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Chapter 1
Introduction

I.1 Purposes of This Work

Since the pioneering work of Flory,1 numerous

studies have been made to explain the dilute-solution
behavior of linear flexible polymers in terms of mono-
mer-monomer or segment-segment interactions.2:3 The
mean-square radius of gyration <S%> and the second
virial coefficient AZ have been the main subjects in
those investigations. The fopmer is concerned with
the interactions among segments in one chain and the
latter with those among segments belonging to two
different chains as well as in each chain. The cur-
rent theoretical framework called two-parameter theory2
invokes the binary cluster approximation in which any
types of segment interaction are pairwise additive and
thus represented by the binary cluster integral 52:2
-W(Ry9)/kpT

Bog = ‘f (1 - e ) dRyo (1.1)

Here, W(R;9) is the potential of mean force acting on

segments 1 and 2 belonging to either one chain or

-1-



different chains, R0 the distance vector between the
two segments, kB the Boltzmann constant, and T the
absolute temperature. The two-parameter theory fur-
ther assumes that any chains obey the Gaussian statis-
tics when Bog = O.2 Experimental data for Ao and (82>
accumulated before the early 1970s lent support to this

theory.2

3 in the last two

However, further elaboration
decades disclosed some experimental facts for Ao that
can hardly be explained by the two-parameter theory.
Typical examples are (1) the molecular weight independ-

ent behaviorll"6

of A, below the theta point © where

Ay, = 0 and (2) positive 4, values' ™9 for very low
molecular weight samples at thg temperature at which A4,
for high molecular weight samples vanishes. For their

7,10 were given to take into

explanation, suggestions
account the non-Gaussian nature or stiffness of actual
polymer chains and the ternary cluster integral B3

representing the residual interaction among three

segments 1, 2, and 3, where g4 is defined by2

By = [ (1= (1 - e )
—W(R31)/kBT
with R12 + R23 + R31 = 0. Effects of chain stiffness

-2-



must be nontrivial for relatively short chains, but may
be considered less important for long flexible chains.3
On the other hand, little is known about the magnitude
of B3 for actual polymers, though effects of three-

segment interactions on dilute-solution properties were
theoretically investigated in the early days by Orofino

11 12

and Flory and Yamakawa and recently by several

groups.13'17

Under these circumstances, it seems significant to
measure some property relating most closely to three-
segment interactions and to see whether the property
can be explained by the two-parameter theory. To this
end, the third virial coefficient Ag is most appropri-
ate in that it reflects the intefactions among three

18 In

segments belonging to three different molecules.
particular, data of Aq at © may be expected to give
decisive information about the validity of the binary
cluster approximation, since according to this approxi-
mation, Ag must vanish at @.2’3 Thus, the present
work was undertaken to determine Agq for two typical
flexible polymers, polystyrene (PS) and polyisobutylene
(PIB), in good and theta solvents by precise light
scattering measurements. The data of A3 as well as

those of Ag obtained were used to check the validity or

consistency of the two-parameter theories of the virial



coefficients. In connection with the experimental
study of Ag, the following remarks are in order.
It was early recognized that information on Agq is

19 Besides

important for accurate determination of Ag .
this practical importance, A3 is a key parameter for
understanding thermodynamic behavior of polymer solu-
tions, especially in the crossover concentration region
between dilute and concentrated solutions.20:21
Nonetheless, its experimental determination has long
been left as a challenge to the capability of experi-
mentalists, because very accurate measurements of
scattering intensities or osmotic pressures are re-
quired. In fact, as mentioned below, systematic
experimental data on Ag are limited only to those
reported by Kniewske and Kulickezz for PS in toluene, a
good solvent, and our understanding of A3 remains far

from satisfactory despite its basic as well as practi-

cal importance.

1.2 Previous Experimental Studies of Ag

Good Solvents

23

In the early 1950s, Bawn et al. and Stockmayer

24

and Casassa attempted to estimate Ag from their own

or published osmotic pressure data of PS and PIB solu-



tions. Further attempt was made by Casassa and Stock-
mayer,25 who evaluated Ag for poly(methyl methacrylate)
samples in butanone and nitroethane from light scatter-
ing measurements. It is probably fair to say that the
Aj data from these early studies have only historical -
value because of insufficient characterization of
samples and large experimental uncertainties. A point
to note is that Bawn et al. and Stockmayer and Casassa
presented methods for determining Ag from osmotic
pressure or scattering intensity data.

As mentioned above, Kniewske and Kulicke22 were
the first to report systematic A3 data. They analyzed
light scattering data for toluene solutions (25°C) of
PS ranging in weight-average molecular weight M@ from 5
X 104 to 2 x 107 by a curve-fitting method, with the
result that 45 « Mh0.58. They also found that the

reduced third virial coefficient g defined by

g = A3/A5%M, (1.3)

was about 0.33 regardless of Mﬁ.

6 analyzing light

1.23 (

Very recently, Sato et al.,2

scattering data by the method of Bawn et a see

Chapter II), evaluated A3 for three PS samples (M, = 4

X 104, 4 x 105, and 4 x 106) in benzene. The molecu-
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lar weight dependence of Ag they determined was similar
to that reported by Kniewske and Kulicke.22 However,
Sato et al. obtained g which increased appreciably with
increasing M@, in contrast to the finding of Kniewske
and Kulicke. Whether g in a given good solvent system

depends on M, or not remains to be seen.

Theta Solvents

Experimental information about Ag at © was first
given by Flory and Daoust27 in 1957, These authors
analyzed their osmotic pressure data for PIB in benzene
in terms of the Flory-Huggins theory.28’29 The result
suggested that A3(®) (A3 at ©) is positive but negli-
gibly small. Two years later, Krigbaum and Geymer30
concluded from osmotic pressure measurements that
A3(®) for PS in cyclohexane is essentially =zero.
Undoubtedly, these early thermodynamic studies played
an important role in the later development of two-
parameter theories.

