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Quantum deformations of certain prehomogeneous vector spaces I
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ABsTRACT. We shall construct a quantum analogue of the prehomogeneous vector
space associated to a parabolic subgroup with commutative unipotent radical.

0. Introduction

Let g be a simple Lie algebra over the complex number field €, and let
p=1@ m* be a parabolic subalgebra of g, where 1 is a maximal reductive
subalgebra of p and m™ is the nilpotent part. We denote by m~ the nilpotent
subalgebra of g such that I ® m~ is a parabolic subalgebra of g opposite to p.
Take an algebraic group L with Lie algebra L

In this paper we shall deal with the case where m% is nonzero and
commutative. Then m™ consists of finitely many L-orbits.

Our aim is to give a quantum analogue of the prehomogeneous vector
space (L,m"). More precisely, we shall construct a quantum analogue A, of
the ring 4 = €[m*] of polynomial functions on m* as a noncommutative C(q)-
algebra endowed with the action of the quantized enveloping algebra U,(I) of |,
and show that for each L-orbit C on m™ there exists a two-sided ideal J¢ 4 of
A, which can be regarded as a quantum analogue of the defining ideal J¢ of
the closure C of C. Such an object was intensively studied in the cases g = s,
(see Hashimoto-Hayashi [3], Noumi-Yamada-Mimachi [10]) and g = s0,, (see
Strickland [13]).

Our method is as follows. Since m~ is identified with the dual space of
m* via the Killing form, A is isomorphic to the symmetric algebra S(m~). By
the commutativity of m~ the enveloping algebra U(m™) is naturally identified
with the symmetric algebra S(m~). Hence we have an identification 4 =
U(m~). Then using the Poincaré-Birkhoff-Witt type basis of the quantized
enveloping algebra U,(g) (Lusztig [9]) we obtain a natural quantization A4,
of A as a subalgebra of U,(g). The algebra 4, has a canonical generator
system satisfying quadratic fundamental relations. In particular, it is a graded
algebra. The adjoint action of Ug(g) on U,(g) is defined using the Hopf
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algebra structure, and we can show that A4, is preserved under the adjoint
action of Uy(I). As a Uy(l)-module 4, is a direct sum of finite dimensional
irreducible submodules.

Let C be a non-open L-orbit on m*. It is known that J¢ is an I-stable
homogeneous ideal generated by the lowest degree part J2. Since A4 is a
multiplicity free I-module, there exist unique U,(I)-submodules J¢, and ngq of
A satisfying Jcgl,_; = Jc and J2 |, = J¢. We can show that Jc 4 is a two-
sided ideal of 4, and that Jcg, is generated by ngq both as a left ideal and
a right ideal. The proof uses the quantum counterpart of the results on a
generalized Verma module of g whose maximal proper submodule is explicitly
described in terms of J¢ (see Enright-Joseph [2], Tanisaki [14]).

Explicit descriptions of 4, and J¢ 4 in each individual case will be given in

our subsequent papers.

1. Quantized enveloping algebras

Let g be a simple Lie algebra over the complex number field € with
Cartan subalgebra h. Let 4 = h* and W < GL(h) be the root system and the
Weyl group respectively. For each aed we denote the corresponding root
space by g,. We fix an ordering on 4, and denote the set of positive roots by
A" and the set of simple roots by {a;},.,, where I, is an index set. We set

nt = @azed+ B> no= @ozed+ 8-
Foriely let h;eh, w;eh” and s; € W be the simple coroot, the fundamental
weight, the simple reflection corresponding to 7 respectively. Take e; € g, and
fieg_,, satisfying [e;, fi] = h;. Let (,):gx g— C be the invariant symmetric
bilinear form such that («,a) =2 for short roots a. Set

2((1,', (Zj)

di=(@,0)/2 (ieh),  ay=oh)=—T"0

(i,j € Io).

For a subset I of I, we set

4 =40 Zoy,  Wi=(s|iel),

iel
= b@ (@aed,ga)’ n; = @aed*\d,gd’ n; = @ae'd+\A,ga'

For a Lie algebra a we denote by U(a) the enveloping algebra of a.

Let us recall the definition of the quantized enveloping algebra U,(g)
(Drinfel’d [1], Jimbo [7]). It is an associative algebra over the rational
function field ©(g) generated by the elements {E;, F;, K;, K[ '}, 1, satisfying the
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following fundamental relations:
K:K; = KiK;,
KK'=KK =1,
KiEJ‘Ki_l = quEj»
KiFK' = q;"F,

- _ k-l
EF - BE =8, 5%

—q;
o k l_—aif 1 —a, k
> (-1 . "FEEF =0 (i#)),
k=0 qi
] k| 1—ay l—ay—k 1 -k .,
> 1) o | FOUTEF =0 #£)),
k=0 qi

where ¢; = ¢%, and

m_ gm
[m], =

;) = H[k [’"]z—L (m=n=0).

f—1¢!

For iely and neZ.( we set

—

(n) 1 n (n) n
EY — —_E? FYW = —_F".
S T R

The algebra U,(g) is endowed with a Hopf algebra structure via the following
formula:

AK)=K ®K;,, AE)=EQK'4+1Q®E, AF)=F®1+K ®F,
e(Ki) =1, &(E;) =¢(F;) =0,
S(K) =K', S(E)=-EK, S(F)= -K'F;,

where 4 : Uy(g) — Uy(9) ® Ug(g) and e: Uy(g) —» C(q) are the algebra
homomorphisms giving the comultiplication and the counit respectively, and
S : Uy(g) — U,(g) is the algebra anti-automorphism giving the antipode.

We define the adjoint action of Uy(g) on U, ( ) as follows. For x,
ye U, (g) write 4(x) =3, x} ® x} and set (adx)(y) = 3, xjyS(x?). Then

ad : Uy(g) — Endg(g (Uy(9))

is a homomorphism of algebras.
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Define subalgebras U,(n*), U,(h) and U,(ly) for I = I by
Uyn*) = (Eilieh), Upn)={(Flick), Uyb)= (Kt lich),
U() = (KF' B Flichjel).

For i€ Iy define an algebra automorphism 7; of U,(g) by

Ti(K) = KiK; ™,

FK; (i=))

Ti(E) = {Ek%( —g) *ECPEED (i #)),
-K1E; (i=))

Ti(Fj) = {Zkalj( —q) kF.(k)FF( a;—k) (i 7&])

(see Lusztig [9]). For we W choose a reduced expression w = s;, - - - 5;, and set
T,=T;---Ty. It is known that T, does not depend on the choice of the

i+
reduced expression.
For I = I let w; be the longest element of W; and define a subalgebra

Uy(ny) by
U,(nj) = U,(n") N T, Uy(n7).

Let wg be the longest element of W. Take a reduced expression wiwy =

i, -8, of wrwp and set

ﬂk=si1"'sik-1(aik)’ Yﬂszil" lkl( tk) Ylgr)— i lk1( )

for k=1,...,m. Then it is known that {f,|1 <k <m} = 4*\4,, and that
{Yl,gf‘) S Ytgj"‘) |di,...,dm € Zxo} is a basis of Uy(n;). We note that this basis
depends on the choice of the reduced expression of w;wyp in general.

Let 7: Uy(g) — U, (g) be the algebra anti-automorphism given by

oK) =K', «(E)=E, tF)=F (iel).
LemMa 1.1. (i) T, (U (n})) = Uy(ny).
(ii) Let i,jel be such that wi(a;) = —a;. Then we have
(ad Fy)(zTy, (x)) = 1Ty, ((ad E;)(x)), (ad Ei)(zTw,(x)) = 1T\, ((ad F)(x)),
(ad Ki) (e T, (x)) = tTo, ((ad(K;)(x))

Jor any x € Uy(g).



Quantum deformations of prehomogeneous vector spaces 531

Proor. (i) We have 1T, = T, 1z for any k € I, and hence 7, = T;_llr for
any we W. Hence

T, (Ug(n7)) = T, (Up (™) N T} (Uy(7)
= T, Uy () N Uy(") = Uy (7).
(1) We have

1T, (E)) = tTu Ty (E) = 1T, (—F}K)) = —t(FiK;) = —K; 'F,.

Here we have used the formula:
T(F) =Fs, T,K)=K: (veW,ktelo,y(u)=a)

(see Lusztig [9]). Hence

tT,(ad E)(x)) = <T,, (Ejx — xE)K)) = Ki(2(~K;'F) — (~K'F)z)

= Fiz ~ (KizK; ")Fi = (ad F)(2)

with z = 1T, (x). Other formulas are proved similarly. [J

ProposiTION 1.2, (ad U, (1)) (Uy(ny)) < Uy(ny).

ProoF. We see easily that (ad U,(h))(U,(n;)) = Us(n;). Hence it is
sufficient to show that U,(ny) is stable under ad E;, ad F; for ie[l.

