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Chapter 1

General Introduction

Interest in molecular devices has been increasing over the past few decades since Aviram and Ratner
proposed the first molecular-based diode in 1974 [1]. Metal-molecule-metal junctions are being in-
vestigated for their application as key elements in future nano-electronics. Owing to synthetic tech-
niques and the development of measuring techniques, it is now possible to measure current flow
though single molecules attached between two electrodes. Mechanically controlled break junction
(MCB]J) [2,3] and scanning tunneling microscope (STM) [4-6] techniques have been widely used to
measure the current flow of the metal-molecule-metal junctions. Electron conductivity in the syn-
thesized organic single molecules as benzene-dithiol (BDT) and its derivative molecules have been

reported by using the MCBJ and the STM approaches.

The spin degree of freedom of the electron has attracted much attention in a spintronics, which
is a coexistence of localized spins and conduction electrons. It is well known that tetrathiafulva-
lene (TTF) derivatives containing redox active 7 electrons show the electron conductivity. If such
molecules can be combined with localized spin species, one will obtain coexistent systems of local-
ized spins and conduction electrons. The electron conductivity of the extended metal atom chains
(EMAC) complexes containing various organic inorganic compounds was reported by Peng et al. [8].
In this complexes, the metal atoms arrange linearly, so that it is expected to the candidates for the

molecular wire.

There are not only the reports of the synthesized molecules but also the reports of the biological
molecules as the deoxyribonucleic acid (DNA). DNA consists of polymeric nucleotides. The nu-
cleotides are composed of a deoxyribose, a phosphate and a nucleobase i. e. adenine (A), thymine
(T), cytosine (C) and guanine (G). The DNA double helix is made from complementary base paring
called Watson-Crick base pairing and stabilized by -7 stacking interaction between adjacent base

pairs. Therefore, utilizing the 7-7 stacking interaction, we can flow the current though the DNA .The
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breakthrough is the report of the photoinduced long-range electron transfer through DNA proposed
by Barton et al. [9]. In order to utilize DNA for the molecular wire, a large number of studies on the
mechanism of the electron transfer in DNA molecule have been reported [9-19]. However, little is
known about whether DNA is a conductor or not.

Tanaka et al. and Clever et al. succeed in synthesis of a novel DNA containing the metal ions
[20,21]. This novel DNA is called artificial metal-DNA (M-DNA). It is expected the realization of the
spintronics materials by DNA because M-DNA contains the spin sites. The magnetism of the M-
DNA have been reported by several groups, but the electron conductivity have not been reported.
Wagenknecht states the importance of the artificial M-DNA as the follow [22]. The formation of a
magnetic chain by the self-assembled alignment of metal centers within a DNA-like double helix
is of great importance to the field of nanotechnology as it provides the basis for novel nanodevices
such as semiconductors, molecular magnets, and wires.

In this sense, the importance of the electron conductivity of the molecules containing the spins
increases in recent years. Theoretical studies of the electron conductivity in the closed-shell systems
have enough reports. However, there are almost no theoretical reports of the electron conductivity
in the open-shell systems.

The aim of this thesis is development and applications of the electron conductivity calculation
method for open-shell molecules. Especially, I focus on the investigation of the electron conductivity
in the artificial M-DNA, because the conductivity has never reported, so that it is interesting from the
scientific viewpoints.

This thesis consists of five parts. In part I, I describe the theoretical background of the quantum
chemistry and quantum transport. In part III, I describe the development the electron conductivity
calculation method in the open-shell molecules. In part IV, I describe the application of the de-
veloped method to the benzene-dithiol molecules and the artificial M-DNA. In part V, I describe
the magnetism of the artificial M-DNA because the magnetism of the artificial M-DNA has been
reported by Tanaka et al. [20]. Finally, in part VI I describe the general conclusion of this thesis.
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Theoretical Background
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Chapter 2

Quantum Chemisty

”"From all we have learnt about the structure of living matter, we must be prepared to find it working
in a manner that cannot be reduced to the ordinary laws of physics. And that not on the ground that
there is any 'new force’ or what not, directing the behavior of the single atoms within a living organism,
but because the construction is different from anything we have yet tested in the physical laboratory.”

— Erwin Schridinger

In order to investigate the physical properties of matter in theory, Schrédinger suggested the
fundamental equation. Thereafter, the equation is called Schrédinger equation. The solutions to
the Schrodinger equation are called wave functions. We will understand that a wave function gives
a complete quantum-mechanical description of any system. Solving the Schrédinger equation for
the two-body system like hydrogen atom, we can give a strict solution to the system. However, we
cannot solve the equation for many-body problem, which is the problem for three or more interact-
ing bodies. Much of the matter existing in our earth is the many-body system, so that it is difficult to
understand the physical properties of the matter. Therefore, many alternative methods have been
presented to answer the issue. The well-known and important alternative methods are Hartree-Fock

and Density Functional methods. In the following sections, I will survey those methods.

