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Abstract

A self-stabilizing system is a distributed system that has two properties: con-

vergence and closure. Convergence specifies that the system can reach legiti-

mate (safe) configurations from any configuration. Closure specifies that once

the system reaches a legitimate configuration, it continues to be within the set

of legitimate configurations. Because of these properties, self-stabilizing systems

need not be initialized and can automatically recover from erroneous configura-

tions. A self-stabllizing algorithm is an algorithm that enables a system to be

self-stabilizing. These algorithms have been proposed to deal with various prob-

lems.

The time complexity of a self-stabilizing algorithm is the maximal number of

steps required to reach a legitimate configuration from an illegitimate one. The

improvement of time complexity is an important performance issue, because ille-

gitimate configurations can lead to malfunctions. To improve time complexity, it

is also important to be able to compute it for a given self-stabilizing algorithm.

We address these issues in these dissertation. The contribution comprises of

three parts: the first, providing a new lower bound on the time complexity of

Dijkstra's three-state self-stabilizing mutual exclusion algorithm; the second, pro-

viding the exact time complexity of a self-stabilizing maximal matching algorithm



proposed by Hsu and Huang; the third, devising a new self-stabilizing maximal

matching algorithm, which outperforms the Hsu-Huang algorithm in terms of

time complexity.

In this line of research, we use model checking as an analysis tool. Model

checking is a formal verification method based on state exploration. Although

model checking can only be used for examining small-sized self-stabilizing al-

gorithms, it allows us to fully analyze their behaviors and compute their time

complexity. We describe how NuSMV a major model checker, can be used for

analyzing the mutual exclusion algorithm and the maximal matching algorithm.
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Chapter L

Introduction

L.L Background

A self-stab\lizing system is a distributed system that has two properties: conver-

gence and closure. Convergence specifies that the system can reach legitimate

(safe) configurations from any configuration. Closure specifies that once the sys-

tem reaches a legitimate configuration, it continues to be within the set of legiti-

mate configurations.

Because of these properties, self-stabilizing systems need not be initialized

and can automatically recover from erroneous configurations. Thus, self-stabilizing

systems are tolerant of transient faults, such as the loss of memory contents and

message omission. A self-stabilizing algorithm is an algorithm that enables a sys-

tem to be self-stabilizing.

The notion of self-stabilization of a distributed system was introduced to com-

puter science by Dijkstrain 1974 [13]. Originally, mutual exclusion was the only

application of self-stabilizingalgorithms. However, self-stabilizing algorithms for
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various problems have been proposed recently f26, 18, 17 , 29,28,24,71. Practi-

cal applications include, for example, Internet servers [33] and FDDI media access

control protocols [12].

The time complexity of a self-stabilizing algorithm is the maximal number of

steps required to reach a legitimate configuration from an illegitimate one. The

improvement of time complexity and the reduction of required memory are the

main perfonnance issues in the field of self-stabilizing systems ft,2, 4,22). T\e

improvement of time complexity is particularly important because being in ille-

gitimate configurations can lead to malfunctions. To improve time complexity, it

is important to be able to compute it for any given self-stabilizing algorithm.

However, there are self-stabilizing algorithms whose time complexity is dif-

ficult to analyze [3]. For example, the upper bound for the algorithm proposed

in [13] was presented in [8]. This upper bound was much greater than the time

complexity computed in [37, 30].

In this dissertation, we propose a method to automatically compute time com-

plexity on the basis of symbolic model checking. On addition, we analyze time

complexity based on the behavior of the worst case, which is obtained by the

symbolic model checking tool NuSMV.



1.2. NIIAIN RESIILTS

1。2 Main Results

1.2.1 On Time Complexity of Dijkstra's Setf-Stabilizing Three-

State Mutual Exclusion Algorithm

As for the■ rst contribudon,we propose a method to compute the time complexity

of Dttkstra's self― stabilizing threc― state mutual exclusion algorimm,and provide

a very tightlower bound for time complexity.

Dttkstra's three―state mutual exclusion algo● ぬm is one ofthe nrstself―stabilizing

dgOlthttS[13].Although more than 30 years have passcd since its invendon,the

exact worst¨ case time complexity of this algo五 thm is sdll u」mown.The best―

known lower bound on the worst― case time complexity was givcn by Cherlloy9

ShJon,and Zaks p].They pЮ ved a lower bound of l:η 2_00)by ShOWing

that there is an execution of length l:η 2_10:η +14 when η=3た,whereた is

a natural numben

ln this dissertation we give a lower bound on the worst― case tilne complexity,

which mttches ie known best bound l:η2_0(2)p]butis mOК  accurate.This

bound is given by showing a very long computation de五 ved by analyzing the

behavior of the worst case behavior of the algo五 thln with some processes. 1「 he

behavior is obtalned by model checking.  On addtion,our result applies when

η=3た +l and η=3た +2.For the reason explained in chapter 3,we cottecture

thatthe new bound is the exact worst―case time complexity.
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1.2。2 0nTin■e Colmplexity ofHsu and Huang's Self‐ Stibilizing

Maxilnal Matching Algorithm

As for the second contribution,we propose a inethod to compute the time com―

ple対ty ofHsu and Huang's self― stabilizing maximal matching algo五 thm,and g市e

the exacttime complexity.

This algo五 血 is the flrst self― stabilizing inaxilnal rnatching algorithnl and has

been regularly cited in the literature.Because of its technical importance,the time

comple対 ty of this particular algo五thm has been well studied.h[25],Hsu and

Huang show thatitis bounded by O(η 3),where η isthe number of■ odes.In[34],

Tel provides an dmost ight upper bound,which is:η 2+2η
 tt l if η is even and

:η
2+η _:ifπ iS Odd.In[35],Tel g市 es a more concise pЮ offorthe O(η 2)bound

than [34]. In[23],Hedetniemi,Jacobs,and S五 rnani provide an upper bound of

21EI十 η,Where lEl iS the number of edges.This g市 es a beter bound than the

one in[34]when lEI=0(η
)。

In this dissertation,we provide the exact time complexity of the Hsu― Huang

algo五thmo The fact thatthe known upper bound is very similar to the time com―

plexity computed by model checking is helpful for us to flnd the exact tilne com¨

plexity.

1.2.3 New Fast Self-Stabilizing Maximal Matching Algorithm

As for the third contribution, we propose a new self-stabilizing maximal matching

algorithm. The proposed algorithm assumes the same model as the Hsu-Huang

algorithm and runs faster. In particular, the new algorithm reduces the worst-case

time complexity by approximately half. Through the design of a new algo-



1.3.OVERVIEW OF DISSERTATION

rithm, model checking is very useful for verifying whether a new algorithm is

self-stabilizing.

L.3 Overview of Dissertation

The remainder of this dissertation is organized as follows. In chapter 2, we de-

scribe self-stabilizing algorithms and model checking. We describe the first con-

tribution in chapter 3 , entitled "On Time Complexity of Dijkstra's Self-Stabllizing

Three-State Mutual Exclusion Algorithm." In this chapter, we prove a lower

bound of the time complexity of the algorithm by showing that there is a very

long execution . We describe the second contribution in chapter 4, entitled "On

Time Complexity of Hsu and Huang's Self-Stabilizing Maximal Matching Algo-

rithm." In this chapter, we prove the exact time complexity of the algorithm. We

describe the third contribution in chapter 5, entitled "New Fast Self-Stabllizing

Maximal Matching Algorithm." In this chapter, we propose a new self-stabilizing

maximal matching algorithm that is faster than the existing algorithm. In chapter

6. we summarize this dissertation.





Chapter 2

Preliminaries

2.1 Self-Stabilizing Algorithms

We consider a distributed system that consists of n processes, py,pt,... tpn-r.

The topology of the system is modeled by an undirected graph each of whose

vertices correspond to a process.

A process is a finite state machine. A process pi is defined as a three-tuple

Mt: (Qi,Ei,66):

r Qi is a finite set of states.

o X1 is a finite state set of pa's neighbors.

o 6i: Qt x Dt - Qt is a state-transition function.

We say that process p, and process pi are neighbors if p4 is adjacent to p3 on

the graph. A process can communicate with its neighbors, and Xi is defined as

the Cartesian product of the states of its neighbors. For example, when process p3
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and process pp are neighbors of process pi, E6 is :

Dr:QixQ*.

A state transition function d1 is described in the guarded command language

[14]. In the language, da is described as a list ofactions:

fl : if { act'ion > [] .. . f] < acti,on > fr .

The symbol "[" separates the different actions. Each action is described as

follows:

I acti,on >:::< guard >=+< statement >

The guard is a Boolean expression over the states of process h and its neigh-

bors. When the guard is satisfied, process pi updates the state according to the

statement. When more than one guard is satisfied, process p1 updates the state by

the statement, which is non-deterministically selected .

A distributed algorithm specifies 56 for each process pa. In each step of the

execution of process pi, pi reads the states of its neighbors, and updates the state

by d,.

The global state (or configuration) of a system is the vector of the states of all

of its processes. Therefore, the set of configurations G is given as follow:

θ=00× 91× …・×0れ_1・

We say that an action is enabled at a configuration if and only if the guard holds
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at that configuration. A process is enabled if and only if at least one action of the

process is enabled. We assume that, in each step, exactly one enabled process is

selected and it updates the state.

We denote by g -- g' (g, g' € G) the fact that there is a process that is enabled

at g and its execution yields g'. A sequence of configurations gogtgz. . . 91, is a

computation if and only if for every i , 0 go + gt+r holds.

Let P be a predicate that identifies the desirable configurations of the system.

We assume that P is a Boolean expression over the states of all the processes of the

system. We say that a configuration is legitimate if and only if the configuration

satisfies P. Let ,L denote the set of the legitimate states.

A distributed algorithm is a self-stabilizing algorithm if it satisfies the follow-

ing two properties:

1. Convergence-For any configuration go e G,and any computation gogr. . . gr,

that starts with 96, there is an integer,b (> 0) such that gx € L.

2. Closure - For any configuration g € L, g ---+ g/ implies g' e L.

The convergence time ct of a computation gogt . . . gn is the number of steps

required for reaching a legitimate state from 96. If gogt. . .9r is a computation of

a self-stabilizing algorithm, ct is defined as follows:

ct- 9o€L

€L gofL.
(2.1)

The time complexity r of a self-stabilizing algorithm is the convergence time

in the worst case:
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r==∀
comβ〕琺現。れσ{Ct∫

°rθ } (2.2)

2.2 Symbolic Model Checking

Model checking is an automatic technique for verifying finite-state concurrent

systems I l]. In model checking, the system is modeled as a Kripke sffucture.

Let AP be a set of atomic propositions. A Kripke sffucture M over AP is a

three-tuple M : (5,R, -L) where

1. S is a finite set of states.

2. R 9,9 x S is a transition relation that must be total, that is, for every state

s € S, there is a state s' € S such that (s, s') e r?.

3. L : S -- 2AP is a function that labels each state with the set of atomic

propositions true in that state.

We say that an infinite sequence of states 7r : sssl . . ' is a path in the structure

M froma state s if ss : s &fld (sr, sr+r) € .R holds for all ? > 0.

In symbolic model checking, a Kripke structure is represented by Ordered

Binary Decision Diagrams (OBDDs). With this data structure, the memory and

time required to verify the system can be dramatically reduced.

2.2.I Computational TFee Logic

To verify a system described as a Kripke structure, we need to specify the proper-

ties that should be satisfied on the structure. To describe the properties, we usually

use the computational tree logic (CTL).

10
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The syntax of a CTL formula is given by the following rules:

o lt f € AP, then / is a CTL formula.

o If / andg areCTLformulas,then -.f, f ASand f V g are CTLformulas.

c If f is a CTL formula, then AX / is a CTL formula.

o If f is a CTL formula, then EX / is a CTL formula.

c If f is a CTL formula, then AF f is aCTL formula.

o If / is a CTL formula, then EF / is a CTL formula.

o If f is a CTL formula, then AG / is a CTL formula.

o If f is a CTL formula, then EG / is a CTL formula.

o If f and g are CTL formulae, then A(/ U 9) is a CTL formula.

o If f and g are CTL formulae, then E(/ U 9) is a CTL formula.

o If f and g are CTL formulae, then A(/ R 9) is a CTL formula.

o If f and g are CTL formulae, then E(/ R 9) is a CTL formula.

Here, AX, EX, AF, EF, AG, EG, AU, EU, AR, and ER are composed of two

components: path quantifiers and temporal operators. The path quantifiers are

A and E. Quantifier A means "for all paths," and quantifier E means "for some

paths." These quantifiers are used to specify that all of the paths or some of the

paths starting from a particular state have some property. The temporal operators

X, F, G, U, and R describe the properties of a path.

