<table>
<thead>
<tr>
<th>Title</th>
<th>Studies on Synthesis, Structure, and Reactivity of Mono and Dinuclear η^3-Allenyl/Propargylpalladium Complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsutsumi, Ken</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.11501/3169568</td>
</tr>
<tr>
<td>DOI</td>
<td>10.11501/3169568</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Studies on Synthesis, Structure, and Reactivity of
Mono and Dinuclear η^3-Allenyl/Propargylpalladium Complexes

Ken Tsutsumi
Studies on Synthesis, Structure, and Reactivity of Mono- and Dinuclear η^3-Allenyl/Propargylpalladium Complexes

単核及び複核η^3-アレンール／プロパルギルパラジウム錯体の合成、構造、及び反応性に関する研究

2000

Ken Tsutsumi
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
</tbody>
</table>

Chapter 1 Cationic η^3-allenyl/propargylpalladium complexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1-2 Synthesis and property of cationic η^3-allenyl/propargyl-</td>
<td>5</td>
</tr>
<tr>
<td>palladium complexes</td>
<td></td>
</tr>
<tr>
<td>1-3 X-ray structure of cationic η^3-allenyl/propargylpalladium</td>
<td>8</td>
</tr>
<tr>
<td>complex</td>
<td></td>
</tr>
<tr>
<td>1-4 Cationic η^3-allenyl/propargylpalladium complex formation</td>
<td>9</td>
</tr>
<tr>
<td>in solution</td>
<td></td>
</tr>
<tr>
<td>1-5 Conclusion</td>
<td>12</td>
</tr>
<tr>
<td>1-6 Experimental Section</td>
<td>13</td>
</tr>
<tr>
<td>1-7 References and Notes</td>
<td>19</td>
</tr>
</tbody>
</table>

Chapter 2 Neutral η^3-allenyl/propargylpalladium monomer and η^1-propargyl-
palladium halide dimer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 Introduction</td>
<td>22</td>
</tr>
</tbody>
</table>
| 2-2 Synthesis and characterization of neutral η^3-allenyl/propargyl-
palladium monomer and η^1-propargylpalladium halide dimer | 23 |
| 2-3 X-ray structure of neutral η^1-allenyl/propargylpalladium | 26 |
| monomer and η^1-propargylpalladium chloride dimer | |
| 2-4 Equilibrium between η^3-allenyl/propargylpalladium monomer | 28 |
| and η^1-propargylpalladium halide dimer | |
| 2-5 The reactivity of neutral η^3-allenyl/propargylpalladium | 29 |
| complexes | |
| 2-6 | Cross coupling reactions proceeding through η^1- and η^3-allenyl/propargyl-
palladium intermediates | 31 |
| 2-7 | Conclusion | 36 |
| 2-8 | Experimental Section | 36 |
| 2-9 | References and Notes | 45 |

Chapter 3 μ-η^3-Allenyl/propargylidipalladium complexes

3-1	Introduction	47
3-2	Synthesis and property of μ-η^3-allenyl/propargylidipalladium complexes	48
3-3	X-ray structure of μ-η^3-allenyl/propargylidipalladium complexes	49
3-4	Reaction of μ-η^3-allenyl/propargylidipalladium complexes	51
3-5	Reaction of μ-η^3-vinylcarbenedipalladium complexes	53
3-6	Conclusion	57
3-7	Experimental Section	57
3-8	References and Notes	66

Conclusion | 69 |

List of Publications | 71 |

Supplementary List of Publications | 72 |

Acknowledgment | 73 |
General Introduction

Mono and polynuclear transition-metal complexes bearing hydrocarbonyl ligands have been regarded as the key species in synthetic and material chemistry. Transition-metal complexes bearing \(\eta^3 \)-allyl ligands have been well investigated over the past few decades, since they have a rich and variable chemistry in their syntheses, structures, and reactivities.\(^1\) The theoretical explorations also increased with regard to many useful organic reactions of allyl compounds, especially those of palladium.\(^2\) Recently, increasing attention has also been paid to allenyl/propargyl transition metal complexes because of their unique bonding mode and reactivity,\(^3\) but much less fundamental aspects have been elucidated in contrast to analogous allyl complexes. Examples of typical bonding modes are presented in Scheme 1. The \(\eta^1 \)-bonding allenyl (A) and propargyl (B) complexes have been well studied,\(^4\) compared with \(\eta^3 \)-allenyl/propargyl ones (C) (D). The bonding in \(\eta^3 \)-allenyl/propargyl complexes can be described in term of two resonance structures: the \(\eta^3 \)-allenyl structure and the \(\eta^3 \)-propargyl structure.

Scheme 1

In spite of many useful catalytic reactions of propargylic and allenylic substrates,\(^5\)
systematic studies of mononuclear and dinuclear complexes containing an allenyl/propargyl ligand, especially those of palladium, have been still limited. The first propargyl- and allenylpalladium complexes prepared by conventional oxidative addition of propargyl or allenyl halides to Pd(PPh₃)₄ were of the η¹-bonding type (Scheme 2), which have long been assumed to play a crucial role in the catalytic cycles.

Scheme 2

\[
\begin{align*}
\text{R-} & \quad \text{Cl} \\
\text{Pd(PPh₃)₄} & \quad \rightarrow \quad \text{Ph₃P} & \quad \text{Cl} \\
& \quad \text{Pd} & \quad \text{PPh₃} \\
& \quad \text{Cl} & \quad \text{Ph₃P} \\
\end{align*}
\]

I planned to prepare a series of cationic and neutral monopalladium complexes of type C in the hope of finding out unique properties inherent in the strained η³-allenyl/propargyl ligand, and applying these complexes as the intermediate of catalytic reactions. I was also interested in type D complexes because, considering that geometrically linear unsaturated hydrocarbon ligands might match to a linear dinuclear moiety more than to a mononuclear moiety, μ-η³-allenyl/propargyldipalladiums may be a suitable model to discuss about the metal surface-hydrocarbon interaction of heterogeneous catalytic reaction. I wish to report here in the synthesis, structure and reactivity of type C, cationic (Chapter 1) and neutral (Chapter 2), and type D (Chapter 3) complexes of Palladium which have bearings with organic synthesis using of homogeneous and heterogeneous palladium catalysts.
References

Chapter 1

Cationic η^3-allenyl/propargylpalladium complexes

1-1 Introduction

Recently, transition-metal complexes containing η^3-allenyl/propargyl ligands have been attracting great attention because of their unique structures and reactivities. In 1991, Krivykh reported the synthesis of cationic η^3-allenyl/propargylmolybdenum complex,1a which was the first compound containing η^3-allenyl/propargyl ligand. Since this report, cationic type complexes have been investigated on the other metals, such as W,1b Re,1b,c Pt,1d,e,f,g and Pd.1g The reactivities of these complexes have been explored to reveal some unique patterns of reactivity. For example, the nucleophilic addition occurred at the central carbon of the η^3-allenyl/propargyl ligand.1a,c,d,e,g The most extensively studied reactions of the η^3-allenyl/propargyl complexes have been those of platinum,1d,e,g and a generalized reaction is provided in Scheme 1. The reaction of cationic η^3-allenyl/propargylplatinum complexes proceeds by addition of the nucleophile at the central carbon atom and transfer of a hydrogen to the terminal CR carbon atom to afford the η^3-allylplatinum ones under mild condition. Furthermore the MO calculation on the η^3-allenyl/propargylplatinum complex is consistent with the observation.2 The high reactivity of this type of complex is unique and different from that of η^1-allenyl or η^1-propargyl complexes.3

Scheme 1

Cationic η^3-propargyl complexes are expected as a more effective intermediate than neutral η^1-allenyl- and η^1-propargyl complexes in certain catalytic reactions of allenylidene or propargylic substrates. Tsuji and co-workers reported many useful palladium catalyzed
reactions of propargylic or allenylic substrates, but \(\eta^1 \)-allenyl- and \(\eta^1 \)-propargyl complexes have been assumed to play a crucial role in the above catalytic reactions. In view of the analogy with \(\eta^3 \)-allylpalladium chemistry, I expected the equilibrium between cationic \(\eta^3 \)-allenyl/propargyl and \(\eta^1 \)-allenyl and \(\eta^1 \)-propargylpalladium complexes may also exist in solution (Scheme 2), and the former might have a role in catalysis more significant than has been assumed before.

Scheme 2

In this chapter, I describe the synthesis, structure and reactivity of some cationic \(\eta^3 \)-propargylpalladium complexes. I also examined trends of \(\eta^1 \)-\(\eta^3 \) equilibrium of propargyl ligand as a function of the nature of propargyl group, ligand (X), phosphine, and solvent. I will discuss the possibility of these complexes as a catalytic intermediate.

1-2 Synthesis and property of cationic \(\eta^3 \)-allenyl/propargylpalladium complexes

Cationic \(\eta^3 \)-propargylpalladium complexes 2a, 2b were prepared by treating \(\eta^1 \)-allenyl- and \(\eta^1 \)-propargylbis(triphenylphosphine)palladium(II) chloride (1a, 1b) with AgBF\(_4\) (eq. 1) in high yields. The \(\eta^3 \)-coordination mode in 2a was established by NMR experiments. Thus, in the \(^{13}\)C NMR spectrum of 2a in CDCl\(_3\), resonances of \(\eta^3 \)-allenyl/propargyl carbons at both terminal positions showed large carbon-phosphorus couplings (\(\delta \) 52.40, dd, \(J_{PC} \) = 39.1, 6.2 Hz, CCH\(_2\); \(\delta \) 104.74, d, \(J_{PC} \) = 40.4 Hz, SiCC). Moreover, the resonance due to the central carbon of the propargyl group showed two small carbon-phosphorus couplings (\(\delta \) 113.84, dd, \(J_{PC} \) = 8.1, 8.1 Hz). Furthermore, the \(^{31}\)P NMR resonances of two non-equivalent PPh\(_3\) ligands showed phosphorus-phosphorus coupling (\(J_{PP} \) = 46.4 Hz). These features are all similar to those of 2b of which X-ray
structure determination will be described later, suggesting η³-coordination of Me₃SiCCCH₂ ligand in 2a.

\[\text{Ph₃P} \quad \text{R} \quad \equiv \quad \text{Pd} \quad \text{PPh₃} \quad \text{AgBF₄} \quad \text{CH₂Cl₂, r.t.,} \quad 15 \text{ min} \]

1a: R = SiMe₃ (propargyl)
1b: R = Ph (allenyl:propargyl = 75:25)

2a: 88%
2b: 94%

The preparation of another complex 4 was successful in good yield by the reaction of propargyl mesylate tBuC≡CCH(Me)OSO₂Me (3) with Pd₂(dba)₃·CHCl₃, dppe (1, 2-bis(diphenylphosphino)ethane), and NaOTf (Tf = SO₂CF₃) (eq. 2). In this reaction, the mesyl group (OSO₂Me) was a more efficient leaving one than halides, and was replaced by the OTf⁻ ion after oxidative addition. In the ¹³C NMR spectrum of 4, the resonances of propargyl terminal carbons showed large carbon-phosphorus coupling (\(J_{PC} = 37.6, 34.6 \) Hz) and the ³¹P resonances of dppe ligands showed two signals at 6 54.90 and 56.00 with P-P coupling, which are similar to those of 2a and 2b. The ¹H NMR spectrum of 4 showed the methine proton resonance at δ 4.30. The methine and methyl proton resonances have large proton-phosphorus coupling (\(J_{PH} = 7.1, 8.8 \) Hz respectively; established by homonuclear decoupling experiments).

\[\text{tBu} \quad \equiv \quad \text{Me} \quad 1) \quad \text{1/2Pd₂(dba)₃, dppe} \quad 2) \quad \text{NaOTf} \quad \text{CH₂Cl₂, r.t.} \]

4: 87%

Surprisingly, the cationic η³-propargylpalladium complexes prepared in this study did not react with methanol and ethanol at all, in contrast to reactions of the corresponding platinum complexes with alcohol, which afforded η³-2-alkoxyallylplatinum complexes. The difference in the reactivity toward the alcohol, between Pd and Pt analogs might reflect a different stability of a possible intermediate, 3-alkoxy-1-metalla-2-cyclobutene (Pt intermediate being more stable than Pd analog) generated by a nucleophilic
attack of an alkoxy group at the central carbon of the \(\eta^3 \)-propargyl ligand, which subsequently undergoes protonation to give the \(\eta^3 \)-2-alkoxyallyl complex. This explanation is consistent with a proposed origin of a unique metal effect in comparison of the bonding aspect of the metalla-3-cyclobutanone complex\(^8\) between the Pd and Pt ones; the Pt atom stabilizes a metallacyclobutane framework more effectively by a resonance structure than the Pd atom does.

Complexes 1a and 1b also reacted with NaBPh\(_4\) to give the corresponding cationic \(\eta^3 \)-propargylpalladium complexes (5a, 5b), respectively (eq. 3). Although these complexes gradually decomposed in solution, their quantitative formation in the early stage of the reaction was confirmed by \(^1\)H NMR spectra (5a: \(\delta \) CH\(_2\) = 2.99 ppm, \(J_{PH} = 7.8 \) Hz, 5b: \(\delta \) CH\(_2\) = 3.15 ppm, \(J_{PH} = 7.8 \) Hz). Complex 5a afforded Me\(_3\)SiC=CCH\(_2\)Ph (30%) and Me\(_3\)Si(Ph)C=C=CH\(_2\) (3%) in solution after 4 h at room temperature. On the other hand, the corresponding platinum complex, \(cis \) and \(trans \)-Pt(\(\eta^1 \)-CH\(_2\)C=Ph)(Cl)(PPh\(_3\))\(_2\), did not react with NaBPh\(_4\) under the same conditions at all, which strongly suggests that the Pd atom favors the \(\eta^3 \)-mode coordination of the allenyl or propargyl ligand more than the Pt atom does.

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad \text{R} \quad \text{Pd} \quad \text{Cl} \quad \text{PPh}_3 \\
\text{and/or} & \\
\text{Ph}_3\text{P} & \quad \text{R} \quad \text{Pd} \quad \text{PPh}_3 \\
\text{NaBPh}_4 & \quad \text{CDCl}_3/(\text{CD}_3\text{CO})_2\text{CO}, \quad \text{r.t., 15 min} \\
\end{align*}
\]

1a: \(R = \text{SiMe}_3 \) (propargyl)
1b: \(R = \text{Ph} \) (allenyl:propargyl = 75:25)
5a: \(100\% \)
5b: \(100\% \)

The occurrence of the reaction shown in eq. 3 suggests pre-equilibrium between the \(\eta^1 \)- and \(\eta^3 \)-complexes involving dissociation of the chloride ion in solution (Scheme 2), similar to the known behavior of the \(\eta^3 \)-allylpalladium complexes.\(^9\) Although the spontaneous formation of the cationic species from 1a and 1b could not be detected spectroscopically, a suitable choice of both the propargyl and phosphine ligands enabled direct observations of the cationic \(\eta^3 \)-propargylpalladium complexes with the liberation of the chloride ion as an equilibrating species (see Chapter 1-4).
1-3 X-ray structure of cationic η^3-allenyl/propargylpalladium complex

The molecular structure of 2b was determined by X-ray diffraction technique (Figure 1). η^3-Allenyl/propargyl group is not linear (C1-C2-C3 = 154(1)°), and palladium, phosphorus and η^3-allenyl/propargyl carbons are located almost on the same plane (dihedral angle between Pd-P1-P2 and C1-C2-C3 = 4.82°). The C1-C2 and C2-C3 bond lengths are 1.22(2) Å and 1.38(2) Å respectively, which indicates that there is considerable contribution of both allenyl and propargyl presentations to this structure. This structure is quite similar to that of the platinum analog,1e namely the degree of skeletal strain of the allenyl/propargyl ligand appears to be comparable in the two complexes.

Figure 1. Molecular structure of 2b. Selected bond distances (Å): Pd-P1 = 2.33(4), Pd-P2 = 2.29(4), Pd-C1 = 2.33(2), Pd-C2 = 2.15(2), Pd-C3 = 2.16(2). C1-C2 = 1.22(2), C2-C3 = 1.38(2). Selected angle (deg): C1-C2-C3 = 154(1). Dihedral angles (deg): Pd-P1-P2, C1-C2-C3 = 4.82, Pd-P1-P2, Pd-C1-C3 = 2.38
1-4 Cationic η^3-allenyl/propargylpalladium complex formation in solution

The reaction of $t\text{BuC}=\text{CCH(Me)Cl}$ (6a) with a half molar amount of Pd$_2$(dba)$_3$·CHCl$_3$ and an equimolar amount of dppe gave an equilibrium mixture of cationic η^3-propargyl and neutral η^1-allenyl complexes 7a and 8a (eq. 4). These complexes were generated only in NMR tubes due to gradual decomposition via β-hydrogen elimination (see later). The 1H NMR data of 7a are very similar to those of the triflate 4. Upon forming the η^1-allenyl bond in 8a, the signals of the methyl and methine protons at the allenyl terminus in 7a (δ 1.07, 4.25) moved to the higher magnetic field (δ 0.57, 3.01); in particular, the signal of 8a at δ 3.01 is close to that of the authentic η^1-allenyl complex (1b; δ 3.53), but far from that of the η^1-propargyl one (1b; δ 1.54).

The equilibrium ratio of 7a and 8a was dependent on the nature of the solvent used. In CDCl$_3$, they exist as a mixture of a ratio of 75/25 with the mutual interconversion being slower than the NMR time scale (25 °C). The ratio of 7a and 8a changed from 89/11 in DMF-d_7 (run 2) to 0/100 in C$_6$D$_6$ (run 3) depending on the solvent used, which indicates that cationic complex 7a tends to be generated more easily in a polar solvent.

