|

) <

The University of Osaka
Institutional Knowledge Archive

Title On the Analysis of Self-Stabilizing Algorithms
Using Model Checking

Author(s) |Kimoto, Masahiro

Citation |KFRKZ, 2011, HIHX

Version Type|VoR

URL https://hdl. handle. net/11094/27640

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



On the Analysis of Self-Stabilizing Algorithms
Using Model Checking

January 2011

Masahiro KIMOTO



On the Analysis of Self-Stabilizing Algorithms
Using Model Checking

Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2011

Masahiro KIMOTO



Abstract

A self-stabilizing system is a distributed system that has two properties: con-
vergence and closure. Convergence specifies that the system can reach legiti-
mate (safe) configurations from any configuration. Closure specifies that once
the system reaches a legitimate configuration, it continues to be within the set
of legitimate configurations. Because of these properties, self-stabilizing systems
need not be initialized and can automatically recover from erroneous configura-
tions. A self-stabilizing algorithm is an algorithm that enables a system to be
self-stabilizing. These algorithms have been proposed to deal with various prob-
lems.

The time complexity of a self-stabilizing algorithm is the maximal number of
steps required to reach a legitimate configuration from an illegitimate one. The
improvement of time complexity is an important performance issue, because ille-
gitimate configurations can lead to malfunctions. To improve time complexity, it

is also important to be able to compute it for a given self-stabilizing algorithm.

We address these issues in these dissertation. The contribution comprises of
three parts: the first, providing a new lower bound on the time complexity of
Dijkstra’s three-state self-stabilizing mutual exclusion algorithm; the second, pro-

viding the exact time complexity of a self-stabilizing maximal matching algorithm



proposed by Hsu and Huang; the third, devising a new self-stabilizing maximal
matching algorithm, which outperforms the Hsu—Huang algorithm in terms of
time complexity.

In this line of research, we use model checking as an analysis tool. Model
checking is a formal verification method based on state exploration. Although
model checking can only be used for examining small-sized self-stabilizing al-
gorithms, it allows us to fully analyze their behaviors and compute their time
complexity. We describe how NuSMYV, a major model checker, can be used for

analyzing the mutual exclusion algorithm and the maximal matching algorithm.

i



List of Major Publications

[1] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Extraction of
Fault-Prone Modules Based on Fault Tracking Data from Open Source Soft-
ware Repository,” In 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN2007), Supplemental Proceed-
ings, pages 366-367, June 2007.

[2] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno, “The Lower Bound
on the Stabilization Time of Dijkstra’s Three State Mutual Exclusion Algo-
rithm,” IEICE Technical Report, volume 108, number 11, pages 41 — 47,
April 2008. (In Japanese)

[3] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno, “On the Time
Complexity of Dijkstra’s Three-State Mutual Exclusion Algorithm,” IE-
ICE Transactions on Information Systems, volume E92-D, number 8, pages

1570-1573, August 2009.

[4] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno, “The Time Com-
plexity of Hsu and Huang’s Self-Stabilizing Maximal Matching Algorithm,”
IEICE Transactions on Information Systems, volume E93-D, number 10,

pages 2850-2853, October 2010.

iii



[5] Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno, “Computing the
Stabilization Time of Self-Stabilizing Algorithms Using Symbolic Model
Checking,” In 4th Symposium on Science and Technology for System Ver-
ification, Proceedings, pages 151 — 160, November 2007. (in Japanese)

v



Acknowledgements

During the course of this work, I am fortunate to have received assistance from
many individuals. In particular, I would like to thank my supervisor Professor
Tohru Kikuno for his continuous support, encouragement, and guidance for this
work.

I am also very grateful to the members of my dissertation review committee,
Professor Takao Onoye and Professor Toshimitsu Masuzawa for their invaluable
comments and helpful criticism of this dissertation.

I would like to express my special thanks to Associate Professor Tatsuhiro
Tsuchiya for his continuous assistance and helpful advice.

Finally, I wish to thank many friends in the Graduate School of Information

Science and Technology at Osaka University for their valued help.






Contents

Abstract i
List of Major Publications iii
Acknowledgements v
1 Imtroduction 1
1.1 Background . . .. .. ... ... ... ... ... 1
1.2 MainResults ... .................... e 3

1.2.1  On Time Complexity of Dijkstra’s Self-Stabilizing Three-
State Mutual Exclusion Algorithm . . . . . ... ... .. 3
1.2.2  On Time Complexity of Hsu and Huang’s Self-Stabilizing
Maximal Matching Algorithm . . . . . ... .. ... .. 4

1.2.3 New Fast Self-Stabilizing Maximal Matching Algorithm . 4

1.3 Overviewof Dissertation . . . . . . . . . . . v v ... 5
2 Preliminaries 7
2.1 Self-Stabilizing Algorithms . . . . . . . ... ... ... ..... 7
2.2 Symbolic Model Checking . . . ... ... ............ 10

vi



CONTENTS

2.2.1 Computational Tree Logic . . . .. ... ... ...... 10
222 Real-TimeCTL . . . ... ... ... ... ...... 13
223 NuSMV . . . . .. e 15

3 On Time Complexity of Dijkstra’s Three-State Mutual Exclusion Al-

gorithm 17
3.1 Imtroduction . . . . ... ... ... ... e 17
32 Algorithm . . ... ... ... .. .. .. e 18
33 LowerBound . .. ... .. ... ... .. ... . ... 20
3.4 Computing of Time Complexity Using NuSMV . . . . ... . .. 27
3.4.1 Communication among processes . . . . . . . . . . . .. 27

342 Processes . . . . . vt v it e e e 28

34.3 Computing of the Time Complexity . . . . . .. ... .. 31

344 Extracting Worst-Case Execution . . . . ... ... ... 32

3.4.5 Analysis of Counterexamples . . .. ... ........ 33

346 Results . ... ... ... ... 0o 34

35 Summary ... ... e e e 34
36 Appendix . .. .. ... 36
3.6.1 Script for Generating NuSMV Program . . ... ... .. 36

3.6.2 Script for FormattingaResult . . .. ... ........ 40

4 On Time Complexity of Hsu and Huang’s Maximal Matching 43
4.1 Introduction . . . . . . . . . ... ... 43
4.2 The Hsu—Huang Algorithm . . . . . .. ... ... ... ..... 44
43 UpperBoundonRunLengths . .. ... ............. 46
44 ExactTime Complexity . . . . .. ... ... ... . ....... 52



CONTENTS

45 Summary . .. ... L 54
4.6 Appendix . .. . .. ... e e e e 55
4.6.1 Example of a NuSMV Program . ... .......... 55

4.6.2 Script for Generating a NuSMV Program . . ... .. .. 59

5 New Fast Self-Stabilizing Maximal Matching Algorithm 67
5.1 Introduction . . . o 67
52 TheNewAlgorithm . . . . ... ... ............... 68

5.3 ExactTime Complexity . . . . . ... ... ... ... ...... 70
53.1 VariantFunction . ... .................. 70

532 Correctness . . . . . . . oot it e e 72

5.3.3 Time Complexity in Termsofn . . . ... ... ... .. 73

5.4 Time Complexity in Terms of |[E|andn . . . . . ... ... ... 80

5.5 Summary . ... ... Lo e e 83

6 Conclusion 85
6.1 Achievements . . . . .. .. ... ... ... oL 85

ix



Chapter 1

Introduction

1.1 Background

A self-stabilizing system is a distributed system that has two properties: conver-
gence and closure. Convergence specifies that the system can reach legitimate
(safe) configurations from any configuration. Closure specifies that once the sys-
tem reaches a legitimate configuration, it continues to be within the set of legiti-
mate configurations.

Because of these properties, self-stabilizing systems need not be initialized
and can automatically recover from erroneous configurations. Thus, self-stabilizing
systems are tolerant of transient faults, such as the loss of memory contents and
message omission. A self-stabilizing algorithm is an algorithm that enables a sys-
tem to be self-stabilizing.

The notion of self-stabilization of a distributed system was introduced to com-
puter science by Dijkstra in 1974 [13]. Originally, mutual exclusion was the only

application of self-stabilizing algorithms. However, self-stabilizing algorithms for

1



CHAPTER 1. INTRODUCTION

various problems have been proposed recently [26, 18, 17, 29, 28, 24, 7]. Practi-
cal applications include, for example, Internet servers [33] and FDDI media access

control protocols [12].

The time complexity of a self-stabilizing algorithm is the maximal number of
steps required to reach a legitimate configuration from an illegitimate one. The
improvement of time complexity and the reduction of required memory are the
main performance issues in the field of self-stabilizing systems [1, 2, 4, 22]. The
improvement of time complexity is particularly important because being in ille-
gitimate configurations can lead to malfunctions. To improve time complexity, it

is important to be able to compute it for any given self-stabilizing algorithm.

However, there are self-stabilizing algorithms whose time complexity is dif-
ficult to analyze [3]. For example, the upper bound for the algorithm proposed
in [13] was presented in [8]. This upper bound was much greater than the time

complexity computed in [37, 30].

In this dissertation, we propose a method to automatically compute time com-
plexity on the basis of symbolic model checking. On addition, we analyze time
complexity based on the behavior of the worst case, which is obtained by the

symbolic model checking tool NuSMV.



1.2. MAIN RESULTS

1.2 Main Results

1.2.1 On Time Complexity of Dijkstra’s Self-Stabilizing Three-

State Mutual Exclusion Algorithm

As for the first contribution, we propose a method to compute the time complexity
of Dijkstra’s self-stabilizing three-state mutual exclusion algorithm, and provide

a very tight lower bound for time complexity.

Dijkstra’s three-state mutual exclusion algorithm is one of the first self-stabilizing
algorithms [13]. Although more than 30 years have passed since its invention, the
exact worst-case time complexity of this algorithm is still unknown. The best-
known lower bound on the worst-case time complexity was given by .Chernoy,
Shalon, and Zaks [9]. They proved a lower bound of 13n? — O(n) by showing
that there is an execution of length 13n? — 10¢n + 14 when n = 3k, where k is

a natural number.

In this dissertation we give a lower bound on the worst-case time complexity,
which matches the known best bound 12n? — O(n) [9] but is more accurate. This
bound is given by showing a very long computation derived by analyzing the
behavior of the worst case behavior of the algorithm with some processes. The
behavior is obtained by model checking. On addtion, our result applies when
n = 3k + 1 and n = 3k + 2. For the reason explained in chapter 3, we conjecture

that the new bound is the exact worst-case time complexity.

3



CHAPTER 1. INTRODUCTION

1.2.2 On Time Complexity of Hsu and Huang’s Self-Stabilizing

Maximal Matching Algorithm

As for the second contribution, we propose a method to compute the time com-
plexity of Hsu and Huang’s self-stabilizing maximal matching algorithm, and give
the exact time complexity.

This algorithm is the first self-stabilizing maximal matching algorithm and has
been regularly cited in the literature. Because of its technical importance, the time
complexity of this particular algorithm has been well studied. In [25], Hsu and
Huang show that it is bounded by O(n3), where n is the number of nodes. In [34],
Tel provides an almost tight upper bound, which is %nz + 2n + 1 if n is even and
in?+n—1ifnisodd. In[35], Tel gives a more concise proof for the O(n?) bound
than [34]. In [23], Hedetniemi, Jacobs, and Srimani provide an upper bound of
2|E| + n, where |E| is the number of edges. This gives a better bound than the
one in [34] when |E| = O(n).

In this dissertation, we provide the exact time complexity of the Hsu—Huang
algorithm. The fact that the known upper bound is very similar to the time com-
plexity computed by model checking is helpful for us to find the exact time com-

plexity.

1.2.3 New Fast Self-Stabilizing Maximal Matching Algorithm

As for the third contribution, we propose a new self-stabilizing maximal matching
algorithm. The proposed algorithm assumes the same model as the Hsu—Huang
algorithm and runs faster. In particular, the new algorithm reduces the worst-case

time complexity by approximately half. = Through the design of a new algo-

4



1.3. OVERVIEW OF DISSERTATION

rithm, model checking is very useful for verifying whether a new algorithm is

self-stabilizing.

1.3 Overview of Dissertation

The remainder of this dissertation is organized as follows. In chapter 2, we de-
scribe self-stabilizing algorithms and model checking. We describe the first con-
tribution in chapter 3 , entitled “On Time Complexity of Dijkstra’s Self-Stabilizing
Three-State Mutual Exclusion Algorithm.” In this chapter, we prove a lower
bound of the time complexity of the algorithm by showing that there is a very
long execution . We describe the second contribution in chapter 4, entitled “On
Time Complexity of Hsu and Huang’s Self-Stabilizing Maximal Matching Algo-
rithm.” In this chapter, we prove the exact time complexity of the algorithm. We
describe the third contribution in chapter 5, entitled “New Fast Self-Stabilizing
Maximal Matching Algorithm.” In this chapter, we propose a new self-stabilizing
maximal matching algorithm that is faster than the existing algorithm. In chapter

6, we summarize this dissertation.






Chapter 2

Preliminaries

2.1 Self-Stabilizing Algorithms

We consider a distributed system that consists of n processes, po, 1, * , Pn—1-
The topology of the system is modeled by an undirected graph each of whose
vertices correspond to a process.