In the mid 1970s, Vink9!

analyzed his osmotic
pressure data for cyclohexane solutions of PS by the
method of Stockmayer and Casassaz4 (see Chapter 11},
and obtained measurable A3(®) values of 3 x 10_4 to 7
X 1074 mol gf3 cm®. He also showed that the theta

temperature depends on molecular weight in a region

-6-



from 3.7 x 104 to 4.1 x 105. However, this was at
variance with most experimental results for the PS +

32,33

cyclohexane system. Another report of non-

34 who

vanishing A3(®) was given by Murakami et al.,
estimated A3(®) for poly(chloroprene) in butanone to
be 6 x 10'4 mo 1 g—3 cm6 by applying the Stockmayer-
Casassa method to sedimentation equilibrium data.

The previous Ag data at © mentioned above are at
variance with one another and do not allow any defini-
tive conclusion to be derived on the validity of the
binary cluster approximation. In the previous stud-
ies, osmotic pressure was mostly used, but generally,

light scattering is more appropriate to obtain accurate

data.

1.3 Scope of This Work

In this work, we used PS and PIB fractions cover-

ing a broad range of molecular weight from 2 x 104 to 2

X 107. The solvent systems investigated and their
qualities (i.e., good or theta solvent) are shown in
Table I-1.

Chapter 1I following this introductory chapter de-
scribes experimental details, i.e., the preparation of

PS and PIB fractions, light scattering measurements,



Table I-1

Polymer + Solvent Systems Studied

in the Present Work

System Solvent Quality
PS? in benzene (25°0) good solvent
PIBb in cyclohexane (25°C) good solvent

PS in cyclohexane (27 - 45°C) theta solvent
PS in trans-decalin (13 - 55°C) theta solvent
apolystyrene, bpolyisobutylene

and methods of data analysis for evaluating M@, A2, and
A3. Light scattering measurements for two good sol-
vent systems, PS + benzene and PIB + cyclohexane, were
made at 25°C, and those for theta solvent systems, PS +
cyclohexane and PS + trans-decahydronaphthalene (trans-
decalin), at different temperatures encompassing the
theta point. For the'good solvent systems, z-average
mean-square radii of gyration <85> were also deter-

Z

mined. In this connection, we note that <32> for PIB

1,35

V4

was studied only by Matsumoto et a twenty years

ago, although that for PS was extensively studied by
Yamamoto et al.,36 Fukuda et al.,37 and Miyaki et

al.33’38 over a very wide range of molecular weight.



Chapter III is concerned with the two good solvent
systems mentioned above. First, we determine the
molecular weight dependence of Az, A3, g, and <Sz>Z for
PS and PIB. The data of A, are then compared with the

39

latest two-parameter theory of Barrett. Finally, we

compare the data for & with the existing two-parameter

24,40,41,,4 recently developed renormalization

theories
group theories,42_44 and check the validity of the
binary cluster approximation to g in good solvents.

The core of this thesis lies in examining whether,
as the two-parameter theory requires, A5 vanishes at
®. Experimental results for A, and A3 of the two
theta solvent systems, PS in cyclohexane and trans-
decalin, are presented in Chapter 1IV. It is shown
that for both systems, Ajg and hence B3 remain positive
at the theta temperature. This demonstrates the
breakdown of the binary cluster approximation and
suggests that the contribution of g3 to A, must be
carefully considered. Thus, with the Az data near @
we critically test the available theories of A2 based
on the smoothed-density model11 and the first-order
cluster expansion,lz’15 both taking g4 into account.

12 pointed out that the

Long ago, Yamakawa
smoothed-density and perturbation theories for Ay are

inconsistent unless B3 is zero. This turned out very

-g-



serious, in that the two types of theory give different
interpretations of ®. The origin of the inconsisten-
cy is therefore investigated in Chapter V. It is
shown theoretically that a few approximations widely
accepted lead to serious errors. This thesis ends
with Chapter VI in which the major conclusions and

remarks derived from the present study are summarized.

-10-



Chapter 1II

Experimental

1T1.1 Polymer Samples

Polystyrene

Standard "monodisperse" polystyrene (PS) samples
with appropriate molecular weights were chosen from our
stock. They were Tosoh's F1, F4, F20, F80, F128, and
F288 and Pressure Chemical’'s 2b and 4a. These samples
were each divided into three parts by fractional pre-
cipitation with benzene as the solvent and methanol as
the precipitant. The central fractions, designated
below as Fi-B, F4-B, F20-B, F80-B, F128-B, F288-B, 2b-
B, and 4a-B, were used for the present study.

In addition to these samples, the fraction F-40B

1.26 and the ultra-high-molecular

prepared by Sato et a
weight fractions BK2500-4, BK2500-3, and BK2500-2
prepared by Miyaki et al.38 were also used. The
weight-average molecular weights of the last three
fractions determined in this work were systematically

smaller than those reported by Miyaki et a1.38 (2 to 3%

for fractions BK2500-4 and BK2500-3 and 15% for frac-

11~



tion BK2500-2). The discrepancy suggested that these
fractions degraded slightly during storage in a freez-
er. In this thesis, Miyaki's fractions BK2500-4,
BK2500-3, and BK2500~2 are designated as BK2500-4",
BK2500-3’, and BK2500-2’, respectively, to denote the

difference in M%.

Polyisobutylene

Two polyisobutylene (PIB) samples, Enjay’s Vista-
nex L-80 and L-300, and one sample (designated here as
SPP-85) obtained from Scientific Polymer Products Co.
were used. The viscosity-average molecular weights

M

» (in benzene at 25°C) for L-80 and L-300 were 5.8 x

105 and 3.9 x 106, respectively, and that for SPP-85
was 8.5 x 10%.

Samples L-80 and L-300 were fractionated two times
by the ® column elution technique with benzene as the
solvent. The column used was 120 cm in height and 6.8
cm in inner diameter. It was packed with glass beads
of diameter 0.1 - 0.3 mm. From many fractions eluted,
fractions designated A-22, A-42, and A-62 (from L-80),
P-32, P-53, and P-62 (from L-300) were chosen. The
first three fractions were further fractionally precip-
itated with benzene as the solvent and methanol as the

precipitant to remove lower and higher molecular weight

-12-



portions. The fractions thus obtained were designated
A-22B4, A-42B3, and A-62B1, and used for the present
study, along with fractions P-32, P-53, and P-62.