When $t\text{BuC}=\text{CCH(Me)Br}$ 6b was used as a ligand instead of 6a, the ratio of 7 and 8 changed from 75/25 (run 1) to 68/32 (run 4) in CDCl$_3$. The equilibrium lies in favor of the cationic η^3-propargyl form by using 6a instead of 6b, which is consistent with the order of the leaving group ability from a metal center. Considering that soft metals, such as Pd(II), have strong affinity for soft ligands, 8b containing the Pd-Br bond might be more stable than 8a containing the Pd-Cl one.
In the reaction of Pd(PPh₃)₄ with 6a, only η¹-allenyl complex, trans-Pd(η¹-C(Bu')=C=CH(Me))(Cl)(PPh₃)₂ (9), was obtained in either CDCl₃ or DMF-d₇. The chemical shift value of the methine proton in ¹H NMR spectrum of 9 at δ 3.08 ppm is very close to that of 8a at δ 3.01 in CDCl₃. The reaction of tBuC≡CCH₂Cl (6c), instead of 6a, with Pd(dppe) generated from a half molar amount of Pd₂(dba)₃·CHCl₃ and an equimolar amount of dppe gave the η¹-propargyl complex Pd(η¹-CH₂C≡CBu')(Cl)(dppe) (10), as a sole product in either CDCl₃ or DMF-d₇. The chemical shift value of the methylene protons in the ¹H NMR spectrum of 10 at 1.26 ppm, which is very similar to that of an analogous complex, trans-Pd(η¹-CH₂C≡CBu')(Cl)(PPh₃)₂,⁵b reveals the η¹-propargyl coordination mode of 10. These results suggest that the bidentate ligand (dppe) is more favorable for the η³-coordination of the propargyl/allenyl ligand than triphenylphosphine. The introduction of the alkyl substituent at the propargylic position causes the η³-form to become more stable.

In solution 7, 8, and 9 gradually decomposed to give tBuC≡CCH=CH₂ through β-hydrogen elimination reaction. The β-elimination reaction requires the formation of the η¹-propargylpalladium intermediate which might equilibrate with η¹-allenyl and η³-
propargyl complexes 7 and 8.13

Tsuji and co-workers reported on the reactions of propargyl carbonates with soft nucleophiles catalyzed by Pd(0) (Scheme 3),4c,d in which only the \(\eta^1\)-propargyl and \(\eta^1\)-allenyl species were proposed as catalytic intermediates.4 In their mechanism, nucleophilic addition occurs first at the central carbon of \(\eta^1\)-allenyl moiety and then at the terminal carbon of the allyl group in the generated \(\eta^3\)-allylpalladium intermediate to afford doubly substituted products (Scheme 4).

\begin{center}
\begin{tabular}{cccc}
run & X & solvent & 7/8a \\
1 & Cl & CDCl\textsubscript{3} & 75/25 \\
2 & Cl & DMF-\(d_7\) & 89/11 \\
3 & Cl & C\textsubscript{6}D\textsubscript{6} & 0/100 \\
4 & Br & CDCl\textsubscript{3} & 68/32 \\
\end{tabular}
\end{center}

\(a\) Ratios of 7 and 8 calculated by integrations of respective \(^1\text{H}\) NMR signals at 25 °C.

However, it should be pointed out that the cationic \(\eta^3\)-propargylplatinum and palladium complexes tend to undergo a regioselective nucleophilic reaction at the central carbon atom1d,e,g and the \(\eta^1\)-allenyl and propargyl ligands are far less reactive toward nucleophiles than the \(\eta^3\)-propargyl ligand.14 In fact, Chen indicated that the reaction of the \(\eta^1\)-allenylpalladium complex with NaCH(CO\textsubscript{2}Me)\textsubscript{2} proceeded via the cationic \(\eta^3\)-propargylpalladium complex as an equilibrium isomer.3 Moreover, it was found that in the catalytic reactions bidentate ligands, such as dppe and dppp, were more effective than monodentate ligands.4a In view of these reactivity aspects and our present finding that
dppe stabilizes cationic η^3-propargyl species more efficiently, we propose an alternative catalytic cycle involving cationic η^3-propargylpalladium complexes (Scheme 5).15

Scheme 5

I-5** Conclusion**

I described the synthesis and characterization of cationic η^3-propargylpalladium complexes, which might be the more reactive intermediate in the catalytic reactions. Palladium prefers the η^3-propargyl coordination fashion more than platinum. In addition, the equilibrium mixture of cationic η^3-propargyl and neutral η^1-allenylpalladium complexes was observed. The equilibrium lies increasingly in favor of the cationic η^3-propargyl complex as the alkyl substituent is introduced at the propargylic position, the liberating ligand is Cl$^-$, and the bidentate ligand (dppe) is used in a polar solvent.
1-6 Experimental Section

General Procedures.

Most of commercially available reagents were used without further purification. All reactions and manipulations of air- and moisture-sensitive compounds were carried out under an atmosphere of dry Ar by use of standard vacuum line techniques. Melting points were determined on a Yanagimoto 1493 micro melting-point apparatus. NMR spectra were obtained on JEOL GSX-270, JEOL GSX-400, JEOL JNM-LA400, and Bruker AM 600 spectrometers. Chemical shifts are given in ppm using TMS or H3PO4 as a standard. High-resolution mass spectrum was taken with a JEOL JMS-700 mass spectrometer. Single crystal X-ray structure determinations were carried out on a Rigaku AFC5R diffractometer. Elemental analyses were obtained at the Analytical Center, Faculty of Engineering, Osaka University.

All of the solvents were distilled prior to use. Most commercially available reagents were used without further purification. trans-Pd(η1-CH2C≡CSiMe3)(Cl)(PPh3)2 (1a), cis- and trans-Pt(η1-CH2C≡CPh)(Cl)(PPh3)2, cis- and trans-Pt(η1-CH2C≡CPh)(Cl)(PPh3)2,13a tBuC≡CCH2OH, tBuC≡CCH(Me)OH,16 Pd(PPh3)4,17 and Pd2(dba)3·CHCl318 were prepared according to the published methods. Chlorination and/or bromination of RC≡C(Ph)(R')OH (R = Ph, R' = H; R = tBu, R' = Me; R = tBu, R' = H) was carried out according to a literature procedure.19

Preparation of a mixture of trans-Pd(η1-CH2C≡CPh)(Cl)(PPh3)2 and trans-Pd(η1-C(Ph)=C=CH2)(Cl)(PPh3)2 (1b).

In an adaptation of the literature procedure,5b to a suspension of 2.82 g (2.44 mmol) of Pd(PPh3)4 in 120 mL of THF was added 523.8 mg (3.48 mmol) of PhC≡CCH2Cl at 25 °C under an argon atmosphere. The color of the mixture changed to yellow within 10 min, and after 40 min, the volume of the solvent was reduced to half by a rotary evaporator. After the addition of 600 mL of pentane, the yellow obtained precipitate was collected on a glass filter, and washed with 50 mL of diethyl ether and 60 mL of pentane. The yellow mixture of propargyl and allenyl complexes was dried under vacuum (1.17 g, 62%).
136-140 °C (dec); Propargyl type: \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.54 (s, 2H); \(^{13}\)C \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 6.76 (s, CH\(_2\)C), 86.13 (s, CH\(_2\)C), 94.38 (s, CCPh); \(^{31}\)P \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 27.33 (s); Allenyl type: \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 3.53 (s, 2H); \(^{13}\)C \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 68.08 (s, CCH\(_2\)), 103.20 (t, \(J_{PC} = 2.9\) Hz, CCH\(_2\)), 199.60 (t, \(J_{PC} = 4.1\) Hz, PhCC); \(^{31}\)P \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 23.89 (s); Anal. Calcd for C\(_{45}\)H\(_{37}\)CIP\(_2\)Pd: C, 69.15; H, 4.77%. Found: C, 69.05; H, 5.01%.

Preparation of cationic [Pd(\(\eta^3\)-Me\(_3\)SiCCCH\(_2\))(PPh\(_3\))\(_2\)][BF\(_4\)] (2a).

To a solution of 50.7 mg (0.0652 mmol) of 1a in 2.5 mL of CH\(_2\)Cl\(_2\) was added 16.0 mg (0.0822 mmol) of AgBF\(_4\) at 25 °C under an argon atmosphere and the suspension was stirred for 15 min. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure in a rotary evaporator. Then, the red solids were washed with four portions of 10 mL of hexane, and recrystallization from CH\(_2\)Cl\(_2\)/hexane gave white-yellow solids of 2a (47.4 mg, 88%). Mp 108-109 °C (dec); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) -0.29 (s, 9H), 3.07 (dd, \(J_{PH} = 7.8, 1.9\) Hz, 2H), 7.15-7.50 (m, 30H); \(^{13}\)C \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.26 (s, Si(CH\(_3\))\(_3\)), 52.40 (dd, \(J_{PC} = 39.1, 6.2\) Hz, CCH\(_2\)), 104.74 (d, \(J_{PC} = 40.4\) Hz, SiCC), 113.84 (dd, \(J_{PC} = 8.1, 8.1\) Hz, CCH\(_2\)); \(^{31}\)P \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 29.90 (d, \(J_{PP} = 46.4\) Hz), 30.68 (d, \(J_{PP} = 46.4\)Hz); Anal. Calcd for C\(_{42}\)H\(_{41}\)P\(_2\)PdSiBF\(_4\): C, 60.84; H, 4.98%. Found: C, 60.82; H, 5.13%.

Preparation of cationic [Pd(\(\eta^3\)-PhCCCH\(_2\))(PPh\(_3\))\(_2\)][BF\(_4\)] (2b).

The procedure was similar to that for 2a. Yield 94%; Mp 99-100 °C (dec); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 3.26 (dd, \(J_{PH} = 7.6, 2.0\) Hz, 2H), 6.68-6.82 (m, 4H), 6.97-6.20 (m, 12H), 6.29-7.51 (m, 19H); \(^{13}\)C \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 51.61 (dd, \(J_{PC} = 35.9, 5.9\) Hz, CCH\(_2\)), 94.57 (dd, \(J_{PC} = 7.3, 7.3\) Hz, CCH\(_2\)), 105.58 (dd, \(J_{PC} = 41.4, 4.9\) Hz, PhCC); \(^{31}\)P \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 30.16 (d, \(J_{PP} = 47.7\) Hz), 30.85 (d, \(J_{PP} = 47.7\) Hz); Anal. Calcd for C\(_{45}\)H\(_{37}\)P\(_2\)PdBF\(_4\)-(H\(_2\)O): C, 63.51; H, 4.62%. Found: C, 63.80; H, 4.54%.

Mesylation of \(\text{t}^3\)BuC≡CCH(Me)OH.
In an adaptation of a literature procedure,20 to a solution of 3.79 g (30.0 mmol) of \(\textit{i}^3\)BuC=CH(Me)OH in 100 mL of CH\(_2\)Cl\(_2\) was added 6.27 mL of NEt\(_3\) at -60 °C under an argon atmosphere. After 50 min, to the solution was added 3.10 mL (40.1 mmol) of CH\(_3\)SO\(_2\)Cl, and the mixture was stirred for 10 min. The reaction mixture was gradually warmed to 25 °C, and then poured into 200 mL of H\(_2\)O. The resulting mixture was extracted with CH\(_2\)Cl\(_2\) and the organic layer was dried over MgSO\(_4\) and concentrated. The concentrate was distilled (77 °C/0.5 mmHg) to give 5.51 g (90 %) of \(\textit{i}^3\)BuC=CH(Me)OSO\(_2\)Me(3). \(\textit{i}^3\)NMR (CDCl\(_3\)) \(\delta\) 1.23 (s, 9H), 1.61 (d, \(J = 6.6\) Hz, 3H), 3.12 (s, 3H), 5.28 (q, \(J = 6.6\) Hz, 1H); \(\text{13}C\)\{\(\text{1H}\)\} NMR (CDCl\(_3\)) \(\delta\) 22.94, 27.40, 30.53, 39.07, 69.16, 75.41, 97.28; HRMS Calcd for C\(_8\)H\(_{13}\)O\(_3\)S: [M+ - CH\(_3\)], 189.0585. Found: \(m/z\) 189.0591.

Preparation of cationic [Pd(\(\eta^3\)-BuCCCH(Me))(dppe)]\{OTf\} (4).

To a CH\(_2\)Cl\(_2\) solution (5.0 mL) of 150 mg (0.145 mmol) of Pd\(_2\)(dba\(_3\))CHCl\(_3\) and 116 mg (0.290 mmol) of dppe was added 65.1 mg (0.319 mmol) of 3 under an argon atmosphere. After 15 min, to the reaction mixture was added 150 mg (0.869 mmol) of NaOTf (OTf = trifluoromethanesulfonate), and the suspension was stirred for 20 min. The reaction mixture was concentrated in vacuo, and the orange residue was dissolved in CH\(_2\)Cl\(_2\). After filtration, the filtrate was concentrated in vacuo again, and the residue was washed with seven portions of 10 mL of ether. Recrystallization from CH\(_2\)Cl\(_2\)/ether/hexane gave yellow crystals of 4 (192 mg, 87%). Mp 80-82 °C (dec); \(\text{1H}\) NMR (CDCl\(_3\)) \(\delta\) 0.97 (s, 9H), 1.07 (td, \(J_{PH} = 8.8\) Hz, \(J_{HH} = 6.8\) Hz, 3H), 2.26-2.55 (m, 2H), 2.55-2.94 (m, 2H), 4.30 (dq, \(J_{PH} = 7.1\) Hz, \(J_{HH} = 6.8\) Hz, 1H); \(\text{13}C\)\{\(\text{1H}\)\} NMR (CDCl\(_3\)) \(\delta\) 17.08 (d, \(J_{PC} = 4.4\) Hz, CH\(_3\)), 27.90 (dd, \(J_{PC} = 33.2, 13.5\) Hz, PCH\(_2\)CH\(_2\)P), 30.15 (dd, \(J_{PC} = 33.9, 14.7\) Hz, PCH\(_2\)CH\(_2\)P), 31.82 (s, C(CH\(_3\))\(_3\)), 32.13 (s, C(CH\(_3\))\(_3\)), 66.19 (dt, \(J_{PC} = 37.6, 6.5\) Hz, CCH\(_3\)), 96.83 (d, \(J_{PF} = 6.3\) Hz, CCH), 120.08 (d, \(J_{PC} = 34.6\) Hz, CCCH), 120.87 (q, \(J_{PF} = 321.3\) Hz, CF\(_3\)); \(\text{31}P\)\{\(\text{1H}\)\} NMR (CDCl\(_3\)) \(\delta\) 54.90 (d, \(J_{PP} = 42.8\) Hz), 56.00 (d, \(J_{PP} = 42.8\) Hz); Anal. Calcd for C\(_{35}\)H\(_{37}\)F\(_3\)O\(_3\)P\(_2\)Spd-(CH\(_2\)Cl\(_2\)): C, 50.99; H, 4.64%. Found: C, 51.25; H, 4.70%.
In situ reaction of Pd(η1-CH2C≡CSiMe3)(Cl)(PPh3)2 (1a) with NaBPh4.

A mixture of 19.5 mg (0.0251 mmol) of 1a and 8.6 mg (0.0251 mmol) of NaBPh4 was dissolved in 0.4 mL of CDCl3 and 0.2 mL of (CD3)2CO under an argon atmosphere. The reaction was monitored by 1H NMR. Cationic [Pd(η3-Me3SiCCCH2)-(PPh3)2][BPh4] (5a) was obtained after 5 min (100%), which gradually decomposed to afford Me3SiC=CCH2Ph (30%) and Me3Si(Ph)C=C=CH2 (3%) in the solution after 4 h. 1H NMR spectrum of 5a (CDCl3) δ 2.99 (d, JPH = 7.8 Hz, 2H). Registry No. Me3SiC=CCH2Ph, 31683-47-3; Me3Si(Ph)C=C=CH2, 71321-00-1.

In situ reaction of a mixture of trans-Pd(η1-CH2C≡CPh)(Cl)(PPh3)2 and trans-Pd(η1-C(Ph)=C=CH2)(Cl)(PPh3)2 (1b) with NaBPh4.

The procedure was similar to that for 1a. Cationic [Pd(η3-PhCCCH2)-(PPh3)2][BPh4] (5b) was obtained after 5 min (100%). 1H NMR spectrum of 5b (CDCl3) δ 3.15 (d, JPH = 7.8 Hz, 2H).

In situ reaction of tBuC≡CCH(Me)Cl (6a) with 1/2Pd2(dba)3·CHCl3 and dppe.

To a CDCl3 solution (0.6 mL) of 6a (2.4 mg, 0.017 mmol) in an NMR tube were added 11.2 mg (0.0108 mmol) of Pd2(dba)3·CHCl3 and 8.6 mg (0.022 mmol) of dppe under an atmosphere of argon. The reaction was monitored by 1H NMR. Cationic [Pd(η3-tBuCCCH(Me))(dppe)][Cl] (7a) (45%) and cis-Pd(η1-C(tBu)=C=CH(Me))(Cl)(dppe) (8a) (15%) were obtained after 30 min. 1H NMR spectrum of 7a (CDCl3) δ 0.96 (s, 9H), 1.07 (td, JPH = 8.5 Hz, JHH = 6.8 Hz, 3H), 4.25 (tq, JPH = 4.4 Hz, JHH = 6.8 Hz, 1H), 1H NMR spectrum of 8a (CDCl3) δ 0.57 (dd, JPH = 8.9 Hz, JHH = 6.8 Hz, 3H), 1.55 (s, 9H), 3.01 (q, JHH = 6.8 Hz, 1H). The same reaction was carried out in DMF-d7 (7a, 65%; 8a, 8%) and C6D6 (7a, 7%).
In situ reaction of 4BuC≡CCH(Me)Br (6b) with 1/2Pd$_2$(dba)$_3$:CHCl$_3$ and dppe.