Let iel and define jel by o; = —ws(x;). By Lemma 1.1 we have
(@d E)(Uy(n})) = T, v '2T,, (ad E)(Uy(ny)) = Tt (ad F)(c T, Uy (7))
e T,'v Y (ad F;)(Uy (")) = T, (Uy(n7)).
Let us show (ad E;)(Uy(n™)) < Uy(n~). For any y e Uy,(n~) we can write

[Ei,y) = Kin(y) = n(K (n(y),n200) € Uy(n7)),

and hence (ad E;)(y) = Kiri(»)K; — r2(y). On the other hand by Jantzen [5] we
have

{y € Uy(n7) () = 0} = Uy (n") N T} Uy(n7).

Hence we have to show Uq(n“)ﬂT;I‘Uq(n‘) c Uy(m)NT U, (n). Tt s
sufficient to show for any y e W and k e I satisfying siy < y that Uy(n™)N
TM‘U (") e U,(n7)NT,; 'U,(n™). This follows from Lusztig [9]. Therefore

we have (ad E;)(U,(n;)) < Uy(n;). Then we see from Lemma 1.1 that
(ad F)(Uy(nr)) = Ug(my). O
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Let UJ(n™) be the C[g * ']-subalgebra of U,(n~) generated by {F; ™) \ie I,
neZso}. We have a natural C-algebra homomorphism ¢ : U, 0( ) Um)
given by F; N f/n!, and it induces the isomorphism C®¢[qﬂ]U (n) ~
U(n~) where C[gt!] — C is given by g— 1. For I c I, the restriction of ¢ to
Ul(np) = UX(n")NU,(n;) gives a surjective C-algebra homomorphism
or: U(n) — U(ny) inducing €C®gygey UL (ny) ~ Ulny).

For NeZ.y set

Un(a) = Cg"")Rcq Uy(9),

and let Uyn(n¥®), Uyn(h), Uyn(ly), Uyn(ny) be the €(q'/V)-subalgebras of
U, n(g) generated by U,(nt), U,(b), q(II) U,(n; ) respectively.

2. Highest weight modules
For a U(h)-module M and ueh* we set
M,={meM|hm=uh)m (heh)}.

It is called a weight space of M with weight 4. A U(h)-module M satisfying
M= @”Mﬂ and dim M, < oo for any g is called a weight module. We define
_ its character ch(M) as the formal infinite sum

ch(M) =" dim M, e*.
u
A U(g)-module M is called a highest weight module with highest weight 4 € §~
if there exists me M;\{0} satisfying M = U(g)m, ntm=0. Such m is
determined up to a nonzero constant multiple and is called the highest weight
vector of M. For each 4 eh” there exists a unique (up to an isomorphism)
irreducible highest weight module with highest weight A, which we denote by
L(A). Since highest weight modules are weight modules, their characters are
defined. For I < I set

b = @ielo\lcwi b
For 2 eb; we define a U(g)-module M;(A) by
Mi(3) = U(g) / (Z U(g)(h — A(R)) + Ulg)n* + U(g)(unn-)>.
heb

It is a highest weight module with highest weight 4 and the highest weight
vector my; =1, where 1 denotes the element of Mj(4) corresponding to
1€ U(g). Moreover it is a rank one free U(n;)-module generated by the
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highest weight vector my;, and hence we have

et

HaeA*\A,(l - e—a) .
It contains a unique maximal proper submodule K;(A), and we have
L(2) = M(4)/K;(4).

Now we define the corresponding notions for the quantized enveloping
algebras. Set

by ={ieb"|Ah)eZ (ie )} =D, Zwi < b".

For a U, n(b)-module M the weight space M, with weight u € hz/N is defined
by

ch(M;(4)) =

M,={meM|Km=g"m (ieh)}.

We call a Uy n(h)-module M a weight module if M = ), M, and dim M, <
for any puebz/N. Let M be a U,n(g)-module. If there exists me M;
satisfying U, n(g)m = M, Em =0 (i € L), then M is called a highest weight
module with highest weight 1 and m is called its highest weight vector. There
exists a unique irreducible highest weight module L,x(2) with highest weight
A. Highest weight modules are weight modules. For I < I set

biz = @ie10\lzwi =bh
For Aeb;z/N we define a highest weight module M;,n(1) by
Mk
Mign(3) = Uyn(9) / (Z Upn (@) (Ki— /™) + Y Upn(QEi+ Y Uq,~<g)F,-).
iely iel jerI

Its highest weight vector is given by m; ;, v = 1. Since M, n(4) is a rank one
free module generated by my;,~, we have

Ch(MlquN(/l)) = Ch(M[(/%))

We have a unique maximal proper submodule K; 4~ (4) of M4 x(4), and hence
Lon(4) = Mrgn(4)/Krgn(4).

PropoSITION 2.1. Let I <y and Aeb;y/N. Let Y be a subset of
U,?(n,‘) such that Ymy,n < Kign(A) and U(g)p;(Y)my; = Ki(A). Then we
have Uyn(g) Ymy qn = Kiqn(A) and ch(Lyn(A)) = ch(L(A)).

Proor. Let M be any highest weight U, y(g)-module with highest weight
A. Take a highest weight vector m e M and set

MO = Uf(n‘)m, A_lo = M0|q=1 = C®C[qil/N]M0.
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Then we can show as in Lusztig [8] that M is stable under the actions of E;,
F, (Ki— K7Y)/(q: — q;!) (i € L) and that M° becomes a highest weight U(g)-
module with highest weight A via the operators

= = _K,'—Ki_l

ei=Ei, fi=F, h + (i€ l).
qi — 4;

In particular we have
dim M, = dim(#"), > dim L(4),,
Now we set
M =M n(A)/Usn(@)Ymyagn, m=MagneM.

By the above argument M ®is a highest weight U(g)-module with highest
weight A and the highest weight vector /2. Moreover, since Ym = 0, we have
@;(Y)m =0. Hence we have M° ~ L(3). It follows that

dim L, y(1), < dim M, = dim(3°) , = dim L(1), < dim Ly y(4),,.
9> u K U u 9, H

Therefore we have M ~ L, (1) and ch(Lgyn(4)) = ch(L(4)). O

3. Parabolic subalgebras with commutative nilpotent radicals

In the rest of this paper we fix I <l satisfying nj # {0} and
[nf,nf] = {0} (see, for example, [14] for the list of (g,I)’s satisfying the
condition). We have I = Iy\{ijp} for some i € Iy.

We set [=1;, m* =nf for simplicity.

PROPOSITION 3.1.  The element Yg € Uy(m™) for B € AT\ A, does not depend
on the choice of a reduced expression of wrwy.

Proor. For i, jel, set

m;;
r(i,j) = G Js 1> - -)s

where m;; denotes the order of s;5;€ W. Let s, ---s;, be a reduced expression
of we W. Thens; - s, is a reduced expression of w if and only if (ji,---,J,)
can be obtained from (ij,...,i) by successively exchanging a subsequence of
the form r(i,j) to r(j,i).

We first show that for any reduced expression sj ---s; of wywy the
sequence (i1,...,i,) does not contain a subsequence of the form r(i,j) with
my > 3. Assume that there exists a subsequence r(i,j) with m; =3 in
(it,-..,ir). We have (ip,ips1,ips2) = (i,/,i) for some p. Set y=s; 5.
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Then we have
ﬂp :y(ai)a ﬂp+l =ys,-(aj) =}’(05i+05j), ﬁp+2 =)’Si5j(°‘i) :y(dj)a

and hence B, + f,,, = B,+1- This contradicts the commutativity of m~. Thus
the sequence (ii,...,i) does not contain a subsequence of the form r(i,j) with
my = 3. Similarly we can show that there does not exist a subsequence of the
form r(i,j) with m; =4,6.

Therefore it is sufficient to show that for two reduced expressions

Sip S,'p.S‘,'.S‘j.S‘jl e qu, iy SiijSiSjl o qu, (SiSj = SjS,‘)

of wywy the resulting Yg’s are the same. This follows from Ti(F;)=F,
Tj(Fi) = F;, and T.T; = T;T;. O

We fix a reduced expression wywg = sy - - - ;

r

and set B, =s; - 5, (%)

Set
Q+ = ZZZO“ia Q;r = Zzzoai,
iely iel
Um)"= S €@, Y, (m=0).
P1y-sPm=1

LemMMma 3.2. We have

Uy(m™) = D Uy(m)™

m=0
Um)"= @ Cyy™- = @ Ufm),
Zp my,=m yEmag,y ‘*’Q;r

Here U,(m™)_, is the weight space with respect to the adjoint action of Uy(h) on
U,(m™).
PrOOF. Set
V= @ C@y--nr, W= @ Uflm),
Zp m,=m yemay+Q7
By B, € w, + Qf we have V§" < Uy(m~)™ < V{". Since Uy(m~) =P, V", we
obtain V" = U,(m™)™ = V" and Uy(m~) =P, _ U,(m™)". O

By Lemma 3.2 we can write

(3.1) Ys, Y5, = Z arrl Yy, Yp (il e ©(g))
1252

By ABp, =Py +Bs,

for D1 > D2
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PropoSITION 3.3. The €(q)-algebra Uy(m™) is generated by the elements
{Yﬂp |1 < p <r} satisfying the fundamental relations (3.1) for py > pa.