A process is a finite state machine. A process p; is defined as a three-tuple

M; = (Qi, X4, 6:):
e (); is a finite set of states.

e 3, is a finite state set of p;’s neighbors.

e 0;: (Q; X X; — () is a state-transition function.

We say that process p; and process p; are neighbors if p; is adjacent to p; on
the graph. A process can communicate with its neighbors, and %; is defined as

the Cartesian product of the states of its neighbors. For example, when process p;

7



CHAPTER 2. PRELIMINARIES

and process py are neighbors of process p;, ¥; is :
Yi=Q; x Q.

A state transition function ¢; is described in the guarded command language

[14]. In the language, ¢; is described as a list of actions:

0; = if < action > []---[] < action > fi .

The symbol “[|” separates the different actions. Each action is described as
follows:

< action >:=< guard >=-< statement > .

The guard is a Boolean expression over the states of process p; and its neigh-
bors. When the guard is satisfied, process p; updates the state according to the
statement. When more than one guard is satisfied, process p; updates the state by

the statement, which is non-deterministically selected .

A distributed algorithm specifies §; for each process p;. In each step of the
execution of process p;, p; reads the states of its neighbors, and updates the state
by é;.

The global state (or configuration) of a system is the vector of the states of all

of its processes. Therefore, the set of configurations G is given as follow:

G=Qox Q1 X XQn1.

We say that an action is enabled at a configuration if and only if the guard holds

8



2.1. SELF-STABILIZING ALGORITHMS

at that configuration. A process is enabled if and only if at least one action of the
process is enabled. We assume that, in each step, exactly one enabled process is
selected and it updates the state.

We denote by g — ¢’ (9,9’ € G) the fact that there is a process that is enabled
at g and its execution yields ¢’. A sequence of configurations gog;g, - - - g is a
computation if and only if for every ¢ > 0 g; — g¢;,; holds.

Let P be a predicate that identifies the desirable configurations of the system.
We assume that P is a Boolean expression over the states of all the processes of the
system. We say that a configuration is legitimate if and only if the configuration
satisfies P. Let L denote the set of the legitimate states.

A distributed algorithm is a self-stabilizing algorithm if it satisfies the follow-

ing two properties:

1. Convergence — For any configuration g, € G, and any computation gog; - - - g

that starts with g, there is an integer k£ (> 0) such that g, € L.

2. Closure — For any configuration g € L, g — ¢’ implies ¢’ € L.

The convergence time ct of a computation gog; - - - g is the number of steps
required for reaching a legitimate state from go. If gog; - - - gx is a computation of

a self-stabilizing algorithm, ct is defined as follows:

0 9o € L
ct = @2.1)

isuchthatg,_1 ¢ LAg; €L go¢ L.

The time complexity r of a self-stabilizing algorithm is the convergence time

in the worst case:



CHAPTER 2. PRELIMINARIES

r=  max {ct forC}. (2.2)

Vcomputation C

2.2 Symbolic Model Checking

Model checking is an automatic technique for verifying finite-state concurrent
systems [11]. In model checking, the system is modeled as a Kripke structure.
Let AP be a set of atomic propositions. A Kripke structure M over AP is a

three-tuple M = (S, R, L) where
1. S is a finite set of states.

2. R C S x Sis a transition relation that must be total, that is, for every state

s € S, there is a state s’ € S such that (s, s’) € R.

3. L : S — 24P g a function that labels each state with the set of atomic

propositions true in that state.

We say that an infinite sequence of states 7 = sgs; - - - is a path in the structure
M from a state s if sp = s and (s;, s;41) € R holds for all 7 > 0.

In symbolic model checking, a Kripke structure is represented by Ordered
Binary Decision Diagrams (OBDDs). With this data structure, the memory and

time required to verify the system can be dramatically reduced.

2.2.1 Computational Tree Logic

To verify a system described as a Kripke structure, we need to specify the proper-
ties that should be satisfied on the structure. To describe the properties, we usually

use the computational tree logic (CTL).

10



2.2. SYMBOLIC MODEL CHECKING

The syntax of a CTL formula is given by the following rules:

o If f € AP, then f is a CTL formula.

e If f and g are CTL formulas, then —f, f A g and f V g are CTL formulas.
o If f is a CTL formula, then AX f is a CTL formula.

e If f is a CTL formula, then EX f is a CTL formula.

e If fis a CTL formula, then AF f is a CTL formula.

e If f is a CTL formula, then EF f is a CTL formula.

e If f is a CTL formula, then AG f is a CTL formula.

o If fis a CTL formula, then EG f is a CTL formula.

e If f and g are CTL formulae, then A(f U g) is a CTL formula.
e If f and g are CTL formulae, then E(f U g) is a CTL formula.
e If f and g are CTL formulae, then A(f R g) is a CTL formula.

e If f and g are CTL formulae, then E(f R g) is a CTL formula.

Here, AX, EX, AF, EF, AG, EG, AU, EU, AR, and ER are composed of two
components: path quantifiers and temporal operators. The path quantifiers are
A and E. Quantifier A means “for all paths,” and quantifier E means “for some
paths.”” These quantifiers are used to specify that all of the paths or some of the
paths starting from a particular state have some property. The temporal operators

X, F, G, U, and R describe the properties of a path.

11



CHAPTER 2. PRELIMINARIES

X (“neXt time”) requires that a property holds in the second state on the

path.

F (“in the Future”) requires that a property will hold at some state of the

path.

G (“Globally”) requires that a property holds at every state of the path.

U (“Until”) requires that if there is a state on the path where the second
property holds, then on every preceding state of the path, the first property

holds.

e R (“Release”) is the logical dual of the U.

The semantics of CTL with respect to a Kripke structure M is defined as fol-
lows. Let 7 be the suffix of = starting at s;. If f is a CTL formula, M,s | f
means that f holds at state s in the Kripke structure M, and M, 7 = f means that
f holds at the first state of 7 in the structure M. Similarly, M |= f means that
f holds at every state in the Kripke structure M. When the Kripke structure M
is clear from the context, we will usually omit it. The relation |= is defined in-
ductively as follows (assuming that ap is an atomic proposition and f, g are CTL

formulae) :
1. M,s=ap < ap € L(s).
2. M,sE~f< Ms - f.
3. M,sEfAge M,sk= fand M, s E g.

4. M,sEfVvge M,sE= forM,sEg.

12



2.2. SYMBOLIC MODEL CHECKING

10.

11.

12.

13.

14.

15.

M, 7 |= f & sis the first state of 7 and M, s |= f.

M, s = EX f < there is a path 7 from s such that M, 7! |= f.

M,s = AX f & for every path 7 starting from s, M, 7! |= f.

M, s |= EF f < there is a path 7 from s and a & > 0 such that M, 7* |= f.

M, s = AF f & for every path 7 starting from s, there is a £ > 0 such that

M,7* = f.
M, s = EG f & there is a path 7 from s such that for all i > 0, M, 7* |= f.

M, s = AG f < for every path 7 starting from s and for all i > 0, M, 7 =
f-

M, s = E(f U g) < there is a path 7 from s and there exists a k > 0 such
that M, 7% |= gand forall 0 < j < k, M, 77 |= f.

M,s = A(f U g) < for every path 7 starting from s and there exists a
k > 0 such that M, 7* |= gandforall0 < j < k, M, 77 |= f.

M,s = E(f R g) < there is a path 7 from s such that for all j > 0, if for
every i < j M,m" }~ f then M, 77 |= g.

M,s = A(f R g) & for every path 7 starting from s, for all 7 > 0, if for
every i < j M,n" £ f then M, 79 = g.

2.2.2 Real-Time CTL

With CTL, we can describe a property. For example, the property that an atomic

proposition ap will eventually hold for any path can be stated as AFap. However,

13



CHAPTER 2. PRELIMINARIES

we occasionally need to describe a property such as that an atomic proposition ap
will hold in 50 steps. Such properties are needed, for example, to verify network
communication protocols or embedded real-time control systems.

To describe such properties, E. A. Emerson et al. augmented CTL to Real-
Time CTL (RTCTL)[16]. In RTCTL, we can describe a property that holds in a
bounded number & of steps. To specify a bound k, we use a notation such as
AF=F,

Here, some RTCTL operators are simply abbreviations of other RTCTL oper-

ators.
o AFSF f = A(true USF f).

EF<* f = E(true US* f).

AGSF f = —EFsF—f.

EGSF f = —AFSF—f.

A(f R=F g) = ~E(~f USF~yg).

E(f R** g) = -F(~f U= ~g).

AX and EX already specify the exact number of steps when the property
should be hold (which is 1), so we need not define their RTCTL versions. As

a result, we only need to define the semantics of A(f US* g) and E(f US* g).

o M,s = E(f USF g) & there is a path 7 from s and there exists a0 <4 < k

such that M, 7" = gand forall 0 < j < i, M, 77 = f.

o M,s = A(f USkg) & for every path 7 starting from s and there exists a

0 <4 < ksuchthat M, 7' |= gandforall0 < j < i, M,n? = f.

14



2.2. SYMBOLIC MODEL CHECKING

2.2.3 NuSMV

NuSMV is a software tool for symbolic model checking that can support RTCTL.
In NuSMY, a verified system or algorithm is described in a special language, the
NuSMYV language.

The description of a system in the NuSMV language is called a NuSMV pro-
gram. A NuSMYV program is composed of one or more modules, each of which
specifies a finite state machine , and there must be one module with the name
main.

Each module contains variable declarations that determine its state space, the
initial state and the state transition function of the machine.

Variable declarations start with the keyword VAR, and are composed of vari-
ables and their types. The type of a variable can be Boolean, an enumerated type,

or a user-defined module. An example of variable declarations is as follows:

VAR

flag : boolean;

enum : { a, b, c };
user : A;
MODULE A

Initial states and the state transition function are described as a collection of
parallel assignments to a variable. The execution of an assignment updates the

value of a variable. Assignments start with the keyword ASSIGN.

15



CHAPTER 2. PRELIMINARIES

Initial states are assigned by specifying the initial values of the variables by
using expression init(x), where z is a variable. The expression next(x) is used to
specify a value assigned to the variable in the next state. For conditional assign-
ments, a case expression is used.

An example of assignments is as follows.

init (x) := 0;

next (x) = x + 1;

next (y) := case
conditionl : expressionl;
condition2 : expression2;
condition3 : expression3;
1 DY

esac;

Noted that the case expression is evaluated as the first right-hand side expres-

sion whose corresponding left-hand side condition holds.

16



Chapter 3

On Time Complexity of Dijkstra’s
Three-State Mutual Exclusion

Algorithm

3.1 Introduction

In this chapter, we prove a lower bound of the time complexity of Dijkstra’s self-
stabilizing three-state mutual exclusion algorithm by showing that there is a very
long computation. |

This algorithm is one of the first self-stabilizing algorithms [13]. Although
more than 30 years have passed since its invention, the exact worst-case time
complexity of this algorithm is still unknown. The best-known lower bound on
the worst-case time complexity was given by Chernoy, Shalon, and Zaks [9]. They
proved the lower bound of 1%112 — O(n) by showing that there is an computation

of length 1212 — 10in + 14 when n = 3k, where k is a natural number.
gin 1y 6

17



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

In this dissertation we give a lower bound on the worst-case time complexity,
which matches the best-known bound 1% 2 — O(n) [9] but is more accurate. On
addition, our result applies whenn = 3k + 1 and n = 3k + 2.

The remainder of this chapter is organized as follows. In Section 3.2, we de-
scribe the system and the algorithm. In Section 3.3, we prove a lower bound of
time complexity. In Section 3.4, we show a method to compute the time com-
plexity using the model checking tool NuSMV. In Section 3.5, we summarize this

chapter.

3.2 Algorithm

We consider a system consisting of n processes pg, p1, - - * , Pn—1 that are arranged
in a ring. Process p;, (0 < i < n — 1) is adjacent t0 P(;_1) mod » aNd P(i+1) mod n-
Process p; has a local state z; € {0, 1,2} and can read the state of its adjacent
processes. A configuration is an n-tuple of process states (o, %1, - ,ZTn—1)
(e {0,1,2}™). Dijkstra’s three-state mutual exclusion algorithm is described as
follows (addition and subtraction are modulo 3):
Process pg (called bottom):
frg+1l=21=20:=20+21
Process p;, 1 <t < n — 2 (called other):
if
i+l=x_1=>x:=x;+1]
ri+l=xp1=>z:=z,+1
fi

Process p,,_; (called top):

18



3.2. ALGORITHM

Table 3.1: The algorithm in a tabular form (¢’ is the next configuration to g, i.e.,
C—-C)

Type | Process g g

0 Po To < X1 Tog > I

1 Pi Ti1 > Ty = Tijq1 | Ti—1 = Ty > Tiyl
2 Di Ticl =i < Tiy1 | Ti—1 < Ty = Tiq1
3 D; Tim1 2> T < Tiy1 | Ti-1 = Ty = Ti4l
4 Pi Ti] > Ty > Tipl | Ti—1 = Ty < Tiq
5 ¥ Tiol < T < Tiy1 | Ti—1 > Ty = Tiyl
6 Pn-1 | Tn-2>Tp_1 < Ty | Tp—2 < Tp-1>Tp
7 Pn—1 Tp—2=Tp—1 =2g | Tpn-2 < Tp_1 > To

if
Tp9=1=Tp_1=20= Tn_1:=TLp-a+ 1]
Tno=Tp1+1l=29g=>2x,_1 :=xp_o+1
fi
A process is enabled if the if condition is true. As described in chapter 2,
the algorithm runs in steps. In each step, exactly one enabled process executes
the statement of the algorithm, resulting in a new configuration. We write g €
G ~ ¢ € G if there is a computation that starts with g and leads to ¢’. Given
a computation gog; - - - g;, a schedule is a sequence of processes p;p; - - - p; such
that for any ¢, 1 < 7 <[, p; is enabled in g;_; and the execution of the statement
by p; in g, yields g;.
Since this algorithm is intended to ensure mutual exclusion, a configuration is
legitimate if exactly one process is enabled [13]. A configuration is illegitimate

if it is not legitimate.