The procedure was similar to that of 6a. Cationic [Pd(η^3-BuCCCH(Me))- (dppe)][Br] (7b) (49%) and cis-Pd(η^1-C(Bu)=C≡CH(Me))(Br)(dppe) (8b) (23%; major/minor = 9/5) were obtained after 30 min. 1H NMR for 7b (CDCl$_3$) δ 0.94 (s, 9H), 1.05 (td, $J_{PH}=8.5$ Hz, $J_{HH}=6.8$ Hz, 3H), 4.24 (tq, $J_{PH}=4.3$ Hz, $J_{HH}=6.8$ Hz, 1H), 1H NMR for 8b-major (CDCl$_3$) δ 0.59 (dd, $J_{PH}=9.3$ Hz, $J_{HH}=6.6$ Hz, 3H), 1.54 (s, 9H), 3.11 (q, $J_{HH}=6.6$ Hz, 1H), 1H NMR for 8b-minor (CDCl$_3$) δ 0.55 (dd, $J_{PH}=9.0$ Hz, $J_{HH}=6.3$ Hz, 3H), 1.52 (s, 9H), 2.99 (q, $J_{HH}=6.3$ Hz, 1H).

Reaction of 4BuC≡CCH(Me)Cl (6a) with Pd(PPh$_3$)$_4$.

To a CDCl$_3$ solution (0.6 mL) of 6a (2.3 mg, 0.016 mmol) was added 16.6 mg (0.0144 mmol) of Pd(PPh$_3$)$_4$ under an atmosphere of argon. The reaction was monitored by 1H NMR. trans-Pd(η^1-C('Bu)=C≡CH(Me))(Cl)(PPh$_3$)$_2$ (9) was obtained after 30 min (94%). 1H NMR (CDCl$_3$) δ 0.57 (d, $J_{HH}=6.6$ Hz, 3H), 1.54 (s, 9H), 3.08 (q, $J_{HH}=6.6$ Hz, 1H). The same reaction was carried out in DMF-d$_7$ (69%).

In situ reaction of 4BuC≡CH$_2$Cl (6c) with 1/2Pd$_2$(dba)$_3$:CHCl$_3$ and dppe.

The procedure was similar to that of 6a. cis-Pd(η^1-CH$_2$C≡C'Bu)(Cl)(dppe) (10) was obtained after 30 min (76%). 1H NMR (CDCl$_3$) δ 1.02 (s, 9H), 1.26 (s, 2H). The same reaction was carried out in DMF-d$_7$ (79%).

Single crystal X-ray diffraction study.

All data were obtained on a Rigaku AFC-5R diffractometer with graphite-monochromated Mo-Kα radiation. All calculations were carried out with the TEXSAN crystallographic software package of Molecular Structure Corporation. The structure was solved by the direct method and refined by the full-matrix least-squares procedure, the function minimized being $\Sigma w(|F_o|-|F_c|)^2$. The non-hydrogen atoms were refined anisotropically. All the positions of the hydrogen atoms were calculated by
stereochemical considerations.

\[\text{[Pd(\eta^3-\text{Me}_3\text{SiCCCH}_2)(\text{PPh}_3)_2][BF}_4\text{]} (2a).} \]

A yellow crystal (0.20 × 0.20 × 0.50 mm) was obtained from \text{CH}_2\text{Cl}_2/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. \text{C}_{45}\text{H}_{37}\text{BF}_4\text{P}_2\text{Pd}, \text{M = 832.94, triclinic, space group } \text{P\text{\textbar{}1}(\#2)}, a = 12.034(1) \text{Å}, b = 16.139(2) \text{Å}, c = 10.555(2) \text{Å}, \alpha = 105.49(1)°, \beta = 92.30(1)°, \gamma = 101.60(1)°, V = 1925.6(5) \text{Å}^3, Z = 2, D_{\text{calc}} = 1.436 \text{g/cm}^3, F(000) = 848.00, \mu(\text{Mo-K\text{\textalpha}}) = 6.16 \text{cm}^{-1} \text{by least squares refinement on diffractometer angles from automatically centered reflections, } 2\theta \text{ range 23.0-25.7°, } \lambda = 0.71069 \text{ Å. The final } R \text{ and } R_w \text{ values were 0.080 and 0.107, respectively, for 3932 reflections (I > 3.00|I|).} \]
1-7 References and Notes

(1) (a) Mo: Krivykh, V. V.; Taits, E. S.; Petrovskii, P. V.; Struchkov, Y. T.; Yanovskii, A. I. Mendeleev Commun. 1991, 103.
(f) Pt: Stang, P. J.; Crittell, C. M.; Arif, A. M. Organometallics 1993, 12, 4799.

(2) Graham, J. P.; Wojcicki, A.; Bursten, B. E. Organometallics 1999, 18, 837.

(c) Tsuji, J.; Watanabe, H.; Minami, I.; Shimizu, I. J. Am. Chem. Soc. 1985, 107, 2196.

(5) 1a, b were prepared by the reaction of propargyl chlorides with Pd(PPh₃)₄ ; (a) Elsevier, C. J.; Kleijn, H.; Ruitenber, K.; Vermeer, P. J. Chem. Soc., Chem. Commun. 1983, 1529.

(6) Synthesis of 4 might be possible from propargyl triflate tBuC≡CCH(Me)OTf. However, propargyl triflate was not obtained by triflation of tBuC≡CCH(Me)OH according to the literature procedure, which gave enyne compound tBuC≡CCH=CH₂ via β-elimination reaction.

(7) Wojcicki reported that cationic η³-propargylpalladium complexes react with
methanol in the presence of trace amounts of OMe- or NEt3 to yield η3-2-methoxyallylpalladium complexes.1g

(10) In 1H NMR spectrum of 8b two separate sets of resonances were observed, which reveals that 8b is a mixture of two diastereotopic isomers (major/minor = 9/5). These isomers are due to restricted rotation around the Pd-Cα axis and similar isomers were reported in Wouters, J. M. A.; Klein, R. A.; Elsevier, C. J.; Haming, L.; Stam, C. H. Organometallics 1994, 13, 4586.

(12) 1H NMR (CDCl\textsubscript{3}) δ 1.24 (s, 9H), 5.35 (dd, J = 11.0, 2.2 Hz, 1H), 5.53 (dd, J = 17.6, 2.2 Hz, 1H), 5.79 (dd, J = 17.6, 11.0 Hz, 1H).

Chapter 2

Neutral η^3-allenyl/propargylpalladium monomer and η^1-propargylpalladium halide dimer

2-1 Introduction

Compared to the considerable progress in the cationic type η^3-allenyl/propargyl mononuclear transition-metal complexes (see Chapter 1), much less has still been elucidated on the bonding, structure, and reactivity of the neutral type η^3-propargyl ones. Since 1991, some stable neutral η^3-propargyl complexes have been prepared by various synthetic routes (Scheme 1), including 1,4-addition of metal-hydride to the conjugated enyne,\(^{1a}\) reaction of metal halides with propargyl nucleophiles,\(^{1b}\) dehydrohalogenation reaction and rearrangement of halogenobis(alkyne) complex,\(^{1c}\) and σ-bond metathesis reaction.\(^{1d}\)

Scheme 1

[Chemical structures and reactions depicted in Scheme 1 are not transcribed here.]

TBM: tribenzylidenemethane

Cp^*: $C_5M_e_5$
Exploration of new chemistry of η^3-propargylpalladium complexes appears of potentially synthetic and theoretical significance2 in view of the major role played by η^3-allylpalladiums in organic synthesis.3 Mononuclear cationic η^3-propargylpalladium(II) and platinum(II) species are very prone to undergo nucleophilic attack at the central carbon of the propargyl group to afford a metallacyclobutene framework (see Chapter 1), while dinuclear neutral η^3-propargylpalladium(I) complexes are susceptible to attack of an electrophile at central carbon, yielding μ-vinylcarbene dipalladium complexes (see Chapter 3).

In this chapter, I wish to report the first synthesis and stability and reactivity aspects of neutral η^3-propargylpalladium complexes from which fundamental insights were newly gained into the nature of bonding in and the potential role in synthetic application of η^3-allenyl/propargyl transition-metal complexes.

2-2 Synthesis and characterization of neutral η^3-allenyl/propargylpalladium monomer and η^1-propargylpalladium halide dimer

The reaction of propargyl chlorides (1a-d) with Pd\textsubscript{2}(dba)\textsubscript{3}CHCl\textsubscript{3} and PPh\textsubscript{3} (Pd/PPh\textsubscript{3} = 1/1) in CH\textsubscript{2}Cl\textsubscript{2} at room temperature afforded new complexes Pd(RC\textsubscript{3}CH\textsubscript{2})(Cl)(PPh\textsubscript{3}) (2a-d) (eq. 1). Further, the analogous reaction of 1d in the presence of NaX (X = Br, I) gave the corresponding bromide and iodide Pd(tPr\textsubscript{3}SiCCCH\textsubscript{2})(X)(PPh\textsubscript{3}) (2e: X = Br; 2f: X = I) (eq. 2).

\[
\begin{array}{c}
\text{R} \equiv \text{Cl} \\
\text{1/2Pd}_2(dba)_3, \text{PPh}_3 \\
\text{CH}_2\text{Cl}_2, \text{r.t., 2 h} \\
Pd(RC\text{CCH}_2)(Cl)(PPh_3)
\end{array}
\quad (1)
\]

<table>
<thead>
<tr>
<th>R</th>
<th>Reaction</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>tBu</td>
<td>1a</td>
<td>2a</td>
<td>84%</td>
</tr>
<tr>
<td>\textsuperscript{(CH\textsubscript{3})\textsubscript{3}Si}</td>
<td>1b</td>
<td>2b</td>
<td>84%</td>
</tr>
<tr>
<td>tBu(CH\textsubscript{3})\textsubscript{2}Si</td>
<td>1c</td>
<td>2c</td>
<td>46%</td>
</tr>
<tr>
<td>tPr\textsubscript{3}Si</td>
<td>1d</td>
<td>2d</td>
<td>84%</td>
</tr>
</tbody>
</table>

23
Pd₃Si≡Cl /1/2Pd₂(dba)₃, PPh₃, NaX → Pd(Pr₃SiCCCH₂)(X)(PPh₃) (2)

X = Br
1 2e 56%
I 2f 61%

These complexes exist as a mixture of the η³-allenyl/propargyl monomer (A) and the halide-bridged η¹-propargyl dimer (B) in solution (Scheme 2, see below). The dimeric structure of 2d in the solid state was confirmed by X-ray crystallographic study (see Chapter 2-3 Figure 1). The treatment of 2a with C₆F₅Li gave Pd(BuCCCH₂)- (C₆F₅)(PPh₃) (2g) (eq. 3), which exists in the monomeric η³-propargyl structure both in the solid state (analyzed by X-ray crystallographic study, see Chapter 2-3 Figure 2) and in a solution (Vapor Pressure Osmometry (VPO) molecular weight in chloroform at 35 °C; found, 638 at 1.08 × 10⁻² M; calcd for monomer, 631).

Scheme 2

Pd(RCCCH₂)(X)(PPh₃):

\[
Pd(R\equiv\equiv)(X)(PPh₃):
\]

Both η³-type monomer and η¹-type dimer are confirmed by ¹H-NMR spectra on 2c-e in chloroform-d at room temperature. As to 2a, b, f, however, the η³-type monomer is observed by NMR spectra to dominate under the same condition. In addition, the molecular weight of 2a in chloroform measured by vapor pressure osmometry agreed closely with the monomer (VPO molecular weights in chloroform at 35 °C; found, 500 at
The 13C NMR chemical shift of the methylene carbon of the CCCH$_2$ unit of 2a at δ 36.70 is not in agreement with those reported for η^1-propargyl and η^1-allenyl complexes4 but is consistent with the η^3-coordination mode. The large carbon-phosphorus coupling ($J_{PC} = 40.0$ Hz) for the carbon attached to tert-butyl group indicates that PPh$_3$ is located trans to this carbon as depicted in Scheme 2. The VPO molecular weights of 2d in chloroform at 35 °C were found as 643 and 717 at concentrations 3.67×10^{-3} and 1.20×10^{-2} M (calcd for monomer, 600 and dimer, 1199). Moreover, 1H and 13C NMR spectra of 2d (CDCl$_3$) at room temperature showed two separate sets of resonances, with the relative ratio dependent on the concentration. One 13C set which increased with the increasing concentration exhibited the higher magnetic field shift for CH$_2$ carbon (δ 8.10 ppm, s) and the lower magnetic field shift for RC= carbon (δ 112.70 ppm, s) than those of the other set (δ 35.64 ppm, s; δ 105.17 ppm, d, $J_{CP} = 35.3$ Hz) which were analogous, in shifts or 31P coupling patterns, to those of the η^3-propargyl ligand in 2g (δ 43.80 ppm, s; 114.25 ppm, d, $J_{CP} = 55.2$ Hz). Moreover, the chemical shifts in the former set were quite close to those in $trans$-Pd(η^1-CH$_2$C=CSiPr$_3$)-(Cl)(PPh$_3$)$_2$.5 These results indicate that 2d in chloroform exists as an equilibrium mixture of the η^3-allenyl/propargyl monomer (A) and η^1-propargyl dimer (B) (see Chapter 2-4). 1H and 13C NMR spectra in CDCl$_3$ at room temperature also showed two separate sets of resonances for 2c and 2e, but only one set for 2a, 2b, and 2f, with the chemical shifts of the latter corresponding to the η^3-coordination mode (A), which was also supported by the VPO molecular weights.6
2-3 X-ray structure of neutral η^3-allenyl/propargylpalladium monomer and η^1-propargylpalladium chloride dimer

The molecular structure of a crystal obtained from a dichloromethane-hexane solution of 2d was analyzed by X-ray diffraction technique (Figure 1). The result indicates that the crystal contains the η^1-propargylpalladium chloride dimer structure, although both η^3-type monomer and η^1-type dimer exist in chloroform-d. The C1-C2 and C2-C3 bond lengths are 1.200(6) Å and 1.437(5) Å respectively. C3 and C3*, Pd and Pd*, P and P* and two chlorines are located almost on the same plane. This is the first X-ray structural information of η^1-propargyl transition-metal complexes.

Figure 1. Molecular structure of 2d(η^1-type dimer). Selected bond distances (Å): Pd-Cl = 2.441(5), Pd-Cl* = 2.408(1), Pd-P = 2.225(1), Pd-C3 = 2.070(3), C1-C2 = 1.200(6), C2-C3 = 1.437(5). Selected angle (deg): C2-C3-Pd = 108.0(2), C3-Pd-Cl* = 90.0(1).
On the other hand, as to X-ray structure of 2g the Pd-CH₂ bond (2.156(7) Å) is considerably longer than that in 2d (2.070(3) Å), possibly reflecting both intrinsic difference of bond strength between η¹- and η³-coordination⁷ and the stronger trans influence of C₆F₅ than Cl.⁸ The geometry of η³-propargyl ligand in 2g is similar to that of [Pd(η³-PhCCCH₂)(PPh₃)₂][BF₄] (see Chapter 1-3); Pd, P, C4 and η³-propargyl carbons are located almost on the same plane (dihedral angle between Pd-P-C4 and C1-C2-C3 = 3.93°).

![Molecular structure of 2g (η³-type monomer). Selected bond distances (Å): Pd-C1 = 2.238(7), Pd-C2 = 2.116(6), Pd-C3 = 2.156(7), C1-C2 = 1.244(9), C2-C3 = 1.38(1). Selected angle (deg): C1-C2-C3 = 151.6(7). Dihedral angles (deg): Pd-P-C4, C1-C2-C3 = 3.93.](image)
2-4 Equilibrium between η^3-allenyl/propargylpalladium monomer and η^1-propargylpalladium halide dimer

The equilibrium constants between η^3- and η^1-propargyl isomers were determined by 1H NMR spectra in CDCl$_3$ and C$_6$D$_6$ at 25 °C (Table 1).

![Chemical structure](image)

\[K_i = k_i / k_{-1} \]

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>X</th>
<th>log K_i CDCl$_3$</th>
<th>log K_i C$_6$D$_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>3Bu</td>
<td>Cl</td>
<td><< 1</td>
<td><< 1</td>
</tr>
<tr>
<td>2b</td>
<td>Me$_3$Si</td>
<td>Cl</td>
<td><< 1</td>
<td>14</td>
</tr>
<tr>
<td>2c</td>
<td>3Bu(Me)$_2$Si</td>
<td>Cl</td>
<td>2.4</td>
<td>30</td>
</tr>
<tr>
<td>2d</td>
<td>3Pr$_3$Si</td>
<td>Cl</td>
<td>16</td>
<td>450</td>
</tr>
<tr>
<td>2e</td>
<td>3Pr$_3$Si</td>
<td>Br</td>
<td>5.2</td>
<td>45</td>
</tr>
<tr>
<td>2f</td>
<td>3Pr$_3$Si</td>
<td>I</td>
<td><< 1</td>
<td>21</td>
</tr>
</tbody>
</table>

* K_i calculated by integrations of 1H NMR signals of A and B at 25 °C.

These data show that the η^3-propargyl form is favored by the less bulky substituent R and more polar solvent. It is quite remarkable that the equilibrium lies increasingly in favor of the η^3-type monomer as chloride is replaced by bromide, and bromide by iodide (2d, 2e, 2f). Generally, the ability of the halide ligand to act as a bridging ligand increases with increasing atomic number; this tendency was estimated by the degree of bridge splitting by a hard ligand such as amine. On the other hand, the conversion from B to A involves bridge splitting by the C≡C ligand upon which a considerable change of the electronic structure at palladium atom would be induced. It is probable that the symbiotic effect of the softer halide ligand is at work. In other words, the η^3-propargyl coordination may require the softer nature of the palladium center than the η^1-coordination, and this requirement would be better fulfilled by the iodide. Another result of
significance is the thermodynamic parameters for the equilibrium of \(2\text{a}\) in toluene-\(d_8\) (25 \(^{\circ}\)C to -80 \(^{\circ}\)C), \(\Delta H^0 = -9.0\) kJ mol\(^{-1}\) and \(\Delta S^0 = -33\) J mol\(^{-1}\)K\(^{-1}\) which indicate that the \(\eta^3\)-type monomer is favored at 25 \(^{\circ}\)C not by the enthalpy but by the entropy term.