2.1 Hartree-Fock Theory

The Hartree-Fock theory is the standard first approximation for all atomic and molecular calcula-
tions in modern quantum chemistry. So far various theories based on the Hartree-Fock theory has
developed and we can easily calculate the physical properties of molecules by utilizing the appro-
priate theories for investigating the information of the molecules, because there are a number of

commercial and even free computer programs available. In this section I summarize the main re-
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16 2.1 Hartree-Fock Theory

sults obtained in a derivation of the Hartree-Fock equation [23].

2.1.1 Hartree-Fock Equations

The Hamiltonian operator for an N-electron molecule in the field of M point charges in the Born-

Oppenheimer approximation is given by

| &N

[V]z

N
Z 2.1)

]>l Tij

Mk

o
i

—
o

V-3

i=1

A=- +

u[\/]z

1
29

N

I
—

The first term in Eq.(2.1) represents the kinetic energy of the electrons, the second term represents
the coulomb attraction between electron and M point charge, the fourth term represents the repul-
sion between electrons.

The wave function ¥ is approximated as an antisymmetrized product of normalized N spin or-
bitals y;(x). Each spin orbital is a product of a spatial orbital ¢x(r) and a spin function o (s) = a(s) or
B(s). This antisymmetrized is called Slater determination

) &) - xn(xp)
YoXy,...,XN) = Wi : N 2.2)

&y - av&n)
The Hartree-Fock approximation is the method, which is found the orthonormal orbital x; mini-
mized the energy of the system for this determinant ¥. According to the variational principle, the

"best" spin orbitals are those which minimized the electronic energy

N
Ey=(¥olHI¥o) =) H;+ Z Uij = Kip) 2.3)
i=1 1] =1
where
* 1 2
= f Xi (xl)(——V )Xi(xl)dxl (2.4)
2 A 1 Iia
Tij =f x’{(xl)x}‘(Xz)r—-xi(xl)xj(Xz)dxldxz (2.5)
12
1
Kij =ffX;(X1)X; (XZ)r_Xi(XZ)Xj(Xl)dxldXZ. 2.6)
12

The J;; integrals are Coulomb integrals and the K;; integrals are called Exchange integrals. The fol-
lowing equality is important

Jii = K. 2.7

Minimizing Eq.(2.3) subject to the orthonormalization conditions

f ¥y Xdx=6;j, (2.8)
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we obtain the Hartree-Fock differential equations

n N
Flay =Y elxp 2.9)
j=1
where
- 1 2 M ZA HE, -
fy=-vi=-3Y = +7). (2.10)
2 A=1 Tia

The operator f (i) is an effective one-electron operator, called the Fock operator. v*'F (i) is the average
potential influenced by the i-th electron due to the presence of the other electrons. This idea leads
us to the simple problem for the complicated many-body system, that is, we can regard it as a one-
electron problem where electron-electron repulsion is treated in an average way.

There are N solutions in the Eq.(2.9), but a unitary transformation of those solutions is also the
solution for Eq.(2.9). In other words, it means that the wave function based on the Slater determinant
does not change by an unitary transformation.

Since the matrix € is Hermitian, one may choose a Unitary matrix U to diagonalize it. The cor-
responding orbitals y}, called the following canonical Hartree-Fock orbitals, satisfy the canonical
Hartree-Fock equations

Flan =€l @.11)

We henceforth drop the primes and write the Hartree-Fock equations as
Flany =eilxn. 2.12)

We can regard the problem to solve the single Slater determinant as the problem to solve the molec-
ular orbital (MO) by the Hartree-Fock equation (2.12). Understanding of the orbitals, which is ob-
tained by solving this canonical equations, is given by Koopmans’ theorem [24]. According to the
theorem, the canonical orbital are uniquely appropriate for describing removal of electron from the

system.
2.1.2 Restricted Closed-Shell Hartree-Fock: The Roothaan Equations

As mention above, we can realize the informations of the molecules by solving the Hartree-Fock
equation. However, it is difficult to solve this equation numerically as it is. Roothaan introduced a
linear combination of atomic orbitals (LCAO), and the differential equation could be converted to a
set of algebraic equations and solved by standard matrix functions [25].

Before introducing the LCAQ, let us consider eliminating spin. A closed-shell restricted set of

spin orbitals has the form

yir)a(s)
i = . 2.13
xi) {ll/j(l')ﬁ(s) ( :
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Substituting Eq.(2.13) into the Hatree-Fock equation (2.12), we can obtain the following equation
FaDy;Eals) =ey;Eals). 2.14)

Multiplying on the left by a* (s;) and performing the integrations over spin, we obtain the follow-

ing equation finally
FOw; W =€jw;), (2.15)
where
. NI2
F=h@)+ ) 2/.(1) - K(1). (2.16)

f (1) is the closed-shell Fock operator, and J,(1) and K,(1) represent the closed-shell coulomb and
exchange operators, respectively.