These fractions were reprecipitated from benzene solu-
tions into acetone and dried in vacuo for about a week.
Sample SPP-85 was fractionated by the column
method with a benzene-methanol mixture instead of pure

benzene as the eluent; the composition of methanol in
the mixture was adjusted so that the solution became
turbid at about 23°cC. However, a larger portion of
the polymer tended to elute at a lower temperature, and
the column method seemed less effective for a lower
molecular weight sample. Thus, after this method had
been repeated, the fractions obtained were subjectéd to
fractional precipitation in benzene-methanol mixtures.
In this way, four fractions, designated below as S-
111B, S-112B, S-114B, and S-14B, were prepared. They
were freeze-dried from cyclohexane solutions after
being reprecipitated from benzene solutions into metha-
nol.

Fractions S-112B, S-114B, S-14B, A-22B4, and A-
42B3 were investigated by gel permeation chromatography
with chloroform as the eluent. The Mﬁ/Mh values
estimated were in the range 1.08 - 1.10. Here, as

usual Mh denotes the number-average molecular weight.

-13-



1I1.2 Preparation of Solutions

As mentioned in Chapter 1, benzene (good solvent),
cyclohexane (theta solvent), and trans-decalin (theta
solvent) were used for PS, and cyclohexane (good sol-
vent) for PIB. A given polymer sample and a solvent
were mixed in a ground-glass-stoppered Erlenmeyer
flask. The mixture was stirred for two to sevenrdays;
for high molecular weight fractions (M% > b x 106) of
either PS or PIB, very gentle stirring was applied to
prevent the polymer from degradation. After complete
dissolution, the solution was diluted with the solvent
to prepare serial solutions of six or seven different
concentrations.

The benzene and cyclohexane used were refluxed
over sodium for about 5 h and then fractionally dis-
tilled. The trans-decalin (manufactured by Tokyo
Kasei) was similarly distilled under a reduced nitrogen
atmosphere after being refluxed over calcium hydride
for about 5 h. Its trans content was 99.7% when

determined by gas chromatography.

IT1.3 Light Scattering Photometry
Intensities of light scattered from PS or PIB

-14-



solutions were measured on a Fica 50 light scattering
photometer using cylindrical cells in an angular range
from 12.5 to 150° with no analyzer. Vertically polar- -
ized incident light of 436 or 546 nm wavelength was
used. With pure benzene as the reference liquid, the
instrument constant ¢ was determined from the measured
scattering intensity IQO,UV for vertically polarized
incident light at scattering angle 909, according to
the relation

2R
b, U
® = A (2.1)

2
IQO,UV Ny, (1 + pu)

Here, ny is the refractive index of benzene and Rb,Uu’
its Rayleigh ratio at 90° for unpolarized incident
light. For the latter, the literature values45 46.5 x

1 were used for 436 and

107% cm™! and 16.1 x 1078 cm™
546 nm, respectively. The depolarization ratio p, of
benzene for unpolarized incident light was determined
to be 0.41 for 436nm and 0.40 for 546nm by the method
of Rubingh and Yu.46

The reduced scattering intensity RG,UV(C) for a

given solution with a polymer mass concentration c at

scattering angle 6 was calculated from

Rg yyle) = ® Iy y, n° sing (2.2)

-15-



and the excess reduced scattering intensity Rg was ob-
tained as the difference in RG,UV(C) between the
solution and the solvent, i.e., RB,UV(C) - RO,UV(O)'
In eq. 2.2, n denotes the refractive index of the solu-
tion.

Test solutions were made optically clean by cen-
trifugation at about 3 x 104 gravities for 1.5 h.

Each of them was transferred into a light scattering
cell using a pipet. The cell and the pipet had been
rinsed with refluxing acetone vapor for about 6 h.

For PS in benzene and PIB in cyclohexane, both
good solvent systems, ¢ in each solution was calculated
from the polymer weight fraction w, with the solution
density p approximated by the solvent density Po-

This approximation introduced errors less than 1% in
the values of Az and A3 for any fractions.

It was anticipated, however, that the approxima-
tion ceases to be good for PS in cyclohexane and trans-
decalin, theta solvents. Thus, ¢ in each cyclohexane
solution was calculated, using Scholte's data47 for p;
desired densities at different temperatures were ob-
tained by interpolation or extrapolation of his data.
On the other hand, no p data for trans-decalin solu-

tions of PS were available in the literature, so that

~-16-



we made density measurements at 21 and 35°C using a

bicapillary picnometer of 30 cm3 capacity. Use was
made of fraction F-40B. Figure 2.1 illustrates the
concentration dependence of p thus determined. The

curves fitting the experimental points at the respec-

tive T are represented by

0.86877 + 0.190c + 0.15¢%2  (21°C) (2.3)

k)
T

0.85830 + 0.193c + 0.15¢%  (35°C) (2.4)

k)
il

The necessary values of p at different T were obtained

by interpolation or extrapolation.

I1.4 Specific Refractive Index Increment

Excess refractive indices An for PS in benzene
and PIB in cyclohexane, both at 25°C, and PS in trans-
decalin at 21, 25, 35, and 45°C were measured as func-
tions of w or ¢ using a modified Schulz-Cantow type
differential refractometer. The results for PS (F20-
B) in benzene at 546 nm are illustrated in Figure 2.2.

