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Abstract

Since the two-dimensional (2D) Hubbard model is one of the simplest model having
features of layered cuprates which is widely known as high-T. superconductor, many
researchers pay their attention to this model. One of the purposes of this thesis is to
discuss, on the basis of the fluctuation exchange (FLEX) approximation which satisfies
the conservation law and takes account of the spin fluctuations, how the shape of the
Fermi surface (FS) is modified and how the charge susceptibility behaves in the 2D
t—t'—U Hubbard model near half filling as strength of the onsite Coulomb interaction U
is increased. The antiferromagnetic (AF) correlation length is shown to be enhanced as
the Coulomb interaction get closer to the critical value U, for the critical point to onset
AF order. At the same time, the shape of the renormalized FS is deformed showing the
tendency of nesting and the charge susceptibility shows a pronounced enhancement near
U.. This result is consistent with experimental observations in under-doped cuprates
LSCO. The enhancement of the charge susceptibility is so large that it cannot be
explained by the van Hove singularity of the density of states (DOS) due to the nesting
of FS. Indeed, the van Hove singularity of DOS is easiiy cancelled by the RPA type
contribution.

Another purpose of this thesis is to investigate an origin of the divergent charge
susceptibility. It is expected that the effect of the AF spin fluctuations is the main
origin for this divergence of the charge susceptibility from the fact that the anomaly
is observed near the antiferromagnetic insulating (AFI) phase. In order to verify this
physical picture, we calculate the Aslamasov-Larkin (AL) type contribution to the
charge susceptibility, and compare its value with that calculated by the FLEX approx-
imation. The result is that the AL-type contribution nearly exhaust the value of the

enhanced charge susceptibility where the charge susceptibility is enhanced enough as

ii



the interaction U approaches U.. Namely, it is shown that the origin of the divergent

charge susceptibility is not the van Hove singularity but the AF spin fluctuations.
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Chapter 1
Introduction

Layered cuprates have attracted much attention over the past fifteen years because
they exhibit anomalous behaviors also in the normal state apart from the fact that
they have recorded high super conducting transition temperature (7¢) [1]. Many re-
searchers commonly approve that such anomalies must be understood for clarifying
the mechanism of the superconductivity (SC). Some of these anomalies have features
expressed by keywords: spin-charge separation aspect, spin-gap behavior, and so on
[2]-[6]. They cannot be explained by the conventional Fermi liquid theory in its simple
form. This chapter is devoted to a survey of the previous works about this problem

from both aspects of experiments and theories.

1.1 Experiments

Layered cuprates have a CuQO; plane and their interplane interaction is so weak
that they are considered as a two dimensional system (see Fig. 1.3a [9]). The crystal
structure and the phase diagram for Las_,Sr,CuQ4 which is one of the typical materials
classified into layered cuprates are shown in Fig. 1.1 [2]. It is remarked that the SC
phase appears near the antiferromagnetic insulator (AFI) phase in the phase diagram.
This fact implicates that the effects of antiferromagnetic (AF) spin fluctuations is very
important to understand anomalous properties in the metallic phase and high-7. SC.

Now, we survey their experimental data.
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Figure 1.1: Crystal structure of LapyCuO, (left figure) and phase diagram for
Lag_,Sr,CuOy (right figure).

1.1.1 Hall Coefficient

Since the Hall coefficient Ry for the normal metals which have one sort of carrier
can be expressed as

By = — (1.1)

where n and e stand for the electron number and elementary charge, respectively. The
Hall coefficient Ry given by (1.1) does not essentially depend on temperature. But,
for the layered cuprates it complicatedly depends on temperature shown as Fig. 1.2a
[7]. In addition, the value for the normal metals whose carrier is electron is in inverse

proportion to the number of electron and the sign is negative (see eq. (1.1)), whereas



the value for the layered cuprates is in inverse proportion to the doping number and
the sign is positive near half filling (see Fig.1.2b [8]) . While there are such results that
seem like to show that the carrier of the layered cuprates is hole, the spin degree of
freedom shows a response reflecting the existence of large Fermi surface (FS) consistent

with Luttinger sum rule.
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Figure 1.2: (a) Temperature dependence of the Hall coefficient for Lag_,Sr,CuO4 with
0.05 < z < 0.15. (b) Sr content z dependence of the Hall coefficient for Lay_,Sr,CuOy4
at 80 K and 300 K. The sign of Ry is positive for x < 0.15 and negative for z > 0.15,

respectively.



1.1.2 Electrical Resistance

The electrical resistance for the Fermi-liquid is expected to be in proportion to the
square of temperature because the electron-electron interaction leads a damping rate
of the quasiparticle in proportion to the square of temperature. In fact, the heavy
fermions, for example UPt3, exhibit this temperature dependence. For the layered
cuprates, however, the electrical resistance is in proportion to the temperature itself in

rather wide temperature range. (see Fig. 1.3 [9]).
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Figure 1.3: (a) Inplane and interplane resistance for YBa,CugO7_,. Numbers in figure

are equal to 7 — z. (b) Temperature dependence of the resistance for Lay_,Sr;CuOys.



1.1.3 Spin-gap Behavior

The so-called spin-gap (or pseudogap) behavior typically can be seen in the nuclear
magnetic resonance (NMR) experiments. The nuclear magnetic relaxation rate 77! is

written as

1

- S r@ER) (1.2)

w—0

where F'(q) is a factor which depends on the position of the watching atomic nucleus
and the hyper fine coupling, and x(q, w) is the dynamical spin susceptibility. (737)! is
expected to be independent of the temperature (the Korringa law), reflecting that the
spin susceptibility is constant in temperature (the Pauli susceptibility) in the Fermi-
liquid, while the observed value in the layered cuprates increases with temperature
decreasing like obeying the Curie-Weiss like law and have the local maximum near
above T, (see Fig. 1.4 [10]).
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Figure 1.4: Planar %Cu spin-lattice relaxation rate in optimally doped YBay;Cu3QOs.g5
(squares) and underdoped YBa2CusOg4 (circles). The pseudogap causes a suppression

in the relaxation rate well above 7.