1l
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o X ("neXt time") requires that a property holds in the second state on the

path.

o F ("in the Future") requires that a property will hold at some state of the

path.

o G ("Globally") requires that a property holds at every state of the path.

o U ("Until") requires that if there is a state on the path where the second

property holds, then on every preceding state of the path, the first property

holds.

o R ("Release") is the logical dual of the U.

The semantics of CTL with respect to a Kripke structure M is defined as fol-

lows. Let a'be the suffix of z startingat s6. If / is a CTL formula, M,t I f
means that f holds at state s in the Kripke sffucture M , and M,n I / means that

/ holds at the first state of zr in the structurc M. Similarly, M 
= 

/ means that

/ holds at every state in the Kripke structure M. When the Kripke structure M

is clear from the context, we will usually omit it. The relation I is defined in-

ductively as follows (assuming that ap is an atomic proposition and f , g are CTL

formulae):

l.M,slapeap e I(s).

2.M,sF-"f QM,s*f.

3. M,s F / Ag e M,s I f andM,s ? g.

4. M,s F /Y g e M,t I f or M,s ? g.

12
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5. M,lr 
= 

f € s is the first state of T and M, t F f .

6. M,s I EX / ethereis apathzifroms such thatM,nt 
= 

f .

7. M,s IAX/<+foreverypathzrstartingfroms, M,nt l f .

8. M,s I EF/ <+thereisapatha.fromsandak > 0 suchthat M,nr ts f .

9. M,s I AF / <+ forevery pathr startingfrom s, thereis ak) 0 suchthat

M,nrlf.

10. M,s I EG/ <+thereisapathzrfromssuchthatfor alli,> 0,M,nu + f .

ll. M,s I AG / <+ forevery pathr startingfrom s andfor alli, > 0, M,ri I
{T.

12. M," F E(/Ug) <+thereisapathnfroms andthereexists ak) 0 such

that M,nr I gandfor all 0 < j < k, M,ni I f .

13. M,s F A(/ U g) <+ for every path r starting from s and there exists a

k > 0suchthat M,Tk F gandforall 0 < j .-k,M,"i ? f .

14. M,s F E(/ng) <+thereisapathzrfroms suchthatfor all j > 0, if for

every i,< j M,nn V f then M,ni I g.

15. M, s F A(/ n g) <+ for every path r starting from s, for all j ) 0, if for

every i,< j M,T' V f then M,ni F g.

2.2.2 Real-Time CTL

With CTL, we can describe a property. For example, the property that an atomic

proposition ap wlll eventually hold for any path can be stated as AFap. However,

13
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we occasionally need to describe a property such as that an atoIIllc proposition αp

will hold in 50 steps.Such properties are needed,for cxample,to ve五 fy network

COIIInuniCation protocols or embedded real¨ tilne control systems.

To desc五 be such properties,E.A.Emerson et al. augmented CTL to Rι αJ―

■
“
ιCZ (RTC¶ L)[16].In RTC‐ ,we can desc五 be a property that holds in a

bounded numberた of steps. To specify a boundた ,we use a notation such as

AF≦
ん
。

Here,some RTC[□L operators are simply abbreviations of other RTC]□ L oper―

ators.

●AF≦ん
∫≡A(ιruc U≦

ん
∫)・

●EF≦た
ノ≡E(trしθU≦

ん
∫)・

●AG≦ん
∫≡¬EF≦た¬∫.

●EG≦た
∫≡¬AF≦た¬∫.

●A(∫ R≦
んg)≡ ¬E(¬ノU≦

た¬g).

●E(ノ R≦
ん
θ)≡ ¬F(¬ノU≦

た¬θ)。

AX and EX already specify the exact number of steps when the property

should be hold(whiCh iS l),so We need not deflne their RTCTL versions.As

a result,we only need to deine the semantics of A(∫ U≦
た
θ)and E(∫ U≦

ん
g)・

●M,s卜 E(∫ U≦
んg)⇔ there is a path π ttom s and there exists a O≦ j≦ た

suchぬ at y,7「
C卜 g and fOr d1 0≦ J≦ j,M,π′卜∫。

●ν,s卜 A(∫ いたg)⇔ fOr eVery path π starting from s and there exists a

O≦ づ≦たSuch that y,π
ニ
トg and fOr a11 0≦ ノ≦j,ν

,π
′卜∫・

14
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2.2.3 NUSMV

NUSMV is a software tool for symbolic model checking that can support RTCTL.

In NUSMY a verified system or algorithm is described in a special language, the

NuSMV language.

The description of a system in the NuSMV language is called a NuSMV pro-

gram. A NuSMV program is composed of one or more modules, each of which

specifies a finite state machine , and there must be one module with the name

main.

Each module contains variable declarations that determine its state space, the

initial state and the state transition function of the machine.

Variable declarations start with the keyword VAR, and are composed of vari-

ables and their types. The type of a variable can be Boolean, an enumerated type,

or a user-defined module. An example of variable declarations is as follows:

VAR

f■ ag

enum

user

bool-ean;

{ a, b, c

MODULE A

Initial states and the state transition function are described as a collection of

parallel assignments to a variable. The execution of an assignment updates the

value of a variable. Assisnments start with the keyword ASSIGN.

15



CHAttR2.PRELIMINARIES

Initial states are assigned by specifying the initial values of the variables by

using expression init(r), where r is a variable. The expression nert(r) is used to

specify a value assigned to the variable in the next state. For conditional assign-

ments, a case expression is used.

An example of assignments is as follows.

init (x) :: 0;

next (x) :: x + 1-;

next (y) :: case

conditionl : expressionl;

condit1on2 : expression2;

condition3 : expression3;

| . \t.
It

esac;

Noted that the case expression is evaluated as the first right-hand side expres-

sion whose corresponding left-hand side condition holds.

16



Chapter 3

On Time Complexity of Dijkstraos

Three-State Mutual Exclusion

Algorithm

3。l lntroduction

ln this chaptet we prove a lower bound ofthe time complexity ofDttkstra's self―

stabilizing three― state mutual exclusion algo五thm by showing thatthere is a very

long computation.

This algo五 thm is one of the nrst self― stabilizing algo五thms[13].Although

more than 30 years have passed since its invention, the exact wOrst― case time

complexity of this algo五 thm is still u」 oowno The best― known 10wer bound on

the worst―case time complexity was given by Cherlloy,Shalon,and Zaks[9].They

proved the lower bound of l:η 2_0(η
)by ShOwing that there is an computation

oflength l:η2_10:η +14 when η=3た,whereん is a natural numbe■

17
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MUTUAL EXCLUSION ALGORIT剛

In this dissertation we give a lower bound on the worst― case tilne complexity,

which matches the best¨ known bound l:η 2_0(η
)[9]but iS mOre accurate.On

灘dition,our result applies when η=3た +l and η=3た +2.

The remainder of this chapter is organized as follows. In Section 3.2,we de―

sc五be the system and the algorithm. In Section 3.3,we prove a lower bound of

time complexity. In Section 3.4,we show a method to compute the tilne com―

ple対 ty using the modelchecking tool NuSMV In Secion 3.5,we summarize this

chapte■

3.2 Algorithm

We consider a system consisting of n processes ps, pt,,' ' ' tpn-L that are arranged

in aring. Process pt,(0 1i, 1n - 1) is adjacent tope_1) -o6," itrd Pp+r1modn.

Process p; has a local state ri € {0, 1,2} and can read the state of its adjacent

processes. A configuration is an n-tuple of process states (ro,rt,"' ,fr,._r)

(e {0, L,2}"). Dijkstra's three-state mutual exclusion algorithm is described as

follows (addition and subtraction are modulo 3):

Process ps (called bottom):

ifr6 * L : :tr ) rs :- ro * 2 fi.

Process pt,l 1i,1n - 2 (called other):

if

ri*l:ri-rlail:rl+1[]

h*L:ri+rls61:rtl7
fi

Process pn-1 (called top):

18
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Table 3.1: The algorithm in a tabular form (g' is the next configuration to g, i.e.,
C -- C')

Type Process g θ
′

0 p0 ″ 0 < a91 rglrl
1 pづ f;t ) Ii: Ii+l Ii-t:Iilfial
2 pt ri-l: fr6 ( r'i41 I;t 1 Ii: Ii+I
3 pt r*tlIi{Iia1 r,i_I-r,i-r,i+l
4 ρ二 fr;t)fr;)fri11 fii-t:filfiq1
5 pt It-t1if,i1Iiq1 I;t ) fri: fri+l
6 Pn-r frn-Z)Ij-11Ig In-21In-1)Ig
7 Pn-L ″π-2==″ π-1==″ 0 In-21frn-1)rg

frn-2: In-I : IO * In-I i: f"-Z -l I l]

In-2: In-I -l t : IO ) In-l '.: In-Z * I

fi

A process is enabled if the if condition is true. As described in chapter 2,

the algorithm runs in steps. In each step, exactly one enabled process executes

the statement of the algorithm, resulting in a new configuration. We write g €

G * g' € G if there is a computation that starts with g and leads to g'. Given

a computation gsg1...gr, a schedule is a sequence of processes p1p2...p; such

that for any i j I < i 1 I, po is enabled in gn-t and the execution of the statement

by pi in gi-l yields g;.

Since this algorithm is intended to ensure mutual exclusion, a configuration is

legitimate if exactly one process is enabled t131. A configuration is illegitimate

if it is not legitimate.

Proposition 1. [5] Dijkstra's three-state mutual exclusion algorithm is self-stabilizing,

if

19
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that is, the following two conditions hold:

A legitimate configuration occurs in any computation starting with any con-

figuration.

o If a configuration g is legitimate, then any configuration g' such that g ---+ gl

is legitimate.

The worst-case time complexity (or stabilization time in some literature) of

the algorithm is the maximum number of steps executed until a legitimate state

is reached. Formally, the worst-case time complexity is the length of the longest

computation gogt. . .p; such that gi is illegitimate for any'i,0 < ? < I and g1 is le-

gitimate. LetT(n) denote the worst-case time complexity of the algorithm. When

n is fixed, a number LB(n) is a lower bound on the worst-case time complexity

it LB(n) < T(").

3.3 Lower Bound

Our proof of a lower bound is relatively direct; We show some exfremely lengthy

computations where only the very last configuration is legitimate. Then we obtain

the length of these computations. By definition, the worst-case time complexity is

greater than or at least equal to that length, thus, the length of these computations

is a lower bound on the worst-case time complexity.

Our results apply when n ) 9. There are three cases to consider: (l) n : 3k;

(2)n:3k -t l; and (3) n:3k * 2, where k is anatural number. Foreach of

these cases, we provide a long computation that comprises three parts. First we

show the results for Case (1) and then proceed to the other two cases.

20
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To concise the proofs concise, we use the same notations as [9]. Notation

r;r 1 Jfi IIre?llS rt : (rt-t * 1) mod 3, while fr;r ) 14 rlr€4rrS q : (r;r -
1) mod 3. For example, configuration (1, 1,0, 1, 2,2,0) is represented as 1 : 1 )
0 < 1 I 2 : 2 < 0. With these notations, the algorithm is represented as a

collection of eight types of moves (types 0 to 7), as shown in Thble 3.1. Regu-

lar expressions over {(, ),:} are used to denote configurations. For example,

[:><2:a] is a possible notation for (1, 1,0, 1, 2,2,0).

Lemma 1. When n : 3k,n > 6, there is an computation of length n * 3 from

[<><"-t] to [::4n-31.

Proof. We show the existence of schedule pz psps. . .pn_2 pn_r po pr pr
\.2 .-'.- \-\-

Po Pt Pz 
tYPes 2 7 o 4 2

\/\./\,/
014

[<><'-t],

[<>>:<"-5], after 1 step of type 5:

[<>><"-t:], after n - 5 steps of type 2:

[<>><"'-n], after I step of typeT

(Note that rn-2 : rn-r : r0 in the previous configuration because n : 3k):

[>>><'"-n], after I step of type 0:

[:<><"-n], after I step of type 4:

[<:><'-n], after 1 step of type2:

l>:><"-nl, after I step of type 0:

[:>>a"-n], after I step of type 1:

[::<",-3], after I step of type 4.

Lemma2. When n ) 9,2 < k 1 n -6, and (n - k- 1) mod 3 : 0, there is a

computationof length n*9k * 10from l:k'-n-k-t] to 1:t+ean-k-al.

