involved in lysine biosynthesis in E. coli arc

directly or indirectly repressed by t-lysine, after changing the t--lysine concentration in

the medium, the expression of enzymes involved in lysine biosynthesis may shift from

one steady state to another. Analyses of their time-dependent expression will enable

the prediction of these phenomena associated with the dynamic variable.

In this sfudy, we investigated the activation dynamics of gene promoters involved

in the lysine biosynthesis pathway of E. coli cells via time-dependent experiments. We

constructed nine reporter strains by cloning the promoter regions of the genes involved

in lysine biosynthesis pathway upstream of the gene encoding the green fluorescence

protein Wil. Sy flow cytometry, we determined the dlmamic changes in gene expres-

sions in response to changing environmental conditions (i.e., r-lysine concentration) at

single cell level. We fit these experimental data of gene expression dynamics to a simple

kinetic model with repression to estimate the parameters of the gene regulatory system.

The results provide a better understanding of the gene expression dynamics in the ly-

17



18 2. Single F luorescence Experiments

sine biosynthesis pathway. But however, we failed in including noise information into

the parameters.

2.2 Material and methods

2.2.L Strains and media

Nine reporter strains were used in this study, E. coli DH1 (K-12 endAl- recAl gyrA96

thi-l- glnV44 relAl hsdRLT(rK-mK+) 
^-)/plysCp-pGFP,u5 

(lysCp in short), DH1./pasdp-

pGFP.,,5 @sdp), DH1./pdapAp-pGFP,u5 @apAp), DH1./pdapBp-pGFP""5 @apBp),

DH1. /pdapDp-pGFP,,s (dapDp),DH1. /pdapCp-pGFP,"s (dapCp),DH1. /pdapEp-pGFPuus

(dapEp),DH1/pdapFp-pGFPu"5 (dapFp), and DF{l/plysAp-pGFP,,5 (lysAp) which con-

tainthepromoterregionsof genes (i.e.IysC,asd,dapA,dapB,dapD,dapC,dapE,dapF,and

lysA), respectively.

The promoter regions were amplified from E. coli DH1 genomic DNA by

PCR(Table 2.1). PCR is performed as follows: 94'C for 5 min, followed by 30 cycles

of 94C for 30 s, 60'C for 30 s and 72C for 1 min, and a final step of 72C for 7 min. The

primers listed in Thble 2.22were used to amplify the regions between two adjacent open

reading frames(ORFs) with an extension of 150-200 nt upstream of the ORFs(Figurc2.2).

This definition of promoter region is the usual practice in many promoter researches

(ZasIaver et a1.2004). The promoter regions were cloned at ApaI andNhel sites upstream

of gfpuvS, which is a variant of ffi(Ito et al.2004)(Figure 2.3). Both of the vector and

recovered promomter PCR fragments are digested for 6 h at 37'C with NheI and ApaI

restriction enzymes(Thble 2.2), and then cleaned by using Promega@ gel/PCR clean-up

system into 20 p,L of TE(pH8.0). Before recover, the vector is performed one more de-

phosphorylation step that it is digested by Bacterial Alkaline Phosphatase at 37'C and

60'C one after another separately for 30 min each reaction. After that,ligation reaction

is performed overnight at 16"C(Table 2.3).
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Table 2.1: PCR reaction mixture for amplification of promoters involved in lysine biosynthesis

Components Amount(pL)

Ex taq 10× buffer

dNTP Mixれre/25mM
Esc力θ″′σみ滋σοI′ DHl fresh culture

Folward Primer(20pMo1/μ L)
Reverse primer(20PMo1/μ L)

TaKaRa Ex TaqTM(5 units/μ L)

Nuclease-Free water to a final volume of 100

Figure 2.2: Definition of promoter region in this study

Figure 2.3: Illustration for strategy of reporter strains construction. Reporter plasmid pPROLar-
GFPuvS: pPROLarcontainsthegene of gfpua|. T1.,t0: transcriptionterminationsequence;p1.5A:
origln of replication (2G-30 copies per cell); KanR: kanamycin resistance gene; GFPuvS: green
fluorescence protein gene uv5 mutant, which fluorescence excited at ) 51Lnm and emit at .\
488nm
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Table 2.2:Erlzvme di tion reaction mixture for vector and PCR fra

Components Amount(pL)

pPROLar-GFPuvS or PCR products
L Buffer(Thkara)
NtueI(Thkara)
ApaI(Takara)
Nuclease-Free water to a final volume of

5 or 10

2

1

1

20

Table 2.3: Ligation reaction mixture

Components Amount(pL)

pPROLar―GFPuv5(30ng/μ L)
PCR ProduCtS(25ng/μ L)

Takara Ligation Kit I

Competent E. coli DH1 cells were prepared by Z-competent E. coli transformation

kit(ZymorM Research, USA) and buffer set as manual. 0.5 mL of fresh overnight E.

coli DH7 culture grown in M9 minimal medium with an amino acid solution (M9A

medium)(Ford et a1.1994)(Table2.23) was inoculated to 10 mL M9A in 2 test tubes and

shaken vigorously at 24'C until OD6ss r€dCh€s around 0.2-0.3. Before collecting, the

culture was cooled down on ice for L0 min, and then the cells were pelleted at 25009 for

6 minutes at 4'C. After removing the supernatant the cells were resuspended gently in

5mL of ice cold 1x Wash Buffer, and re-pelleted at 2500 g for 6 minutes at 4C. Then

the supernatant was removed completely and resuspended gently in SmL of ice cold

1x Competent Buffer. Aliquot 0.L mL of the cells was put into sterile Eppendorf tubes

on ice. After that, competent cells were trozen as fast as possible by dropping tubes

immediately in a small liquid nitrogen container and left until they were completely

frozen and all aliquots had been made. Competent cells were stored at -80"C fueezer

before use.

While transformation, a tube of frozen competent cells was thawn on ice, L pLIig-

ation product was added and mixed gently. The mixture was incubated on ice for 45

１

４

５
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min. 400 pL of M9A media was added and incubated at 37"C for 30 min before spread-

ing50 p,LonM9Aplateswith25 pg/mLof kanamycin. TheplatewasincubatedatST"C

overnight.

Positive colonies were screened by colony PCR (reaction solution as shown in Th-

ble 2.4 and picked the colony into the solution by yellow tip) using primers designed

for the outer regions of the two restriction sites, ApaI and NheI. Primer sequences are

shown in Thble 2.5. PCR conditions were 94C for 5 min, followed bv 30 cycles of

Table 2.4: Colony PCR reaction solution

Components Amount(pL)

Ex taq 10× buffer

dNTP NIixture′ 25mM
PROCHECK― F(20pNllo1/μL)
PROCHECK― R(20PNI101/μ L)
TaKaRa Ex TaqTM(5 units/μ L)

Nuclease-Free water to a final volume of

Table 2.5: Primer sequences for colony PCR

Primer name Sequences

PROCHECK―F: TCCTTCGCGGCAAGAAACCC
PROCHECK‐R: CTCACAGAAAATTTGTGCCC

94"C for 30 s, 60"C for 30 s and 72C for 1. min, and a final step of 72C for 7 min. The

size of PCR products were artalyzedby agarose gels. Frozen stocks (Ilo/.(w /v) glycerol)

of the reporter strains were prepared. 4 randomly selected clones for each promoter

were sequenced and the reporter strains with no mutations were selected. 100 prl of

plasmid prepared for sequencing by Mini Plasmid DNA Purification Kit(Labopass@)

was treated by adding an equal volume of buffer-saturated phenol:chloroform (1:1) to

the DNA solution, mixing for 10 s by vortex and then spinning in a microfuge for 15

min at 15,000 rpm. The aqueous layer was carefully removed to a new tube, and the

21

2

2

1

1

0.2

20



22 2. Single Fluorescence Experiments

salt concentration was adjusted by adding 1/L0 volume of 3M sodium acetate, pH5.2,

(final concentration of 0.3 M). The plasmids were precipitated by 2 to 2.5 volumes of

cold L00% ethanol (calculated after salt addition). After cooling treatment on ice or at

-20C for over 20 min, the plasmids were collected 20 min at 1,5,000rpm. Supernatant

was discarded and the plasmid was washed by 1 mL 70% ethanol by mixing. Pellet was

dried by vacuum. After resuspending the pellet in 30 pL of TE (pH 8.0), the sample

for sequence was cleaned up. A 20 p"L reaction was prepared by adding the following

reagents into the 5 pL of thawed Big Dye Ready Reaction Mix(Table 2.6).

Table 2.6: Sequencing reaction solution

Component Amount

thawed Big Dye Ready Reaction Mix
PROCHECK-F or PROCHECK-R (0.8 prnol/ uL)
Template fragment for sequencing

5pL
4pL

100-200 ng

Nuclease-Free water to a final volume of 20 rL

After well mixing by flicking tube, PCR reaction was run as follow condition: 96"C

for 2 min, followed by 25 cycles of 96C for L0 s, 50'C for 5 s and 60'C for 4 min. 2 ptL

of 3 M sodium acetate was added, pH 5.2 into the PCR product. The amplified DNA

was precipitated by cold 100% ethanol at 40'C for 30 min. The precipitation was col-

lected by 20 min at 15000 rpm and then washed by 70o/o ethanol. After briefly vacuum

drying, the pellet was added into 20 pL of TSR (Template Suppression Reagent, AP-

plied Biosystemsrt), mixed thoroughly on a vortex mixer and denatured for 2 min at

100"C. Then samples were chilled on ice for 5 min, vortexed to mix and spined at 13,000

rpm for 30 s to collect volume at bottom of tube. Entire volume of sample was trans-

fered to sample tube and caped with grey rubber gasket. Sequencing was done by ABI

Prism 3100Instrument(Applied BiosystemsrM) within several hours. Before sequencing,

the sequencing buffer and MilliQ water were changed for sequencing. All the reporter

strains were confirmed by sequenceing.
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Reporter strains were cultured in M9A media and kanamycin(25 μg/mL).It shOuld

be noted thatthe L‐lysine in the arrlinO acid solution was prepared separatelン and the

need to add L-lysine to the rnedium was decided according to the experirrlental condi―

tion.

2.2.2 Sample preparation

Before sample preparation′ the grOwth rates of all the reporter strains were deternlined

to ensure thatthe growth rates were stable at approxillnately l.2h~1.The reporter strains

were streaked on M9A miimal medium plate(1.5%Iw/v]agar)frOm the stock and in―

cubated at 37° C for15 h.Preculture was carried out by picking a colony and inoculating

itinto 2 test tubes containing 5mL of fresh NI19A medium(one test tube contained O.3-

mML-lysine′ while the other contained no L-lysine).The inOculated test tubes were

then reciprocally shaken at 37° C and 160 rpn■ until the()]D600 Value reached O.6-0.7.Af―

ter the precullure′ all the cells were collected by centrifugation at 6000 rPIfrl for 5 nlin′

followed by a re― suspension Ofthe pelletin lmL of M9A medium(with Or without L―

lysine′ depending on the next culture step).The Suspension were inoculated into test

tubes contalrung 5 mL of II19A medium with or without L-lysine to make the initial

OE)600=0・ 01 for rnain culture.The test tubes were reciprocally shaken at 37° C and 160

rpln.Every 15 rnll■ ′samples forflow cytometry were prepared by sampling l mL ofthe

culture and the samples were stored at-80° C until use.

2.2。3 1〕ata acquisition and analysis

The samples were thawed before being analyzed using a■ ow cytometry(COULTER③

EPICsO XLTM′ Beckman Coulter/Fullerton/CA)and then diluted with phosphate buffer

solutiOn(PBS′ PH 7.0)(Table 2.7)to set the cell concentration at 107 cellS/1rtL(OD600=

0.01).Fluorescence measurements were obtained using■ ow cytometry.20′ 000 cells

frOm each sample were analyzed. GFP excitation was achieved using a 488-nnl argon

23
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(Ar+) excitation laser and the fluorescence was measured with a 525120 nm emission

filter for GFP. The flow cytometry generates log-scale values using a LO-bit analog-to-

digital converter, yielding integers in the range of 0 to 1,023 for each of three measure-

ments: fluorescent intensity, forward-scattering (FSC), and side-scattering (SSC). The

lmd fulesproduced by the flow cytometry were converted into a Microsoft@ Excel@ doc-

ument using EXPO@ 7.0 (Beckman Coulter, Fullerton, CA). And use Equation (2.1) to

convert the log scale values to fluorescent intensity. The GFP protein concentration

(p) for each sample used in the data fitting was determined according to the peak po-

sition in the events histogram of GFP fluorescence after discrete wavelet transforma-

tion(AppendixB.l). To confirm the reproducibility of the changes in the fluorescence

distribution dynamics, we performed two experiments under the same environmental

conditions, and found that the measurement results were robust in these independent

experiments. Thus, here we showed the results of one of these experiments.

GFP― intensity=37.814× c(°
01× LOG GFP)

(2.1)

Table 2.7: Recipe of IxPBS

Components Company FinalConcentration(g/L)

K2HPO4
KH2PO4

Wako
Wako

10.5
4.5

2.2.4 Real-time reverse-transcription
(Real-time RT-PCR)

polymerase chain reaction

The culture of each strain and sampling were performed as described above. The RNA

was isolated from these cultures using the RNeasy Mini kit (Promegar', Madison, WI)

and then treated with DNase I (ThKaRa, Japan) at37"C for 30 min (Thble 2.8). The RNA

purified by burrer-saturated phenol:chloroform (1:1) and precipitated by 100% ethanol.
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TSl" 2.8, DNur"I dig n

Components Amount(pL)

TotalIINA         30
10× DNasel buffer   5
RNase inhibitor 0.5

DNaseI(RNase― free)2
DEPC water 12.5

The IINA integrity was electroPhOretically veri■ ed by ethidium bromide staining and

by verifying that the OD260/OD280nm absorpuOn ra■ o was greater than 2.0.Atter carry―

ing out reverse transcription with randollrL prirners using the PromegaO Reverse Tran―

scripion System(PrOmegaTM′ NIladison′ WI)(Table 2.9)′ real―ime PCR analysis was per―

forrrled.In the real― tillrle PCR analysis′ the first― strand cDNA pool was lnixed with

SYBR③ Green PCR NIlaster Mix(Applied BiosystenlsTM′ FOster/CA)and a pair Of highly

puri■ ed salt― free primers′ as shown in Table 2.22′ to amplify the target or reference gene

using the GeneAmp0 5700 Sequence Detection Systeln(Applied BiosysterrlsTM′ FosteL

CA)with the f01lowing parameterま 50° C for 2 min and then 95° C for 10 min′ followed

by 40 cycles of 95° C for 15 s and 60° C for l llrlin′ and a final step starting fron■ 60°C

for generating the dissociation culve. Tb obtain calibration curves′ seven serial慎″o―

fold dilutions of the first― strand cI)NA pool were used as templates for the real― time

PCR analysis.To confirrn the accuracy and reproducibility of the real― tilne PCR anal―

ysis results′ three independent experilnents and three repeats within each LightCycler

run were perforined.The mathematical lnodel used in the real― tirne PCR analysis was

that Of Pfaffl(Pfaff1 2001).

2.2。5 Westenl Blotting

The culture of each strain and sampling were perforrrled as described above. 5 mL

of cultures were collected by centrifuge and then the pellet was resuspended in 500

μL Of PBs cOntaining l°/。 protease inhibitor cocktail(SI(3NllATM′ Louits′ Ⅳ10).The cell
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Table 2.9: Reverse transcription reaction solution

Components Amount(pL)

MgC12′251nM                       4
Reverse transcription 10× buffer           2
dNTP Ifrlixture′ 10nlNI1                  2
RecombinantIINasinO ribonuclease inhibitor O.5

AMV reverse transcriptase(High COnc。 )   15u
Randon■ Prilners(0.5μg/μL)              1
TotalIRNA(200μ g/μL)            5
Nuclease― Free Water to a final v01ume of     20

Table 2.10:30%Acrylamide solutiOn(Filtered and kept away from light)

concentration reagent

29.2% Acrylamide
O.8% N′ N′―NIlethylene bisacrylalnide

suspension was sonicated with 10 short burst of 10 s followed by intervals of 30 s for

coolingo After that cell dё bris were removed by centrifugation at 4° C for 20 nlin at

15000 rPm・ The protein concentration was deterlnined by Bradford lnethod(Bio― RadTM).

15 g of protein in loading buffer were incubated at 95° C for 10 nlin′ cooled and then

loaded per lane.Gel electrophoresis was performed using 12.5%gel(Table 2.18)with

O.1%(W/V)SDS under a constant voltage of 100 V and then transferred to HybondTM―

PO Inembrane(GE Healthcare Bio― SciencesTM Corp.Piscataway/NJ)under a cOnstant

current of 40 mA for l.5h.The llrlembranes were blocked for l h at rOom temperature

with 5%milk in PBS(Table 2.21).Membranes were incubated with primary antibody

(PrOmegaTM′ Madison′ WI)diluiOn Overnight at 4° C.After wash′ the membranes were

incubated with secondary antibody(PromegaTM′ Madison′ WI)at r00nl temperature

for l h.After wash′ the proteins were detected with the ECL PlusTM(GE Healthcare

Bio―SciencesTM Corp.Piscataway/NJ).Densitometric intensity of the exPoSed■ lm was

determined by lmageJ◎ (Wayne Rasband′ National lnsitutes of Health′ USA).
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Table 2.11' 4t R"""i"g g"l b"ffu. S, pH8.8)

Tris base

SDS
Adiust pH t0 8.8 with HCl

MilliQ

36.4g

O.8g

up to 200mL

Thble 2.1 S, pH6.8)

Tris base

SDS
Adiust pH t0 6.8 with HCl

PIlilliQ

6.8g

O.4g

up to 100mL

Table 2.13' 3" Su*pl" b"ft.(Add l before use)

4x Stacking gel buffer 37.5mL
Glycerol 30mL
SDS 69
Bromophenol blue (BPB) 1.5m9
MilliQ up to 97mL

Table 2.14: 50mM Sodium phosphate buffer(pH7.0)

Na2HP04~12H20
NaH2P04~2H20
NIlilliQ

2.185g

O.608g

up to 200mL

Table 2.15:Running Buffer

Tris base        l.8g

Glycine        8.64g
SDS            O。 3g
NIlilliQ  up t0 300mL

Table 2.16:CBB staining solution

CBB      O.5g
NIlethanol 100mL
Acetate     2011rlL

MilliQ   80mL
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Table 2.17 CBB dest3ining S01utiOn

WIlethanol 125mL
Acetate    50mL
MilliQ  325mL

Thble 2.'tB: 12.5% SDS Runnine eel

- 

vu

30°/。Acrylalrlide sOlution

4× Rurlning gel buffer

MilliQ

3.331nL

2mL
2.67mL

Total
1 0%Ammonium persulfate (ApS)
TEMED.(Add justbefore making gel)

30%Acrylanlide s01ution

4× Runlling gel buffer

MilliQ

Table 2.1)Stacking gel

8mL
O.096mL
O.01lnL

0.5mL
lmL
2.5mL

Total

10%APS
TEMED*(Add just before making gel)

4mL
O.05mL
O.011nL

Thble 2.20: Western blotting transfer buffer
Tris base

Glycine
MilliQ

Methanol(addjustbefore use)

0・9098
4.32g

up to 240mL

60mL

Table 2.21:Western b10tting Phosphate buffered saline

Na2]IPC)4   28.65g
NaI12PC)4    2.40g
NaCl 5.84g
MilliQ  up t0 1L
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Table 2.22: Oligonucleotides used in this study

Primer name Primer sequence (5'-*3')

ApaI-lysCp-f
Nhel-lysCp-r
ApaI-asdp-f
NheI-asdp-r
ApaI-dapAp-f
NheI-dapAp-r
ApaI-dapBp-f
Nhel-dapBp-r
ApaI-dapDp-f
NheI-dapDp-r
ApaI-dapCp-f
NheI-dapCp-r
ApaI-dapFp-f
ApaI-dapFp-r
ApaI-lysAp-f
Apal-lysAp-r
ApaI-lysRp-f
Apal-lysRp-r

CTACTAGGGCCCCAGCATCTCATCGTCGAAGG
CTACTACCTAGCCATAACTACCTCGTGTCAGGGGA
CTACTACCCCCCCACCAGGAGACCAATAACCA
CTACTAGCTACCCATAAGCGTTTWTTCCTCCAAA
CTACTAGGGCCCATGACGGGTCATGGTGTTCA
CTACTAGCTAGCCATGGGCCATCCTCTGTGCAAAC
CTACTAGGGCCCGTGGAAACTCAGGGCGAATT
CTACTAGCTACCCATAGCTATTCTCTTWGTrAAT
CTACTAGGGCCCCTTCATGGTGCCCGAAΠ AC
CTACTAGCTAGCCAWGHAAACTCttCATATC
CTACTAGGGCCCGCGTGCTTTCACGTGACGGC
CTACTAGCTACCCATCTCATCATCACCCTGTTACG
CTACTAGGGCCCACCGAAACATWGTCTCWC
CTACTACCTACCCWACTCCAATCACGCGGGTA
CTACTAGGGCCCAATHQACCCCCATCACCT
CTACTAGCTACCCATAACAAACTCCAGATAAGTCC
CTACTAGGGCCCCCGCACCACATCAAACTCW
CTACTAGCTACCCATTAGCGCTCTCTCGCAATCCG

Primers for real― tilne RT―PCR
lysC― f

lysC―r

asd― f

asd― r

daPA―f

daPA―r

dapB―f

dapB―r

dapD―f

dapD―r

dapC― f

daPC― r

dapF― f

dapF― r

lysA―f

lysA― r

Prillner sequence(5′―→3′ )
TGG CGA GCG ATT CGA AA
CCA CAA TGG CAA ACT GGA TGT
CGG CTG GCC CGG TAT
AAG TCC CGC TCTTCA ACC AT
GGG TTA WT CCG TTA CGG CTA A
TGC TGC CAG TTT GCA CAT CT
ACG CTG AAC CAT CTC CCT TT
CCC CGT AGT CCC GAT CAC
TCC CTG TAG CGG AAA AAA WG
GCA GCA CCC CW口「TTCA A
TGG TCG CTC GCT GW TAC C
CCC AAA GCC GTC GGA AT
GGA AAG CCA CGA GCG TTTT
GCT CGC GCTTAA CCA CTT G
CGA TCT CAC CGC CGA AAA
ACA CCG GGC ACC CAA A

rrsH―f

rrsII― r

gaPA― f

gaPA―r

gfP― f

gFp― r

GTC GTC AGC TCG TGT TGT GAA
CAC TGG CAG TCT CCT TTG AGTTC
AAA GGC GCT AAC WC GAC AAAT
GCA GTT GGT GGT GCA GGA A
TCG ACA CAA TCT GCC CTTTTG
TCA TCC ATC CCA TGT GTA ATC C
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Table 2.23: Recipe of M9A medium

Components Company Final conc. Molecular weight Weight

Amino Acid Sol. 10x
L-o-Alanine
L-Arginine-HCl
L-Asparagine-H2O
L-Aspartate
L-Cysteine-HCl-HzO
L-Glutamine
L-Clutamate-Na-H2O
Glysine
L-Histidine-HCl-H"O
L-Isoleucine
L-Leucine
L-Methionine
L-Phenylalanine
L-Proline
L-Serine
L-Threonine
L-Tiytophan
L-Tyrosine
L-Valine

Nacalai
Nacalai
Nacalai
Nacalai
Nacalai
Wako
Wako
Wako
Nacalai
Nacalai
Wako
Wako
Nacalai
Nacalai
Wako
Wako
Wako
Wako
Wako

(mg/500 mL)
209.36

631.98

240.21

199.65

263.46

3653.75

4678.25

48.80

104.82

196.76

196.77

223.82

247.79

1151.30

2101.80

178.68
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Figure 2.4: The self-fluorescent intensity of E.coli DHl strain without any plasmid checked by
flow cvtometer

2.3 Results and discussion

2.3.1 Data acquisition and analysis

Nine reporter strains were constructed by cloning the promoter region of genes in-

volved in lysine biosynthesis upstrearnof gfp. Before analyzing GFP expression by flow

cytometry, the specific growth rates of these reporter strains were compared and con-

firmed to be similar (1.2*0.1/h).