1.1.4 Charge Susceptibility

The charge susceptibility x. is one of key quantities to understand anomalous prop-
erties of metallic phase near the Mott transition. It has been observed that the shift of
the chemical potential u is suppressed as the hole concentration 6 = 1—n in the CuO-
plane decreases in Laz_,Sr,CuOy (see Fig. 1.5 [12]). It means that the charge suscep-
tibility diverges as 6 — 0. According to the Fermi-liquid theory, the relation between

the charge susceptibility and the effective mass of the quasiparticle is as follows:

Xe/Xe _ 1
m*/m 1+ F§’

(1.3)

where F§ is the Landau interaction parameter, x. (x9) is the charge susceptibility, and
m* {m) is the effective mass, with (without) the Coulomb interaction, respectively.
From eq. 1.3, divergence of the charge susceptibility results in due to divergence of the
effective mass. As seen in Fig.1.3, the enhancement of the charge susceptibility is much
larger than that of the effective mass (i.e. the specific heat coefficient ) [12], so that it
is deduced Fj — —1 as 0 — 0. So this fact does not necessarily indicate the breakdown
of the Fermi-liquid. In any case, it is very curious at the first sight that y. diverges as

the insulating phase is approached, because x. is vanishing in the insulating phase.
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1.2 Theoretical Approach

1.2.1 Hubbard Model

In the layered cuprates, Cu 3d orbital and O 2p orbital are mixed. We take an area
enclosed with dotted line shown in Fig. 1.6 as a unit cell. One of the model which is
considered to describe the electronic state of the layered cuprates well is called the d-p

model, which can be written as follows [17]:

H = tg Z (dzapja‘*'h-c‘)*'tpp Z (p;opj'0+h'c')

<i,j>,0 <j.Jj'>
d,d
+ AeZn?d +Udznnnu +UPZ”?T”?1 : (1.4)
jo o J

where Ug and U, are the repulsive interaction of electrons which exist in onsite 3d
orbital and 2p orbital, respectively, and we take ¢4, for the transfer integral between
3d and 2p orbital, t,, for that between 2p, and 2p, orbital. Because of the fact that
only one band exists near the Fermi level in doped metal state, one unit cell can be
considered as one site in the single-band Hubbard model, which can be written as
follows [18]:

H=- Y tylchcio+he)+UY nini, (1.5)

<4,j>,0 i
where U stands for the onsite repulsive interaction, and t;; is the transfer between ¢

site and j site.

1.2.2 Nested Fermi-Liquid

In the previous section 1.1, we have summarized the experimental data briefly,
which show the anomalous behavior in the normal state of the layered cuprates. They
cannot be explained by the conventional Fermi liquid theory in its simple form. It is,
however, expected that the FS of quasiparticles becomes nearly nested near the AFI

phase [20]. Then Miyake-Narikiyo have shown that the charge susceptibility in nearly
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Figure 1.6: Cu 3d and O 2d on CuO; plane. The four-leaf clove type orbital is Cu
3d,2_,2 and the dumbbell type orbital is O 2p,. White or black shows the sign of wave

function, arrows show transfer and dotted line shows unit cell.

half-filled 2D metals has pronounced singularity with decreasing temperature at the
wave vector corresponding to two modes of spin fluctuations if the FS is technically
nested, and such anomaly is caused by the Aslamazov-Larkin (AL)-type contribution
shown in Fig. 1.7 of 2DAF spin fluctuation [21].

Figure 1.7: Aslamazov-Larkin type diagram. The lines with arrow represent the Green
functions of quasiparticles, and the dotted lines represent the spin-fluctuation propa-

gators.



1.2.3 Previous Works of Deformation of Fermi Surface

Yanase-Yamada calculated the one-particle self-energy on the one loop approxima-
tion using phenomenological form of the spectrum of magnetic excitations expressed
by eq. (1.6) and pointed out that the strong AF spin fluctuations works to deform the
FS as to be nested, with the use of the spin-fluctuation propagator (see Fig. 1.8) [22]

x(Q+aw) = T+ §2q>gQ_ i (L.6)

(0.x) : ' ‘ . (x.%)

(0,0) (=0)

Figure 1.8: Fermi surface calculated at various &.
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However, it is not microscopic aspect but phenomenological. Deformation of the FS
from the microscopic aspect has also been studied in two-dimensional (2D) Hubbard
model on the square lattice by the self-consistent second order perturbation theory
[23], and in 2D Hubbard model on the triangular lattice by a simple second order
perturbation [24]. These theories, however, cannot treat of spin fluctuations property.
Because of that, only a little tendency of change could be observed. Ogawa et al. have
shown on the perturbational renormalization group approach that the second nearest
neighbor transfer ¢’ in 2D ¢t — ¢ — U Hubbard model at half-filling is renormalized and
decrease as the Coulomb interaction U gets larger towards the critical value of the AF
transition. This result means that the renormalized FS is really deformed towards the

nesting [25].

1.2.4 Previous Calculation of Charge Susceptibility

The charge susceptibility was calculated by Furukawa and Imada with the use of the
quantum Monte Carlo in 2D Hubbard Model with nearest and next nearest neighbor
transfers in the ground state {13, 14]. A singularity in the charge susceptibility at the
Mott transition point § — 0 is observed (see Fig 1.9). This method, however, can
study only for small lattice number (10 x 10 is the largest lattice in this calculation).
In addition, it is hard to judge which effect is important for the origin of the divergent

charge susceptibility because every effects are considered all together in this method.