2l
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CHAttR3.ON TIME COMPLEXITY OF DIJKSTRだ S THREE― STATE
MUTUAL EXCLUSION ALGORITHM

Proof. We show the existence of schedule P*Pt"+t. . .Pn-2 Pn-r Pr"-tPte-z' ' 'Pr

-,-v*#
type2 7 2

PxPn-t " 'Pz Pn+tPk " 'pz Po Pz PzPs " ' Pr"+r PtPz " 'Pn Px+r Pr,+tPx " 'Pr

22051142
製 写 些 製 写 』 与 ↓ 竺 響 」こ電 り し

゛
220511

[:kqn-k-r1,

f:k-t qn-k-t:], after n - k - 1 steps of type 2:

f:k-r --n-k], after 1 step of type 7.

(Because that rn-2 : rn-I: z0 in the previous configuration

since (n, - k - 1) mod 3 = 0):

fq:k-r an-k-Ll, after k - I steps of type 2:

[<<:n-t<n-k-2f,afterk - 1steps of type2:

[<<<:u-t<"-r'-3], after k - 1 steps of type2

[raa:u-t <n-k-31, after 1 step of type 0:

l>>:r <"-e-3], after I step of type 5:

[>:o><'-k-3], after k steps of type 1:

l:r>><n-k-3], after k steps of type l:

f:k+Tqn-k-21, after 1 step of type 4:

[q:k+ran-k-3], after k + | steps of type2:

[< <:o*t <n-k-4f , after k * 1 steps of type 2:

[<<<:**t <''-k-51,after k * 1 steps of type2:

[taa:o*t <n-k-51, after 1 step of type 0:

[>>:**r<"-k-5), after 1 step of type 5:

[>:**,><n-k-5), after k * 2 steps of type l:

[:o*'>t<',-k-5),after k * 2 steps of type 1:

l:k+s qn-k-a], after I step of type 4. □
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Lemma3.When η≧ 6,there is a computation oflength 10η -30 from[=η
~4<<<]

t。 [=η
-4>=>].

― ―

V

Proof. We show the existence of schedule pn-apn-3pn-2 pn-r pn-spn-a. . .pr
V

type 2
pれ-4Pれ-5…・p2pれ _3pπ _4・ …P3 p。 p2 p2P3・ …pれ_3 PlP3・ …pれ_4 Pπ -3ρれ-3pπ_4…・Pl

VV―

―

V
2                2          0    5         1

こ■

=些
蟄こユ三二重し も 仁

lpれ-2pπ_3… ・P3p2
ノ

ー

ー2          0    7          2          5
ρ2p3・ …pれ_3 plp2・ …pη _4 pπ _2・

[:'-n<<<],

[:'-t < < <:] , after 3 steps of type 2:

[:'-t<<<<], after I step of type 7:

[<:'-t<<<], after n - 5 steps of type2:

[<<:"-t<<], after n - 5 steps of type2:

[<<<:'-t<], after n - 5 steps of type2.

[><<:"-u<], after 1 step of type 0:

l>>:n-n<1, after 1 step of type 5:

[>:"-n><], after n - 4 steps of type l:

f:"-n>><1, after n - 4 steps of type 1:

[:'-t<<], after I step of type 4:

[<:"-t<], after n - 3 step of type 2:

[((:'-t], after n - 3 step of type 2:

[><:"-t],after 1 step of type 0:

[><:'-'<], after 1 step of type 7:

[><<:"-n], after n - 4 steps of type2.

[>>:"-'], after I step of type 5:

[>:'-n>:], after n - 4 steps of type l:
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[:'-n>>:], after n - 4 steps of type 1:

l:n-n>:>], after one step of type 1.

Theorem L. When n:3k ) 9. we have:

1:η
2_4:η -2≦ T(η

)

P″のl By Lemmasl,2,and 3,there is a computation such that

(i)it iS represented as:[<><れ 刊→ [=2<れ
―
刊→ [=5<れ 旬→ .… →

[=れ
4<句 → [=叶

4>>=]→
[=π

~4>=>1,and

(ii)the length is

π -2

η―+3+Σ  (2+9(31--1)―卜10)―卜10η -30
づ==1

=1:η2_4:η -2                         .

The inal connguration ofthe computation,that is,I=π
~4>=>1,iS legidmate,

because only pれ_3 iS enabledo Now,conSider the illlllnediate predecessor conflgu―

ration to the inal coniguradon,that is,the(1:η2_4:η -3)一th cOniguradon。

This connguration,represented as I=η
~4>>=1,iS not a legitimate conigura■

on

because pη _3 and pπ _2 are bOth enabled.

From (ii)Of PrOposition l,if a legitimate conflguration occurs in a computa¨

tion,then all successor conflgurations in the computation must be legitilnate.Bc―

cause the(1:η 2_4:η -3)一 th cOnnguration is illegitimate,every coniguration

in the computation,except for the flnal conflguration,is illegitilnate. Therefore

the worst¨case dme comple対 ty is greater than or atleast equal to the length of the

□

computation.

24
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Forthe case n :3k t 1(Case (2)) and the case n:3k * 2 (Case (3)), a

bound is obtained in almost the same manner, except that Lemma I is replaced

with Lemma4 andlemma 5, respectively.

Lemma4. When n:3k + 1 > T,there is acomputation of length n * 10 from

[<>>><"-t] to [:::4'-a].

Proof. One such computation is [<>>><"-t] -- [():{n-nf .'.: [<><"-n:]
-* [<><"-3] --

[>><'-t] - f:1n-'] -- [<:<'-t] - [>:<"-t] -' [)((:<"-u] --+ [>>::arz-s] ^ r

[>::><'-u] * [::>><"-u] * l---a"-n]. Th" corresponding schedule is

. Pz .PsPa' ' 'Pn-z Pn-t Po Pt Pr Po PzPt Pz PzPs PtPz Ps tl
\z.--\-\-\-\z\-\-\-\-
tgpe4 2 7 O 4 2 O 2 5 1 1 4

Lemma 5. When n:3k+2 > 8, there is acomputation of length 2n*IIfrom

[<>> <"-n] to [::::<'-t].

Proof. One such computation is [<>><n-af ---+

[<>>>:<n-6] ^r [<>>><',-6:] r

[<>>><'-u] - [>>>><'-u] - [:<>><',-u] - [<:>><"-u] - [>:>><'-t] r

[>:>>>: <^-rl "- [):))><"-r:] -
[>:>>><n-6] ---+ [:]>>><n-6] ---+

[::<>><n-6] ^+ [<::>><n-6] ---+

[>::>><n-6] ^a [::>>><n-6] ---+

[---<><'z-6] ^ + [1:-:;>1n-Gl ---+

[1---;'4n-6] *r [--->><n-6] ---+ [----<,"-t]. th" corresponding sched-

ule is Pt PsPaPz ' ' 'Pn-2 Pn-1. Po Pt Pt Po Ps PaPzPa' ' 'Pn-2
\,2*.- \,/\-/\-/\-/
ιυpe 5          2            7     0     4     2     0     5            2

00じ も り 3錮′1カ ■2■ 物・
″ V早 V

1420142014

い）７□
25
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Theorem 2. When n :3k * I.n > 10. we have:

1:η
2_4:η -1:≦ T(2)・

Proof. Consider a computation [<>>><'"-t] '.^) [:san-a1 '\^) l:a1n-21 ^)

... +) [:n-aar1 ^.-> f:n-tr):] r l:"-n>:>]. BV Lemmas 4,2 and 3, this

computation indeed exists and its length is

rn-2

n t r0+ f(n + g. 3i+ 10) * 10n - 30
i:7

5. 1 I:lun"-arn-15

The final configuration [:"-+t:>] is legitimate because orly pn-s is enabled.

On the other hand, its immediate predecessor configuration l:n-n>>:l is illegir

imate, because pn-3 and pn-z ata both enabled. Hence, from (ii) of Proposition 1,

every configuration in the computation, except for the final configuration, is il-

legitimate. Therefore, the worst-case time complexity is greater than or at least

equal to the length of the computation.

Theorem 3. When n:3k I2.n > 11. we have

□

1:η
2_3:η -9:≦ T(η )・

Proof. Consider a computation [<>><n-+) '-+

[:a1n-s1 * l:, <n-t] * . . . "-+ [:n-n<t] -' [:'-n>>:] * [:"-n>:>]. By
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Lemmas 5,2, and 3, this computation indeed exists and its length is

m-2

2n-t rL+ !(n + 9(3? + 1) + 10) + 10n - 30
i:I

(5)
: lln2 - 3)n - 9"=663

The final configuration [:"-at:>] is legitimate, while its immediate predecessor

configuration [:"-at;:] is illegitimate. By the s:rme argument as the proof of

Theorems 1 and 2, every configuration in the computation, except for the final

configuration, is illegitimate. Thus, the worst-case time complexity is greater than

or at least equal to the length of the computation. n

3.4 Computing of Time Complexity Using NUSMV

The use of model checking for analyzing self-stabilizing algorithms was studied

in [36, 37]. We use these studies with some modifications to derive the worst-case

computations.

Here we explain how to translate a distributed algorithm written in the guarded

command language into the NuSMV program, and how to calculate the time com-

plexity. Figures 3.I,3.2,3.3, and 3.4 show the NuSMV program that represents

the three-state algorithm where n: 4.

3.4.1 Communication among processes

The communication among processes is described in the main module (Figure 3.1).

The main module declares four procesSesr pq, pr, pz, and p3. The behavior of ps,
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pt (0 < i. < n - 1), and pn-r ara specified by the modules bottom, other, andtop,

respectively.

A process can access other processes via variables specified as parameters of

a module type. For example, in Figure 3.1, process ps can access the state of

process plvia the variable state of pt.

3.4.2 Processes

We assume that a distributed algorithm is described in the guarded command lan-

guage. The behavior of a process is expressed as a module in the NuSMV pro-

gram. Figures 3.2,3.3, and Figure 3.4 describe the behavior of process ps, process

p; (0 < i, < n - 1), and process pn-1, tespactively.

In each module, the variable state denotes the state of the corresponding

process p;, while L and R aliases the state of its left neighbor pi-1, and its right

neighbor p111, r€Sp€ctively.

Here, the keyword DEFINE is used to associate a symbol with a commonly

used expression. Each definition of priv denotes that the process is enabled.

As mentioned before, we assume that in each step of computation, exactly

one process is selected from the enabled processes and it updates its state. In a

NuSMV program, however, all processes declared in the main module are exe-

cuted in a synchronous manner. The variable run denotes that a process is se-

lected. A process updates the state only if the value of run is true. The keyword

INVAR is used to specify a Boolean expression that is true for any reachable

states. Thus, by adding the declaration

INVAR

28
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―

 maln

VAR
pO
pl

p2
p3

bottom(pl .state );
other (p0. s tate , p2 . state );
other(pl. state, p3. state );
top(p2. state, p0. state );

DEFINE
legitimate := (p0. priv + pl . priv + p2. priv + p3 . priv = 1);

INVAR
p0. run + pl . run + p2.run + p3. run = I

Figure 3.1: NUSMV program of the three-state algorithm (main module).

run -> priv

to each process, we can guarantee that a process is always selected from the en-

abled processes. On addition, by adding the declaration

INVAR

p0. run + p1. run + p2. run + p3. run : 1

to the main module, we can specify that the number of selected processes is ex-

actly one.

The statement is divided into one or more assignments each of which updates

a variable. The value of a case expression is determined by the first expression

on the right-hand side of a ":" such that the condition on the left hand side is

true. Thus, the righfhand side expression corresponds to the statement, and the

condition is a conjunction of run and the guard, which means that when a process

is selected, the value is updated according to the action whose guard is ffue.
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NIODllLE bottom(R)
VAR
state:{0,1,2};
ru n   : boolean;

DEFINE
priv :=(state+1)mOd 3=R;

INVAR
ru n ―> prlv

ASSIGN
neXt(State):= caSe

run : (State + 2)mod 3;
1   : state;

esac;

Figure 3.2: NuSMV program of the three-state algorithm (bottom module).

L(DuE Other(L,R)
VAR
state:{0,1,2);
run   : boolean;

DEFINE
priv := ((state + 1)

((State + 1)
INVAR

run ―> prlv
ASSIGN

neXt(State):= caSC
ru n :(State + 1)
1   : state;

esac;

一一
　

〓

３

３

ｄ

ｄ

０

　

０

ｍ

　

ｍ

L)|
R);

mod 3;

Figure 3.3: NuSMV program of the three-state algorithm (other module).
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MOD■lLE top(L, R)
VAR
state:{0,1,2};
run   : boolcan;

DEFINE
priv := (L=R)& (state != ((L + 1)mod 3));

INVAR
run ―> prlv

ASSIGN
neXt(State):= caSC
ru n :(L+ 1)mod 3;
1   : state;

esac;

Figure 3.4: NUSMV program of the three-state algorithm (top module).

3.4.3 Computing of the Time Complexity

In the main module, legitimate configurations are defined by the symbol legit imate.