Since we have eliminated spin, next we show that the differential equation can be converted to
a set of algebraic equations by introducing the basis set. We introduce the expansion of the one-

electron orbitals y; as

K
vi=) Cupy i=12,...,K, 2.17)
p=1

where c; is the p-th orbital coefficient of the i-th MO v, and the K orbital ¢ form the LCAO basis
set. Substituting Eq. (2.17) into the Hartree-Fock equation (2.16), multiplying by ¢,,(1) on the left

and integrating, we turn the integro-differential equation into a matrix equation
Y Cvif¢;(1)f(l)¢v(1)drl =€) Cvif¢;(1)¢v(l)dr1- (2.18)
v v
Here we define the overlap matrix S and the Fock matrix F as

Spv = f ¢, (D, M)dr 2.19)

Fyv = f¢;(1)f(1)¢v(1)dr1 (2.20)
With these definitions of 8 and F, we can write the integrated Hartree-Fock equation (2.18) as
Y EnCi=6€) SwCui i=1,2,...,K 2.21)
v v

or, simply,

FC = SCe. (2.22)

Eq.(2.22) is called the Roothaan equations [25].
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2.1.3 Unrestricted Open-Shell Hartree-Fock: The Pople-Nesbet equations

In previous subsection, we surveyed the restricted closed-shell Hartree-Fock equations, which is
called the Roothaan equations. Next we need to consider the open-shell systems. The open-shell
Hartree-Fock approach is not appropriate only for a open-shell system like a radical, but also for the
dissociation problem as a long bond length for a molecule like H;.

In the open-shell systems, the spatial orbitals are separated « spin into f spin

Y mals)
(X = ) 2.23
xi) {wf ) B(s) (2:23)

The derivation of the unrestricted Hartree-Fock equations is analogous to the restricted ones. So, we
will not repeat all details of the derivation. Substituting Eq.(2.23) into Eq.(2.12) and multiply on the

left by spin function a* (s;) or *(s1), we obtain

Frvi@) =€y 2.24)
Fawfa=viw. (2.25)

In order to solve the unrestricted Hartree-Fock equations (2.24) and (2.25), we introduce a basis
set, just as we did when deriving the Roothaan equations. We thus introduce the expansion of the

. . . B
one-electron orbitals for a spin ¢ and g spin y;,

K
VE= Y Clby =120 K (2.26)
u:
b_ "o p
Vi3 Chbu 1=12. K. 2.27)
u=

After a few derivation procedure, we finally obtain the algebraic equations, which is called the Pople-

Nesbet equations [26], for the unrestricted Hartree-Fock equations,

F*C* =SC%* (2.28)

FPCP =SCPeP, (2.29)

The Pople-Nesbet equations (2.28) for open-shell systems, as well as the Roothaan equations
(2.22), are solved iteratively until the minimum total energy is reached, because the Fock matrix
contains the expansion coefficients, so those equations are nonlinear. Once that limit is achieved,

further iterations will not change the coefficients. This procedure is called self-consistent field (SCF).
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2.2 Density Functional Theory

Today, density functional theory (DFT) is widely used in chemistry [27-29]. The method based on the
DFT have derived from Thomas-Fermi-Dirac model [30-32]. An approach of the DFT is to represent
an electron correlation as a functional of the electron density. Foundations of the approach date

back to Hohenberg-Kohn (HK) theorem published in 1964 [33].

2.2.1 Hohenberg-Kohn Theorems

HK theorem consists of two fundamental theorems [33].

The First Theorem (HK1) :

The external potential v(r) is determined, within a trivial

additive constant, by the electron density p(r).

The Second Theorem (HK2):

For a trial density p(r), such that p(r) =0

and [ p(x)d(x) = N, then Ey = E, [p]

The HK1 means that the mapping between potentials and densities is one to one. The proof of
the HK1 is by reductio as absurdum. If there were two different external potential v and v’ differing by
more than a constant, there would be two Hamiltonian H and H', whose the ground-state densities
were the same. However, those normalized wave functions ¥ and ¥’ must be different. Using ¥’ as
a trial function for H, we obtain

Ey <(¥'|H|Y" =(¥'|H|¥") +(¥V'|H-H'|¥")

=Ey+ f p@[v(r) -v'@]d(®), (2.30)
where E, and E}, are the ground-state energies for 4 and f', respectively. Similarly, for ¥ and &,

Ey<(Y|H'|Y) = (Y|H|P) +(¥|H - A|¥)
=E+ f P [v(r) —v'@)]d(). (2.31)

Addition Eq.(2.30) and Eq.(2.31), we obtain

Ey+E)<E, +E 2.32)
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This clearly contradicts. Therefore, if p is the same for the ground-state, it does not corresponds to
two different v.
The HK2 gives the variational principle for the energy. The request of the variational principle is

to satisfy the stationary principle for the density of the ground-state

6{Ev[p]—p[fp(r)dr—N]}=0. (2.33)

And we can obtain the Euler-Lagrange equation

_ 0E,[p] v+ 0 Fuxlpl

, 2.34
Sp(r) 6p(x) 234

where p is the chemical potential. The Fy is an independent term from the external potential, and
is called a universal functional of p(r). If an explicit form for the universal functional is given, we
can apply this method to any system. However, it is hard to obtain an explicit form for the universal

functional.