1.2.5 OQOutline of the thesis

In this thesis, we study how the charge susceptibility behaves in 2D ¢t — ¢ — U
Hubbard models near the half-filling, and how the shape of the FS is modified at hole
doping 0 = 0.002 where the charge susceptibility is mostly enhanced as the strength
of U is increased (see § 1.2.1). By adopting FLEX, we can take into account an effect
of strong AF spin fluctuations, and study at finite temperature (7' = 0.0125¢) and
for large lattice number (128 x 128 = 16384). It is observed that the AF correlation
length is shown to be enhanced as the Coulomb interaction gets closer to the critical
value U, for the onset AF order. At the same time, the shape of the renormalized FS

is deformed showing the tendency of nesting near U. and the charge susceptibility is

11
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Figure 1.9: Doping dependence of the chemical potential for t' = 0 (open symbols)
and t' = 0.2 (filled symbols). Lines in the figure are the least squares fits to the Monte
Carlo data.

enhanced. Along with above calculations, we discuss that such anomaly in the charge
susceptibility is caused by the AL-type contribution of 2DAF.
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Chapter 2

Formulation and Calculations

2.1 Formulation of FLEX Approximation

The Hamiltonian we discuss is the so-called ¢ — ¢ ~Hubbard model:

H= kac;'wcka +U Z CI(+ch;r<’—qlck'lckT s (21)
ko kk'q

where c{w is the creation operator of an electron with momentum k and spin o, U is

the onsite repulsive interaction, and

k = —2t(cos Ky 1 oS + 4t coskgycosky, —
& 2t k ky) + 4¢ k ky

is the band dispersion measured from the chemical potential u. Here, ¢ and ¢’ are the
transfer between the nearest neighbors and next nearest ones, respectively.
When the self-energy is defined as ¥(k, ic,,), the bare and the renormalized Mat-

subara Green functions are respectively written as

1

GOk, ie,) = P (2.2)
: 1

i) = e ke 29

We define the particle-particle and the particle-hole correlation functions as follows,

respectively:

13



T
Xpp(@ im) = =53 GO(k, i6a)G (K + q, —ien + iwm)
kn .
] —~1—=np(&) ~ nr(éxiq)
= —— - , 2.4
Nzk: Zwm‘f—k+q‘§k ( )
Xgh(q) ’l;(dm) = —'% Z Go(k) an)Go(k - 9q, 1€n — iw’m)
kn
1 () — nr(ée—q)
- , 2.5
NEk: iwm‘*‘ék—q_gk ( )
T
Xpp(Q, twm) = -¥ > Gk, ien)G(~k + q, —ien + iwn) , (2.6)
k,n
T
Xph(Q, iwm) = -5 > Gk, ien)Gk — q,icn — iwm) . (2.7)
kn

Diagrams for the Luttinger-Ward functional Q' in the FLEX approximation are
shown in Fig. 2.1, which have no external lines and satisfy the conservation laws [26].
With the use of this functional, the thermodynamic potential 1 is given as follows
[27](28]:

Q- T% 3 e {In[G(k, ien)] ~ S(k,ien)Clk, ien)} + ¥ [Clk,ie)] ,  (2.8)

n ko
where ¥ stands for the self-energy which is in the relation with ' as
oY
k,icp) = ———, 2.9
Bk ten) = seneian (2.9)
whose diagrams are shown in Fig. 2.2. Now, these diagrams are expressed as follows:

S I
() %U§ lg, G(k iew) [1 + Uxpn(k —1k’) iEn — 1€m)
"1 —Uxp(k —lk’,ien — ien/)} ’ (2.12)

14
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Figure 2.1: Diagrams for the functional ¢V, in the Luttinger-Ward formalism, included
in the FLEX approximation. Solid curves with an arrow denote the renormalized

Matsubara Green function calculated with the FLEX approximation.
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(a)

(b)

i

Figure 2.2: Diagrams of the self-energy. (a) Particle-particle correlation. (b) Particle-
hole correlation (ladder approximation). (c) Particle-hole correlation (ring approxima-

tion). (d) Hartree-Fock term (it contributes only to constant term).
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where (d) is the Hartree-Fock term which contributes only to constant term. ¥, Yo,

Fyp and Fpy, are defined as

T = (2.13)
e mere 2.14)
FPP (k + klw 1en + i5n’)
1
N k+ K n ’ n') = ’
v [1 + Uxpplk + K, ig, +icy) + Uxpplk + K ien +igp) —1
(2.15)
Fon (k - k/, 1En — fign,)
21+ Uxpn(k =K, i, —ign) 21 = Uxpn(k — K, ig, — ien)
HUxpn(k — K i — tew) — 1], (2.16)

respectively.
Analytic continuations of these quantities to the real axis are performed as follows
(see Appendix A and B [29]-[31]). Correlation functions, egs. (2.6) and (2.7), are given

as
XPP (q> w + 7’5) = l/()oo dt ei(w+i5)t Z e—iq~r[a2(r) t) - 2&(1‘, t)b(r7 t)])
_ (2.17)
Xenlapw +38) = =i [ dt Y Ty, ~tJale, )~ al-r, ~0b(r, 1),
(2.18)
where
a(,t) = [ doplr,z)e
b(r,t) = f%dxp(r,z)np(z)e™™™
where p(r,z) = —ImGR(r,z)/n. The explicit expression for ¥’s in egs. (2.13) and

(2.14) are given as follows:

17



Z/——ImFR k+k,e+¢)

! / 0o ;o
X [1 <coth €te  tanh 2—) Ca(K, &) =T S G(k,%n)J )

2 2T T =, ien —¢€
(2.19)
1 de , ,
R (k) = —Z/—ImFg}l(k— K,e—¢)
1 e Py = Gk ien)
X {2 (COth'—ZT— + ta Ilhﬁ) GR(I(,E) +Tn;oo ten — ¢ J s
(2.20)
where
' 1
Gr(k,e) = (2.21)

e—&— (OB +3R)
We calculate egs. (2.19)-(2.21) iteratively until the self-consistency condition is sat-

isfied for each k and ¢ within the following accuracy:

| Yhew(k,8) | = | Zaalk, e) | -3
[SE (k<) | <107, (2.22)

18



2.2 Charge Susceptibility in the FLEX Approxima-
tion

The renormalized FS and the chemical potential are determined from the fixed

number of electron n using the Luttinger sum rule [32, 28|.

ne N _ / _dk_
TV T Jorke=0)>0 (27)2

The charge susceptibility is calculated in two ways. One way with the renormalized