2-5 The reactivity of neutral \(\eta^3\)-allenyl/propargylpalladium complexes

I have investigated reactivities of \(2\) with some nucleophiles. Although \(2\) did not react with MeOH and Et\(_2\)NH which added to the C=C bond of cationic \(\eta^3\)-allenyl/propargyl complexes of Pd and Pt\(^{11a,b,c}\) \(2\text{g}\) did react with a Pt(0) nucleophile in a formally analogous manner. Thus, addition of 1 equiv Pt(C\(_2\)H\(_4\))(PPh\(_3\))\(_2\) to \(2\text{g}\) in CH\(_2\)Cl\(_2\) for 2 h at 25 \(^{\circ}\)C afforded new complex \(3\text{g}\) (75\%) (eq. 4) of which X-ray crystallographic analysis revealed a remarkable structure containing \(\mu-\eta^2:\eta^3\)-BuCCCH\(_2\) ligand (Figure 3).

\[
\begin{align*}
\text{Bu} & \quad \underset{\text{Pd}}{\text{Pd}} \quad \underset{\text{C}_6\text{F}_5}{\text{C}_6\text{F}_5} \quad \underset{\text{PPh}_3}{\text{PPh}_3} \\
\text{P}(\text{C}_2\text{H}_4)(\text{PPh}_3)_2 & \quad \underset{\text{Pt}}{\text{Pt}} \quad \underset{\text{PPh}_3}{\text{PPh}_3} \\
\text{CH}_2\text{Cl}_2, 25 \text{ }^{\circ}\text{C}, 2 \text{ h} & \quad \rightarrow \quad \text{Bu} \quad \underset{\text{Pd}}{\text{Pd}} \quad \underset{\text{C}_6\text{F}_5}{\text{C}_6\text{F}_5} \quad \underset{\text{PPh}_3}{\text{PPh}_3} \quad \underset{\text{P}(\text{C}_2\text{H}_4)(\text{PPh}_3)_2}{\text{P}(\text{C}_2\text{H}_4)(\text{PPh}_3)_2} \\
\text{2g} & \quad \rightarrow \quad \text{3g} \quad 75\% \\
\end{align*}
\]

The C1-C2 bond is longer (1.335(7) \(\text{Å}\)) and the C1-C2-C3 angle smaller (135.5(6)\(^{\circ}\)) than those of \(2\text{g}\), and the \(\eta^3\)-ligand is no longer co-planar with the Pd-P1-C4 plane (dihedral angle between Pd-P1-C4 and C1-C2-C3 = 49.16\(^{\circ}\)). In contrast to other dimetal complexes containing \(\mu-\eta^2:\eta^3\)-RCCCH\(_2\) ligands\(^1\text{2}\) \(3\text{g}\) does not possess a metal-metal bond (Pd-Pt = 3.33 \(\text{Å}\)). This fact, together with the great ease of its formation, makes the present complex quite a unique member of the complexes containing the similar kind of ligands.
Figure 3. Molecular structure of 3g. Selected bond distances (Å): Pd-C1 = 2.304(6), Pd-C2 = 2.153(6), Pd-C3 = 2.142(6), Pt-C1 = 2.063(6), Pt-C2 = 2.022(6), C1-C2 = 1.335(7), C2-C3 = 1.391(7). Selected angle (deg): C1-C2-C3 = 135.5(6). Dihedral angle (deg): Pd-P1-C4, C1-C2-C3 = 49.16.

The addition of equimolar PPh₃ to 2a-f in CDCl₃ generated η¹-propargylpalladium complexes almost quantitatively (eq. 5, K₂ >100 M⁻¹), while both η³- and η¹-propargyl complexes lie in equilibrium in the case of 2g (K₂ = 25 M⁻¹), showing that the aryl is a better ligand than the halides to stabilize η³-allenyl/propargyl coordination. In case of the analogous allylpalladium complex, η³-bonding structure is much more stable than η¹-bonding one. The order of the auxiliary ligand to stabilize the η³-propargyl coordination (C (C₆F₅) > I > Br > Cl) found here is the same as the order (X = C (PhC≡C)
> 1 > Br > Cl) of the rate of the isomerization of Pt(η^1^\text{-}CH_2C≡CPh)(X)(PPh_3)_2 to the allenyl isomer via the five-coordinate η^3^-propargyl intermediate.15

\[
\begin{align*}
R & \equiv \begin{array}{c}
\text{Pd} \\
\text{X} \\
\text{PPh}_3
\end{array} \\
\text{Pd} + \text{PPh}_3 & \rightleftharpoons K_2 \leftarrow \text{Pd} + \text{X} + \text{PPh}_3 \\
\text{Pd} + \text{X} + \text{PPh}_3 & \rightarrow \text{Pd} + \text{X} + \text{PPh}_3
\end{align*}
\]

\[\text{(5)}\]

2-6 Cross coupling reactions proceeding through η^1^- and η^3^-allenyl/propargyl-palladium intermediates

I have examined the effect of PPh_3/Pd ratio in the catalyst precursor on the efficiency of Migita-Stille coupling between RC≡CCH_2Cl and R'SnBu_3 (eq. 6).

\[
\begin{align*}
\text{R} & \equiv \begin{array}{c}
\text{Cl} \\
\text{R'}\text{SnBu}_3
\end{array} \\
\text{R} = \text{′Bu, Me}_3\text{Si; R'} = \text{Ph, PhC≡C}
\end{align*}
\]

\[\text{(6)}\]

As shown in Table 2, the coupling using PhSnBu_3 proceeded much more rapidly and cleanly by means of a catalyst precursor, 1/2Pd_2(db-a)_3 + PPh_3 than Pd(PPh_3)_4. The regioselectivity of the coupling (at propargylic or vinyl carbon) was highly irrespective of the PPh_3/Pd ratio, with the propargyl product predominating. For the reaction of PhC≡CSnBu_3 where the allenyl product dominated, the effect of the PPh_3/Pd ratio on the reaction efficiency was not so easily recognizable. Even with the use of PPh_3/Pd = 4/1 catalyst, PhC≡CSnBu_3 reacted sufficiently fast in contrast to the very slow reaction of PhSnBu_3 carried out by means of the same catalyst system.
Table 2 Results of cross-coupling, eq. 6a

<table>
<thead>
<tr>
<th>[Pd]b</th>
<th>R</th>
<th>R'</th>
<th>Time (h)</th>
<th>yield (%)</th>
<th>Ratio (yne/allene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4L/Pd</td>
<td>tBu</td>
<td>Ph</td>
<td>54</td>
<td>26</td>
<td>99/1</td>
</tr>
<tr>
<td>L/Pd</td>
<td>tBu</td>
<td>Ph</td>
<td>4</td>
<td>95</td>
<td>96/4</td>
</tr>
<tr>
<td>4L/Pd</td>
<td>SiMe3</td>
<td>Ph</td>
<td>80</td>
<td>30</td>
<td>98/2</td>
</tr>
<tr>
<td>L/Pd</td>
<td>SiMe3</td>
<td>Ph</td>
<td>13.5</td>
<td>83</td>
<td>96/4</td>
</tr>
<tr>
<td>4L/Pd</td>
<td>tBu</td>
<td>C=CPh</td>
<td>2</td>
<td>100</td>
<td>3/97</td>
</tr>
<tr>
<td>L/Pd</td>
<td>tBu</td>
<td>C=CPh</td>
<td>3</td>
<td>73</td>
<td>4/96</td>
</tr>
</tbody>
</table>

a Condition: [RC=CCH2Cl] 0.50 mmol; [R'SnBu3] 0.55 mmol; [Pd] 5 mol% in THF (1 ml) at 50 °C.
b 4L/Pd = Pd(PPh3)4; L/Pd = 1/2Pd2(dba)3+PPh3.

In order to explain the results shown above, we propose that the catalytic reaction with the PPh3/Pd = 1/1 system involves intervention of η3-propargylpalladium species, Pd(η3-RCCCH2)(Cl)(PPh3) (4, Scheme 3), whereas the reaction with PPh3/Pd = 4/1 proceeds through conventional η1-allyl or propargyl species, Pd(R'')(Cl)(PPh3)2 (R'' = η1-CR=CH2 or η1-CH2C=CR) (5 or 5' Scheme 4) for the reason explained below. We further propose that the rate-determining step of the overall catalysis is the reaction of intermediate 4 or 5, and the rate of such transmetalation step depends on the PPh3/Pd ratio in the organopalladium intermediate.

Scheme 3

![Scheme 3 Diagram](image-url)
Oxidative addition of RC≡CCH₂Cl with 1/2Pd₂(dba)₃+PPh₃ afforded the product of composition Pd(RC≡CCH₂Cl)(PPh₃), which exists in solution as a mixture of η³-allenyl/propargyl monomer A and η¹-propargyl dimer B (Chapter 2-4). The equilibrium constant for monomer-dimer interconversion with R = 'Bu (K << 1 M⁻¹) suggests that, under the condition of catalysis (Pd total concentration being 5 × 10⁻³ - 5 × 10⁻² M), the oxidative addition product Pd(RC≡CCH₂Cl)(PPh₃) exists almost exclusively as the monomer A. According to eq. 5, addition of 1 equiv. PPh₃ to 4 results in complete conversion of 4 to intermediate 5/5' in the catalyst system PPh₃/Pd = 4/1.

In order to look in more detail at the mechanism, we examined the kinetics of the cross-coupling between 'BuC≡CCH₂Cl and PhSnBu₃ in 1/1 molar ratio catalyzed by the PPh₃/Pd = 1/1 system in THF at 50°C. I followed the decay of the chloride reagent by GLC and the result is shown in Figure 4. At a given concentration of Pd complex, the concentration of the chloride decreased in a first-order dependence. This indicates that, in view of the relation [¹BuC≡CCH₂Cl] = [PhSnBu₃] in the course of the catalysis, the rate (-d[¹BuC≡CCH₂Cl]/dt = -d[PhSnBu₃]/dt) is linearly dependent on only one reactant, the chloride or the tin compound. Since I confirmed that the tin participates in the rate-determining step (see below), I conclude that the rate is dependent on the tin concentration.
in first-order fashion. The pseudo first-order rate constants determined from this relation were linearly dependent on the catalyst concentration. Thus, the rate was first-order in both the concentration of the tin reagent and total Pd concentration (eq. 7). The second-order rate constant, k_2 was obtained as 3.8×10^{-3} M$^{-1}$ s$^{-1}$ in THF at 50°C.

![Graph](image)

Figure 4. Variation of the pseudo-first-order rate constant (k_{obs}) with the total palladium concentration.

$$-d[\text{PhSnBu}_3]/dt = k_2[\text{PhSnBu}_3][\text{Pd}_{\text{total}}]$$

(7)

Significantly, NMR examination of the catalytic reaction mixture confirmed that complex 4 is the resting state species, indicating transmetalation is the rate-determining step of the catalysis. An analogous conclusion involving rate-determining transmetalation from organotins to Pd(Ph)(I)(L)$_2$ has been reached previously for Pd-catalyzed cross-coupling between PhI and CH$_2$=CHSnBu$_3$.16

I further assume that the transmetalation step in Scheme 4, namely, the reaction between PhSnBu$_3$ and bisphosphine complex 5, is considerably slower than that in Scheme 3 between PhSnBu$_3$ and monophosphine complex 4, resulting in the less efficient overall cross-coupling using the catalyst system PPh$_3$/Pd = 4/1. The difference between the rates of the transmetalation involving 4 and 5 would be rationalized by the different
steric congestion about the Pd atom; two molecules of PPh₃ in 5 may induce much more severe congestion during the transmetalation than a single PPh₃ ligand in 4. Although the transfer of Ph from PhSnBu₃ to 5 may be quite slow, we presume the transmetalation between PhC≡CSnBu₃ and 5 is not so sluggish in view of the less bulky, and more negative nature of the C≡CPh group than the Ph group and the propensity of the former to form a π-complex to assist the subsequent transmetalation step. Such facilitation of the transmetalation by π-complex formation has been suggested for the vinyl transfer from CH₂=CHSnBu₃ to palladium.¹⁶

More support for the intervention of the η³-allenyl/propargyl complex in cross-coupling came from the synthesis and thermolysis of the phenylated intermediate model, Pd(η³-BuC≡CCH₂)(C₆F₅)(PPh₃) (2g). Thus, heating a C₆D₆ solution of 2g afforded a good yield of tBuC≡CCH₂C₆F₅ (Scheme 5) possibly via geometrical isomerization to a complex having the CH₂ terminal and C₆F₅ cis to each other.¹⁷ Note also that 2g and Pd(η¹-CH₂C≡CBu')(C₆F₅)(PPh₃)₂ (6) were found to undergo reductive elimination at comparable rates (Scheme 5), suggesting that the steps after transmetalation in both Scheme 3 and 4 are comparably fast.

Scheme 5
Conclusion

I described the synthesis and characterization of the equilibrium mixture of neutral η^3-allenyl/propargylpalladium complex and η^1-propargylpalladium halide dimer. It was possible to control η^3-propargyl coordination on mononuclear palladium center by appropriate choice of substituent R on the propargyl ligand, ligand X on Pd, solvent and amount of PPh$_3$ attached to Pd. In addition, these type complexes are more effective intermediates in Pd-catalyzed regioselective cross-coupling between propargyl electrophiles and organotin reagents.

Experimental Section

General Procedures.

Most of commercially available reagents were used without further purification. All reactions and manipulations of air- and moisture-sensitive compounds were carried out under an atmosphere of dry Ar by use of standard vacuum line techniques. Melting points were determined on a Yanagimoto 1493 micro melting point apparatus. Molecular weights were measured on a Corona 114 molecular weight apparatus. NMR spectra were obtained on JEOL GSX-270, JEOL GSX-400 and Bruker AM 600 spectrometers. Chemical shifts are given in ppm using TMS or H$_3$PO$_4$ as standard. Single crystal X-ray structure determinations were carried out on a Rigaku AFC5R diffractometer. GLC analyses (25 m × 0.2 mm CBP1-M25-0.25 capillary column) were performed with a flame ionization detector and He carrier gas.

All of the solvents were distilled prior to use. Most commercially available reagents were used without further purification. RC=CC$_2$OH18 (R = tBu, (CH$_3$)$_3$Si, tBu(CH$_3$)$_2$Si, tPr$_3$Si), Pt(C$_2$H$_4$)(PPh$_3$)$_4$19 were prepared according to the published methods. Chlorination of RC=CC$_2$OH (R = tBu, (CH$_3$)$_3$Si, tBu(CH$_3$)$_2$Si, tPr$_3$Si) was carried out according to a literature procedure.20
Preparation of \(\text{Pd}((\text{BuCCCH})_2)\text{Cl}(\text{PPh}_3) \) (2a).

To a dry \(\text{CH}_2\text{Cl}_2 \) solution (3.0 mL) of 64.5 mg (0.0623 mmol) of \(\text{Pd}_2(\text{dba})_3\text{CHCl}_3 \) and 32.7 mg (0.125 mmol) of \(\text{PPh}_3 \) was added 16.3 mg (0.125 mmol) of \(\text{BuC}=\text{CCH}_2\text{Cl} \) (1a) under an argon atmosphere. After 2 h, the reaction mixture was purified by column (silica gel, 100-200 mesh, \(\text{CH}_2\text{Cl}_2 \), \(R_f = 0.19 \)), and recrystallization from \(\text{CH}_2\text{Cl}_2 \)-hexane gave yellow crystals of 2a (52.5 mg, 84%) mp 119-123 °C (dec.); Anal. Calcd for \(\text{C}_{25}\text{H}_{26}\text{CIPd} \): C, 60.14; H, 5.25. Found: C, 59.99; H, 5.39. Molecular weights found by vapor pressure osmometry in chloroform at 35 °C were 513 and 500 at concentrations \(2.40 \times 10^{-3} \) and \(1.02 \times 10^{-2} \) M; calcd for monomer 499 and dimer 999.

\(\eta^3 \)-type monomer: \(^1\text{H} \) NMR (CDCl\(_3\)) \(\delta \) 1.51 (s, 9H), 2.23 (d, \(J_{PH} = 1.5 \) Hz, 2H), 7.37-7.46 (m, 9H), 7.63-7.68 (ddd, \(J_{HH} = 7.7, 2.0 \) Hz, \(J_{PH} = 12.0 \) Hz, 6H); \(^{13}\text{C} \{^1\text{H}\} \) NMR (CDCl\(_3\)) \(\delta \) 36.70 (s, C\(\text{CH}_2 \)), 79.26 (d, \(J_{PC} = 6.0 \) Hz C\(\text{CH}_2 \)), 118.68 (d, \(J_{PC} = 40.0 \) Hz, \(\text{BuCC} \)); \(^{31}\text{P} \{^1\text{H}\} \) NMR (CDCl\(_3\)) \(\delta \) 29.13.

Preparation of \(\text{Pd}(\text{Me}_3\text{SiCCCH})_2(\text{Cl})(\text{PPh}_3) \) (2b).

The procedure was similar to that for 2a. Yield 84%; mp 161-163 °C (dec.); Anal. Calcd for \(\text{C}_{24}\text{H}_{26}\text{ClPPdSi} \): C, 55.93; H, 5.08. Found: C, 56.20; H, 5.17.

\(\eta^3 \)-type monomer: \(^1\text{H} \) NMR (CDCl\(_3\)) \(\delta \) 0.43 (s, 9H), 2.30 (s, 2H), 7.35-7.49 (m, 9H), 7.61-7.73 (m, 6H); \(^{13}\text{C} \{^1\text{H}\} \) NMR (CDCl\(_3\)) \(\delta \) 36.59 (s, C\(\text{CH}_2 \)), 102.25 (s, C\(\text{CH}_2 \)), 107.82 (d, \(J_{PC} = 33.6 \) Hz, Si\(\text{CH} \)); \(^{31}\text{P} \{^1\text{H}\} \) NMR (CDCl\(_3\)) \(\delta \) 30.05.

Preparation of \(\text{Pd}((\text{Bu}(\text{Me})_2\text{SiCCCH})_2(\text{Cl})(\text{PPh}_3) \) (2c).