2.2.2 LevyConstrained-Search Formulation

According to the HK theorem, if the trial density 5(r) is not negative value and the number of parti-
cles is finite, for any trial density functional, the external potential decides unique. In reverse, if the
density is given from the antisymmetric ground-state wave function for a Hamiltonian consisting
the external potential, it is called v-representability. That is, the mapping between the density and
the external potential is one to one. However, degenerated ground-state can describe the identical
density for many wave functions, so it is not v-representability. It turns out that DFT can be formu-

lated for the densities in the variational principle to satisfy a weaker condition as the following,
pr) =0, f pr)dr=N, and f |v2 ()| dr < oo. (2.35)

Itis called N-representability, and meaning that a density is obtained from some antisymmetric wave
function. The N-representability is weaker than the v-representability, because the former is neces-
sary condition for the letter.

We have showed one-to-one mapping between the ground-state density and the wave function,
so we states how it determines wave function from a given density. The density p,(r) gives by the

square of the wave function ¥,. Defining the wave function which becomes the density py(r) as ¥,

(¥ o | B o) = (Yo | H| o) = Eo (2.36)
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is trivial. Expanding the Hamiltonian, we obtain

(Ppo| T+ Vee|‘1’p0)+fv(r)p0(r)dr2 (Po|T + Vee|‘{’0)+fv(r)po(r)dr

(o | T+ Vee | ¥ o) = (Wo| T + V2o | W) (237

The right-hand side of Eq.(2.37) shows v-representability, and the left-hand side of Eq.(2.37) shows

N-representability. Minimizing the left-hand side of Eq.(2.37), it turns out to become v-representability

Frxe = (¥o| T + Voo | ¥o)

= min(¥|T + V.| ¥) (2.38)
¥—po

This is a constrained-search for the density functional Fyx[pe] [34,35]. It means that search over all
the antisymmetric wave functions gives the v-representable wave function. Therefore, we can elim-
inate the limitation of the HK theorem that there is no degeneracy in the ground-state. Ultimately,

the energy of the ground-state is obtained as the functional of the density as the following,

Elpl = Flp] + f V) po@dr

= min(¥| T+ V.| ¥) + f v(r) po(r)dr (2.39)
—~Po

2.2.3 Kohn-Sham Equations

In the section (2.2.1), we have showed that electron density of the ground-state is obtained by mini-

mizing E[p] and hence satisfies the Euler equation (2.34). The Fyg[p] is
Fyx(pl = Tlpl + Veelpl. (2.40)

If we construct explicit forms for the kinetic energy term T'[p] and the electron-electron interaction
term V,.[p], we can apply this method to any system as mentioned above. However, there are ap-
parently insuperable difficulties in going beyond the crude level of approximation. Kohn and Sham
then introduce orbitals into the problem [36].

Representing the kinetic energy without the interaction not as the density but the wave function,

we obtain
N 1 )
T,=) (V|- 5V |®s. (2.41)
i=1
Using the T, we rewrite (2.40) as
Flp] = Ts + J(p] + Exc[p) (2.42)

where

Eiclpl=Tlp}-Ts + Veelpl = J1p). (2.43)
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The E,.[p] is called the exchange-correlation energy. This term contains the difference between T
and T; and the electron-elentron interaction term in quantum. That is, the parts differing from the
explicit energy is integrated into this term.

The energy functional is given by
Elpl = T[p] + Veelpl + f px)v(r)dr

N 1
=Yy \Pj'*(r)(—zvz)\lfg(r)dr+ Jipl + Ex.[p] + j p@)v(r)dr. (2.44)

i=1 s

The relation between the densities and the molecular orbitals is

N
pm =) Y ¥ m¥;im, (2.45)

i=1l s
so we have the energy express in terms of N orbitals.
To derive the Kohn-Sham (KS) equations we need to minimize E[p] with respect to the orbitals,

subject to the constrain that the orbitals remain orthonormal,
f‘I’;.'(r)‘I’j(r)dr=6,-j. (246)
We therefore consider the functional Q[{¥;}] of the N orbitals
N N
QUY} = Elpl =)D €ij f ¥ (0Y;mdr (2.47)
i j

where E[p] is the functional of the ¥; expressed in Eq.(2.44) and Eq.(2.45), and the ¢;; constitute
a set of Lagrange multipliers. Minimization of E[p], subject to the constraints, is thus obtained by

minimizing Q[{¥;}], namely,

QI¥Y;}1=0. (2.48)
We obtain the following equation,
1 N
[—5V2+Veff \Ili=z€ij‘yj (2.49)
j=1
r f
Vea(t) = V(D) + f PO . 2.50)
|r -r | dr’
We finally obtain the canonical form of the KS equations
1
—§v2+veﬁ ¥, =¢¥;. (2.51)