The convergence time ct from configuration g e G is the least number of

steps such that g I AF<"tlegi,t'imate holds. Thus, the time complexity r of a

self-stabilization algorithm is calculated as follows:

r : 1n?X {min {k I g 
= 

AF<n P}} .

vsec'

In a NuSMV program, we can calculate the stabilization time by a COMPUTE

MAX statement:

COMPUTE MAX I L, Iegitimate l

This statement takes two Boolean expressions. The general form of this state-

ment is COMPUTE MAX I A, B ] , where A is the expression that evaluates to
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true in the initial configurations. Then, the statement enforces NuSMV to compute

the following value:

, : 
W?6,{min{k I g 

= 
AF<*P}},

where G' g G and the Boolean expression a holds for any g € G'.

The Boolean expression I means tautology. This reflects the fact that a stabi-

lizing algorithm can start from any configuration.

3.4.4 Extracting Worst-Case Execution

Using the computed time complexity, the worst-case computation can be exffacted

by checking the following RTCTL specification:

SPEC ABF O 。。 (r - 1) ■egitimate

where r is the computed time complexity. This specification corresponds to the

expression AF3'-1legi,ti,mate. NuSMV checks that any computation starting

from any state reaches a legitimate configuration in r - 1 steps. This specification

does not hold because there is a computation whose length is r. Thus, NuSMV

provides one of the worst-case computations as a counterexample.

A counterexample is a sequence of the values of each variable as follows:

p0. state 0

*1 ^+^+^ 1

p2. state : 2

P3. state : 3
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p0. state : 1

We can obtain the sequence used in our proof by using the program shown in

Appendix 3.6.2.

3.4.5 Analysis of Counterexamples

Here, we can obtain only one counterexample. We can get another counterexam-

ple by adding INIT constraints as follows:

INIT

lt

(p0.state 0) &

(p1 . state : 1) &

(p2. state 2) &

(p3.state 0)

)

INIT constraints are used to specify a Boolean expression that must hold on initial

configurations. By removing an initial configuration of a counterexample using

II.[IT, we can obtain another counterexample for the RTCTL specification.

The RTCTL specification eventually holds when we iterate to add an INIT

constraint and get a counterexample because the number of initial configurations

is finite. Then, we found that only a few configurations can be the initial config-

uration of a worst-case computation. The result leads us to the proof described in

this chapter.

33



CHAPl田R3。 ON TINIIE COMIPLEXITY OF DIJKSTRAS THREE― STATE
MUTUAL EXCLUSION ALGORITHⅣ I

Table 3.2: Exactworst-case time complexity. It coincides perfectly with our lower
boundfor9 ( n <-20.

worst-case time complexity T(n)
109

137

170

212

250

296

348

396
455

517

575

647

3.4.6 Results

Using NuSMY we also mechanically computed the exact worst-case time com-

plexity for 9 ( n I 20. Interestingly, the complexity exactly matches our lower

bound. Table 3.2 shows the concrete figures for this range of n. Based on this

finding, we conjecture that our lower bound is the exact worst-case time complex-

ity when n ) 9. If our conjecture is true, then it is also true under a distributed

scheduler, because any single step under a distributed scheduler can be simulated

by a sequence ofsteps under acentralized scheduler [5, 8].

3。5 Summary

In this chapter, we proved a lower bound of the time complexity of Dijkstra's

self-stabilizing three-state mutual exclusion algorithm, and showed a method for

９
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computing tilne complexity by using model checking.

The best― known lower bound on the worst¨ case tiine complexity was given

by Chemoy,Shalon,and Zaks[9].They prOved a lower bound of l:η 2_0(η
)

by showing that thc,is a SChedule of length l:η 2_10:η
■ 14 when η = 3た。

Although our bound matches l:η 2__(9(η
),OurS iS tighter than l:η

2_10:η +14

when η=3た。When η=3た ≧ 9,we have:

(1:γ
し
2

=6η ― |

-4:η -2)一

16>0

10:η +14)一η

５

一
６

１
■

／
′
‐
ヽ
ヽ

On addition, our result applies when n : 3k* 1 and n : 3k * 2.

We have thus assumed that exactly one enabled process executes the statement

of the algorithm in each step. This model is often referred to as the centralized

scheduler model. A different model could be that any subset of enabled processes

can be selected in each step, which is called the distributed scheduler model. The

three-state algorithm is correct in the latter model [5]. Clearly, the proposed lower

bound holds under the distributed scheduler, because any computation in the cen-

tralized scheduler model is also possible in the distributed scheduler model.

We obtained the computations used in our proofs by analyzing the algorithm's

behavior with the NuSMV model checking tool [10]. Model checking is a state

exploration-based verification technique. The use of model checking for analyz-

ing self-stabilizing algorithms was studied in [36, 37]. We used these studies with

some modifications to derive the computations used.

On the following appendix, we show the program for generating a NuSMV

program (3.6.1) and the script for formatting a counterexample (3.6.2).
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3.6 Appendix

3.6.1 Script for Generating NUSMV Program

The script gen is written in Perl. When you enter a natural number n > 2,

this script generates the NuSMV program of Dijkstra's self-stabilizing three-state

mutual exclusion algorithm with zz processes.

#! / usr / bin I env perl

# File name: gen

use strict;
use warnings;

sub usage;

usage;

my $N = (shift) 0;

$N > 2 ll usage;

print <<EOT;

MOD■lLE bottom(R)

VAR

state:{0,1,2};
run   : boolean;
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DEFINE

priv :=(state + 1)mOd 3〓 R;

INVAR

run ―> prlv

ASSIGN

next(state) := case

run : (state + 2) mod

1 : state;

esac;

NIOD■uo

VAR

state

run

DEFINE

prlv

ther(L,R)

{0,1,2};
boolean;

:= ((state + 1) mod

((state + 1) mod

mod

一一　

　

〓

３

　

　

３

L)

R);

INVAR

run -> priv

ASSIGN

next ( state ) := case

run:(state+1)

I : state;

esac;
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m top(L, R)

VAR

state:{0,1,2};
run   : boolcan;

DEFINE

priv :=(L=R)&

(State != ((L + 1)mod 3));

INVAR

run 一> prlv

ASSIGN

neXt(State) := caSe

run :(L+ 1)mod 3;

1   : state;

esac;

MOD{-ILE main

VAR

p0 : bottom(pl.state);

EOT

for(my $i = 1; $l < $N - 1; ++$i){

print " p$i : other (p" , $i I , ". state , P" ,

$i + l, ".state);\n";
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)

print " p", $N- 1

".state, p0.state

, " : top(p", $N - 2,

);\n";

print "DEFINE\n";

print " legitimate := (" ,

join(" + ",

map { "p$-. priv" } tO $N - 1)),

" = 1);\n";
print "INVAR\n";

print " ", join(' + ',
map { "p$-.run" } (0

), " = l\t";

$N - 1)

sub usage {

print STDERR <<EOT;

Usage : gen n

The number of processes (n > 2)

exit 1;
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3.6.2 Script for Formatting a Result

The script f ormat converts a counterexample to the sequence of {<,:, )},
which is used in our proof. This script is used as follows:

$ NuSl,liZ input. smv I . /format

#l / usr lbin / env perl

# File name: format

use strict;
use warnings ;

my @ states =

while(<>){

if(/State: 1ヽ .＼ d+/){

prettify(@States)

}elSif(/P(＼ d+)＼・State

$states[$1-0]=

if(@States

= (＼ d)/){

$2-0;

)

prettify ( @ states

A NUSMV program "input.smv" must contain the RTCTL specification.

sub operator {
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$_[0]

($_[0]

sub prettify t
my @src =

$_[1]?

1)%3==$_[1]?

$SrC[$_]

-1),

print j oin (

map {

operator

} (0 。. $#Src

), "＼ n";

$SrC[$_ + 1]
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Chapter 4

On Time Complexity of Hsu and

Huang's Maximal Matching

4.1 Introduction

In this chaptet we discuss the time complexity of the self― stabilizing algo五thm

proposed by Hsu and Huang in[25],whiCh flnds a inaxiinal lnatching in a net―

worko ThiS algorithm is the flrst self― stabilizing maxllnal matching algo五 thm and

has been regularly cited in the literature. Based on this algo五 thnl, many self¨

stabilizing algorithms were thereafter developed for the maximal rnatching prob―

lenl and its vanants[6,20,19,21,32,27].

Bccause of its technical importance,the time comple対 ty of this particular

algo五thm has been well studied.In[25],Hsu and Huang show thatitis boundcd

by O(η 3),wheК
 η iS me number of processes.In[34],Tel prOvides an almost

tight upper bound,which is:η 2+2η
 tt l if η is even and:η

2+η _:if η iS Odd.

In[35],Tel giVes a morc concisc proof forぬ eO(η2)bound man[34].In[23],
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Hedetniemi, Jacobs, and Srimani provide an upper bound of 2lEl * n, where lEl

is the number of edges. This gives a better bound than the one in [34] but only if

the network is sparse. In this chapter, we provide the exact time complexity of the

Hsu-Huan algorithm.

The remainder of this chapter is organized as follows. In Section 4.2, we

describe the algorithm. In Section 4.3,we prove the upperbound of the time com-

plexity. In Section 4.4,we prove that the upper bound is the exact time complexity

by showing a computation whose length matches the upper bound. In Section 4.5,

we summarize this chapter.

4。2 The Hsu-Huang Algorithm

We consider a distributed system consisting of n (> 2) processes. The topology

of the system is modeled as an undirected graph. Let N(p) denote the set of a

process p's adjacent processes (neighbors).

Given an undirected graph G : (V,,8) where 7 is a set of nodes and E is a

set of edges, amatching M is a subset of edges where no two edges share a node.

If no matching M'is a superset of a matching M,then M is amaximal matching.

We consider the problem of finding a maximal matching of the graph.

Each process p has a pointer. The pointer either points to one of p's neighbors

that p selects to match or has a null value. The notation p ---+ q denotes that p's

pointer points to q € N(p), the notation p ---+ null denotes that p's pointer has a

null value, and the notation p e qdenotes that p ---+ q A q ---+ p.

Each process p is in one of the following five states:

l. If lq e l/(p) : (p -- q) n (q ---+ null), then p is waiting.

44



4.2.THE HSU― HUANG ALGORITHM

2. If 1q e l/(p) : p e g, then p is matched.

3. If 1q e l/(p), -r e,n/(q) t (p -, q) n(q -- r) A (, I d,thenp is chaining.

a. n (O ---+ null) n (Vq e l/(p) : q is matched), then p is dead.

5. If (p ---+ null) n (lq e l/(p) : q is not matched), then p isfree.

A maximal matching is found iffevery process is either matched or dead.

The Hsu-Huang algorithm at each process p is given by the following three

rules.

if
(p---+null)n(:qe l/(p) : q_-+p)+p-+q[] (nr)

(p---+null)A(Vre l/(p) : -(r--p))n(:qe l/(p): q---+nuII)+p-+q [] (fi2)

(p * q) A (q-- r) n (r # p) + p-- null (fia)

fi 7

where each rule is of the forrn guard + acti,on. Each rule is executed atomically

and no two processes can execute a rule at a time.

A configuration of the system is a collection of the pointers of all the pro-

cesses. ln [25], it is proven that any computation of the algorithm is finite, and

every process is either matched or dead in the last configuration of any maximal

computation, meaning that the system always converges to a configuration where

a maximal matching is obtained. The time complexity of the algorithm is the

maximum number of steps (that is, rule executions) required to find a maximal
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matching. Thus, we have

(time complexity) : (the length of the longest computation) - 1

4.3 Upper Bound on Run Lengths

Our derivation of the upper bound on the time complexity follows the basic line

of [34]. In [34], similar to many self-stabilization literatures, time complexity

is analyzedusing thevariantfunction technique. Avariantfunction is afunction

over configurations, whose value is monotonically decreases (in our context) when

processes execute a rule of the algorithm.

Our variant function is a tuple (X,Y), where X andY are functions that map

a configuration to a non-negative integer as follows:

「守 ]OVen→

[守」Odd→

十∫

where c, f , and w are the number of chaining, free and waiting processes, respec-

tively. For odd n,the variant function is identical to that of [34]. The modification

made is that a different expression of X is used for even rl. As stated later, this

subtle modification is critical to obtain the exact time complexity.

The variable function is evaluated in lexicographical order; i.e., X is evaluated

first and then Y. Below we show that this function indeed decreases monotoni-

ｒ
ｌ
ｌ
′
ヽ
―
―
ヽ
　

た

〓
一　
　
　
　
　
一一一

χ

y
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cally when a rule is executed. As in [34), animportant observation is that c-t f *w

never increases because by the design of the rules, matched or dead processes re-

main matched or dead. Thus, it suffices to see that either X or Y is decreased by

the execution of a rule. In the following description, p, Q, and r refer to p, q, and

r in the rule definition described in Section 2.