(2.23)

random phase approximation (RRPA) is as follows:

XR.RPA 2Xph (0,0)
¢ 1+UXph(0;0) !

where YRRPA is the charge susceptibility with RRPA, and y,u(0,0) is the particle-hole

(2.24)

correlation function defined in § 2.1 at the wave vector q = 0 and the frequency w = 0.
Another way with the FLEX approximation is as follows: First, the electron number
n is obtained from differentiation of the thermodynamic potential 2 by the chemical

potential u as

n ko

which is also obtained from eq.;(2.8) using eq. (2.9). Then we can obtain the charge

susceptibility xFLEX as

XSLEX = 87?/ ZZ 155"{ k Zen)] +G2 (k J n)gzi(@lfyiﬁﬁ} ) (225)
n ko

where we have used the expression (2.3). The first term and the second term of (2.25)

can be expressed by the diagram shown as Fig. 2.3a and 2.3b, respectively. Of dia-
grams included in Fig2.3b, those which have two spin-fluctuation modes xF“EX (k, iwn, )
with the same wave vector are called AL-type contribution, and are expected to give

FLEX

dominant contribution to x. because the divergence of two modes at q = Q,

xERFA(Q, 0), works cooperatively to enhance xEYEX. Here, xFRPA(k, iw,,) is defined as

19



(a) (b)

Figure 2.3: (a) The first term of eq. (2.25). (b) The second term of eq. (2.25). The
symbol ” x” stands for the differentiation by u.

RRPA (K, ) = — AP . 2.2

There are six AL-type diagrams as shown in Fig. 2.4 .
The AL-type contribution xar, (see Fig. 1.7) is expressed as

2

kaL = U*T Y S 1TSS GP(p,icn)Glp — k,den —iwn)| D M7 (k, iwn) . (2:27)
Wm k €n P 1,0
Since Uxpn nearly equal to 1 when the Coulomb interaction U is near the critical value,

17 (k, iw,,) are expressed respectively as

(K, iwn) = Tk, iwm) = I (K, iwn) = I (k, iw,)

2
- (o5
1 - UXph

M (k, iwm) = Tk, iwm) = (K, iwn) = DK, W)

2 2 2
- [t = (-2 =5 ()
1_(UXph)2 2 l—UXph 2 4 I*prh

(K, iwm) = MK, iwm) = T} (K, iwm)
2
- [fo,h_} ~ [1 (ﬂ - m)r ~ 1 (—X”h—)2(2.28)
1_(XPh)2 2 l—UXph 2 4 1_UXph

20
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Figure 2.4: Aslamasov-Larkin type diagrams contributing to the charge susceptibility
kaL in the FLEX approximation. ¢ stands for spin and ¢’ = —¢. (odd) and (even)

stand for the parity of the number of the ring included in the diagram.

Therefore, kag, is written as

2
KAL = gU“TZZ TY > G*(p,ien)G(p ~ k, i —iwm)} [X?RPA(k iwm)]z :
m ok boEP (2.29)

After performing the summations with respect to €, and wy,, we obtain

21



KR = 6U4Z/ s Y coth L 5T

X [ (y +146) {/ |[F(z+y+i6,z+146) — Flze+y+ 10,z — 1)
+ Flx+ib,z2—y—1id)—Flx—id,x—y —zé)]tanhﬁr
—K(y—ié){/%[F(x+y—i5,x+i§)—F(:z:+y—i5,a:—z’6)

2
+ F(z 410,z —y+10) — F(z — 10, z—y+16)]tanh2—f}]

(2.30)
where

F(ign, ten — twm) = Y G*(p,ie,)G(p — k, ien — twy)
P

and

SN Xpn (K, ) 2
K (iw) = (1 ~ Uxon(k, iwm)) '

Separating the self energy into the real part ¥'(k, €) and the imaginary part X" (k, ¢)
and expanding ¥’(k, ¢) around ¢ = 0, we obtain

2k
Glk,e) = ~ , 2.31
(ki 2) e —& —iax(k, e) (2:31)
where
& = ac e+ ¥k, 0)]
and
L 5(ke)
k P |,

2 is commonly called the renormalization factor. Then, the effective mass m* of the

quasiparticle is defined as

, (2.32)




where kr is the Fermi wave vector. It is remarked that the mass m* depends on the
position on FS.

Finally, we also calculate the AF correlation length ¢ defined as

X;{RPA(Q +q, 0) _ 2XPh(Q +q, 0) ~ 2Xph(Q7 0)/[1 - UXph(Qv 0)]

~ 2.33
T~ Uxm(Q +9,0) [y - (239
at ¢ < 7/a. Namely, ¢ is defined as follows:
. ,0) = xpn(Q +4q,0) _
2 = /i Xe0(Q P 2 2.34
R & A S ) (234
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Chapter 3
Results and Discussions

Since the correlation function and the self energy we calculate have the form that
can apply to the convolution method, our calculations can be made faster by using the
fast Fourier transformation (FFT). We have retained 128 x 128 (= 16384) lattice points
and 512 (= N) discrete points of energy. Hereinafter, the nearest transfer energy ¢ and
the lattice constant a are taken for a unit unless explicitly stated. Both of the cut-off
value of energy ¢, and Matsubara frequency ic = (2N — 1)inT are 40 corresponding
to the temperature T = 0.0125¢. The next nearest neighbor transfer energy t' is fixed
ast' =0.4¢tin§3.1 and ¢ = 0.2t in § 3.2.