The vg(r) is the effective potential term. The KS equations have the same form as the Hartree-Fock
equations, except that a more general local potential v.x(r) is contained. If the potentail decide

unique, we can solve it just as in the Hartree-Fock theory.
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2.2.4 Spin-Polarized DFT

The formula used the spin unrestricted orbital for DFT is called spin-polarized DFT. In the spin-

polarized DFT, the exchange-correlation functional is treated as the functional of a electron density

p% and B electron density p?
Exc = Exclp® 0°l. (2.52)
The KS equations (2.51) is
1
[—Evzweﬁ Y, =¢;¥; (2.53)
p(x)
Ve, 0) =v(E@)+ | —————— + v,.(1,0). (2.54)
’r - r’| dr

2.2,5 Exchange-Correlation Functionals

As mentioned until now, Hohenberg and Korn demonstrated that the Ex¢[p] is decided only density.
However, there are insuperable difficulties, because we do not know an explicit exchange-correlation
functional. So we use the approximation of the functional. The exchange-correlation functional
Exclp] is typically split up into two terms, Ex[p] and E¢[p] for the exchange and correlation, respec-
tively. The first apploximation to the exchange functional is the so called local density approximation
(LDA), 3(3\1/3
EPA[p] = i (;) f p*3mar. (2.55)
To derive the functional, a homogeneous electron gas is used. The LDA approximation has two main
drawbacks: First, it originates from a homogeneous electron gas, which is normally not found in real
systems. Also, the dependence on r in the limit of r — oo is not correct.
We does not consider a molecular nonuniform property for LDA in the beginnings of the density
functional. Taking in this nonuniform property, a correction used a density gradient is thought out,

and called generalized gradient approximation (GGA),
3(3 1/3
E$CA o]l = -3 (;) f P} F(y)dr. (2.56)

The correlation term is not taken in the Hartree-Fock theory, and it is not defined as the method
used the single Slater determinant. For this term, Lee, Yang and Parr thought out the following func-
tional [37],
p®) +2bp~%3(x) [Za pe@tEE () - p(r) tW(r)] eXp(—cp“” 3(r))

1+dp=13(x)
This well-known functional is called LYP functionat [37].

E¥=-a y(r)dr. (2.57)
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2.2.6 Hybrid DFT

The LDA and GGA functionals does not contain the nonlocal interaction, leading to many problems
for atoms and molecules. A hybrid DFT is widely used for correcting the problems not containing
the nonlocal interaction. In the hybrid DFT, the Exc is framed by mixing the GGA functinals with
the nonlocal interaction of HF method. In the hybrid DFT, mixing parameters is used, and fitting by
many calculations. The most hybrid DFT is the B3LYP [38],

EB3YP = 0.20ELF +0.18 5 4. 0.72 B2 + 0.19E"™ + 0.81E¢", (2.58)

where EZF is the Hartree-Fock exchange functional, EJ** is the Slater exchange functional, E3°**®
is the Becke88 exchange functional [39], EZ*N is the Vosko-Wilk-Nusair (VWN) correlation func-
tional (40], and EéYP is the LYP correlaton functional [37].






Chapter 3

Quantum Transport

Molecular devices have attracted much attention in nanoelectronics from the limit of the miniatur-
ization of conventional silicon-based devices, because the top-down approach leads to drastic limi-
tations for dimensions smaller than 100 nm [41]. Electron transport in molecular devices is different
from the silicon-based devises because of the effects of the electronic structures and the interface
to the external contact. In order to investigate the molecular conduction, many experimental and
theoretical studies have been reported so far. Especially, a theoretical approach is necessary for un-
derstanding the molecular conduction because a control of the contact between the molecule and
the electrodes is difficult in an experimental approach. In this chapter, we survey the general con-

cept of the quantum transport [42,43).

3.1 Landauer Formula

In this section, we describe an approach, which is called the Landauer approach [44], thathas proved
to be very useful in describing electron transport. In this approach, the current through a conductor
is expressed in terms of the probability that an electron can transmit through it.

We consider a ballistic conductor having one conductive channel and do not consider the inter-
action between electrons, and the effect of temperature. We assume the Figure (3.1) as this model.
We define Res; and Res; as the reservoirs locating on right and left on the sample, and define those
chemical potential as y; and p,, assuming p; > p,. The voltage (V = (u; — p2)/ e) is then applied
between Res; and Res,. Also, we assume that there are perfect leads (L, and L,) between the sample
and the reservoirs. The perfect lead does not contain the scattering of electrons, and perfect lead

and reservoirs satisfy the following assumption:

1. The states in L, are occupied only by electrons coming in from the left reservoirs and hence

must have an electrochemical potential of y;.