Proor. It is sufficient to show that any element of the form Yﬂq - Yg
(1 <t <r) can be rewritten as a linear combination of the elements of the
form Y,gJl e Y (1<s1<--- <s,<r) by a successive use of the relations
(3.1) for p; > pa. For 1 <k <rlet Vi be the subalgebra of U,(m~) generated
by {¥p |1 <p <k}. By Lusztig [9] we have

Vi= @ Ty Y.
my,...,mg
We shall show by the induction on k that any element of the form Yﬂn - Yp
(1 <t <k) can be rewritten as a linear combination of the elements of the
form Y ---Yp (1<s <--- <s,<k) by a successive use of the relations
(3.1) for k> p; >p,. It is trivial for k =1. Assume that k> 2 and the
assertion is proved up to kK — 1. We shall show the statement by induction on
n. It is obvious for n =0. Assume that n > 0 and the statement is already

proved up to n—1. Take j such that ty =---=¢4=k, t;;1 #k. We use
induction on j. Assume that j=0. Then we have f; # k. By using the
inductive hypothesis on n we may assume that , < --- <t, <k. If 1, <k,

then we have #;, <k —1 for any i, and hence the statement holds by the
inductive hypothesis on k. If t, =k, then we can apply the inductive hy-
pothesis on n to Y,g,’ Yﬂxn_l’ and hence the statement also holds. Assume
0 <j<n Then we have

Yp, oo Yp, = Y5 Y5 Y,

with #,1 # k. Applying (3.1) for (p1,p2) = (k, 1) we obtain

k
Yo Yp = Y, ai'Yp Y,

s <<k

Bi+B,., =Py +Ps,

J+1

Since 5 < k by the COIldlthIl B + ﬂ,+l = B, + B,,, we can apply the inductive
hypothesis on j to Y’ Y,gIl Yp Yg, - - Yp, , and the statement holds. If j =n,
then we have Y,g - Yp = Yﬁ , ‘and the statement is obvious. [J

n

Since m~ is commutative, U(m™) is isomorphic to the symmetric algebra
S(m~). By identifying m~ with (m*)* via the Killing form of g, S(m™) is
naturally identified with the algebra €[m*]| of polynomial functions on m™.
Hence we have an identification U(m~) = C[m*]. We denote by C[m*]”
(m e Z ) the subspace of C[m"] consisting of homogeneous polynomials with
degree m.
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Set
bz(I,+) ={Aebz|A(h) 20 (ieI)}.

For Aeby(I,+) we denote the finite dimensional irreducible U(I)-module
(resp. U,(I)-module) with highest weight 1 by V(1) (resp. V,(4)). We can
decompose the finite dimensional I-module C[m*]|™ into a direct sum of sub-
modules isomorphic to V(1) for some A € hz(I,+). Moreover, it is known that

dlmHomI(V(l)1c[m+]) 21 ('1 € b;(lv +))’

and hence we have
Cm* )"~ P V(4)
Ael'™
for finite subsets I'™ of bhj(I,+) satisfying I'"NI™ = & for m# m' (see
Schmid [11], Takeuchi [12], Johnson [6] for the explicit description of I'™). On
the other hand, since U,(m~)" is a finite dimensional U,(I)-module whose
character is the same as that of C[m*]”, we have

Uy (m™)" ~ 16;)'» V,(4).

Let L be the algebraic group corresponding to I. It is known that the set
of L-orbits on m* is a finite totally ordered set with respect to the closure
relation. Hence we can label the orbits by

{L-orbits on m*} = {Cy, Cy,...,C}, {0}=Coc=Cic - =« Cr=m".
Set
F£(Cp) = {f € C[m*]|f(Cp) = 0}.
Since #(C,) is an I-submodule of C[m™*], we have

F(Cp) =P F™(Cp), F™C,) = F(C)NCm™]™ ~ 1@ V()
m el
for a subset I’ 1',” of I'". Moreover the following fact is known (see, for
example, [14)):

PrOPOSITION 3.4. Let p=0,...,t— 1.

i) #™(C,) =0 for m<p.

(iiy FPTYC,) is an irreducible 1-module, ie. I 1’,’“ consists of a single
element v,.

(iliy #(C,) is generated by FP*'(C,) as an ideal of CT[m™].

ProPOSITION 3.5. For p=0,...,t—1 there exists a unique A, €b] such
that Ki(4,) = J(C'p)mup. Moreover, we have A, € by 4/2.
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Let v? be the highest weight vector of the I-module F77(C,)( = V(v,)).
Then we have

Ki(4p) = F(Cp)myy, = U(m™ )P (Cp)myy,
= U(m™)((ad U(INN"))(vF))my s,
= Um ) UANn ))wPmyp,, = U™ )oPmy,,

and hence K(4,) is a highest weight module with highest weight 4, + v,.
We set

j;n(ép) =@ V< Uy(m™)™, Fq(Cp) = (‘Bf;n(ép) < Uy(m7),

AEF;"
jZ’N(ép) = C(ql/N)QC(q)f;"(ép) < Ugn(m™)"™,
C'p) = @j;',llv(ép) < Ugn(m™).

Here we identify U,(m™)" with @, _ = V,(4).
ProPOSITION 3.6. For p=0,...,t—1 we have
oh(Lqga(4p)) = ch(L(%)),  Kigalhp) = Upa(m™) 55 (Cp)mr sz, g0

ProoF. We shall only give a sketch of the proof. We can prove a
quantum analogue of the determinant formula for the contravariant forms on
generalized Verma modules given by Jantzen [4]. It implies that K74~ (4), =0
if and only if Kj(4),=0. In particular, we have K142(4p); 44, 70 and
K142(%p) 3, 4v,4a, = 0 for any ielo. Let vmp, 45 (ve Uga(m™), ) be a nonzero
element of Krg2(4); 4, - Then for iel we have

((ad Ei)(v))mI’;_p,qyz = (E,-U - UE,‘)K,'mI‘;hp,qyz .

€ C(ql/z)Eiva,;_p’q‘z c KIVq'z(Ap)Ap+Vp+ai ES {0}
Hence (ad E;)(v) = 0 for any i e I. It follows that v is a highest weight vector
of the U,(I)-module V,;5(v,). We may assume ve U;’(m‘) and ¢;(v) #0.
By Proposition 2.1 we conclude that ch(Lg2(4,)) = ch(L(4,)) and K42(4,) =
Ug2(g)vmy;,42. Then we have
K1 42(4p) = Uga(8)omy i, 42
0 2(M) (U2 (DNUg 2(07)) Uy 2(h) Ug2 (0 Yoy, 42
= Uga(m™)(Ug2(1) N Ug2(n”))omyz, 42

22(m7)((ad(Ug2() N Uga(n7))(0))mir 3, 9.2

B4

12(m7) I3 CpImy g, 02 |
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THEOREM 3.7. We have
I4(Cp) = Uy(m™)#L*(C,) = f;“(ép)Uq(m_)-
Proor. By Proposition 3.6 we have

ch(Uy(m™)F7+Y(Cp)) = ch(Upa(m™)#231(C,)) = ch(#(5y)),

and hence 4,(C,) = Uy(m~)SF*!(C,). Let us show Uy(m™)SP(C,) =
J;H(C_'p)Uq(m"). Since T, is an anti-automorphism of the algebra U,(m™)
(see Lemma 1.1), it is sufficient to show that tT,, preserves J;’“((t‘p).
Since U,(m™) is a multiplicity free U,(I)-module, we have only to show that
tTy,(V4(2)) is a Uy(l)-submodule isomorphic to V() for any e | ), I'". By
Lemma 1.1 we see easily that tT,,(V,(4)) is an irreducible U,(I)-module with
lowest weight wy(4). Hence we have T, (V,(4)) ~ V,(4). O
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Introduction

Let G be a reductive algebraic group over the complex number field C and let g
be its Lie algebra. The quantized coordinate algebra A,(G) of G is constructed
as a certain dual Hopf algebra of the quantized enveloping algebra U, (g) of g.
The Hopf algebras U,(g) and A,(G) over C(q) tend to the ordinary enveloping
algebra U(g) and the coordinate algebra A(G) respectively when the parameter
g tends to 1 in a certain sense {Drinfeld [1], Jimbo [3]).

Let us consider what object we should regard as a quantum deformation of
an affine variety X with G-action.

An affine variety X is endowed with an action of G if and only if its coordi-
nate algebra A(X) is equipped with a right A(G)-comodule structure

71 A(X) = A(X) ® A(G)

which is simultaneously an algebra homomorphism. By the duality between
U(g) and A(G) we obtain a locally finite left U(g)-module structure

v:U(g) ® A(X) — A(X) (*)
given by

T(n) = Zn,- @fi = ~uen)= Z(u,fi)ni, (*%)
where (,) : U(g) X A(G) — C is the dual pairing. Since 7 is an algebra homo-
morphism, we have

w € Ulg), mn € AX), Aw) =Y ui@v; = u(mn) = 3 (wim)(vin),

l l {*%%)



where A : U(g) — U{g) ® U(g) is the coproduct. Then the action of G on X is
uniquely determined by the infinitesimal action ~. Moreover, for a locally finite
left U(g)-module structure (*) on A(X) satisfying (***) and a certain condition
on irreducible U(g)-modules appearing as submodules of A(X), there exists a
unique action of G on X whose infinitesimal action is given by ~.