3.1 Case of t/ = 0.4t

We can see that the peak of the static spin susceptibility xpn(q, 0) is incommensurate
at U = 2 but is commensurate at U = 5 in Fig. 3.1. A result of deformed FS is shown
in Fig. 3.2 for the system with U = 5 at half-filling. As we can see in Fig. 3.2, the
FS is deformed in the direction to the nesting. Behavior of the charge susceptibility
calculated with the FLEX approximation x¥LEX (= 0n/du, where n is the electron
number) as the hole doping number § changes is shown in Fig. 3.3. It is observed that
xELEX has a maximum value at § = 0.003 whereas xF'EX has the peak at § = 0.002
for the system with ¢’ = 0.2 as we discuss in the next section. The critical interaction
value of the AF transition U, = 1/x,n(Q, 0) equals 5.3 and ¢ is only on the order of a

lattice constant (it is estimated as 1.14), but the FLEX calculation does not converge
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well where U is larger than 5 in this case. What causes this obstacle is considered as a
existence of spin-liquid or nonmagnetic insulator phase between the AFI phase and the
paramagnetic metal phase [33]. Our study, in spite of this obstacle, can be proceeded
at the strong coupling regime by switching ¢’ into 0.2 from 0.4 because an increase of
U means decrease of ¢’ [25]. In the next section, we discuss the case of ¢/ = 0.2t.

Figure 3.1: Static spin susceptibility xpn(q,0) at (a) U = 2t and (b) U = 5t.
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Figure 3.2: Solid line is the renormalized FS at U = 5¢ and dotted line is the bare FS.
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Figure 3.3: Charge susceptibility is plotted against the hole doping number é at U = 5¢.
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3.2 Caseoft' =02t

Chemical potential x is plotted against the hole doping rate ¢ in Fig.3.4 at U = 3.532,

which is near the critical value of AF transition estimated as U, = 3.54 (see Fig. 3.5).

FLEX
c

we can see that the chemical potential shift is suppressed around 6 =0.002. x
versus 0 at the various interaction values: U = 3.5, 3.52, 3.53 and 3.532 are shown in
Fig. 3.6. It is observed that they have maximum at § = 0.002 and the value of the
maximum is enhanced as U increases. It is speculated that the smooth variation of u in
the range —0.002 < § < +0.002 is due to the effect of finite temperature, 7' = 0.0125¢,
and it is expected that the discontinuous jump occurs, as in ref. [13], at § = 0 in the
zero temperature limit whose temperature region cannot be investigated owing to the

limitation of numerical calculation.

-0.420

0425
0.430
o 0435
= |
-0.440
0.445

0450

0.455

Figure 3.4: Chemical potential u is plotted against § for the parameters t' = 0.2¢,
U =3.532t, N =128 x 128, and T = 0.0125¢. Solid curve is the smooth interpolation,
and the dashed curve is an expected behavior, proportional to 62, at T = 0.
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Figure 3.5: U vs 1 — Uxpn(Q,0). The critical value of AF transiton is estimated as
U.: = 3.54 because we can see that 1 — Uxpn(Q,0) =0 near U = 3.54.

The further analyses are performed at 6 = 0.002 around which the charge suscepti-
bility has the maximum value. A result of the renormalized F'S at U = 3.532 is shown
in Fig. 3.7 together with the result at I/ = 0. Deformation of the FS, calculated by the
self-consistent second order perturbation theory in 2D Hubbard model near half-filling,
cannot be seen clearly even for rather large value of interaction U = 4 [23]. This is also
the case in ref. [24]. On the other hand, the modification of the FS we calculated is not
so large as that of Yanase-Yamada who claimed that much larger modification is ob-
tained even for smaller value of £ = 6a (see Fig.1.8 [22]). Indeed, the correlation length
¢ defined by eq. (2.34) is estimated as £ = 13.7a with the use of the relation between
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Figure 3.6: Charge susceptibility calculated with the FLEX approximation yFLEX =
On/0u is plotted against § for various U.

[Xpn(Q. 0) — xpn(Q+q, 0)] and ¢? as shown in Fig. 3.8. They used the spin-fluctuation
propagator ys(Q + q,0), see eq. (1.6), in which the numerator is given by xqQ, while
those we used, x?RFA | see eq. (2.33), has a numerator xpn(Q + q,0) which decreases
rapidly as g is increasing. That may be one of the reason why the modification of the

FS we calculated is not so large as that of the FS Yanase-Yamada calculated.
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Figure 3.7: Solid line is the renormalized FS at U = 3.532¢ and dotted line is the bare
FS where 4 is 0.002. Two symbols ” x” and ”+” show the position of the "hot spot”

and ”cold spot”, respectively.

The renormalization factors are calculated for the system with U =1, 2, 3, 3.5, 3.52,
3.53 and 3.532 at the so-called "hot point” and ”cold point”. These results are shown
in table 3.1 and Fig. 3.9. It can be seen that 21 (at the hot point) and z£'¢ (at the

cold point) show rather rapid decrease as U increases, but does not appear to vanish
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Figure 3.8: [xpn(Q,0) — Xpu(Q + q,0)] vs ¢°. Nice ¢g*>-dependence exists in the region
0<g<0.8/a.

as U approaches U. This seems due to the effect of finite temperature T' = 0, 01252
as in the casc of Fig. 3.4.

The renormalized dispersion & (= z[é + ¥'(k,0)]) along k, = k; — 1.77 and
k, = k, through the hot point and cold point where the interaction is U = 3.532t are
shown together with the non-interacting dispersion in Fig. 3.11. It is observed that
the gradient of renormalized dispersion is about a half as large as that of the non-
interacting dispersion. It means that the effective mass defined by eq. (2.32) is about

twicc as large as the barc mass.
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Figure 3.9: Average of the renormalization factor at cold spot 29 and hot spot 28
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as a function of the interaction U.

In Fig. 3.12, we show the results for the single paticle density of states (DOS) of
non-interacting, p° (¢) (= -2, ImG®(k,¢)/N~), and the interacting state, p (¢) =
-2 ImGR(k, ) /N, calculated in the FLEX approximation at U = 3.532¢. It is
remarked that the van Hove singularity in p° (¢) at € &~ —0.3¢ shifts to the Fermi level
e~ 0in p(e) at U = U, = 3.532t, and is smeared considerably. This is consistent
with the fact that the AF corrclation has an cffect to deforme the Fermi surface to the

nesting as U is increased to U, as shown in Fig. 3.7.
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Figure 3.10: Enhancement of correlation length £ (triangle) is compared with that of

charge susceptibility xE*B¥ (square) and x2RFA (circle) in the unit 1/z.