The indicated curve represents the empirical relation

An = 0.0931w + 0.01512 (w < 0.08) (2.5)

-17-
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Figure 2.1 Concentration dependence of solution

density p for PS in trans-decalin at indicated

temperatures.
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Figure 2.2 Concentration dependence of excess

refractive index An for PS in benzene at 25°C and

546 nm.

which yields for the specific refractive index incre-

ment dn/dc in units of cmgg"1
dn/dc = 0.1066 - 0.008c (2.6)

(PS in benzene at 25°C and 546 nm; ¢ < 0.07 g cm-3)

-19-



when the literature values of 0.8737 g cm—3 and 0.917

cm® g‘l are used for py and the partial specific

48 of PS in benzene at 25 °C, respectively.

volume
The values of 3n/3c for PIB in cyclohexane at 25°C
were similarly determined to be 0.0991 and 0.0966 cm3
g—l at 436 and 546 nm, respectively, regardless of c
below 2 x 10"2 g cm—3. These values agree closely
with 0.0987 cm® g=! (at 436 nm) and 0.0961 cm3 g~! (at
546 nm) obtained by Tong et al.49
The specific refractive index increment for PS in

trans-decalin as a function of T in degree centigrade

was found to be represented by

an/3c = 1.50 x 10747 + 0.1224 - 0.02¢ (2.7)

(PS in trans-decalin at 546nm; c¢ < 0.05 g cm_3)

For 3n/3c of PS in cyclohexane, Scholte’s data47 were

used.

I11.5 Methods of Data Analysis

Some Basic Equations

50

According to the theory of light scattering from

dilute polymer solutions, RG is expressed by

— = ——— 4+ 24,8@,(60)c + 34305(0)c% + ... (2.8)

-20~-



where P(g) is the intramolecular interference factor
or the particle scattering function, Qi(e) (i = 2,3)
is the intermolecular interference factor associated
with i polymer chains, and K is the optical constant
defined by

4n2n2

K= —— (3n/3¢c)? (2.9)

Nado
with Ny and Ay being the Avogadro constant and the
wavelength of incident light in vacuum. At infinite

dilution, eq 2.8 becomes

Ke 1

(R_G)czoz M _P(6)

+ O(sin? g-)] (2.10)

where A is the wavelength of incident light in the

scattering medium.

Experimental Determination of Mo A21 and A3

At the limit of 8 = 0, eq. 2.8 reduces to

-21-



Ke 1

— = — + 2450 + 34502 + ... (2.11)
Ry My
where R, denotes RB at zero scattering angle. With

eq 1.3 for g, this equation is rewritten

Ke . 1/2 1

ﬁ%) :Mf”

1
[1 + Azch + 5 A22Mw2(3g - l)c2 + ... ]

(2.12)

The values of (Kc/RO)l/2 can be obtained as a function

of ¢ by extrapolation of (KC/RG)l/z plotted against
sin2(9/2) at respective ¢ to 8 = 0. Then, M, and A4,

are evaluated from the intercept and initial slope of a
square-root plot of (KC/RO)l/z‘vs. ¢ according to eq
2.12. This procedure has widely been used to deter-
mine M, and Ao of a given polymer sample, but it does
not allow Aé to be estimated.

Three methods to determine 445 from Kc/R; data are
available. We outline them and discuss their advan-

tages and disadvantages.

(1) Stockmayer-Casassa Plot

Defining S(c¢) by

S(c) = (Kc/Ry - 1/M,)/c (2.13)

-22-



we obtain from eq 2.11

2 4 ... (2.14)

S(ec) = 2A2 + 3A3c + 4A4c
where we have explicitly shown the term associated with
the fourth virial coefficient A4, for convenience in the
ensuing discussion. According to eq 2.14, A2 and A3
can be evaluated, respectively, from the intercept and
initial slope of a plot of S(¢) versus ¢, which is
called the Stockmayer-Casassa (SC) plot.24

As can be seen from the definition of S(c¢), this
plot requires for its application an M, value to be
known in advance. The above-mentioned square-root
plot may be used for this purpose, but use of the M,
determined in a different solvent is desirable in order
that the values of A, and A5 estimated from the SC plot
in a test solvent have no correlation with the input
value of M_. Further, the M, value has to be accurate
since, as may be anticipated from eq 2.13, S(c¢) is very
susceptible to the input M, at low concentrations. In

fact, Sato et al.26

showed for a PS sample with M, =
4.3 x 106 in benzene that an error of only 2% in M,

gives rise to considerable, systematic deviations of

plotted points at low ¢ from the linear relation of

-23-



S(c) vs. ¢ found at high c. Thus, the Stockmayer-

Casassa method is not practical in determining A2 and

A30

{2) Bawn Plot

Defining 5(01’02) by

(KC/RO) - (KC/RO) -
S(ey,ep) = T2 L (2.15)
2 - €1
we get from eq 2.11
2 | 2
+ 4A4(Cl + 0102 + 02 ) + ... (2.16)

where (KC/RO)C=02 and (K’C/R‘O)Czc1 denote the values of
KC/RO at two different concentrations Co and ¢y, re-
spectively. Equation 2.16 shows that the intercept
and initial slope of a plot of S(cl,cz) vs. ¢y + oy
give 4, and As, respectively. This plot was original-
ly proposed by Bawn et al.?3 for osmotic pressure. It
is referred to here as the Bawn plot.

We again quote the above-mentioned work of Sato et
al.26 on a PS sample with M, = 4.3 x 10% in benzene.

These authors, making additional measurements at higher

~24-



concentrations, found that either the SC or Bawn plot
bends down significantly when ¢ or cy t 9 exceeds a
certain value. This implies that there is a "criti-
cal" concentration above which contributions of A, and
higher virial coefficients are significant. In other
words, neither S(c¢) nor S(cl,cz) is substantially
affected by Ay below such a concentration, and thus
both plots are equally useful in principle. However,
the Bawn plot has a distinct advantage over the SC plot
in that no M, value is needed for its application.

Once Ao and Ag for a given sample are evaluated by
the Bawn plot, the value of MW may be determined in the

26

following way. First, an apparent molecular weight

Mé defined by

pp

- 2,-1
Mypp = [Kc/By - 2Azc - 3A3c°) (2.17)

is calculated as a function of c. The Mépp values ob-

tained are then plotted against ¢ and extrapolated to

¢ = 0 to obtain the desired Mﬁ.