The procedure was similar to that for 2a. Yield 46%; mp 150-153 °C (dec.); Anal. Calcd for \(\text{C}_{27}\text{H}_{32}\text{ClPPdSi} \): C, 58.17; H, 5.79. Found: C, 58.00; H, 5.76.

\(\eta^3 \)-type monomer: \(^1\text{H} \) NMR (CDCl\(_3\)) \(\delta \) 0.40 (s, 6H), 0.99 (s, 9H), 2.29 (s, 2H), 7.38-7.47 (m, 9H), 7.63-7.68 (dd, \(J_{HH} = 7.5 \) Hz, \(J_{PH} = 11.7 \) Hz, 6H); \(^{13}\text{C} \{^1\text{H}\} \) NMR (CDCl\(_3\)) \(\delta \) 36.42 (s, C\(\text{CH}_2 \)), 102.34 (s, C\(\text{CH}_2 \)), 105.99 (d, \(J_{PC} = 29.7 \) Hz, Si\(\text{CH} \)); \(^{31}\text{P} \{^1\text{H}\} \) NMR (CDCl\(_3\)) \(\delta \) 29.40.

\(\eta^1 \)-type dimer: \(^1\text{H} \) NMR (CDCl\(_3\)) \(\delta \) -0.01 (s, 6H), 0.98 (s, 9H), 1.96 (s, 2H), 7.28-7.50.
(m, 9H), 7.57-7.89 (m, 6H); 13C{1H} NMR (CDCl$_3$) δ 7.34 (s, CCH$_2$), 88.06 (s, CCH$_2$), 111.78 (s, SiCC); 31P{1H} NMR (CDCl$_3$) δ 34.48.

Preparation of Pd(Pr$_3$SiCCCH$_2$)(Cl)(PPh$_3$) (2d).

The procedure was similar to that for 2a. Yield 84%; mp 196-200 °C (dec.); Anal. Calcd for C$_{36}$H$_{38}$ClIPPdSi: C, 60.10; H, 6.39. Found: C, 60.33; H, 6.54. Molar weights found by vapor pressure osmometry in chloroform at 35 °C were 643, 681, and 717 at concentrations 3.67×10^{-3}, 8.17×10^{-3}, and 1.20×10^{-2} M; calcd for monomer 600 and dimer 1199.

η^3-type monomer: 1H NMR (CDCl$_3$) δ 1.15 (d, $J_{HH} = 7.3$ Hz, 18H), 1.49 (sept, $J_{HH} = 7.3$ Hz, 3H), 2.25 (s, 2H), 7.28-7.52 (m, 9H), 7.55-7.84 (m, 6H); 13C{1H} NMR (CDCl$_3$) δ 35.64 (s, CCH$_2$), 104.19 (s, CCH$_2$), 105.17 (d, $J_{PC} = 35.3$ Hz, SiCC); 31P{1H} NMR (CDCl$_3$) δ 30.72.

η^1-type dimer: 1H NMR (CDCl$_3$) δ 0.99 (sept, $J_{HH} = 5.3$ Hz, 3H), 1.04 (d, $J_{HH} = 5.3$ Hz, 18H), 1.95 (s, 2H), 7.28-7.52 (m, 9H), 7.55-7.84 (m, 6H); 13C{1H} NMR (CDCl$_3$) δ 8.10 (s, CCH$_2$), 86.35 (s, CCH$_2$), 112.70 (s, SiCC); 31P{1H} NMR (CDCl$_3$) δ 35.44.

Preparation of Pd(Pr$_3$SiCCCH$_2$)(Br)(PPh$_3$) (2e).

To a dry CH$_2$Cl$_2$ solution (2.0 mL) of 115 mg (0.111 mmol) of Pd$_2$(dba)$_3$CHCl$_3$ and 58.1 mg (0.222 mmol) of PPh$_3$ was added 56.3 mg (0.244 mmol) of Pr$_3$SiC=CCH$_2$Cl (1d) under an argon atmosphere. After 2 h, to the reaction mixture was added a methanol solution of 34.2 mg (0.332 mmol) of NaBr. After 3 min, the reaction mixture was concentrated in vacuo, and the residues dissolved in CH$_2$Cl$_2$ were filtered. The filtrate was evaporated, and recrystallization from CH$_2$Cl$_2$-ether-hexane gave yellow crystals of 2e (80.6 mg, 56%); mp 126-129 °C (dec.); Anal. Calcd for C$_{30}$H$_{38}$BrPdSi: C, 55.95; H, 5.95. Found: C, 55.79; H, 5.99.

η^3-type monomer: 1H NMR (CDCl$_3$) δ 1.15 (d, $J_{HH} = 7.8$ Hz, 18H), 1.53 (sept, $J_{HH} = 7.8$ Hz, 3H), 2.37 (s, 2H), 7.32-7.48 (m, 9H), 7.63-7.73 (m, 6H); 13C{1H} NMR (CDCl$_3$) δ
38.79 (s, CCH$_2$), 103.96 (d, $J_{PC} = 37.9$ Hz, SiCC), 105.18 (s, CCH$_2$); 31P-1H NMR (CDCl$_3$) δ 31.02.

η^1-type dimer: 1H NMR (CDCl$_3$) δ 1.06 (s, 21H), 2.03 (s, 2H), 7.32-7.48 (m, 9H), 7.43-7.73 (m, 6H); 13C-1H NMR (CDCl$_3$) δ 9.33 (s, CCH$_2$), 86.76 (s, CCH$_2$), 112.84 (s, SiCC); 31P-1H NMR (CDCl$_3$) δ 35.49.

Preparation of Pd(η^3Pr$_3$SiCCC$_2$)(I)(PPh$_3$) (2f).

The procedure was similar to that for 2e. Yield 61%; mp 174-177 °C (dec.); Anal. Calcd for C$_{30}$H$_{38}$IPdSi: C, 52.14; H, 5.54. Found: C, 51.98; H, 5.51. Molecular weights found by vapor pressure osmometry in chloroform at 35 °C were 695 and 698 at concentrations 2.80x10$^{-3}$ and 1.99x10$^{-2}$ M; calcd for monomer 691 and dimer 1382.

η^3-type monomer: 1H NMR (CDCl$_3$) δ 1.14 (d, $J_{HH} = 7.3$ Hz, 18H), 1.59 (sept, $J_{HH} = 7.3$ Hz, 3H), 2.64 (d, $J_{PH} = 2.19$ Hz, 2H), 7.34-7.48 (m, 9H), 7.66 (ddd, $J_{PH} = 11.7$ Hz, $J_{HH} = 7.8$ Hz, $J_{HH} = 2.0$ Hz, 6H); 13C-1H NMR (CDCl$_3$) δ 44.07 (s, CCH$_2$), 100.88 (d, $J_{PC} = 39.1$ Hz, SiCC), 107.36 (s, CCH$_2$); 31P-1H NMR (CDCl$_3$) δ 31.05.

Preparation of Pd(η^3-BuCCCH$_2$)(C$_6$F$_5$)(PPh$_3$) (2g).

To a THF solution (1.0 mL) of pentafluorophenyllithium, which was obtained from 84.4 mg (0.502 mmol) of pentafluorobenzene and an equimolar amount of commercial n-butyllithium, was added dropwise a solution of 125.4 mg (0.251 mmol) of 2a in THF (3.0 mL) under argon atmosphere at -73 °C. Stirring at this temperature was continued for 1 h. The reaction mixture was allowed to warm to -20 °C and 0.3 mL of MeOH added. The reaction mixture was allowed to warm to room temperature and the solvent was removed in vacuum. The yellow residue was purified by chromatography through a short Florisil column. Recrystallization from toluene-hexane gave light yellow crystal of 2g (81.7 mg, 52%) mp 145-148 °C (dec.); Anal. Calcd for C$_{31}$H$_{26}$F$_5$PPd: C, 59.01; H, 4.15. Found: C, 59.30; H, 4.13. Molecular weights found by vapor pressure osmometry in chloroform at 35 °C were 638 and 635 at concentrations 1.08 \times 10$^{-2}$ and 3.39 \times 10$^{-2}$ M; calcd for
monomer 631.

η^3-type monomer: 1H NMR (CDCl$_3$) δ 1.16 (s, 9H), 2.78 (d, $J_{PH} = 1.3$ Hz, 2H), 7.29-7.43 (m, 15H); 13C(1H) NMR (CDCl$_3$) δ 43.80 (s, CCI$_2$), 93.15 (d, $J_{PC} = 4.7$ Hz, CCH$_2$), 114.25 (d, $J_{PC} = 55.2$ Hz, 'BuCC); 31P(1H) NMR (CDCl$_3$) δ 34.12.

Reaction of 2g with Pt(C$_2$H$_4$)(PPh$_3$)$_2$.

A CH$_2$Cl$_2$ solution (2.0 mL) of 2g (35.5 mg; 0.0563 mmol) and Pt(C$_2$H$_4$)(PPh$_3$)$_2$ (46.8 mg; 0.0626 mmol) was stirred for 2 h at 25°C. The reaction mixture was purified by chromatography through a short Florisil column. Recrystallization from CH$_2$Cl$_2$-hexane gave light yellow crystal of 3g (56.8 mg, 75%) mp 155-158°C (dec.); Anal. Calcd for C$_{67}$H$_{56}$F$_5$P$_3$PdPt(CH$_2$Cl$_2$)$_5$: C, 58.20; H, 4.12. Found: C, 58.57; H, 4.17. 1H NMR (CDCl$_3$) δ 0.77 (s, 9H), 2.87 (d, $J_{PH} = 7.8$, $J_{PPH} = 70.0$ Hz, 1H), 2.94 (d, $J_{PH} = 18.9$, $J_{PPH} = 79.3$ Hz, 1H), 6.86-7.80 (m, 45H); 13C(1H) NMR (CDCl$_3$) δ 50.14 (s, CCH$_2$), 108.98 (d, $J_{PC} = 70.3$ Hz, $J_{PTC} = 338.4$ Hz, CCH$_2$), 112.62 (dd, $J_{PC} = 72.6$ Hz, 39.2 Hz, $J_{PTC} = 338.0$ Hz, 'BuCC); 31P(1H) NMR (CDCl$_3$) δ 22.01 (d, $J_{PP} = 28.5$ Hz, $J_{PPP} = 3155.7$ Hz), 26.49 (d, $J_{PP} = 28.5$ Hz, $J_{PPP} = 3419.9$ Hz), 27.89 (s, $J_{PPP} = 41.9$ Hz).

Preparation of Pd(η^3-BuCHCHCH)$_2$(C$_6$F$_5$)(PPh$_3$).

To a dry CH$_2$Cl$_2$ solution (15.0 mL) of 425 mg (0.410 mmol) of Pd$_2$(dba)$_3$-CHCl$_3$ was added 160 mg (0.902 mmol) of 'BuCHCHCH$_2$Br under an argon atmosphere. After 1.5 h, the product was isolated by column (silica gel, 100-200 mesh, CH$_2$Cl$_2$), and the first eluent of yellow band was concentrated to give [Pd(η^3-BuCHCHCH)$_2$Br]$_2$ (203 mg, 87%), which was not further purified. 1H NMR (CDCl$_3$) δ 1.19 (s, 9H), 2.81 (d, $J_{HH} = 11.7$ Hz, 1H), 3.93 (d, $J_{HH} = 6.8$ Hz, 1H), 3.98 (d, $J_{HH} = 11.7$ Hz, 1H), 5.25 (ddd, $J_{HH} = 11.7$, 11.7, 6.8 Hz, 1H). To a THF solution (1.0 mL) of pentafluorophenyllithium, which was obtained from 195 mg (1.16 mmol) of pentafluorobenzene and an equimolar amount of commercial n-butyllithium, was added dropwise a solution of 165 mg (0.290 mmol) of [Pd(η^3-BuCHCHCH)$_2$Br]$_2$ and 152 mg (0.581 mmol) of PPh$_3$ in THF (2.0 mL) under argon atmosphere at -73°C. Stirring at this temperature was continued for 1 h. The
reaction mixture was allowed to warm to -20 °C and 0.5 mL of MeOH added. The reaction mixture was allowed to warm to room temperature and the solvent was removed in vacuum. The yellow residue was purified by chromatography through a short Florisil column. Recrystallization from CH₂Cl₂-hexane gave white crystal of Pd(η³-

'BuCHCH₂)(C₆F₅)(PPh₃) (147.0 mg, 40%) mp 169-172 °C (dec.); Anal. Calcd for C₃₁H₂₈F₅Pd: C, 58.83; H, 4.46. Found: C, 58.80; H, 4.27.; ¹H NMR (CDCl₃) δ 0.92 (s, 9H), 2.30 (d, JₗH = 12.2 Hz, 1H), 3.45 (d, JₗH = 7.3 Hz, 1H), 4.21 (dd, JₗH = 12.7 Hz, JₗP = 10.3 Hz, 1H), 5.33 (ddd, JₗH = 12.7, 12.2, 7.3 Hz, 1H), 7.19-7.39 (m, 15H); ¹³C{¹H} NMR (CDCl₃) δ 59.39 (s, CCH₂), 104.12 (d, JₗP = 33.4 Hz, 'BuCC), 113.09 (s, CCH₂); ³¹P{¹H} NMR (CDCl₃) δ 29.65.

Single crystal X-ray diffraction study.

All data were obtained on a Rigaku AFC-5R diffractometer with graphite-monochromated Mo-Kα radiation. All calculations were carried out with the TEXSAN crystallographic software package of Molecular Structure Corporation. The structure was solved by the direct method and refined by the full-matrix least-squares procedure, the function minimized being Σw(‖F₀ - F(c)‖)². The non-hydrogen atoms were refined anisotropically. All the positions of the hydrogen atoms were calculated by stereochemical considerations.

Pd(Pr₅SiCCCH₂)(Cl)(PPh₃) (2d).

A yellow crystal (0.20 × 0.30 × 0.40 mm) was obtained from CH₂Cl₂/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C₃₀H₃₈ClPdSi, M = 599.54, triclinic, space group PT(#2), a = 10.448(5) Å, b = 16.724(6) Å, c = 8.935(3) Å, α = 98.22(3)°, β = 96.16(3)°, γ = 95.79(4)°, V = 1525(1) Å³, Z = 1, Dcalc = 0.653 g/cm³, F(000) = 310.00, µ(Mo-Kα) = 4.02 cm⁻¹ by least squares refinement on diffractometer angles from automatically centered reflections, 2θ range 27.20-27.46°, λ = 0.71069 Å. The final R and Rw values were 0.039 and 0.045, respectively, for 5685 reflections (I > 3.00σ(I)).

Pd('BuCCCH₂)(C₆F₅)(PPh₃) (2g).

A yellow crystal (0.50 × 0.30 × 0.50 mm) was obtained from CH₂Cl₂/hexane at -30
°C and was mounted on a glass fiber with epoxy resin. C31H26F5Pd, M = 630.91, triclinic, space group P1(\#2), a = 16.56(3) Å, b = 18.00(4) Å, c = 11.141(9) Å, \(\alpha = 101.1^\circ \), \(\beta = 107.5^\circ \), \(\gamma = 63.5^\circ \), \(V = 2828(9) \) \(\AA^3 \), \(Z = 4 \), \(D_{calc} = 1.481 \) g/cm\(^3\), \(F(000) = 1272.00 \), \(\mu(Mo-K\alpha) = 7.64 \) cm\(^{-1}\) by least squares refinement on diffractometer angles from automatically centered reflections, 2\(\theta \) range 27.39-27.49°, \(\lambda = 0.71069 \) Å. The final \(R \) and \(R_w \) values were 0.057 and 0.047, respectively, for 9164 reflections (I > 3.00\(\sigma(I) \)).

\(\text{(PPh}_3\text{)}_2\text{Pt(\mu-\eta}^2:\eta^3\text{-BuCCCH}_2\text{)Pd(C}_6\text{F}_5\text{(PPh}_3\text{)}} \) (3g).

A yellow crystal (0.40 \(\times \) 0.40 \(\times \) 0.50 mm) was obtained from CH\(_2\)Cl\(_2\)/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C\(_{67}\)H\(_{56}\)F\(_5\)P\(_3\)PdPt, M = 1350.58, monoclinic, space group \(P2_1/n(\#14) \), \(a = 14.642(4) \) Å, \(b = 19.042(4) \) Å, \(c = 20.964(3) \) Å, \(\beta = 101.85(2)^\circ \), \(V = 5720(2) \) \(\AA^3 \), \(Z = 4 \), \(D_{calc} = 1.568 \) g/cm\(^3\), \(F(000) = 2688.00 \), \(\mu(Mo-K\alpha) = 29.16 \) cm\(^{-1}\) by least squares refinement on diffractometer angles from automatically centered reflections, 2\(\theta \) range 27.32-27.51°, \(\lambda = 0.71069 \) Å. The final \(R \) and \(R_w \) values were 0.048 and 0.028, respectively, for 8776 reflections (I > 3.00\(\sigma(I) \)).

Coupling reaction with tin compounds by using Pd\(_2\)dba\(_3\)-CHCl\(_3\)-PPh\(_3\) (Pd/PPh\(_3\) = 1/1) catalyst (Method A) and Pd(PPPh\(_3\))\(_4\) catalyst (Method B).

Method A: At room temperature and under an argon atmosphere, propargyl chloride (0.50 mmol) was added to a solution of Pd\(_2\)dba\(_3\)-CHCl\(_3\) (0.0125 mmol) and PPh\(_3\) (0.025 mmol) in dry THF (1 ml). The mixture was stirred for 40 min to give a yellow solution. The tin compound (0.55 mmol) was added to the solution and the mixture was heated to 50 °C. The reaction was followed by GLC.

Method B: At room temperature and under an argon atmosphere, propargyl chloride (0.50 mmol) and the tin compound (0.55 mmol) were added to a solution of Pd(PPPh\(_3\))\(_4\) (0.025 mmol) in dry THF (1 ml). The mixture was heated to 50 °C. The reaction was followed by GLC.

Purification of the major coupling products was performed as shown below, while the
minor products in Table 2 were observed only by GLC.