The AF correlation length £ is compared with the following two sets of physical
quantitics in table 3.2. Onc sct is the ratio of xFFEX and yFF*FA to the non-intcracting
charge susceptibility x? which equals to the density of state (DOS) at the chemical
potential without interaction p° (0) (= — ¥, ImG°(k, 0)/N7) estimated as 0.838/t as
seen in Fig. 3.12. Another set is the ratio of the effective mass to the bare mass at

the hot point m}, /mnet and the cold point Mega/Meold- We can see the pronounced

FLEX

enhancement of x¢

as £ is enhanced whereas mj , and m,; show little enhancement
at U =~ U,. This implies that the specific heat does not exhibit the divergence as
the AF critical point is approached, although the effective mass is enhanced there

by about twice compared to the bare mass. This may be partly due to the effect of
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hot cold
U/t | = 2

0.500 | 0.991 | 0.992
1.000 | 0.959 | 0.963
2.000 | 0.784 | 0.808
3.000 | 0.498 | 0.553
3.500 | 0.385 | 0.438
3.520 | 0.383 | 0.434
3.530 | 0.380 | 0.431
3.532 | 0.380 | 0.431

Table 3.1: Renormalization factors.

finite temperature T = 0.0125¢. However, it should be noted that mj,, /mne =~ 2.34 is
smaller than (zﬂ“)_l ~ 2.63 and M} q/Mecola = 2.13 is smaller than (zﬁ"‘d)_l ~ 2.32
This implies that the so-called k-mass, which is defined by the same expression as eq.
(2.32) but without the renormalization factor zy, is suppressed near the critical point,
and consitent with the result of Maebashi and Miyake who showed that the nested
fluctuations near the metal-insulator transition gives the similar aspects [34][35].

The behavior of the correlation length £, defined by (2.34), is compared with that of
the charge susceptibility xFVEX, (2.24), and xRRPA| (2.25), as a fuction of U in Fig.3.10.

We can see that xyfUEX is enhanced together with £ whereas yRRFA

is not enhanced. It
is caused that the RRPA does not take into account the AL-type contribution whose
diagram is shown in Fig 1.7 or 2.4 but the FLEX approximation does. The origin
of the divergent charge susceptibility, therefore, is considered to be not the enhanced
effective mass alone but crucially due to the effect of strong AF spin fluctuations. In
other words, the Fermi liquid correction F§ is important to the divergence of x.. As
shown in Fig. 3.12, the van Hove singularity is shifted toward the chemical potential
(Fermi level), but the single particle spectral weight at the chemical potential p (0) for
U = 3.532t and ¢ = 0.002, is slightly supressed from the value without the interaction.
Therefore, the van Hove singularity little contributes to the enhancement of the charge
susceptibility.

The Landau parameter Fg is estimated as 8.62 x 1072 at the hot spot and —8.19 x
1072 at the cold spot from the relation: (x./x%)/(m*/m) = 1/(1 + F§) when the
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Figure 3.11: Renormalized dispersions along (a) ky = k,—1.77 and (b) ky = k. through
the hot point and cold point. Solid lines are the renormalized dispersions and dotted

lines are the non-interacting ones.

interaction is U = 3.532t. In ref[12], it is insisted that the fact of the existence of
the divergent charge susceptibility is considered as an index of the breakdown of the

Fermi-liquid. However, Fj gets smaller and its sign turns to negative as U increases,
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Figure 3.12: Single particle DOS p° (¢) = —2Yx Im G%(k,¢)/N~ for U = 0 (square)
and p (¢) = -2 Im GR(k,e) /N for U = 3.532¢ (trianglc) at § = 0.002. Thcy arc

shown only around the cusp because the low energy region are of interest.

so that this fact does not necessarily indicate the breakdown of the Fermi-liquid as we

L

have discussed in §1.1.4. The tendency of variation of x*'FX /x% and m*/m as functions

of U suggests that the Landau parameter F§ approaches —1 as the true critical point
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U = U, at T = 0 is approached. The point is that the Fermi liquid effect given by Fg

does not suppress . in marked contrast to a naive expectation.

U/t Uxpn  &/a | xa™%/x0 xE2/x0 I mig/m  miga/m | kav/x?
3500 0994 7.74 | 0.56 0.0762 2.32 2.09 | 0.0464

3.520 0.995 9.65 0.69 0.0761 2.34 211 0.153
3.530 0.998 13.27 1.09 0.0758 2.34 2.13 0.97
3.532 0.998 13.70 1.16 0.0758 2.34 2.13 1.15

Table 3.2: Enhancement of £ as U increases is compared with that of the charge

susceptibility, the charge mass and the AL-type contribution.
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Figure 3.13: Various quantities in table 3.2 are shown in this figure.
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Figure 3.14: MT-type contribution to the charge susceptibility in the FLEX approxi-

mation.
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Figure 3.15: Charge susceptibility calculated by the FLEX approximation x¥“EX. The
valuc decrcascs as U incrcascs when U has a small value. It is constent with the

perturbation theory.
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Now, we consider the relation between the FLEX approximation and the AL-type
contribution. As we have seen in § 2.1, diagrams of the free energy ® shown in Fig. 2.1
are considered in the FLEX approximation. Six AL-type diagrams shown in Fig. 2.4
appear as parts of diagram obtained from the second differentiation of the free energy
® by u, while the deagrams corresponding to the repetition of the AL process can
be obtained at the same time. The so-called Maki-Thompson (MT) type diagram
for the charge susceptibility is also included in the FLEX approximation as shown in
Fig. 3.14. However, its contribution is expected to be much smaller than the AL-type
contribution, because explicit spin-fluctuation propagator appears once in MT-type
diagrams so that its effect is easily averaged out while AL-type diagram includes the two
fluctuation mode with the same wave number giving rise to stronger singularity. Seeing
our result shown in table 3.2, the AL-type contribution takes over only a little part of
the charge susceptibility when the interaction U is far from the critical value U, and the
correlation length ¢ is not so long, but exhibits a large part of it where U approaches
near the critical value U. and £ becomes long enough. Thus, we can conclude that
the AF spin fluctuation is the main origin of the divergent charge susceptibility in the
t —t' — U Hubbard model at the half-filling near the AF critical point.