Firstly, the background of flow cytometry was evaluated by E. coli DHL, which do

not contain any plasmid. The LOG GFP value of E. coli DH1 is maintained at229L12,

which can be seen as background for the flow cytometry in this study.

We first studied the dynamics of the promoter activity of genes involved in the ly-

sine biosyrthesis pathway after replacing the defined medium without r-lysine with

that supplemented with 0.3 mM t -lysine and vice versa. We measured the gene expres-

sions every 15min for 3 h from the start of the medium change. Among the nine genes/

the expression levels of five genes (IysCp, asdp, dapBp, dapDp, andlysAp) changed with

the addition or removal of t -lysine from the medium (Figure 2.5). To determine how the

Cutur!tim.(m)
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responses depend on the t--lysine concentration in the medium, we changed the final t--

lysine concentration from 10-5 to 3 mM and kept all the other conditions constant. As

results, we found that when the t--lysine concentration is larger than 0.3 mM, there was

no difference in the results of flow cytometry analysis(Figure 2.6). Thus, we adopt two

environmental conditions , i.e.,0.3 mM and 0 mM r-lysine concentrations to investigate

the change of expression dynamics in lysine biosynthesis pathway. We then focused on

the detailed activation dynamics of genes involved in the lysine biosynthesis by chang-

ing the sampling interval from 15 to 6 min. The dynamic behavior of promoter acti-

vation was well visualized and quantitatively analyzed by flow cytometry (Figure2.7).

2.3.2 Data fitting

We assume that each cell is well mixed system. There are sufficiently many molecules

that the number of molecules can be approximated as continuously varying quantity

that varies deterministically over time. And the process is fast compared with the time

scale of interest. Because all the promoters have same regulation sign, lysine concen-

trations, we fit the time-dependent expression data to a simple Michaelis-Menten-type

model developed by Ronen ef. a/.,(Rosenfeld et al. 2005) estimate the parameters of

regulatory dlmamics.

(2.2)

The GFP protein concentration (p;), which was regulated by 'lth promoter, was bal-

anced in terms of its expression rate and dilution by cell growth, where a represents cell

growth rate. We assumed that the GFP lifetime was much longer than the cell cycle thus,

we neglected the degradation of GFP protein. We adopted the peak value of the fluo-

rescence distribution as (p1), because the fluorescence distribution is asymmetric such

that the average and median fluorescence distributions are inadequate to describe the

expression dynamics. The parameters z and k6 dre- the maximal promoter activity and

9=β憔 、一∝"
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the repression coefficient of the ith promoter, respectively. The repression coefficient k;

represents the repressor concentration needed for 50o/" repressiory which provides infor-

mation on the strength of RNA polymerase binding and complex combinations of the

binding affinity of the repressor to its cis-regulatory site. The R(t) represents the active

repressor level mediated by the intracellular L-lysine concentration. We assumed that

the change in R(t) induced by changing the environmental condition was faster than

the change in gene expression level thus, we set fi(t) as a constant with respect to time

and considered environmental condition as the only variable. Using the Equation (2.2),

we fit the time series expression data to determine the parameters in the equations. In

this fitting process, a, R(t),'i, and ki were used as fitting parameters. The fitting results

are shown in Figure 23 and the parameters used in the fitting are listed in Table 2.24.

Table 2.24: Opfimal parameters of gene expression model. The parameter values of a and
Rtar:o.slRtus:0 €tr€ shared in expression d;mamics of all genes.
o Rtar:o.B is the active repressor level when the t--lysine concentration is 0.3mM, while ft1r":e is
that in the t--lysine concentration is OmM.

gene o/min-l lJlru min-l k,lN Rry":o .rlRiu.=o

35

JysC

αSグ

グα′B
グα′D
ケSA

0.025

14.4

68.2

46.3

152.2

570.1

1.60

0.55

0.69

2.98

0.22

0.95/0.001

From the fitting parameters, we found thatdapD, one of the genes involved in the ly-

sine biosynthesis pathway, showed a significantly larger repression coefficient (k;) than

the other genes involved in the pathway. Our experimental results show that although

the absolute expression level of dapD is relatively high, the change of the expression

between environmental conditions is small. Thus, the regulation driven by t--lysine

concentration should be "weaker" than other regulated genes, as represented larger k;

value for dapD, which indicated the weak binding activity of the repressor to the dapD

promoter region. The repression coefficient of lysC was also large. Howeveq, this result
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of GFP expression controlled by the lysC promoter region was too close to the back-

ground level as determined by flow cytometry, and the results of RT-PCR showed a

large ratio of relative expression level in the absence of t--lysine to that in the presence

of t--lysine. Thus, we need to carry out more analyses before drawing any conclusion

concerning the lysC promoter. We also found a trend that the closer an enzyme is to the

start of the lysine biosynthesis pathway (Asp), the smaller its maximal promoter activity

(0) is.This trend may suggest a design principle of the biosynthesis pathway(Zaslaver

et al.2004).

As shown in Figure 2.7, there is some deviation from fitted line and experimental

data. Of course, we can adopt more complicated models with many parameters to fit

our experimental data well. However, to use such complicated models makes the dif-

ference of characteristics among gene regulations obscure. The merit to use the simple

kinetic model is that we can easily compare the characteristics of regulations. Although

to discuss these characteristics quantitatively is rather difficult, it is possible to identify

difference among promoters, as dapD in our study. Note that, our result that the regula-

tory parameters of dapD are different from other genes in lysine biosynthesis is robust

with respect to changing the model to be fitted. For example, the same result can be

obtained when we introduce higher Hill coefficient to the kinetic model.

This promoter dynamics include not only the steady states but also transient states.

In experiments, the reporter strains were reached steady-state in preculture, and then

were moved into a environment with different lysine concentration. Before they reached

next steady-state in GFP expression, the changes in gene expressions are determined by

the time series data in transient state. All these data in transient and steady states were

used in fitting the parameters. Thus the model with parameters used in this study

can predict the promoter activation not only in steady state but also in transient state.

It provides biologists with tools to better understand and describe processes of lysine

biosynthesis.
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2.9,3 Real-time RT-PCR and Western Blotting

To validate the expression dlmamics obtained by flow cytometry, we performed real-

time RT-PCR and western blotting experiments. We extracted mRNA and protein sam-

ples from reporter and wild-type strains of E.coli cultured under different environmen-

tal conditi ons (i.e.,O or 0.3 mM t--lysine). Results showed that the relative changes in the

gene expression levels obtained by real-time RT-PCR and western blotting experiments

(Figure 2.8) are consistent with those determined by flow cytometry (Figure 2.9). We

confirmed that the mRNA and protein expression levels of lysC, asd, dapB, dapD, and

lysA increased with the removal of t--lysine from the medium, while those of the other

4 genes were unchanged. Of course, there are some differences in the ratio of exPres-

sions measured by flow cytometry compared to those obtained by RT-PCR and western

blotting. One reason for the difference is experimental error. Furthermore, as for the

difference between flow cytometry and RT-PCR analysis, it is well known that the cor-

relation between expression levels of mRNA and proteins is not always proportional,

instead, there is some deviation from proportionality due to difference in transcript ef-

ficiency. For example, in the previous report(Ghaemmaghami et al.2003), it was shown

that the amount of mRNA molecules and protein molecules per cell is well correlated,

but the significant deviation from the linear relationship exists. In comparison with the

previous studies, the correlations between results of flow cytometry, RT-PCR and west-

em blotting analysis shown in our manuscript are acceptable. Our Real-time RT-PCR

and western blotting results also showed that, for each reporter strain, changes in the

expression level of GFP and the endogenous protein under the control of the same Pro-

moter correlated well indicating that our selection of promoter regions was adequate

for investigating gene expression dynamics.

In the sfudies of gene expression dynamics, the combination of reporter strains and

flow cytometry provided us with a convenient and accurate method of measuring gene

37
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gene name IysC asd dapA dapB dapD dupC dapF lysR IysA
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Figure 2.8: Westem blotting analysis of the expression level of GFP in different strains cultured
in different t -lysine concentration (0 or 0.3 mM)

Targct gcno

Figure 2.9: Ratio of gene expression level in the absence of t--lysine to that in the presence of L-

lysine calculated using the reference gene gapA (results were similar to those using the reference
gene rrsH; data not shown).
* calculation method: GFP expression levels of cells cultured in the medium without t -lysine
divided by those of cells cultured in the medium with t -lysine as determined by flow cytometry
(FCM).

expression dlmamics. The reporter strain, in which fluorescent protein expression is

controlled by the promoter of the target gene, is relatively easy to construct. Moreover,

we found that the measurements of expression dynamics using these reporter strains

were consistent with those obtained by real-time RT-PCR analysis and western blotting

analysis.

One important merit of using this system is that measurements using a small number

of cells (e.g.,20,000 cells) are possible. In contrast, it is difficult to analyze samples ob-

tained from such a small cell number by real-time RI-PCR analysis or using microplate

reader.

Another important merit of using flow cytometry is the possibility of single-cell-

level analysis, which provides information on stochastic fluctuations in gene expres-

□FCM results・

二lgene gfp of reporter strains

I brgct gcnc ot reporter
lbrgot gone of wild-t)oe strain
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sion dynamics. Recently, stochastic fluctuation and its propagation in cellular reaction

dynamics have been studied extensively(Raser and O'Shea 2004). In these studies, ar-

tihcially synthesized networks are generally used to investigate stochastic fluctuations

in gene expression. In contrast, gene expression fluctuations and the propagation of

these fluctuations in native regulatory and metabolic networks can be analyzed using

our reporter strains. The results of the stochastic fluctuation analyses using our reporter

strains will be reported elsewhere.

2.3.4 Noise Properties

By flow cytometry, not only the average expression can be determined, but also the

distribution of the expression in the population can be described. By treating the distri-

bution of expression as normal distribution, we got the phenotypic noise strength(PNS)

of each promoter by Equation (1.2). There is no relationship between fluctuations and

estimated parameters of expression dlmamics, but negative corelation between the bi-

ological noise and their average expression instead (Figure 2.10). We failed in including

noise information into the parameters.

2.4 Conclusions

Nine reporter strains were constructed by cloning the promoter region of genes in-

volved in lysine biosynthesis upstream of gfp. Tirne-dependent changes in green fluo-

rescence intensity under the control of the target promoter region were determined after

changing the environmental condition (i.e., the r-lysine concentration in the medium).

By flow cytometry, the gene expression dynamics were quantitatively analyzed. The

differences in the expression levels of genes involved in the lysine biosynthesis at vari-

ous L-lysine concentrations were confirmed by real-time RT-PCR analysis and western

blotting analysis. The expressions of five genes corresponded to the changes in r-lysine

concentration in the medium. For the promoters of these five genes, time-dependent ex-
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pression data monitored by gfp fluorescence were fitted to a simple dynamical model of

gene expression. The fitting parameters enabled an elucidation of the gene expression

dynamics in the lysine biosynthesis pathway.
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Chapter 3

Analysis of stochasticity in promoter activation
by dual-fluorescence system

Abstract

Stochastic dynamics of promoter activity in bacterial cells were studied by using
a dual-fluorescence reporter system of protein expression. The dual-fluorescence
reporter system enabled us to calculate the amplitude of intrinsic noise generated
during transcription and translation. By fitting the experimental data to a simple
stochastic model of protein expressiory we could estimate parameters representing
the stochastic transition between the active and inactive states of a promoter. Using
the system, we arralyzed the stochastic dynamics of promoter activation of genes
in the lysine biosynthesis pathway in Escherichia coli. We found that the promoter
of IysA has a significantly slower transition rate between active and inactive states
than other promoters in the lysine biosynthesis pathway. The infrequent switch-
ing between active and inactive states can be a dominant source of noise in lysA
expression. Analysis using the dual-fluorescence reporter system provided a better
understanding of stochastic dynamics in promoter activation.

榛 C aSd da24 dapB dapD dapC daPF apF 興

Figure 3.1: Dual-fluorescence system includes two parts, the vector pGRFP with two reporter
fluorescence gene and the simulation tool used for getting appropriate Ao' and )o6 for the target
promoter.
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3.1 Introduction

ingle fluorescence experiments provide quantitative evaluation of dynamics of pro-

moter activation in a continuous manner. However, recent studies have revealed

that changes in promoter activity do not always occur in a continuous manner. In-

stead, promoter activity often obeys on-off type stochastic dlmamics, regarded as a ma-

jor source of gene expression noise.

3.L.L Transcriptional bursting model

In the transcriptional bursting model, slow promoter kinetics cause infrequent tran-

sitions between active and inactive promoter states, which, in turn, cause multiple

mRNA templates to be synthesized in rapid succession at irregular intervals, if it fol-

lowed with a high transcription rate(Raser and O'She a2004, Ozbudak et aI.2002, Blake

et al. 2006). At any instant the promoter is thought to be either "switched on" by hav-

ing a transcription complex bound to it′ Or″switched off〃 by not having a transcription

complex bound(Brunner and Buiard 1987′ Ko 1991′ Kepler and Elston 2001′ Pirone

and Elston 2004′ Lipniacki et al.2006).There are h″o important parameters in these

on― off stochastic dynallrlics: activatiOn rate and inactivation rate,these represent the

probability that an inactivated PrOmOter will be activated and vice versa′  respec―

tively(Figure 3.2). If theseれ vo parameters are low enough and the tillne scale of their

alternation is slower than the time needed for transcription and translation′ the switch―

ing of promoter activity can be a dominant source of expression noise.The equilibrium

promoter strength′ which is deterlrlined by the gene expression lnainly/can also be cal―

ctllated frolfrlthe ratio of λon and ttofF in the steadぅ ′state(ι)an(lshown as」 (eq:」req=器

(Brurlller and Buiard 198る NIIcClure 1980).Pairs Of λon and λ。
「
can reach the salne κeq・

For example κeq=l Can be gotten from any pair of λon and λ。
「
when λon=λof.Thatis

to say/the same promoter strength with a different λon and λofF Can lead same expression
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but different cell-cell variability. Only wTth K"r, it can not include the information about

the biological noise. Thus, to achieve a detailed understanding of stochastic dynamics

of promoter activity, it is necessary to evaluate the parameters of switching activity.

But most of prokaryotic gene expression assume that the transition rates are so fast

that the promoter states are always in steady state and the rate of transcription is con-

stant. And the translational bursting is probably a dominant source of stochasticity in

the process of prokaryotic gene expression(Kern et al. 2005). This was mainly sup-

ported by the Ozbudak's report. They used single copy of {p as reporter to monitor

the effect of transcriptional and translational efficiency on biological noise(Ozbudak

et aL.200D. That is the most possible reason why we fail in including noise informa-

tion into the parameters by single fluorescence reporter.

3.1.2 Intrinsic noise and extrinsic noise

As reported by Elowitz et aI. (2002), biological noise has two sources, intrinsic and ex-

trinsic; promoter activity mainly contributes to intrinsic noise (Shahrezaei et al. 2008).

The inherent stochasticity of biochemical processes such as transcription and transla-

tion generates "intrinsic" noise, denoted qin1,which fundamentally limits the precision

of gene regulation. Such stochastic effects are set locally by the gene sequence and the

properties of the protein it encodes. Living cells possess very low copy numbers of

many components, including DNA, mRNA templates and regulatory molecules. The

small numbers of gene copy and mRNA template results in discrete biochemical reac-

tions involved in gene expression. Such discrete events can be explained by probability

theory. The probability of each reactions in a defined interval is determined by the affin-

ity of molecules such as regulatory proteins and polymerases, and so on, binding to the

active sites, which is affected by the space structure and regulation module of the gene

sequence or the protein it encodes. For example, there are many functional modules in

promoter, such as enhancer, booster, activator, insulator, repressor, locus control region,

43
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Figure 3.2: The two state of promoter. If the promoter is in active state, the transcription can
start. Otherwise, it can not. There list three cases that can not start transcription. Case I, re-
pression by steric hindrance. The repressor-binding site overlaps core promoter elements and
blocks recognition of the promoter by the RNA polymerase holoenzyme. Case II, repression by
modulation of an activator protein. The repressor binds to an activator and prevents the acti-
vator from functioning by blocking promoter recognition by the RNA polymerase holoenzyme.
Case III, repression by looping. Repressors bind to sites and interact by looping, repressing the
intervening promoter. (Browning and Busby 2004a)
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upstream activating sequence and upstream repressing sequence, that contribute to the

irutiation of transcription. Moreover, the interaction of chromatin remodeling complex,

ffanscription co-factors, transcription factors and chromosome can shift the states of

promoter between open and close in a given probability determined by the space struc-

ture and promoter sequence. In addition, fluctuations in the amounts or states of other

cellular components lead indirectly to variation in the expression of a parttcular gene

and thus represent "extrinsic" noise, denoted 4",1. Thus, extrinsic sources of noise arise

independently of the gene but act on it. Such stochastic effects are controlled by the

concentrations, states, and locations of molecules such as regulatory proteins and poly-

merases, and so on. Although for different genes there are different regulators who

will take effect on them, the extrinsic noise is defined as the environment all the genes

faced. And the difference in regulation mechanism of different genes will generate the

intrinsic noise. So the extrinsic noise is global to a single cell but vary from one cell to

another. The extrinsic fluctuations can dominate the total noise and they are sensitive

to fluctuations in the transcription and translation rate(Shahrezaei et al. 2008). To dis-

tinguish between the two noise sources, it is not sufficient to monitor the expression

of a single gene using fluorescent proteins. Instead, it is necessary to monitor the ex-

pression levels of two genes at a single-cellular level, as demonstrated by Elowitz et al.

(2002). If we failed in separating the intrinsic noise from the extrinsic noise, the relia-

bility of assumption that all the prokaryotic promoters have very high.\o,, and )o6 faces

the challenge.

Intrinsic noise and extrinsic noise of promoter can be measured and distinguished

with two report genes controlled by same copy of it(Elowitz et aL.2002). By analyzing

the correlation in the expression levels of two genes, we can obtain the amplitude of

extrinsic noise, and then, by subtracting the extrinsic noise from the total noise, we

can estimate the amplitude of intrinsic noise. With the data regarding intrinsic noise

and an appropriate model, the parameters representing infrequent stochastic transition

45
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between active and inactive promoter states can be estimated. This method was widely

used in biological noise analysis(Mettetal et al. 2006, Pedraza and van Oudenaarden

200s).

However, most of the experimental sfudies have so far focused on noise property

itself. To apply this method to analyze the strength of a promoter involved in an en-

dogenous gene networks, particularly in metabolism network, is seldom reported. In

the transcriptional bursting model, the size of the 'burst' in transcription depends on

the average number of transcripts produced between promoter activation and deac'

tivation (the ratio )*nNa/)oft'), referred to as the transcriptional efficiency(Raser and

O'Shea 2004, Kern et al. 2005). To master the promoter transition rates is definitely

helpful in predicting gene expression with noise property. Naturally, the gene expres-

sion noise might necessitate counteracting noise reduction mechanisms preserving the

fidelity of regulatory signals. On the other hand, the probabilistic features afforded by

gene expression noise lead to the evident possibility that evolution has fine-tuned noise-

generating mechanisms and genetic network architectures to derive beneficial popula-

tion diversity(Fraser and Kern 2009). To get the appropriate )o,, and )66 C?rl help us

understand the promoter strength at a deep level and be able to make predictions about

promoter behavior with biological noise property.

3.L.3 Stochastic Simulation Algorithm(SsA)

In order to get the )o,, and )o6 for target promoter, a simulation tool is necessary.There

are two fundamental ways to view coupled systems of chemical equations: as continu-

ous, represented by differential equations are concentrations, or as discrete, represented

by stochastic processes whose variables are numbers of molecules.

Solving the differential equations results in concentration of each substance as a

function of time. There is an assumption for the differential equations is that the num-

ber of molecules can be approximated as a continuously varying quantity that varies
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deterministically over time. Although this assumption holds for most systems, it does

not hold in very small systems. And solving these differential equations, somefimes,

one assumes that the system is in equilibrium. It is not true in general.

The stochastic processes regards the time evolution as a kind of random-walk pro-

cess which is governed by a single differential-difference equation. The SSA allows one

to numerically simulate the transient behavior of well-mixed systems in which many

molecular species participate in many highly coupled chemical reactions(Gillespie

1977). The SSA is exact in the sense that it is rigorously based on the same microphysical

premise that underlies the chemical master equation(CME)(Gil1espie1992). The SSA is

widely used in biological noise analysis(Shahrezaei and Swain 2003).

In SSA, a putative time for each potential reaction in the system is calculated, and

the reaction whose putative time is first is implemented. Simulation time is then incre-

mented by this reaction time. Each putative reaction time is calculated from the propen-

sity of the reaction: the probability of the reaction per unit time multiplied by all ways

of selecting the reactants. If a fixed volume V contains a spatially uniform mixture of N

chemical species which can inter-react through M specified chemical reaction channels,

h, :number of distinct R, molecular reactant combinations available

in the state (X1, X2, ..., XN) (p=1,...,M)

ardt :hrc,,df=probability that an R, reaction will occur in (t,t + dr),

given that the system is in the state (X1, X2,...,X,r,.) at time t (p=1,...,M)

The probability density function for reactions is,

/ v \p(r,tt): apexp (-rtr" ) (3.1)
\ T':t /

where, r is a uniform random number between 0 and 1, which will introduce the

stochasticity into the simulation. By getting the p and P, the questions which reaction

occurs next and when does it occur are resolved.
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Gillespie developed two different, but equivalent formulafions; the direct method

and the first reaction method(Gillespie 7977). Since it was born, there has been count-

less attempts to improve its computational efficiency. But the main steps to run the

algorithm are not change so much. They are:

1. Initialization: Initialize the number of molecules in the system, reactions con-

stants, time and random number generators.

2. Monte Carlo step: Generate random numbers to determine the when and which

reaction to occur next.

3. Update: Increase the time step by the randomly generated time in Step 2. Update

the molecule number based on the reaction that occurred.

4. Iterate: Go back to Step 2 unless the number of reactants is zero or the simulation

time has been exceeded.

3.1.4 Object

In this study, we developed a dual-fluorescence system to understand the stochastic

dynamics of promoter activity. This system includes two parts; the vector pGRFP, con-

taining two fluorescent proteins, GFP and red fluorescent protein (RFP), for measuring

intrinsic noise, and a simulation tool to estimate the parameters describing stochastic

dynamics. In this system, the expression of GFP is controlled by the target promoter

to be inspected, while the expression of RFP is controlled by the common consfitutive

promoter. The amplitude of extrinsic noise is obtained by the correlation between the

intensities of GFP and RFP fluorescence. Thereafter, the intrinsic noise of the target pro-

moter can be obtained by subtracting the extrinsic noise from the total noise of CFP

expression. By adjusting for the parameters in the model to not only the expression

level but also the intrinsic noise amplitude, the activation and inactivation rates of pro-

moter activity can be estimated. Using this system, we investigated the characteristics
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of promoters involved in lysine biosynthesis pathways in E. coli. We found that the ac-

tivation and inactivation rates of the IysA promoter are significantly lower than those

of other promoters involved in the lysine biosynthesis pathway, which indicates that

infrequent switching can be a dominant source of noise inlysA expression. Analysis us-

ing the dual-fluorescence reporter system provided a better understanding of stochastic

dlmamics in promoter activation.

3.2 Material and Methods

3.2|1, Plasmid

The plasmid pGRFP(Figure 3.3) contains genes encoding two fluorescent proteins, GFP

and RFP. The gfpuaS gene, a variant of gfp, was obtained from the plasmid pPROLar-

GFPuvS(Ito et al. 2004), and rfp-TL (DsRed) was obtained from the plasmid pQE31-

T4 (Bevis and Glick 2002). A strong constitutive promoter PpPs was obtained from

the plasmid pCL476 (Love et al. 7996). The kanamycin gene and the p15A origin of

replication were obtained from pPROLar (Ito et aL.200$. The promoter was inserted

upstream oI ffiua1 in the ApaI-NheIsite.

Construction of pGRFP

The whole strategy is shown as Figure 3.4. The primers used in these construction is

shown as Table 3.L and the primers used for sequencing is shown as Table 3.2.