Proposition 1. [15] Dijkstra’s three-state mutual exclusion algorithm is self-stabilizing,

19



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

that is, the following two conditions hold:

e A legitimate configuration occurs in any computation starting with any con-

figuration.

o If a configuration g is legitimate, then any configuration ¢’ such that ¢ — ¢’

is legitimate.

The worst-case time complexity (or stabilization time in some literature) of
the algorithm is the maximum number of steps executed until a legitimate state
is reached. Formally, the worst-case time complexity is the length of the longest
computation gog; - - - g; such that g; is illegitimate for any 7,0 < ¢ < [ and g; is le-
gitimate. Let 7'(n) denote the worst-case time complexity of the algorithm. When
n is fixed, a number LB(n) is a lower bound on the worst-case time complexity

if LB(n) < T(n).

3.3 Lower Bound

Our proof of a lower bound is relatively direct; We show some extremely lengthy
computations where only the very last configuration is legitimate. Then we obtain
the length of these computations. By definition, the worst-case time complexity is
greater than or at least equal to that length, thus, the length of these computations
is a lower bound on the worst-case time complexity.

Our results apply when n > 9. There are three cases to consider: (1) n = 3k;
2)n = 3k + 1; and (3) n = 3k + 2, where k is a natural number. For each of
these cases, we provide a long computation that comprises three parts. First we

show the results for Case (1) and then proceed to the other two cases.

20



3.3. LOWER BOUND

To concise the proofs concise, we use the same notations as [9]. Notation
T;—1 < r; means T; = (x;_; + 1) mod 3, while z;_; > z; means x; = (z;_; —
1) mod 3. For example, configuration (1, 1,0,1,2,2,0) is represented as 1 = 1 >
0 <1< 2 =2 < 0. With these notations, the algorithm is represented as a
collection of eight types of moves (types O to 7), as shown in Table 3.1. Regu-
lar expressions over {<, >, =} are used to denote configurations. For example,

[=><?*=<] is a possible notation for (1, 1,0, 1,2,2,0).

Lemma 1. When n = 3k,n > 6, there is an computation of length n + 3 from

[<><"3] to [==<"73).

Proof. We show the existence of schedule p3 psps - Pn2Dn-1 Po P11 D1

N N N

type 5 2 7 0 4 2
Po P D2
N N S
0 1 4
[<><m73],

[<>>=<""5), after 1 step of type 5:

[<>><""5=], after n — 5 steps of type 2:

[<>><""4], after 1 step of type 7

(Note that z,,_y = x,_1 = x in the previous configuration because n = 3k):
[>>><""1], after 1 step of type O:

[=<><""1], after 1 step of type 4:

[<=><""1], after 1 step of type 2:

[>=><""1], after 1 step of type O:

[=>><""1], after 1 step of type 1:

[==<"73), after 1 step of type 4. O

Lemma 2. Whenn > 9,2 <k <n-6,and (n — k — 1) mod 3 = 0, there is a

computation of length n + 9k + 10 from [=F<n=*=1] 1o [=F+3<nk—4],

21



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

Proof. We show the existence of schedule pipry1 - Pn—2 Pn—1 Pk—1Pk—2"""D1
N ——— N N———

type 2 7 2
PkPk—1" " P2 Pk+1Pk " "P3 Po P2 P2P3 Pk+1 P1P2 " Pk Pk+1 Pe+1Pk " " D1
~ ~ o\ - /\Ofgvx -~ AN -~ o N\ 7/ N\ /
2 2 5 1 1 4 2
Pk+2Pk+1 """ P2 Pk4+3Pk+2 " P3 Po P2 PapP3 - Dk+3 P1P2 * ° * Pk+2 Pk43-
- ~ o \a -~ /vv\ -~ o - ~ 4\/
2 2 0 5 1 1 4
[:k:<n—k—l]

[=F-1<n=k=1=] after n — k — 1 steps of type 2:
[=*~1<n=k] after 1 step of type 7.

(Because that x,,_, = x,_1 = xy in the previous configuration
since (n — k — 1) mod 3 = 0):

[<=F"1<n=k=1] after k — 1 steps of type 2:
[<<=F-1<"*=2] after k — 1 steps of type 2:
[<<<=F"1<n=*=3] after k — 1 steps of type 2:
[><<=F"1<n=k=3] after 1 step of type O:
[>>=F<""%=3], after 1 step of type 5:
[>=F><n"=*=3] after k steps of type 1:
[=F>><n=k=3] after k steps of type 1:
[=F+1<n=k=2] "after 1 step of type 4:
[<=F+t1<n=k=3] after k + 1 steps of type 2:
[<<=FFt1<n=k~4] after k + 1 steps of type 2:
[<<<=FFt1<"k=5] after k + 1 steps of type 2:
[><<=F+t1<n=k=5] after 1 step of type O:
[>>=Fk+2<n=*=5] after 1 step of type 5:
[>=F+2><n=k=5] after k + 2 steps of type 1:
[=F+2>><n—k=5] after k + 2 steps of type 1:

[=F+3<n=k=4] after 1 step of type 4. :

22



3.3. LOWER BOUND

Lemma 3. Whenn > 6, there is a computation of length 10n—30 from [=""*<<<]

to [=""4>=>].

Proof. We show the existence of schedule p,_4pn_3Pn_2 Pn_1 Pn_5Pn_6"" D1
—_———— . —

type 2 7

2
Qn—4pn:5 P2 g)n—3pn:4 "'P3 Po, P2 P2P3 " Pn-3Pi1P3" " Pn—4 Pn—3 Pn—3Pn—4 """ D1

2 2 0 5 1 1 4 2

DPn—aPn-s5- P2 Do Pn-1 Pn-—2Pn-3°" D3 D2

N e’ N N N—— e N
2 0 7 2 5

DaP3 - Pn-3 P1P2 * * * Pn—4 Pn—2-

1 1 1

—

[=t<<<],

[=""°<<<=], after 3 steps of type 2:
[="S<<<<], after 1 step of type 7:
[<=""%<<<], after n — 5 steps of type 2:
[<<=""%<<], after n — 5 steps of type 2:
[<<<="75<], after n — 5 steps of type 2:
[><<=""5<], after 1 step of type O:
[>>="n-4<], after 1 step of type 5:
[>=""%><], after n — 4 steps of type 1:
[=""4>><], after n — 4 steps of type 1:
[=""3< <], after 1 step of type 4:
[<=""3<], after n — 3 step of type 2:
[<<="73], after n — 3 step of type 2:
[><="73], after 1 step of type O:
[><=""4<], after 1 step of type 7:
[><<=""4], after n — 4 steps of type 2:
[>>=""3], after 1 step of type 5:

[>=""*>=], after n — 4 steps of type 1:

23



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

[=""%>>=], after n — 4 steps of type 1:

[=n—4>:>], after one step of type 1. -

Theorem 1. When n = 3k > 9, we have:

1
1gn2 —4sn—2< T(n).

Proof. By Lemmas 1, 2, and 3, there is a computation such that
() it is represented as: [<><"73] ~» [=2<"7Y] o [EP<TE]
[="1<3] o [=M>>=] - [=74>=>], and

(ii) the length is

m—2
n+3+ > (n+9(3i—1)+10) + 10n — 30

i=1

The final configuration of the computation, that is, [=""%>=>], is legitimate,
because only p,,_3 is enabled. Now, consider the immediate predecessor configu-
ration to the final configuration, that is, the ( lgn2 - 4%n — 3)—th configuration.
This configuration, represented as [=""%>>=], is not a legitimate configuration
because p,_3 and p,_» are both enabled.

From (ii) of Proposition 1, if a legitimate configuration occurs in a computa-
tion, then all successor configurations in the computation must be legitimate. Be-
cause the (12n® — 4¢n — 3)—th configuration is illegitimate, every configuration
in the computation, except for the final configuration, is illegitimate. Therefore

the worst-case time complexity is greater than or at least equal to the length of the

computation. O

24



3.3. LOWER BOUND

For the case n = 3k + 1 (Case (2)) and the case n = 3k + 2 (Case (3)), a
bound is obtained in almost the same manner, except that Lemma 1 is replaced

with Lemma 4 and Lemma 5, respectively.

Lemma 4. Whenn = 3k + 1 > 7, there is a computation of length n + 10 from

[<>>><"5] to [===<""1].

Proof. One such computation is [<>>><"7] — [<>=<""] v [<><" =]

— [<><"3] —

[>><"73] = [=<"2] 5 [<=<"3] 5 [>=<"TF] w [><<=<"] 5 [>>==<""5] w»
[>==><""5] ~» [==>><""5] — [===<""*]. The corresponding schedule is

e Dn—2 D . O
P3 P3Ds Pn2Pn-1 Po P11 P1 _Po P2P3s D2 P2P3 P1P2 D3

type 4 2 7 0 4 2 0 2 5 1 1 4

Lemma 5. When n = 3k + 2 > 8§, there is a computation of length 2n + 11 from

[<>><"4] to [====<""3].

Proof. One such computation is [<>><""*%] —

[<>>>=<""8] v [<>>><0=] -

[<>>><"%] 5 [>>>><"5] 5 [=<>><"F] = [<=>><" 5] 5 [>=>><" —
[>=>>>=<""T]» [>=>>><""T=] —»

[>=>>><"% > [=>>>>< 6] —

[E=<>><"0] o [<==>>< 6

!

]
[>==>><"b] v [==>>><"6)

!

!

[===<><"0] o [<===><""F]
]

[>:==><"-6] ~ [E==>><0 - [====<"‘5]. The corresponding sched-

ule is py pspepr-* - Pn-2 Pn—1 Po D1 p; Do p55 P6P7p8'2"pn—2 pn7_1
2 7

5 0 4 0
. O
D1 P2 p2P1 Po DPi1P2 P3 P3P2p1 Zj)o P1p‘12p3 114

(
<
(
(
(
(

{

25



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

Theorem 2. Whenn = 3k 4+ 1,n > 10, we have:

5 1 1
1=n? —4=-n—1= < T(n).
gV ~4n 13 =T

Proof. Consider a computation [<>>><""3] ~» [=3<"™] o [=0<™T] ~
s [=174<E) s [="1>>=] — [=""*>=>]. By Lemmas 4, 2 and 3, this

computation indeed exists and its length is

m—2

n+10+ Y (n+9-3i+10)+ 10n — 30
=1

5 1 1
=1-n*-4-n—1=
6 2" '3

The final configuration [=""*>=>] is legitimate because only p,_3 is enabled.
On the other hand, its immediate predecessor configuration [=""4>>=] is illegit-
imate, because p,,_3 and p,_5 are both enabled. Hence, from (ii) of Proposition 1,
every configuration in the computation, except for the final configuration, is il-

legitimate. Therefore, the worst-case time complexity is greater than or at least

equal to the length of the computation. O

Theorem 3. Whenn = 3k + 2,n > 11, we have

) 2
16712 - 3%71 - 9§ <T(n).

Proof. Consider a computation [<>><""4] ~»

[:4<n—5] ~s [:7<n—8] ST [:n—4<3] ~3 [:n—4>>:] N [:n—4>:>]. By

26



3.4. COMPUTING OF TIME COMPLEXITY USING NUSMV

Lemmas 5, 2, and 3, this computation indeed exists and its length is

m—2

2n+ 11+ Y (n+9(3i + 1)+ 10) + 10n — 30
i=1

5 5 2
6n 36n 93

The final configuration [=""*>=>] is legitimate, while its immediate predecessor
configuration [=""%>>=] is illegitimate. By the same argument as the proof of
Theorems 1 and 2, every configuration in the computation, except for the final
configuration, is illegitimate. Thus, the worst-case time complexity is greater than

or at least equal to the length of the computation. O

3.4 Computing of Time Complexity Using NuSMV

The use of model checking for analyzing self-stabilizing algorithms was studied
in [36, 37]. We use these studies with some modifications to derive the worst-case
computations .

Here we explain how to translate a distributed algorithm written in the guarded
command language into the NuSMYV program, and how to calculate the time com-
plexity. Figures 3.1, 3.2, 3.3, and 3.4 show the NuSMV program that represents

the three-state algorithm where n = 4.

3.4.1 Communication among processes

The communication among processes is described in the main module (Figure 3.1).

The main module declares four processes: pg, p1, p2, and p3. The behavior of py,

27



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

p; (0 < ¢ < n—1),and p,_, are specified by the modules bottom, other, and top,
respectively.