27
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Figure 3.1: A ballistic conductor model connected to two wide reservoirs

2. The states in L, are occupied only by electrons coming in from the right reservoirs and hence

must have an electrochemical potential of g;.
3. The Res; and Res, are enough large, and the current always keep heat equilibrium.

Under zero temperature, a current takes place entirely in the energy range between u; and .

The influx electrons from L; is given by
K= z—he[lh - Hel. 3.1
The outflux from L, is simply the influx at L; times the transmission probability 5,
L= -2;;9'[#1 - K2l (3.2)
The rest of the flux is reflected back to reservoir 1,
H=2§(1—9)[#l—u2]- 3.3
The net current I flowing at any point in the device is given by
I=Il*—11‘=15*=%§57[u1—u21. 3.4

So, the conductance g is
I I 2%

V. m-mie h

where 9 represents the average probability that an electron injected at one end of the conductor

g= T, (3.5)

will transmit to the other end.
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Assuming that g is unity, we obtain the conductance,

2 2
g= % =77.4 8. (3.6)
This indicates that the conductance of a ballistic conductor having one channel is 77.4 uS, and we

can not exceed this conductance.

3.2 A Physical Understanding on the Landauer Model

The derivation of the Landauer formula is simple, but there are some questions. Let us consider it

for the simple equation (3.5).

Q1 Can we estimate the transmission probabilities between the reservoirs instead of between the

leads ?

Q2 Energy is dissipated to be generating the joule-heat when voltage is applied. However, Eq.

(3.5) does not contain the mechanism.

The answer for Q1 is that we can estimate that of the leads, but not necessary to do it as long
as the reservoirs are reflectionless, that is, electrons can transport from the leads to the reservoirs
without the reflection. In the Landauer model, it turns out that the conductance depends on the
interface between the conductor and the reservoirs which are dissimilar materials. For this reason,
this resistance is often called the contact resistance. Therefor, the g in the Eq.(3.5) represents the
contact resistance. The interface between the leads and the conductor depends on the transmission
probability 5.

On the Q2, the joule-heat generate inside the reservoirs from the assumption. However, since

the capacitance of the reservoirs is enough large, we can neglect it.

3.3 Finite Temperature

We have derived the Landauer formula under the assumption of zero temperature. In the finite

temperature, the average number of electrons is given by the Fermi distribution function,

1
h(E-p)= 1+expl(E—p)/ksT)’ G.7

f(E — p) represents the probability of occupancy available energy state E at absolute temperature

T. This distribution is applicable to indistinguishable particles at thermal equilibrium, which obey
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Pauli’s exclusion principle. In the condition, the influx of electrons from lead 1 is given by

i (B)= -Z;Tefl(E), 3.8
while the influx from lead 2 is given by
L (B)= %efz(E). 3.9
The outflux from lead 2 is obtained as
LE)=Tif(B)+1-3"i; (B, (3.10)
while the outflux from lead 1 is obtain as
ir(B)= 1-9)i; (B)+ T 'i; (E). (3.11)

The net current i(E) in the device is given by

i(B)=i —i
- -+ .-
il
_ ot ] o—
=T i -9

2
= 21T BAB -T EAEN. (3.12)
Assuming that 7 (E) = 9'(E), the total current can be written as
I=fi(E)dE, (3.13)

where

2
i(E) = —Eeﬂ’(E) L (E) - A (B). (3.14)

Moving away from equilibrium, the applied bias could change the two transmission functions and
make them unequal. Thus I (E) # 9 '(E) in general. However, if we assume that there is no inelastic
scattering inside device, it then can be shown that I (E) is always equal to I'(E) for a two-terminal
device.

For small deviations from equilibrium state, the current is proportional to the applied bias. The

Eq.(3.14) is given by

5= -2;1‘5 ([3’(E)Lq§[f1 —F1+1A —fg]eqé[ﬂ'(E)])dE. (3.15)
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The second term is zero, because fi(E) = f;(E) at equilibrium state. The first term is rewritten by

using a Taylor’s series expansion,

~tu — [
Slfi-fl=lm .Uzl(a”)eq

9]
- (28 616

We then obtain the linear response formula at finite temperature

_ o
8= —ple

_ 2¢e? afo

= ng-(m(_ﬁ)dE
B 262
" hkgT

fﬂ'(ﬁ)ﬁ)(ﬂ[l - f(B)IdE. (3.17)

3.4 Multi-Channel Case

The Landauer model quantizes the conductance of one-dimensional conductor. The conductance
of perfect conductor having single channel is g (Eq. (3.6)). In this section, we describe the case
in which multiple conducting channels are presented. In this case, the sum of each transmission

probability of channel becomes the total transmission probability,
2¢?
g=2Y 7, (3.18)
h i, J

where J; ; means the transmission probability of the process which transports from channel i to j.
In order to calculate the J7; ;, we often use the S-matrix. A coherent conductor can be character-
ized at each energy by the S-matrix that relates the outgoing wave amplitudes to the incoming wave
amplitudes at different leads.