{3) Curve-Fitting Method

The values of M., Ao, and Ag may also be estimated

by a trial-and-error or nonlinear least-square method,
in which eq 2.11 truncated at the 02 term is forced to
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fit experimental values of Ke/Ey over a range of c.
This curve-fitting procedure may be carried out easily
with the help of a computer. However, since Kc/Ry vs.
¢ plots are generally very monotonous, it is difficult
to judge from them at what concentration the contribu-
tion of A4 starts playing a significant role. This is
a serious disadvantage of the curve-fitting procedure.
In fact, Norisuye and Fujita51 have recently warned
against the use of this methdd by showing an example
that an erroneous parameter set is obtained unless the
upper bound c¢ in the three-parameter fit is adequately

found.

On the basis of the above discussion, we decided
to adopt the Bawn plot for the present data analysis.
It may be anticipated from the definition of S(cl,cz)
that for an actual application of this plot light
scattering data have to be very accurate over the range
of concentration covered. In particular, small errors
in Ke/Ry are magnified in the plot when ¢y and cy are
close to each other. In this work, care was therefore
taken to prepare a series of test solutions whose

concentrations were almost evenly spaced.

—-26-



Determination of <52)Z

We determined <Sz>z for PS fractions in benzene

and PIB fractions in cyclohexane in the following way.
First, values of (KC[RG)Czol/z for a given fraction

were obtained by extrapolating (KC/RG)I/2 at fixed @
to infinite dilution using the square-root plot52 of

(Kc/Re)l/2 vs. cC. The values of (KC/R9)0=01/2 were

then plotted versus sin2(6/2) according to the equa-

tion
Ke 172 5
(—) - 11/2 [1 + é(%’—‘—) <s%>, sin? 22
R6 c=0 Mw
+ O(sin? 22)] (2.18)

and <SZ>z was evaluated from the initial slope of the
plot. For low molecular weight PIB fraction S-114B,
<Sz>z was determined, using the procedure proposed by
Kitagawa et al.53 In this method, an apparent mean-
square radius of gyration at finite ¢, which is defined
as the initial slope of a (Kc/Re)l/z vS.
é(4n/l)23in2(6/2) plot multiplied bv M%l/z, is first

evaluated and then extrapolated to ¢ = 0.
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Chapter 111
Good Solvent Systems

IT1I.1 Introduction

This chapter is concerned primarily with Ao and Ag
for PS in benzene and PIB in cyclohexane, both good
solvent systems. First, we present experimental re-
sults for Ao, Aj, & {defined by eq 1.3), and <Sz>Z of
the two polymers and then discuss their molecular
weight dependence. Finally, the data of A, and Ag (or
g) are compared with the existing theories to check the
validity of the binary cluster'approximation in good

solvents.
111.2 Results for Polystyrene in Benzene

Figure 3.1 illustrates square-root plots of
(Kc/Re)l/2 vS. sin2(6/2) at fixed concentrations for
PS fraction BK2500-3’ in benzene at 25°C. The curves
fitting the data points at the respective ¢ bend down
for sin2(9/2) above 0.07, but can be accurately ex-

trapolated to zero scattering angle.
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Figure 3.1 Plots of (KC/Re)l/z vs. sin2(6/2) at
indicated ¢ for PS fraction BK2500-3' in benzene at

25°C.
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The Bawn plots of 5(01’02) vs. ¢ + ¢y constructed
from KC/RO data for PS fractions according to eq 2.16
are shown in Figure 3.2. The plotted points for each
fraction follow a straight line over the entire range
of ¢y + ¢, studied. The intercept and slope of the
line give Ay and Ag, respectively.

We made additional measurements on fractions F80-~
B, F128-B, and BK2500-4’ at higher concentrations.
The Bawn plots constructed exhibited appreciable down-
ward curvatures at high cy + o9 (not shown here), as
was found to be the case for a PS fraction (M% = 4.3 x
106) by Sato et al.z6 These findings indicate that Ay
for polystyrene in benzene is negative. Very recent-

51 analyzing the classical

ly, Norisuye and Fujita,
osmotic pressure data of Flory and Daoust,27 found that
Ay for PIB in cyclohexane is also negative.

In Figure 3.3, values of the apparent molecular

weight Mgp defined by eq 2.17 are plotted against c.

p
The plot for each fraction is horizontal, allowing
accurate extrapolation of Mépp to ¢ = 0. The inter-
cepts give the weight-average molecular weights of the
respective fractions.

Numerical results for M, Ao, As, and the reduced

third virial coefficient g defined by eq 1.3 are all

summarized in Table III-1, where are included those for
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Table ITI-1

Numerical Results from Light Scattering Measurements
on PS Fractions in Benzene at 25°C

5 A, x 10% A5 x 102 <séy 1/2
Fraction M, X 10~ 2 3 =3 5 g ———
mol g cm mol g cm nm
F1-B 0.103 11.3 0.43 0.32 —
2b-B 0.198 8.80 0.48 0.31 —
F-4B2 0.447 7.40 0.61 0.25 —
4a-B 0.979 5.78 0.86 0.26 —
F20-B 2.00 4.72 l.1g 0.27 17
F-40B2 3.79 4.10 1.9 0.30 24
F80-B 8.45 3.33 2.7 0.29 41
F128-B 13.8 2.85 3.8 0.34 54
F288-B 31.5 2.29 6.1 0.37 89
F-380B% 43.8 2.05 8.7 0.47 104
BK2500-4" 85.6 1.80 11., 0.40 - 170
BK2500-3"° 145 1.49 15.g 0.49 223
BK2500-2° 201 1.38 17.4 0.47 276

8Data of Sato et al.Z26



three fractions determined by Sato et al.z6 in the same
way. The last column in the table presents the values
for <32>zl/2.

The molecular weight dependence of Ao is displayed
by unfilled circles in Figure 3.4, in which the data of
Sato et al.28 (half-filled circles) in Table ITT-1 and
those of Miyaki et al.33s38 (filled circles) are also
shown for comparison. The last group evaluated Ag by
the conventional square-root plot (see eq 2.12). All
the data points are seen to fall on a single solid
curve as indicated. Thus, we find that the two types
of plot give consistent Ao values.