Now we define the notion of a quantum deformation of an affine variety X
with G-action as follows. A (not necessarily commutative) C(g)-algebra A,(X)
endowed with a locally finite left U,(g)-module structure

Vg Ugl(8) ® Ag(X) = Ag(X)

is called a quantum deformation of X if A,(X) and -y, tend to A(X) and v :
U(g) @ A(X) — A(X) respectively when ¢ tends to 1 and if it satisfies

u € Uy(g), myn € Ay(X), A(u) = Zu,- ®vi = u(mn)= Z(uim)(vin).
1 1

It seems to be an interesting problem to determine in which case X admits
a quantum deformation. In this paper we consider the problem when X is a
prehomogeneous vector space, that is, when X is a vector space with a linear G-
action containing an open G-orbit. Such a quantum deformation was intensively
studied in the case where G = GL,,(C) x GL,(C) and X = M,,(C) (see Taft-
* Towber [10], Hashimoto-Hayashi [2] and Noumi-Yamada-Mimachi [7]), and also
in the case where G = GL,(C) and X is the set of skew symmetric matrices of
degree n (see Strickland [8]).

In our previous paper [4] we gave a general method to construct quantum
deformations of prehomogeneous vector spaces of parabolic type. Moreover,
for each non-open G-orbit C on X, we have shown that the defining ideal of
the closure C and its canonical generators admit quantum deformations inside
A (X). It includes the existence of the quantum deformation of the irreducible
relative invariant when X is a regular prehomogeneous vector space. Indeed, the
canonical generator of the defining ideal of the closure of the one-codimensional
orbit is nothing but the irreducible relative invariant.

Quantum deformations of prehomogeneous vector spaces of commutative
parabolic type associated to classical simple Lie algebras are intensively studied
in Kamita [5]. In this paper we shall deal with the remaining two cases

(I) G = C* x Spin(10,C), X = C'%, the scalar multiplication and the half-

spin representation,

(I) G = C* x Eg, X = C?7, the scalar multiplication and the 27-dimensional
irreducible representation of Eg,



which naturally arise from the exceptional simple Lie algebras of type F¢ and
E7 respectively using the method in our previous paper [4]. In Introduction we
shall only state the results in case (II).

Let g, be a simple Lie algebra of type E; over C and let § be its Cartan
subalgebra. We shall use the labelling of the vertices of the Dynkin diagram 1.

2 3 4 6 7

1
> -

|

Dynkin diagram 1.

Set Iy = {1,2,...,7}, I = Ip \ {1}. Let A C h* be the root system of type
E. We denote the set of simple roots by {e;}:c1, and the set of positive roots
by A*. Let (,) : §* x b* — C be a standard symmetric bilinear form. Set
D =A%\ Y .. Zo;. Then we have D =27. Set A = {1,2,...,27}, and fix a
bijection A 3 7 +— B3; € D such that 8, —8; € Eielo Zypo; implies 7 < k, where
Z>o ={n € Z | n > 0}. Set § = 3a;+4as+5a3+6a,+3as+4as+2az7. Foreach
n € A there exist exactly five pairs (,7) € A? such that 8; + 8; = § — 34,7 < J.
We denote them by (i7,57), (%, 7). (45, 53), (i, 57), (13, 75) € A® where if <
7 <4F < 1% < i?. Let K E;,F; (i € Ip) be the canonical generators of
Uy(9E,), and set Uy(g) = (K°, K¥',E;, F; | j € I) C U,(gg,). Then Uy(g) is
isomorphic to the tensor product of C(¢)[K, K '] and the quantized enveloping
algebra of type Eg, where K = K} K;K;KSK3K K2

Theorem 0.1 A gquantum deformation of the 27-dimensional irreducible pre-
homogeneous vector space X of G = C* x Eg is given by the following.

(a) Aq(X) is an associative C(q)-algebra defined by the following generators
and fundamental relations:
Generators: Y; withi=1,... ,27.
Fundamental relations: For 1 < j

qY;Y;
of B; + B; does not have another decomposition 3+ 3, 3,8’ € D,
YiY;=( Y;Yi+qYY, —q7'V.Y;

if there emist k € I, a,b € A such that 8, = 3; + ax, By = 5 — ax,
Y;Y; otherwise.

(b) The action v, : Ug(g) ® Ag(X) — Ay(X) is given by the following.



For2<k<7,1<m<7

N Y; if there exists j such that 3; = B; + ax,
7%(Fe®Y:) = { 0  otherwise,
A N Y; of there exists j such that B; = B; — ay,
(B ®Y:) = { 0  otherwise,
'Yq(Km Y;) = q—(am,ﬂi)Y;_

(¢c) The quantum deformation of the irreducible relative invariant of X is
given by

Y= Z(_Q)lﬂn'_lynwna

nEA

where lﬁl = Ziejo my (,3 = Z:,'e]o miai) Yp = Y Y" qYZ'r;Y}'g + qzyz‘ngg -
¢*YizYsp + ¢ Yip Y.

The author expresses gratitude to Professor Noriaki Kawanaka and Professor
Toshiyuki Tanisaki.

1 Preliminaries

Let g be a simple Lie algebra of type Eg or E; over the complex number field
C, and let h be a Cartan subalgebra of g. Let A C h* be the root system,
and let W C GL(h) be the Weyl group. We denote the set of positive roots
by A% and the set of simple roots by {a;}icr,, where Iy is an index set. For
¢ € Iy we denote the simple reflection corresponding to o; by s; € W. Let
(, ):8xg— C be the invariant symmetric bilinear form such that (o, a) = 2
for any a € A. Set a;; = (ay,a;). The matrix (aij)i jer, is called the Cartan
matrix of type Eg or E7. For a € A we denote the corresponding root space by
go- Set 1t =P cp+ 8ar 87 =P, ca+ F-a- For a subset I C I we define

Ar=ANY Za;, Wr=(s;|i€l).
=74

We set

=08 (Daca, 8a)r " = Bocania, far 7 =Docat\a, I-a-
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Let G be a connected algebraic group with Lie algebra g. We denote by
L1 the subgroup of G corresponding to [;. Then Ly acts on n}t via the adjoint
action.

The quantized enveloping algebra U,(g) (Drinfel’d [1], Jimbo [3]) is an asso-
ciative algebra over the rational function field C(q) generated by the elements
E, F;,K;, K" (i € I) satisfying the following fundamental relations:

KK; = K,K;, KK '=KK;,=1,
K:E; =¢*E;K;, K;Fj=q *iF;K;,

.1
EF; - F;E, =5l.j_f‘; :le ’
E:E; = EiE, (i # 5, ai; = 0),
E!E; — (q+q ")EE;E;+ E;E} =0 (i # 7, aij = —1),
EF =5k (i # 3, aij = 0),

F2F; —(q+ ¢ WEFF, + FF? =0 (i #], a;; = —1).

A Hopf algebra structure on U,(g) is defined as follows. The comultiplication
A :Uy(g) = Uy(g) ® Uy(g) is the algebra homomorphism satisfying

AK)=K;®K;, AE)=E QK '+1QFE;, A(F)=F,®81+K;®F,.
The counit € : Uy(g) = C(g) is the algebra homomorphism satisfying
€(Ki)=1, €(E;)=¢(F;)=0.
The antipode S : U,(g) = U,y(g) is the algebra antiautomorphism satisfying
S(K;)=K ', S(E))=-E:K:, S(F,))=-K['F.
Using the Hopf algebra structure, we define the adjoint action of U,(g) on
U,(g) as follows. For z,y € Uy(g) write A(z) = 3, z} ® z2 and set ad(z)y =

Yk 2yS(z%). Then ad : Uy(g) — Endc(q)(Uy(g)) is an algebra homomorphism.
For z,y,z € U,(g) we have ad(z)(yz) = 3_,(ad(z})y)(ad(z%)z), where A(z) =

2k Tk ® 7}
We define subalgebras U,(n~) and U,(l;) for I C I by

Un™)=(Fi|i € Ih), Uy(ly) = (E,-,F,‘,K]-,Kj'1 liel, jely).



For i € Iy we define an algebra automorphism T; of U,(g) by

Ti(K;) = KK ",

1

-FK; (t=17)

T.(E;) = { E; (i # 7, ai;; =0)
EiE; — ¢ 'E;E; (i #j, aij = —1),
~-K;E; (i=17)

Ti(F;) = { F; (¢ # 7, aij = 0)
FjF;— qFiF; (i #j, aij = —1)

(see Lusztig [6]). For w € W choose a reduced expression w = s;, ---s;, and
set Ty, = T, ---T;,. It is known that T, does not depend on the choice of a
reduced expression.

We shall use the following later (see Lusztig [6]).