A process can access other processes via variables specified as parameters of
a module type. For example, in Figure 3.1, process py can access the state of

process p; via the variable state of p;.

3.4.2 Processes

We assume that a distributed algorithm is described in the guarded command lan-
guage. The behavior of a process is expressed as a module in the NuSMV pro-
gram. Figures 3.2, 3.3, and Figure 3.4 describe the behavior of process pg, process
p; (0 < i <n — 1), and process p,_1, respectively.

In each module, the variable state denotes the state of the corresponding
process p;, while L. and R aliases the state of its left neighbor p;_;, and its right
neighbor p, 1, respectively.

Here, the keyword DEFINE is used to associate a symbol with a commonly
used expression. Each definition of priv denotes that the process is enabled.

As mentioned before, we assume that in each step of computation, exactly
one process is selected from the enabled processes and it updates its state. In a
NuSMV program, however, all processes declared in the main module are exe-
cuted in a synchronous manner. The variable run denotes that a process is se-
lected. A process updates the state only if the value of run is true. The keyword
INVAR is used to specify a Boolean expression that is true for any reachable

states. Thus, by adding the declaration

INVAR

28



3.4. COMPUTING OF TIME COMPLEXITY USING NUSMV

MODULE main
VAR
pO : bottom(pl.state);
pl : other(p0.state , p2.state);
p2 : other(pl.state, p3.state);
p3 : top(p2.state, pO.state);
DEFINE
legitimate := (pO.priv + pl.priv + p2.priv + p3.priv = 1);

INVAR
pO.run + pl.run + p2.run + p3.run = 1

Figure 3.1: NuSMYV program of the three-state algorithm (main module).

run -> priv

to each process, we can guarantee that a process is always selected from the en-

abled processes. On addition, by adding the declaration

INVAR

pO.run + pl.run + p2.run + p3.run = 1

to the main module, we can specify that the number of selected processes is ex-
actly one.

The statement is divided into one or more assignments each of which updates
a variable. The value of a case expression is determined by the first expression
on the right-hand side of a “:” such that the condition on the left hand side is
true. Thus, the right-hand side expression corresponds to the statement, and the
condition is a conjunction of run and the guard, which means that when a process

is selected, the value is updated according to the action whose guard is true.

29



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

MODULE bottom (R)
VAR
state : { 0, 1, 2 };
run : boolean;
DEFINE
priv := (state + 1) mod 3 = R;
INVAR
run —> Ppriv
ASSIGN
next(state) := case
run : (state + 2) mod 3;
1 : state;
esac;

Figure 3.2: NuSMV program of the three-state algorithm (bottom module).

MODULE other (L., R)
VAR
state : { 0, 1, 2 };
run : boolean;
DEFINE
priv := ((state + 1) mod 3 = L) |
((state + 1) mod 3 = R);
INVAR
run —> priv
ASSIGN
next(state) := case
run : (state + 1) mod 3;
1 . state ;
esac ;

Figure 3.3: NuSMV program of the three-state algorithm (other module).

30



3.4. COMPUTING OF TIME COMPLEXITY USING NUSMV

MODULE top (L, R)
VAR
state : { 0, 1, 2 };
run : boolean;
DEFINE
priv := (L = R) & (state != ((L + 1) mod 3));
INVAR
run —> priv
ASSIGN
next(state) := case
run : (L + 1) mod 3;
1 : state ;
esac;

Figure 3.4: NuSMYV program of the three-state algorithm (top module).

3.4.3 Computing of the Time Complexity

In the main module, legitimate configurations are defined by the symbol legitimate.
The convergence time ct from configuration g € G is the least number of
steps such that g = AF<“legitimate holds. Thus, the time complexity r of a

self-stabilization algorithm is calculated as follows:

= i AFsFpll
T %éaé({mm{km): I3
In a NuSMYV program, we can calculate the stabilization time by a COMPUTE
MAX statement:

COMPUTE MAX [ 1, legitimate ]

This statement takes two Boolean expressions. The general form of this state-

ment is COMPUTE MAX [ A, B ], where A is the expression that evaluates to

31



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

true in the initial configurations. Then, the statement enforces NuSMV to compute

the following value:

— i <k
r—\glgx@{mm{kml:AF P}},

where G’ C (G and the Boolean expression A holds for any g € G'.

The Boolean expression 1 means tautology. This reflects the fact that a stabi-

lizing algorithm can start from any configuration.

3.4.4 Extracting Worst-Case Execution

Using the computed time complexity, the worst-case computation can be extracted

by checking the following RTCTL specification:
SPEC ABF 0 .. (r - 1) legitimate ’

where 7 is the computed time complexity. This specification corresponds to the
expression AF<""1legitimate. NuSMYV checks that any computation starting
from any state reaches a legitimate configuration in  — 1 steps. This specification
does not hold because there is a computation whose length is r. Thus, NuSMV
provides one of the worst-case computations as a counterexample.

A counterexample is a sequence of the values of each variable as follows:

—-—> State 1.1 <—-

pO.state = 0

pl.state =1
p2.state = 2
p3.state = 3

32



3.4. COMPUTING OF TIME COMPLEXITY USING NUSMV

--> State 1.2 <-—-

pO.state

=1

We can obtain the sequence used in our proof by using the program shown in

Appendix 3.

6.2.

3.4.5 Analysis of Counterexamples

Here, we can obtain only one counterexample. We can get another counterexam-

ple by adding INIT constraints as follows:

INIT
1o

(pO.

(pl.

(p2.

(p3.

state

state

state

state

INIT constraints are used to specify a Boolean expression that must hold on initial

configurations. By removing an initial configuration of a counterexample using

INIT, we can obtain another counterexample for the RTCTL specification.

The RTCTL specification eventually holds when we iterate to add an INIT

constraint and get a counterexample because the number of initial configurations

is finite. Then, we found that only a few configurations can be the initial config-

uration of a worst-case computation. The result leads us to the proof described in

this chapter.

33



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

Table 3.2: Exact worst-case time complexity. It coincides perfectly with our lower
bound for 9 < n < 20.

n worst-case time complexity 7'(n)
9 109
10 137
11 170
12 212
13 250
14 296
15 348
16 396
17 455
18 517
19 575
20 647

3.4.6 Results

Using NuSMYV, we also mechanically computed the exact worst-case time com-
plexity for 9 < n < 20. Interestingly, the complexity exactly matches our lower
bound. Table 3.2 shows the concrete figures for this range of n. Based on this
finding, we conjecture that our lower bound is the exact worst-case time complex-
ity when n > 9. If our conjecture is true, then it is also true under a distributed
scheduler, because any single step under a distributed scheduler can be simulated

by a sequence of steps under a centralized scheduler [5, 8].

3.5 Summary

In this chapter, we proved a lower bound of the time complexity of Dijkstra’s

self-stabilizing three-state mutual exclusion algorithm, and showed a method for

34



3.5. SUMMARY

computing time complexity by using model checking.

The best-known lower bound on the worst-case time complexity was given
by Chernoy, Shalon, and Zaks [9]. They proved a lower bound of 12n* — O(n)
by showing that there is a schedule of length 13n* — 10in + 14 when n = 3k.
Although our bound matches 12n* — O(n), ours is tighter than 13n* — 103n + 14

when n = 3k. Whenn = 3k > 9, we have:

5 1 5 1
( 6n 6n 2 16n 106n+ 14
=6n—16>0

On addition, our result applies when n = 3k + 1 and n = 3k + 2.

We have thus assumed that exactly one enabled process executes the statement
of the algorithm in each step. This model is often referred to as the centralized
scheduler model. A different model could be that any subset of enabled processes
can be selected in each step, which is called the distributed scheduler model. The
three-state algorithm is correct in the latter model [5]. Clearly, the proposed lower
bound holds under the distributed scheduler, because any computation in the cen-
tralized scheduler model is also possible in the distributed scheduler model.

We obtained the computations used in our proofs by analyzing the algorithm’s
behavior with the NuSMV model checking tool [10]. Model checking is a state
exploration-based verification technique. The use of model checking for analyz-
ing self-stabilizing algorithms was studied in [36, 37]. We used these studies with
some modifications to derive the computations used.

On the following appendix, we show the program for generating a NuSMV

program (3.6.1) and the script for formatting a counterexample (3.6.2).

35



CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

3.6 Appendix

3.6.1 Script for Generating NuSMV Program

The script gen is written in Perl. When you enter a natural number n > 2,
this script generates the NuSMV program of Dijkstra’s self-stabilizing three-state

mutual exclusion algorithm with n processes.

#! /usr/bin/env perl
# File name: gen
use strict;

use warnings;

sub usage;

@ARGV || usage;

my $N = (shift) — 0;

$N > 2 || wusage;

print <<EOT;

MODULE bottom (R)

VAR

state : { 0, 1, 2 };

run : boolean;

36




3.6. APPENDIX

DEFINE
priv := (state + 1) mod 3 = R;
INVAR

run —> priv

ASSIGN
next(state) := case
run : (state + 2) mod 3;
1 : state;
esac;

MODULE other (L, R)
VAR
state : { 0, 1, 2 };

run : boolean;
DEFINE
priv := ((state + 1) mod 3 = L)

((state + 1) mod 3

INVAR

run —> priv

ASSIGN
next(state) := case
run : (state + 1) mod 3;
1 : state;
esac;

37

R);




CHAPTER 3. ON TIME COMPLEXITY OF DIJKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

MODULE top (L, R)
VAR

state : { 0, 1, 2 };

run : boolean;
DEFINE
priv := (L = R) &
(state != ((L + 1) mod 3));
INVAR

run —> priv
ASSIGN
next(state) := case
run : (L + 1) mod 3;
1 . state;

esac;

MODULE main

VAR

p0 : bottom(pl.state);
EOT

for(my $i = 1; $i < $N — 1; ++8i){

2" 2%

print p$i : other(p”, $i — 1, ”.state, p7,

$i + 1, ”.state);\n”;

38




3.6. APPENDIX

}
print 7 p”, $N - 1, ” : top(p”, SN — 2,

”.state , pO.state);\n”;

print ”"DEFINE\n”;

i3]

print legitimate := (7,

join(” + 7,
map { "p$-.priv” } (0 .. $N — 1)),
7= 1);\n”;

print “INVAR\n”;

*» 2 I

print , join(’ + 7,
map { "p$_.run” } (0 .. $N — 1)

)’ 2 — 1\n”;

sub usage {
print STDERR <<EOT;

Usage : gen n

n The number of processes (n > 2)
EOT

exit 1;

39




CHAPTER 3. ON TIME COMPLEXITY OF DUKSTRA’S THREE-STATE
MUTUAL EXCLUSION ALGORITHM

3.6.2 Script for Formatting a Result

The script format converts a counterexample to the sequence of {<,=, >},

which is used in our proof. This script is used as follows:

$ NuSMV input.smv | ./format

A NuSMYV program “input.smv” must contain the RTCTL specification.

#! /usr/bin/env perl
# File name: format
use strict;

use warnings;

my @states = ();

while (<>){
if (/State: 1\.\d+/){
prettify ( @states) if (@states);

Yelsif (/p(\d+)\.state = (\d)/){
$states[$1 — 0] = $2 — O;

}

prettify (@states );

sub operator {

40




3.6. APPENDIX

$-[0] == $_[1] ? ="
($_[0] + 1) % 3 == $_[1] ? "< :
’7>9, ;

sub prettify {

my @src = @_;

print join(’ ’

b

map {

operator $src[$_]1, $src[$. + 1]
} (0 .. $#src — 1),
), "\n”;

41






Chapter 4

On Time Complexity of Hsu and

Huang’s Maximal Matching

4.1 Introduction

In this chapter, we discuss the time complexity of the self-stabilizing algorithm
proposed by Hsu and Huang in [25], which finds a maximal matching in a net-
work. This algorithm is the first self-stabilizing maximal matching algorithm and
has been ‘regularly cited in the literature. Based on this algorithm, many self-
stabilizing algorithms were thereafter developed for the maximal matching prob-
lem and its variants [6, 20, 19, 21, 32, 27].

Because of its technical importance, the time complexity of this particular
algorithm has been well studied. In [25], Hsu and Huang show that it is bounded
by O(n3), where n is the number of processes. In [34], Tel provides an almost
tight upper bound, which is 1n? 4+ 2n + 1 if n is even and $n® +n — 1 if n is odd.

In [35], Tel gives a more concise proof for the O(n?) bound than [34]. In [23],

43



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

Hedetniemi, Jacobs, and Srimani provide an upper bound of 2| E| + n, where |E|
is the number of edges. This gives a better bound than the one in [34] but only if
the network is sparse. In this chapter, we provide the exact time complexity of the
Hsu-Huan algorithm.

The remainder of this chapter is organized as follows. In Section 4.2, we
describe the algorithm. In Section 4.3, we prove the upper bound of the time com-
plexity. In Section 4.4, we prove that the upper bound is the exact time complexity
by showing a computation whose length matches the upper bound. In Section 4.5,

we summarize this chapter.

4.2 The Hsu—-Huang Algorithm

We consider a distributed system consisting of n (> 2) processes. The topology
of the system is modeled as an undirected graph. Let N(p) denote the set of a
process p’s adjacent processes (neighbors).