The DsRed and stop codon were amplified by PCR with primer T4-f and T4-r. The

amplification mixture is shown as Thble 3.3. The amplification was performed in a DNA

thermal cycler using a program set to denafure at94C for Smin, followed by 30 cycles

of 94'C for 10s, 60'C for 30s and 72'C for Lmin, and a extension step of 72C for 7min.

The PCR product was recovered, digested by NdeI and NheI (Table 3.4) and then insert

into the MCS region of pCL476 vector by NdeI-XbaI(Table 3.5) sites. The construction of

pCL476 was checked by sequencing.
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pGRFP
4.5kb

Figure 3.3: The dual-fluorescence reporter system. The plasmid pGRFP contains two genes that
code for fluorescent proteins, GFP and RFP. The promoter region under investigation is inserted
upstream of GFR while the expression of RFP is controlled by the promoter PlPn.

Table 3.1: Oligonucleotides used for pGRFP construction

争
Ｙ黙￥墨鬱覇菫雫″

々
菫
Ｓ
ｙ

Primer Name Primer sequence (5'--3')

T4‐f

T4-r

Pl―T4-f

Pl―T4-r

PIPr―T4-f

pSC101キーf

PSC101・ ―r

par―pSC101・―f

par―pSC101・―r

GGAATTCcatatgGCCTCCTCCG
CGgctagcWGGATTCTCACC
GCGcctaggCGGTGWGACATAAATAC
GCGcctaggacgtcTAGCTTGGATTCT
GCGcctaggTAACACCGTGCGTG
GCATGCaagct(GCGTAATCATGGTCATAG
TGATAATTactagtCCTTrTcccgggagatctGGGTATCTG
TCCCCGCGGACAGTAAGA
CCTATTAATCATCTGTGCATATGGACA

Table 3.2: Oligonucleotides used for sequencing

Primer Name Primer sequence (5'---+$';

GCTCTCCTGAGTAGGACA
GCTGACWCAGGTGCTA
CAGCTTTGAATGCACCA
GCCTCGCTTATCAACCA
GCWGCGAGGGTGCTA
TGTAGCACCTGAAGTCA
GGAGGAGTCCTGGGTCA

grtp-1,01-f
grfp-101-r
gltp-1,M1'
gtfp-1929
grfp-2928
grQ-rrp-r
grfp-rfu-r
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pQE31‐T4
4。 l kb

pCL476
4.3 kb

pPROLar-GFhw5

亀
33島

′イ　
　
ー
、
　
相

岬
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Figure 3.4: The strategy for pGRFP construction.
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Table 3.3: Plasmid construction amplification mixture

Components Amount(1rL)

plasmid (10n9/ ul)
forward primers(20pM)
reverse primers(20pM)
dNTP Mixture,25mM
Ex taq 10X buffer
Takara Ex Taq(5 units/ul)

Nuclease-Free water to a final volume of 100

Table 3.4: Restriction enzyme digestion mixture for DsRed insertion

５

５

５

０

０

１

１

１

Components Amount(pl) Components Amount(pL)

pQE―T4PCR result
Buffer NII

N12θ I

20

5

1

PCR result digested by Nた θI

Buffer H

NaθI

８

５

１

３

DW to a final volume of 50 DW to a final volume of 50

T"bl 
".tot

Component Amount (1^rL)

PCL476 Plaslnid(0.18μ g/μL)

Buffer T

Xbα I

Nた
`I

０

５

１

１

２

Nuclease-Free water to a final volume of 50
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Table 3.5' 0 insertion

Component Amount (pL)

PCR amplicon
NEB 2
24υγII

Nuclease-Free water to a final volume of

Thble 3.7: Restriction enzyme digestion mixture for pPROLar-GFPuvS vector

Component Amount (pL)

pPROLar― GFPuv5 Plasrrlid

Buffer NII

S′θI

Nuclease-Free water to a final volume of

After amplificatrngPl-rfp-t0 and PlPvrfp-t} fragment by PCR using primer PI-T -| ,

PlPr-T -f and Pl-T4-r(Thble 3.3), the amplicon was recovered, digested by AarlI (Ta-

ble 3.6) and then inserted into pPROLar-GFPuvS by Spelsite (Table 3.7).

The low copy plasmid (pGRFP-pSC101*) was also constructed using par-pSC10l*

to replace the p15A. par-pSClOL* was come from pMW119 with site-mutation. The

primers(shown in Thble 3.1) used for amplification of par-pSC101n was designed to am-

plify the segment of pMW119 DNA between the HindIII site of the MSC and the SpeI

site. The forward primer (pSC101.-f) was complementary to pSC101 DNA origin ex-

cept for five-base mismatch creating SmaI and BglII. This primer also contained the SpeI

site. The original replicon was replaced by this amplicon by HindIII-SpeI site to make

pMW1L9* with par-psc1Ol*. The par-psc101* was gotten from plasmid pMW119* by

enzyme digestion between the AccII and XbaI site, and then inserted into pCRFP* by

AseI-AarII site to construct pGRFP-pSC L0L *.

However, because the RFP signal of reporter strains which contain pGMP* or

pGRFP-pSC10L* is not high enough from the background, only pGRFP was selected

０

５

１

２

50

０

５

１

１

50
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for further research. And the promoter Prac/a,a-r in pCRFP was replaced by P*Pr from

plasmid pCL476 to finish the construction.

3.2.2 Strains and Media

Nine reporter strains were used in this study, E. coli DH1 (K-12 endAl

recAl gyrA96 thi-1 glnV44 relAl hsdRL7(rK-mK+) 
^-)/plysCp-pGRFP 

(lysCp in

short), DHI / pasdp-pGRFP (asdp) , DH1. / pdapAp-pGRFP (dapAp), DH1. / pdapBp-pGRFP

(dapBp), DH1./pdapDp-pGRFP (dapDp), DH1./pdapCp-pGRFP (dapCp), DHl-/pdapEp-

pGRFP (dapEp),DH1./pdarFp-pGRFP (dapFp), andD}{'L/plysAp-pGIlFP (lysAp) which

contain the promoter regions of genes (i.e.IysC, asd, dapA, dapB, dapD, dapC, dapE, dapF,

andlysA), respectively. The promoter regions were amplified from E. coliDHL genomic

DNAby PCR. The primers listed in Thble 2.22were used to amplify the regions between

two adjacent open reading frames (ORFs), with an extension of 150-200 bp upstream of

the ORFs. The promoter regions were cloned at ApaI and NheI sites upstream of gfpua1.

Reporter strains were culfured in M9 minimal medium with an amino acid solution

(M9A medium) and kanamycin (25 pE/mL) (Ford et aI.1994). It should be noted that

the t--lysine in the amino acid solution was prepared separately, and the addition of

t--lysine to the medium was determined according to experimental conditions. All the

details please refer Charpter 2.

3.2.3 Samplepreparation

The reporter strains were streaked on an M9A minimal medium plate (1..5%[w /v] agar)

from the stocks and incubated at 37"C for 15 h. Pre-culture was performed by picking a

colony and inoculating it into 2 test tubes containing 5 mL of fresh M9A medium (one

test tube contained 0.3-mM lysine, while the other contained no lysine). The inoculated

test tubes were then reciprocally shaken at 37"C and 1"60 rpm until the OD666 value

reached 0.64.7. After the pre-culture, cells were collected by centrifugation at 6,000
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rpm fOr5 min′ followed by re― susperlsion ofthe pelletin l mL of M9A medium(with Or

without lysine′ depending on the next culture step).The suspensions were inoculated

lnto test tubes contalning 5 mL of Nl19A mediun■ with or without lysine to make the

initia1 0D600=0・ 01 for the inain culture.The test tubes were again reciprocally shaken

at 37° C and 160 rPIn・  Every 15■ lin′ samPleS Were prepared for■ ow cytometry by

extraCting l lnL of each culture,samples were stored at-80° C until use.

3。2.4 1〕 ata acquisition and analysis

The samples were thawed before analysis with■ ow cytometry(COULTERO EPICSO

XLTM′ Becttman Coulteち Fullerton′ CA′ USA)and then diluted with PhOSphate buffer

s01ution(PBS′ pH 7.0)to Set the cell concentration at 107 cellS/rrLL(OD600=0・ 01).Flu―

orescence FrteaSurements were conducted ushg flow cytometry/and 20′ 000 cells from

each sample were analyzed.The excita● on of GFP and RFP was achieved using a 488

nm argon excitation laser/and fluorescence was rneasured with a 525± 20n■■emission

filter for GFP and a 575± 20 nm errlission filter for RFP The■ow cytometry generated

10g―scale values uslng a 10-bit analog― to―digital converteち ylelding integers in the range

ofOt0 1′ 023 for each of four rneasurernentsi two kinds of fluorescentlntensity/fon～ アard―

scattering(FSC)′ and Side― scattering(SSC)・

Ther確グfiles produced by the flow cytometry were analyzed by a prograrn FCSMul―

tiOu(AppendixB.2)deve10ped for nOise analysis by us.The program can handle hun―

dreds ofr“グfiles in the same tirne.In order to handle the list mode data′ a class named

as fcindata was constructed.In″ fcmdata″ class′ there are eleven public members.Mellrl―

ber″ fs10g″ is for FSC log― scale signal′
〃
sslog′
′
for SSC log‐scale signal′

″
gfPlog″ fOr GFP

log― scale signal′
〃
rl)10g〃 for RFP log― scale signal′ and″flag〃 for data gating for each

cell.since the raw data include signals frorn non― living Particles in the lnedium′ we

remove therrl using gates of FSC and SSC intensities.We deternlined the average FSC

and SSC′ and used these coordinates to define radial regions(gateS′ γ=50)in the 2D
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scattering plots. These gates were then used to select the cells used in the GFP and

RFP fluorescent intensity distributions. The gates were realized by "rFilter" method in

"fcm" class. The log-scale data were converted into fluorescence intensity by "fluores-

enceconvert" method in "fcm" class. The intrinsic noise was calculated by "gjntNoise"

method ir\"fcm" class.

To obtain intrinsic noise amplitude, we adopted the following formula published in

Elowitz et al. (2002):

where, 4"*1 shows the amplitude of extrinsic noise; (9) and (r) represent the means of

GFP and RFP intensity, respectively; and \rg) indicates the correlation between GFP and

RFP over cells. The amplitude of total noise for GFP rls_'tot is represented as follows:

はF

仇 =訃 ・

(3.2)

(3.3)

(3.4)

In our reporter system, CFP expression is controlled by the target promoter under in-

vestigation, while RFP expression is controlled by the constitutive promoter PpPs. As

these two genes are expected to share the same extrinsic noise value Te*t il1one cell, we

can distinguish between intrinsic and extrinsic noise by comparing the two. Thus, the

intrinsic noise of the target promoter can be calculated by subtracting extrinsic noise

from the total noise, as follows:

η:_ht=電 tot― ηlt,

where, 4e-int represents the amplitude of intrinsic noise.

For the fluorescent measurements, the background signal (auto-fluorescence of cells)

was subtracted by assuming that the background signal distribution follows a Gum-

bel distribution with appropriate parameters, which could represent the distribution of

auto-fluorescence of cells without GFP and RFP. To confirm the reproducibility of the

changes in the fluorescence distribution dynamics, we performed two experiments un-

der the same environmental conditions and found that the measurement results were
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robust in these independent experiments. In this paPet we show the results of just one

of the exPeriments.

9.2.5 Stochastic Model

Based on Gibson' s Next Reaction Method algorithm (Gibson and Bruck 2000), which

extends Gillespie' s First Reaction algorithm (Gillespie 1977), a Program was built to

simulate the intrinsic noise of GFP expression. This simulation allowed us to investigate

the characteristics of stochastic active-inactive switching in the target promoter. Our

algorithm to simulate intrinsic noise is as follows:

1. Initialize:

(a) Set initial numbers of molecules, set f ---+ 0.

(b) Generate a dependency graph G6"" for GFP and G*pp for RFP

i. Calculate the propensity function, a6, for all i'.

ii. For each i,, generate a putative time, t6, aCCotding to an exPonential dis-

tribution with parametet ai.

iii. Store thet6values in the heap Pcrp and Pnrp for GFP and RFl, respectively.

2. Let tshirt be the time for change culture condition point. If t : f,shirtr change the

promoter )or,.

3. Compare the roots of heap Pcrp and P*"". Let u be the reaction whose putative

time, 1.,, is smaller. Because the heap queue is an indexed queue sorted by putative

time, f, is the least putative time.

4. Let tbetu.

5. Change the number of molecules to reflect execution of reaction u.

6. For each edge(u,r) in the dependency graph G6pp or G*ur,
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JLoo , -.:Ho Protein.-F-@r-*l;^ a
Inactive )vorr Actlve - | a

promoter promoter :!3- .aii

Figure 3.5: Gene expression model used in this study. ,".n *"0 represents the biochemical re-
actions, associated with the transition between promoter states and the production and decay
of mRNA and proteins. )o' and ,\o6 indicate the promoter' s activation and inactivation rates.
Tianscription can begin only when the promoter is in the active state. )^sue and )p.o repre-
sent mRNA and protein production rates, respectively, while dmRNA and dp,o show mRNA and
protein degradation rates.

(a) Update a",.

(b) Generate a random numbeg tt , according to an exponential distribution with

parameter au, and set t, <- t I tt.

(c) Replace the old t., value h P"", or P^"" with the new value.

7. Go to Step 2.

The model of gene expression used in our simulation is illustrated in Figure 3.5.

This is a three step gene expression model, which include the two states of promoter

(Figure 3.2), transcription and translation. The two states of promoter are used for in-

troducing biological noise coming from )o,, and )on h simulation.

The source code is listed in AppendixB.3. Multiple thread is used to increase the

simulation efficiency for such big amount particles. Binary tree is employed to store the

time & reaction in pair using time as the sorting order (from low to high). The time

& reaction in pair are gotten by Equation (3.1). The reaction whose putative time is

first is performed. Simulation time is then incremented by this reaction time. Same as

experiment, we add long enough preculture step to gain the initial condition for noise

analysis. To measure the extrinsic and intrinsic noise in the simulation, we used same

method as in the experimental data analysis (Equation (3.4)).
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Lots of parameters can be set during initialize step, which include the growth speed,

the active and inactive reaction rate of target promoter, the transcription rate, the trans-

lation rate and the degradation rate. All the noise distribution can be controlled by these

values. The repression rate of degradation rate dmRNA and dp.o should equal ln(2) l16,

where l6tlpteuselntsthehalf-lifeof themRNAorprotein. Eightypercentof mRNAhalf-

lives are in the range of 3-8 min; for simplicity we set the average half-life of mRNA as

3 min, dmRNA : 0.23min-1 for GFP and mRNA. The GFP and RFP half-lives are long

enough to ignore; thus, cell division dominates the protein degradation rate (dp."). In

our independently measured generation, time T4 - 40 min, so that do,o was set to 0.02

min-1. For simplicity, the constitutive synthesis rates of mRNA, )'RNA, and protein,

)pro, ?re set by the average transcription rate and translation rate of genes in E.coli. If

the promoter is in the active state, transcription and translation can occur at any time.

The average transcription rate is approximately 25nt/s and the average translation rate

is approximately 30 aa/s (Golding et al. 2005). Thus, the parameters obtained were

as follows: )mRNAerp : 708 ntl25 nt .s-1 : 2.7 min-1,)mRNA.6o : 675 ntl25 nt .s-1 :
2.2 min-r, )progrp :236 aal30 aa . s-1 :7.5 min-1, )oro.ro :225 aal30 aa . s-l : 8 min-1.

3。3 Results

Nine reporter strains were constructed by cloning the promoter region of genes in-

volved in lysine biosynthesis upstream of gfp of pGRFP.

Based on previous study(Ou et al. 20A8), among the nine promoters the expression

levels of five promoters (IysCp, asdp, dapBp, dapDp, and tysAp) changed with the addi-

tion or removal of r-lysine from the medium. The noise behaviors also show the same

changes. We then focus on the noise behaviors of this five promoters.
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Figure 3.5: The event counts of GFP and RFP expression in log-scale of report strains with
different promoters involved in lysine bioslmthesis in late log phase.

3.3.1 Compensation in flow cytometry

The term "compensation", as it applies to flow cytometric analysis, refers to the pro-

cess of correcting for fluorescence spillover, i.e., removing the signal of any given flu-

orechrome from all detectors except the one devoted to measuring that dye (Roederer

2002). In order to determine the GFP and RFP abundance correctly, the green and red

fluorescence of reporter strains were checked by flow cytometry during late log phase

without lysine in the media. As it shown in Figure3.6, with different activation strength

from different promoters, the fluorescent intensity of GFP is different, but that of RFP

is similar in the same culture phase. This result indicated the interaction between GFP

and RFP fluorescent intensity can be ignored.

3.3.2 Self-fluorescence background

The fluorescent intensity measured by flow-cytometry include two parts, one is the self-

fluorescence of the Escherichia coliDH1, another part is the fluorescent intensity emitted

by fluorescent protein. The background of self-fluorescence of reporter strains was eval-

uated by detecting GFP and RFP fluorescent intensity of E.coli DH1, which do not con-

tain any plasmid. The background of the self-fluorescence was simulated as Gumbel
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Figure 3.7: The comparision between linear scale data and log scale data

distribution (minimum).

The circuits of flow-cytometry have two kinds, one is linear circuits, whose output

signal is proportion to the sum and/or difference of their input signal, and another is

logarithmic circuits, whose output signal is in logarithmic scale. Usually in the output

file, the signal will be saved as channels but not the pulse output. Flow-cytometry am-

plify signals to values ranging between 0-10V before performing a digital conversion.

And then use a 10 bit ADC (Analog-to-Digital Converter) to convert the linear analog

signals. So there are ll24channels of range (2") (2to : 7024) corresponding to the range

0-10V. Channels difference is 10/1024=9.8mV per channel. Sometimes we are more fo-

cus on the small-side signal, the log-scale data is required. Figure 3.7 show the ideal

comparison between linear and log data in flow-cytometry.
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With 4 decates, converting the linear scale to a log scale is given by the equation,

y=1。g(χ )× 1024/1og(104)

=10g(χ )× 1024/4

=10g(X)× 256

=ln(X)× 10g(e)× 256

=c× ln(X)

一人″ ′

∫(″ ;λ)=
,″ >0

じ<0

T=
-ln(1-び )
λ

-ln(び
)

λ

y=c× ln(T)

=C爛く翠 )

=C× (ln(_ln(び ))-ln(λ ))

=c× ln(-ln(び ))+CO

(3.5)

where Y is the log-scale value, X is the linear scale value and c : log(e) x 256.

Set the self-fluorescence linear analog signals in flow-cytometry follow an approxi-

mate exponential distribution,

The quantile function (inverse cumulative distribution function) for Exponential()) is

(3.6)

(3.7)F-r(p;)) : 
_ln(t_r,

for 0 < p < 7So to generate exponential variatesju".ur, rrr",

,given a random variate [/ drawn from the uniform distribution on the unit interval

(0,1). Then the log-scale values are,

(3.8)

(3.9)
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,where CO : -C x ln(.\). This equation is same from the quantile function for Gumbel

distribution (minimum),

X=μ tt βln(-ln(び ))

63

(3.10)

,where p is location parameter, B is scale parameter and given a random variate [/ drawn

from the uniform distribution on the unit interval (0,1).

That is to say the log scale value list in listmode file follow the Gumbel distribu-

tion (minimum). And the simulation result testified this distribution. The probability

densify function of the Gumbel (minimum) distribution is,

∫(・ )=二 :ZeZ

Z=e7
(3.11)

where pr is the mean parameter and 13 is the scale parameter.

In stochastic simulation algorithm (SSA), different from systems of chemical equa-

tions as continuous, represented by differential equations are concentrations, the vari-

ables are numbers of molecules. So what I get from the algorithm based on Gillespie

algorithm is the numbers of GFP and RFP. To calculate the average RFP or GFP fluores-

cent intensity, the following equation is employed,

但 FP× AFP tt BRFP)

(θFP× 九
「
P tt BRFP)

(3.12)

,where RFP and GFP denote the number of RFP and GFP, respectively. ,f*.n and /6pp

is the intensity of single protein molecule for RFP and GFR respectively. And B*." and

B6pp denote the self-fluorescence of the cell. When the reporter genes are controlled by

promoter Pr,Pn, the fluorescent intensity comes from the reporter fluorescence protein is

far larger than the self-fluorescence,

ｒ

　

　

　

θ

RFP x ,f^." ) B^rp and. RFP x -f*"" ) Bnrp
(3.13)
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Equation 3.12 can be simplified as,

(γ)=(RFP× AFP)

(θ)=(GFP× 九FP)

Then′ the total noise for GFP can be calculated as′

(3.14)

(3.15)

仇 =訃
((θFP× 九 FP)2)_(θ FP× 九 FP)2

(GFP× 九FP)2

(GFP2)× 兵勢 P― (θFP)2× 兵勢 P

(θFP)2× ∫発P

(GFP2)_(GFP)2
(θFP)2

The reporter strain′ whose gル and ψ bOth are controlled by promoter PLPR Can help us

to set the appropriate∫ 3FP and∫ RFP after the biologlcal noise being fitted.The∫ 3FP WaS

set as 10 and AFP iS Set as 3.35′ which compare well with the results gotten in Sugiyama

et al.(2005).

After setting the intensity ofsingle proteinrnolecule ofGFP and llFE thebaCkground

was fitted.Because the self― fluorescent intensity detected as green fluorescence and red

nuorescence have no correlatiOn′ the experilnent data of the background can be fitted

byれ、「o unrelated group of data in Gumbel distribution(minimum)(Figure 3.8).And

the expression of 8労りand intrinsic noise can be well fitted(Figure 3.9).But also in the

experirnent data we found a negative extrinsic noise. This indicated that there is neg―

ative correlation between the GFP fluorescent intensity and RFP fluorescent intensity.

This may be the slight stochasticity in experilnents.This background of self― fluorescent

intensity was directly added to each cell when l sirrlulated the gene exPressiOn based

on Gibson′ s Next Reaction NIlethod algorithln′ and it followed the Gumbel distribution

(minimum).
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Figure 3.8:The background Of E.εθ″DHl self―■uorescentintensity was simulated as hν o urlre―

lated group of data in Cumbel distribution(n■ inimllm)

3。 3。3 1ntrinsic noise of promoters involved in lysine biosynthesis

VVe measured the expression of GFP and RFP atthe single― celllevel using flow cytome―

try.Using the reporter strains′ we investigated the change of GFP abundance caused by

removal of L-lysine from the rnedium.In Figure 3.10′ we plotted the protein abundance

according to time after removing L-lysine fron■ the inediumo As shown′ the protein

levels increased when L-lysine was removed and settled into different states 120-150

nun after removal. Then′ as described in the rrlaterials and lrlethods section′ we cal―

culated the amplitude of intrinsic noise in this process.In Figure 3.11′ we plotted the

relationship beれveen protein abundance and the amplitude of intrinsic noise.Asshown

in the igure′ the amplitude of the nuctuations approximately obeys ηλt OC″
1′ Where

″represents the protein abundance.This result was consistent with previous studies

(Bar― Even et al.2006)′ in whiCh the intrinsic noise caused by the stochasticity within

transcription and translation generally follows a Poisson distribution,thus′ the rela―

tionship ηれι∝ ″
~l WaS eXPected・

HOWeveL it should be stressed that in theヶ sAp
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Figure 3.10: Time series showing GFP abundance after changing the environment from a

medium containing lysine to one without lysine. The dots represent experimental data, while
the lines represent simulation results after fitting parameters )o,., and )o6 for each promoter.

strain, the amplitude of intrinsic noise was significantly higher than that expected from

the trend line. Moreover, the noise amplitude in the dapDp reporter strain was slightly

smaller than the trend line predicted, even though the expression levels of GFP nlysAp

and dapDp strains were similar. Since only the difference between these two strains

is the promoter region upstream of ffp and thus transcription and translation kinetics

were identical, the difference in the noise characteristics should be due to promoter ac-

tivity dynamics. That is, this result strongly suggests that stochasticity in the promoter

activation process is a major source of noise in protein expressions in prokaryotes.



68 3. Dual-Fluorescence Svstem

一‐
ｍ
　　　　‐‐

や
Ｆ
）跳
３
２
ｏ
■
Ｆ
】一日
】
１

　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
１

０
．
　

　

　

　

　

　

　

　

　

　

・
００

Figure 3.11:The expettentally obtained relatiollship be憮
～
reen proteln abundance and the in―

trinsic noise amplitude.The solid hne represents the relaionship ηれt∝π
~1.