U | xe™/xe
0.500 | 0.83
1.000 |  0.61
2.000 |  0.60
3.000 | 0.47
3.500 | 0.56
3.520 |  0.69
3.530 | 1.09
3532 | 116

Table 3.3: Charge susceptibility calculated by the FLEX approximation xEEX.

FLEX

. is shown

The charge susceptibility calculated by the FLEX approximation x
in Fig. 3.15 and table 3.3. Its value decreases initially as U increases, but it increases

rapidly U > 3t. On the perturbation theory, the charge susceptibility is expressed as
Xe = 2x0 — 2Uxg + O(U?) (3.1)
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so our calculation is consistent with this theory where U is small.
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Chapter 4
Summary

We have shown a pronounced enhancement of the charge susceptibility in an anomoulous
metallic phase near an antiferromagnetic (AF) insulating phase on the basis of the
FLEX approximation which satisfies the conservation laws and can take account of the
effect of AF spin fluctuations.

The first things that we clarified in this thesis are how the shape of the FS is modified
and how the charge susceptibility behaves in the two-dimensional ¢ — ¢ — U Hubbard
model near half filling as the strength of the onsite Coulomb interaction U is increased.
The AF correlation length was shown to be enhanced as the Coulomb interaction get
closer to the critical value U, for the critical point to the onset of AF order. At the
same time, the shape of the renormalized FS is deformed showing the tendency of
nesting and the charge susceptibility shows a pronounced enhancement near U,. This
result is consistent with experimented observations in under-doped cuprates LSCO.
The enhancement of the charge susceptibility is so large that it cannot be explained by
the van Hove singularity of the DOS due to the nesting of FS. Indeed, the van Hove
singularity of DOS is easily cancelled by the RPA type contribution.

We also clarified an origin of the divergent charge susceptibility. It was expected
that the effect of the AF spin fluctuations is the main origin for this divergence of the
charge susceptibility from the fact that the anomaly is observed near AF insulating
phase. In order to verify this physical picture, we calculated the AL-type contribution
to the charge susceptibility, and compared its value with that calculated on the FLEX
approximation. The result was that the AL-type contribution nearly exhausts the value
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of the charge susceptibility when the charge susceptibility is enhanced enough as the
interaction U approaches U.. Namely, the origin of the divergent charge susceptibility
is not the van Hove singularity but the AF spin fluctuations.

In conclusion, we clarified a physical origin of the divergent behavior of the charge
susceptibility near the phase boundary between the antiferromagnetic insulator and
the paramagnetic metal. Namely, we first verified by microscopic calculations based on
the FLEX approximation of the 2D Hubbard model, that the divergence of the charge

susceptibility is caused by the antiferromagnetic fluctuations themselves.
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Appendix A

Derivation of egs. (2.17) and (2.18)

the Matsubara Green function G and one particle spectral weight p are defined as

ok,z) — —%ImGR(k,x), (A1)
Gl iz) = | da:z,%(k—’_x%, (A.2)

where G® is the retarded Green function. From eq. (2.7),

1 1
n— Wm — X1 1€p — Lo

. 1
Xpb(Q, 1) = NZ/dfﬂl/dmz pk —q,21)p(k, z3) TZZE
k n

= %Xk:/dxl/dm plk —a,21)p(k, xz)nF(xl) —ne(zs) (A.3)

Wm — T2+ 21

and this analytic continuations to the real axis is as follows:
Xph(q, w + @0)
= %;/dxl /da:z plk — q,z1)p(k, x2)(—17) /Ooo dt /@m0 e (0) e (20))
_ “WZ /0 % gt eilorioy > [ dor ok~ 4, 22 )ne(e2)e ™ [ daa plk, za)e=
- /dml plk —aq, zl)emt/dxz pk, xz)nF(xz)e‘i”t]

— __Z-/(; dt ez(w+z§)tﬁ Z Ze—z(k—q)'rle—zkrz

r3,r2 k
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BT
_/dxl pk —q, ml)eim‘/dﬂfz p(k, :Uz)np(xz)e‘m’}
= — /0 > dt lwtid) ;e—iq'f
X [/d‘rl p(_r’wl)nF(xl)@mt/dxz p(r, 2)e "
_/dxl p(_r’xl)eizlt/d@ P(r>$2)nF(l‘,$2)6_mt] . (A.4)
When a and b are defined as

a(r,t) = [ dzp(r,z)e ™

b(r,t) = [ dzp(r,z)np(z)e ™,

we can derive eq. {2.18) and eq. (2.17) can be obtained in the same way.
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Appendix B

Derivation of egs. (2.19) and (2.20)

The Matsubara Green functions G and F® are given as follows:

] ImGR(k, z)
Gk, ie,) = ——/d =, (B.1)
ImFR kx
Fulk,z) = —— / AL (B.2)

where G® and F® are the retarded Green functions. From egs. (2.10)-(2.16), X, can

be calculated as follows:

Yon(k,icn) = i ZZth (k — K ien —ien)G(K , ien)

k’ n’
_ W / dz / do'TmFR (k ~ K, 7')ImGR (K, z)
xTy - ,1 o !
o Ven — 16w — X 1€y — X
3 ImGR(k’ ZL')
Bl h— B.3
(coth 5T + tan 2T> (B.3)

and this analytic continuations to the real axis is

1 ImGR(k’ .’L”) x
R / R k 1ot ) h 1
th(k, 6) = -——zN /da: / dx Imeh( -k , L )_8 s X (cot ——2 + tanh _QT)
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(B.4)

Now, ImGR(K’, z)/e — x — 2’ +16 is separated into the real part and the i imaginary part
as

ImGR (K, z) 1 1 1
e )
e—x—1x +10 Zm[ 5—m—x’+z’5+e—x—x’—z’5

e
2Re[G (e—a:—a:/+z'5 e—xz—x —1i8/]°

(B.5)