Given an undirected graph G = (V, E)) where V is a set of nodes and F is a
set of edges, a matching M is a subset of edges where no two edges share a node.
If no matching M’ is a superset of a matching M, then M is a maximal matching.
We consider the problem of finding a maximal matching of the graph.

Each process p has a pointer. The pointer either points to one of p’s neighbors
that p selects to match or has a null value. The notation p — ¢ denotes that p’s
pointer points to ¢ € N(p), the notation p — null denotes that p’s pointer has a
null value, and the notation p < g denotes thatp — g A g — p.

Each process p is in one of the following five states:
1. If 3¢ € N(p) : (p — ¢) A (¢ — null), then p is waiting.

44



4.2. THE HSU-HUANG ALGORITHM

2. If 3g € N(p) : p & ¢, then p is matched.

3. Ifdg € N(p),3r € N(q) : (p — ¢) A(q — 7) A(r # p), then p is chaining.

4. If (p — null) A (Vg € N(p) : q is matched), then p is dead.

5. If (p — null) A (3g € N(p) : ¢ is not matched), then p is free.

A maximal matching is found iff every process is either matched or dead.
The Hsu-Huang algorithm at each process p is given by the following three

rules.

if

(p—null)AN(ge N(p): ¢q—p)=>p—q]

(R1)

(p—=nul)AN(Nr e N(p): ~(r = p))A(FgeND): g—null) =>p—q[ (R

p—=g)AN(g—7)A(r#p)=p— null

fi

where each rule is of the form guard = action. Each rule is executed atomically
and no two processes can execute a rule at a time.

A configuration of the system is a collection of the pointers of all the pro-
cesses. In [25], it is proven that any computation of the algorithm is finite, and
every process is either matched or dead in the last configuration of any maximal
computation, meaning that the system always converges to a configuration where
a maximal matching is obtained. The time complexity of the algorithm is the

maximum number of steps (that is, rule executions) required to find a maximal

45

(R3)



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

matching. Thus, we have

(time complexity) = (the length of the longest computation) — 1 .

4.3 Upper Bound on Run Lengths

Our derivation of the upper bound on the time complexity follows the basic line
of [34]. In [34], similar to many self-stabilization literatures, time complexity
is analyzed using the variant function technique. A variant function is a function
over configurations, whose value is monotonically decreases (in our context) when

processes execute a rule of the algorithm.

Our variant function is a tuple (X,Y'), where X and Y are functions that map

a configuration to a non-negative integer as follows:

[t[t2]  (evenn)

(<552 (oddn)

Y =2¢+ f )

where ¢, f, and w are the number of chaining, free and waiting processes, respec-
tively. For odd n, the variant function is identical to that of [34]. The modification
made is that a different expression of X is used for even n. As stated later, this

subtle modification is critical to obtain the exact time complexity.

The variable function is evaluated in lexicographical order; i.e., X is evaluated

first and then Y. Below we show that this function indeed decreases monotoni-

46



4.3. UPPER BOUND ON RUN LENGTHS

cally when a rule is executed. As in [34], an important observation is that c+ f +w
never increases because by the design of the rules, matched or dead processes re-
main matched or dead. Thus, it suffices to see that either X or Y is decreased by
the execution of a rule. In the following description, p, ¢, and r refer to p, q, and

r in the rule definition described in Section 2.

Execution of Rule ?; Rule R, is enabled only when p is free and q is waiting.
When it is executed, p and ¢ become matched. Dead or matched processes do not
change their state. Hence, the rule execution decreases ¢ + f + w by at least 2,

thus decreasing X by at least 1.

Execution of Rule £, Rule R, is enabled only when p is free and causes p to
become waiting. Because no process is waiting for p (Vr € N(p) : =(r — p)), the
waiting process becomes neither chaining nor free. Except for p, all free processes

remain free. Hence, the execution of the rule decreases Y by 1.

Execution of Rule B3 This rule is enabled only when p is chaining and causes
p to be free or dead by setting p’s pointer to null. No process becomes chaining.
On addition, no waiting process becomes free because p is the only process that
makes its pointer null. Hence, the execution of R3 decreases Y by at least 1.

In summary, the execution of any of the three rules either: (1) decreases X, or

(2) decreases Y, but does not increase X. This leads to the following observation:

Observation 1. Any computation g.1gs - - - g; is a concatenation of computations
o1, -+ ,0m such that: (1) all configurations in o; have the same F value; (2) if

configurations g, g’ occur in o; and 0,41 respectively, then X (g) > X (¢'), and (3)
g

47



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

if configurations g, g’ consecutively occur in o;, then Y (g) > Y (¢).

This is schematically represented as follows:

oy Oit1
» . >

gj-2 gj-1 gj gj+1
...... :-X(g]—2)=X(g]—1) > X(g])zX(g]+l):' e e e e
>Y(gi—2) >Y(g9j-1) Y(g;)>Y(gjy1)>---

Another observation used in obtaining the upper bound is as follows:

Observation 2. Because a waiting process waits for a free process, w > 1 implies

f>21LHenceG>1lifc+f+w>1,G=0ifc+f+w=0.
Our derivation of the upper bound refines the one by Tel in [34] in three ways.

e The analysis of the configurations where X = | 7] is refined (Lemma 6).

This reduces the upper bound by 4 if n is even and by 2 if n is odd.

e The new variable function allows the reduction of the upper bound by n — 2

for the case of even n (Lemma 7).

e The analysis of the configurations where X = 0 is refined (Lemma 8). This

reduces the upper bound by 1 for the case of even n.

As a result, the new bound is smaller than that of [34] by n + 3 if n is even, and

by 2 if n is odd.

Lemma 6. If a computation g1gs - - - gi satisfies X(g1) = --- = X(g) = |5],

then the length | of the computation is at most 2n — 2.

48



4.3. UPPER BOUND ON RUN LENGTHS

Proof. From Observation 2, Y (g;) > 1 for any g;. If Y(g;) < 2n — 2, then the
lemma follows trivially. Thus, in the following proof, we assume that 2n — 1 <
Y (91) < 2n and proceed as follows. We first show that under this assumption,
there is always a “cycle” of chaining processes in g;. Then, we show that [ <
2n—2 holds in two cases: (1) none of the processes consisting of the cycle execute
a rule in the computation, and (2) some process in the cycle executes a rule.

Because of the assumption of 2n — 1 < Y(g;) < 2n,eitherc=n—1A f =
INw=0o0rc=nA f=w= 0holds in g;. Hence, in g,, every chaining process
has a pointer pointing to another chaining process. (Note that even if f = 1, a
chaining process cannot point to that free process, because if a process p has a
pointer to a free process, then, by definition, p is a waiting process.)

In g;, therefore, there is at least one cycle of chaining processes, that is, there
is a sequence of processes pi, P, - -+ , Plen, SUch that p; — p;q forall 2,1 < 4§ <
len — 1 and pe, — p;. By the definition of a chaining process, the cycle contains
at least three processes, that is, len > 3.

If none of the processes consisting of a cycle execute a rule in the computation,
Y(g1) > 6, because len > 3 implies ¢ > 3. In that case, because 2n > Y (g;) >
Y(g2) > --- > Y(gi) > 6, the computation length [ is at most 2n — 5.

Now, consider the case where some process in the cycle executes a rule in this
computation. Note that only R3 can be executed by this process. Let p be the
first process that executes the rule in the cycle, and let g; be the configuration in
which this rule execution occurs. Then, Y (g;) —3 > Y(g:4+1), because p becomes
free, and the process that points to p in the cycle becomes waiting, resulting in
a decrease in c by at least 2 and an increase in f by 1. Because 2n > Y(g;) >

Y(g2) > --- > Y(g) > 1, the computation length [ is at most 2n — 2.

49



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

a

Lemmas 7, 8, and 9 apply to the case of even n.

Lemma 7. When n is even, if a computation g9, - - - g; satisfies X (g1) = --- =

X(gi1) = x > 0, then the length | of the computation is at most 4x.

Proof. Y(g1) < 4z, because c is at most 2z. From Observations 1 and 2, 4z >

Y(g1) >Y(g2) > --- > Y{(gq) > 1, thus, the lemma follows. O

Lemma 8. When n is even, if a computation g,9; - - - g; satisfies X(g1) = -+ =

X(gi) = 0, then the length | of the computation is 1.

Proof. When niseven, if X =0, thenc+ f+w = 0and 2f +w = 0. Hence, the
computation contains exactly one configuration in which every process is matched

or dead. O

Lemma 9. When n is even, the length of any computation is at most:

1
§n2+n—1

n n

Proof. Because there are n processes, 0 < X < 7 and 0 < %. From Obser-

LV

vation 1 and Lemmas 6, 7, and 8, the upper bound on the computation length is

derived as follows:

n_1
2
(2n—2)+ > 4dz+1

=1

1 L 1
= =N n—
2

50



4.3. UPPER BOUND ON RUN LENGTHS

Lemmas 10, 11, and 12 apply to the case of odd n.

Lemma 10. When n is odd, if a computation g, gz - - - g; satisfies X (g1) = - - -

X(g1) = x > 0, then the length | of the computation is at most 4x + 2.

Proof. Y (g1) < 4z + 2, because c is at most 2z + 1. From Observations 1 and 2,

dz+2>Y(g1) >Y(g2) > --- > Y(g) > 1, thus,the lemma follows. O

Lemma 11. When n is odd, if a computation g, g, - - - g, satisfies X (g,) = --- =

X(g:) = 0, then the length | of the computation is at most 2.

Proof. At each configuration g; in the computation, either c + f + w = 1 or
c+ f+w =0, because X(g;) = 0.

Ifc+ f+w =1, then 2c + f = 2, because neitherc = w = 0 A f = 1 nor
¢ = f = 0 Aw = 1is possible, This is because a process can be free or waiting
ohly if at least one of its neighbors is neither matched nor dead. If c + f +w = 0,
then 2c+ f = 0. Asaresult, Y(g;) = 2 (ifc+ f+w = 1) or Y(g;) = 0 (if
¢+ f + w = 0) for any g; in the computation, thus, the computation length is at

most 2. |

Lemma 12. When n is odd, the length of any computation is at most:

_n —_—
2 2

Proof. Because there are n processes, 0 < X < |Z] and 0 < [ %]. From Obser-

vation 1 and Lemmas 6, 10, and 12, the upper bound on the computation length is

51



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

derived as follows:

4.4 Exact Time Complexity

In this section, we provide the exact time complexity, by showing an algorithm
execution whose computation length exactly matches the upper bound obtained in
the previous section. This example of execution is identical to that shown by Tel
in [34]; however, the computation length is analyzed only for the case of even n.
Here, we provide the exact computation length for the case of odd n, generalizing
his result to any n. Before presenting our result, we first describe this execution
to clearly show how the result is derived.

Suppose that the system consists of n > 3 processes p;, ps, - - , P, and that

the topology of the system is a complete graph. On addition, suppose that initially

P — P2, P2 = P33 Pn—1 = Pns Pn — P1-

1. Rjis executed by n — 1 processes pi, pa, ' ,Pn—1- As a result, all of the

n — 1 processes become free, and p,, becomes waiting for p;.
2. R; is executed by n — 2 processes pa, ps, - - - , Pn—1 to point p;.

3. R; is executed by p; to match p,,. As a result, p; and p,, become matched,

and the other n — 2 processes become chaining.

52



4.4. EXACT TIME COMPLEXITY

Phases 1-3 result in » — 2 chaining processes and two matched processes.
Phases 4—6 start with n — ¢ matched processes and i (> 2) chaining processes

pointing to a matched process. Initially, ¢ is n — 2.

4. Rjis executed by the ¢ chaining processes. As a result, all of the 7 processes

become free.

5. Let p be any one of the i free processes. The free processes other than p
execute [ to point p. The ¢ — 1 steps cause these free processes to become

waiting.

6. R, is executed by one of the waiting process, say ¢, to match p. As a result,
p and g become matched, and the other ¢ — 2 processes become chaining.
Phases 4-6 are repeated with ¢ replaced with ¢ — 2 until at most one chaining

process remains.

As a result, all the processes become matched if n is even, whereas a single

chaining process remains if 7 is odd. In the latter case, Phase 7 is performed.
7. Rgis executed by the chaining process, causing the process to become dead.

The number of steps of the above execution is expressed as follows: For even

1y
2n—2+) (2z+(2c—1)+1)

=1

1,
== -9
5™ +n

53



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

For odd n:
[Z]-1
m—2+ Y (2Az+1)+2z+1)+1
z=1
= ln2—|rn—§
T2 2

For the case n = 2, we can consider the following scenario. Starting with two
free processes, the execution of R, by each of the processes leads to a final con-
figuration where both are matched. The number of steps involved in this example

is two, which coincides with the above expression.

Theorem 4. The exact time complexity of the algorithm is expressed as follows:

1

5712 +n—2 (evenn)
1 )

§n2 tn—g (odd n)

Proof. By Lemma 9 and Lemma 12, these expressions represent the upper bound
on the time complexity. The above examples of algorithm execution show that

these expressions also represent the lower bound. O

4.5 Summary

In this chapter, we analyzed the time complexity of Hsu and Huang’s self-stabilizing
maximal matching algorithm [25]. Refining the result by Tel [34], we provided
the exact time complexity.