3.3。4 Correlation beh″een λoff and intrinsic noise

Next to quanitauvely evaluate stOchasucity in the promoter dynamics′ we performed a

sirnple stochastic sillrlulation of protein exPresSiOns.The schematic representation ofthe

modelis presented in Figure 3.5。 As discussed above′ the only difference among strains

was the varia■ on in the promOter regionuPStream oftheJ♭ gene.Therefore′ the differ―

ences in protein abundance and the amplitude ofintrinsic noise should be described by

the parameters λon and λoff′ while Other parameters(λ mRNA′λpro′偽RNA′ andヽ ro in Fig―

ure 3.5)were Set tO identical values among the strains.Of course′ the model presented

in Figure 3.5 contalns only a silnPhfied version of the process′ and we have onlitted

several complicated transcription and translation processes.HoweveL this simpli■ ed

model helps us rnake a quantitative evaluation for the essential processes′ esPecially for

the stochastic dynanllcs represented by parameters λon and λoff.

Let Xl,X2,X3′ N bethe amounts ofacuve promoters′
―
As′ proteins and PlaSnud

copy numbeL respectively.Forthe modelin Figure 3.5′ the amOunts ofactive promOters′
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mIINAs and proteins can be calculated as follows:

晉=札n×げ―χ→一九f× Xb

普
=λ mRNA× χ l~猟 RNA× れ ,   C■ の

普=λFO×九一ヽЮ×為
The average number of the rnolecules at stationary state is:

(Xl)=
ム「×λon

入。n十 人ご

Thus′

(る)=無
漱
(Xl),

偽)=無 (る ),

的=

(3.17)

(3.18)

The copy number of plasmids as set as 30(Lutz and Bujard7997). Using the determined

).RNA, )pro, dmRNA and 6p"o, we simulated the correlation between expression and intrin-

sic noise for different )o6. As it shown in the Figure 3.12, at same expression level, to

get the smaller intrinsic noise needs smaller )os.. We traced the number of active pro-

moter and mRNA with low and high ).6. The transcriptional bursting caused by slow

promoter kinetics was well visualized (Figure 3.13).

3.3.5 Data fitting

Using this model, we fitted the parameters )on and )o11 of the model to reproduce

the experimentally obtained abundance of proteins and the intrinsic noise amplitude

shown in Figure 3.10 and Figure 3.14. In this experiment, we changed the culture con-

dition from aM9A medium containing l-lysine (0.3 mM) to one without t--lysine after

pre-culfure. For simplicity, we assumed that the promoter dynamics have the same )o61

in the two environmental conditions, and changes in protein abundance and the intrin-

sic noise amplitude are represented by the change of the parameter .\o,, between these
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Figure 3.12: The correlation between expression and intrinsic noise for different )om.

environmental conditions. The fitting results of the protein abundance and the intrinsic

noise are also shown in the Figure 3.10 and Figure 3.1,4. As shown, the fitted results

showed good agreement with the experimentally obtained data. The fitted parameters

are shown in Table 3.8 with column header as'removal of r-lysine'. The fitted results

showed thatlysC and dapD have high )o,, and )on. h contrast, IysAhas low .\o,, and )o6,

indicating that the promoter transitions infrequentlybetween active and inactive states.

The difference in the stochastic dynamics of the promoter activity might suggest that

the molecular machineries of activation and repression in the various promoter regions

have different characteristics. Moreover, the variation in noise amplifude among the

promoters might be linked to their different roles in the lysine biosynthesis pathway.

For example, as reported by Blake et al. (2006), increase in gene expression noise could

provide a significant selective advantage at high stress levels, while a strain with lower
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Table 3.8: Parameters used in simulation ~1).

Addition of L-lvsine Removal of L-
Promoter
ysC

λoЯ 入。nom λofF

0.017

0.043

0.01

3.22

0.004

αSグ

グα′B
励′D
7ysA

noise would have greater fitness than the high-noise strain at low stress levels. Thus,

the larger noise amplitude inIysA expression might play a role in survival in severe en-

vironments. As reported in our previous study (Ou et al.2008), it should be noted that

the parameters for stochastic promoter dynamics, )o., and )s11 connot be obtained by

using the single-fluorescent reporter system, because the analysis of the intrinsic noise

in the protein expression requires a multi-color reporter system.

The finding of slower transition rate for the promoter lysA can provide a novel in-

sight into the source of stochasticity in the gene expression dynamics. In the expression

dynamics in prokaryotic cells, it was generally assumed that the translational bursting

is a dominant source of stochasticity in the process of expression (Kern et al. 2005),

while the transition of promoter activation are assumed to be enough fast and the

rate of transcription is almost constant. Flowever, our result suggested that the at

least in lysA expression, the transcriptional bursting (Raser and O'Shea 2004, Ozbudak

et aL.2002, Blake et al. 2005) can be a dominant source of intrinsic noise. This finding

contributes to the further understanding of stochastic nature in the expression dlmam-

ics.

3.3.6 Validation of the parameters

To evaluate the accuracy of parameter estimation, the same parameter values were ob-

tained by using data of an independent experiment. In that experiment, the change of

lysine concentration in the environment was in opposite direction to that used in Fig-
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0.0025
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Figure 3.15: Time series showing GFP abundance and intrinsic noise amplitude after addation of
t--lysine into the culture media. The dots represent experimental data, while the lines represent
simulation results after fitting parameters )o. and .\.6 for each promoter.

ure 3.10 and Figure 3.1.4, i.e., the change of promoter activity was quanfify when lysine

was added to the environment. The experimental and fitting results are presented in

Figure 3.15, and the parameter values estimated by using this experiment is also listed

in Thble 3.8. As shown in the Thble 3.8, the parameter values obtained by two indepen-

dent experiments showed a good agreement between each other. This result suggested

that the parameter estimation used in our study was enough accurate to evaluate the

stochastic dynamics of promoter activity.

3.3.7 Comparison between single and dual fluorescence experiments
results

Mathematical models are an essential tool in systems biology, linking the behavior of

a system to the interactions between its components. Parameters in empirical mathe-
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matical models must be determined using experimental data. As models are approx-

imations of rcaIity, it is likely that more than one model fits the data to an acceptable

degree(Jaqaman and Danuser 2006a).

As mentioned above, the promoter strength of genes involved in lysine bioslmthesis

pathway were described by two different model with different parameters. The model

used in single fluorescence reporters are simple and that used in dual-fluorescence sys-

tems can involve the information of biological noise. Both of them can fit the expression

data well. Here come the questions, is there any relationship between the two group pa-

rameters? Are they consistent with each other? Or do they conkadict with each other?

In single fluorescence experiments, we used Michaelis-Menten-type model to fitting

the data (Equation (2.2)).The average number of the molecules at stationary state can

be obtained as
α〈ρ)
at

0

(p)

We already gotthe average protein

tem (Equation(3.18)).

=β
l+R(ιソたな

-_v | + R(t) lki
number at stationary state in dual-fluorescence sys-

=β
I 十R(ιソんだ
1

一αO)

一 α(p) (3.19)

(X3)=
Nx)o,rXlmRNAX)pro

(3.20)
(λon+λof)× (磁RNA× r`o)

As we know, the cv = dp,o and in both systems, the expression level should be similar

((p) o (xr)). If we set

13:Cxo; C:1V x
I'RNA X )pro

(3.21)

dmRNA

Thus′

λ on
(3.22)(p)∝ (X3)⇒ .l D/_ヽ /L∝  ヽ1ヽ1+R(t)/れ

~λ
on十 人。
「

Then we get the correlation between the two groups of parameters. We can determine

the maximal promoter activity (p) and repression coefficient(k)by the parameters of )o,,
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Table 3.9: repression coefficient(,fu )

gene single-fluorescence dual-fluorescence

ヶsC l.6
αs′   0.55
グα′3  0.69

グα′D  2.98

ヶЙ O.22

0.046

0.40

0.63

2.26

0.29

and )o6. After calculation, the results are shown in Thble 3.9 and Table 3.10. From the

results, except lysCp, all the k6 ate consistent with each other and there is a constant ratio

in B. As we know, the maximal we got from the single fluorescence experiments are not

the real number of proteins but the green fluorescent intensity. So this constant ratio in-

dicates the fluorescent intensity per GFP in single fluorescence experiments. Flowever,

in the dual-fluorescence simulation, the fluorescent intensity per GFP is set as 10, which

is smaller than the ratio(15.43+2.26) we got here. This is caused by the difference in

treating with the self-fluorescence background. In single fluorescence experiment, we

directly substrate the background from the intensity dala, while in dual-fluorescence

systems, we simulated the background in Gumbel distribution(minimum). This differ-

ence will lead the distance of the fluorescent intensity between different culture condi-

tion larger in single fluorescence experiments. And the larger distance will increase the

maximal promoter activity. The result of GFP expression controlled by lysCp was too

close to the background as determined by flow cytometer. This background noise may

interfere with the signal. So the result of lysCp still need discussion. The parameters

for the same promoter we got from single fluorescent experiments and dual-fluorescent

system were compared to find the correlation between them. The validity of parame-

ters of promoter strength determined by dual-fluorescence system was verified by the

results gotten from single fluorescence experiments. This result tells the parameters of

promoter strength we got from dual-fluorescence system can include the information

gotten from single fluorescence experiments.
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Table 3.10: maximal promoter activity(p)

gene single-fluorescence dual-fluorescence ratio

7ysC 14.4
αsグ    68.2
′′′B  46.3
′α′D  152.2

7ysA  570.1

2.19

5.18

2.90

10.19

30.55

6.57

13.17

15。94

14.93

18.66

15.43±2.26

3.3.8 Application of dual-fluorescence system

To discuss the stochasticity in more complex regulatory systems, the firstproblem is that

how to detect the noise in comparable system. If we construct all the regulatory circuits

in one plasmid, we need lots of reporter fluorescence as much as the number of genes in

the regulatory circuits. Not only multiple fluorescence proteins but also separating them

by single cell analysis are problem. Another method is that we construct only one gene

in the regulatory circuits in one plasmid and make a group of such kind of plasmids.

By this method, the dimension of the circuits becomes unlimited. The dual-fluorescence

system is based on this method. There is an endogenous control in each plasmid (the

rfp controlled by P"Pn) to make the system comparable and the distinguishing intrinsic

from extrinsic noise possible. This feature provides the possibility to analyze the big

complex metabolism network in system level.

The dual-fluorescence system, which includes two parts: the vector pGRFP and sim-

ulation tool, was well developed for the promoter strength analysis. The pGRFP vector

contains two distinguishable fluorescent report genes. It can separate the intrinsic noise

from extrinsic noise for target promoter. By fitting the expression of ffi and the noise

of the expression, the simulation tool, which is based on a stochastic formulation of

chemical kinetics derived by Gillespie, can easily get appropriate )o,, and )os for the tar-

get promoter. This system can be used for enriching the acknowledge of endogenous
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promoters and complex regulation network. It is helpful for recovering the relation-

ship between promoter sequence and promoter strength, which is impossible because

of lacking data(Wray et al. 2003). Because the )on and )os also contain the information

about the possibility of transcriptional bursting noise, the promoter strength gotten by

this system also can be used for further noise analysis and prediction.

3.4 Conclusion

The dual-fluorescence system for promoter strength analysis was developed. This sys-

tem includes two parts, the vector pGRFP and simulation tool. The reporter strains

is constructed by cloning the promoter region of target genes into pGRFP vector. The

green and red fluorescent intensity of the reporter strains is analyzed by flow-cytometry

in order to get the expression and noise of gfp arrd rfp. The intrinsic noise of the pro-

moters is determined by subtracting extrinsic noise from the total noise. After that the

simulation tool is used for getting appropriate )o,, and )os by fitting the expression and

noise based on Gibson's Next Reaction Method algorithm.

We applied this system to analyze the )o,, and )o6 of promoters involved in lysine

biosynthesis. Time-dependent experiment was performed after changing the culture

condition (t -lysine presence and t--lysine absence). The dynamic change in expression

and noise of five promoters, which respond to the r-lysine shifting, was fitted well by

a group of )o,, and )o6. We found that lysAp has low .\o,, and .\"6. The slow transitions

between promoter states of lysAp indicates the transcriptional bursting also can be a

source of noise in prokaryotic cells.

The dual-fluorescence system firstly introduced the biological noise into the pro-

moter strength analysis and it can provide appropriate )o,, and )o6 for target promoter.

This system can be easily used for strength analysis of grouped promoters in an en-

dogenous regulation network. The parameters of )o,, and )on c?rl not only describe the



3.4. Conclusion

activation of repression by a given factor but also provide information about the biolog-

ical noise for the promoter. This will help us to understand the initiation of transcription

in a quantitative way and to predict the possible level of mRNA.





Chapter 4

General conclusion

ystems biology is an approach to biology that seeks to understand and predict the

quantitative features of a multicomponentbiological system (Kitano 2}l2,Hartwell

et aI.1999, Jaqaman and Danuser 2006b). However there is still lack of powerful tech-

nique for acurrate comparable analysis of complex endogenous networks. Followed

the deepened research in biological noise, there is a need to develop experiment in the

study of promoter strength with the stochasticity property in more complex regulatory

systems, particularly endogenous gene networks (Kern et al. 2005). hr order to con-

duct a transition form a descriptive to a quantitative understanding, which can assign

kinetic parameters that capture the dynamics of the network within both deterministic

and stochastic model, in endogenous regulation network of Escherichia coli, we tried to

perform the single-cellular analysis in lysine biosynthesis.

In Charpter 1, the background and significance of the research was described. Sys-

tems biology requires quantitative description of endogenous regulation networks to

construct appropriate models which can make predictions about the behavior of the in-

teracting networks. Promoter strength plays a key role in driving gene transcription,

which, in turn, cause fluctuation in the interacting networks. The clear background

of lysine biosynthesis pathway makes the activation analysis of promoter involved in

lysine biosynthesis a good sample involving biological noise in systems biology. Time-

dependent experiments was employed in this study because it can result in wealth of

information, which makes the model construction feasible. Using flow cytometry, a

comprehensive quantitative description of activation of promoters involved in lysine
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biosynthesis was analyzed at single cell level.

In Charpter 2, by single fluorescence experiments, we investigated the expression

dlmamics of genes involved in lysine biosynthesis in E. coli cells to obtain a quantitative

understanding of the gene regulatory system. By constructing reporter strains express-

ing the green fluorescence protein geneffi) under the control of the promoter regions

of those genes associated with lysine biosynthesis, the dynamic behavior of promoter

activation was well visualized and quantitatively analyzed by flow cytometry. Accord-

ing to the fitting parameters within a deterministic model, dapD shows a significantly

larger coefficient of repression than the other genes in the lysine slmthesis pathway,

which indicates the weak binding activity of the repressor to the dapD promoter region.

Moreover, there is a trend that the closer an enzyme is to the start of the lysine biosyn-

thesis pathway, the smaller its maximal promoter activity is. The results provide a better

quantitative understanding of the changes in promoter activation over time in the lysine

biosynthesis pathway.

In Charpter 3, a dual-fluorescence system for promoter strength analysis was devel-

oped to involve the biological noise information. This system includes two parts, the

vector pGRFP and simulation tool. By fitting the expression and intrinsic noise get-

ting from pGRFP vector, simulation tool can easily get appropriate transition rate of the

activation/inactivation state, )o,, and .\o6, for the target promoter based on a stochastic

formulation of chemical kinetics derived by Gillespie. Multiple thread is used to increase

the simulation efficiency for such big amount particles (e.g.,20,000 cells). A new meth-

ods in treating with self-fluorescence background was introduced. This background of

the self-fluorescence was simulated as Gumbel distribution (minimum). During sim-

ulation, this background of self-fluorescent intensity was directly added to fluorescent

intensity from fluorescent proteins and contributed to the noise calculation same as in

experiments. Our algorithm developed Gibson's Next Reaction Method algorithm by

simulating the process same as experiments, which includes the transfer point in cul-
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ture condition and dual-fluorescent protein genes in one cell. We applied this system to

analyze the kinetics of promoters involved in lysine biosynthesis. We found that lysAp

has low )o,, and .\os. The slow transitions between promoter states of lysAp indicates

the transcriptional bursting also can be a source of noise in prokaryotic cells.

In conclusion, an experimental and data-analysis technique for quantitative and

comparable analysis of promoter activation at single cell level for endogenous regu-

lation networks is developed. The single fluorescence experiments can determine the

kinetic parameters within a deterministic model of the regulation network by using ac-

curate promoter-activity measurements. These parameters can be used to compare the

difference among different promoter involved in one biosynthesis pathway. The dual-

fluorescence system firstly introduced the biological noise into the analysis of promoter

strength in endogenous metabolic network and it can provide appropriate .\o,, and )o6

for target promoter. This system can be easily used for strength analysis of grouped

promoters in an endogenous regulation network. The parameters of )o,, and )on can

not only describe the activation of repression by a given factor but also provide infor-

mation about the biological noise for the promoter. This will help us to understand

the initiation of transcription in a quantitative way and to predict the possible level of

mRNA. It also provides the possibility to analyze the big complex metabolic network in

system level.

The transition from a qualitative to a quantitative understanding of promoter ac-

tivation involved in lysine biosynthesis in E. coli was conducted. The results provide

a better quantitative understanding of the changes in promoter activation over time

in the lysine biosynthesis. Previous The parameters within a deterministic model can

provide the possibility in accurate prediction of lysine bioslmthesis in metabolic engi-

neering when the cells face different concentration of lysine. The significantly higher

intrinsic noise inlysA indicates the transcriptional bursting also can be a source of noise

in prokaryotic cells. This finding contributes to the further understanding of stochastic
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nature in the expression dynamics. As reported by Blake et al. (2006), increase in gene

expression noise could provide a significant selective advantage at high stress levels.

The further finding of transcriptional bursting by using the dual-fluorescent system in

other metabolic network can help us to understand the importance of the gene in evo-

lution.
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Appendix A
Appendix: Biological Noise

A.1- What is biological noise?

Traditional population-averaged measurements would summarize the entire histogram by its
mean value (P(r)) (brackets represent the population average) at time f, however, the single-cell
measurements (such as flow cytometry) show that the expression level (P(t)) at time I varies
from cell to cell. These fluctuations in the amount of protein product are the result of fluctua-
tions in the rates of transcription and translation of its gene. Lr order to descript the stochastic
or nosiy process of gene expression, coefficient of variation, a conception in mathematics and
statistics, was employed. hr probability theory and statistics, the coefficient of variation (CV) is
a normalized measure of dispersion of a probability distribution. It is defined as the ratio of the
standard deviation to the mean,

CV=
StandardDeviation
LpectedRetwn

ν
/′D(χ )
E(χ )

(A.1)

,where E(X) is expected return and D(X) is the deviation. A natural and biologically relevant
measure of the magnitude of gene expression noise is thus the size of protein fluctuations com-
pared to their mean concentration. Then the noise, q(t), is given by

(A.2)

, where the angled brackets denote an average over the probability distribution of P(t) at time l.

A.2 What are the commponents of biological noise?

Typically the source of the noise is separate into two ways, intrinsic noise and extrinsic noise.
The inherent stochasticity of biochemical processes such as transcription and translation gener-
ates "intrinsic" noise, denoted ?i.,t, which fundamentally limits the precision of gene regulation.
Such stochastic effects are set locally by the gene sequence and the properties of the protein it
encodes. In addition, flucfuations in the amounts or states of other cellular components lead
indirectly to variation in the expression of a particular gene and thus represent "extrinsic" noise,

和=

E(X2)_(E(X))2
E(X)
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denoted r/ext. Ttrus, extrinsic sources of noise arise independently of the gene but act on it. Such
stochastic effects are controlled by the concentrations, states, and locations of molecules such as

regulatory proteins and polymerases, and so on. The extrinsic noise is global to a single cell but
vary from one cell to another.

A.3 How to describe the two types of noise?

To examine the noise for a particular gene across a cell population, let the intrinsic and extrinsic
variables for that gene be given by vectors iand E, each of whose components represent a dif-
ferent source of noise. The expression level of the gene in one cell, as measured experimentally,
is denoted P6 (with k a cell label). From a snapshot of 1/ genetically identical cells, the P7,s can be
averaged to find the moments of the protein distribution. This averaging process is equivalent
to

(A.3)

Herc p(EI) is the probability density function for the intrinsic and extrinsic variables, and
P(8, I is the measured. expression level for particular values of d and fl Using the product
rule of probabilities, this becomes

(A.4)

The second integral is an average over the intrinsic variables with the extrinsic variables held
fixed and shall be denoted by angled brackets:

(Pm(E))≡ (A.5)

Averages over the extrinsic variables will be indicated with an overbar, so that Equation (A.4)
becomes

nolIPtr:en
k-*1

That is, an average over both intrinsic and extrinsic noise sources.
Hence, the measured noise, q1o1, defined empiricallyby

(A.6)
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is equivalent to

(A.8)
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Here, the averages over the extrinsic variables are indicated with an overbar. In another word,

there are only intrinsic variables indicated Ay(Ffiff I ftFt\'. Th" intrinsic noise, 171,,1, is

proportional to the variance of the intrinsic distribution, calculated for a particular value of
the extrinsic variables and then averaged over all possible valuses of these variables. And The
extrinsic noise, 4.*1, v&nishes as extrinsic distributions become more and more spiked. That is
tosay, the square of the experimentally measurable noise is a direct sum of the intrinsiC, Tli6drtd
extrinsic, 4"*1, cofltributions.

A。4 ｔｏ

ｉｎ

calculate the extrinsic noise and intrinsic
dual-fluorescence system?

As reported by M.B. Elowitz et al., intrinsic noise and extrinsic noise can be measured and dis-
tinguished with two genes controlled by identical regulatory sequences. Consider what would
happen if two identical copies of the gene were present in the same (ktn) cell, and their protein
products, labeled fj1) and P!2) ,weremeasured simultaneously. These will have different values
of the intrinsic variables, but, because both are present in a single cell, they will be exposed to the
same intracellular environment and so have the same value of the extrinsic variables. Therefore,
by summing their producf we obtain
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可
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′PreCiSely the average needed.And silnilarly we obtain

井を
現⊃×井き

嚢犠 //Pに,lXjttjJ×〃
P「 ,らXjttj高

=[〃 P「 ,⊃ズjうdjd12        体■⇒
=(再
)2

(井左a)2ヽ (IIP(j,のP(jう djdiウ
2

(A.12)

弁き(鳥ア郷//(Pに ,う )2ズ jぅdjdF
=ノ
βdj/dF(P(j,う

)2P(コ
j)

=(P2)

Experimentally, two distinguishable variants of fluorescent protein, corresponding 16 p((t)) an4

p((z)) ,would allow estimation of @p ""d ((P))'. W".url calculate the extrinsic noise (Equation
(A.9)) shared by the two protein by

亀≡
(A.14)

井Σ縫141)a2)_井Σ催141)× 井Σ縫14動
井Σた141)× 持Σ催142)

In dual―fluorescence systems′ there areれvo distinguishable fluorescent proteins′ GFP and RFP
The two protellls are products of h″ o fluorescent protell■ genes′ リッ

ーT4and ttuV5′ which are
obtained from the plasmids pPROLar― GFPuv5 andPQE31-T4separately.Theろ ″~T4is controlled

by a strong consitut市e promOter PLPR and terminated by tO frOm pCL476′ where the断クuv5
is controlled by the target promOter in which we are interested. If the ith element of vectors r

and θ contain the average RFP or GFP intensity/respectively/of the ith cell in the sample and
angled brackets denote rneans over the cell Population′ the extrinsic noise(Equation(A.14))in

the dual―fluOrescence systelns can be rewritten as

檻t=扮      団

′and as the definition of noise(Equauon(A.7))′ the tOtal noise for target promoter can be ob―

tained by

硫F7    m

(A.13)
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The intrinsic noise of target prOmoter can be calculated by subtracting extrinsic noise from the

total noise.