Then, we can get

Shke) = 2N /dx’ImFP‘ k-k, 1)

1 1
R,/
X{Im{ doG (k’x)(s—x—x’+i5+e—x—aj’—i5)
I
X (cothﬁ—i—tanhﬁﬂ
1 1
—. R I —
zRe[/d:z:G (k’x)(e—x—x’—kié e—m—a:’—z'é)

X (coth 5% + tanh ﬁ)] } (B.6)

In the case: x = ¢ — 2’ +1i0, en =i(2n + 1)nT; n > 0, we obtain

1 ! !
Shke) = —5 o ;/dx’ImF;}l(k- K, ')
. e ;. 1 1 .
X {Im [ZMTn;OO Gk, ien) (e — i, — 2’ + 140 teo ign — T — i5)
i Ry, ~ _ ./ : _/ el
Gk e — 2’ +16) (coth 5T + tanh 2T)}
“iRe |2iT S G, ien) ( L - = )
= ' E—len—2 +i0 e—ide,—x —10
i R/ ~ _ : _I__ il
irGH k' e — ' + 16) (coth 5T + tanh 2T>}} (B.7)

Finally, we can derive eq. (2.20) and eq. (2.19) can be obtained in the same way.

47



References

[1] J. G. Bednorz and K. A. Miiller, Phys. Rev. Lett. 67 (1991) 2088.

[2] See, e.g., M. A. Kastner et al., Rev. Mod. Phys. 70 (1998) 897.

(3] P. W. Anderson, Science 235 (1987) 189.

[4] P. W. Anderson, Phys. Rev. Lett. 67 (1991) 2092.

[5] H. Fukuyama and M. Ogata, J. Phys. Soc. Jpn. 63 (1994) 3923.

[6] Y. Suzumura, Y. Hasegawa and H. Fukuyama, J. Phys. Soc. Jpn. 57 (1998) 2768.

[7] H. Y. Hwang, B. Batlogg, H. Takagi, H. L. Kao, R. J. Cava, J. J. Krajewski and
W. F. Peck, Jr, Phys. Rev. Lett. 72 (1994) 2636.

[8] H. Takagi, T. Ido, S. Ishibashi, M. Uota and M. Sato, Phys. Rev. B 40 (1989) 2254;
[9] K. Takenaka, K. Mizuhashi, H. Takagi and S. Uchida, Phys. Rev. B 50 (1994) 6534
[10] T. Timusk and B. Statt, Rep. Prog. Phys. 62 (1999) 61.

[11]) M. Randeria, Hong Ding, J-C. Campuzano, A. Bellman, G. Jennings, T. Yokoya,
T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Rep. Prog.
Phys. 62 (1999) 61.

[12] A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, H. Eisaki, S. Uchida, T. Kimura,
T. Sasagawa, K. Kishino, Phys. Rev. Lett. 79 (1997) 2101.

[13] N. Furukawa and M. Imada, J. Phys. Soc. Jpn 61 (1992) 3331.

48



[14] N. Furukawa and M. Imada, J. Phys. Soc. Jpn 62 (1993) 2557.

[15]) N. Momono et al., Physica (Amsterdam) 233C, 395 (1994); J. W, Loram et al.,
Physica (Amsterdam) 162C, 498 (1989); T. Nishikawa et al., Physica (Amsterdam)
209C, 553 (1993)

[16] L. F. Mattheiss, Phys. Rev. Lett. 67 (1987) 1918.

[17] V. J. Emery, Phys. Rev. Lett. 58 (1987) 2794.

(18] J. Hubbard, Prog. Roy. Soc. (London), A243 (1957) 336.

[19] F. C. Zhang, T. M. Rice, Phys. Rev. B 37 (1988) 3759.

[20] K. Miyake, unpublished.

[21] K. Miyake and O. Narikiyo, J. Phys. Soc. Jpn. 63 (1994) 2042.
[22] Y. Yanase and K. Yamada, J. Phys. Soc. Jpn. 68 (1999) 548.
[23] H. Nojiri, J. Phys. Soc. Jpn. 68 (1999) 903.

[24] S. Yoda and K. Yamada, Phys. Rev. B. 60 (1999) 7886.

[25] T. Ogawa, H. Maebashi, H. Kohno and K. Miyake, Physica B 312 & 313 (2002)
525.

[26] N. E. Bickers, D. J. Scalapino and S. R. White, Phys. Rev. Lett. 62 (1989) 961.
[27] J. M. Luttinger and J. C. Ward, Phys. Rev. 118 (1960) 1417.

[28] A. A. Abrikosov, L. P. Gorkov, I. Y. Dzyaloshinskii, Quantum Field Theoretical
Method in Statistical Physics (Pergamon Press, London, 1965).

[29] V. Zlatic, Phys. Rev. B 52 (1995) 3639.
[30] F. Marsiglio, M. Schossmann and J. P. Carbotte, Phys. Rev. B 37 (1988) 4965.

[31) T. Hotta, J. Phys. Soc. Jpn. 64 (1995) 2923.

49



[32] J. M. Luttinger, Phys. Rev. 119 (1960) 1153.
[33] T. Kashima and M. Imada, J. Phys. Soc. Jpn. 70 (2001) 3052.
[34] H. Maebashi and K. Miyake, Physica B. 281 & 282 (2000) 526.

(35] K. Miyake and H. Maebashi, J. Phys. Chem. Solids. 62 (2001) 53.

50



Publications

1. Deformation of Fermi Surface Due to Antiferromagnetic Correlation
K. Morita and K. Miyaka: Physica B 281 & 282 (2000) 812-813.

2. FLEX Study on the Compressibility of the Two-Dimensional Hubbard Model
K. Morita, H. Maebashi and K. Miyake: Physica B 312 & 313 (2002) 547-549.

3. FLEX Study on Two-Dimensional ¢ — #-Hubbard Model: Enhanced Charge Sus-
ceptibility near Antiferromagnetic Mott Transition
K. Morita, H. Maebashi and K. Miyake: to be submitted to J. Phys. Soc. Jpn.

51