Execution of RuIe Rr Rule ,R1 is enabled only when p is free and q is waiting.

When it is executed, p and q become matched. Dead or matched processes do not

change their state. Hence, the rule execution decreases c + f * Tl by at least 2,

thus decreasing X by at least 1.

Execution of Rule Rz Rule R2 is enabled only when p is free and causes p to

become waiting. Because no process is waiting forp (Vr e l/(p) : -(r ---+ p)), the

waiting process becomes neither chaining nor free. Except forp, all free processes

remain free. Hence, the execution of the rule decreases Y by l.

Execution of Rule R3 This rule is enabled only when p is chaining and causes

p to be free or dead by setting p's pointer to null. No process becomes chaining.

On addition, no waiting process becomes free because p is the only process that

makes its pointer null. Hence, the execution of ,R3 decreases Y by at least 1.

In summary, the execution of any of the three rules either: (1) decreases X, or

(2) decreases Y, but does not increase X. This leads to the following observation:

Observation l. Any computation g$2. . . gt is a concatenation of computations

ort... ,o* such that: (l) all configurations in o6 have the same F value; (2) if

configurations g j g' occur in oi and oiL4 resp€ctively, then X(g) > X(g'), and (3)
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if configurations g, g' consecutively occur in oi, then Y (g) > Y (g').

This is schematically represented as follows:

・…  島 2   %-1 島   %+1  …・

…・・…=χ (の_2)=X(の 1)>χ (島 )=X(%+1)=… ・・…

…・>y(島_2)>y(の 1) y(島 )>y(%+1)>・ …   ・

Another observation used in obtaining the upper bound is as follows:

Observation 2.Bθεα
“
sι α″αj′

Jκg′″ειss″αjお
ル rαル ι′″ειStt υ ≧ lj″ηJjιs

∫≧1.″ι″ει θ≧1グ c十 ∫+ttl≧ 1′ θ=0√ C+∫ 十υ=0.

Our de五vation ofthe upper bound reflnes the one by Telin[34]in three ways.

●■le andysis of the coniguradons where X=[号 」is reined(Lerllma 6).

This reducesthe upper bound by 4 if η ls even and by 2 if η ls odd。

● The new varlable function a1lows the reduction ofthc upper bound by η-2

forthe case of even η(LcIIma 7).

●The analysis ofthe con■ gllrations where X=O is reflned(LcIIuna 8).This

reduces the upper bound by l forthe case of even η。

As a result,the new bound is smaller than that of[34]by η+3 if η is even,and

by 2if η is odd.

Lemma 6.1/α εοttθ
“
″

`jο

κ θlg2・ …a Sα″げιS X(gl)=・ …=XlgJ)=[号」,

滋ι″滋′′θ

“

gtt ιげ 力
`ε

θ″?“″ガο″おα′
“
οs′ 2η -2.
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Proof. From Observation 2, Y (96) ) 1 for any 9r. lt Y (g1) I 2n - 2, then the

lemma follows trivially. Thus, in the following proof, we assume that 2n - 1 <

Y (gt) 1 2n and proceed as follows. We first show that under this assumption,

there is always a "cycle" of chaining processes in gr. Then, we show that I (

2n-2 holds in two cases: (1) none of the processes consisting of the cycle execute

a rule in the computation, and (2) some process in the cycle executes a rule.

Becauseof the assumption of 2n - 1 < Y(gr) l2n,either c: n- 1tt,7 :

1 Aa; : 0 or c : n A f : w : 0 holds in 91. Hence,in g1,every chaining process

has a pointer pointing to another chaining process. (Note that even if f : 1, u

chaining process cannot point to that free process, because if a process p has a

pointer to a free process, then, by definition, p is a waiting process.)

ln gt, therefore, there is at least one cycle ofchaining processes, that is, there

is asequenceof processospl, p2,...,p162 SUCh thatp; + pt+t forall i,I < i, <

len - I and p1"n - pt.By the definition of a chaining process, the cycle contains

at least three processes, that is, len ) 3.

If none of the processes consisting of a cycle execute a rule in the computation,

Y(gt) ) 6, because len ) 3 implies c ) 3. In that case, because 2n ) Y(gr) >

Y(gr)

Now, consider the case where some process in the cycle executes a rule in this

computation. Note that only -R3 can be executed by this process. Let p be the

first process that executes the rule in the cycle, and let gibe the configuration in

which this rule execution occurs. Then, Y (g) - 3 > Y (gn*t), because p becomes

free, and the process that points to p in the cycle becomes waiting, resulting in

a decrease in c by at least 2 and an increase in / by l. Because 2n > Y(gr) >

Y(gr)
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□

Lemmas 7, 8, and 9 apply to the case of evenn.

Lemma 7. Whenn is even, if a computation g$2...g satisfies X(gr): " 'i :

X(g,) : r ) 0, then the length I of the computation is at most 4n.

Proof. Y(gt) I 4r, because c is at most 2r. From Observations 1 and 2,4r )

Y(g') > Y(sr)

Lemma 8. When n is even, if a computation g$2..' g satisfies X(gr) :'' ! :

X (g,) : 0, then the length I of the computation is l.

Proof. Whenn is even, if X :0, then c+ f 'tw:0and2f *ut:0. Hence, the

computation contains exactly one configuration in which every process is matched

ordead. n

Lemma 9. When n is even, the length of any computation is at most:

十 η -1

P″げ BCCause therc are η processes,0≦ X≦ 号and O<号・ From Obser―

vation l and Lemmas 6,7,and 8,the upper bound on the computation length is

derived as follows:

号-1

(22-2)十 Σ〕4“ ―+1
¢=1

=:η
2+η _1

η

１

一
２
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Lemmas 10, 11, andl2applytothecaseof oddn.

Lemma 10. Whennis odd, if a computation g$2.--91 satisfies X(gr): ... :

X(gt) : r ) 0, then the length I of the computation is at most 4r * 2.

Proof. Y (gt) I 4r * 2, because c is at most 2r f 1. From Observations I and 2,

4r*2>Y(gt)>Y(gr)

Lemma II. Whennis odd, if acomputation g$2...9 satisfies X(gt): ... :

X(gr) : 0, then the length I of the computation is at most 2.

Proof. At each configuration gi in the computation, either c + f * tr : 1 or

c+ f I u) :0, because X(gr) :0.

If c* f +.:1,then 2c* f :2,becauseneither c:'tD:0A,f :1nor

" 
: f : 0 A w : Lis possible, This is because a process can be free or waiting

only if at least one of its neighbors is neither matched nor dead. If c * f + w : 0,

then2c* f :0. As aresult, Y(gt) :2 (if c+ f I w :1) orY(91): 0 (if

c + f I u) :0) for any gt in the computation, thus, the computation length is at

most 2. n

Lemma 12. When n is odd, the length of any computation is at most:

:η

2+2__:

P″グ BeCause there are η processes,0≦ X≦ [号」and o<[号」.From Obse■

vation l and Lemmas 6,10,and 12,the upper bound on the computation length is
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derived as follows:

Oη ―幼十Σ
“

″十の+2
ω=1

=:η
2+η _:

□

4.4 Exact Time Complexity

In this section, we provide the exact time complexity, by showing an algorithm

execution whose computation length exactly matches the upperbound obtained in

the previous section. This example of execution is identical to that shown by Tel

in [34]; however, the computation length is analyzed only for the case of even n.

Here, we provide the exact computation length for the case of odd n, generalizing

his result to any n. Before presenting our result, we first describe this execution

to clearly show how the result is derived.

Suppose that the system consists of n ) 3 processes pr,pz,'.. ,pn and that

the topology of the system is a complete graph. On addition, suppose that initially

Pt -+ Pz,Pz + PJ,"' tPn-7 + Pn'Pn + Pt-

1. Re is executed by n - 1 processes pt pz,. . . tpn-r. As a result, all of the

n - l processes become free, and p' becomes waiting for p1.

2. Rz is executed by n - 2 processes pz,ps, . . . ,pn-Ito point p1.

3. Rt is executed by p1 to match p",. As a result, pl and p,, become matched,

and the other n - 2 processes become chaining.
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Phases 1-3 result in n - 2 chaining processes and two matched processes.

Phases 4-6 start with n - i matched processes and z (> 2) chaining processes

pointing to a matched process. Initially, i, is n - 2.

4. Rt is executed by the i chaining processes. As a result, all of the ,i processes

become free.

5. Let p be any one of the e free processes. The free processes other than p

execute R2 to point p. The i - 1 steps cause these free processes to become

waiting.

6. Rr is executed by one of the waiting process, say q, to match p. As a result,

p and q become matched, and the other e - 2 processes become chaining.

Phases 4-6 are repeated with i replaced with z - 2 until at most one chaining

process remarns.

As a result, all the processes become matched if n is even, whereas a single

chaining process remains if zz is odd. In the latter case, Phase 7 is performed.

7 . Rs is executed by the chaining process, causing the process to become dead.

The number of steps of the above execution is expressed as follows: For even

n:

号-1

2η -2-十
Σ   (2″

+ (2“ -1)+1)

"=1

=:η2+η _2
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For odd n:

[号 」-1

2η -2+ 
Σ   (2(″

―+1)―+2″ ―+1)+1
″=1

=:22+η _:                       .

For the case η=2,we can consider the following scenano.Starting with two

free processes,the execution of」 R2by eaCh of the processes leads to a flnal con…

ngllratiOn where both are lnatchedo The number of steps involved in this example

is two,which coincides with the above expression.

Theorem 4.劉りθ ιχαε′′j“ι εθttρ′αJク げ 力ιαなοri厖″ JS ιヲΨ″ssιグαSuわ〃οwsr

:η

2+η _2

:η

2+η __:

(`ソικ 2)

(οα  η)

Proof. By Lemma 9 and Lemma 12, these expressions represent the upper bound

on the time complexity. The above examples of algorithm execution show that

these expressions also represent the lower bound. tr

4。5 Summary

In this chapter, we analyzed the time complexity of Hsu and Huang's self-stabilizing

maximal matching algorithm [25]. Refining the result by Tel [34], we provided

the exact time complexity.

The fact that the upper bound by Tel is very similar to the time complexity

computed using model checking (see Table 4.1) leads us to find our proof. On the
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# of Processes Upper Bound Computed
3 7 5

4 18 10

5 17 15

6 32 22

7 31 29

Table 4.1: Upper bound and computed time complexity of Hsu-Huang algorithm

following appendix, we explain a NuSMV program for computing the time com-

plexity of the Hsu-Huang algorithm, and show a program to generate a NuSMV

program for n processes.

4.6 Appendix

4.6.1 
. 

Example of a NUSMV Program

Here we show an example of a NuSMV program to compute the time complex-

ity of Hsu and Huang's maximal matching algorithm with three processes. Fig-

ures 4.1, 4.2, 4.3, and Figure 4.4 represent the program. Note that this program

assumes that the topology of the system is a complete graph to avoid the state-

explosion problem.

To compute the time complexity of the algorithm on any topology, a NUSMV

program must contain flags irrespective of whether processes p and q are neigh-

bors. This makes the state space of the program larger. Fortunately, it is sufficient

to compute the time complexity of this algorithm on a complete graph to compute

the worst-case time complexity.
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Ⅳm maln
VAR

pl

p2
p3

rl

r2

r3

{ o, 2,
{ o, 1,
{ o, 1,
boolean ;

boolean ;

boolean ;

１

１

１

３

３

２

Figure 4.1: NUSMV program for maximal matching (main)

Here, we consider a computatiofr gr, . . . , gt to be the longest computation on

a graph G that is not a complete graph. When the number of dead processes is

1 or 0, the length of the longest computation on a graph Gt that is generated by

adding an edge to G is larger than or equal to that on G. When the number of dead

processes is larger than or equal to 2, there is a longer computation on G' that is

generated by adding an edge between the two dead processes. The processes can

execute a rule to be matched each other from 91. Thus, the longest computation

on a complete graph is the worst-case computation.

Figure 4.1 represents the system. The variable pi (i €. {L,2,3}) is the pointer

of a process. If pi : 0 holds, then the pointer does not point to any neighbors. If

pi I 0 holds then the pointer points to the process pi. Because we use 0 as null

value, the index of the processes starts with 1. The variable ri (z € {1,2,3}) is

used to represent that the process is selected to execute a rule.