ηttt=ηttt―ηlt                    (A.17)
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8.1" FCSGettingPeakOu

8.1.1 getPeak.cpp

#include <origin.h)
#include <page.h)
#include <wksheet.h)
#include <data.hD
#include <graph. h>
ff include d{AC\OCN-8OI . h>
#include <math.h)
#include <strint.t>
#define h0 0.4829629 137445347
#define h1 0.8365163037378079
/*define M A.224L438680420134
{*de{ine h3 -0.1294095225512604string o-fcounts ()
{

//creat a neu workslteet to stort all the LIX CFP
Worksheet wks;
wk.CreateO;
string wkNme="fGFP";
wks. GetPage O . Remme(wksNm) ;
string bNm;
int colNum=2;
strint total=","; // to set a counter lot killing lhe noise
Proiect pri ;
PageBase pg;
Collection(PageBase)pgcoll ;
foreach (pg in pgcoll)
{

bNm = pg.CetName0;
to t a l= to ta l+", "+bNme;
Worksheet o-wks (bName) ;

wks . AddCol( " co" +bNme) ;
Dataset dsx;
if (dsx. Attach(bName, 4) )
{

Dataset dss'
(dss. Attach(wks.CetPage O .GetNameO, colNum) )

dss=dsx;
colNum+ +;

dataset

Appendix: Source code

)
//creat coluiln to stare xpesk, hWidth, snd area
wks. AddCol( "xc " ) ;
wks. AddCol( "mean" ) ;
wks. AddCol( "hWidth" ) ;

wks.AddCol("sd2");
wks.AddCol("area");
wks.AddCol("gzero");
wks.AddCol("cv");
wks.AddCol("cv1");
//creote graphpage lo draw the raw dota.
GraphPage r-grph;
r-grph. Create (NULL, CREATE-VISIBLESAME) ;
r-grph. Remme(" rdata" ) )

int timer;
i nt ytemP =0;
rtring cNmei
int flag =0;
if ( flks. GetN untcols ( ) <25)

flag=1

for (inl i=0;i<wk.GetNumcolsO -11;i++)
{

Worksheet c-nwks;
c-nwks. Create O ;
time!=i *6;
if(i<7)

tiilet'= i *10+ i *S* f I q g .

else
t imer =( i -5)*15+6*10+6 *5 * f I a g ;

cNdme+ksNiler t imer ;

c-nwks. GetPage O . Remme(cName) ;
Da taset dsRaw(wksNarc, i +2) ;
int wNum=dsRaw. GetSize 0;

Data8et idxData (cNme,0 ) ,

Dataset freqData (cNme,l ) ;
double mx, xmin;
rnt suce55;
int num-class = 1024;
int iclass = 0;
int n = wl'fum;



Nag-ClassBoundary iclass-enum ;
iclass-enum - Nag-ClassBoundaryUser;
vector<double>a = dsRaw;
vector<double>c;
c . Se tS ize ( 10 24 ) ;
for ( int z=0;z<7024;z++){cIz]=711.1
vector<int>ifreq;
ifreq. SetSize (1024);
sucess = nag-frequency-table(n, a, num-class, iclass_enum, c, ifreq

ddmin, ddmax ) ;
//write the result bock to thc worksheets.
freqData = ifreq;
f or ( z =O ; z {I024;z+ +\ {c I zl= z ;)
idxData = c,
//plot the fGFP
ytemp=o -p lo t (cName, time! , ytemp ) ;
//copy peak hWidth and aren to workshert fGFP.
cdata (cName, i, tiner ) ;

]
.eturn to ta I ;

j

int o-plot(string sName,int i,int ytemp)
t

string sA=sName+"-A";
string sB=sName+"-8";
string sc-sName+" -Result" ;

Worksheet wks(sName);
Dataset sdata (sB);
strint timer="raw"+i+"min" ;
int raw-wks. Addcol( timer ) ,

Dataset daRaw(sNme, raw) ;

daRaw=sdata;
//do wauelel snooth.
daub ( sB);
daub ( sB);
invDaub(sB);
invDaub(sB);
wks.AddCol("Result") t // Create a colLtmn for results
//do FFT snooth
LT-execute("curve.resetO"); // initialize
LT-e xecute ( " curve . data \$ -=-"fsB ) ;
LT-execute ( "curve. result\$-=-"+sC) ;
LT-execute("curve. iI - -10") ;

LT-execute( "curve. i2-=-"+sdata. CetSize () );
LT -execu te ( " curve . smoothp ts -=-25 " ) ;
LT-execute ( "curve. derivdeg-=-1 " ) i
LT-execute ( "curve. FFTSmooth ( ) " ) ;

int ymax=f -peak (sNme) ;

//drau the similatioil graph
CrophPagc grph;
glph. Credte (NULL, CREATE-VISIBLESAME) ;
grph. Rename(" gr"+sName) ;
Curve cc(sA, sName+"-"+timer) ;
Curae drl ( sA , sC ) ;
lay . AddPlot ( cc , IDM-PLOTIINE) ;
int nPIot = Iny . AddPlot(dd, IDM-PLOT-LINE);
Iay. DitaPlots(hPlot).SetColorRGB(0xFF,0,0) ;// make a rcd curae
resetY (ymax," gr"+sNamc) ;

Graphlayer rawlay("rdata") ;
int rPlot = rawlay.AddPlot(cc, IDM-PLOT-LINE);

tmpIi+half] =0;j

tmplil =aln-21*h0+a[n-1]*h1 +a[0]*h2+a[]xh3;
tmpI i+half ) - a[t-2]*h3 alrt-"ll*h2 + a[0]*h1 a[I]*h0;

tmpIi+half] =0,
y=tmp;

invDaub(string sB) {
Dataset y(sB);

inr n=y.GetSize 0 ;
vector<double> a;
a. SetSize (n);

int i, j;
int half - n/2;
vector<double> tmp,
tmp. SetSize(n);

a=y ;

tmp[1]= alhalf-11*h2 + aIn-1]*h1 + a[0]*h0 + aIhalI]*h3;
tmp[2]= aIhalf-1]*h3 - aIn-1]*h0 + a[0]*h1 - alhalfl*h2;
for (i = 0, j = 2; i { half-1; i++) {

tmpIj++] = aIi]*h2 + aIithalf]*h1 + aIi+1]*h0 + aIi+half+1]*h3;
tmpIi++] = aIi]*h3 - aIi+half]*h0 + ali+11*h1 - aIi+half+1]*h2;

)
y-tmP;

f -peak ( s tr i ng sNme)

Worksheet wks(sName);
wks. AddCol( " Baseline") ;
wks. AddCol( " lntRes" ) ;
wks. AddCol( "Peak" ) ;

B@L bErr;
Curve cvMyCurve( sNme+"-A", sNme+"-Result" ) ;

cilrte object to integrite
Curve cvMyBaseline( sName+"-A", sName+"-Baseline" ) ;

curae object of integtation baseline
lntegrationResult irMyResults;

structure to store integration results

i f (ymaK>ytemp )
resetY (ymax, " rdata " ) ;

else
ymax=ytemp;

eturn ymax,
j

void daub(string sB)
{

Dataset y(sB) i
i11 n=y. eetSize O;
vecto r<double>a ;
a. SetSize (n) ;

int i, j;
int half = n/2;
vcctor<double> tmp;
tmp.SetSize(n);

a=y ;
a[0]=a[1]'
for(i-0,j=o;i(n-3;
tmp[il    =aril*ho+
′711′ fi十 力αlFi=α fノ J*″ 3

i += 2′  i十十){
a[i+1]*hl + ari+2〕 *h2 + aI)+31*h3,
一
“
fノ +1トル2+α fァ +2卜″1-α f′ +3ト ルθ//

//

}

void

//

//

//

//

//

//

//
//

// Creote

/ / Creatc

/ / OriginC
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int iSize;
Datas€t dslnd(wks,0);
Dataset dsRaw(wb,2);
Dataset dsDataln(wks,4),
dsDataln=dsRaw* dslnd ;
iSize=dsDataln. GetSize O ;
double suml=0;
double sum2=0;
for (int i=0;i<iSize;i++) { suml=sum1+dsDatalnIi];]
for ( i=1;i(iSize; i++) { sum2=sum2+dsRawI il;l
BasicStats bsStat;
bsStat. mean-sum1/sum2;
double sigma=0;
double count=0;
for (i=1;i<iSize;i++)
{

sigma=dslnd I i]-bsStat .mean;
siSma- siSma*sigma ;

sigma=dsRawI i I * sigma ;
count=count+si8ma ;

]
bsStat . sd=count/sum2;

v ec tor<double>a ;
a. SctSize (7) ;
a [0 ]= irMyReEults . xPeak ;

a [ 1 ] = ir1t4ti""t tts . yPeak ;
a[2]= i114tP""t1ts Area;
a [3]= i1tgtP"tt1ts. dxPeak;
a[4]=wks.Cell(0,2);
aJ5l bsSlat.meil
a[6]=bsStat sd
tes=4,:

int y=( int ) irMyResults. YPeak;
return Y;

resetY(int y-value, string ENme)

Dataset dscumlntRes( sName+"-IntRes" ); //
intcgt4tion rcsult

dscumlntRes.SetSize( cvMrcurue.GetSizeO );
of dscumlntRes to size of caMycurae

bErr = Curve-integrate( dcvMyCurve, &irMyResults,
dsCumlntRes, 'fFr.f.rE \; // Perlorm inteSrotiofl

Dataset res (sNme+" -Peak" ) ;

' r-wks.SetCell(i, Col++, sData[6]);
r-wks. SetCell(i, Col++, sData[2]) ;

r-wks. SetCell(i, Col++, sData[4]) ;
r-wks. SetCell(i, Col++, sData[3]/sData[0]) ;

r-wks. SetCell ( i, Col, sData [5] / ( sData [5]* sData [5]) ) ;

plot-peak-width ( )

CraphPage grPh,
grph. Create (NULL, CREATE-VISTBLESAME) ;

grph . Remme( "Peakwidth" ) ;

Graphlayer lay (grPh.GetNameO );
string sA="fGFP-A";
string sB="fCFP-xc";
str ing sC="fGFP-hWidth" ;

Curve cc (sA, sB);
Curve dd(sA, sC);
lay. AddPlot( cc, IDMJLOT-SCATTER) ;
int nPlot - Iay.AddPlot(dd, IDM-PLOT-LINE);
lay. DataPlots ( nPlot) . SetColorRGB(0xFF,0,0) ;
strrnt str;
str.Format("layer.x
lay. LT-execute ( str )

from=\'/"d; layer.x. 1e=\'/d;", -5, 185) ;

Cunulatiue

// Set size

&cvMyBaseline, &

1024);

y-value +50);

str . Fotmat( " layer . y. from=\o/d; layer. y
Iay.LT-execute(str);
lay . LT-execute ( " layer .y.type=2;" );

plot-cv-zero ( string gNm, int f lag )

to=\"/d; ", 100,1000);

-5′ 185),

GraphPage grph;
Srph. create (NULL, CREATE-VISIBLESAME) ;
grph. Remne(gNm) ;

Graphlayer lay (gNme) ;
string sA="fCFP-A";
string sB="fGFP-"+gName;
Curve cc(sA, sB);
Iay . AddPlot( cc, IDM-PI,OTSCATTER) ;
strrng str;
s tr . F-ormat ( " lay"t . 

". 
1.o5=\'/d; layer' x to=\7d;

lay.LT-execute(str);
if ( flag )

{
str.Format("layer'y from=\'/d; layer.y to=\'/d;", 0,1) ;

]
else

6 tr . Format ( " layer . y. from=\o/d ; layer' y. to=\'/d ; ", 0,6000 ) ;
lay. LT-execute( str );

getstart o

s t r in g sName=" fCFP" ;
Worksheet wks(sName);
Dataset tes (sNme+" -xc" l ;
Dataset tag (sNme+"-8") ;

int n=res. GetSize O;
wks. AddCol( "FFTres" ) ;

//do FFT snooth
LT-execute("curve.resetO") ; // ittitializc
LT-execute ( "curve. data\$-=-"+sName+" -xc " ) ;
LT-execute ( "curve. resu lt\$-=-"+sName+" -FFTres " )
LT-execute ( "curve. i1 -=-0" ) ;

Graphlayer glay (gNare) ;

strrng stU
str. Format("layqI 1 f1q6=\o/d; layer.x
glay. LT-execute ( str );
str . Format ( " layer . y from=\'/d; layer' y
glay. LT-execute( str ) ;

)

void cdata ( string sNme, int i , int timer )

i
Dataset sData (sNme+" -peak" ) ;
Worksheet r-wks ( "IGFP" ) ;
inl Col=r-wks . GetNumcols O -8i
r-wks.SetCell(i, 0, timer);
r-wks. SetCell(i, Col++, sData[0]) ;

r-wks. SetCell(i, Col++, sData [5]) ;
r-wks. SetCell(i, Col++, sData[3]) ;

16=\"/d;",0,

to=\./d;,,, 0,
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LT-execute ( "curve. i2 -=-"+n) ;

LT-execute ( "curve. smoothPts---3" ) ;
LT-exec ute ( " cu rve . de rivdeg -=- l " ) ;
LT-execute ( "curve. FFTSmooth ( ) " ) ;

Dataset sdata (sName+" -FFTres" ) ;
vector<double>a;
a. SetSize (n) ;

a [0]=0;
for (int i=0;i<n 2;i++)
t

aI i+11=sdata I i+1]-sdata I i ];
l
tag=a

CraphPage grphO;
grph. Create (NULL, CREATE-VISIBLESAME) ;

grph. Rename( " gf Pshif t " ) ;
Graphlayer lay (" gfpshif t") ;
Curve cc ("fGFP-A"," IGFP-8" ) ;

lay. AddPlot(cc. IDM-PLOTSCATTER) ;

lay. LT-execute ("Rescale ; ") ;

)

o-fcm o
{

string gNme="fcm";
Proiect pri ;
PageBase pg;
Co llection(PageBase>p gcoll ;
foreach (pg in pgcoll)
t

PS. Destroy O ;

)

' lay.LT-execute("lab-d-800-400-("+tawlabe[+")");
lay . LT-execute ("legend" ) ;

// Project.Saoe(strFolder+gName+" opj");
out-str ( "save*"+strFolder+8Nme+" . oPi" | ;

/1 Proiect.LT-erecute("sate "+strFolder+gNnme+".opi")'
)

// kill the soilrcc datn because it is too large
for( int i =2; i(nn.CctNumTokeru(',' ) - t;i++)
t

string pgName=nn.CetToken( i,',' ) ;
Worksheet wks(pgName) ;
wks. Destroy O ;

]
)

8.1.2 openExcel.ogs
fdlog.Show{oment = 0;
fdlog . UseCroup( Ascii );
fd log . UseType ( XLS) ;

if (fdlog.MultioPenO != 0/0)
{

for ( ii=fdlog.MultioPen.Count; ii >=1; ii--)
t

win -t data Origin;
FDlog.Gct(A, ii);
open + o/d.;

)
)

LT-execute( "run. f i le (openExcel)") ;

string nn=o-fcounts O ;

plot-peak-width O ,

plol -cv -zero (" cv",l) ;
plot-cv-zero ( " gzero",O) ;

getstart O;

Page pp = APPlication.Pages(1);
string strFile=pp. Label ;
if(strFile.lsFileO)
{

string strFolder-GetFilePath( strFile );
string strName=strFolder ;

strName. TrimRight ("\\" ) ;
string strNamel=strName. Right (2) ;

string conl=strNamel. Left (1);
string con2=strNamel. Ritht(1) ;

string from, to;
if (conl. Replace(' 1',' 2' ) )

from=" 0.3 ";
else from=con1;
if (con2. Replace (' I',' 2' | )

to=" 0.3" ;
el6€ to=con2,
strName. T!imRight("\\"+strNamel ) ;
string strName2=strName. Right (4) ;
s tr in g rawlabel=strName2+"- lys ine -from-"+from+"ril4-to -

Graphlayer lay (" tdata") ;
lay . GroupPlots (0 , lay . DataPlots Count O ) ;

B.2 FCSMultiOu
8.2.1 fcmdata.h
#ifndef FOvIDATAIIII
#define TUDATAILH
clas6 fcmData
{
public:

unsiBned int fs;
unsi8ned int ss;
unsigned int fsloB;
unsigned int sslot;
unsigned int gfplog;
unsigned int glplin,
unsigned int rfPlin,
unsigned int rIPloE,
int f lag;
float gfP;
float rfP;
fcmData ( )
1

flag=l;
$P-o;
rtP =0'

)j;

# en dif

+to+"rM';
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8.2.2 fcm.h
#ifndef FCI,LILH
#define FCMJIH
#pratha once

#include "fcmdata.h"
#include <math. lD

class fcm
{
public:

fcmData * fcmdata ;
inl size i
int redEvents[10241;
inl greenEvents [1024];
int sslogEvents [10241;
int fslogEvenrs Jl 024);
int i;

fcm ( void )
{
)

fcm(int datasize , uneigned int *datalist )
t

inr i;
sizc=dataSize;
fcmdata=new fcmData[ dataStze / 1 4) ;
for ( i =0, i =0; i<dataSize / 16; i ++)
t

fcmdataI i l. fs=datalisr I j ++];
fcmdata I i ]. ss=datalist I i ++];
fcmdata I i ]. fslog=da16l1st I i r+];
fcmdata I i I. s6log=datalis t Ij +t];
fcmdata I i ]. gfplog=daralist I i ++l;
fcmdata I i l. gfplin=da tatist I i+rt;
fcmdata I i I. rfptin=daralisr I j ++1,
fcmdata I i I. rfplog=j616lisr I i ++];

]
]
int getTotalEvents 0
i

inl events =0;
for ( i=0; i4size /16; i++)
{

if(fcmdataIi].flag)
events ++;

]
teturn events;

)

void redCount(int step)
{

for( i=0;i (1024;i++)
{redEventsIi]=0;]
for ( i =0; i<size /16; i ++)
i

if(fcmdatali l. flag)
t

redEvents [ ( i nt ) ( fcndata I i I
)

]
for(int i=0,i <(1024,/step) ; i++)

int events =0;
for(int j=0; j(step; i++)
{

events+=redEvents I step* i+ j ] ;
)
redEvents I i ]=events;

]
]

void greencount(int step)
t

for( i=0;i <1024;i++)
{greenEventsl iJ=0;}
for( i=0;i<size /16; i++)
{

if(fcmdatali l. flag)
{

greenEvents [( int ) ( fcmdata I i l. gfplog ) l++;
]

]
for(int i=0;i <(1024/step) ; i++)
i

int events=0;
tor(int j=0; j<step; i++)
{

events+=greenEvents I step * i+i ] ;
)
greenEvents I i ]= events ;

]
)

void sslogCount(int srep)
{

for(i=0;i<1024;i++)
{sslogEvenfs I i l=0;}
for( i =0;i<size /16; i ++)
{

if (fcmdataIi ]. flat )

sslosEvent6 [( int ) (fcmdata I i ]. sslog ) j++;

「
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)      eVentS+=SslogEventslsteP*'+,】
′

sslogEventsli】 =cvents,
)

fs10gcOunt(int steP)

10■ (1=0,iく lo24,1++)

{Fs10gEvenis lil=0,}
10r(i=0,i<sizc/16,i++)

{
if(fCmdatalil flag)

{

}      fslogEvents I(inl)(Fcmdatali〕
fslo8)1++

}

rfplo6 ) I++;
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for( inr i =0;i ((1024/step); i++)
t

int events =0;
Ior(int j=0, j<step, j++)
{

events+=f slogEvents I steP * i+i ] i
)
f s IoB E ve nts I i ]= cvents ;

]
]

int getFSPeak o
i

int peak=0;
int peakV=0;
fslogCount(1);
for(i=0;i<1000;i++)
{

if (peakv<fslogEvents I i l)
t

peakV=fslogEvents I i l;
Peak= i ;

]
)
relurn peak;

]

int getSSPeak o
{

int peak=0;
int peakV=0;
ssloBCount(1);
for( i=0;i <1000;i++)
t

if (peakv<sslogEvents I i ] )
{

peakV=sslogEvents I i ];
Peak= i ;

)
)
return peak;

)

float meanred o
t

float sum=0;
float meanred=0;
int counter =0;
f or ( i =0 ; i<size / 16 ; i ++)
{

if(fcmdatalil. flag)
{

sum+=fcmdataIi].rfp;
counter++;

]
)
if(counter) meanred=sm/counter;
relutn meanted;

l
float meangreeno
t

float sum-0;
float meangreen=0;
int counter =0;

for ( i =0; i4size,/ 16; i ++)
1

if (fcmdataIi l. flag)
t

sm+=fcmdatalil SfP'
counter ++,

)
]
if ( counter ) meangreen=sm/counter ;
return meangreen;

)
Iloat meandifo
{

float sm=0;
float meandif=0;
int counte.=0;
for ( i =0; i4sizc / 16; i ++)
{

if(fcmdataI i ]. flag)
1

sum+=(fcmdata Ii ]. rfp_fcndata Ii ]. gfp) *(fcmdata Ii ]. rfp
fcmdataIi],gfp);

counter ++;
)

)
if (counter) meandif=sm/counter;
retu.n meandif;

)
float meansqro
t

float sm=O;
float meansqi=0;
inl counter =0;
f o r ( i =0; i<s iz e / 16; i ++)
{

if(fcmdata I i J. flag )
{

sum+=(fcmdata Ii ]. rfp*fcndata Ii l. rfp ) +(fcmdata Ii ]. gfp
*fcmdataI i ]. gfp);

counter ++i
)

)
if (counter ) meansqr=sm/counter ;
retuan meansqr;

I
float redmeansqr 0
1

float sm=o;
float meansqr=0;
int counter =0;
for ( i =0;iasize /16; i++)
{

if(fcmdataIi].flag)
{

ss61=(fcmdata I i ]. rfp*fcmdata I i ]. rfp ) ;
counter++;

)
)
if ( counter ) meansqr=sm/counter .

teturn meansqr;
]
float greenmeansqro
{

float sm=0;
float meansqr=0;
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int counter =0;
for ( i =0; i(size /16; i ++)

{
if(fcmdatalil. flag)
{

sm+=(fcmdataI i ]. gfp*fcmdata Ii ] gfp);
countel ++;

)
]
if ( counter) meansqr+u/counter ;

return meansqr;
)
f lo at meamul ( )

{
float sm=0;
float meamul=0;
int counter =0;
for ( i =0; i<size /16; i++)
{

if(fcmdataIi].flag)
{

sm+=fcmdata Ii ]. rfp*fcmdata I i ]. gfp;
counter++;

]
l
if ( counter) meamul=sm/counter ;

return meamul;
)

float intNoise o
{

float intNoise;
float meandif;
float meanred;
float meangreen;
meandif=fcm : : meandif O ;
meanred=fcm:: meanred O ;
meangreen=fcm : : meangreenO ;
r€turn intNoise=meandif /(2*meamed*meangreen),

]
float extNoise o
t

floal extNoise;
f I oat meamul;
floal meanred;
float meangreeni
neamul=fcm::meamul0;
meamed=fcm r : meanredO ;

meangreen=fcm : : meanBreen ( ) ;
retun extNoisc =(meimul-meanred*meangreen) /(meanred*meangleen) ;

)

f loat total o
1

f loat totalNoise;
floal neansqr;
float mearued;
float meangreen;
meansqr=fcm : : meansqr ( ) ;
meanred=fcm : : meanred ( ) ;
meangreen=fcm : : meanSreen ( ) ;
retutn totalNoise=(meansqr-2*meanred*meang,reen)/(2*meanred*meangl€en

);
]

float correlation o
1

f loal correlation;
floal meangreen;
float meanred,
floal meamul;
meanSreen=fcm : : meangreeno ;
meanred=fcm | : meanred ( ) ;
meamul=fcm : : meanmulO ;
return correlation=(meanmu!-meangreen*meanted) /(meantreen*meanred)

]
f loat correlationred o
{

f loat co!relation;
f loal meamed;
float redmeansqr;
meanred=fcm : : meanred ( ) ;
redmeansqr=fcm:: redmeansqr O ;
return corre la tio n =( redmeansqr-meanred*meanred ) /(meanred*meanred ) ;