Lemma 1.1 Ifw(a;) = a; forw € W and i,j € Io, then we have T,(F;) = Fj.

For I C Iy let w; be the longest element of W and let wg be the longest
element of W. Choose a reduced expression wrwg = s;, - - - 8;, of wrwp and set

B; = $i, 84, "'Sij-1(aij)7 Y; = Yﬁj =T; "‘Tij—x(ﬂj)

for 1 <j <r. Then it is known that {3; |1 <j<r}=A%"\Aj. Set

Uynp) = D Clg¥y" ... Y%

d; >0

Then {Y;"...Y% |d; € Z>,1 < j < r} is a basis of Uy(ny) and Uy(ny) is a
subalgebra of Uy(n™). we have

Uy(np) =Uy(n7)N Tuj,qu(“—)

and U,(n] ) does not depend on the choice of a reduced expression of wrwq (see
Lusztig [6]).

If nf # {0},[n},n}] = {0}, then Yj for 3 € A+ \ A; does not depend on
the choice of a reduced expression of wrwg (see [4]). In this case we denote the
C(q)-algebra U,(ny ) by A,. We can regard it as a quantum deformation of the
coordinate algebra A = C[n}] of n} as explained in [4].



2 Case of type Fj

Let g be a simple Lie algebra of type E¢. We shall use the labelling of the
vertices of the Dynkin diagram 2.

1 2 3 5 6

o o

L

Dynkin diagram 2.

Hence we have Iy = {1 2,3,4,5,6}. Set I = {2,3,4,5,6}. In this case We
have n] # {0},[n],n}] = {0}. Then I is 1somorph1c to C & 0(10,C) and n}
is a 16-dimensional irreducible prehomogeneous vector space. There are three
Ly-orbits {0}, Co, O on nj satisfying {0} € Co C 0. Let Jg, C Clnf] be
the defining ideal of the closure of Co, and let Jg  denote the subspace of Jc,
consisting of the polynomials in J¢, with homogeneous degree 2. Then Jgo is
a ten-dimensional irreducible [;-module, and it generates the ideal Jg,.
We fix a reduced expression

WiWo = 51825354555352518655535254535556

of wrwo and define the elements ¥; (i € A = {1,2,... ,16}) as in Section 1.
- Set I ={1,2,3,4,5},I' = {2,3,4,5}, A" = {1,2,... ,8}. Then {ai}ics; is a
set of simple roots of type Ds. Let g’ be the simple subalgebra ofg correspondmg

to Ij. We choose a reduced expression wpwp = §18253848583528; of wpwr.
The elements Y; (i € A') can be computed inside U,(g').
Let 8; = 3 icr, mla; and set m’ = (m?,... 'ml) for j € A. Then we have

m' =(1,0,0,0,0,0), m?=(1,1,0,0,0,0), m®=(1,1,1,0,0,0)

m* = (1,1,1,1,0,0), m®=(1,1,1,0,1,0), m®=(1,1,1,1,1,0)

m’ =(1,1,2,1,1,0), m®=(1,2,21,1,0), m’=(1,1,1,0,1,1),

m!° =(1,1,1,1,1,1), m!!'=(1,1,2,1,1,1), m®? =(1,2,2,1,1.1),

m!® =(1,1,2,1,2,1), m'=(1,2,2,1,2,1), m®® =(1,2,3,1,2,1),

m'® =(1,2,3,2,2,1).

If (8j,ar) = —1for j € A and k € I, then sx(8;) = B; + ar € A*. Since
k # 1 and m{ = 1, we have 3; + ar ¢ Ar. Therefore there exists [ € A
satisfying 3; + ax = B;. Conversely if 3; + ar = 81 (j,| € A,k € I), then we
have (ﬁj,ak) = -1, Sk(ﬂj) = ﬁl.

=3



There exist 20 triplets (k,5,{) € I x A x A satisfying 8; + ax = 8. The
triplets are the following: (2,1,2), (3,2,3), (4,3,4), (5,3,5), (5,4,6), (4,5,6),
(3,6,7), (2,7,8), (6,5,9), (4,9,10), (3,10,11), (2,11,12), (5, 11,13), (5,12, 14),
(2,13,14), (3,14, 15), (4,15, 16), (6,6,10), (6,7,11). (6,8,12).

For k€ I, j € A, we have 3; — 20y, 3 + 20 ¢ AT\ A

Lemma 2.1 Let 3,5 € AT\ A; satisfying B8+ oy = 8’ (k € I). Then we can
choose a reduced ezpression wrwo = $;, 8i, - - - Si,, and p € A satisfying

/3 = SiySip *- 'Sip—1(aip)v ﬂ/ = 511845 - 'Sip—lsip(aip+l)’ (aip7aip+l) = -1,
Qf = 841845 "~ Sip—l (aip'f'l )

Proof. Among the 20 triplets (k, j, 1) satisfying 3; + ax = 81 (k € I, j, k € A),
the 12 triplets satisfy | = j + 1, (ai;,ai;,,) = —1. Therefore it is sufficient
to deal with the remaining 8 cases. In the cases (k,7,!) = (5,3,5), (5,4,6),
(5,11,13), (5,12,14), the reduced expression

Wrwo = 515283858483582518655535482835536

of wrwo with p = 3,5, 11, 13 respectively satisfies the required properties. In the
_cases (k,7,1) = (6,5,9), (6,6,10), (6,7,11), (6,8, 12), the reduced expression

WrWo = 5182838485568385523533815254838538¢6

of wrwo with p = 5,7,9, 11 respectively satisfies the required properties. )
It is known that U,(nf)! = Dsca+\a, C@)Ys is an irreducible Uy(ir)-
module. (see [4])

Lemma 2.2 For k€I, j € A, we have

ad(FR)Y; = { Y, if there exists | € A such that B; = B + o,

0  otherusse,

o Y1 if there exists | € A such that 0; = 3; — ax,
ad(Ex)Y; = { 0 otherwise.

Proof. Since B;¢5 C(q)Y; is a Uy(lr)-module, we have ad(F3)Y; = 0 if 5; +
ar ¢ At \ Ay, and we have ad(E)Y; =0if 8, —ox ¢ AT\ AL

We shall show ad(F)Y3 = Yp for 8,3 € AT\ A; and k € I satisfying
3 = B8+ ar. By Lemma 2.1 we can choose a reduced expression of wrwg =
SiySip *++ Siye satisfying 8 = 5,84, 80, (@i, ), B = 85,85, -+ 5i,_, 80, (@ipy, ),



(@i, @i,y ) = —1. Thenwecan write Y3 = T}, T3, - - - T3, _ (Fy, ), Yo = T, T, - -
T, T, (F,.,) Since (ai, ai,,) = —1, we have T} (F; ,,) = F,;,HF
q F’,P+1 Moreover, since a = $;,8;, - - Sip_y (@i, ), wehave T}, T, - - T (Fipy,) =
F; by Lemma 1.1, and hence
Yoo = T0\T zp— (Ep+1) =TyTi, - Tip—l(Ep+1 qF; 'sz+1)
= FkYﬂ - qY5Fk.

Since (3,ax) = —1, we have ad(F;)Yy = FiY; — qY3F;. Hence we have
a,d(Fk)Yg = Yﬂl.

Let us show ad(Ex)Ys = Yy for 5,8 € AT\ A; and k € I satisfying
B' = B—ax. By the above argument we have Y3 = ad(Fy)Yy = FyYg —qYs Fp.
Since 8" —ax = 8 — 20 ¢ AT\ A;, we have ad(E)Ys = 0, and hence
EYs = Yg Eg. Since (8',ar) = —1, we have K;Yy = qYp K;. Hence we

have

ad(Ek)Yg = (EkYg - YgEk)Kk
(Ex(FiYs — q¥g Fx) — (FxYp — q¥s Fi)Ei) K

K- Kb Kk—Kk‘l> .
= (kv — Ve TE Tk VK = (Y K[)Er =Ys. O
(q_q Vo= — k= (Yo K )Ey =Yg

Next we shall consider quadratic fundamental relations among the elements
Y. Since we have

Y Cloyy; = PC(or.ys,

i,jEA s<t .
we can write

VY= ) alivY (af) eCle)
ﬂ;+ﬂ;§/§,+ﬁ¢

for i > j (see [4]). Hence if 3; + 8; does not have another decomposition
B+ 8 (8,8 € At\Ap, 8;+ B; = 3+ 8') then we have V}Y; = q;;Y;Y;
for some a; ; € C(q). We denote the set of weights of the ten-dimensional
irreducible highest weight [;-module J0 with highest weight —3; — Gs by T.
For 3,8 € AT\ Ar a weight 8 + ' ha.s another decomposition if and only
if we have —(8 + 8') € I'. We fix a bijection {1,2,...,10} 5 n +— -6, € T
such that if 6, — ¢, € Zielo Zypai, then n < m. For each n there exist



exactly four pairs (7,7) € A? such that ¢ < j,8; + 3; = J,. We denote them
by (:7,77) (Z2vj2) (13,7%), (2, J2) € A? where if < i} < i} <. Set A(n) =
(12,153,158, 40, 7. 75, 37, 5¢) € A® (1 < n < 10). Then we have

A1) =(1,2,3,4,5,6,7,8), A(2) = (1,2,3,4,9,10,11,12),
A(3) =(1,2,5,6,9,10,13,14), A(4)=(1,3,5,7,9,11,13,15),
A(5) =(2,3,5,8,9,12,14,15), A(6) = (1,4,6,7,10,11,13, 16),
A(7) =(2,4,6,8,10,12,14,16), A(8)=(3,4,7,8,11,12,15,16),
A(9) = (5,6,7,8,13,14,15,16), A(10) = (9,10,11,12,13, 14, 15, 16).