In Figure 4.2, mi and di (I < i. ( 3) represents expressions that hold when

a process is matched or dead, and legitimate represents an expression that holds

when all processes cannot execute a rule, that is, when a configuration is legiti-

mate.
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DEFINE
ml:=((pl=2)&(p2= 1))
虚  := ((p2 〓 1)& (pl 〓 2))
m3:=((p3=1)&(pl=3))
dl:=(pl=0)&虚 &“ ;

d2:=(p2=0)&ml&m3;
d3:=(p3=0)&ml&虚

;

legitimate := rl + r2 + r3 =

((pl=3)&(p3= 1));
((p2=3)&(p3〓 2));

((p3=2)&(p2=3));

0;

Figure 4.2: NUSMV program for maximal matching (matched and dead)

Figure 4.3 represents rules that are executed by process 1. We omit the rules

for other processes because they are redundant for explanatory purposes.

For R1 and Rz, we need to specify all of the possible combinations of condi-

tions about their neighbors because a case expression evaluates to the first right-

hand side value whose left-hand side condition holds. If we used the following

expressions to describe -R1:

rl

rl

＆

　

　

＆

(pl=0) & (p2=1)           : {2

(pl=0)           & (p3=1) : {

}′

3}′

then pl would always become 2 when rlk(pL : 0)U(p2: 1)&(p3 : 1) holds.

The value of ri (1 < i < n) is determined by a set of invariants. Figure 4.4

shows two of them. The first invariant specifies that a process 
- process I in this

case - must be enabled for some rule when it is selected for computation. This

invariant is needed for every process. The second invariant specifies that all ri

becomes false only when all processes are matched or dead.
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ASSIGN
neXt(pl):= Casc

― Rl
rl&(pl=0)&(p2〓 1)&(p3=1)
rl&(pl=0)&(p2〓 1)

rl&(pl=0)     &(p3=1)
一― R2
rl&(pl=0)&(p2〓 0)&(p3=0)
rl&(pl〓 0)&(p2=0)
rl&(pl〓 0)      &(p3〓 0)

一一 R3
rl&(pl=2)&(p2〓 3)

rl&(pl〓 3)     &(p3〓 2)

1

esac;

１

１

１

　

　

１

１

１

３

　
　
　

３

　
　
　

３

　
　
　

３

２

２

　

　

　

２

２

Ｉ

Ｉ

Ｉ

　

て

Ｉ

Ｉ

0;

0;

pl;

Figure 4.3: NuSMV program for maximal matching (assignment forpl)

INVAR
rl ―> (

―― Rl or R2
((pl=0)&((p2=1)|(p2=0)|(p3=1)|(p3〓 0)))|

一 R3

((pl=2)&(p2!〓 0)&(p2!=1))|
((pl=3)&(p3!=0)&(p3!〓 1))

)

INVAR
legitimate― >((ml l dl)&(m2 1 d2)&(m3 1 d3))

Figure 4.4: NuSMV program for maximal matching (a part of invariants)
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4.6.2 Script for Generating a NUSMV Program

This sc五pt generates a NuSMV prograln ofthe IIsu―Huang algodthin with η pro―

cesscs. Tb compute the time complexity9 you need to add thc following expres―

slon:

COMPUTE MAX [ 1′  ■egttt imate ]

#! lusrlbin/env perl

# Filename: gen

use strict;
use warnings;

sub usage;

sub powerset;

sub Rl ;

sub R2;

sub R3;

usage;

my$N= (shift) 0;

$N > I ll usage;

@PROCESSES= 1 ..

7NEIGI‐IBORS=map{
町
　
町

$N;

59
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１
　
町

-y $p = $-;

$p => [grep t $- != $p ] @PROCESSESI

@PROCESSES:

TdOWERS = mop {

$- =1 powerset (@{$NEIGIIBORS{ $- } }l
}@PROCESSES;

print "MODIILE main\n" ;

print "VAR\n";

for my $i (@PROCESSES){

print " p$i : { 0, ",
join (',', @{$NEIGI{BORS{$i }}),
" );\n";

)

for my $l (@PROCESSES){

print " run$i : boolean i\n";

)

print "DEFINE\n ";

for my $i (@PROCESSES){

print " m$i:= (\n";

print join (" l\n",
map {
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''x4."((p$i=

}@{$NEIGHBORS{$i}}

), "ヽ n";

print " );\n";

for my $i (@PROCESSFS){

print " d$i := (\n";
print ' ' x 4, "( p$i =

print join(" &\r", map

')x4."m$-"

) @{$NErcrrBoRS{ $i } }),
print " );\n";

)

$_)&(p$_=Si))"

0)&ヽn";

{

"＼ n";

print " legitimate := ",
join (" + ", map { "run$-" } @PROCESSES),

,, = 0;\n,,;

print "ASSIGNヽ n";

for my Si(@PROCESSES){

print "  next(p$i) :〓  Caseヽ■";

Rl$i;
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R2 Si;

R3$i;

print ' ' x4, "1 : p$i;＼ n";

print " esac;＼ n＼ n";

for my $i (@PROCESSES){

print "INVAR\n";

print " run$i -> (\n";

#Rl or R2

print''x4,"((p$i=0)&('',

jOin(" |",map{

"(p$_ = $i) |(p$_ = 0)"

}@{$NEIGIIBORS($i}}), ''))|ヽ n";

print join("|＼ n",map{

' 'x4."((p$i=$)&(p$ !=0)&(p$ !〓 $i))'

}@{$NEIGHBORS{$i}}), "＼ n";

print " )\n\n";

print "INVAR\n";
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print " legitimate -> (",
join(" & ", map { "(*$- | d$-)" } @PROCESSES),

")\n\n";

print "INVAR\n ";

print " ", join(" + ", map { "run$-" } @PROCESSES),

sub usage {

print STDERR <<EOT;

Usage : gen n

n The number of processes

EOT

)

sub powerset {

my @result = O;

my $mask = (1

for (; $mask > 0; --$mask){
my $tmp = tl;

for(my $i = 0; $i < @-; ++$i){
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if($mask&(1

puSh(@Stmp,

}

<< $i)){

$_[$i]);

push(@result, $tmp;'

return I sort { $#{$b} <=> $+{$a} } @result l;

sub Rl {

my$p〓 s hift

print ' ' x 4, Rl\n " ;

for my $aref (@{$PowERs{$p}}){

print ' ' x 4,

join(" &", "run$p", "(p$p = 0)",

map {

"(p$- = $p)"

) @$aref ),
" : { ", join (", " , @$aref ), " };\n";
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sub R2 {

my$p=

print '

shift;

' x 4, "― ― R2＼ n";

f or my $ aref (@{$Po}vERS{ $p } } ) {

print ' ' x 4,

join(" &", "run$p", "(p$p

map {
''(p$ =0)''

} (D$aref),

" :{ ", jOin(",

=0)'',

sub R3 {

mY$P=

print '

shift;

' x 4, "-- R3\n ";

f or my $q (@{$NEIGHBORS{$p } }){
print ' '

j Oin("

x 4,

& ", "run$p", "(p$p = $q)",

= o)", "(p$q != $p)"), " ; o;\n";"(p$q
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Chapter 5

New Fast Self-Stabiti zing Maximal

Matching Algorithm

5。l  lntroduc● on

The worst― case time complexity ofthe Hsu― Huang algo五 thm in telllls ofthe num―

ber of nodes η is:η 2+η _2 if η is even,and:η 2+η _:if η iS Odd[31].In[23],

21EI十 η-5 and 21EI+n are shown to be the lower and upper bounds on the

worst―case time comple対 tゝ whcrc lEliS thC number ofcdges.

Table 5.1: Worst― case time complexity of self¨ stabilizing maximal matching al¨

go五thms(IEl and n denot the number ofedges and nodesin a network graph).

Algorithm wor.tη w.r.t lEl andn

Hsu and Huang [25] 鵠三静IЪIL粽翻 21EI+2-5≦ T(2,IEI)≦ 21EI十 η

Proposed Algorithm
T(:キ

馬rl塁塁三ぉ1:』『
n)

T(η ,IEI)≦ IEI+η

67



CHAttR5。 NEW FAST SELF¨ STABIL】ZING MAXIMAL M[ATCHING
ALGOWHM

In this chapter, we propose a new self-stabilizing algorithm for computing a

maximal matching. The proposed algorithm assumes the same model as the Hsu-

Huang algorithm and runs faster. In particular, the new algorithm reduces the

worst-case time complexity by approximately half. Table 5.1 compares the time

complexity of these two algorithms.

The remainder of this chapter is organized as follows. Section 5.2 proposes our

new algorithm. Section 5.3 describes the correctness proof and the derivation of

the exact time complexity in terms of the number of nodes. Section 5.4 provides

an upper bound on the time complexity in terms of the number of edges. For

sparse graphs, this bound gives a better estimate for execution time than the one

in terms of n. Section 5.5 summarizes this chapter.

5.2 The New Algorithm

A problem with the Hsu-Huang algorithm is that a node may repeatedly execute

rule R3. On other words, a node may withdraw its proposal for matching many

times, resulting in a long computation. The proposed algorithm overcomes this

problem by modifying this rule. Our algorithm consists of five rules R1, . . . , Rs.

We use the same notation as that used in Chapter 4. We also use thenotation f p.

This notation denotes that no neighbors points to p. R1 and R2 are identical to

,Rr and Rz of the HSu-Huang algorithm, respectively. On the other hand, .Rs of
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Hsu=-Huang algorithm is replaced with the following three rules:

(p-- q) A(q--r) n(r *p) n (3o € l/(p) , o-p)+p---+ oll (Rs)

(p--- q) A (q-r r) n(r I dn h p n (lo € l/(p) ' o -, nult) + p.--+ oll (R+)

(p--. q) A(q-- r) n(r ldnf pn (Vo€ l/(p) , of null)+p---+null (fts)

Note that the guards of the five rules are mutually exclusive. Hence, if a node is

enabled, then exactly one rule is enabled at the node.

fi3 combines R3 and ftr, that is, if a node executes R3, then the resulting

configuration is the same as the one that will occur if the node executes R3 and

then l?1 consecutively. Similarly, Ra combines .R3 and R2. This modification

enforces a node p to make a new proposal for matching whenever p withdraws its

proposal to a neighbor and some other neighbor is waiting for p (.Rs) or free (,Ra).

As specified by -R5, a node can set its pointer to null only when there exists no

neighbor to point at that it can point to.

The construction of the algorithm ensures that it always runs "faster" than the

Hsu-Huang algorithm, in the sense that for any computation of the new algorithm,

the latter algorithm has a computation of at least the same length.

More importantly, the new algorithm ensures that a node sets its pointer to

null at most once, as formally shown by Lemma 16. This results in a reduction

of the time complexity by approximately half. In the following two sections, we

present the analysis of the time complexity.
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5.3 Exact Time Complexity

5.3.1. VariantFunction

To show the correctness and exact time complexity of our algorithm, we use the

variant function technique similar to many self-stabilization literatures. A variant

function is a function over the set of configurations, whose value is bounded and

decreases monotonically when nodes execute a rule of the algorithm.

Our variant function is the same as used in Chapter 4:

χ

≡2c+∫

where c, f , and w are the numbers of chaining, free, and waiting nodes, respec-

tively. This function is evaluated in lexicographical order, i.e., X is evaluated first

and then Y. Below we show that this function indeed decreases monotonically

when a rule is executed. In particular, we show that for each of the five rules, its

execution either decreases X or does not change X the same but decreases Y. In

the following description, p, q, r, and o refer to those in the rule definition from

R1 to R5.

Execution of rule ,R1 Rule ,R1 is enabled only when p is free and q is waiting.

When it is executed, p and q become matched. Dead or matched nodes do not
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change their state. Hence, the rule execution decreases c + f -t w by atleast 2,

thus decreasing X by at least 1.

Execution of rule -R2 Rule ,R2 is enabled only when p is free and causes p to

become waiting. Because no node is waiting for p (i.e., f p), the waiting node

becomes neither chaining nor free. Except forp, all free nodes remain free. Hence,

the execution of the rule decreases Y by l. X does not change, because no node

becomes matched or dead.

Execution of rule -R3 Rule r?3 is enabled when p is chaining and o points to p.

When it is executed, p and o become matched. Dead or matched nodes do not

change their state. Hence, the rule execution decreases c + f * w by atleast 2,

thus decreasing X by at least 1.

Execution of rule r?a Rule -Ra is enabled only when p is chaining and there is a

neighbor whose pointer has a null value. When it is executed, p becomes waiting.

Because no node is waiting for p (i.e., f p), the waiting node becomes neither

chaining nor free. A11 free nodes remain free. Hence, the execution of the rule

decreases Y by 2. X does not change because no node becomes matched or dead.