)
f loat correlationtreen o
{

f loal correlation;
float meangreen;
float Sreenmeansqr;
meangreen=fcm : : meangreen ( ) ;
greenneansqr=fcm : : Sreenmeansqr o ;
ieturn co rie lat io n -( greenmeansqt-meangreen*meangreen) / (meangreen*

meangreen);
)

float g-intNoise o
{

float 8-intNoise;
float cortelationgreen;
f loat cor.elation;
correlation=fcm : : correlation () ;
correlationgreen=fcm : : correlationgreen O ;

!eturn f -intNoise=correlationgreen-correlation ;

]

float mcanfslog o
{

float sum=0;
float meanfslog=0;
for ( i =0; i(size,/16; i++)
i

sm+=fcndata I i ]. fslog ;

)
mean{slog=(sm* 16)' / srze )

1g1g11 meanfslog;
]
float meansslog o
1

float sm=0;
float meansslog=0;
for( i=0;i(size / 16; i++)
{

sm+=fcmdataI i ]. sslog ;

)
meansslog =(sm* 76) / size ;
return meansslog;

]
float meangfplog ( )
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{
float sun=0;
float meangfplog=0;
for( i =0;iasize /16; i++)
{

sm+=fcmdata I i I. gfplog ;
)
meangfplog =(sm *16) / size ;
return meangfplog;

]
float meanrfplog 0
t

float sm=0;
float meanrfplog=0;
f o r ( i =0; iqs iz e / 16; i ++)
{

sumt=fcmdata I i ]. rf plog;
)
meanrfplog =(sum *16) / size ;
relurn meanrfplog;

]
float variancefslog o
{

float meanfslog=0;
f loat variancef slqg =0;
meanfsloS=fcm : : mcanfslog ( ) ;
fqr ( i =0; i<size / 16; i ++)
{

variancef slog +=(fcmdata I i ]. f slog-meanfslog ) *( fcmdata I i ].
fslog meanfslog);

i
variancefslog -( variancefslog *1 6) / size ;
if ( variancefslog )=0) variancefslog=sqrt ( variancefslog ) ;

. l€lurn variancefslog;
l
f loat variancesslog o
t

float meansslog=0;
f loat variancesslog =0;
meanssloS=fcm l: meansslog 0 ;
for ( i =0; iqsize /16; i ++)
{

variancesslog+=(fcmdataI i ]. sslog-meansslog) *(fcmdataI i ].
sslog_meansslog);

]
variancesslog =( variancesslog *16) / size ;
if (variancesslog )=0) variancesslog=sqrt(variancesslog);

- return variancesslog;
l
float variancegfplog o
{

float meangfplog=0;
float variancegfplog=Q;
neangfplog=fs6;: meangfplog O ;
f e r ( i = 0; i4s iz e ,/ 16; i ++)
{

variancegfplog+=(fcmdata I i l. gfplog-meangfplog) *(Icmdata I i ]
gfplog meangfplog);

l
variancegfplog =( variancegfplog *16\ / size ;
if (variancegfplog ;'=6; yu.iu..egfplog=sqrt(variancegfplog);

- return variancegfplog;
I
f loat variancerfplog o
t

float meanrfplog={J;
f loal variancerf plog =0;
meanrfplog=fcm:: meanrfplog 0 ;
f o r ( i =0; i(s i z e / 16; i ++)
{

variancerfplog+=(fcmdata I i |. rfplog-meanrfptog) *(fcmdataI i
rfplog,meanrfplog ) ;

)
variancerf plog =( variancerfplog *16) / size ;
if (variancerfplog )=0) variancerfplog=sqrt(variancerfpiog);
return variancerfplog;

)
void resetFilter o
{

for ( i =0;i(size /16; i++)
{

fchdata I i ]. flag =l;
)

]
float expneanmulo
t

float meanred;
float meangreen;
float expmeanmul;
mcanted=fcm : ; meanred O ;
meangreen=fcm : : meangreen ( ) ;
return expmeanmul=meanred*meangreen ;

)
float parCorrelation o
{

float meamul;
float meanred;
float meangreen;
floal greenmeansqrj
float redmeansqr;
float greenstd;
float redstd;
float parCorrelation;
meamul=fcm::meamulo;
meangreen=fcm : : meangreeno ;
meanred=fcm : : meanredO ;
greenmeansqr=fcm : : greenmeansqr ( ) ;
redmeansqr=fcm:: redmeansqr O ;
gleensto=greenmeansqr-meangreen*meangreen ;
if (greenstd>=0) greenstd=sqrt(greenstd) ;
redstd=redmeansqr-meanred*meanred i
if (redstd>=0) redstd=sqrt (iedstd) ;
if ( greenstd>=06.&redstd )=0)
{

return parCorrelation =(meamuFmeanred*meangreen) /( redstd *
greenstd ) ;

)
else
{

return parCorrelation =0;
)

)

void fluoresenceConvcrt(bool convert=0
sslogCenter =636, bool yamada=1)

{
ina fslog=0;
float a=0;
iI(!convert)
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for ( i =0; i<size /16; i ++)

{
fcmdata I i ]. glp=( float ) fcmdata I i
fcmdata I i ]. rfp =( f loat ) fcmdata I i

)

i f (yamada )

{
f ot ( i =O) 1,<size / 16; i ++)

l. gfplog
I . rfp log

' if (fcmdatali l. tfPlot>0E&icmdata Ii ]. rfplog >0)
{

fcmdata I i I gtp =( tl o at ) 43.777 * exP
(0.009* fcmdataI i ]. gfplog),

fcmdata I i ]. rfp =( float ) 43.177*exp
(0.009* fcmdataI i ]. rfplog).

)
else
{fcmdataIi].flag=0;]

)
)
else
{

f o r ( i =0; i(s i ze / 16; i ++)

{
n=( f lqat ) fcmdatal i I gf Plog / 1024;
a=a* 4;

fcmdataIi] gfP=a;
fcmdata I i l.8It=( tloat )Pow(10 ' fcmdata I i ].8fP )

fcmdataI i l. gfP=fcmdalaI i ]. gfp *1 024;
q=( f lqat ) fcmdatal r l. tfPlog / 1024;
a=a*4)

fcmdataI i ] rfP=a;
fcmdata I i |. rfp =( float )pow(10 'fcmdata I i l. rfP )

fcmdataI i I rfp=f66dn1a J i l. tfp +1.024;

if(o)
t

fslog=fcmdataI i ]. fslog-fslogCenler;
if (0< fslog )

t
for (int i=0; i<fslot; i++)
{

fcmdataIi].gfP=
fcmdataI i ] gfP
/2;

fcmdataIi].rfP=
fcmdataIil.rfP
/2;

)
)
else
{

if (0> fslog )

t
fcmdaraIi ].gfP-

fcmdataIi].gfP
*2)

fcmdataIi].rfp=
fcmdataIi].rfP
*2;

l

rFilter(float 1=12, int fslosCenter=415, int ssloBCenter=636)

//how to set the center? fslog =474 787466,ss1o9=636 196521
float radius;
for ( i =0; i<size /16; i++)
{

if(fcmdataIi ]. flag)
{

radius=(fcmdata I i ]. fslog-fslogCenter) *(fcmdata I i ] '
fslog-fslogCenter )

r(fcmdaia I i l. sslog-sslogCenter ) *(fcmdata I i
sslog-sslogCenter ) ;

radius=sqrt(radius);
if(radius)r)
{fcmdatalil flag=0;}

)
)

)
- fcm( void )

{
)

];
#endif

8.2.3 FCS2View.h
// FCS2View.h : interface of the CFCS2View closs

t////////////////////////////////////////////////////////////////////////////
#pragma once
#include "fcm. h"

class CFCS2View : public CWindowlmpkCFCS2View, CRichEditCtrl)
1
public r

unoigned int *rawdata;
CStling outPut;
CString forSave;
CString CountercFPoutPut;
CString CounterRFPOutPut ;
CSt!ing CounterFSOutPut ;
CString CounterSSOutPut;
f6s *fcm1 ;
int m-wflag;

DECLARLWNDSLtrERCI-qSS (NU[I, C R ic hE d i tC t r l : : GetwndclassName O )

CFCS2View ( )

{
m-wf Iag =0
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forSave="" i
outPut="";
CounterGFPOutPut-" " ;

CounterRFPOutPut=" " ;

CounterFSOutPut=" " ;

CounterSSOutPut=" " ;

)

8OL PreTranslateMessage (NGC* pMsg) ;

BECINIISC-\{AP ( CFCS2View )
MESSAGEIIANDTXR(W1\,1.RerfroNm,VN OnRButtonDown)
COI\4MAND-IDIIAND-R.( ID-EDIT-CUT, OnEditCut )
CON4MAND-IDIIANDR( ID-EDIT-COPY, OnEditCopy )
COI\4MAND-ID_FIANDI-ER.( ID-EDIT-PASTE, O n E d itP a s te )
COI!{MANDID-F{ANLX-ER( IDM-TEST, OnTcst )

ALT-\ISCJV{AP( 1)
CoIV,1MANDrD]IAND{-ER( lD_FrLE_OPEN, OnFileOpen )
COMMANDIDIIAND-ER( ID-FILE-SAVE, OnFileSave )
COI\4MANDIDIIAND-ER( ID-EDIT-CUT, OnEditcut)
COMMANDIDIIANDI-ER( ID-EDIT-COPY, OnEditCopy )
COMMANDIDIIANDI-ER(ID-EDIT-PASTE, OnEditPaste )
C0\4MANDJDIIANDI-ER( ID-EDIT-UNDO, OnEditUndo )

END-IISCI{AP( )

// Handler ptototVpes (uncomment orguments il needed):
// LRESULT MessageHandlet(UINT /*trMsg*/, WPARAlvl /*wParam*/, I-PA!<AM /*lPatnm*/.

B(X)Ifi /* bHandlecl * /)
// LRESULT CommandHqndler(VK)RD /*wNotifyCode*/,INXD /*wlD*/, LM/,TD /*hVtlndCtl*/,

BOOIA /*bHondled*/)
// LRESULT NotilyHand.ler(int /*idCtrl*/, IPNMHDR /*pnmh*/, BOOIfi /*bHandled"u

LRESLILT OnFileOpen(rl(XD l+wNotifyCode*/, !\[FD /*roID*/, }i{i:D /+hWnctctl*/,
B{IJL& /*bHanrlled*/);

LRFSULT OnCount( int counter) ;

);

8.2.4 FCS2View.cpp

C F ileD ia lo g f i I e D I g (TRUE, 0, 0,OFNALIOWMULTISELECT I OFNE{PIORER) ;
fileDlg.m-ofn.lpstrlilter="FOl'l-File(*.lmd)\0*.lmd\0All-Files(* *)\0*.*\O\0";
f ileDlg. m-ofn. lpstrFile=chBuffer ;

f ileDIg . m-ofn . nMaxFile =55535;
if (IDOK== f ileDlg . DoModal( ) )
1

CounterGFPOutPut=" " ,

CounterRFPOutPut=" "
CounterFSOutPut=" " ;
CounterSSOutPut=" " ;
strFolderPath . Format( "%s", chBuffer );
int nStart=strFolderPath. Getlength 0 +1;
int nBnd=nStart;
if ( GetFileAttributes ( strFolderPath )--FILET\TTRIBUTE-DIRECTORY)
I

CRichEditCtrl pEdit (mnwrd) ;
pEdit. AppendText( "LMDFilcName\ t-intNoise\ t-extNoise\ t -

tota lNoise\ t-g-intNoise\t-g-totNoise\ t-gr-extNoise\ t-
greenMean\ t -redMean\ t -greenVar ia nce \ t -red Va ria nce \ t -
meanfslog\ t-meansslog\r\n") ;

for( int nlndex=nStart ;nlndex (6144;ntndex++){
if (chBufferInlndex]=-0)
{

nEnd=nlndex;
if ( nStart== nBnd) {break; }
strFilcName. Format("%s",&chBuf fer InStart ]) ;
pEclit . AppendText( sttFileNane ) ;
p Ed.it . ApptndTcxtt "\ J ", ;
strFileName=strFolderPath+"\\"+strFileName ;
HAI0LE hFile;
hFile=CreateFile (/*/ile D i.q . nt -szF i leT i t I e * /

strFileName,
GENERICI.EAD,
0,
NULL,
OPEN-EXISTING,
FILE.ATTRIBUTE-NORMAL,
NLILL);

char ch[59];
UATCRD dwReads;
ReadFile ( hFile, ch,58,&dwReads,NULL) ;
chldwReadsl=0;
CString textStart,textEnd,dataStart,dataEnd,

analysisStart, analysisEnd ;
int iTextStart , iTextEnd , iDataStart , iDataEnd,

iAna lysisStart, iAnalysisEnd ;

int i;
for(i=10;i418;i+r)
{

textStart+=chl i l;
i
iTextStart=atoi ( textStart );
for( i =18;i <26;i++)
i

textEnd+ chIil;
)
iTextEnd=ato i ( tertEnd ) ;

for(i=26;i<34;i++)
t

dataStart+=chI i ];
)
iDataStart=atoi ( dataStart ) ;
for(i=34;i <42;i++)
{
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//

// ///////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "resource.h"

#include "FCS2View.h"

BOL CFCS2View: : PreTranslateMessage (ll'lSC+ pMsg)
{

plvtsg;
retuin FALSE;

)

LRESULT CFCS2View:iOnFileopen(V'|i}J) /*wNotilyCode*/, \ttr$D /*wlD*/,IlAIl,D /*ltWndCtl*/
vA]/'& /*bHnndled*/)

{
CString strFolderPath="" ;
CString strFileNane="" )

LPSTR chBuffer;
chBuf fer=new cha! [65535];
*chBuffer=0;

implementation of the CFCS2View class
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dataEnd+=chIi];
)
iDataEnd=atoi ( dataEnd ) ;
for(i=42;i(50;i++)
{

analysisStart+=chI i l;
)
iAnalysisStart=atoi ( analysisStart ) ;
for ( i =50; i <58; i ++)

{
analysisEnd+=chI i ];

]
iAnalys is End= a to i ( analysisEnd ) ;

char *textBuf;
textBuf =new char I iTextEnd + 1 l;
SetFilePointer ( hFile ,0 ,NIJLL, FILE-BEGIN) ;

ReadFile ( hFile, textBuf , iTextEnd,&dwReads,
NULL);

textBufIdwReads]=0;

//to find the 6anple nanrc.
chat *split="!";
char *sample="SRc";
char *textTemp=strstr ( textBuf ,sample)+strlen

(sample) +strlen ( sp I it ) ;

int indexOfSample=s trstr ( textTemP, sP lit )-
textTemp ;

textTemp IindexofSampte]= '\0' ;

pEd it. AppendText( textTemp ),
pEdit. AppendText( "\t" ),

CounterGFPOutPut=CounterGFPOutPut+textTemPr"
\t";

CounterRFPOutPut=CounterRFPOutPut+textTemP+"
\t";

CounterFSOutPut=CounterFSOutPut+textTemp+"\ t

CounterSSOutPut=CounterSSOutPut+textTemp+"\ t

BYTE *dataBuf;
int datasize=iDataEnd-iDatastart +1;
dataBuf=new BYTEI dataSize l;
SetFilePointer ( hFile , iDataStart ,NULL,

FILE-BEGIN);
ReadFite ( hF ile , dataBuf , da taSize ,&dwReads,

NULL);
uneigned int *datalist;
datalist=new uneigned int I dataSize /2];
int j;
for ( i =0, i =0; i<d atasize /2;i++,j +=2)

{
datalisr Iil=lvlAKBl,cliD(dataBuf Ii ] ,(

daraBuflj+11&0x03));
)
rawdata=datalist; //send the razodotn to

public

fcml=new fcm( dataSize, datalist ) ;
m-wfla8=1;

CloseHandle(hFile);

OnCount(1);
OnCount ( 0) ;
nstart=nEnd+1;

)
)

else
{

FiANDI-E hFile;
hFile=CreateFile ( f ileDlg . m-szFileTitle ,

GENERICREAD,
0,
NIJ'LL,
OPEN-EXISTING,
FILEATTREUTENORMAL,
NULL);

char ch[59];
UA,Cf,D dwReads;
ReadFile ( hFile, ch.58,&dwReads,NULL) ;
ch IdwReads] =0;
Cstring textStart,textEnd, datastart,dataEnd,

analysisStart, analysisEnd ;
int iTextStart , iTextEnd, iDataStait , iDataEnd,

iAnalysisStart, iAnalysisEnd ;

int i;
for(i=10;i(18;i++)
t

textStart +=chl i l;
)
iTextStart=atoi ( textStart );
for( i=18;i (26;i++)
t

textEnd+=chI i ];
)
iTextEnd=ato i ( textEnd ) ;
lot(1=26;i<34;i++)
{

dataStart+-chI i ];
)
iDataStart=atoi ( dataStart ) ;

for( i=34;i <42;i++)
{

dataEnd+=ch I i ];
]
iDataEnd=ato i (dataEnd ) ;
for(i=42;i<50;i++)
{

analYsisStart+=chI i I;
)
iAnalysisStart=atoi ( analysisStart ) ;
for ( i =50; i <58; i ++)
t

analysisEnd+=ch I i ];
)
iAnalysisEnd=atoi ( analysisEnd ) ;

char *textBuf;
textBuf {ew charI iTextEnd + 1 ];
SetF ilePo inte r ( hFile ,0 ,NLLL, FILE-BECIN ) ;

ReadFile ( hFile , textBu f , iTextEnd ,&dwReads,NLILL) ;
textBufIdwReadsl=0,
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// to Jind the sanple rune
char *sPlit-"!";
char "sample="SRC";char *textTemp=s trstr ( textBuf ,sanple )+strlen

(sample)+strlen ( sPtit ),
int indexOfSample-s trstr ( textTemP, sP I it )-

textTemp;
textTemP I indexofSamPle]= '\0 ' ;

CRichEditCtrl PEdit (mnwnd) ;
pEdit. AppendText(/* fiIeDIg . m -szF ileTitle */textTemP ) ;
pEdit. AppendText( "\r\n" ) ;

BYTE *dataBuf;
int dataSize=iDataEnd iDataStart+1;
dataBuf=new BYTEI dataSize ];
Se tFilePo inte r ( hFile, iDataStart,NULL, FILE-BEGIN) ;

ReadFile ( hFile , dataBuf, dataSize,&dwReads,NLLL) i
unsigned int *datalist ;

datalist=new unsigned int I dataSize /21;
int i;
f or ( i =0, j =0;i<d ataSize / 2; i ++,j + -2)
1

datalist I i ]=N4AKE ,CRD(dataBufI i ] ,( dataBufI j
+11&0x03 ) ) ;

]
rawdata=datalist; //serd thc rawdata to public

fcm'l=new fcm( dataSize, datalist ) ;
m-wflag= l;

CloseHandle(hFile);

pEdit. AppendText( " intNoise\t-extNoise\t -totalNoise\t
- g - intNo is e \ t -g-totNo is e \ t *gr -ex t No ise \ t -
greenMean\ t -redMean\t -greenVariance\t -
redVariance\r\n");

OnCount(l);
Oncount(0);

]
)

delete chBuffcr;

CRichEditCtrl pEdit (rlhwnd) ;
p Ed it . AppendText ( "GFP- Events -\ r\n"+CounterGFPOutPut ) ;
p Edit . AppendText ( "RFP- Events -\ r \n"+CounterRFPOutPut ) ;
p Edit . AppendText ( " FS-Eve nts -\ r \n" +CounterFSOutPut ) ;
p Edit . AppendText ( "SS-Events -\ r \n" +CounterSSOutPut ) ;

return 0;
)

LRESULT CFCS2View : : OnCount( int counter )

{
if(m-wflag)
{

CRichEditctrl pEdit(mnwnd) ;

if(!counter)
{

int steP=1;
// t'cm1->resetFiltero;

CString str;
fcml-)greenCount ( s teP ) ;
fcml-)redCount( steP ) ;

fcml->fslogCount ( steP ) ;

fcml->sslogCount ( steP ) ;
for(int i=1;i <(1024/step) ; i++)
t

str . Format ( "%i",fcm1->f slogEvents I i ] ) ;
CounterFsoutPut=CounterFsoutPut+ s t r r' \ t',
str.Format("%i",fcm1 >sslogEventsI i ]) ;
CounterSSOutPut=CounterSSOutPut+st!+'\t' i
str. Format("%i",fcm1-TgreenEvents I i ]) ;
CountercFPOutPut=CounterGFPOutPut+str+'\t' ;

str . Format( "%i",fcm1->redEvents I i ]) ;
CounterRFPOutPut=CounterRFPOutPut+ s t i +"\ t " ;

)
CounterFSOutPut=CounterFSOutPut+" \ r \n" ;

CounterSSOutPut=CounterSSOutPttt+"\r\n" ;

CounterGFPOutPut=CounterGFPOutPut+" \ I \n" ;

CounterRFPOutPut=CounterRFPOutPut+" \ r \n" ;

l
else
t

f loat intNoise;
f loat extNoise;
float totNoise;
f loat correlation;
float g-intNoise;
float correlationgreen;
float redmean;
Iloat greenmean;
float redvariance;
float SreenvdriJnce;
f loat parCorrelition;
int fslogPeak;
int sslogPeak;
char *ch;
ch=new char[256];
Cstring str;

f s logPeak=fcm1->getFSPeak ( ) ;
ss IogPeak=fcm1->getSSPeak ( ) ;

fcml >fluoresenceConvert(1, 0, fslogPeak, sslogPeak, 1);
fcml >rFilter(50, fslogPeak, sslogPeak);
intNoise=fcn1->intNoise ( ) ;

extNoise=fcm1-)extNoise O ;

totNoise=fcml->tota I O ;
c o rre la t io n=fcm1->co rre lat ion ( ) ;
g-intNoise-fcm1-)g-intNoise ( ) ;
c o r re I a t i o n g ree n =fcm1->c o r re la t i o n g r ee n ( ) ;
redmean-fcm1->meanred ( ) ;
greenmean=fcm1-)>meangreen ( ) ;
redvariance=fcm1->variancerf p lo g ( ) ;

greenvariance=f6m1-;variancegiplo g ( ) ;

sprintf(ch,"'/df\t-'ldf\t-"/df\t,'/df\t-"/.8f\t-'l.8f\t-'ldf\t-"/df\t-
'/,€ f \ t -'ldf \ t -'ld\ t -'ld\ t ",

intNoise , extNoise , totNoisc ,8-intNoise ,
correlationtreen, co rrelat ion, Sreenmean, ledmean,
gleenvariance , redvariance , fslogPeak , sslogPeak) ;

str . Format("'/o",ch) ;
outPut=str;

pEdit. AppendText ( outPut ) ;
int events =0i
qvents=fcm1-;getTota lEvents O,
str . Format (" Events-tota I : -'l<J-\r\n", events ) ;

pEdit. AppendText( str );
)
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1

else {MessageBox("please-open*a-fcm-file-first-before-do-counter","Cannot-
f i nis h -your-operation ",MBICONWARNII€) ; )

return 0;
l

8.3 Dual-fluorescence system simu-
lation tool

8.3.1 dualFluGil.cpp
// ///////////////////////////////////////////////////////////////////////////////
// giltespieMulti.cPp : Gillespie algorithm using the Next Reoction Metltod //
// 

- inaented by Gibson ond Btuck, lor exoct stochastic /./

// simulalions of di-ftuoresceilce slsten. //
Descriplion:
/      Diイ :“ 0/`S“″Ca Sysた "′ s● syst′ "7●

l′た′o′ ://`rf"Lノ 14° 1`~

process during iltrsIcadv slate
LIse binary trcc to slorc thc timc \& rcoction in pBir use ttnte

os the sortinS order (from low to high).
Becquse the ixtrinsic noise is shared hy qll the genes ir the
same cell , the GFP and RFP share the same random seed for each

Darticle simulalion.'Muttiple thread was used to incteose the simulation efficiency
for such big ailount porticles.
The reactioit rate of RFP is deternited by teallity data
Loti of parofreters can be 5et during inifinlise step ' which

includc the growth speed , the octive ond inactiPc rcaclton ratc
of target promoter qnd the noise properties
The gtioth noise is followed the normal dislribution
The exttinsic noise lor each step of the redclion is follouted
loq-normal distributioil .

A1l the noise distribution can be conttoled by the lambdn onlue

which defined same as in thc normal distribution .