The incoming and reflecting waves are moving in each channel (Figure 3.3). We consider the
system, which connects the two conducting channel 1 and 2 as illustrate in Figure 3.2. The wave-

functions in channel 1 and 2 can be represented by the plane wave as the following,

v = a1e'** + by &', (3.19)

Wy = aye’t* + bye'**, (3.20)

For simplicity, we use the common k in channel 1 and 2, but in general, they are different each

other. According to the Schrodinger equation, there are the linear relation in between an incoming
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[

— ) 2

Figure 3.3: The S-matrix of the one-dimensional conductor

amplitude (a;, a;) and an outgoing amplitude (by, b,), then

bl =ra; + tzl,
3.21)
by=ta +r,

where (7, ) is the left side of the matrix of the reflection coefficient, and (7, t') is the right side of the

matrix of the transmission coefficient. Eq.(3.21) is rewritten as the following,

b=Sa, s=(; i,) (3.22)

The S is called S-matrix and must be the unitary matrix.
We can make generalizations the above concept as the following. We consider one coherent
conductor, and count all of the channels where the electrons can move.
The transmission probability T;,., is then obtained by taking the squared magnitude of the cor-
responding element of the S-matrix.
Tren = |Smenl? (3.23)
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Figure 3.4: Band diagram for a tunneling barrier under dias, illustrating charge flow

We have introduced the arrows in the subscripts just as a reminder that the direction of propagation

is backwards from the second subscript to the first one.

3.5 Current Density

The Landauer formula is the method that investigates the conductance (or current) between the
reservoirs and conductor. In this section, we derive the Landauer formula from another approach.
In an equilibrium state where the bias voltage is zero, the amplitudes of the waves of left and
right direction is equal to each other, so that the current does not flow. The general problem is
shown Figure 3.4 for a beneric tunneling barrier. Considering that a real device is three-dimensional
system, we assume that the flowing direction of the tunneling current is z-direction, and split the
z-direction into perpendicular direction against it. We deal with the transport of the electrons of
z-direction as the tunneling process. The transport of perpendicular direction is not affect for the

tunneling process because it is regarded as free-electrons. The energy of z-direction is written by

SEE
, = —— = —— 4 constant. (3.24)
2m 2m

k;. is the z-component of the wave vector for a region of the left side of the barrier, and &, is the
z-component of the wave vector in the right side. The constant term is the dependent on the bias

voltage, the value takes a negative value when the potential of a region of the right side is a positive
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value. The differential of Eq.(3.24) corresponds to the velocity,
1 dE

v, (ki) = 7dk, (3.25)
1 dE
rz) = 4+ . 3.2
vy (ki) 7 dk. (3.26)

The current through the barrier depends on the tunneling probability through the barrier and
the number of electrons contributing the tunneling. Hence, the current density from the left to the

right is written,
2

@n)®’
where f(Ep) is the Fermi distribution function on the left side of the barrier, D(k) is the density of

Jir=e f DM v, (ki) T (ki) f (E)d’k, D) = (3.27)

state in k-space, and J (k;;) is the transmission probability. Similarly, the current density from the

right to the left is written,
J=e f DX v, (k:)T (kr2) f (ER)d’k. (3.28)

If the energy of the left side is equal to that of the right side, the transmission probability of the left
side is equal to that of the right side, that is, those are symmetric so that J (k;;) = F (k;.), in spite of
the direction moving the electrons. Adding Eq.(3.27) to Eq.(3.28), we can obtain,

7= e [ DIwRIT (k)| (B - (B |k
=e f DM v, (k)T (k) [ F(B) - f(EL+ eV)]d3k. (3.29)

In order to rewrite the simple equation, the energy of the left side of the barrier is separated into

the E, for the z-direction and the E, for the perpendicular direction,

E=E, +E|, (3.30)

and
d’k = &%k, dk;,. (3.31)

Here, the differential dk, is rewrite by the differential on the z-direction energy E,,

dE\ ' dE
=|—| —dE, 3.32
dk, (dkz) EE (3.32)

dE Rk,
aE " m = hv,. (3.33)

Also,

dzkl =271'kJ_dk_L,

2nm m
=( h2 )dE_J_ (kj_dk.].:ﬁdE_L) (334)
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So the Eq.(3.29) is rewritten,
4mwem

- enih

mkeT [ 1+ (E;—Ez)/lqu
=M g E)n ¢ dE,, (3.35)
2n2hd Jo 1 + e BL+eV-E)/ ks T

f 5'(Ez)dEsz[f(Ez+El)—f(Ez+Ei+eV) dE,,
0 1]

where the E}i is the Fermi energy on the left side. The logarithmic term is sometimes called the supply