The dashed line in Figure 3.4 is drawn to have a
slope -0.2, which is the asymptotic exponent ¥ in the
relation 4, « M&y predicted by two-parameter theories?
for long flexible chains in good solvents. The exper-
imental curve appears to have this asymptotic slope
only for M, > 107.

The present Ag data and those of Sato et al. in
Table ITII-1 are plotted double-logarithmically against
M, in Figure 3.5. The data points for M, above 109
are fitted by a straight line with a slope 0.6.

Essentially the same slope was reported for PS in

toluene by Kniewske and Kulicke,22 who used a curve-
fitting method to evaluate M,, Ay, and Ag. The slope
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Figure 3.4 Molecular weight dependence of A2
for PS in benzene at 25°C: ( O ) this work; ( @ )

Sato et al.;26 ( ® ) Miyaki et al.33’38

0.6 observed conforms to the asymptotic exponent for Ag
predictable from the two-parameter theory. However,
it should be noted that the data points for the three

lowest molecular weight fractions deviate upward from

-35~



~ -1
w
£
(8]
T
o
©
£
N~ 2F
™
I
o
° g slope 0.6
-3F
1 1 1 H
4 5 - B 7 8
Figure 3.5 Molecular weight dependence of Aj
for PS in benzene at 25°C: ( O ) this work; ( Q)

Sato et al.26

the line with the slope 0.6.
The Mho‘s dependence of A3 over a wide molecular
weight range shown in Figure 3.5 leads us to conclude

that A3 for PS in benzene reaches the asymptotic region
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at a relatively low M, of 2 x 105. This is in con-
trast to the very slow approach of Ay to the asymptotic
relation. Because of these features of the experimen-
tal A2 and A3, g must increase toward an asymptotic
value with increasing M, above 2 x 105. In fact, our
g values, which are plotted against log M, in Figure
3.6, show this to be the case. The initial decline of
the indicated curve at low M, is due primarily to the
upward deviation of Ag from the asymptotic line with a
slope 0.6 in Figure 3.5.

In contrast to the above finding, Kniewske and
Kulicke?? obtained a constant g of about 0.33 for tol-
uene solutions of PS covering a broad range of M, 6 from
5 x 10% to 2 x 107, This result is consistent with
their A, data that decreased in proportion to Mh"0'21
in the M% range. However, such molecular weight
dependence of Ao differs from what has been reported
for flexible polymers in good solvents3 as well as
those shown in Figure 3.4. In addition, Berry’s A2
data®? for PS in toluene vary as M@—O'ZS throughout the
range of M, from 5.4 x 10% to 4.4 x 10% he studied.

Figure 3.7 shows that the present <Sz>z data for
PS in benzene are consistent with those from well-
documented previous studies.26’33’36‘38 All the plot-

ted points fall on a single straight line with slope
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Figure 3.6 Molecular weight dependence of g for
PS in benzene at 25°C. The symbols are the same

as those used in Figure 3.5.

1.19 (£ 0.01). This slope is just the one that has
been determined by Miyaki et al.,33’38 and is to be
expected for long flexible chains with large excluded

volume.3
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I11.3 Results for Polyisobutylene in Cyclohexane

Analyses of light scattering data for polyisobu-
tylene fractions in cyclohexane at 25°C are illustrated
in Figures 3.8 through 3.10, and the numerical results

2>zl/2 are summarized in Table

for M, Ao, Az, &, and <S
I11-2.

Figure 3.11 shows the molecular weight dependence
of Aq for PIB in cyclohexane (the unfilled circles) in
comparison with the data of Matsumoto et al.3 (the
half-filled circles) and Fetters et al.54 {the trian-

1/2 vs.

gles), who used the square-root plot of (Kc/Ry)
c (eq 2.12) and the linear plot of Ke/R; vs. c (eq
2.11), respectively. The so0lid line fitting our data
points bend slightly upward and merges with the indi-
cated dashed line of slope -0.2 at M, ~ 3 x 106. The
data of Matsumoto et al. are in substantial agreement
with ours, but those of Fetters et al. appear slightly
below them for M, 6 < 4 x 10°.

The molecular weight dependence of A3 is shown in
Figure 3.12. The straight line fitting the data
points has a slope of 0.6, which is the same as that

found above for PS in benzene for M, above 2.5 x 105.

The agreement strongly suggests that the exponent 0.6
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Figure 3.8 Plots of (K'C/Re)l/2 Vs, sin2(9/2) for PIB
fraction A-22B4 in cyclohexane at 25°C. The polymer
concentrations are 9.755 x 10”4, 8.301 x 1074, 6.954 x
1074, 5.523 x 1074, 4.170 x 1074, 2.803 x 1074, and

1.440 x 1074 g cm™3 from top to bottom.

-41-



(c,+c,)10°gem™® (cy+cal 0'3gcm'3

0 1 2 3 4 0 0.5 1 1.5 2
T T T T T T T T
14 '
4 -
3 w 12 Mzem
S-1118B 10
2 B o
4 A 12 A-42B3
i 3l S-1128 ) 10 W
e | 000009 E sf
O 2 &~ ! A-62B1
% 1k 3 101
£+ £ 8
Z sl = 6F
o(:‘ 0‘:‘ - d
s T g 8r P-32
@ 2k S-114B @ 6 F
W ) » ¢
i} 8T P-53
] 6 :—’—_{H}{yoxyoﬁﬂ&<y—
) 5-148 4r
: :/00@9@00/ 8r P-62
6 M
1 I ! 1 i 4 1 1 1 |
0 0.5 1 1.5 2 0] 1 2 3 4
(ci+co) 0? gcm'3 {ci+co)nt 0™ gem’®
Figure 3.9 Bawn plots for the indicated PIB fractions in cyclohexane at
25°C. S(cl,cz) data for pairs of neighboring c; and €y in a series of

polymer concentrations are omitted, since they were not very accurate.



c/10"‘gcm'3

145

135
85

O

o— P-53
75

35

33 |
16

15
9.0

7

8.6
5.0

.

o— P-32

o— A-22B4

4.6

|

c/16*gem*

c/1 0"3gcm'3
0 5

Mapp/10°

10

10

19 T T T
—O0—O0—7p—0—0—0p—C— S$.14B

1.7
0.8

T

A®

0.7

s

»

0.44

U

0.40‘
0.27

TV

—o— S-114B

O—— $-112B

—0— S-111B

0.25

(@}

Figure 3.10 Plots of Mé vs. ¢ for

PP

fractions in cyclohexane at 25°c¢C.