PhC≡CC('Bu)=C=CH₂.

The reaction mixture starting from 'BuC≡CCH₂Cl (1a) and PhC≡CSnBu₃ in THF was washed with an aqueous NH₄F (15%) and extracted three times with ether. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The concentrate was distilled to give PhC≡CC('Bu)=C=CH₂ (b.p. 120 °C/4 mmHg) in 65% isolated yield. ¹H NMR (CDCl₃) δ 1.19 (s, 9H), 5.03 (s, 2H), 7.2-7.5 (m, 5H); ¹³C{¹H} NMR (CDCl₃) δ 29.11, 33.98, 78.11, 83.45, 93.03, 100.42, 123.67, 127.90, 128.21, 131.31, 211.81; HRMS Calcd for C₁₅H₁₈ 196.1252, Found: m/e 196.1243.

'BuC≡CCH₂Ph.

B.p. 90 °C/4 mmHg (68% isolated yield). ¹H NMR (CDCl₃) δ 1.25 (s, 9H), 3.58 (s, 2H), 7.10-7.50 (m, 5H); ¹³C{¹H} NMR (CDCl₃) δ 24.95, 27.47, 31.30, 75.81, 91.37, 126.28, 127.73, 128.32, 137.66.; HRMS Calcd for C₁₃H₁₆ 172.1252, Found: m/e 172.1269. Ph('Bu)C≡C=CH₂ could not be separated from the product mixture containing 'BuC≡CCH₂Ph. ¹H NMR (CDCl₃) δ 4.18 (s, 2H, CH₂=); MS found m/e 172 (M⁺), 157 (M⁺ - CH₃), 115 (M⁺ - 'Bu).

Me₃SiC≡CCH₂Ph.

B.p. 90-93 °C/1 mmHg; ¹H NMR (CDCl₃) δ 0.20 (s, 9H), 3.67 (s, 2H), 7.20-7.40 (m, 5H); ¹³C{¹H} NMR (CDCl₃) δ 0.06, 26.15, 70.45, 86.87, 126.55, 127.85, 128.47, 136.34.

Me₃SiC≡CCH₂Ph was identical with the known compound. (Registry No. 31683-47-3)

Observation of 4 as a resting-state intermediate in a catalytic reaction.

Under an argon atmosphere, to a solution of 4 (2a) (R = 'Bu, 0.0038 mmol) in dry C₆D₆ (0.6 ml) were added 'BuC≡CCH₂Cl (0.038 mmol) and PhSnBu₃ (0.041 mmol) at room temperature. The mixture was heated at 50 °C for 24 h during which the
intermediate 2a was confirmed by ¹H NMR spectra as a predominant species at earlier stages (approximately 1 h), but gradual decrease of this complex occurred due to increasing decomposition of catalyst complexes.

Rates of coupling reaction.

Under an argon atmosphere, iBuC≡CCH₂Cl (0.55 mmol) was added to a solution of a given amount (catalytic) of Pd₂dba₃ CHCl₃ and PPh₃ (Pd/PPh₃ = 1/1) in dry THF (1 ml). The mixture was stirred for 40 min causing a gradual change in color from dark-purple to yellow. Then, PhSnBu₃ (0.55 mmol) was added and the mixture was heated to 50 °C. The reaction was followed by determination of the concentration of the propargyl chloride (RCl) by GLC. I assumed [RCl] = [PhSnBu₃], and then plots of ln[PhSnBu₃] versus time gave straight lines whose slopes corresponded to \(k_{\text{obs}} \) where rate = \(k_{\text{obs}}[\text{PhSnBu₃}] \). \([\text{Pd}] = 5.0 \times 10^{-3} \text{ M}, k_{\text{obs}} = 2.6 \times 10^{-5} \text{ s}^{-1} \). \([\text{Pd}] = 2.5 \times 10^{-2} \text{ M}, k_{\text{obs}} = 9.5 \times 10^{-5} \text{ s}^{-1} \). \([\text{Pd}] = 3.8 \times 10^{-2} \text{ M}, k_{\text{obs}} = 1.4 \times 10^{-4} \text{ s}^{-1} \). \([\text{Pd}] = 5.0 \times 10^{-2} \text{ M}, k_{\text{obs}} = 2.0 \times 10^{-4} \text{ s}^{-1} \). Then plotting \(k_{\text{obs}} \) versus [Pd] gave a straight line passing through the origin within an acceptable error range (Fig 4), affording the second-order rate constant, \(k_2 = 3.8 \times 10^{-3} \text{ M}^{-1}\text{s}^{-1} \) where the rate = \(k_2[\text{PhSnBu₃}][\text{Pd}] \).

Rates of reductive elimination from 2g.

A solution of 2g (0.00396 mmol) in dry C₆D₆ (0.5 mL) was heated at 70 °C and the reaction was followed by ¹H NMR spectra. \(k = 3.0 \times 10^{-5} \text{ s}^{-1}, t_{1/2} = 385 \text{ min} \). 2g was decomposed to generate iBuC≡CCH₂C₆F₅.

iBuC≡CCH₂C₆F₅: ¹H NMR (CDCl₃) \(\delta \) 1.14 (s, 9H), 3.11 (s, 2H). This compound was not isolated.

Rates of reductive elimination from 6.

A solution of 6 in dry C₆D₆ (0.5 mL) was prepared from the reaction of 2g (0.00697 mmol) and PPh₃ (0.0278 mmol) in situ and was heated at 70 °C. The reaction was followed by ¹H NMR spectra. \(k = 2.7 \times 10^{-5} \text{ s}^{-1}, t_{1/2} = 428 \text{ min} \).
2-9 References and Notes

(5) Prepared similarly to the trimethylsilyl analog reported in Ref 4. 13C NMR (CDCl$_3$) δ 7.87 (s, CCH$_2$), 85.55 (s, CCH$_2$), 111.80 (s, SiCC).

(6) VPO molecular weights of 2a and 2f in chloroform at 35 °C were 500 at 1.02x10$^{-2}$ M (calcd for monomer, 499); and 698 at 1.99x10$^{-2}$ M (calcd for monomer, 691), respectively.

(13) Estimated on the basis of the 1H NMR detection limit (1/10) of the minor components relative to the major one.

(16) In the Migita-Stille type coupling reaction, the transmetalation is often the rate determination step: Farina, V.; Krishnan, B. *J. Am. Chem. Soc.* 1991, 113, 9585. and references 1, 10 therein.

Chapter 3

\[\mu-\eta^3\text{-Allenyl/propargyldipalladium complexes} \]

3-1 Introduction

Polynuclear organotransition-metal compounds are expected to have specific reactivities and chemical properties not observed in mononuclear complexes and serve as models of the metal surface-hydrocarbon interaction. Recently, polyhapto allenyl and propargyl dimetal complexes have been shown to possess the various bonding structures.\(^1\) Typical examples include \(\mu\)-allenyl/propargyl dinuclear complexes (type A \((\eta^2, 4e)^2\) or type B \((\eta^3, 6e)^3\)) (Scheme 1).\(^4\) Geometrically, the inherently linear unsaturated hydrocarbon framework might match a linear dinuclear moiety better than a mononuclear moiety, but only one example of such type has been reported in Ru\(_2\) and Os\(_2\) systems (A').\(^5\) There has been no example of type C complex having such a more delocalized structure through resonance of \(\eta^3\)-allenyl and \(\eta^3\)-propargyl forms. Little has been reported on the chemical reactivity of the above polynuclear complexes. Type A complexes reacted with nucleophiles, forming saturated and unsaturated metallacycles via exclusive nucleophilic attack at central carbon of allenyl ligand.\(^5a\) Other mononuclear allenyl/propargyls also show a propensity for attack at central carbon.\(^6\)

Scheme 1

<table>
<thead>
<tr>
<th>Structure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)-allenyl</td>
<td>((\eta^2, 4e))</td>
</tr>
<tr>
<td>(\mu)-allenyl</td>
<td>((\eta^3, 4e))</td>
</tr>
<tr>
<td>(\mu)-propargyl</td>
<td>((\eta^3, 6e))</td>
</tr>
<tr>
<td>(\mu\eta^3\text{-allenyl/propargyl}</td>
<td>((\eta^3, 4e))</td>
</tr>
</tbody>
</table>

In this chapter, I report synthesis, structure and reactivity of type C complexes of
In addition, the structure and reactivity of μ-vinylcarbene dipalladium complexes generated from the reaction of \(\eta^3 \)-allenyl/propargyldipalladium complexes with electrophiles are also discussed.

3-2 Synthesis and property of μ-\(\eta^3 \)-allenyl/propargyldipalladium complexes.

The reaction of \(\eta^1 \)-allenyl or \(\eta^1 \)-propargyl bistriphenylphosphine palladium chloride (1a-d)\(^8\) with Pd\(_2\)(dba)\(_3\)·CHCl\(_3\) in CDCl\(_3\) at room temperature gave μ-\(\eta^3 \)-allenyl/propargyldipalladium complexes (2a-d) (eq. 1). The analogous reaction of 1b in the presence of NaI and NaSPh gave the iodide and phenyl thiolate analogs, respectively (2b-I \(63\%\), 2b-SPh \(78\%\)). The \(^{31}\)P NMR spectrum of 2 showed two signals with large phosphorus-phosphorus coupling \((J_{PP} \geq 80 \text{ Hz})\). Addition of PPh\(_3\) to 2a-d led to regeneration of 1a-d as well as generation of Pd(PPh\(_3\))\(_2\).

The complexes 2 also could be obtained from the reaction of corresponding propargyl chloride 3 with 2 equiv of Pd(PPh\(_3\)) generated in situ (eq. 2). On the other hand, treatment of 1 equiv of Pd(PPh\(_3\)) led to formation of the equilibrium mixture of neutral \(\eta^3 \)-allenyl/propargyldipalladium monomer and \(\eta^1 \)-propargyldipalladium chloride dimer (Scheme 2, see Chapter 2). The preparation of \(\eta^1 \)-allenyl and \(\eta^1 \)-propargyldipalladium complexes is known from Pd(PPh\(_3\))\(_4\) (Scheme 2, see Ref 8). Thus, these reactions constitute general synthetic routes to palladium complexes containing \(\eta^1 \)- and \(\eta^3 \)-allenyl/propargyl ligand.
Scheme 2

3.3 X-ray structure of μ-η^3-allenyl/propargyl dipalladium complexes

The structures of dinuclear complexes 2d and 2a-SPh are presented in Figures 1 and 2. The μ-η^3-allenyl/propargyl group is almost linear (C1-C2-C3 = 178(2)$^\circ$ in 2c, 173.2(3)$^\circ$ in 2a-SPh), in contrast to that of η^3-allenyl/propargyl mononuclear complexes (Pd,6c Pt,6d,g Mo9a, Zr,9b,c Re9d and see Chapter 1 and 2) and other μ-allenyl or μ-propargyl dinuclear complexes (type A,2a B3a,5b) having bent C-C-C units, and parallels the Pd-Pd bond. Thus, the Pd1-C1 distance (2.06(2) Å, 2.066(3) Å) is almost equal to the Pd2-C3 distance (2.08(2) Å, 2.096(3) Å). Moreover, the Pd-Pd distance (2.642(2) Å, 2.6291(4) Å) is almost equal to the C1-C3 distance (2.69 Å, 2.663 Å). Two palladiums, η^3-allenyl/propargyl carbons, chlorine or sulfur atom, and two phosphorus atoms are located on the same plane.
Figure 1. Molecular structure of 2b. Selected bond distances (Å): Pd1-Pd2 = 2.642(2), Pd1-Cl = 2.405(6), Pd2-Cl = 2.397(6), Pd1-P1 = 2.252(6), Pd2-P2 = 2.282(6), Pd1-Cl = 2.06(2), Pd1-C2 = 2.47(3), Pd2-C2 = 2.42(3), Pd2-C3 = 2.08(2), C1-C2 = 1.33(3), C2-C3 = 1.36(3). Selected angle (deg): C1-C2-C3 = 178(2).

Figure 2. Molecular structure of 2a-SPh. Selected bond distances (Å): Pd1-Pd2 = 2.6291(4), Pd1-S = 2.3621(8), Pd2-Cl = 2.3679(9), Pd1-P1 = 2.2595(9), Pd2-P2 = 2.2626(9), Pd1-Cl = 2.066(3), Pd1-C2 = 2.361(3), Pd2-C2 = 2.431(3), Pd2-C3 = 2.096(3), C1-C2 = 1.257(4), C2-C3 = 1.406(5). Selected angle (deg): C1-C2-C3 = 173.2(3).
3.4 Reaction of μ-η^3-allenyl/propargyldipalladium complexes.

The dinuclear complexes 2a and 2a-I reacted with HCl (generated from a reaction of H$_2$O with Me$_3$SiCl in situ) to give unusual dinuclear complexes 4a (89%) and 4a-I (76%) (eq. 3). The structure of 4a was determined by X-ray diffraction (Figure 3). The structure reveals the first example of μ-vinylcarbene (or μ-η^1-(η^3-allyl)) complex of palladium, which is similar to μ-vinylcarbene complexes of other transition metals.10 Further reactivities of 3 are discussed later.

![Diagram of reaction and complexes](image-url)

Figure 3. Molecular structure of 4a. Selected bond distances (Å): Pd1-Pd2 = 2.868(1), Pd1-Cl = 2.425(2), Pd2-Cl1 = 2.489(2), Pd2-C1 = 2.374(3), Pd1-P1 = 2.298(2), Pd2-C2 = 2.243(2), Pd1-C1 = 2.260(3), Pd1-C2 = 2.224(9), Pd1-C3 = 2.113(10), Pd2-C1 = 2.031(9), C1-C2 = 1.40(1), C2-C3 = 1.39(1). Selected angle (deg): C1-C2-C3 = 121.9(9).
Intriguingly, in this reaction, proton added to the central carbon of η^3-allenyl/propargyl group as confirmed by the reaction with DCl, which points out occurrence of an unusual electrophilic attack at the central carbon of η^3-allenyl/propargyl group. On the other hand, in both mononuclear6 and other dinuclear5a complexes, the η^3-allenyl/propargyl group is prone to be attacked by a nucleophile at the central carbon. The present unique reactivity might be due to high electron density at the central carbon (C2) in the allenyl/propargyl ligand bound on the Pd-Pd moiety as explained below. Preliminary MO calculations on Pd$_2$(\(\mu\)-allyl)(\(\mu\)-Cl)(PH$_3$)$_2$ suggest that back donation from two filled MOs of the fragment Pd$_2$(\(\mu\)-Cl)(PH$_3$)$_2$ to empty π^* MO of the allyl ligand shown in Scheme 3 plays a crucial role in combining the allyl ligand to the Pd-Pd fragment. The π^* MO of the μ-allenyl/propargyl ligand is equivalent to that of the μ-allyl ligand, so that a similar back donation may be responsible for the unique structural and reactivity aspects revealed in this study. Such strong back bonding interaction can not be expected in M$_2$(\(\mu\)-PhC=C=CH$_2$)(\(\mu\)-PPh$_2$)(CO)$_6$ (M = Ru and Os) (type B')5b due to the presence of four strongly π-accepting carbon monoxide ligands which compete with the allenyl π^* MO for the $d\pi$-$d\sigma$ MO of the M$_2$ fragment.

Scheme 3

$$
\text{C} - \text{C} - \text{C} \\
\text{Ph}_3\text{P} \quad \text{Pd} \quad \text{Pd} \quad \text{PPh}_3
$$

Similarly 2a reacted with carbon electrophile acetyl chloride to generate corresponding μ-vinylcarbene complex 5 together with C-C bond formation on the central carbon of μ-η^3-allenyl/propargyl ligand (eq. 4).
The treatment of 2a-SPh with 2 equiv of HCl led to formation of Pd(η³-
PhCHCHCH₂Cl(PPh₃) which is a formal hydrogenation product of starting complex 1a
(eq. 5). Thus, this reaction might be a model for hydrogenation reaction on a metal
surface.

3-5 Reaction of μ-η³-vinylcarbenedipalladium complexes

Vinylcarbene complexes of transition metals including mononuclear and dinuclear
centers are becoming more common and their synthetic application has attracted increasing
attention, but no precedent of the reaction of vinylcarbene-palladium or even
carbene-palladium complexes has been reported.

In a sealed glass tube, a CDCl₃ solution of 4a and Ph₄Sn was heated at 40 °C for 45 h
to give η³-1,1-diphenylallylpalladium complex (eq. 6). This complex might be generated
by the reductive elimination from a phenylated dipalladium intermediate. The C-C bond
coupling at dinuclear center could be a nice model for the reaction on the metal surface.

Mononuclear vinylcarbene complexes also react with nucleophiles to give η³-allyl
complexes.
In the presence of a catalytic amount of Pd$_2$(dba)$_3$, the complex 4a reacted with H$_2$O and O$_2$ to give hydroxo bridged μ-η^3-vinylcarbenedipalladium dimer 6 in excellent yield (eq. 7). The structure of the complex 6 was determined by X-ray diffraction analysis (Figure 4). This complex has a unique structure in which one of four bridging ligands is OH group. The coordination mode and geometry of μ-η^3-vinylcarbene group in 6 are quite similar to those in 4a. However, the Pd-Pd distance in 6 (3.17 Å) is somewhat longer than in 4a (2.87 Å), possibly reflecting the absence, in the former, of the Cl bridge on the Pd-Pd opposite to the vinylcarbene bridge. The transformation shown in eq. 7 did not work well without Pd$_2$(dba)$_3$ which might have a role of oxidizing PPh$_3$ to O=PPh$_3$, which was confirmed by 31P NMR spectra. Treatment of 6 with PPh$_3$ and HCl regenerated the dimer complex 4a quantitatively.
Figure 4. Molecular structure of 6. Selected bond distances (Å): Pd1-O1 = 2.037(9), Pd1-Cl1 = 2.453(3), Pd2-Cl2 = 2.458(4), Pd2-Cl3 = 2.411(4), Pd1-C1 = 2.04(1), Pd2-Cl = 220(1), Pd2-C2 = 2.10(1), Pd2-C3 = 2.09(2), C1-C2 = 1.40(2), C2-C3 = 1.43(2), Pdl-Pd2 = 3.17 (non-bonding).