Junction.
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Chapter 4

Development of Electron Conductivity
Calculation Method for Open-Shell
Molecules

4.1 Introduction

Interest in the transport properties of single molecules has been increasing due to their possible use
as electronic components since Aviram and Ratner proposed the first molecular-based diode in 1974
[1]. Their study lead to extremely downsize electronic circuits by utilizing the organic molecules.
After that, many studies of the molecular devices have carried out so far. In the beginnings of the
studies, Langmuir-Blodgett (LB) was used to realize the molecular devices. Various molecules were
synthesized and LB films were made, and the electron characteristics were measured by connecting
the electrode. However, it turns out that it is difficult to realize the molecular device by utilizing
the LB files. In 1982, Scanning Tunneling Microscope (STM) was developed, and its applications
to the molecular device advanced. After that, studies of the molecular devices by Self-Assembled
Monolayer (SAM) and Mechanical Break Junction (MB]) have been also advanced. The idea of the
MB] (Figure 4.1) is to break by bending a very thin metal wire fabricated on the surface of an elastic
substrate, thereby creating two electrodes [45].

Reed et al. reported that molecules of benzene-1,4-dithiol (BDT) were self-assembled onto the
two facing gold electrodes of the MBJ to form a statically stable gold-sulfur-aryl-sulfur-gold system,
and the I-Vcharacteristics of the BDT shows 0.045 uS at about 0.7 V [2]. Many groups have reported
the conductance of the BDT, but the reported conductance values vary from < 107Gy to ~ 0.1Gy,
where Gy = 2¢?/ h ~ 77.5uS [2,4,46-48]. Also there are theoretical studies on the I-Vcharacteristics of
the BDTs, but there is the discrepancy between the experimental and calculated conductance. For a

one of the reason, there are distinct Au-S bonding geometry. Those are top-molecule-top geometry,
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L]

Bewe ot

Figure 4.1: A schematic of the mechanical break junction (MB]) with (a) the bending beam, (b) the
counter supports, (c) the notched gold wire, (d) the glue contacts, (e) the pizeo element, and (f) the
glass tube containing the solution. Ref. [2] is referred.

where both S atoms of the molecule occupy the top site of the Au surface, bridge-molecule-bridge
geometry where both S atoms connect to the middle of the two Au atoms and hollow-molecule-
hollow geometry, where both S atoms connect to the threefold hollow site of Au electrodes. For
these viewpoints, Kondo et al. demonstrated single BDT theoretically [7].

Of course, many molecules were studied not only on the BDT but also on the various molecules
for the realization of the molecular devices, e.g. see ref. [49]. STM measurements on Cg, have re-
vealed linear I-V characteristics at low applied bias voltages [50] (Figure 4.2). The resistance of the
Cgo is 54.80 MS for the junction at tip contact. The -V characteristics of bisthiolterthiophene was
also reported [51] (Figure 4.3). The molecules is connected to the two facing gold electrodes, and
forming metal-molecules-metal junctions. The conductance of 10-100 nS was obtained. Especially,
the top-down approach, such as the miniaturization of conventional silicon-based devices, leads to
drastic limitations for dimensions smaller than 100 nm. So, the realization of the devices by utilizing

the molecules is necessary for miniaturizing the devices.

4.2 Motivations

The molecular devices mentioned above are closed-shell systems in general. However, I have the
interest in introducing spins into the molecular devices, because a coexistence of localized spins
and conduction electrons has attracted much attention in a material science. It is well known that

tetrathiafulvalene (TTF) derivatives containing redox active 7 electrons show the electron conduc-
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Figure 4.2: a) A schematic of the Cg device, b) I-V characteristics of the Cg, device. [These figures
were taken from C. Joachim et al. Phys. Rev Lett., 74, 2102 (1995)]

- AUBU“(\ e AuBulk -

Figure 4.3: A schematic of the bisthiolterthiophene device. A conjugated molecule is chemisorbed
onto the gold electrodes via the thiolate terminal groups. [This figure was taken from C. Kerguerls et
al. Phys. Rev. B., 59, 12505, (1999)]

tivity. If such molecules can be combined with localized spin species, one will obtain coexistent
systems of localized spins and conduction electrons. Coronado et al. has reported that (BEDT-
TTF)3[MnCr(ox)3] (BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene) shows both ferromagnetic
spin interactions and the conductivity [52] in Figure 4.4(a). This molecule-based compound shows
a ferromagnetism at 5.5K and a metallic behavior at the range from room temperature to 2K. Mat-
sushita et al. reported the coexistence of the ferromagnetism and the conductivity using a pure
organic compound, which shows a negative magneto-resistance below 15K [53] in Figure 4.4(b).
Peng et al. reported the magnetism and the electron conductivity of extended metal atom chains
(EMAC) [8] in Figure 4.4(c).

On the other hand, there are many reports of the electron transfer not only on the synthesized
molecules but also biological molecules such as DNA. DNA is also known for its conductivity by 7-

stacking interactions [9-19], e.g. see Figure 4.5. Recently, Tanaka