We denote the set {if,i%,i2.47, 57, 75,75, 72} by [A(n)| for 1 < n < 10. For
any 1,7 € A there exists n satisfying 7, j € |A(n)].
Set

A={(k,n,n") €I x AxAlb, +ar =dn}

Then A = {(6,1,2), (5,2,3), (3,3,4), (2,4,5), (4,4,6), (2,6,7), (4,5,7), (3,7,8),
(5 8,9), (6,9, 10)} Foranyn € {2,3,. 10} we can take a sequence ((k1,n1,n}),
., (ks,ns,nl)) of A satisfying n; = 1 ny=n,nl=n;4,(1<5<s-1).
For {(k,n,n') € Aand m € {1,2,3, 4} we have either

('Bi;‘n’ak) =0, l?n = ZZ? (ﬂj;aak) = -1, ,Bj;zn’ ='Bj,'§. + ag (P;)
or
(Biz, s ax) = 1, /3,';:"' = Bin, + ar, (Bn,ar) =0, ],7,1; =J7. (P)
Proposition 2.3 For any 1,7 € A satisfying 1 < j, we have
Y;Y:  of there ef:ists n such that 1 = i}, 5 = 37,
YJ';‘_fK%'f'(Qf q )Yi;‘;’/j{‘h o
if there exists n such that1 = i3, 5 = j3
6) YY;= 2 '
(Q ) 7 y},’;K,’; +qy3:n—ly’i:ln—1 —q IK"__IY;,’; .
if there ezist n, m € {3,4} such thati=1i},7 =j2,
qY;Y; otherwise.

Proof. Since there exists some n satisfying 7,; € [A(n)| for any 7,5 € A, it is
sufficient to show that for any 1 < n < 10 the elements Yin ,Yjn (1 < m < 4)
satisfy the following relations.

YirVYip = Y5 Yin (Rn,1)
YinYin =YjnYm +q¥n_ Yo  —q7'Yin Vi (2<m<4) (Rn,2)
Yll Y}z = qY12Y11

(1,05 € [A(M)] 1y < Lo (I, 1) # (i, 52) (1 < m < 4)) (Rn,3)

(Rn)
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When n = 1, the elements Y; (1 < < 8) satisfy the same relations as those for
type Ds, hence the relations (R1) hold.

For any m > 1 there exists a sequence ((k1,n1,n}),...,(ks,ns,nl)) of A
satisfying ny = 1,n, =m, n; = n;;; (1 <j < s—1), and hence it is sufficient
to show the relations (Rn') for (k,n,n’) € A assuming the relations (Rn).

Let (k,n,n') € A. Assume that the relations (Rn) hold.

We first show that the relation (Rn',1) holds. If the condition (P}) is sat-
isfied, then we have Y,,r =Y, FiYir = }’,-;ka,Y;-l,u = ad(Fy)Yjr = FiYjr —
qYjn» F. Since YipYjn = YjnYin, we have

VYo = Yirad(Fi)Yjr =Y (FieYjr — @¥r Fe) = (FiYjp — qVip Fi)Yep
= }/‘—7?! Y;;‘/ .
If the condition (P} ) is satisfied, then we can prove the formula (Rn’,1) similarly.
Next we prove the formula (Rn’,2). Assume the condition (P},) is satisfied,
then we have
ViV = Yo (FeYj - a¥ F)
= FYpp Y —q¥i FiYa
+ q(FkY}?n—ly'inm—l - ql/j:x-1y'n Fk)
— ¢ Y(FYir_ Yin | —q¥in | Fy).

1 Jml

If the condition (P},_,) is satisfied, then we have

FeYy Yo =¥ Yo  Fe=Yjp (FYe  —qVe Fi)=Ym Ve ,

-1 Im—-1 -1
FiYy_ Y , - e Yo  Fi=(RYy  —a¥q PV =Yy Y
and if the condition (P,,_,) is satisfied, then we have
Fi¥i, Y, — ¥, Yo  Fe=(BYj  —q¥ F)Ye =Y Yo

Fi¥ Y —aVa Y Fe=Yy_(FiVp_ ¥y Fi)= Yo Y

-1 Jm—1

(3

mula (Rn’,2) is proved. When the condition (P7,) is satisfied, we can prove it
similarly.

Hence we have Y, Y. = Y. Y. + qY.ns Yo —¢q7 1Y Y... . The for-
im Im Jm tm ]m—l zm—l m—1 Jm—l

11



Finally we prove the formula (Rn’,3). Let [{,1; € |[A(n’)| satisfying {] < [}

and (13,1%) # (z;’]fn/) for 1<m < 4. When [, = z?,: € |A(n')] (resp. I, =j;';),
we denote i, € |A(n)| (resp. jn) by I, for p = 1,2. Since l; < I and
(l1,13) # (i%.jm) for 1 < m < 4, we have Y,,Y;, = q¥,Y,. We have the
following possibilities:
(1) l; =l, I3 =10, (B,,0) = (ﬂlzvak) =0,
(2) =4, (By,ea)=0,8y =0, + ar, (B, ) = —1,
(3) By =0, +ar, (Bi,ar) = =1, 1, =1, (Bi,,ar) = 0,
(4) B, =B, + ok, By, = B, + ak, (B, o) = (B1,,01) = —1.

In the case (1) the formula (Rn’.3) is obvious.

In the case (2) we have F.Y;, = Y, Fy, Yy = ad(Fy)Yy, = FiYl, — qYi, Fy.
Hence we have

YiYy =Y, (FrYr, — qYi, Fi) = q(FiYy, — qYi, Fr)Y), = qYp Yy .

In the case (3) we can prove it similarly to the case (2).

In the case (4) we have Yi, = FiYi, — ¢V, F for p = 1,2. Since ﬁ’é +
ar = ﬂ[p + 2ay, € AT \A[ and (,61;),01;) = 1, we have ad(Fk)YI; = Fle;, —
q 'Yy Fr = 0 for p = 1,2. Hence we have FyFyYy, — (¢ + ¢7')FiY1, Fi +
Y}kaFk = O,FkYIka = (q+q—l)-l(FkaY1p +)/IPFka) for p =1.2. By these

formulas we have

VoY, = (FiYy, — qY, Fi)(FiYi, — qY1, Fy)
= FY, FYy, — ¢F YL YL Fy — ¢y, Fir FuYa, + @Y, Fr Y, Fe

1 1
= ——FRFRYLY, + —— Y, Y,
q+q7! q+q7?

—qF Y, Y, Fr — g0, F Fe Y,
2 2

q q
+ HTYIIFI:FI:YIZ + WﬁlnngFk
2

1
= g+q! Fe P Y, Y, — qFiY, Y, Fre + #l—y‘lxy'l;Fka.
Similarly we have

2

FRYLY:, — ¢RYL,Y, Fi + #YJII FiFy.

Since Y1, Y;, = qY3,Y:,, we have Yo Yy, = gV ¥y a
By [4] and Proposition 2.3 we obtain the following:

Ve Yy =
2% q+q—1

12



Theorem 2.4 The formulas (Q6) give fundamental relations for the generator
system {Yi}iea of the algebra A, = Uy(ny).

We shall construct a quantum deformation of the lowest degree part Jgo
of the defining ideal J¢, and we shall give canonical generators of a quantum
analogue of J¢,.

Set

Un =YYz — Ve ¥ip + ¢*Yig Yjr — ¢’Yip Yy,

for 1 < n < 10. Recall that A(n) = (iF,1%,:5, 0,57, 72,75, 72). Using the
formulas (Rn,1), (Rn,2), we can write ¢, = Yj2Yiz —¢7 'Yz Yir + ¢ ?Yjp Yip —
9 Y Yip.

Lemma 2.5 We have

ad(F), = { gn/ if there ezists n' such that 6, + o = 6,1,

otherwrse,
Wnt  if there exists n' such that §, — ay = Sp
. / = “n n ny
ad(Ex)on { 0 otherwise
forkel, and
ad(Ki)n = g~ m oy,
fbf’ k € Io.