Selected angle (deg): C1-C2-C3 = 123(1).

In a sealed glass tube, a CDCl₃ solution of 6 and 2.2 equiv of internal alkynes was heated at 60 °C for 17 h. The ¹H NMR spectrum of a reaction mixture showed the presence of two sets of resonances (ca. 2:1) which are similar to each other. The major product was separated by recrystallization from a yellow eluent of column chromatography to give a μ-η²:η³-dienylcarbene complex (7a, 7b) (eq 8). The structure of 7a was determined by X-ray structure analysis, revealing that alkynes have inserted into the palladium-carbene carbon bond to form a new μ-η³-vinylcarbene moiety and OH group has been replaced by Cl in CDCl₃ (Figure 5). In fact the reaction of propargyl chloride f3 with an alkyne in C₆D₆ did not proceed. The isolated 7a was not transformed into the minor product in a
solution, suggesting that there is no equilibrium between the two products. The complex 4a also reacted with alkynes to give 7a, albeit in low yield.

Figure 5. Molecular structure of 7b. Selected bond distances (Å): Pd1-Cl1 = 2.456(6), Pd1-Cl2 = 2.388(7), Pd2-Cl3 = 2.423(7), Pd2-Cl4 = 2.412(8), Pd2-Cl = 2.10(2), Pd2-C2 = 2.17(3), Pd2-C3 = 2.12(3), Pd1-C1 = 2.03(2), Pd1-C4 = 2.13(2), Pd1-C5 = 2.12(3), C1-C2 = 1.37(2), C2-C3 = 1.34(2), Pd1-Pd2 = 2.888(3). Selected angle (deg): C1-C2-C3 = 110(2), C2-C3-C4 = 113(2), C3-C4-C5 = 121(2).
3-6 Conclusion

I prepared novel type μ-η^3-allenyl/propargylidipalladium complexes. The μ-η^3-allenyl/propargyl group is almost linear and parallels the Pd-Pd bond. These complexes reacted with HCl to give the first example of μ-vinylcarbenedipalladium complex or to undergo hydrogenation of μ-η^3-allenyl/propargyl ligand. In addition, I succeeded in the C-C bond formation reactions of μ-vinylcarbenedipalladium complexes.

3-7 Experimental Section

General Procedures.

Most of commercially available reagents were used without further purification. All reactions and manipulations of air- and moisture-sensitive compounds were carried out under an atmosphere of dry Ar by use of standard vacuum line techniques. 1H NMR, 13C NMR, and 31P NMR spectra were recorded on JEOL JNM-GSX 270 (270 MHz), JEOL JNM-GSX 400 (400 MHz), and Bruker AM600 (600 MHz) spectrometers as solutions in CDCl$_3$ with a reference to SiMe$_4$ (δ 0.00), CDCl$_3$ (δ 77.0) and H$_3$PO$_4$ (δ 0.00). IR spectra were recorded on a Hitachi 270-50 infrared spectrophotometer as KBr pellets. Melting points were determined on a Kyoto Keiryoki Seisakujo micro melting point apparatus. Single crystal X-ray structure determinations were carried out on a Rigaku AFC5R diffractometer. Elemental analyses were obtained at the Analytical Center, Faculty of Engineering, Osaka University.

All of the solvents were distilled prior to use. Most commercially available reagents were used without further purification. $trans$-Pd(η^1-CH$_2$C≡CSiMe$_3$)(Cl)(PPh$_3$)$_2$ ($1b$), $trans$-Pd(η^1-CH$_2$C≡CBu$'$)(Cl)(PPh$_3$)$_2$ ($1c$), $trans$-Pd(η^1-CH=C=CH$_2$)(Cl)(PPh$_3$)$_2$ ($1d$) were prepared according to the published methods.8a The mixture of $trans$-Pd(η^1-C(Ph)=C=CH$_2$)(Cl)(PPh$_3$)$_2$ and $trans$-Pd(η^1-CH$_2$C≡CPh)(Cl)(PPh$_3$)$_2$ ($1a$) was obtained according to the literature procedure8a (see Chapter 1-6).
Typical Procedure for preparation of (μ-η³-PhCCCH₂)(μ-Cl)Pd₂(PPh₃)₂ (2a).

120.0 mg (0.154 mmol) of 1a and 124.0 mg (0.120 mmol) of Pd₂(dba)₃·CHCl₃ were dissolved in 3.0 mL of CH₂Cl₂. After 30 min, the reaction mixture was separated by column (silica gel, 100-200 mesh, CH₂Cl₂) and first yellow-orange eluent was concentrated to give 2a (88.0 mg) in 65% isolated yield. Same reaction was carried out in NMR tube (100% NMR yield, after 20 min). Mp 105-109 °C (dec); IR (KBr) 2190 cm⁻¹; ¹H NMR (CDCl₃) δ 2.22 (dd, JₚH = 4.32, 2.43 Hz, 2H), 6.85 (m, 5H), 7.26 (m, 9H), 7.39 (m, 9H), 7.48 (m, 6H), 7.67 (m, 6H); ¹³C {¹H} NMR δ 9.52 (s, CCH₂), 96.14 (dd, JₚC = 5.1, 2.0 Hz, CCH₂), 102.96 (dd, JₚC = 10.3, 4.2 Hz, PhCC); ³¹P {¹H} NMR δ 28.81 (d, JₚP = 85.6 Hz), 29.41 (d, JₚP = 85.6 Hz); Anal. Calcd for C₄₅H₃₇ClP₂Pd₂: C, 60.86; H, 4.20. Found C, 60.12; H, 4.22.

Preparation of (μ-η³-Me₃SiCCCH₂)(μ-Cl)Pd₂(PPh₃)₂ (2b).

To a solution of 7.0 mg (0.0090 mmol) of 1b in 0.7 mL of CDCl₃ was added 4.7 mg (0.0045 mmol) of Pd₂(dba)₃·CHCl₃ at 25 °C. The reaction was monitored by ¹H and ³¹P NMR. After 20 min, 2b was yielded (85%). ¹H NMR (CDCl₃) δ -0.21 (s, 9H), 2.08 (d, JₚH = 6.6 Hz, 2H), 7.40 (m, 18H), 7.55 (m, 12H); ¹³C {¹H} NMR (CDCl₃) δ 7.67 (s, CCH₂), 84.55 (d, JₚC = 6.2 Hz, CCH₂), 117.85 (s, Me₃SiCC); ³¹P {¹H} NMR δ 24.45 (d, JₚP = 101.8 Hz), 27.85 (d, JₚP = 101.8 Hz).

Preparation of (μ-η³-ButCCCH₂)(μ-Cl)Pd₂(PPh₃)₂ (2c).

The procedure was similar to that for 2a, b. Isolated yield 13% (NMR yield 84%); Mp 135-137 °C (dec); ¹H NMR (CDCl₃) δ 0.86 (s, 9H), 2.07 (d, JₚH = 5.9 Hz, 2H), 7.38 (m, 18H), 7.62 (m, 6H), 7.73 (m, 6H); ¹³C {¹H} NMR (CDCl₃) δ 10.31 (d, JₚC = 3.3 Hz, CCH₂), 93.59 (dd, JₚC = 12.3, 2.8 Hz, CCH₂), 111.66 (d, JₚC = 4.5 Hz, t-ButCC); ³¹P {¹H} NMR δ 26.05 (d, JₚP = 80.4 Hz), 29.72 (d, JₚP = 80.4 Hz); Anal. Calcd for C₄₃H₄₁ClP₂Pd₂(C₆H₆)₀.₅: C, 60.91; H, 4.89. Found C, 61.00; H, 5.09.
Preparation of (μ-η\(^3\)-HCCCH\(_2\))(μ-Cl)Pd\(_2\)(PPh\(_3\))\(_2\) (2d).

The procedure was similar to that for 2a, b. Isolated yield 12% (NMR yield 29%); Mp 129-131 °C (dec); IR (KBr) 2180 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 2.18 (ddd, \(J_{HH} = 2.3\) Hz, \(J_{PH} = 6.4, 0.7\) Hz, 2H), 5.64 (tdd, \(J_{HH} = 2.3\) Hz, \(J_{PH} = 32.1, 1.0\) Hz, 1H), 7.40(m, 20H), 7.65 (m, 10H); \(^{13}\)C\{\(^1\)H\} NMR (CDCl\(_3\)) \(\delta\) 11.50 (s, CCH\(_2\)), 79.23 (t, \(J_{PC} = 5.7\) Hz, CCH\(_2\)), 108.49 (d, \(J_{PC} = 4.9\) Hz, HCC); \(^{31}\)P\{\(^1\)H\} NMR \(\delta\) 26.70 (d, \(J_{PP} = 98.2\) Hz), 31.29 (d, \(J_{PP} = 98.2\) Hz); Anal. Calcd for C\(_{39}\)H\(_{33}\)P\(_2\)Pd\(_2\)Cl: C, 57.69; H, 4.10. Found: C, 57.52; H, 4.32.

Typical Procedure for preparation of (μ-η\(^3\)-PhCCCH\(_2\))(μ-SPh)Pd\(_2\)(PPh\(_3\))\(_2\) (2a-SPh).

430.0 mg (0.550 mmol) of 1a, 342.0 mg (0.330 mmol) of Pd\(_2\)(dba)\(_3\)-CHCl\(_3\) and 141.4 mg (1.10 mmol) of NaSPh were dissolved in 20.0 mL of CH\(_2\)Cl\(_2\). After 20 min, the reaction mixture was concentrated and purified by column (silica gel, 100-200 mesh, CH\(_2\)Cl\(_2\)) and first yellow-orange eluent was concentrated to give 2a-SPh (412.6 mg) in 78% isolated yield. Mp 102 °C (dec); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 2.13 (dd, \(J_{PH} = 5.4, 2.2\) Hz, 2H), 6.65 (t, \(J_{PH} = 7.3\) Hz, 2H), 6.82 (m, 8H), 7.13 (m, 6H), 7.31 (m, 18H), 7.54 (m, 6H); \(^{13}\)C\{\(^1\)H\} NMR (CDCl\(_3\)) \(\delta\) 8.30 (s, CCH\(_2\)), 98.81 (d \(J_{PC} = 6.6\) Hz, CCH\(_2\)), 109.77 (dd, \(J_{PC} = 8.3, 2.7\) Hz, HCC); \(^{31}\)P\{\(^1\)H\} NMR \(\delta\) 30.26 (d, \(J_{PP} = 92.8\) Hz), 31.07 (d, \(J_{PP} = 92.8\) Hz); Anal. Calcd for C\(_{51}\)H\(_{42}\)ClP\(_2\)Pd\(_2\)S: C, 63.69; H, 4.40; S, 3.33. Found C, 63.67; H, 4.70; S, 3.40.

Preparation of (μ-η\(^3\)-PhCCCH\(_2\))(μ-I)Pd\(_2\)(PPh\(_3\))\(_2\) (2a-I).

The procedure was similar to that for 2a-SPh. Yield 63%; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 2.55 (dd, \(J_{PH} = 4.6, 1.9\) Hz, 2H), 7.16 (m, 5H), 7.26 (m, 9H), 7.40 (m, 9H), 7.51 (m, 6H), 7.68 (m, 6H); \(^{31}\)P\{\(^1\)H\} NMR \(\delta\) 37.08 (d, \(J_{PP} = 94.6\) Hz), 37.65 (d, \(J_{PP} = 94.6\) Hz); Anal. Calcd for C\(_{45}\)H\(_{37}\)I\(_2\)P\(_2\)Pd\(_2\): C, 55.18; H, 3.81. Found C, 55.03; H, 3.96.

Other Procedure for preparation of 2a.

To a solution of 1.5 mg (0.010 mmol) of 3a in 0.7 mL of CDCl\(_3\) were added 10.3 mg
(0.010 mmol) of Pd$_2$(dba)$_3$-CHCl$_3$ and 5.2 mg (0.020 mmol) of PPh$_3$ at 25 °C. The reaction was monitored by 1H and 31P NMR. After 30 min, 2a was yielded (100%). Similar reaction was carried out for 3c. After 30 min, 2c was yielded (75%).

Reaction of 2a with HCl.

To a solution of 29.9 mg (0.0337 mmol) of 2a in 0.5 mL of CH$_2$Cl$_2$ were added 0.1 mL of H$_2$O and 4.6 mg (0.042 mmol) of (CH$_3$)$_3$SiCl at room temperature. The mixture changed to yellow suspension within 10 min. After 45 min, addition of 0.35 mL of hexane to the suspension yielded yellow solids of (μ-η^3-Cl(PPh$_3$)Pd(Ph)CCHCH$_2$)Pd(μ-Cl)(PPh$_3$) (4a) (24.4 mg, 78%). Same reaction was carried out in NMR tube (89% NMR yield, after 30 min). 1H NMR spectra of 4a showed the presence of two isomers which I tentatively assume to arise from different disposition of P2 and Cl2 on Pd2 (see Fig. 3). Spectral data for 4a (major : minor = 67 : 33): major isomer 1H NMR (CDCl$_3$) δ 3.28 (dd, $J_{HH} = 7.5$ Hz, $J_{PH} = 1.2$ Hz, 1H), 3.62 (d, $J_{HH} = 10.7$ Hz, 1H), 5.31 (ddd, $J_{HH} = 7.5$, 10.7 Hz, $J_{PH} = 6.3$ Hz, 1H); 31P{1H} NMR δ 28.65 (d, $J_{PP} = 4.2$ Hz), 32.85 (d, $J_{PP} = 4.2$ Hz). Minor isomer 1H NMR (CDCl$_3$) δ 2.58 (dd, $J_{HH} = 13.0$ Hz, $J_{PH} = 1.6$ Hz, 1H), 3.04 (dd, $J_{HH} = 6.7$ Hz, $J_{PH} = 1.0$ Hz, 1H), 5.52 (ddd, $J_{HH} = 13.0$, 6.7 Hz, $J_{PH} = 3.4$ Hz, 1H); 31P{1H} NMR δ 25.15 (brs), 20.55 (brs); Anal. Calcd for C$_{45}$H$_{38}$Cl$_2$P$_2$Pd$_2$(CH$_2$Cl$_2$)$_{1.5}$ C, 53.10; H, 3.93. Found: C, 53.03; H, 4.02.

Reaction of 2a-I with HCl.

The procedure was similar to that for 2a. Yellow solids of (μ-η^3-Cl(PPh$_3$)Pd(Ph)CCHCH$_2$)Pd(μ-I)(PPh$_3$) (4a-I) were obtained. Yield 76% (NMR yield 76%); 1H NMR (CDCl$_3$) δ 3.47 (d, $J_{HH} = 12.0$ Hz, 1H), 3.85 (d, $J_{HH} = 6.8$ Hz, 1H), 5.18 (ddd, $J_{HH} = 12.0$, 6.8 Hz, $J_{PH} = 6.2$ Hz, 1H), 7.16 (m, 3H), 7.26 (m, 4H), 7.47 (m, 13H), 7.65 (m, 13H), 7.88 (d, $J_{HH} = 9.4$ Hz, 2H); 31P{1H} NMR δ 28.33 (s), 30.28 (s); Anal. Calcd for C$_{45}$H$_{38}$Cl$_2$P$_2$Pd$_2$: C, 53.20; H, 3.77. Found: C, 52.48; H, 4.04.
Reaction of 2a with CH$_3$COCl.

To a solution of 92.2 mg (0.104 mmol) of 2a in 1.5 mL of CH$_2$Cl$_2$ was added 12.2 mg (0.155 mmol) of CH$_3$COCl at room temperature. After 1 h, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure in a rotary evaporator. Then, the red solid was purified by column (silica gel, 100-200 mesh, CH$_2$Cl$_2$ and CH$_2$Cl$_2$/ethyl acetate (10:1)), and recrystallization from CH$_2$Cl$_2$-hexane gave yellow solids of (μ-η^3-Cl(PPh$_3$)Pd(Ph)CC(COCH$_3$)CH$_2$)Pd(μ-Cl)(PPh$_3$) (5) (20.7 mg, 21%). 1H NMR (CDCl$_3$) δ 2.70 (s, 1H), 3.30 (s, 3H), 3.37 (s, 1H); 31P(1H) NMR δ 27.24 (s), 28.53 (s). Anal. Calcd for C$_{47}$H$_{40}$Cl$_2$O$_2$P$_2$Pd$_2$: C, 58.41; H, 4.17. Found: C, 58.14; H, 4.20.

Reaction of 2a-SPh with 2 HCl.

To a solution of 11.0 mg (0.0114 mmol) of 2a-SPh in 0.7 mL of CDCl$_3$ were added 0.03 mL of H$_2$O and 2.5 mg (0.0230 mmol) of (CH$_3$)$_3$SiCl at 0 °C. The reaction was monitored by 1H and 31P NMR. After 5 min, Pd(η^3-CH$_2$CHCHPh)Cl(PPh$_3$) was yielded (69%).

Reaction of 4a with PhSnBu$_3$.

To a solution of 10.7 mg (0.0116 mmol) of 4a in 0.7 mL of CDCl$_3$ was added 5.1 mg (0.012 mmol) of Ph$_3$Sn at 40 °C. The reaction was monitored by 1H and 31P NMR. After 45 h, Pd(η^3-CH$_2$CHC(Ph)$_2$)(Cl)(PPh$_3$) (5) was yielded (69%). 1H NMR (CDCl$_3$) δ 2.76 (dd, $J_{HH} = 7.3, 2.2$ Hz, 1H), 2.92 (dd, $J_{HH} = 12.5, 2.2$ Hz, 1H), 5.83 (dd, $J_{HH} = 12.5, 7.3$ Hz, 1H), 7.31-7.70 (m, 25H); 31P(1H) NMR δ 28.25 (s).

Preparation of (μ-OH)(μ-Cl)Pd$_2$(PPh$_3$)$_2$(μ-η^1; η^3-CH$_2$CCPh)$_2$(P-Pd$_2$ (6).