The fact that the upper bound by Tel is very similar to the time complexity

computed using model checking (see Table 4.1) leads us to find our proof. On the

54



4.6. APPENDIX

# of Processes | Upper Bound | Computed
3 7 5
4 18 10
5 17 15
6 32 22
7 31 29

Table 4.1: Upper bound and computed time complexity of Hsu—-Huang algorithm

following appendix, we explain a NuSMV program for computing the time com-
plexity of the Hsu—Huang algorithm, and show a program to generate a NuSMV

program for n processes.

4.6 Appendix

4.6.1 Example of a NuSMV Program

Here we show an example of a NuSMV program to compute the time complex-
ity of Hsu and Huang’s maximal matching algorithm with three processes. Fig-
ures 4.1, 4.2, 4.3, and Figure 4.4 represent the program. Note that this program
assumes that the topology of the system is a complete graph to avoid the state-

explosion problem.

To compute the time complexity of the algorithm on any topology, a NuSMV
program must contain flags irrespective of whether processes p and ¢ are neigh-
bors. This makes the state space of the program larger. Fortunately, it is sufficient
to compute the time complexity of this algorithm on a complete graph to compute

the worst-case time complexity.

55



CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

Figure 4.1: NuSMYV program for maximal matching (main)

Here, we consider a computation g,, - - - , g; to be the longest computation on
a graph G that is not a complete graph. When the number of dead processes is
1 or O, the length of the longest computation on a graph G’ that is generated by
adding an edge to G is larger than or equal to that on G. When the number of dead
processes is larger than or equal to 2, there is a longer computation on G’ that is
generated by adding an edge between the two dead processes. The processes can
execute a rule to be matched each other from g;. Thus, the longest computation
on a complete graph is the worst-case computation.

Figure 4.1 represents the system. The variable pi (¢ € {1, 2, 3}) is the pointer
of a process. If pi = 0 holds, then the pointer does not point to any neighbors. If
pi # 0 holds then the pointer points to the process pi. Because we use 0 as null
value, the index of the processes starts with 1. The variable ri (i € {1,2,3}) is
used to represent that the process is selected to execute a rule.

In Figure 4.2, mi and di (1 < ¢ < 3) represents expressions that hold when
a process is matched or dead, and legitimate represents an expression that holds
when all processes cannot execute a rule, that is, when a configuration is legiti-

mate.

56



4.6. APPENDIX

DEFINE
ml := ((pl = 2) & (p2 = 1)) | ((pl = 3) & (p3 = 1))
m2 := ((p2 = 1) & (pl = 2)) | ((p2 = 3) & (p3 = 2))
m3 := ((p3 = 1) & (pl = 3)) | ((p3 = 2) & (p2 = 3))

dl := (pl = 0) & m2 & m3;

d2 := (p2 = 0) & ml & m3;
d3 := (p3 = 0) & ml & m2;
legitimate := rl + r2 + r3 = 0;

Figure 4.2: NuSMV program for maximal matching (matched and dead)

Figure 4.3 represents rules that are executed by process 1. We omit the rules

for other processes because they are redundant for explanatory purposes.

For R; and R,, we need to specify all of the possible combinations of condi-
tions about their neighbors because a case expression evaluates to the first right-
hand side value whose left-hand side condition holds. If we used the following

expressions to describe R:

rl & (pl=0) & (p2=1) : {2 bi

rl & (pl=0) & (p3=1) : { 3};

then p1 would always become 2 when r1&(pl = 0)&(p2 = 1)&(p3 = 1) holds.

The value of ri (1 < ¢ < n) is determined by a set of invariants. Figure 4.4
shows two of them. The first invariant specifies that a process — process 1 in this
case — must be enabled for some rule when it is selected for computation. This
invariant is needed for every process. The second invariant specifies that all ri

becomes false only when all processes are matched or dead.

57

2

k4

.

b




CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S

MAXIMAL MATCHING
ASSIGN
next(pl) := case
— RI1
rl & (pl=0) & (p2=1) & (p3=1) : {2, 3};
rl & (pl=0) & (p2=1) : {2 }s
rl & (pl=0) & (p3=1) : { 3}
— R2
rl & (pl=0) & (p2=0) & (p3=0) : {2, 3};
rl & (pl=0) & (p2=0) : {2 }s
rl & (pl1=0) & (p3=0) : { 3};
— R3
rl & (pl=2) & (p2=3) . 0
rl & (pl=3) & (p3=2) : 0;
1 : pl;
esac;

Figure 4.3: NuSMV program for maximal matching (assignment for p;)

INVAR
rl — (
— R1 or R2
((pl = 0) & ((p2 = 1) | (p2=0) | (p3 = 1) | (p3 = 0))) |
— R3

((pl = 2) & (p2 != 0) & (p2 != 1)) |
((pl = 3) & (p3 != 0) & (p3 != 1))
)

INVAR
legitimate —> ((ml | d1) & (m2 | d2) & (m3 | d3))

Figure 4.4: NuSMV program for maximal matching (a part of invariants)

58



4.6. APPENDIX

4.6.2 Script for Generating a NuSMYV Program

This script generates a NuSMV program of the Hsu—Huang algorithm with n pro-
cesses. To compute the time complexity, you need to add the following expres-

sion:

COMPUTE MAX [ 1, legitimate ]

#! /usr/bin/env perl
# Filename: gen
use strict;

use warnings;

sub usage;

sub powerset;

sub R1;

sub R2;

sub R3;

@ARGV || usage;

my $N = (shift) — 0;

$N > 1 || usage;

my @PROCESSES

Il
—

$N;
my 9NEIGHBORS

map {

59




CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S

MAXIMAL MATCHING
my $p = $_;
$p => [grep { $. != $p } @PROCESSES]
} @PROCESSES;

my 9POWERS = map {
$_ => powerset (@{$NEIGHBORS{$_}})
} @PROCESSES;

print "MODULE main\n”;
print "VAR\n”;
for my $i (@PROCESSES){
print > p$i : { 0, 7,
join(’, ’, @{$NEIGHBORS{$i}}),
7 h\n7
}
for my $i (@PROCESSES){

k44

print run$i : boolean;\n”;

print ”"DEFINE\n”;
for my $i (@PROCESSES){

print 7 m$i := (\n”;

print join(” |\n”,

map {

60




4.6. APPENDIX

2 x4 . "((p%i = $.) & (p$_ = $i))”
} @{$NEIGHBORS{ $i}}
), "\n”;

print 7 );\n”;

for my $i (@PROCESSES){
print ” d$i := (\n”;
print ’ * x 4, "(p$i = 0) &\n”;
print join(” &\n”, map {
7 x4 . "m$.”
} @{$NEIGHBORS{$i}}), ”\n”;

print ” );\n”;

”» k24

print legitimate := 7,
join(” + ”, map { "run$_” } @PROCESSES),

2 o 0;\n”;

print “ASSIGN\n”;
for my $i (@PROCESSES){

”

print next(p$i) := case\n”;

R1 $i;

61




CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

R2 $i;
R3 $i;
print > 7 x 4, ”1 : p$i;\n”;

2

print esac;\n\n”;

for my $i (@PROCESSES){
print "INVAR\n”;

2

print run$i — (\n”;
# R1 or R2
print * ’ x 4, "((p$%i = 0) & (7,

join (”

' L3

, map {
"(p$. = $i) | (p$- = 0)”
} @{$NEIGHBORS{$i}}), 7)) [\n”;

print join(” |\n”, map {
* x4 . "((p$i = $.) & (p$. !'= 0) & (p$. != $i))’

} @{$NEIGHBORS{$i}}), "\n™;

print 7 )\n\n”;

print "INVAR\n”;

62




4.6. APPENDIX

”

print legitimate —> (7,
join(” & 7, map { "(m$. | d$.)” } @PROCESSES),

")\ n\n";

print "INVAR\n”;
print ” 7, join(” + ”, map { "run$_.” } @PROCESSES),

13 < 2\n”;

sub usage {
print STDERR <<EOT;

Usage : gen n

n The number of processes

EOT
}

sub powerset {
my @result = ();
my $mask = (1 << ($#_ + 1)) — 1;

for (; $mask > 0; —S$mask){

my $tmp = [];

for(my $i = 0; $i < @_; ++8i){

63




CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

if ($mask & (1 << $i)){
push (@$tmp, $_[$i]):

push(@result, $tmp);

return [sort { $#{$b} <=> $#{S%a} } @result];

sub R1 {

my $p = shift;

print > ° x 4, "—— Rl\n”;

for my $aref (@{$POWERS{S$p}}){
print > ’ x 4,
join(” & 7, "run$p”, "(p$p = 0)”,
map {
"(p$- = 3$p)”
} @8$aref),
> o {7, join(”, 7, @$aref), ” };\n”;

64




4.6. APPENDIX

sub R2 {
my $p = shift;
print > ° x 4, "—— R2\n”;

for my $aref (@{$POWERS{$p}}){
print * ’ x 4,

join(” & 7, "run$p”, “(p$p = 0)”,

map {
“(ps- = 0)”
} @8$aref),
> {7, join(”, 7, @$aref), ” };\n”;
}
}
sub R3 {

my $p = shift;
print * ’ x 4, "—— R3\n”;

for my $q (@{$NEIGHBORS{$p}}){
print > ’ x 4,
join(” & 7, "run$p”, "(p$p = $q)”,
"(p$q !'= 0)”, “(p$q != $p)”), 7 : 0;\n”;

65




CHAPTER 4. ON TIME COMPLEXITY OF HSU AND HUANG’S
MAXIMAL MATCHING

66



Chapter 5

New Fast Self-Stabilizing Maximal

Matching Algorithm

5.1 Introduction

The worst-case time complexity of the Hsu—Huang algorithm in terms of the num-

ber of nodes n is n®+n—2if nis even, and n® +n — 2 if nis odd [31]. In [23],

2|E| + n — 5 and 2|E| + n are shown to be the lower and upper bounds on the

worst-case time complexity, where |E| is the number of edges.

Table 5.1: Worst-case time complexity of self-stabilizing maximal matching al-
gorithms (| E| and » denote the number of edges and nodes in a network graph).

Algorithm w.rtn w.rt |E| and n
T(n) = in® + n — 2 (nis even)
-5 < <
Hsu and Huang [25] T(n) = In? 4 n— 3 (nis 0dd) 2lE|+n—5<T(n,|E|) <2|E|+n
. T(n) = in®> +n —1(nis even)
Proposed Algorithm T(n) :‘__ n2+in_5 (nis odd) T(n, |E]) < |E]+n

67




CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING
ALGORITHM

In this chapter, we propose a new self-stabilizing algorithm for computing a
maximal matching. The proposed algorithm assumes the same model as the Hsu—
Huang algorithm and runs faster. In particular, the new algorithm reduces the
worst-case time complexity by approximately half. Table 5.1 compares the time

complexity of these two algorithms.

The remainder of this chapter is organized as follows. Section 5.2 proposes our
new algorithm. Section 5.3 describes the correctness proof and the derivation of
the exact time complexity in terms of the number of nodes. Section 54 provides
an upper bound on the time complexity in terms of the number of edges. For
sparse graphs, this bound gives a better estimate for execution time than the one

in terms of n. Section 5.5 summarizes this chapter.

5.2 The New Algorithm

A problem with the Hsu—Huang algorithm is that a node may repeatedly execute
rule R3. On other words, a node may withdraw its proposal for matching many
times, resulting in a long computation. The proposed algorithm overcomes this
problem by modifying this rule. Our algorithm consists of five rules R, - - , R;.
We use the same notation as that used in Chapter 4. We also use the notation /4 p.
This notation denotes that no neighbors points to p. R; and R, are identical to

R; and R, of the Hsu—Huang algorithm, respectively. On the other hand, R3 of

68



5.2. THE NEW ALGORITHM

Hsu=-Huang algorithm is replaced with the following three rules:

PN (@—=1)AN(r#p)A(FoeN(p): o—=p)=p—o0] (Rs)
=A@ A(r#pAApAFoeNp): o—null)=>p—o] (Ry

P—=aN@g@—=1)AN(T#pANFHADpANoEN(@P): 0o/ null) = p— null (Rs)

Note that the guards of the five rules are mutually exclusive. Hence, if a node is

enabled, then exactly one rule is enabled at the node.

Rs combines K3 and R, that is, if a node executes Rj, then the resulting
configuration is the same as the one that will occur if the node executes R3 and
then R; consecutively. Similarly, R, combines R3; and R,. This modification
enforces a node p to make a new proposal for matching whenever p withdraws its
proposal to a neighbor and some other neighbor is waiting for p (R3) or free (Ry).
As specified by Rs, a node can set its pointer to null only when there exists no

neighbor to point at that it can point to.

The construction of the algorithm ensures that it always runs “faster” than the
Hsu-Huang algorithm, in the sense that for any computation of the new algorithm,

the latter algorithm has a computation of at least the same length.

More importantly, the new algorithm ensures that a node sets its pointer to
null at most once, as formally shown by Lemma 16. This results in a reduction
of the time complexity by approximately half. In the following two sections, we

present the analysis of the time complexity.