-43~

the indicated PIB




-1717_

Table 11I1-2
Numerical Results from Light Scattering Measurements

on PIB Fractions in Cyclohexane at 25°C

4, x 10° Ay x 102 <s?> 1/2
Fraction M, x 1075 g
mol g-z cm® mol g—3 cm® nm
S-111B 0.261 10.6 0.88 0.30 —
S-112B 0.429 9.55 1.15 0.29 —
S-114B 0.777 8.40 1.5 0.27 11‘6
S-14B 1.81 7.05 2.6 0.29 18.7
A-22B4 4,88 5.30 4.7 0.34 33.4
A-42B3 8.78 4.55 6.3 0.35 47.6
A-62B1 15.8 3.85 9.2 0.39 66.8
P-32 33.9 3.13 14.0 0.42 107
P-53 78.3 2.68 27 0.48 1717
P-62 141 2.54 42 0.46 252
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for A3 is common to long flexible chains in good sol-
vents. The PS data for M, < 10° were found to deviate
upward from the line with the slope 0.6, but no such
behavior is seen for PIB.

The molecular weight dependence of g is shown in
Figure 3.13. It can be seen that g stays at about
0.28-up to M, ~ 2 x 105 and then gradually increases
to 0.45 - 0.50 with increasing M@. This behavior of g
is quite similar to what is shown for PS in the region
of M, above 10° in Figure 3.6.

Equation 2.12 indicates that if g is equal to 1/3
regardless of M@, its third term vanishes and hence
(KC/RO)l/z varies linearly with ¢ up to a relatively
high concentration at which the fourth term becomes
important. The g values for both PS and PIB in Fig-
ures 3.6 and 3.13 change gradually from 0.25 to 0.5 as

M . increases from 2 x 104 to 107. This behavior

W

implies that, to a good approximation, g may be taken
as 1/3 over a molecular weight range of practical
interest, and thus explains why the square-root plot
has been successful in evaluating M, and A9 for the
systems PS + benzene and PIB + cyclohexane.

On the other hand, the linearity of the square-
root plot for osmotic pressure invokes a value of about

1/4 for g. The present g values for the two polymers
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Figure 3.13 Molecular weight dependence of g

for PIB in cyclohexane at 25°C.

are close to 1/4 in a range of M, from 2 x 10% to 5 x
105, where osmometry is considered suitable for molecu-
lar weight determination. Hence, they substantiate
Krigbaum and Flory’s early proposal19 that this type of
plot should be useful for analyzing osmotic pressure
data.

The values of <Sz> for PIB in cyclohexane are

z
plotted double-logarithmically against M, in Figure

3.14, together with those of Matsumoto et al.35 Our
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data points follow a straight line with slope 1.19
( 0.01) throughout the entire range of M, indicated.
This slope agrees with that determined for PS in ben-

1.33’38 (see Figure 3.7). The data

zene by Miyaki et a
points of Matsumoto et al, come below our data, but the
slope 1.17 they obtained does not differ much from

ours.

I111.4 Discussion

Interpenetration Function

The second virial coefficient is usually discussed
in terms of the interpenetration function ¥ defined
by2

A M

L — (3-1)
47 3/2N,<5%>37/2

Typical studies on this function, theoretical and
experimental, made before 1970 and those in the last

two decades are summarized in Yamakawa's book2 and

3

Fujita’s,” respectively.

Although ¥ for PS in benzene has already been

37

investigated by Yamamoto et al.,36 Fukuda et al., and

1.33,38

Miyaki et a in relation to the two-parameter

theory, we here discuss it together with that for PIB
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in cyclohexane. In Figure 3.15, our data of ¥, the
unfilled circles for PS in benzene and the unfilled
squares for PIB in cyclohexane, are plotted against the

cube of the radius expansion factor ag defined by
ag = <s%H1/2/¢s5% 1/2 (3.2)

where <32>01/2 denotes the value of <Sz>1/2 in the
theta state. In calculating a g Miyaki’s
relation33’38 <Sz>0z = 8.8 x 10-18 M, (cmz) for PS (in
cyclohexane at 34.5°C) and Matsumoto’'s relation35
<5255, = 9.52 x 10718 »_ (cm?) for PIB (in isocamyl
isovalerate at 22.1°C) were used. The figure includes
the previous ¥ data (the filled circles with pips) of
Yamamoto et al., Fukuda et al., Miyaki et al., and Sato
et al.2% for PS in benzene and those (the filled
squares) of Matsumoto et al.35 for PIB in cyclohexane.

All the data points except the filled squares
essentially fall on a single solid curve as indicated.
This is consistent with the prediction from two-parame-
ter theory that ¥ should be a universal function of
aSB. The asymptotic value of ¥ for‘infinitely large
a g may be estimated to be 0.22 + 0.02. The filled

squares deviate upward from the solid curve. This

deviation reflects the small differences in both A2 and
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Figure 3.15 Plots of ¥ wvs. czSS for PS in benzene
(O, this work; ® , Yamamoto et al.;36 & , Fukuda et
al.;37 @, Miyaki et al.;38 ®, Sato et al.zs) and PIB
in cyclohexane ( [0, this work; B, Matsumoto et
a1.35). The dot-dash line represents the Barrett

theory.39
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<Sz>Z between our data and Matsumoto's, observed in

Figures 3.11 and 3.14.
By combining perturbation calculations and comput-
er simulation data, Barrett39 and Domb and Barrett55

constructed the following interpolation formulas for ¥

and a g, respectively:

z
2 -
(1 + 14.322 + 57.3222) 0.2 (3.3)

T =
&g

ag? = [1 + 102y + (T0m/9 + 10/3) 252 + 873/22,%72/15

x [0.933 + 0.067 exp(-0.85zp - 1.3929%)] (3.4)

Here, 2z, is the excluded-volume parameter defined by

3 3/2
) B onl/? (3.5)

Z2=(
2nlﬁ

In this equation, b is the segment length and n the
number of segments in one chain. The dot-dash line in
Figure 3.15 represents eq 3.3 combined with eq 3.4.