Execution of rule .R5 Rule R5 is enabled only when p is chaining and all of its

neighbors point to nodes other than p. When it is executed, p becomes free or

dead and no other nodes change their state. Hence, the execution of R5 decreases

Y by at least l. If p becomes free, then Y is decreased by l. In this case, X does

not change because no node becomes matched, or dead. If p becomes dead, then

Y is decreased by 2 and c+ f * u by 1. Hence, in this case, X is either decreased
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by I or left unchanged.

5.3.2 Correctness

To show the correctness of our algorithm, we show that it converges to a legitimate

configuration from any configuration.

Lemma 13. If c+ f +w > 0, thenatleastonenode is enabledto execute arule.

Proof. When u) > 0, there is a waiting node p and the node points to a free node

q, thus q is enabled to execute R1.

When w : 0 A c ) 0, there is a chaining node p andthe node is enabled to

execute either Rz, Rq, or -R5.

When u : 0 A c : 0 A / > 0, a free nodep has at least one neighbor q that

is not matched. The node q is not dead either, because every neighbor of a dead

node must be matched. Because u : 0 A c : 0, g is free. Hence p and q are

enabled to execute Rc.

Theorem 5. The proposed algorithm always converges to a legitimate configura-

tion.

Proof. Any execution of a rule decreases the variable function (F,G).The set of

possible values of the variable function is finite, thus, any computation is finite.

From Lemma 13 there is always an enabled node if c + f * u > 0. Hence, in the

last configuration of any computation, every node is either matched or dead. tr

□
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5.3.3 Time Complexity in Terms of n

Here, we derive the exact time complexity in terms of n. We begin by proving

three lemmas that are used in the derivation.

Lemma 14. A dead or matched node will never be enabled.

Proof. There is no rule that is enabled at a node if it is dead or matched. Suppose

thatp and q are neighboring nodes. once p <+ q holds, the two matched nodes will

remain matched forever, because no rule execution at other nodes can change their

state. A dead node also remains dead because all of its neighbors are matched, and

thus. will never execute a rule.

Lemma 15, If p --- q A q -- nul| that is, if p is waiting for q, then p will never

become enabled unless q executes a rule. Besides, the only rule that q can or w'ill

be able to execute is .R.'.

Proof. The first part of the lemma follows from the fact that no rule is enabled at

p if p ---+ q A Q ---+ null. The existence of such p gvarantees that there is at least

one node that is waiting for q. Because of this and the fact that q ---+ null, only

-R1 is enabled at q.If q executes ,R1, then it will become matched and thus will no

longer execute any rule (Lemma l4).

Lemma 16. Once a node p executes Rs, the only rule that p may be able to execute

thereafter rs fir.

Proof. The execution of .R5 couses the condition p --+ null to hold. Under the

condition, Rs, Rs, and.R5 are not enabled atp. Below, we show that Rz will never

be enabled either while p -- null holds.

□

□
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Suppose that p becomes enabled to execute R2 after its execution of R5. In

that situation, there must be its neighbor q such that q --- null. Note that q pointed

to another node than p when p executed Rs (otherwise, .R5 would not have been

enabled at p). Hence, g must have executed R5 to satisfy q -- null. However, this

is impossible because the guard of R5 cannot be ffue while p ---+ null holds.

If p executes -R1, then it will become matched, meaning that p will never be-

come enabled. Therefore, once p executes Rs, p cannot execute any rules other

than R1, and if it executes R1, then it will never be enabled. n

Theorem 5 ensures that any computation is finite. This and the property of the

variant function lead to the followinq observation:

Observation 3. Any computation g$2. . . gt is a concatenation of computations

or,... ,o,n such that: (1) all configurations in o6 have the same F value; (2) if

configurations sl s' occur in oi and oi11r€spectively, then X(s) > X("'), and (3)

if configurations s, st consecutively occur in o6, then y(t) > Y(t').

This observation is schematically represented as follows:

・…  の-2   島-1   %   島+1  …・

…・・…=X(%2)=X(幼 1)>X(勁 )=χ (%+1)=…・

…・>y(動 2)>y(島 _1) y(ヵ )>y(島 +1)>・ …

In the rest of this section, we let p : gtgz' ' ' glpl denote any computation such

that X(g1) is the same for every configuration s in the computation, where the

length of p is denoted bV lpl. We derive the upper bounds on lpl. Obviously, these
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bounds also apply to loll for oi in Observation 3, and thus, allow us to derive the

upper bound on the computation length.

In the following analysis, we say that a node p executes a rule R in p if there

are two consecutive configurations gr, g+t(L < i < lpl) such thatp is enabled for

R at gi and g6a1is the next configuration caused by the execution of R by p at g,.

Note that for any p and for any gt, gt+t, such a node-rule pak (p,.R) is uniquely

determined because at most one rule is enabled at a node simultaneously and a

rule execution can only change the pointer of the node that executes it. Note that

no node executes R1 or .R3 in p, because their execution always decreases the ,F'

value.

Lemma 17. Any node executes a rule at most once in p.

Proof. If lpl : 1, then the lemma follows trivially, because no node executes a

rule in p. Hence, we assume that p ) 2 below. As mentioned above, no node

executes -Rr or Rs in p.

If a node p executes R2 or Ra at gi in p, then p ---+ q Aq -- null holds for some

q e l/(p) at 9t+r.In this situation, from Lemma 15, p will not be enabled unless

q executes rule Er, thus, p executes no rule after gi11in p.

If p executes R5 in p, then R1 is the only rule that p may be enabled for

thereafter from Lemma 16, ,thus p executes no rule in p after its execution of

R5. n

Lemma 18. Let i, be the total number of chaining, free, and waiting nodes at the

first configuration gt in p, that is,'i : c * f +, at gr. Then, lpl < i + l.
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Proof. From Lemma 14, a dead or matched node never executes a rule. From

Lemma 17, a node executes a rule at most once in p. Hence, the lemma follows.

tr

This bound on lpl can be improved if every node is neither dead nor matched

at the beginning of p.

Lemma 19. If c+ f + It) : n holds at the first configuration fi of p, then lpl < n.

Proof. Throughout the proof, we assume that c+ f + u) : rL holds at 91. At every

configuration in p, F has the same value, thus, n- I 1 c-fw-l f < n always holds

in p. However, c * w I f : n - 1 is impossible for any configuration, because

the existence of a matched node requires another matched neighbor node to match

and a dead node requires a matched neighbor node. Hence, c -f w -t f : n holds

for every configuration in p. Below, we consider three cases regarding 91: w > 0,

w:0Ac)0,andu):c:0.
If a node p is waiting for q at 91 , then from Lemma 15, it will never be enabled

unless q executes r?1, which means that p executes no rule in p. From this and

Lemma l7,if w ) 0 at91, thenwehave lpl3 (" - 1) + I: n.

If w : 0A c > 0 at gy,then there is a cycle consisting of at least three chaining

nodes, that is, pt ---+ pz, pz + p8,... ,pt + p7, because a chaining node cannot

point to a free node. (Note that if a node points to a free node, then the former

node is waiting.) At any node in the cycle, the only enabled rule is .R3. Hence, at

least three nodes do not execute a rule in p. From this and Lemma 17, we have

lpl3(n-3)+r:n-21n.
Finally, we consider the case where u) : c: 0 A f : n holds at gl. When

c-ftu -t f : n, G : 0 holds only if c : f : 0Ato : n. However, this condition is
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never met, because the existence of a waiting node requires the existence of a free

node. Therefore, Y (go) > 0 for any configuration gi in p. From Observation 3 and

the fact thatY(gy) : TL,wa have n > Y(go) > Y(gt)

lρ l≦ η.

Lemma 20.Jη  iS θνιれ,滋ι″″ι′j“ι εO″ρJιχJク げ 滋
`α

Jgο rj滋

“
,s bο

“
んグιグ妙

:η
2+η _1.f/η おοdZ滋ι″滋θ εο列ヮたァjヶ jS bο

“
κルグ″ (η

2+4η -5)/4.

P″ィ Any computation can be considered to be a concatenation of computations

σlσ2…・σれ that satisfy the thrce conditions in Obso¬ ration 3.Letた be a natural

number such that π =2た when η is even,and η =2た 十 1 if η is odd.Let民

denote the F value of σ
`.Then,0≦

鳥 ≦た。

At thc flrst conflgllration of σを,2民 -1≦ c+∫ +υ ≦2鳥 holdS if η is even,

and 2鳥 ≦c+∫ +υ ≦2鳥 +l holdSif η is odd.From Lelllma 18,IQI≦ 2民 +1

ifη isevenandlQI≦ 2氏 +1+l if η is odd.

If民 =た,then c+∫ 十υ =η h01ds at the■ rst conngllration of σづ.(As

mentioned in the proof of LeIIllna 19,c十 ノ十υ =η -l never holds.)FЮ m

Lellma 19,lσαl≦ η・ Hence,we have an upper bound on the length of any

computation as follows:

□

た-1

Il",l 1 n*f{zz+ t) irn :2k
t=0

た-1

!l"ll 1 n*DQ"+ 1 + 1) irn :2k +r

Because the number of steps taken in a computation is smaller by I than the

computation length, an upper bound on the time complexity is obtained by sub-

∀σ.

∀σを
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ffacting I from these formulae as follows:

た-1

ηttΣ (2づ +1)-1
こ=0

k-r
n+\(zt+1+1) -1

i:0

:Tt,*k(k-L)+2k-I

/n-1\' n_ L:rL*(rr)* 
z-'

n2+4n-r- --a--L if n :2k + r (5'2)

５た２

Ｈ　　　　扉

＋

　

１
　
　
．．

（り

　
　
一　

　

１

一　

　

η
　
　
十

呻
　２　　　　れ

十
　

い
引

一

ぽ

η
　

／
１
、
１

一４

一一　

　

一一　

　

〓

□

Theorem 6. The above upper bound on the time complexity is the exact time

complexity.

Proof. We show a scenario for a general n that shows an execution in which the

number of steps taken is exactly the same as the upper bound.

Consider a network graph whose topology is a complete graph. Assume that

for every node its pointer has a null value.

1. All nodes except for one node set their pointer to that node by executing -r?2,

thus becoming waiting. This takes n - 1 steps.
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2. The node to which all waiting nodes are pointing, say p, executes R1, ta-

sulting in a new pair of matched nodes. All other nodes that are pointing to

p, if any, become chaining. This takes I step.

3. If there is at least one chaining node, one such node executes -R5. The node

becomes free in which case there are still other chaining nodes, or dead, in

which case all other nodes are matched. This takes I step.

4. If there are chaining nodes, all of these chaining nodes execute Ra to point

to the free node, becoming waiting. The steps taken in this phase decreases

by 2 for each iteration of these phases, from n - 3 to I if n : 2k or 2 if

n:2k+L

5. Go to Phase 2.

If n is 2k, then the scenario terminates with Phase 2, resulting in n matched

nodes. The total number of steps is obtained as follows:

tf,-I

("-1) +t(l +1+ (n-2i,-r)) +r
;-I

: TLt (n+ r)(k - 1) - k(k - I)
:,r (n+r -;) (;-')

:n*(;.') (;-')
n2:T+n_l

(5。 3)

If rz is 2k + I, then the scenario terminates with Phase 3, resulting in n -
matched nodes and one dead node. The total number of steps is obtained as
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follows:

0-⇒ 十Σ(1+1+い -2-⇒)+1+1
づ=1

=(η +1)十 (η +1)(た -1)一 た(た -1)

=(η■1)十
 (里→テ

ニー1)(η ―卜1-写
)

い⇒+(7)(7)
η2+4η -5

(5.4)

□

5.4 Time Complexity in Terms of lEl and, n

In this section, we provide an upper bound on the time complexity in terms of rz

and l,El, where l,Ol is the number of edges of the network graph. In particular, we

show that our algorithm always converges within lEl+n steps. When the network

graph is sparse, this bound serves as a better estimate for execution time than the

one in terms of n.

In the analysis in this section, we count for each edge {p,q} the number of

times that p sets its pointer to q by executing Rr, Rz, fi3, or Ra and the number of

times that p nullifies its pointer pointing to q by executing .R5.

Lemma 21, A node p sets its pointer to its neighbor q € N(p) at most once.

Proof. If p is enabled for a rule that sets its pointer to q, then q ---+ p or Q ---+ nyll

holds. If q - p, then the execution of that rule (in this case Rr or R3) will make



5.4. TIME COMPLEXITY IN TERMS OF IEI AND ,^/

both p and q matched; thus, by Lemma 14, p wlll no longer be enabled.

Now, suppose that p executes a rule (Rz or r?a) to point to q when Q ---+ null.

ln this case, p will never be enabled again unless q executes R1 from Lemma 15.

lf q executes -R1, then g will become matched (not necessarily to p). Hence, p will

never set its point to q again.