69



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING
ALGORITHM

5.3 Exact Time Complexity

5.3.1 Variant Function

To show the correctness and exact time complexity of our algorithm, we use the
variant function technique similar to many self-stabilization literatures. A variant
function is a function over the set of configurations, whose value is bounded and

decreases monotonically when nodes execute a rule of the algorithm.

Our variant function is the same as used in Chapter 4:

[et[+2]  (evenn)

=26 (oddm)

Y =2¢+f )

where ¢, f, and w are the numbers of chaining, free, and waiting nodes, respec-
tively. This function is evaluated in lexicographical order, i.e., X is evaluated first
and then Y. Below we show that this function indeed decreases monotonically
when a rule is executed. In particular, we show that for each of the five rules, its
execution either decreases X or does not change X the same but decreases Y. In
the following description, p, g, 7, and o refer to those in the rule definition from

R1 to R5.

Execution of rule R, Rule R; is enabled only when p is free and g is waiting.

When it is executed, p and ¢ become matched. Dead or matched nodes do not

70



5.3. EXACT TIME COMPLEXITY

change their state. Hence, the rule execution decreases ¢ + f + w by at least 2,

thus decreasing X by at least 1.

Execution of rule B; Rule R, is enabled only when p is free and causes p to
become waiting. Because no node is waiting for p (i.e., /> p), the waiting node
becomes neither chaining nor free. Except for p, all free nodes remain free. Hence,
the execution of the rule decreases Y by 1. X does not change, because no node

becomes matched or dead.

Execution of rule B3 Rule Rj is enabled when p is chaining and o points to p.
When it is executed, p and o become matched. Dead or matched nodes do not
change their state. Hence, the rule execution decreases ¢ + f + w by at least 2,

thus decreasing X by at least 1.

Execution of rule R; Rule R, is enabled only when p is chaining and there is a
neighbor whose pointer has a null value. When it is executed, p becomes waiting.
Because no node is waiting for p (i.e., /> p), the waiting node becomes neither
chaining nor free. All free nodes remain free. Hence, the execution of the rule

decreases Y by 2. X does not change because no node becomes matched or dead.

Execution of rule £5 Rule Rjs is enabled only when p is chaining and all of its
neighbors point to nodes other than p. When it is executed, p becomes free or
dead and no other nodes change their state. Hence, the execution of Rs decreases
Y by at least 1. If p becomes free, then Y is decreased by 1. In this case, X does
not change because no node becomes matched, or dead. If p becomes dead, then

Y is decreased by 2 and ¢+ f 4+ w by 1. Hence, in this case, X is either decreased

71



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING
ALGORITHM

by 1 or left unchanged.

5.3.2 Correctness

To show the correctness of our algorithm, we show that it converges to a legitimate

configuration from any configuration.

Lemma 13. Ifc+ f +w > 0, then at least one node is enabled to execute a rule.

Proof. When w > 0, there is a waiting node p and the node points to a free node
q, thus gq is enabled to execute R;.

When w = 0 A ¢ > 0, there is a chaining node p and the node is enabled to
execute either R3, Ry, or R5.

Whenw =0Ac=0A f > 0, a free node p has at least one neighbor ¢ that
is not matched. The node g is not dead either, because every neighbor of a dead
node must be matched. Because w = 0 A ¢ = 0, ¢ is free. Hence p and ¢ are

enabled to execute R;. O

Theorem 5. The proposed algorithm always converges to a legitimate configura-

tion.

Proof. Any execution of a rule decreases the variable function (F, G). The set of
possible values of the variable function is finite, thus, any computation is finite.
From Lemma 13 there is always an enabled node if ¢ + f + w > 0. Hence, in the

last configuration of any computation, every node is either matched or dead. [

72



5.3. EXACT TIME COMPLEXITY

5.3.3 Time Complexity in Terms of

Here, we derive the exact time complexity in terms of n. We begin by proving

three lemmas that are used in the derivation.
Lemma 14. A dead or matched node will never be enabled.

Proof. There is no rule that is enabled at a node if it is dead or matched. Suppose
that p and q are neighboring nodes. Once p < ¢ holds, the two matched nodes will
remain matched forever, because no rule execution at other nodes can change their
state. A dead node also remains dead because all of its neighbors are matched, and

thus, will never execute a rule. il

Lemma 15. If p — q A ¢ — null, that is, if p is waiting for q, then p will never
become enabled unless q executes a rule. Besides, the only rule that q can or will

be able to execute is R;.

Proof. The first part of the lemma follows from the fact that no rule is enabled at
pif p — g A ¢ — null. The existence of such p guarantees that there is at least
one node that is waiting for q. Because of this and the fact that ¢ — null, only
R, is enabled at q. If g executes R, then it will become matched and thus will no

longer execute any rule (Lemma 14). U

Lemma 16. Once a node p executes Rs, the only rule that p may be able to execute

thereafter is R;.

Proof. The execution of Rs causes the condition p — null to hold. Under the
condition, R3, R4, and Rj are not enabled at p. Below, we show that R, will never

be enabled either while p — null holds.

73



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING
ALGORITHM

Suppose that p becomes enabled to execute R, after its execution of R;. In
that situation, there must be its neighbor ¢ such that ¢ — null. Note that ¢ pointed
to another node than p when p executed Es (otherwise, R; would not have been
enabled at p). Hence, ¢ must have executed R5 to satisfy ¢ — null. However, this
is impossible because the guard of R5 cannot be true while p — null holds.

If p executes Ry, then it will become matched, meaning that p will never be-
come enabled. Therefore, once p executes Rs, p cannot execute any rules other

than R, and if it executes Ry, then it will never be enabled. O

Theorem 5 ensures that any computation is finite. This and the property of the

variant function lead to the following observation:

Observation 3. Any computation g,g- - - - g; is a concatenation of computations
o1, ,0m such that: (1) all configurations in o; have the same F value; (2) if
configurations s, s' occur in o; and o1 respectively, then X (s) > X(s'), and (3)

if configurations s, s' consecutively occur in o;, then Y (s) > Y (s').

This observation is schematically represented as follows:

o; Ti+1
> . -

gj-2 gj—1 9; gj+1

In the rest of this section, we let p = g1g- - - - g|,| denote any computation such
that X (g;) is the same for every configuration s in the computation, where the

length of p is denoted by |p|. We derive the upper bounds on |p|. Obviously, these

74



5.3. EXACT TIME COMPLEXITY

bounds also apply to |o;| for o; in Observation 3, and thus, allow us to derive the
upper bound on the computation length.

In the following analysis, we say that a node p executes a rule R in p if there
are two consecutive configurations g;, g;;1(1 < i < |p|) such that p is enabled for
R at g; and g, is the next configuration caused by the execution of R by p at g;.
Note that for any p and for any g;, g;+1, such a node-rule pair (p, R) is uniquely
determined because at most one rule is enabled at a node simultaneously and a
rule execution can only change the pointer of the node that executes it. Note that
no node executes R; or R3 in p, because their execution always decreases the F'

value.

Lemma 17. Any node executes a rule at most once in p.

Proof. If |p| = 1, then the lemma follows trivially, because no node executes a
rule in p. Hence, we assume that p > 2 below. As mentioned above, no node
executes R; or R3in p.

If a node p executes R, or Ry at g; in p, then p — g A ¢ — null holds for some
q € N(p) at g; ;1. In this situation, from Lemma 15, p will not be enabled unless
q executes rule Ry, thus, p executes no rule after g;; in p.

If p executes Ry in p, then R; is the only rule that p may be enabled for
thereafter from Lemma 16, ,thus p executes no rule in p after its execution of

Rs. U

Lemma 18. Let i be the total number of chaining, free, and waiting nodes at the

first configuration g, in p, that is, i = ¢+ f + w at g;. Then, |p| <i+ 1.

75



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING
ALGORITHM

Proof. From Lemma 14, a dead or matched node never executes a rule. From

Lemma 17, a node executes a rule at most once in p. Hence, the lemma follows.

O

This bound on |p| can be improved if every node is neither dead nor matched

at the beginning of p.
Lemma 19. If c+ f +w = n holds at the first configuration g, of p, then |p| < n.

Proof. Throughout the proof, we assume that ¢+ f +w = n holds at g;,. At every
configuration in p, F' has the same value, thus, n—1 < c+w+ f < n always holds
in p. However, c + w + f = n — 1 is impossible for any configuration, because
the existence of a matched node requires another matched neighbor node to match
and a dead node requires a matched neighbor node. Hence, ¢ + w + f - n holds
for every configuration in p. Below, we consider three cases regarding g;: w > 0,
w=0Ac>0,andw=c=0.

If a node p is waiting for q at g;, then from Lemma 15, it will never be enabled
unless g executes K;, which means that p executes no rule in p. From this and
Lemma 17, if w > 0 at g;, then we have |[p| < (n— 1)+ 1 =n.

If w = O0Ac > 0 at g1, then there is a cycle consisting of at least three chaining
nodes, that is, p; — pg, p2 — p3, -+, — p1, because a chaining node cannot
point to a free node. (Note that if a node points to a free node, then the former
node is waiting.) At any node in the cycle, the only enabled rule is R3. Hence, at
least three nodes do not execute a rule in p. From this and Lemma 17, we have
pl<(n-3)+1=n-2<n.

Finally, we consider the case where w = ¢ = 0 A f = n holds at g;. When

c+w+f =n,G = 0holds only if c = f = 0Aw = n. However, this condition is

76



5.3. EXACT TIME COMPLEXITY

never met, because the existence of a waiting node requires the existence of a free
node. Therefore, Y (g;) > 0 for any configuration g; in p. From Observation 3 and
the fact that Y'(g1) = n, we have n. > Y(go) > Y (1) > -+ > Y(g}p) > 1, thus,
lp| < m. O

Lemma 20. If n is even, then the time complexity of the algorithm is bounded by

in® +n — 1. Ifnis odd, then the complexity is bounded by (n® + 4n — 5) /4.

Proof. Any computation can be considered to be a concatenation of computations
0109 - - - Oy, that satisfy the three conditions in Observation 3. Let £ be a natural
number such that n = 2k when n is even, and n = 2k + 1 if n is odd. Let F;
denote the F' value of ¢;. Then, 0 < F; < k.

At the first configuration of ¢;, 2F; — 1 < ¢+ f + w < 2F; holds if n is even,
and 2F; < ¢+ f+w < 2F; + 1 holds if n is odd. From Lemma 18, |o;| < 2F; +1
if nis even and |o;| < 2F; + 1+ 1 if n is odd.

If F; = k, then ¢+ f + w = n holds at the first configuration of o;. (As
mentioned in the proof of Lemma 19, ¢ + f + w = n — 1 never holds.) From
Lemma 19, |o;| < n. Hence, we have an upper bound on the length of any

computation as follows:

k—1
Yolodl <n+d (2i+1) ifn=2k
Vo; =0
k—1
Yol <n+d) (2i+1+1) ifn=2k+1
Vo; i=0

Because the number of steps taken in a computation is smaller by 1 than the

computation length, an upper bound on the time complexity is obtained by sub-

77



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING

ALGORITHM
tracting 1 from these formulae as follows:
k-1
n+ Y (2i+1)—1
=0
=n+klk—1)+k—-1
2
(e
1
:Zn2+n—|—l ifn =2k (5.1)
k—1
n+» (2i+1+1)—1
i=0

=n+k(k—1)+2k—1

o n—1 2+n—1 1
- 2 2

_n2+4n—5
- 4

ifn=2k+1 5.2)

Theorem 6. The above upper bound on the time complexity is the exact time

complexity.

Proof. We show a scenario for a general n that shows an execution in which the
number of steps taken is exactly the same as the upper bound.
Consider a network graph whose topology is a complete graph. Assume that

for every node its pointer has a null value.

1. All nodes except for one node set their pointer to that node by executing Ry,

thus becoming waiting. This takes n — 1 steps.

78



5.3. EXACT TIME COMPLEXITY

2. The node to which all waiting nodes are pointing, say p, executes R;, re-

sulting in a new pair of matched nodes. All other nodes that are pointing to

p, if any, become chaining. This takes 1 step.

3. If there is at least one chaining node, one such node executes Rs. The node

becomes free in which case there are still other chaining nodes, or dead, in

which case all other nodes are matched. This takes 1 step.

4. If there are chaining nodes, all of these chaining nodes execute R4 to point

to the free node, becoming waiting. The steps taken in this phase decreases

by 2 for each iteration of these phases, fromn — 3to 1 if n = 2k or 2 if

n=2k+1.

5. Go to Phase 2.

If n is 2k, then the scenario terminates with Phase 2, resulting in » matched

nodes. The total number of steps is obtained as follows:

k—1
(n—1)+> (1+14+(n—2i—1))+1
=1

—n+(n+1)(k—1)—k(k—1)

Snr(re1-3) (-
)G

~n—|—( -1

2
—n—l—n
4

(5.3)

If n is 2k + 1, then the scenario terminates with Phase 3, resulting in n —

1 matched nodes and one dead node. The total number of steps is obtained as

79



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING

ALGORITHM
follows:
k-1
(R—1)+> Q+1+(n—-2i-1))+1+1
i=1
+1) +D(k—1)—k(k-1)
n+1)+( — )(n+1—";1)
n—3 n+3
_<n+1)+( . )( ! )
2 _
_n +4n—35 (5.4)
4
O

5.4 Time Complexity in Terms of |E| and n

In this section, we provide an upper bound on the time complexity in terms of n
and |E|, where | E| is the number of edges of the network graph. In particular, we.
show that our algorithm always converges within |E|+n steps. When the network
graph is sparse, this bound serves as a better estimate for execution time than the
one in terms of n.