The cell will first incubate in one coildition till steodv state
Theil th/ail5fer fo another cotrdition. To rcach the 6teady state //
in precrltu're please make surc to set the ptecultrue tifre bi8 //

// ///////////////////////////////////////////////////////l///////////////////////
#include "BTree . h"
#include <pthread . tD
#include <nath.h)
#include <sys,/time . h>
#define MA)CIHREAD 50
#define RN 6 /,/reaction nunrber;
#define XRM 5 //kind of teaction molecular;
#define IntensityRatio 0.935//the fluotescetce inteflsity tatio ol I(RFP):I(CFP);

mcqsured by fle84tioe control
#define IntensityPerProtein 70//delermined by lqser power;
#define background 260//inaolue background;can easily increose the extrinsic noise
#include <string>
{*include <iostream>
#include <fstream>
#include <stdio.h>
using nameEpace sld;

double *c=NULL; //rcaction constants for GFP;

double *cRed=NUII; // reoction constants for RFP;
int **R=NULL; //moleculor numbers for each reaction of GFP;

int **RRed=NULL;//molecular numbers fot each teaction ofRFP;
int **GNULL;//dependency graph for GFP;
int **ORed=NULL; / / dependency graph for REP;

int Iinit [5];
int IinitRed I5l;
bool division=0;//the flag indicatc including the cell diuisior or not

double cycleTime0-o;//set by the Srowth rate.
bool extiinsic=0;//the flag indicte includilS the ext/ihsic noise or not'
bool extFlagl6l;l/the noise flag for each step
double lambda[6\;//the noise strength lot each step of GFPttRfP lambdd>7;
double deltaT=0.07;//time step used in gaussian.
double cActiveNoLys=-7;//renction constonts of inacti?e lo actioe if there is no

Ivsine:
double cActiveLys=-1;//reaction constants of inactioe to actiae it', !\!1" is Iysine
double cActiveR;d=-1;//teaction cofrstaflts of inactiae to 4ctioe of PLPR;

int Counter=1000;//set samPle number, less thon 12000;
int sampleNo=10;//sample number for eoch paticle;
double multiTime=1;//factor lor changing simulation tifle to real tinle'
double ShifrTime=0;//set lhe Preculture ttme
doubl€ CultureTime=0;//set the cultute trme;
double tMax=0;//calculoted by preculture time ond ctltule tine.
double interval=0;l/the inte-rpal for sampling calculated by cultute time diPided b!

the sofrpIe nunber.
bool nolysO=0;,//sct as in mqin cultilte;

pthread-t thread[MA)CIHRMDI; // create multiPle tllread ;
pthread-mutex-t mut,mutai //use mute to protect lhe data.

ofstream ofsRFP;//lor tecording the RFP data;
ofstream ofsGFP;//fot recording the GFP data;
ofstream ofsA; //for reacording the o data;

struct A{
int reactSteP;
double valueA;
A(int bb=0, double cc=0){

reactStep = bb; valueA=cc;
i

\;
void write(ofstream& out. A value){

out. write ( reinlerpret-caEt<char*>(&value ),sizeof (A) )

)
void read(ifstream& in, A& value){

scefrces , one is lrom green fluorescence Protein (GFP)afld the

other is red fluorescence Protein (RlP). The RFP is conttoled
by the PtPt ?roiloter , phich comes from lambda bocteriophage .

Th, GFP ,on be controled by any inte/ested target promoter of
Escherichia coli . This di-fluorescence systen proL'ides the
possibility lor conplex Sene netuotk analysis and dynamical

/ / Reference
enougn.

Cibsoi, Bruck, "Efficient ExQct Stochastic Simulation of Chemicol/./.
Systents with Many Species ond Many Channels"
Eox , Gattand , Roy, Venruri, "Fost , accurnle algorithnr for numerical //
simulation of exponentially correlated colored noise."
Shahrezaei,'Ollioier, Swain, "Colored Extrinsic Fltctuqtions and //
slochasfic gete expressiotr."
Sugiyama, KTwabata, Sobltc, Okabc, "Detcrmination of absoltttc //
pr'oiein numbers in single synapses by a GFP-based calibration //
technique."

// Authot: lionhong Ou
// Current Version : 1 0
// Date: 2009/02/'11
// Class Needcd in This File: BTtee in BTrec.h

" Renl-time kinrtics of NeneGolding, Poulsson, Zowilski, Cox,
Actioity in indioiduol bacterio."
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}

dOuble

{

in. read ( reinterpret_cast<char*)(&value ) , sizeof (A) ) ;

propensity(int i, int **React, double *reactConst, int *lnit)//calculote thepropeilsitV function

double ai=1;
for( int j =0;j<<RMj j ++)
t

double hl =l;
double h2=1;
if(ReactIi]ljl>0)
{

for( int w=0;u<Reactl i lI j l;w++)
{

h1 * =( rnit I j l_w) ;
h2+=(w+t);

)
ai *=(h1/h2);
if(ai<0) ai=0;

)
l
ai=ai*reactConstIi l;
return ai;

)

double-gasdev(unsigned int *seed, double D, double E, double &prev, bool &iset,
double &gset, bool white=0)

{
static double epsilon=0;
double h, lac, rsq, v1, v2;

if(!iset)
I

do
{

vt =2.0* rand_r ( seed ) /(MNDI,|AX+1.0) _ 1.0;
v2=2.0 * rand _f ( seed ) / (RAI,ID-MAX+ 1. 0 ) _ 1.0;
rsq=v1*v1+v2*v2;

)while ( rsq y=1.Q 0==rsq ) ;
fac=sqrt (D*log ( rsq ) /rsq ) ;
gset-vlrfdc;
h=v2* fac ;
iset=l;

)
else
i

h=tset;
iset =0i

I
if(white)
{

ePsilon=h;
j
else
{

epsilon=prev*E+h;

. Prev=ePsilon;
l

- return epsilon;
I

double gumbelMini(unsigned int *seed, double miu, double beta)
{

double x=0,
do

{

}whne(1llllに Ji;id)/Q…
腕く+10),

do■ ble y=0,

}     return y=log(10g(10/(10-x)))*bcta+miu′

1銀
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double t=0,
do

{

IWhl"ρ 弱ゞ〕
と
…“
ゾ 螺・ の:

t=tO+10g(1/t)/a,
retllin t,

)

ldd m:汽
げ甘:毛llibR 4[おリメ:腸Tι lsl° 1たし嚇″常蹴ti胤」:サ

′

double *a=Nt[L,
a=new dOublelRNl,
double *1 -′
t=new dOuble[RNl′
10r(int i=o,iKRN′ i++)

{

f(lに :I:γξnsili(子 :遜 ::f:iζ a`∬ :忠 lin(1∫ ,′
°″′!1'′

“

tittη
Lι %″ 7∬みit′窺″」′脇んれメγl「輌め“

{

}    t〔
il=getrime(alil′ tO′ seed2)′

else

{

do

{

}  }WhlL(Otll171TTttVイ

α
“
″-7(saゼ′2リ ムふレlNl)」ИレEκ+10卜 /′

}      PP・
>Inserl(tFil′ a〔 il′ i)′

delete a,
a 
― ,

delete t,
t=卜Л」lL,

〕

Idd runReadbn(int*vCO′
im uu′ inぃ In■ )

fOr(int i=o, idG● 4, 1++)

(

Initl il― COluullil,
}

)
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rnt u;
u=PP->root->reaction ;
//erecute the reaction;
runReaction(@, u, Init ) ;
// recalculate the propensity fuction;
int *pf;
pf =pw int [RN];
f or ( int i =0; i4N; i ++)
{

pfI i ]=0;
)
// the others
for(int i=0;i<GM;i++)
{

if(0!=Olullil)
{

tor(int i=0;i<3N;i++)
{

if(0!=te161111111;
t

PfI j ]=r;
)

)
)

)
// the teaction itself
pflul=2;

for(int i=0;i<tN;i++)
{

if(pfIj]>0)
{

double a=0;
double t2 =C,
double Pro=0;
double t3 =0;
pro=PP->findby ( j )->p.opensity;
t3=PP->findby ( j )->time ;

a=propensity(j,React,reactConst, Init) ;

if (a>0)
{

it(2==prli ll l0==pro)
{

t2=getTime (a , t0 , seed2 ) ,

)
else
{

t2 = ( Pro / a ) * ( t3 - t 0 ) + t0 ;

)
)
else
{

do
{

t2=RANDVAV* rqnd -r ( seed2 ) /(RAltlDAlAX+1.0) */ ;

)while (0>=t2 ) ;
t2=t2+t0;

)

PP-ldelby(1);

PP->lnsert (t2,a, j );
)

j
delete pf ;

pf=NULL;
)

double ChangeReactionRate(double gau, double reactl, int i, BTree<double> *PP, int
**React, double *reactConst, int *Init, unsigned int *seed2, double &t0)

{
if(extFlaglil)
{

reactC ons t I i ] = r e a c t I *8au ;
if(reactConstIi]40)
{

cout<<" reactCons t <0'<<end I ;
exit (0) ;

)
]
double t=0;
double pro=PP->findby ( i F>propensity ;

double t1=PP->findby( i |-ltime;
double a=propensity(i,React,reactConst, Init) ;
if(a)0)
{

if(!pro)
{

t=getTime (a, t0, seed2 ) ;

)
else
{

1 =(pro/a) *(t.l-t0 )+t0 ;

)
)
el6e
{

do{
t=RANDIr4AV* /an d -r ( seed2 ) /(RAt'lDM'aX+1.0) * / ;

)while(0>=t);
t+=t0;

]
PP->delby(i);
PP >Insert(t,a,i);
return reactConEtIi];

)
string InitParameterO // initialise the partmeter for siilulation
{

strint fname; //filename for parametcrs sauing.
strrng str;
cout("Please-input*the-filename-for-saving-simulation-result:-'<<endl;
cin>>fname;
str=fname+". xls";
ofstream ofs(str. c-str O,ios : :app) ;

char ch;
do
{

cin. clear 0 ;

cout<<"Do-you-want-to-set-the-cell-division-time-(default-is-40min)?
-(Y/n): -'<<endl;

cin))ch;
s wiach ( ch )
{
cage 'y' :

ca6e ,Y' 
:

division=li
cin. clear ( ios :: goodbit);
break;

caSe 'n':
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case 'N',:
division =0;
cin. clear ( ios :: goodbit);
break;

def ault:
cout<<" the -wront-parameter ! '<<endl ;

cin. clcar ( ios :: badbit );
t

)while(cin.failO);
of s('d iv is io n -\ t -'k(d iv is ion<<end l;
if ( division )
{

do
{

cout<<"liilr-long- i t -takes-for -one-Beneration,(min) : -'k<endl ;
c in>>cycleTime0 ;

) wh i le ( ! cy( leT im etJ )
o fs<<" cyc leT ime -\ t -'<<cycleT ime0<<end I ;

)
do
t

cin. clear O ;

cout<<"Do-you-want-to -include -the -ext r ins ic -noise ?- ( y/n) : -'klendl ;

cin>>ch;
swi tch ( ch )
{
case y :

case 'Y',:
extrinsic =-1,
cin. clear ( ios:: goodbit);
break;

case 'n'i
case 'N', j

c\trinsic I
cin. clear ( ios :: goodbit);
break ;

def ault:
co ut<<" the *wrong-parameter ! '<<end I ;
cin. clear ( ios :: badbit);

)
]while(cin.lailO);
ofs<<" extr ins ic -\ t -'<<extrins ic (cndI ;

for(int i=0; i<6; i++)
{

extFlag Ii ]=0;
)
double extlambdaPre[6]={-1,-1,-I,--1,-1,-1))
for(int i=0; i<6; i++)
t

lambdaIi]-extlambdaPreIil;//set the lantbdo for gene/ote nornal
tlisttibution randon nunber for GFP.

)
if ( extrinsic )
1

int setEx=1;
while ( setEx )

{
cout<<"which*step -do-you-want-to -include -the,e x tr i ns ic -noise

?-please -s e lec t -the-number'<<endl ;

cout<<"\ t -1 -from-active -plasmid -to - inactiv c -plasmid ;'k<endl ;
cout<<"\ t -2-f rom- i n a c t i v e -plasmid - to - a c t iv c -p lasmid ;'k<end l ;
cout<<"\t -3-transcription ;'<<endl i
cout<<"\ t -4JiNA-Degradation; "<<endl ;
cout<<"\ t -5- tra ns la t ion ;'((endl ;
cout<<"\ t -6-prote in-degradation; "(endI;

cout<<"\ t -0- for -quit ;'<<endl ;
cin>>setEx;
switch ( setEx )

i
ca6e 0:

t
break;

)
case 1:

t
extFlag [0]=1;
do
{

cout<<" P Ie ase - s e t - the -lambda-fo r -
ge ne rate -co lored - no is e -o f - s tep -
1- ( from- ac t iv e -plasm id - to -
i na c t i v e -p lasmid ) : -" ;

cin>llambda [0];
)while(lambda[0](0);
break;

]
case 2:

{
extFlag [1J=1;
do

{
cout<<" P le a se - s e t - the -lambda - fo r -

ge ne ra te -co lo red - no is e -o f - s te p -
2-( from- inactive -plasmid-to-
active-plasmid):-";

cin)llambda [ 1 ];
)while(lambda[1]<0);
break;

l
case 3:

{
extFlag[2]=1;
do
t

cout<<" Please -se t -the -lambda-f o r -
te ne ra te -co I o red - no ise -o f - s tep -
3- ( t r a ns c r ip f io n ) : -" ;

cin;lambda [2 ];
)while(lambda[2] q0);
break ;

)
case 4l

{
extFlag [3] = 1;
do
{

cout<<" P lease -set -the -lambda-f or -
Eenerate-colored -norse-of -step -
4-(RNIA-degradation ) : -" ;

cin>>lambda [3 ] ;

]while(lambda[3] <0);
break;

)
case 5:

{
extFlag [4]=1;
do
t

cout<<" Please-set *the-lambda-for-
tene!a te -co lo red - no is e -of - ste p -
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)

case 6:

{

5-(translation):-";
cin;lambda [4 ];

)while ( lambda [4] < 0) ;
break;

extFlag [5]=1;
do
{

cout(" Please-set -the-lambda-for-
ge nera te -co lored -no ise -of -s tep -
6-(tlrA-degradation ) : -";

cin))lambda [5 ] ;

)while (lambda[5] <0);
break;

)
def ault:

cout((" Please - se Ie ct -the - r i g ht -number : -"(endI ;

)
)

)
for(int i=0;i<6,i++)
{

if(extFlagIil)
t

of s<<" extFlag ['<<i<<" l -\ t -'<<extFlag I i]<<endl;
o f s <<" lambda ['<1i <<" ] -\ t -'<<lambda I i]<<end I ;

i
]
c=new double[RN];
cRed=new double[RN];
do
{

cin. clear O ;

cout(<" Please -input-the-raction,constant*of -inactive -Plasmid-to-
active -plasmid- i f -there - is -M- lys ine : -'k<endl ;

cin>>cActiveNoLys;
)while(cin. iail O ll-1==cActiveNolys) ;

ofs<<" cActiveNqLys -\ t -'<<cActiveNoLys<<endl ;
do
{

cin. clear O ;

cout(<" Please-input-the-raction -constant*of -inactive -Plasmid-to-
active -plasmid- if-there*is -lys ine : *'<<endl;

cin>>cActiveLys ;

)while(cin. fail O ll -1==cActivelys);
ofs <<" cAc t iv eLys -\ t -'<<cActivelys <<endl ;

do
{

cin. clear O ;

cout<<' Please-input-the-raction-constant-of -inactive'plasmid-to-
active -plasmid-for-RFP: -'(endl ;

cin)cActiveRed;
)while(cin. Iail O ll 1==cActiveRed) ;
ofs<<" cA ctiveRed -\ t ,'<<cActiveRed<(endl ;
double react [6]= { 2.4,0.0015,2.1,O.24,7.5,0.O2} ; / / a c t ia e2un o c t iv e,

un ac t io e2oc t iu e, oc tio e2t na, rnaDegrade, tni2p rote in, pt o t e iil D e grqd e .

inl setlnt =1;
while ( setlnt )

{
cout<<"which-reaction-constant-do-you-want-to,change?*please-select-

t he -number'<<end I ;

cout<<"\t-1-from-active-plasmid-to-inactive -plasmid : -'(react[0]<<
endl:

corf<<'\f 2 front inactiae plosf,tid to actipe
plasmid :'<<react[1]<<endl ;

cout<<" \ t -3 - t r a ns c r ip t i o n : -'<<re ac t [2]( ( endl ;
cout<<"\ t -4.RM-Degradation : -'<(reac t [3]( ( endl ;

cout<<"\ t *5 - tr a ns I a t i o n : -'<<rea c t [4]< < endl ;

corf<<'\t 6 proteiil degradation: "<<react[5]<<endl;
cout<<'\ t -0,for -qu it ;'<<endl;
cin>>setl nt;
6witch( setlnt )

{
case 0l

t
break;

)
ca6e 1:

{
do
1

cin. clear 0;
cout<<" Please * input -the -re a c tio n -co ns ta nt -

frm-active -plasmid-to -inac tive -plasmid

cin>>reac't [0];
)while(cin. failO);
break;

)
ca6e 2:

I
/* do

{
cout<<"PIeose input the /eoction constant froill

inactipe plasmid to actiac plosntid: ";
cin>>react [1];
\whilc ( cin. faiI ( ) ) ; */
cout<<" t h i s -p a rt -defined -a I read y'(end I ;
break;

)
case 3l

{
do
{

cin. clear O i
cout((" Please - i np ut -the - re a c t io n - c o ns ta nt -

for-transcription : -" ;

cin>>react [2];
)while(cin.failO);
break;

)
case 4:

{
do
{

cin. clear O ;
cout(("Please-inPut-the-reaction-constant-

f or JNA-Degradation : -" ;

cin>>react I3l;
)while(cin. failO);
break;

)
ca6e 5:

{
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)

ごnsゼ  6:

{

cin. clear O ;

cou t<<" P lease - inp ut -t he - r ea c tio n - c o ns ta nt -
f o r - t r a n s I a t i o n : - " ;

cin>>react [4];
]while ( cin. fa il O ) ;

break ;

1′ 0′ 0,0′ 0′

0,1′ 0′ 0′ 0′

1′ 0,0′ 0′ 0′

0′ 0′ 1,0′ 0′

0′ 0′ 1′ 0,0′

0′ 0′ 0′ 0,1

),
fOr(int i=o,lKRN;i++)

{

fOr(int j=o,jKKRM,,++)

{
R〔 ilI,〕 =rr n[i11,l,//711oた c“ !α r

RRedlilijl‐ mRedlilij ];

}

}
Onew int*IRN],
10r(int i=o,iKRN,1++)

{
0[il=new intIKRM〕 ,

}
ORecl=new int*IRN〕 ′
fOr(int i=o,iKRN;i++)

{
ORedlil=new intiKRMl,

〕

int dg16][51=

{
1′ -1′ 0′ 0′ 0′

-1′ 1′ 0′ 0′ 0′

0′ 0′ -1′ 0′ 0′

0′ 0′ 1′ -1,0′

0,0′ 0′ 0′ -1′

0′ 0,0′ 0′ 1

)′

ini dgRed〔 6〕 〔5]=

{
1′ -1′ 0′ 0′ 0′

-1′ 1′ 0,0,0′

0′ 0′ -1′ 0′ 0′

0′ 0′ 1′ -1′ 0′

0′ 0′ 0,0′ -1′

0,0′ 0′ 0′ 1

)′

fOr(int i‐ o,iKRN,i+十
)

{

fOF(int i=0,jく KRM,j++)
{

cin, clear O ;
cout<l"Please inpuf the reection constant

for protein degradation : ";
cin>>reoct [5];

)while( cin. fail O );
brenk;

J*/
def ault:

cout<<" P lease - s e lec t -the- ri g ht *number : -"<<end I ;

]
]
double reactRed16l= 12.4,O.024,2.2,0.24,8,0.02\ ;
if (cycleTime0 )

{
reactRed I5l=0.693l cYcleTime0 ;

r ea c t [5 ]= reactRed [ 5 ]
]
reac t Rcd [1 ] - cActiveRed ;

f or ( int i =0; i4N; i ++)

{
ofs<<" reactionConstant ['<<i<<" ] -\ t -'<<reac t I i]<<endl;
cI i]=rq1611 t); // reaction sonstants ;
cRedlil-rcactRcdIi

)
int init[5]={0,30,0,0,0};//active,unactioc,rta,degraded rtq, protein; canttol

haoe 0;
int initRed [5]={0,30,0,0,0};
for(int i=0; i<<RM; i++)
{

Iinitlil=initlil;
IinitRed I i ]= initRed I i ] ;

)
R=new int * [RN];
for(int i=0;i4N; i++)
{

Rlil=n€w int[KRM];
)
RRed=new int*[RNl;
f or ( int i =0; i4N; i ++)

{
RRcd〔 il=new int〔 Ю貼41,

nln1 6 11 5 1=

1′ 0′ 0,0′ 0′

0′ 1′ 0′ 0′ 0′

1′ 0′ 0′ 0′ 0′

0′ 0′ 1′ 0′ 0′

0,0′ 1′ 0′ 0′

0′ 0′ 0′ 0′ 1

mnRed16]15ト

numbers for each reaction;

)

int

(

01illjl=dgli H j】 ,//′ι′ピ″′ι
"Cy g′
α′″

ORedli][jl=dgRed〔 i][j];

)

cout<<"Please-input-how-mny-p artic Ies -do-you-want-to-simulate-for-
one-group-of *parameters-( 1 -10000) : " ;

cin>>Counte!;
) while ( Counter < =0 | | Counter > 10000) ;
of s<<"Counter*\ t -'<<Counter<<endl ;
do
{

cout(<" P lea se -inp ut -how-many-sa mp les -do-yttu-want-to -ta ke - fo r -eac h-
paticles -with-same-interval-(1-20) : ";

cin>>sampleNo;
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)while ( sampleNo ( =01 lsampleNo )20) ;
of s<<"sampleNo-\ t -'<<sampleNo<<endl ;

do
{

cout<<" PIease -inPut-the-Preculture *time-(mir) : " ;
cin>>Shif tTime;
Shif tTime*=multiTime ;

)while(!ShiftTime);
o f s(' S hi f tTi me -\ t -'<<Shif tTime<<end I ;
do
t

cout<<" Please -inPut-the-culture -time-(min) : " ;
cin>>CultuteTime ;
Cu ltureTime * =mult iTime ;

)while ( ! CultureTime) ;
ofs(" C ultureTime '\ t -'<<CultureTime(end I ;

tMax=CultureTime+ShiftTime; // use time frs stoP conditiof .

1n1s1e6 | =(double ) CultureTime/sampleNo ;

do
{

cin. clear 0 ;
cout<(" Is -there -lysine -or-not-in-main'culture -media?-(y/n) : -'(endl ;

cin>>ch;
6witch ( ch )
{
case 'y':
case 'Y':

noLYs0=1;
cin. clear (ios : : goodbit) ;
break;

ca6e 'n':
case 'N':

noLys0 = 0;
cin. clear ( ios :: goodbit);
break;

def ault:
cout<<" the -wrong-parameter I 'k<end I ;
cin. clear ( ios : : badbit) ;

l
)while(cin.failO);
o f s <<" L ys i nc l nM a i nC u ltu re -\ t -'<<noLys0<<end I ;

ofs. close O ;
return fname;

*threadx(vOid* arg)//Si"“ ′a″ο7t r′ 17ι
“
′

unStnξ
λ〃 レ∬

e封
肌レsTe,:ノ′

SttЪ
」Ъ ′
夕
|イ ::′ ∬ /f:rsθ

`iFFa 7′

″r ysで

timeval tim,
gettimeofday(&tim′  、LttL),
10r(int i=o,i<6,i十 +)
{       seedl lll_(unsigned)(tim tV―

usec+70*i),

}

11鰤謙比焦1漱書轟[麗疑禁)′
int initiKRM],
int initRed IKRM〕 :

for(int i=0, i4G● 4, 1++)

{

init〔 il=linitlil,
initRed lil=IinitRed〔 il,

}
int *I′  *IRed,
I new intiKRM】 ,

IRed new intIKRN4];
I=init,//171i′ :α ! ,71ο recII,ar ′。′

“
!α liο′ "“″:bθ rs′

IRcd=initRcd′

doIIble tO‐ 0,//′ ″′′′ク′ ″″′′
double tl=tO,//s`ο r´  `力′ ′

“
θr ′:":θ

int step =0;
double interTime=ShiftTime;
int gfpj =0;

gettimeof day(&tim, NIIJLL) ;
ssgdl=(uneigned) tim. tv-usec; // init ia lize

double reactl [6], reactRedl [6];
for(int i=0; i<6; i++)
{

reactlIil=cli];
reactRedlI i]=cRedI i ];

)

double *react , *reactRed;
react=new double[RN];
leactRed{ew double [RN] ;

for(int i=0; i<6; i++)
{

reactlil=clil;
reactRedIi]=cRedlil,

)

random array for intrinsic notse;

// store the ti aalues in an indexed priority queue P.