Proof. Let (k,n,n') € A. We shall show ad(Fi)¢¥, = w,. If the condi-
tion (P,) is satisfied, then we have ad(Fy)Y;» =0, Y =Yin, ad(Kg)Yin, =
Yin, ad(Fk)Yjz =Y. . Hence

ad(Fi) (Y, Yin) = (ad(Fe)Yig )Y, + (ad(K)¥ig ) (ad(Fi) i ) = Vi V.
If the condition (P, ) is satisfied, then we have ad(F;)Y;n = Yinr, ad(Fg)Yjs =
0. Hence ad(Fx)(Yiz Yjn) = Yin Y} similarly. Therefore we have ad(F )¢,

Next we prove ad(Eg }¢n' = 1. We have ad(Ey)Y;n =0, ad(Ex)Y;n =Yjn
if the condition (P},) is satisfied, and we have ad(Ek)Yi,.m: =Y, ad(Kk_l)Yj:lr =
Y, ],',’: = jr, ad(Ek)an/ = 0 if the condition (P};) is satisfied. Hence we
have "

ad(Er)(Yip Yo ) = (ad(Ek )Y J(ad(K )Y ) + Vi (ad(ER) Y ) = Yin Vi

13



for 1 < m < 4. Therefore we have ad(Ep)¢n = ¢y.

In other 50 cases, where 6, +a; ¢ {6;]1 <! < 10}, we can check ad(Fy )¢, =
0 by a case-by-case consideration as follows.

In the 10 cases where there exists n' satisfying ad(Fi)¢n' = ¥n, ((k,n) =
(6,2), (5,3). (3,4), (2.5), (£6), (2.7), (4.7), (3.8), (5,9), (6,10)), we have
ad(Fy)Yin = ad(Fx)Yz =0 for 1 <m <4, and hence the assertion is obvious.

In the 8 cases (k, n) (5,1), (6,3), (6,4), (6,5), (6,6), (6,7), (6,8), (5,10),
we have ad(Fy)Yin = ad(Fi)Yjn = Oform = 3,4, ad(F})Yiy = Yip,ad(Fz)Y;r =
0,ad(Fy)Yir = Yn ;ad(Fy)Y;z = 0, and hence ad(Fk)( QY} ) Y 2 Yz,
ad(Fi)(YirYjr) = Y];Y]? Thus we have ad(Fr)vn = ¢*(Yjn Yz Y}z Yin)=0
by Proposition 2.3.

In the remaining 32 cases there exists m’ € {2, 3,4} such that ad(F;)Y;, =
0 (m #m'), ad(Fi)Yjz, = 0 (m # m'—1), ad(F)Yin, = Yin, > ad(Fe)Yjm, =

Yjn , ad(Ki)Yin, =g 'Yin, . Then wehave ad(Fk)(Yn Y-:; )=Yir, Y,
Sd(Fk)(Y" Y, )= Q‘IK;,_IEm,yad(Fk)wn =¢* ™ (1-qq~ )an, Y, =

The weight 3;» + 8= does not depend on m. Hence we have ad(Kg )y, =
g~ nek)yp, where 6, = Bin + Bjn .

Finally we show ad(Ex)¢¥, = 0if 6, — ar ¢ {6;|1 <1 < 10}. We can check
ad(E)¢; = 0 for any k = 2,3,... ,6 directly. It follows that Z;O=1 Cq)vn =
U,(I7)¥y and hence 211:;1 C(q)¢n is an ad Uy(ly)-stable subspace with weights
in {—4;|1 <1< 10}. Therefore we have ad(Ex )¢, = 0if 6, —ay & {61 <1<
10}. 0

Proposition 2.6 Y10 C
with highest weight vector ;.

(@)¥n is an irreducible highest weight Uy(I7)-module

Proof. By Lemma 2.5 210 C(q)¥n is a finite dimensional Uy(I;)-submodule
generated by a highest We1ght vector ¢; with highest weight —4é;. Thus it is
irreducible. O

By [4] and Proposition 2.6 we obtain the following:

Theorem 2.7 A quantum analogue of the defining ideal Jc, of the closure of
the non-trivial non-open orbit Cy is given by the two-sided ideal of A, generated
by {¢n | 1 < n < 10}.
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3 Case of type E;

Let g be a simple Lie algebra of type E;. We shall use the labelling of the
vertices of the Dynkin diagram 1. Hence we have Iy = {1,234 5 6 7} Set
I ={2,3,4,5,6,7}. In this case we have n;’ # {0}, [n}',n'}'] = {0}. Then I is
isomorphic to C & gg,, where gg, is a Lie algebra of type Eg over C, and n}"
is a 27-dimensional irreducible prehomogeneous vector space. There are four
Ly-orbits {0},C1,C2, 0 on nf satisfying {0} C C1 C C; C 0. Let J¢, C C[nf]
be the defining ideal of the closure of C, and let ng denote the subspace of
Je, consisting of the polynomials in Jg, with homogeneous degree 2. Then
J¢, is a 27-dimensional irreducible [;-module, and it generates the ideal J¢, .
Let Jo, C C[n}] be the defining ideal of the closure of C2, and let Jg, denote
the subspace of J¢, consisting of the polynomials in J¢, with homogeneous
degree 3. Then ng is a one-dimensional irreducible {;-module generated by the
irreducible relative invariant, and it generates the ideal J¢,.
We fix a reduced expression

WrWo = 518283545556545352518756545355545657525354865554535251

of wrwy and define the elements Y; (1 € A = {1,2,... ,27}) as in Section 1.

Set Iy = {1,2,3,4,5,6},1' = {2,3,4,5,6},A’ = {1,2,... ,10}. Then {a}icry
is a set of simple roots of type D¢. Let g’ be the simple subalgebra of g corre-
sponding to 1. We choose a reduced expression Wpwr = $1525354 558654535251
of wpwy. The elements Y; (i € A’) can be computed inside Uy(g’).

Let 8; = ) ;e ™mia; and set m’ = (mj,... ,m?) for j € A. Then we have
m! = (1,0,0,0,0,0,0), m?=(1,1,0,0,0,0,0), m? = (1,1,1,0,0,0,0),
m* = (1,1,1,1,0,0,0), m® =(1,1,1,1,1,0,0), m® = (1,1,1,1,0,1,0),
m’ =(1,1,1,1,1,1,0), m® =(1,1,1,2,1,1,0), m® = (1,1,2,2,1,1,0),
ml =(1,2,2,2,1,1,0), m*! = (1,1,1,1,0,1,1), m'2 = (1,1,1,1,1,1,1),
m =(1,1,1,2,1,1,1), m* = (1,1,2,2,1,1,1), m** = (1,1,1,2,1,2,1),
m'® =(1,1,2,2,1,2,1), m'7 = (1,1,2,3,1,2,1), m'® = (1,1,2,3,2,2,1),
m'® =(1,2,2,2,1,1,1), m* = (1,2,2,2,1,2,1), m*! = (1,2,2,3,1,2,1),
m? = (1,2,2,3,2,2,1), m® = (1,2,3,3,1,2,1), m* = (1,2,3,3,2,2,1),
m? = (1,2,3,4,2,2,1), m*® = (1,2,3,4,2,3,1), m*" = (1,2,3,4,2,3,2).

If (8j,ar) = ~1for j € Aand k € I, then s¢(3;) = 8;+ax € AT\ Ay and there

exists | € A satisfying 3; + ax = 8;. Conversely if 8;, 31 € AT \ A satisfying
81— B = ax (k € I), then we have (83, ax) = —1, sx(8;) = Gi.
For k € I, j € A, we have 3; — 2a;, 8; + 2ax ¢ AT\ A}
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Set
B={(kji) €I x Ax A |G+ = A}

We have

B = {(2,1,2), (3.2,3), (4,3,4), (5,4.5), (6,4,6), (6,5,7), (5,6,7), (4,7,8),
(3,8,9), (2,9,10), (7,6,11), (7,7,12), (7,8,13), (7,9, 14), (7,10,19), (5,11,12),
(4,12,13), (3,13,14), (6,13,15), (6,14, 16), (3,15,16), (4,16,17), (5,17,18),
(2,14,19), (2,16,20), (2,17,21), (2,18,22), (6,19,20), (4,20,21), (5,21,22),
(3,21,23), (3,22,24), (5,23, 94) (4,24,25), (6,25,26), (7,26,27)}.

In particular, we have |B| =

Lemma 3.1 Let 3,3 € AT\ Ay satisfying 8+ ap = 8 (k € I). Then we can
choose a reduced ezpression wrwg = $;; Siy - - - Siy; and p € A satisfying

B=sisiy- 'sip—l(aip)v B =si 8, *Sipo18ip (aip+1)7 (a,‘p,aip+1) =-1,
QA = 854,84, sip_l(aip+1).
Proof. The 21 triplets (k,7,I) in B satisfy | = 5+ 1, {oy;,a4,,) = —1.

Therefore it is sufficient to deal with the remaining 15 cases. In the cases
(k,3,1) = (6,4,6), (6,5,7), (6,13.15), (6,14,16), (3,21,23), (3,22,24), we can
take

WiWo = 818283548655845382515756545558354865752538485386548535281

with p = 4,6,13,15,21,23, and in the cases (k,j,l) = (7,6,11), (7,7,12),
(7,8,13), (7,9,14), (7,10, 19), we can take

WIWp = 851528384855657545653545253518525584865753548565584838281

with p = 6,8, 10,12, 14, and in the cases (k, 7,{) = (2, 14,19), (2, 16, 20), (2,17,21),
(2, 18,22), we can take

WIWQ = 81823833848558654535251875654585538254383565457865584838281

with p = 15,17,19,21. 0
We can show the following similarly to the case Fs. We omit the details.