Lemma 22. If a node p sets its pointer to a node q in gt, and then later q sets its

pointer to p, then p and q will be matched to each othen

Proof. Consider a computation 9192. . . and suppose that p sets its pointer to a

node q in gi. For p to set its pointer to q in gi, either q ---+ p or q ---+ null must hold

in 96.lf q ---+ p holds in g;, then p and q will be matched in go*r, and thus, q will no

longer be enabled. Hence, we assume that q --+ null in gi in the rest of the proof.

Under this assumption, from Lemma 15, p will never be enabled after gi,rl unless

q executes a rule, and the only rule that q can execute is,Br. Now, it suffices to

consider only the case where g executes R1, because if q does not execute Rt, Q

willneversetitspointer. Suppose thatq executes R1 in gj (j > i). If q setsits

pointer to a node other than p in gi, then q will become matched in gi*t and never

set its pointer to p thereafter. If g sets its pointer to p in gj, then p and q will be

matched to each other in 9711.

Lemma 23. If p and q are matched to each other, then it is never the case that

both p and q executed R5 before they are matched.

Proof. Let p and q be any neighboring nodes. Consider a computation 9192. ' .

such that (1) p executes -R5 at gi; (2) q does not execute -R5 at from !1to !i-1i and

□

□
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(3)pandq arenotmatched ingt,gz,... ,gi U > z) andmatchedtoeachotherin

g j+r, g j+2,. . . . Below we show that q does not execute .Rs in this computation.

From Lemma 16, p is only enabled for ,R1 at g+r or later configurations. If p

executes -81, p will become matched and will never be enabled. On the other hand,

if p executes no more rules after 9i11, then p ---+ null will always hold thereafter.

Therefore, for p and q to become matched to each other in gj+r, p must set its

pointer to q by executing Rr in gi. For p to execute Rr, q - p must hold at gi.

In g* q --+ r holds for some r I p, because otherwise p is not enabled for .R5.

Hence, g executes R2 or Ra to set its pointer to p somewhere from g+r to gj-t,

and thereafter leaves the pointer unchanged. From Lemma 16, if a node executes

R5, then the node will be enabled only for R5. Therefore, p does not execute R5

in the computation.

Theorem 7. The time complexity of the proposedalgorithmis boundedby lEl+n.

Proof. Let a denote the size of the maximal matching obtained, that is, the number

of edges {p, q} such that p e q holds in the last configuration of a computation.

From Lemmas 2l and22, the total number of times that a node sets its pointer is

at most lEl + a, because for each edge {p, q}, p sets its pointer to q at most once

(Lemma 2l), and both p and q set their pointer to each other only if the edge is in

the obtained maximal matching (Lemma 22). Hence,lEl+ a is an upper bound on

the total number of times that R1 , R2, Rs, and Ra are executed. From Lemma 16

each node executes R5 at most once. From Lemma 23, if {p, q} is in the maximal

matching, then at most one of them executes -R5. Hence n - a is an upper bound

on the total number of times that Rs is executed. Therefore, the number of rule

executions is at most (lEl + a) + (n - a) : lEl + n. n

□
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5.5 Summarv

In this chapter, we proposed a self-stabilizing algorithm for computing a maximal

matching for the state-reading model under the central daemon. The proposed al-

gorithm runs faster than the seminal algorithm proposed by Hsu and Huang [25],

which was the fastest known algorithm that assumes this system model. We

showed that the proposed algorithm reduces the worst-case time complexity ap-

proximately by half, both in terms of n (the number of nodes) and n and lEl (the

number of edges).

The time complexity in terms of n and lEl is greater than the one in terms

of n when lEl : n(n - L)12. Although our proof assumed that each edge is

used once, many edges are not actually used . Therefore, the evaluation of the

time complexity in terms of rz and l.El becomes greater. However, it gives a better

bound when lEl: O(").

Through the design of this algorithm, we used model checking to verify whether

the new algorithm can reach a legitimate state from any configuration. By this

process, we could easily find errors in some ideas.
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Chapter 6

Conclusion

6.1 Achievements

In this dissertation, we analyzed the time complexity of Dijkstra's self-stabilizing

three-state mutual exclusion algorithm and Hsu and Huang's self-stabilizing max-

imal matching algorithm.

For Dijkstra's algorithm, we provided a new lower bound on the time complex-

ity. We found that this bound equals the exact time complexity when 9 1n < 20,

where zz is the number of processes.

For Hsu and Huang's algorithm, we derived the exact time complexity. The

careful analysis of the Hsu-Huang algorithm also led use to devise a new self-

stabilizing maximal matching algorithm. The time complexity of the new algo-

rithm is approximately half of that of the Hsu-Huang algorithm.

In this line of research, we used model checking as an analysis tool. In par-

ticular, we used NUSMV a symbolic model checker, to compute time complexity

and dervive the worst-case execution for svstems with small n.

85





Bibliography

[1] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and

George Varghese. Time optimal self-stabilizing synchronization. In STOC

'93: Proceedings of the twenty-fifth annual ACM symposium on Theory

of computing, pages 652-661, New York, NY, USA, 1993. ACM.

[2] Baruch Awerbuch and Rafail Ostrovsky. Memory-efficient and self-

stabilizing network reset (extended abstrac|. In PODC '94: Proceedings

of the thirteenth annual ACM symposium on Principles of distributed

computing, pages 254-263, New York, NX USA, 1994. ACM.

[3] Joffroy Beauquier and Oliver Debas. An optimal self-stabilizing algorithm

for mutual exclusion on bidirectional non uniform rings. In the Second

Workshop on Self-Stabilizing Systems, pages l7.I-17.13, 1995.

[4] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Memory space

requirements for self-stabilizing leader election protocols. In PODC '99:

Proceedings of the eighteenth annual ACM symposium on Principles of

distributed computing, pages 199207, New York, NY, USA, 1999. ACM.

87



BIBLIOGRAPHY

[5] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. On relaxing

interleaving assumptions. In In Proceedings of the MCC Workshop Self-

Stabilizing Systems, MCC Technical Report No. STP-379-89,1989.

[6] Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and

self-stabilizing distributed matching. In Proceedings of the twenty-first

annual symposium on Principles of distributed computing, pages 29{;-.

297. ACM,2002.

[7] Yu Chen and Jennifer L. Welch. Self-stabilizing mutual exclusion using

tokens in mobile ad hoc networks. In DIALM '02: Proceedings of the 6th

international workshop on Discrete algorithms and methods for mobile

computing and communications, pages 3H\ New York, NY, USA, 2002.

ACM:

[8] Viacheslav Chernoy, Mordechai Shalom, and ShmuelZaks. On the perfor-

mance of Dijkstra's third self-stabilizing algorithm for mutual exclusion. In

9th International Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS), Paris, volume 4838 of Lecture Notes in Com-

puter Science, pages 114-123. Springer, November 2007.

[9] Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks. A self-

stabilizing algorithm with tight bounds for mutual exclusion on a ring. In

Proc. 22ndlnt'l Symp. on Distributed Computing (DISC), volume 5218

of Lecture Notes in Computer Science, pages 63-77. Springer, September

2008.

88



BIBLIOGRAPHY

[0] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco

Roveri. NUSMV: A new symbolic model checker. Software Tools for Tech-

nology Thansfer, 2(4):410425, 2000.

[11] EdmundM. Clarke, OrnaGrumberg, andDoronA. Peled. Model Checking.

MIT Press, 1999.

[12] Adam M. Costello and George Varghese. The fddi mac meets self-

stabilization. In ICDCS '99: Workshop on Self-stabilizing Systems, pages

l-9, Washington, DC, USA, 1999. IEEE Computer Society.

[3] Edsger Wybe Dijkstra. Self-stabilizing systems in spite of distributed con-

trol. Communications of the ACM, 17(11):643444, November 1974.

[14] Edsger Wybe Dijkstra. Guarded commands, nondeterminacy and formal

derivation of programs. Communications ACM, I 8(8):453-4 57, 197 5.

[15] Edsger Wybe Dijkstra. A belated proof of self-stabllization. Distributed

Computing, 1(1):5-6, January 1986.

t16l E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative

temporal reasoning. Real-fime Systems, a@) :33 l-352, 1992.

[17] Sukumar Ghosh, Arobinda Gupta, and Sriram V. Pemmaraju. A self-

stabilizing algorithm for the maximum flow problem. Distributed Com-

puting, 10(4):167 -180, 1997 .

[18] Sukumar Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm

for coloring planar graphs. Distributed Computing, 7(1):55-59,ll 1993.

89



BIBLIOGRAPHY

[19] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K.

Srimani. A robust distributed generalized matching protocol that stabilizes

in linear time. In Proceedings of the 23rd International Conference on

Distributed Computing Systems Workshops, pages 461465, Washing-

ton, DC, USA, 2003.IEEE Computer Society.

[20] Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Sri-

mani. Self-stabilizing protocols for maximal matching and maximal inde-

pendent sets for ad hoc networks. In Proceedings of the 17th Intemational

Symposium on Parallel and Distributed Processing. IEEE Computer So-

ciety,20O3.

[21] Wayne Goddard, Stephen T. Hedetniemi, and Zhengnan Shi. An anonymous

selfstabilizing algorithm for 1-maximal matching in trees. Information Pro-

cessing Letters, 9 | :7 97 -803, 2006.

[22] Rachid Hadid. Space and time efficient self-stabilizing l-exclusion in ffee

networks. ipdps, 00:529, 2000.

[23]Stephen■ HedetnicIIu,DoR Jacobs,and RKo S五 mani.Maximal matching

stabilizes in time ο(m).InfOrma●on Processing Letters,80(5):221-223,

2002.

[24]Ted Hellllan.Superstabilizing mutual exclusiono Dist」 buted Colmputing,

13(1):1-17,2000。

[25]Su¨Chu Hsu and Shing― Tsaan Huang.A self― stabilizing algo五 thm for max―

imal matchingo lnforlnation Processing Letters,43(2):77-81,1992.

90



BBLIOGRAPHY

[26] Shing-Tsaan Huang. Leader election in uniform rings. ACM T[ansactions

on Programming Languages and Systems, 1 5(3) : 563-57 3, 1993.

[27] Mehmet H. Karaata and Kassem A. Saleh. A distributed self-stabilizing

algorithm for finding maximum matching. Computer Systems Science and

Engineering, 15(3): 175-1 80, 2000.

[28] Yoshiaki Katayama, Toshiyuki Hasegawa, and Naohisa Takahashi. A super-

stabilizing spanning tree protocol for a link failure. Systems and Comput-

ers in Japan, 38(14):41-51,2007.

[29] Yoshiaki Katayama, Eiichiro Ueda, Hideo Fujiwara, and Toshimitsu Ma-

suzawa. A latency optimal superstabilizing mutual exclusion protocol in

unidirectional rings. Journal of Parallel and Distributed Computing,

62(5):865-884,2002.

[30] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno. Computing sta-

bilization time of self-stabilizing algorithms with symbolic model checking.

In Proceedings of the 4th Symposium on Science Technology for System

Verification, pages 151-160, November 2007.

[31] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno. The time com-

plexity of hsu and huang's self- stabilizing maximal matching algorithm. IE-

ICE Thansactions on Information and Systems, E93-D(10):2850-2853,

r0 2010.

[32] Fredrik Manne, Morten Mjelde, Laurence Pilard, and S6bastien Tixeuil. A

new self-stabilizing maximal matching algorithm. Theoretical Computer

Science, 410(14): I 336 - 1345, 2009.

91



BIBLIOGRAPHY

t33l A. Singhai and Swee-Boon Lim. The sunscalr framework for internet

servers. In FTCS '98: Proceedings of the TWenty-Eighth Annual In-

ternational Symposium on Fault-Tolerant Computing, page 108, Wash-

ington, DC, USA, 1998. IEEE Computer Society.

[34] Gerard Tel. Maximal matching stabilizes in quadratic time. Information

Processing Letters, 49 (6):27 l-27 2, 1994.

[35] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Univer-

sity Press, New York, NY, USA, 2001.

[36] Tatsuhiro Tsuchiya, Shin'ichi Nagano, Rohayu Bt Paidi, and Tohru Kikuno.

Symbolic model checking for self-stabilizing algorithms. IEEE Thansac-

tions on Parallel & Distributed Systems, 12(1):81-95, January 2001.

[37] Tatsuhiro Tsuchiya, Yusuke Tokuda, and Tohru Kikuno. Computing the sta-

bilization times of self-stabilizing systems. IEICE Tbansactions on Funda-

mentals of Electronics. Communi and Computer Sciences, E83-

A(l l) :2245 -2252, November 2000.

92