BTree(double) P;
in it ia lise (&P,R, react , I , t0,&seed2 ) ;

// s!o/e the ti oolues in an indexed Ptiority queue P

BTree(double> PRed;
i n i t i a I i s e (&PRed, RRed, reactRed, IRed, t0,&seed2 ) ;

bool expFlag;

int *GFP, *RFP;
GFPaew int IsampleNo ];
RFP=new int lsampleNo ] ;
for(int i=0; i<sampleNo; i++)
{

GFPI i ] =o;
RFPI i I =o;

]

double interVal{=(double)CultureTime/1000;
double interTimeX=ShiftTime ;
double deltaT=0.01;
double interTimeO=0;
double maxExt[6]={0};
doubte minExt [6i= inaNovax,nelovnx,RANDMAX,RAND-\4AX,MNDMAX,RANDMAX] ;

char ch[256];
sprintf (ch, "'/d. ou", tim. tv-usec ) ;

ofstream ofsa(ch,ios ::appJ ios :r binary);
double D[5]={ -2};
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出蹴忠1担 ]1讐 '

if(eXtrinsic)

{

『“
m・Qi<C・→
if(extFlag lll)

{

if(0‐ =iambda[il)
{

white[il=1,
D〔 il=-2,
E〔 il=0,
mean[i]=1,

}
else

{

white lil=o,

〕 逸婦iによ翼l静鵬1掛||):||,
}

}

)
double prev16〕 ={o}′
bool iset16〕 ={o),
double gset〔 61=(o},

while(loぐ Max)
{

[1=10,
double gau=o,

if(Pr°
°tttRed rOd)

〃S″′昴ピ″““
ゐ"r″ υル"砕″θ“

θ″昴αめ′暉′″
if(Ю

>Shi“ Timcttflag)

noLys=InOLys,
flag=o,
if(noLys)

{

reactll]=cActiveNoLys,
}

eise

{

react[1:=cActiveLys,
}

}

//171cr“′θ lltピ ′ェ
`ri"sic IIο

′sで
if(cxtrinsic)

{

fOr(int i=o,iく 6,i++)
{

if(extFlag〔 i])

(

ir(to>interTimeo)

(
gau=ex島 (FT'「

I∫常∬ギ∫111lt
lil′ gsetlil′ white〔 il))
/mmnril,

ChangeReactiOnRate(gau′
reactIIi]′ i′ P′ R′

chan∫跳lki鳥精議
′
′
Ю
"

reactRedIIil′  i′  &PRed
RRed′  reactRed′  IRed′
&seed2′  to),

)    interTimco+=(deltaT*lo),

「
←02111t∝・ mⅨ岬ntt D
Aa(i′ reactI']),
write(Ofsa,a),
if(maxExtlilく reactri〕

)

if(mmElll島露::l「 |:lit〔
il'

minExtlil=react〔 il,

)      intCrTimeX+=intcrValX,
}

)

}

|&:l;躍TecRed root→
time)'(cxPttag=1):(exPFhg=の ′

{

翼[lギ∬ぷ1みた宵縫f′′ぎでr∬[|′ /ilξ縄雌s:::ふ
)

else

t

tO=PRず
」月
ot→ time,〃 r力″れg`″

"“
ο“でκl rじ ecriο "

} 

…
k出
;℃ 凛 溜 片

PReと ORed′ RRcc rcacRcd′

lf(10"n"rTimettgFP,ぐ
ampleNo)

if(I[ЮO「 1]>0)

即鍵ぶ狂33ヨ〔
KRM■

gfP,++, RFPI gfP,1‐
IRcdIGl-11,

}    interTime=interval*gfP,+ShiftTilne′
}
elSe{COutぐく

″
root■>time=0′てく″、r″ ,}

mutex_10ck(&mut),
i=0′  iくsamplcNo, i++)

沈F部郷 |は政

]
pthread
for(int
t

)
ofscFP<<endl;
ofsRFP(endl;
pthread-mutex-unlock(&mut)
delete GFP;
GFP=1L1a,
delete RFP;
RFP=NLTLL;

ofsa.closeO;
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i{(extrinsic)
{

ifstream ifsa(ch, ios : : binary) ;
A evel6l;
int eventAItiJ[1001]= {0};
A a(0,0) ;
inl record [6]={0};
for(int j=0; j<5; j++)
{

eveti J. reactStep=j;
)
while(J if sa.eof O)
{

read(ifsa,a);
record Ia. reactStep ]++;
evela. reactstep ], valueA+=6. y21qs4 -

eventA I a. reactstep I [ ( int ) (1 000 * (a. valueA-minExt I a. reactStcp
l) /(maxExtla. reactstepl-minExtla. reactStep l) ) I+=1;

)

pthread -mutex-lock(&muta ) ;
for(int i=0; i(6; i++)
1

if(recordIi])
i

eveI i J.valueA=eveIi ].valueA/tecord I i ];
ofsA<<minExt I il<<"\ t "<<maxExt I i]a<endt ;
ofsA4,qeve I i ] . rea ctStep {<"\ t -"44eve I i ] . valueA<<"\ t -"

alrecord ( ila4endl;
for(int o=0; o<1001; o++)
{

ofsA<<eventA I i I I ok<"\ t -" ;

]
ofsA<<endl;

)
]
p thread -muiex -unlock(&muta ) ;

)
remove (ch) ;

Prhread-exit (MJ[I) ;

l
int thread-create ( int maxThread+.tdlLTHREAD) // t r e a t e si n y l st i a ( t hr e ad .

{
inl couDtet=0;
i nt temp;
memset(&thread, 0, cizeof (thread));
{or(int i-0; i<rnaxThlead; i+f)
{

if [0=={temp=pthfead-creare(&rhreadIi ], N[II, rhreadx, NL{I)))
{

counter++;
)

)
co ut<<" crea ted -'<<counter <<" -s imu [atiio n-threa ds . '<<endl ;
teturn counter;

)

void thread-wait(int maxTfuead-M$C{HREAD}//uait t'or each simulqlion thtead to
fiil ish .

for(int i=0; i<maxThread; i++)
t

iI{0!=threadliJ)

,{
pth.ead-.ioin lthread I i J.NUlt] ;

]
)

main() //do simulation.

string fname;//filentme for parameters saoing.
slring Etr;
fname=InitParaDeter O i

p thread -mut€ x -init{&mut,NULL) ;
plhrea d -mutex -init (&muta ,NL{l-} ;

str=fmme+"RFP. xls";
ofsBFP. open( str . c-str 0 , ios r: app);

str=fname+"C!P. rlr";
ofsGFP.open( str . c,slr O , ios :: app);

stt =fnaDe+" -Aevent. x Is " ;
oIsA. open( str. c-slr O , ios :: app);
i n t maxThtead=i4TDCIHREAD;
int left=Counter;
for( int g{pi=0;gfpi<Counter;)
i

int succeedThread=0;
timeval start, tinish;
double duralion;
gertimeofday(&start, t{IJtl) ;

if(left{r4AriHREAD)
{

maxThread=left;
)

succeedThread=thread _create (maxThread ) ;
$ fP i+=sq6qst6 1httt6
thread-wait(maxThread) ;
1 e, t =Cou nter_g fp, ;

gettimeofday(&f inish, NULL) ;
duration = (doubte)(finish.tv-sec ^ sta.l. t!'_sec);

idt durationHour=(int) (duration*( left )/succeedThreadl / 3600;
int durationMin=( int ) ( duration *( le f I )/surceedThread-durationHour

*3600) /60;
cout<<"Already-sinulated-'k<gfpi<<"-paricles.\ t*las t-loop_cosr-'<<

d uration<<"seconds i -'<<"Tine* le f t -'k<durationHour<<'. _h-.k<
durationMin<(' -min"<<endl ;

)
ofsGFP.close();
ofsRFP. close 0 ;
ofsA. ctose O ;

double *ilultiple, amuhipleG, *multipleR, *t, +g;//get oni ptoluate
sf4ristirs

multiple=n# double IsanpleNo ] ;
multiplcc=new double IsampleNo ] ;
multipleR{ew double IsampleNo ] ;
r=new doubleIsampleNo );
g+ew double IsampleNo i;
int **eventGFP;
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int **eventRFP;
eventcFP=new int *[sampleNo ];
eventRFP-new int *[sampleNo | :

for(int i=0; i<sampleNo; i++)
{

multiple Ii ]=0;
multiplec I i ]=0;
multipleR I i l=0;
rlil=0;
gl i l=o;
eventcFPI i]=new int [1001 ];
eventRFP I il=new int [1001];
for(int j=0; i<1001; j++)
i

eventGFPIilli]=0;
eventRFPlillil=0,

)
)
str=fname+"CFP. xls";
ifstream ifsGFP( str. c-str 0 );

str=fname+"RFP. xls";
ifstream ifsRFP(str. c-str O );

int CFP=0;
int RFP=0;
double DGFP=0,DRFP=0;
un6igned int *seedBck,*seedBckR;
seedBck=new unsigned int IsampleNo ];
seedBckR=new unsigned int IsampleNo ];
double miu=background , beta=5*background / 16;
double miuR=1.8*background, betaR=background ;

double b8=0,bgRed=0;
timeval tim;
gettimeofday(&tim, NULL) ;

for( int i =0; i<sampleNo; i++)
t

seedBck I i ]=( unsigned ) ( tim. tv-usec+50* i );
seedBckR{ i l=( unsigned) ( tim. tv-usec +75+50* i ) ;

]
str=fname+"G. xls";
ofstream Gtrnp( str. c-str O, ios : j app),
str=fname+"R. xls";
ofstream Rtmp(str. c-str 0,ios ::app) ;
double eventMax=0;//to record the max uolue of caent as 1024
double eventMin=RANDVM; // to record the min adlue of event as 0'
for(int i=0; i<Counter; i++)
{ for(int j=0; j<samPleNo; j++)

{
ifsCFP>>GFP;
ifsRFP>>RFP
if(bnckground)
t

bg=gumbelMini(&seedBckI i ],miu,beta) ;
bgRed=gumbelMini(&seedBckR [ , ] , miuR, betaR ) *

IntensityRatio;
i f(0>=bg)
{be =o; }
else {bg=43.177*exp (0.009 *bg) ;}
i f (0>=bgRed )

{bgRed=0;}
else {b8Red=43.'177* exp (0.009 * bgRed) ;}
DGFP=CFP* I n te n s i ty Pe r P ro te in +bg;
DRFP=RFP* I n t e n s i t y P e r P r o t e i n * I n t e n s i t y R a t i o +bgRed

)
else
{

DGFP=GFP* Intens ityPe.Pro te in ;
DRFP=RFP* Inte ns i t y P e r P r o te in * In t e ns i t y Ra t io

)
i f (DGFI)eventMax)

eventMax=DGFP;
if (DCFP<eventMin)

eventMin=DCFP;
i f (DRFbeventMax )

eventMax=DRFP;
if (DRFPaeventMin)

.u.n114i1=DRFP;
Gtmp<OCFP<<" \ t " ;
Rinp<ORFP<<"\t";

j

)
Gtmp. close O;
Rtmp. close 0;
ifsGFP. close O ;
ifsRFP. close O ;

str=fnanc+"G. xls";
ifsCFP.open( str. c-str O ) ;
str=fname+"R. xls";
ifsRFP.open( str . c-str O );
inl *counter0;
counterO=new int IsampleNo ] ;
for(int i=0; i(sampleNo; i++)
I

counter0 [ i l=0;
)
if(eventMax>1000)
{

fOr (int

{

i=0; i<Counter′  i++)

fOr(int ,=o, j`ampleNo′  j++)
{

ifsGFP>ЯXIP,
ifsRFP,RFP,
int dgfP=(inl)(1000*(DGFP cventMin)/(CVCnt｀ 4ax―
eventMin)),

ini drfp=(int)(1000*(DRFP― eventMin)/(eventMax―
eventMin))′

if(dgfp<0 1dgfP>1000)

{
cout<く
″
dgfP′てくdgfPくくendl′

oXit(0),

)
if(drfPく 0 1drfP>1000)

{

c o tlt<く
′′
drfP′

`く
くd rfPくくendl'

exit(0),

}
eventGFPIj]I dgfpl+=1,
eventRFP〔 j]l drfP l+=1;
if(IXIR斑&田回既P>0)
{

countcrolj]+=1,
rl,〕 =r〔 jl+(DRIP rlj])/COunterO Ij],

雷1に雷:||1鼈‖よfilお品:品拒mu."kI
j])/COunterO〔 jl,
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)
l
el6e
{

for
1

muitipleC[ilこ multiplcC Ij】 +(ICFP*DGFP
multiPleC[jl)/COunterO[j];

mulliPleR I,1‐ multiPleR Ij l+(DRFP*DRFP
multipleR I,1)/COunter01,1,

}

)

(int i=0, iくCounter, 1++)

fOr(int j=0, jく ,amPleNo, ,++)
(

ifsGFP>メXIP,
ifsRFP))[■ IP,
int dgfP=(int)(DGFP),
int drfP=(int)(DRFP),
if(d8fp<0 1dgfP>1000)

{
cout<く
″
dgfp“くくdgfP<くendl,

eXit(0),

}

if(drfP<O drfP>1000)
{

cout<く
″
drfp′′くくdrfp<くendl,

eXit(0),

}

eventGFPIj ll dgfpl十二1,
eventRFP Ij]〔 drfP]+=1,
if(IXIR涎&“ЫttT>0)

{
counterO〔 j〕 +=1,

轟認lII臨‖律襴鮮m山州
jl)/counterO rj l,

multiPleC Iil=multiPleC I'卜 (DGFP*DGFP
Inultip leC【 jl)/COunter01,1,

multi喘
|ど尾賛けW:灘 1想lW*DRFP

)

double totalNoiseR=0,
10r(int i=o, ,ぐ amPleNo, j++)
{

OfSく電〔il<<″ tヽ‐
″
;

)
fOr(int ,=o; jく3ampleNo, j十 +)

{
Ofsぐ(rij]<<″ 1ヽ¨ '′ ,

)

Ofsく <″ meanヽ t′<<endl,
fOr(int j=o, jく 3amPleNo, j十 十)
{     lotalNoiseC=(multipleC Ij]―

gI,】 *glj l)/(glj】 *glil),

Of6≪tOぬ lNoお eC≪″ tヽ_″ ,
}
fOr(int ,=o, l KSampleNo; j++)

{     lotalNoiseR=(multiPleR Ij!―
r[,】 *r[jl)/(rlj]*r〔 j〕 ),

o fs((tOtalNoiseR≪′′1ヽ-″ ,

}
o fsくく′′total_Noise、 t“くくendl,
fOr(int ,=o,j`amPleNo, j++)
{     extNoise=(multiPle l,1-rI'I*g〔

jI)/(■ 〔j lttg〔 j]),
ofsく (くextNoiseく

“
(″ 1ヽノ ′

}

Ofsくく″extrinsic_Noiseヽ t′ 4くくendl′
fOr(int i‐ o, jく aヽmPleNo, ,十 +)

{

}
fOr(int

{

intNoiseG=(multiPleC Iil― g〔 j〕 *glil)/(gljl*g〔 jl)― (multiPle III― r[j】 *glj

〕)/(■ 1,1*glj】 )′
OfsくくintNoiseGく <″ 1ヽ‐

″
,

j=0, j`amP10No; j++)

intNoiseR=(multiPleR Ij]― r[j】 *rI,1)/(rij】 *rij〕 )― (multiple l,I― rij]*gl,

〕)/(rij〕 *glj l),
o〔sくくintNoiseRく <″ tヽ_″ ′

)
]

]
delet€ counter0;
counter0=NULL;

delete seedBck;
seedBck=Null;
delete seedBckR;
seedBckR=NULL;
ifsGFP. close O ;

ifsRFP. close O ;
remove( str . c-str o );
s t r =fname+"G. tmp" ;
remove( str. c-str O );

str=fname+" -event . xls " ;

ofstream ofs ( str . c-str O , ios :: aPP);

double intNoiseG =0;
double intNoiseR=0;
double extNoise=0;
double totalNoiseG =0;

)
ofs<<" intr ins ic -Noise\ t'<<endl;

delete multiplc;
multiple=NULL;
delete multiplec;
multipleG=NUll;
delet€ multipleR;
multipleR=NULL;
del€te r;
r=NLTLL;
delete g;
g=NLtLL;

o f s<<"eventMax=\ t'<<eventMax<<"\ t '<<" eventMin=\ t'<<eventMin<<end l

for(int j=0, j<sampleNo; j++)
{

ofs<<"GFP'<<i (<"\ t -";
)
for ( int j =0; i<samPleNo; i ++)

{
of s<("RFP'<<j <<" \ t -" ;

)
ofs<<endl;
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for(int i=0; i<1001; i++)
{

for ( int i =0; i<samPleNo; i ++)

{
ofs<<eventcFP I j ] [ i]<<"\t-" ;

j
for( int .i =Q; j<samPleNo; j ++)

{
ofs<<eventRFPI i ] [ i]<<"\t-" ;

)
ofs<<endl;

)
ofs. close O;
delete eventGFP;
eventCFP=NULL;
delete eventRFP;
eventRFP=NULL;
return u;

l

8.3.2 BTree.h

* FileName: BTree .h
+ Desctiption: binary tree with insert , delefe , fincl
* Dtte:2008-1'l-4

#ifndef BTree-H-H
#define BTree-H-H

#includ e<ios t rea m >
#include(deque)
uEing namespace std;

llbinary node uith pnrent node
template<typename T>
class node
t
public:

node(const T &v, const T &p, int &r, node{D *L=NLILL,

P=NLILL) : lefr (L) , right (R) ,par(P)
1

time = v;
ProPensity = P;
reaction = r;

]

public:
T time;

T propensity;
int !eaction;

nodc(D *left . *right, *par;
I;

// binary trec
template<typename T>
class BTree
{
public:

BTree (node(I> *R=NL]LL) : root (R)

{}
- BTree ( )
{

' if(root)
detall O;

)

node(I) xfindby ( int v) ;
void Insert(con6t T dw, const T @, int &r);
bool delby( int v);

node(I) * f ind leave (node<'I) *cur ) ;

void delall O;
void display(node{D *r) ;

void heapify(node<D> *cur) ;

void swapnode(node(l> *a, node{D *b);

public:
node<I> *root i

j;

template<typename T>
void BTree4)::swapnode(node{I} *a, node(l> *b)
{

T propensity;
int reaction;
T tmptime;
P roPcns itY=F>P roPens itY ;
reaction=b->reactior,,
tmptime=b )time;
b->P roP e ns ity=a->P ro P ens itY ;
b->reaction=a->reaction ;

t'->time=a >time;
a->propensity=propensity i
a->reactio n-ieactron ;
a->time=tmptime ;

)

t€mplate<typename T>
void BTree(I>:: heapify (node(I) *cur )
t

node(I) *left , *right, *smallest;
if(cur)

1
left=cur->left;
right-cur->right;

if ( lef t@lef t->time<cur-)time)
smallest=left;

else
smallest=cur;

if ( right&&right >time<smallest >time)
1

smallest=right;
)

if(smallest!-cur)
{

swapnode( cur, smallest ) ;
heapify(smallest);

)
)

)

t€mplate<lypename T>
node{D *BTree(I>::findby (int v)
{

deque< node(T)* ) Q;
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bool isf ind;
node<l> *tmp;

if(root)
Q. push-back ( root ) ,

el6e
{

return NL{I;
)

isfind = false;
tmP = 59111'
while(!Q.emptyo && I isfind )
t

h.p = Q. front O;
Q. PoP-front O ;

if(tm5>reaction == v)
isfind = true;

else
t

if (tmP-ylef t )
Q. push-back(tmp-)le f t | ;

if (tmp->righr )
Q. push-back (tnp>right ) ;

]
)

if (!isfind)
tmP = 19114,

return tmp;
]

t€mplate<typename T>
void BTree(T>::Insert(con6t T &v, con6t T &p, int &r)
{

deque< node<T)* ) Q;
node<'I) *cur, *par;

bool flag =1;

if(root)
Q. push-back ( root ) ;

eloe
{

root = new node{)(v, p, r, NLILL, NULL, NLJLL);
aeluln;

]
while ( !Q. empry ( )do&f Iag )
{

cur = e. front O;
Q PoP-front O ;

if (cur->left )
Q. push-back ( cur->lef t ) ;

else
{

cur-)left - new node(I)(v, p, r, NULL, NULL, cur)
flag =3'

Par=cur;
cur=cur-)left;

]

if (cur->right )

else 
Q- push-back ( cur->right ) ;

t
cur->right = new node(T)(v, p, r, NULL, NULL, cur);
flag =Q;
Pat=cuf;
cur=cur->right;

)
)

]
while ( parda&par >time>cur >time )
{

swapnode(cur,par);
cur=par;
Pat=Pat_>pat;

]
]
templat€<typename T>
bool BTree<T>:idelby( int v)
{

node(I> *cur, *tmp, *par;
tnP=511a'
par=NIJLL;

bool isleave;

isleave = false;
cur = NULL;
cur = findby(v);
if ( | cur)

return fal6e;
el6e
{

if ( cur*>le f t && cur->right )
{

tmp = findleave(cur);
tmp >left = cur >left;
tmp->right = cur >right;
if(cur->lefr)

cur->left->par = tnp;
iI (cur-)right)

cur->right->par = tmp.
]
else if(cur->left )

tmP = cur >lef t;
else if ( cur->right )

tmP ' cur->ri8ht;
el6e
{

(cur ==_ or)par->left) ? (cur-)par-)left = N[LL) :(cur->par->right =
NULL);

isleave = true;
]
if ( ! isleave )
{

tmp >par = cur->par;

if(cur->par)
( cur == cur->par->1 e ft ) ? ( cur->par->le ft

tmP);tI ( Jtag) tmp) :(cur->par->.ight =
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if(root == cur)
1

root = tmP;
root >par = N]ULL;

]
l

if(tmp) par=tmp->par;
while ( par&&?ar->time>tm5>time )
{

swaPnode(tmP, Par) ;

tmp=par;
par=Par_>Par;

)

heapify (tmp) ;

]

delele cur;

return true;
)

if (tm5>par)
(tmp == t6o-lour lle f t ) ? (tmp >par >l e f t

'
return mP;

)

template<typename T>
void BTree<T>:r delall o
{

deque< node(I)* > Q;

if ( root )
Q. push-back( root );

else
return ;

while ( lQ. empty O )
{

root =e.frontO;
Q PoP-front O ;

i f ( root->le ft )

Q. push-back ( roo t-> I e f t ) ;
if(root >right)

Q. push-back( root >right ) ;

delete root;
root - NIJII;

)
)

template<typenam€ T>
void BTree(T) :: display ( node(T) *r )

{
if(r)
{

cout << r->time << '-';
display (r->left ) ;

display (r->right );
)

]
#endif

= NTJLL) (tmp >par >right = NULL)

template<typename
node<T) *BTree(T>
{

findleave(node(I)

>Q;deque< node(T)*
node{D *tmp;
bool isfind;

if(!cur)
return NLILL;

else
Q. push-back ( cur ) ;

isfind = false;
while (lQ. emptyO 6& ! isf ind )
t

tmp = Q. front O ;

Q. pop-front O ,

if (!tmp >lef t {o& !tmp->.ight)
isfind - true;

el6e if(tmp->left)
Q. push-back(tmp >lef t ) ;

else
Q. push-back(tmp >right ) ;

)
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