In the analysis in this section, we count for each edge {p, ¢} the number of
times that p sets its pointer to ¢ by executing R;, Ry, R3, or R4 and the number of

times that p nullifies its pointer pointing to ¢ by executing Rs.
Lemma 21. A node p sets its pointer to its neighbor ¢ € N(p) at most once.

Proof. If p is enabled for a rule that sets its pointer to g, then ¢ — p or ¢ — null

holds. If ¢ — p, then the execution of that rule (in this case R; or R3) will make

80



5.4. TIME COMPLEXITY IN TERMS OF |E| AND N

both p and q matched; thus, by Lemma 14, p will no longer be enabled.

Now, suppose that p executes a rule (R, or Ry4) to point to ¢ when ¢ — null.
In this case, p will never be enabled again unless ¢ executes R; from Lemma 15.
If g executes R;, then g will become matched (not necessarily to p). Hence, p will

never set its point to ¢ again. O

Lemma 22. If a node p sets its pointer to a node q in g;, and then later q sets its

pointer to p, then p and q will be matched to each other.

Proof. Consider a computation ¢;g2 - -+ and suppose that p sets its pointer to a
node g in g;. For p to set its pointer to ¢ in g;, either ¢ — p or ¢ — null must hold
in g;. If ¢ — pholds in g;, then p and ¢ will be matched in g; 1, and thus, ¢ will no
longer be enabled. Hence, we assume that ¢ — null in g; in the rest of the proof.
Under this assumption, from Lemma 15, p will never be enabled after g;,; unless
g executes a rule, and the only rule that ¢ can execute is R;. Now, it suffices to
consider only the case where g executes R;, because if g does not execute Ry, q
will never set its pointer. Suppose that ¢ executes R; in g; (j > 4). If ¢ sets its
pointer to a node other than p in g;, then g will become matched in g;; and never
set its pointer to p thereafter. If g sets its pointer to p in g;, then p and g will be

matched to each other in g; ;. O

Lemma 23. If p and q are matched to each other, then it is never the case that

both p and q executed Ry before they are matched.

Proof. Let p and q be any neighboring nodes. Consider a computation g; g, - - -

such that (1) p executes R5 at g;; (2) g does not execute Ry at from g; to g;_1; and

81



CHAPTER 5. NEW FAST SELF-STABILIZING MAXIMAL MATCHING

ALGORITHM
(3) p and g are not matched in g1, g2, - - , g; (j > ) and matched to each other in
gj+1,9j+2, " - - - Below we show that g does not execute Rs in this computation.

From Lemma 16, p is only enabled for R, at g;,; or later configurations. If p
executes R;, p will become matched and will never be enabled. On the other hand,
if p executes no more rules after g;, 1, then p — null will always hold thereafter.
Therefore, for p and ¢ to become matched to each other in g;;1, p must set its
pointer to q by executing R; in g;. For p to execute R;, ¢ — p must hold at g;.

In g;, ¢ — r holds for some r # p, because otherwise p is not enabled for Rs.
Hence, ¢ executes R, or R, to set its pointer to p somewhere from g;; to g;_1,
and thereafter leaves the pointer unchanged. From Lemma 16, if a node executes
Ry, then the node will be enabled only for Rs. Therefore, p does not execute Ry

in the computation. O

Theorem 7. The time complexity of the proposed algorithm is bounded by |E|+n.

Proof. Let a denote the size of the maximal matching obtained, that is, the number
of edges {p, ¢} such that p & ¢ holds in the last configuration of a computation.
From Lemmas 21 and 22, the total number of times that a node sets its pointer is
at most | E| 4+ a, because for each edge {p, ¢}, p sets its pointer to g at most once
(Lemma 21), and both p and ¢ set their pointer to each other only if the edge is in
the obtained maximal matching (Lemma 22). Hence, | E|+a is an upper bound on
the total number of times that R, Ry, R3, and R, are executed. From Lemma 16
each node executes R at most once. From Lemma 23, if {p, ¢} is in the maximal
matching, then at most one of them executes Rs. Hence n — a is an upper bound
on the total number of times that R5 is executed. Therefore, the number of rule

executions is at most (|E| 4+ a) + (n — a) = |E| +n. O

82



5.5. SUMMARY

5.5 Summary

In this chapter, we proposed a self-stabilizing algorithm for computing a maximal
matching for the state-reading model under the central daemon. The proposed al-
gorithm runs faster than the seminal algorithm proposed by Hsu and Huang [25],
which was the fastest known algorithm that assumes this system model. We
showed that the proposed algorithm reduces the worst-case time complexity ap-
proximately by half, both in terms of n (the number of nodes) and n and | E| (the
number of edges).

The time complexity in terms of n and |E| is greater than the one in terms
of n when |E| = n(n — 1)/2. Although our proof assumed that each edge is
used once, many edges are not actually used . Therefore, the evaluation of the
time complexity in terms of n and || becomes greater. However, it gives a better
bound when |E| = O(n).

Through the design of this algorithm, we used model checking to verify whether
the new algorithm can reach a legitimate state from any configuration. By this

process, we could easily find errors in some ideas.

83






Chapter 6

Conclusion

6.1 Achievements

In this dissertation, we analyzed the time complexity of Dijkstra’s self-stabilizing
three-state mutual exclusion algorithm and Hsu and Huang’s self-stabilizing max-
imal matching algorithm.

For Dijkstra’s algorithm, we provided a new lower bound on the time complex-
ity. We found that this bound equals the exact time complexity when 9 < n < 20,
where 7 is the number of processes.

For Hsu and Huang’s algorithm, we derived the exact time complexity. The
careful analysis of the Hsu—Huang algorithm also led use to devise a new self-
stabilizing maximal matching algorithm. The time complexity of the new algo-
rithm is approximately half of that of the Hsu—-Huang algorithm.

In this line of research, we used model checking as an analysis tool. In par-
ticular, we used NuSMYV, a symbolic model checker, to compute time complexity

and dervive the worst-case execution for systems with small n.

85






Bibliography

[1]

2]

[3]

[4]

Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and
George Varghese. Time optimal self-stabilizing synchronization. In STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 652-661, New York, NY, USA, 1993. ACM.

Barﬁch Awerbuch and Rafail Ostrovsky. Memory-efficient and self-
stabilizing network reset (extended abstract). In PODC ’94: Proceedings
of the thirteenth annual ACM symposium on Principles of distributed
computing, pages 254-263, New York, NY, USA, 1994. ACM.

Joffroy Beauquier and Oliver Debas. An optimal self-stabilizing algorithm
for mutual exclusion on bidirectional non uniform rings. In the Second

Workshop on Self-Stabilizing Systems, pages 17.1-17.13, 1995.

Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Memory space
requirements for self-stabilizing leader election protocols. In PODC ’99:
Proceedings of the eighteenth annual ACM symposium on Principles of

distributed computing, pages 199-207, New York, NY, USA, 1999. ACM.

87



BIBLIOGRAPHY

[5]

(6]

[7]

James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. On relaxing
interleaving assumptions. In In Proceedings of the MCC Workshop Self-
Stabilizing Systems, MCC Technical Report No. STP-379-89, 1989.

Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and
self-stabilizing distributed matching. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, pages 290-

297. ACM, 2002.

Yu Chen and Jennifer L. Welch. Self-stabilizing mutual exclusion using
tokens in mobile ad hoc networks. In DIALM ’02: Proceedings of the 6th
international workshop on Discrete algorithms and methods fobr mobile

computing and communications, pages 3442, New York, NY, USA, 2002.

 ACM.

[8]

[9]

Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks. ‘On the perfor-
mance of Dijkstra’s third self-stabilizing algorithm for mutual exclusion. In
9th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), Paris, volume 4838 of Lecture Notes in Com-

puter Science, pages 114-123. Springer, November 2007.

Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks. A self-
stabilizing algorithm with tight bounds for mutual exclusion on a ring. In
Proc. 22nd Int’l Symp. on Distributed Computing (DISC), volume 5218
of Lecture Notes in Computer Science, pages 63—77. Springer, September

2008.

88



BIBLIOGRAPHY

[10] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. NuSMV: A new symbolic model checker. Software Tools for Tech-

nology Transfer, 2(4):410-425, 2000.

[11] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999,

[12] Adam M. Costello and George Varghese. The fddi mac meets self-
stabilization. In ICDCS *99: Workshop on Self-stabilizing Systems, pages
1-9, Washington, DC, USA, 1999. IEEE Computer Society.

[13] Edsger Wybe Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17(11):643—-644, November 1974.

[14] Edsger Wybe Dijkstra. Guarded commands, nondeterminacy and formal

derivation of programs. Communications ACM, 18(8):453-457,1975.

[15] Edsger Wybe Dijkstra. A belated proof of self-stabilization. Distributed
Computing, 1(1):5-6, January 1986.

[16] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative
temporal reasoning. Real-Time Systems, 4(4):331-352, 1992.

[17] Sukumar Ghosh, Arobinda Gupta, and Sriram V. Pemmaraju. A self-
stabilizing algorithm for the maximum flow problem. Distributed Com-

puting, 10(4):167-180, 1997.

[18] Sukumar Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm

for coloring planar graphs. Distributed Computing, 7(1):55-59, 11 1993.

89



BIBLIOGRAPHY

[19]

(20]

[21]

[22]

(23]

[24]

[25]

Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K.
Srimani. A robust distributed generalized matching protocol that stabilizes
in linear time. In Proceedings of the 23rd International Conference on
Distributed Computing Systems Workshops, pages 461-465, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

Wayne Goddard, Stephen T. Hedetniemi, David P. Jacobs, and Pradip K. Sri-
mani. Self-stabilizing protocols for maximal matching and maximal inde-
pendent sets for ad hoc networks. In Proceedings of the 17th International
Symposium on Parallel and Distributed Processing. IEEE Computer So-

ciety, 2003.

Wayne Goddard, Stephen T. Hedetniemi, and Zhengnan Shi. An anonymous
selfstabilizing algorithm for 1-maximal matching in trees. Information Pro-

cessing Letters, 91:797-803, 2006.

Rachid Hadid. Space and time efficient self-stabilizing l-exclusion in tree

networks. ipdps, 00:529, 2000.

Stephen T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Maximal matching
stabilizes in time o(m). Information Processing Letters, 80(5):221 — 223,

2002.

Ted Herman. Superstabilizing mutual exclusion. Distributed Computing,

13(1):1-17, 2000.

Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for max-

imal matching. Information Processing Letters, 43(2):77-81, 1992.

90



BIBLIOGRAPHY

{26}

[27]

[28]

[29]

301

[31]

(32]

Shing-Tsaan Huang. Leader election in uniform rings. ACM Transactions

on Programming Languages and Systems, 15(3):563-573, 1993.

Mehmet H. Karaata and Kassem A. Saleh. A distributed self-stabilizing
algorithm for finding maximum matching. Computer Systems Science and

Engineering, 15(3):175-180, 2000.

Yoshiaki Katayama, Toshiyuki Hasegawa, and Naohisa Takahashi. A super-
stabilizing spanning tree protocol for a link failure. Systems and Comput-

ers in Japan, 38(14):41-51, 2007.

Yoshiaki Katayama, Eiichiro Ueda, Hideo Fujiwara, and Toshimitsu Ma-
suzawa. A latency optimal superstabilizing mutual exclusion protocol in
unidirectional rings. Journal of Parallel and Distributed Computing,

62(5):865-884, 2002.

Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno. Computing sta-
bilization time of self-stabilizing algorithms with symbolic model checking.
In Proceedings of the 4th Symposium on Science Technology for System

Verification, pages 151-160, November 2007.

Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno. The time com-
plexity of hsu and huang’s self- stabilizing maximal matching algorithm. IE-
ICE Transactions on Information and Systems, E93-D(10):2850-2853,
10 2010.

Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A
new self-stabilizing maximal matching algorithm. Theoretical Computer

Science, 410(14):1336 — 1345, 2009.

91



BIBLIOGRAPHY

[33] A. Singhai and Swee-Boon Lim. The sunscalr framework for internet
servers. In FTCS ’98: Proceedings of the Twenty-Eighth Annual In-
ternational Symposium on Fault-Tolerant Computing, page 108, Wash-

ington, DC, USA, 1998. IEEE Computer Society.

[34] Gerard Tel. Maximal matching stabilizes in quadratic time. Information

Processing Letters, 49(6):271-272, 1994.

[35] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Univer-
sity Press, New York, NY, USA, 2001.

[36] Tatsuhiro Tsuchiya, Shin’ichi Nagano, Rohayu Bt Paidi, and Tohru Kikuno.
-~ Symbolic model checking for self-stabilizing algorithms. IEEE Transac-
tions on Parallel & Distributed Systems, 12(1):81-95, January 2001.

[37] Tatsuhiro Tsuchiya, Yusuke Tokuda, and Tohru Kikuno. Computing the sta-
bilization times of self-stabilizing systems. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, E83-

A(11):2245-2252, November 2000.

92