40.0 mg (0.0433 mmol) of 4a and 4.5 mg (0.0044 mmol) of Pd$_2$(dba)$_3$-CHCl$_3$ were dissolved in 1.5 mL of CH$_2$Cl$_2$ under air. After 62 h, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure in a rotary evaporator. Then, the dark-green solids were recrystallized from CH$_2$Cl$_2$-hexane to give orange crystals of 6 (17.0 mg, 60%). Same reaction was carried out in NMR tube (91%, 71 h). 1H NMR
(CDCl₃) δ 2.17 (t, J₉₈ = 2.0 Hz, 1H), 3.73 (d, J₆₈ = 6.6 Hz, 2H), 4.37 (d, J₆₈ = 11.4 Hz, 2H), 4.66 (ddd, J₆₈ = 6.6, 11.4 Hz, J₉₈ = 5.0 Hz, 1H), 7.02 - 7.81 (m, 40H); ¹³C{¹H} NMR (CDCl₃) δ 57.68 (s, CH₂C), 112.68 (d, J₉₈ = 9.3 Hz, CH₂C), 122.83 (s, CPh); ³¹P{¹H} NMR δ 31.63 (s); Anal. Calcd for C₅₄H₄₇Cl₃OP₂Pd₄: C, 49.66; H, 3.63. Found C, 49.44; H, 3.82.

Reaction of 6 with HCl and PPh₃.

To a solution of 2.9 mg (0.0022 mmol) of 6 in 0.7 mL of CDCl₃ were added 0.3 mg (0.0028 mmol) of (CH₃)₃SiCl and 1.2 mg (0.0046 mmol) of PPh₃ at 25°C. The reaction was monitored by ¹H and ³¹P NMR. After 5 min, 4a was yielded (99%).

Reaction of 6 with CH₃C≡CCH₃.

To a CDCl₃ solution (0.7 mL) of 121 mg (0.0930 mmol) of 6 was added 11.0 mg (0.203 mmol) of CH₃C≡CCH₃ in an NMR tube. The NMR tube was shielded and heated at 60°C. The reaction was monitored by ¹H NMR. After 17 h, [(μ-Cl)Pd(μ-Cl)Pd(μ-η¹:η²:η²-CH₃CC(CH₃)C(Ph)CH₂CH₂)]₂ (7a) (major) and a minor product were yielded (NMR yield 76%, major:minor = 67:33). Then, the reaction mixture was purified by column (silica gel, 100-200 mesh, CH₂Cl₂ and ethyl acetate/hexane (1:1)), and recrystallization from CH₂Cl₂-hexane gave orange crystals of 7a (36.7 mg, isolated 43%).

Major: ¹H NMR (CDCl₃) δ 2.05 (s, 6H), 2.10 (s, 6H), 4.19 (dd, J₆₈ = 13.2, 1.6 Hz, 2H), 4.83 (dd, J₆₈ = 7.2, 1.6 Hz, 2H), 6.03 (dd, J₆₈ = 13.2, 7.2 Hz, 2H), 7.2-7.8 (m, 10H); Minor: ¹H NMR (CDCl₃) δ 2.01 (s, 6H), 2.09 (s, 6H), 4.15 (dd, J₆₈ = 12.8, 1.6 Hz, 2H), 4.73 (dd, J₆₈ = 7.2, 1.6 Hz, 2H), 6.09 (dd, J₆₈ = 12.8, 7.2 Hz, 2H), 7.2-7.8 (m, 10H); Anal. Calcd for C₂₆H₂₈Cl₄Pd₄: C, 34.39; H, 3.11. Found C, 34.46; H, 3.09.

Reaction of 6 with PhC≡CPh.

The procedure was similar to that for CH₃C≡CCH₃. [(μ-Cl)Pd(μ-Cl)Pd(μ-η¹:η²:η²-PhCC(Ph)C(Ph)CH=CH₂)]₂ (7b) (major) and a minor product were obtained (NMR yield 77%, major:minor = 68:32). Then, the reaction mixture was purified by
column (silica gel, 100-200 mesh, CH₂Cl₂ and ethyl acetate/hexane (1:1)), and recrystallization from CH₂Cl₂-hexane gave orange crystals of 7b (isolated 48%). Major: ¹H NMR (CDCl₃) δ 4.68 (dd, J_HH = 13.2, 1.6 Hz, 2H), 5.09 (dd, J_HH = 7.3, 1.6 Hz, 2H), 6.47 (dd, J_HH = 13.2, 7.3 Hz, 2H), 6.80-7.50 (m, 60H); Minor: ¹H NMR (CDCl₃) δ 4.57 (dd, J_HH = 13.2, 1.6 Hz, 2H), 4.94 (dd, J_HH = 7.3, 1.6 Hz, 2H), 6.54 (dd, J_HH = 13.2, 7.3 Hz, 2H), 6.80-7.50 (m, 60H); Anal. Calcd for C₄₆H₃₆Cl₄Pd₄·2CH₂Cl₂: C, 45.48; H, 3.09. Found C, 45.40; H, 3.05.

Single crystal X-ray diffraction study.

All data were obtained on a Rigaku AFC-5R diffractometer with graphite-monochromated Mo-Kα radiation. All calculations were carried out with the TEXSAN crystallographic software package of Molecular Structure Corporation. The structure was solved by the direct method and refined by the full-matrix least-squares procedure, the function minimized being Σw(‖F₀‖-‖F_c‖)². The non-hydrogen atoms were refined anisotropically. All the positions of the hydrogen atoms were calculated by stereochemical considerations.

(µ-η³-HCCCH₂)(µ-Cl)Pd₂(PPh₃)₂ (2d·THF)

A yellow crystal (0.25 × 0.25 × 0.40 mm) was obtained from THF/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C₄₃H₄₁ClO₂P₂Pd₂, M = 884.04, triclinic, space group P1(#1), a = 10.090(2) Å, b = 11.768(2) Å, c = 8.747(1) Å, α = 94.16(1)°, β = 108.35(1)°, γ = 78.19(1)°, V = 964.9(3) Å³, Z = 1, Dcalc = 1.521 g/cm³, F(000) = 446.00, μ(Mo-Kα) = 11.17 cm⁻¹ by least squares refinement on diffractometer angles from automatically centered reflections, 2θ range 27.1-27.5°, λ = 0.71069 Å. The final R and R_w values were 0.056 and 0.045, respectively, for 3435 reflections (I > 3.00σ(I)).
(μ-η^3-PhCCCH₂)(μ-SPh)Pd₂(PPh₃)₂ (2a-SPh)

A yellow crystal (0.40 x 0.40 x 0.50 mm) was obtained from CH₂Cl₂/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C₅₁H₄₂P₂Pd₂S, M = 961.70 monoclinic, space group P2₁/n(14); a = 16.809(2) Å, b = 16.608(3) Å, c = 17.238(2) Å, β = 114.871(8)°, V = 4365(1) Å³, Z = 4, D_cal = 1.463 g/cm³, F(000) = 1944.00, μ(Mo-Kα) = 9.64 cm⁻¹ by least squares refinement on diffractometer angles from automatically centered reflections, 2θ range 27.3-27.5°, λ = 0.71069 Å. The final R and R_w values were 0.036 and 0.029, respectively, for 7988 reflections (I > 3.00σ(I)).

μ-η¹:η³-(PhCCHCH₂)PdCl(PPh₃)Pd(μ-Cl)(PPh₃) (4a-(H₂O)₃)

A yellow crystal (0.30 x 0.30 x 0.30 mm) was obtained from CH₂Cl₂/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C₄₅H₄₄Cl₂O₃P₂Pd₂, M = 978.49 triclinic, space group P₁(2); a = 10.233(2) Å, b = 24.617(7) Å, c = 9.028(2) Å, α = 97.69(2)°, β = 108.69(1)°, γ = 87.23(2)°, V = 2134.8(8) Å³, Z = 2, D_cal = 1.463 g/cm³, F(000) = 988.00, μ(Mo-Kα) = 10.81 cm⁻¹ by least squares refinement on diffractometer angles from automatically centered reflections, 2θ range 27.4-27.5°, λ = 0.71069 Å. The final R and R_w values were 0.065 and 0.082, respectively, for 7988 reflections (I > 3.00σ(I)).

(μ-OH)(μ-Cl)Pd₂(PPh₃)₂(μ-η¹:η³-CH₂CCPh)₂(μ-Cl)₂Pd₂ (6-(H₂O)₄·CHCl₃)

A yellow crystal (0.30 x 0.30 x 0.40 mm) was obtained from CHCl₃/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C₅₅H₅₂Cl₆O₅P₂Pd₄, M = 1493.28 triclinic, space group P₁(2); a = 15.276(5) Å, b = 16.798(4) Å, c = 15.080(4) Å, α = 112.20(2)°, β = 119.30(2)°, γ = 68.64(2)°, V = 3046(1) Å³, Z = 2, D_cal = 1.628 g/cm³, F(000) = 1476.00, μ(Mo-Kα) = 15.21 cm⁻¹ by least squares refinement on diffractometer angles from automatically centered reflections, 2θ range 27.4-27.5°, λ = 0.71069 Å. The final R and R_w values were 0.083 and 0.119, respectively, for 8758 reflections (I > 3.00σ(I)).
[(μ-Cl)Pd(μ-Cl)Pd(μ-η¹:η³:η²-PhCC(Ph)C(Ph)CH=CH₂)]₂ (7b-CH₃COOC₂H₅-C₆H₁₄)

An orange crystal (0.20 × 0.20 × 0.20 mm) was obtained from ethyl acetate/hexane at -30 °C and was mounted on a glass fiber with epoxy resin. C₅₆H₅₈Cl₄O₂Pd₄, M = 1330.48 monoclinic, space group P2₁/c(#14); a = 12.111(8) Å, b = 16.15(1) Å, c = 27.182(10) Å, β = 98.48(5)°, V = 5258(4) Å³, Z = 4, Dcalc = 1.681 g/cm³, F(000) = 2648.00, μ(Mo-Kα) = 15.90 cm⁻¹ by least squares refinement on diffractometer angles from automatically centered reflections, 2θ range 5.3-15.7°, λ = 0.71069 Å. The final R and Rw values were 0.058 and 0.060, respectively, for 2574 reflections (I > 3.00σ(I)).
3-8 References and Notes

(3) (a) Mo-Mo: Meyer, A.; McCabe, D. J.; Curtis, M. D. Organometallics 1987, 6, 1491.

(4) In Scheme 1, each allenyl or propargyl group is formally regarded as an anion.

(6) (a) Mo: Krivykh, V. V.; Taits, E. S.; Petrovskii, P. V.; Struchkov, Y. T.; Yanovskii, A. I. Mendeleev Commun. 1991, 103.

(12) The reaction employing an equiv HCl gave 28% of Pd(η3-CH2CHCHPh)Cl(PPh3) with 1/2 equiv of 2a-SPh remaining unchanged, while 4a and 4a-I were stable to the attack of HCl. The Pd(II) complex [PdCl(μ-SPh)(PPh3)]2 was identified by comparison of 31P NMR spectra of the reaction mixture with that of an authentic sample. (a) Boschi, T.; Crociani, B.; Toniolo, L.; Belluco, V. Inorg. Chem. 1970, 9, 532. (b) Jain, V. K. Inorg. Chim. Acta 1987, 133, 261.

(17) Although we were unable to determine the full structure of the minor product, it might also include the same μ-η2:η3-dienylcarbene group because of the similarity of the 1H NMR spectrum of 6 to that of a minor product.

(18) μ-Vinylcarbene ruthenium complex reacts with alkynes to give similar μ-η2:η3-

(19) μ-Carbene complexes react with alkynes to give μ-η^3^-vinylcarbene complexes: see ref. 13.
Conclusion

I prepared novel three types palladium complexes containing \(\eta^3 \)-allenyl/propargyl ligand. The coordination mode of allenyl and propargyl species on palladium in \(\text{Pd}_n(\text{Propargyl})(X)_m(\text{PR}_3)_k \) is controlled by appropriate choice of the following factors: (i) the ratio of propargyl halide, phosphine ligand and Pd(0) complex in the course of oxidative addition to form allenyl/propargyl palladium complexes, (ii) substituents of propargyl ligand, (iii) halide X on Pd, (iv) phosphine ligands (v) solvents, (vi) temperature.

\[\text{Pd}_n(\text{RCCCH}(R'))(X)_m(\text{PR}_3)_k \]

\(\eta^1 \)-Allenyl and \(\eta^1 \)-propargyl mononuclear palladium complexes were obtained by the reaction of propargyl halide with 1 equiv of Pd(0) and 2 equiv of PPh\(_3\) (eq. 1). When phosphine ligand was dppe and \(R' \) was Me, cationic \(\eta^3 \)-allenyl/propargylpalladium complexes were directly observed as an equilibrium isomer together with neutral \(\eta^1 \)-type complexes (eq. 2). The treatment of propargyl halide with 1 equiv of Pd(PPh\(_3\)) afforded the equilibrium mixture of neutral \(\eta^3 \)-allenyl/propargylpalladium and \(\eta^1 \)-propargyl halide.
dimer (eq. 3). Finally the treatment of propargyl halides with 2 equiv of Pd(PPh$_3$)$_2$ afforded neutral μ-η^3-allenyl/propargyldipalladium complexes (eq. 4).

Each type complex exhibited specific reactivity. Mononuclear cationic η^3-allenyl/propargylpalladiums are very prone to undergo nucleophilic attack at the central carbon of η^3-allenyl/propargyl ligand. Neutral η^3-allenyl/propargylpalladiums are more susceptible toward organometallic reagents, such as organotin than other type mononuclear complexes. These complexes are the more reactive intermediate in the homogeneous catalytic reactions. Dinuclear neutral η^3-allenyl/propargylpalladium complexes are susceptible to the attack of an electrophile at the central carbon, yielding μ-vinylcarbene dipalladium complexes.

The present systematic and fundamental data might be useful in gaining insight into various mono and polynuclear metals bearing unsaturated hydrocarbon ligands, and become some guides for the application of the related organometallics in the synthetic, materials, and biological chemistry.
List of Publications

The contents of this thesis are composed of the following papers.

(1) Synthesis and Structure of Cationic \(\eta^3 \)-Allenyl/propargylpalladium Complexes
Sensuke Ogoshi, Ken Tsutsumi, Hideo Kurosawa

(2) Synthesis, Structure and Reactivity of \(\eta^3 \)-Allenyl/Propargyl Dinuclear Palladium Complexes
Sensuke Ogoshi, Ken Tsutsumi, Motohiro Ooi, Hideo Kurosawa

(3) Synthesis, Structure, and Reactivity of Neutral \(\eta^3 \)-Propargylpalladium Complexes
Ken Tsutsumi, Sensuke Ogoshi, Shinji Nishiguchi, Hideo Kurosawa

(4) Carbon-carbon Bond Forming Reactions of \(\mu \)-Vinylcarbenedipalladium Complexes
Sensuke Ogoshi, Ken Tsutsumi, Tsutomu Shinagawa,
Kiyomi Kakiuchi, Hideo Kurosawa

(5) Cross-coupling Reactions Proceeding through \(\eta^1 \)- and \(\eta^3 \)-Propargyl/allenyl-palladium(II) intermediates
Ken Tsutsumi, Sensuke Ogoshi, Kiyomi Kakiuchi, Shinji Nishiguchi,
Hideo Kurosawa

(6) Synthesis and Characterization of Some Cationic \(\eta^3 \)-Propargylpalladium Complexes
Ken Tsutsumi, Tomohiro Kawase, Kiyomi Kakiuchi,
Sensuke Ogoshi, Yuji Okada, Hideo Kurosawa
Supplementary List of Publications

(1) Palladium-Catalyzed Reductive Homocoupling Reaction of 3-Silylpropargyl Carbonates. New Entry into Allene-Yne Compounds
Sensuke Ogoshi, Shinji Nishiguchi, Ken Tsutsumi, Hideo Kurosawa

(2) Mutual Isomerization of \(\eta^1 \)-Allenyl and \(\eta^1 \)-Propargyl Complexes of Platinum via a Five-coordinate \(\eta^3 \)-Allenyl/propargyl Intermediate
Sensuke Ogoshi, Yoshiaki Fukunishi, Ken Tsutsumi, Hideo Kurosawa

(3) Mechanistic Studies on Mutual Isomerization of Propargyl- and Allenylplatinum(II) Complexes
Sensuke Ogoshi, Yoshiaki Fukunishi, Ken Tsutsumi, Hideo Kurosawa
Acknowledgment

The author would like to express his greatest appreciation and gratitude to Professor Hideo Kurosawa at the Department of Applied Chemistry, Graduate School of Engineering, Osaka University for his kind guidance, invaluable suggestions and hearty encouragement.

The author would like to express his deepest gratitude to Professor Kiyomi Kakiuchi at the Graduate School of Materials Science, Nara Institute of Science and Technology and assistant professor Sensuke Ogoshi of Kurosawa Laboratory for his stimulating discussion, continuing guidance and hearty encouragement.

The author would like to acknowledge assistant professor Hitoshi Kuniyasu of Kambe Lab., Dr. Saisuke Watanabe and assistant professor Tetsuro Murahashi of Kurosawa Lab. for their useful advice and continuing encouragement.

The author would like to thank Professor Yasushi Kai and Dr. Nobuko Kamehisa for allowing the use of the single crystal X-ray structure instrument and all the members of the analytical center, Faculty of Engineering, Osaka University for their kind help.

Grateful acknowledgment are given to author's co-workers, Mr. Shinji Nishiguchi, Mr. Yuji Okada, Mr. Yoshiaki Fukunishi, Mr. Motohiro Ooi, Mr. Yuji Okada, Mr. Tsutomu Shinagawa, and Mr. Tenpei Akasaka for their contribution to this work, and all members of the research group under direction of Professor Hideo Kurosawa at Osaka University for their friendship.

Finally, the author would like to express his thanks to his parents for their perpetual support.

Ikoma, Nara
January, 2000

Ken Tsutsumi