Lemma 3.2 For keI, j € A, we have

—_— Y7 if there ezists (k,j,1) € B,
ad(F)Y; = { 0  otherwise,

— Y: if there ezists (k,l,7) € B,
ad(Ep)Y; = { 0 otherwise.
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The U,(lr)-module ;.\ C(q)Y; is an irreducible highest weight module
with highest weight vector Y7 and lowest weight vector Y27. Hence, for any
1 < m < 26, there exists a sequence ((k1,n],71),-.. ,(ks, 1}, ns)) of B satisfying
n=27,ny =m, n} =n;4; (1 <j<s-1)

Next we shall consider relations among the elements Y;. We can write

= Y aliny. (dfeClg)
ﬁ,-+6;§s,+ﬁz

for ¢ > j (see [4]). Hence if 8; + 8; does not have another decomposition
8+ 5 (8,8 € A\ A, i+ B; = 8+ ') then we have YY; = a;;Y,Y; for
some a;; € C(q). Set § = 2wy = 301 + 4az + 5a3 + 6ag + 3as + 4as + 2a7,
where o, is the fundamental weight corresponding to a;. We denote a set of
weights of the 27-dimensional irreducible highest weight [;-module ng with
highest weight —~8; — B0 by I'. Set v, = 6§ — Bn (n € A), and we have
[ = {~ya | n € A}. For 3,8 € AT\ Ar a weight 5 + 3’ has another de-
composition if and only if we have —(8 + 38') € T'. For each n € A there exist
exactly five pairs (i,7) € A? such that i < j,3; + B; = Yn. We denote them
by (217]1) (¢3.77); (13,J3) (13,75, (‘57.73) € A? where i < i} <if <if <
it < 3R < P < 37 < 5%, and Zl’]l satisfy the following condition (P7) or
(Pl_) Set B(n) (Z5vl47137227Z1 5.71 ’.72 7.73 7.74 aJS) Alo (n € A) Then we

B(1) = (10,19, 20,21, 23,22, 24, 25, 26,27), B(2) = (9,14, 16,17, 23, 18,24, 25,26,27),

B(3) = (8,13,15,17,21,18,22,25,26,27), B(4) = (7,12,15,16,20, 18,22, 24, 26,27),

(5) (6,11,15,16,20,17,21,23,26.27), B(6) = (5,12,13,14,19, 18,22,24,25,27),

B(7) = (4.11,13,14,19,17,21,23,25,27), B(8) = (3,11,12,14,19, 16,20, 23,24, 27),

B(9) = (2,11,12,13,19, 15,20,21,22,27), B(10) = (1,11,12,13,14,15,16,17,18,27),
B(11) = (5,7,8,9,10,18,22,24,25,26),  B(12) = (4,6,8,9,10,17,21,23,25,26),
B(13) = (3.6,7.9,10,16,20,23,24,26),  B(14) = (2,6,7,8, 10, 15,20, 21,22,26),
B(15) = (3,4,5,9,10,14,19,23,24,25),  B(16) = (2,4,5,8.10,13,19,21,22,25
B(17) = (2,3,5,7,10,12,19,20,22,24),  B(18) = (2,3,4,6,10,11,19,20,21,23),
B(19) = (1,6,7,8,9,15,16,17,18,26),  B(20) = (1,4,5,8,9,13,14,17,18,25),
B(21) = (1,3,5,7,9.12,14,16,18,24),  B(22) = (1,3,4,6,9,11,14,16,17,23),
B(23) = (1,2,5,7,8,12,13,15,18,22),  B(24) =(1,2,4,6,8,11,13,15,17,21),
B(25) = (1,2,3,6,7,11,12,15,16,20),  B(26) = (1,2,3,4,5,11,12,13,14,19),
B(27) = (1,2,3,4,5,6,7,8,9, 10).

For n € A we denote the set {i2,if,i, i3, 7,7, 5. 53,35.35} by [B(n)].
For any 1,7 € A there exists n € A satisfying ¢, 7 € |B(n)|.
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For (k,n’,n) € B and m € {1,2,3,4,5}, we have either
(Bir,ax) =0, i = i%, (Bjn,0x) = =1, Bjp = Bjn + & (P})
or
(ABi'r',,#ak) = _13 ’81’,‘,; = !/32",‘,1 +ak: (/3‘;:1.,01‘;) = 0# .7:1, = .77717:; (P;)
Proposition 3.3 For any 1,7 € A satisfying 1 < j, we have

Y;Y;  if there exists n € A such that {i,j} = {:7, 7},
YisYir + (¢~ ¢~ )Yip Yip

if there ezists n € A such that i =%, j = jZ,
YinYie +q¥in_ Yir_, —a7Yir,_Yir,

if there ezist n € A, m € {3,4,5} such that i =i7,j = j=,
qY;Y; otherwise.

(Q7) Y, =

Proof. Since there exists n € A satisfying i,7 € |B(n)| for any 7,j € A, it is
sufficient to show
YirYjn =YjnYin (Rn, 1)
Yoo Vin = Yjr Yin + ¥ Yir |, —q'Vip Yin . (2<m<35) (Rn,2)
Y;l Yi2 = qy’i:}fll

(11712 € 'B(n)lJl < 127{11712} # {meﬂﬁz} (1 <m< 5)) (Rn73)

forne€ Aand 1 < m <5.

When n = 27, the elements ¥; (1 < 7 < 10) satisfy the same relations as
those for type Dg, and hence relations (R27) hold.

Since there exists a sequence ({(ky,n},ny),...,(ks,n,,n,s)) of B satisfying
n1 =27, ny =m, ni=n;4; (1 <7< s—1)forany 1 <m < 26, it is sufficient
to show (Rn') for (k,n’,n) € B assuming (Rn). This is proved similarly to
Proposition 2.3. Details are omitted. O

By [4] and Proposition 3.3 we obtain the following:

) (Rn)

Theorem 3.4 The formulas (Q7) give fundamental relations for the generator
system {Yi}iea of the algebra Ay = Uy(ny).

We shall construct a quantum deformation of the lowest degree part ng
of the defining ideal Jc, and we shall give canonical generators of a quantum
deformation of Jg, .

Set

Un = YigVip — q¥ir Yip + ¢ Yig Vi — Yig Yip + 'Y Yy,
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for n € A, where B(n) = (¢2,:%,1%,i5.¢¢, 57,33, 7%,72.78). Using the for-
mualaF (I-Kn,l),_(‘iRnQ)_, we can write ¥ = YjrYin — ¢ Y2 Yin + ¢72YpYin —
¢ Y;pYir + ¢ Yp Yap.

Similarly to Lemma 2.5 and Proposition 2.6 we can show the following:

Lemma 3.5 We have

_ Y if there ezists (k,n',n) € B,
ad(Fi)¢n = { 0 otherwise,
o qr  if there ezists (k,n,n’) € B,
ad(Ex)Yn = { 0 otherwise
forkel, and

ad(Ki)n = ¢~ Om )5,
for k € Iy.

Proposition 3.6 Y .\ C(q)¢n is en irreducible highest weight Uy(lr)-module
with highest weight vector 7.

By [4] and Proposition 3.6 we obtain the following:

Theorem 3.7 A quantum deformation of the defining ideal Jo, of the closure
of the non-open orbit Cy is given by the two-sided ideal of A, generated by

{¥n | n €A}
Set

o= (-9*Yatn,

n€A
where {3] = E,’ejo m; (8= Ziezo mia;).
Proposition 3.8 C(q)y is a one-dimensional Uy(lr)-module.

Proof. By Proposition 3.3 we can check that the coefficient a; 10,27 of ¥1Y10Y27
Iy = Ei<j<k ai;pYiY;Yis 1+ q® + ¢'%. Therefore we have ¢ # 0.

Let (k,n,n') € B. Then we have |8,/ = |Bn|+1, ad(Fi)Y, = Yy, ad(Fy )Yy =
0, ad(Fi)tn = ¥n, ad(Fi)¢p = 0, (Bn,ar) = 1. Hence ad(Fir)(Yntn —
qYoitPn) = Yoo — qg ' Yprtp, = 0. Therefore we have ad(F)p = 0 for any
k € I, and similarly we have ad(Ey)y = 0 for any k € I. Since v, + 3, = ¢ for
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any n € A, we have ad(K;)p = ¢~ (%) for any k € I,. In particular, we have
ad(K)p = ¢ for any k € I, and ad(K})p = ¢ 2. 0

The element ¢ is a quantum deformation of the irreducible relative invariant
on the prehomogeneous vector space.

Theorem 3.9 A quantum deformation of the defining ideal Jc, of the closure
of the non-open orbit Cy is given by the two-sided ideal of A, generated by .
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