The agreement between this and solid curves is satis-

factory for ass larger than 6. Equation 3.3, when
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combined with the asymptotic relation asz = 1.53z2%/2

38,56 yields an

derived from computer simulation data,
asymptotic ¥ of 0.235, which is close to the above
estimate 0.22 + 0.02.

However, as aS3 decreases, the dot-dash line de-
clines to zero, while the experimental curve rises
(note that ¥ of any two-parameter theory decreases to

2’3). This serious dis-

Zero as aS3 approaches unity
crepancy has already been observed not only for PS in -
benzene33 but also for poly(D-gB-hydroxybutyrate) in

1.57,58

trifluorocethano The present PIB data give

additional evidence for it. As pointed out by Fujita

59 this discrepancy may be ascribed pri-

and Norisuye,
marily to the fact that eq 3.3 with eq 3.4 predicts a
molecular weight dependence of Ao, weaker than that
represented by 4, « M@—O'z, while the experimental Ao
for PIB (that for PS as well) has a stronger depend-
ence. It should be added that in contrast to the dot-
dash line sharply declining to zero, ¥ for low molecu-
lar weight PS in toluene rises first gradually and then

sharply as c153 approaches unity.7’10

Reduced Third Virial Coefficient

Theories of g for flexible chains were worked out

24 40

first by Stockmayer and Casassa and later by Koyama
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41 in the framework of two-parameter

and by Yamakawa
theory, i.e., in the binary cluster approximation.

The last author obtained g by combining his approximate
closed expression for Ag with the Casassa-Markovitz
theory60 for Az. According to theée two-parameter
theories, g is a universal function of zz/as3. Knoll

43 and Douglas and

et al.,42 des Cloizeaux and Noda,
Freed44 calculated g for a good solvent system on the
5asis of the first-order & expansion in renormaliéa—
tion group methods.

Table I1I-3 summarizes the asymptotic values of g
predicted by the two-parameter and renormalization
group theories. The value by the Stockmayer-Casassa
theory agrees with that for rigid spheres and is not
very different from that by the Koyama theory. We
note that these two theories are based on the smoothed-
density model with essentially identical intermolecular
potentials. The Yamakawa theory gives a value much
larger than the others. The renormalization group
values by Knoll et al. and by des Cloizeaux and Noda
come close to our experimental values of 0.45 - 0.50
for PS and PIB at M, ~ 107 (see Figures 3.6 and 3.13).
However, this agreement cannot be taken literally until

g is calculated up to a higher order in ¢.

Regarding the behavior of g at finite molecular
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Table I11-3

Theoretically Predicted Asymptotic Values of
the Reduced Third Virial Coefficient g

Authors Model or Method g

Stookmayer-—Casassa24 Smoothed Density 0.625
Koyama40 Smoothed Density 0.704
Yamakawa?! Differential Equation 1.333
Knoll-Schifer-Witten??2 Renormalization Group 0.44

des Cloizeaux-Noda?3 Renormalization Group 0.435
Douglas—Freed44 Renormalization Group 0.277

weights, the renormalization group calculations made so

far fail to explain why g depends on M, as has been

found in the present work.

On the other hand,

the

two~-parameter theories of the three groups mentioned

above all predict g to increase monotonically with

increasing molecular weight,

except those for M, below 109,

in agreement with our data

In Figure 3.16, the values of g for PS in benzene

and PIB in cyclohexane are plotted versus aSB.

For

fractions whose <Sz>z data are unavailable, we have

estimated a g by extrapolating the empirical relations
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0.6

Figure 3.16 Plots of g vs. ch3 for PS in benzene
(O, this work; @, Sato et al.26) and PIB in cyclo-
hexane ( [0 ; this work). Dot-dash line, Stockmayer-

Casassa’s theory.24



ag® = 0.1674,9°1% for ps33 ana a % = 0.2061 0419 for
PIB; the latter was obtained from the data in Figure
3.14 and the <Sz>0z data of Matsumoto et al.3®
Because of the extrapolation, the abscissa values below
2 may not be very accurate, but their accuracy 1is
immaterial in the present discussion. The plotted
points for the two systems approximately form a single
composite curve, at least, in the region of C’S3 above
2, as indicated by a solid line. This finding satis-
fies the requirement of the two-parameter theory.

The dot-dash line in the Figure 3.16 represents
the g vs. 6!53 relation predicted by Stockmayer and

24 who combined their theory for g (as a func-

Casassa,
tions of zz/aS3) with the Flory'equation61 for a g
i.e., ch5 - ch3 = 2.6022. This line comes close to
the solid curve for aS3 larger than 2. However, as
ag approaches unity, it sharply declines to zero,
while the experimental g stays at about 0.3 or even
goes up after passing through a shallow minimum. This
sharp contrast is similar to what has been observed for
V.

62 the original

As was shown by Miyaki and Fujita,
Flory equation used by Stockmayer and Casassa is a good
approximation to either PS in benzene or PIB in cyclo-

hexane for (XSB > 2, so that the observed agreement
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between the solid and dot-dash curves in Figure 3.16
may be taken as that in g itself. However, this
agreement must be due to a compensation of the errors
in both A2 and A3 that the Stockmayer-Casassa smoothed-
density theory involves, because the Flory-Krigbaum
theory63 for Ag based on the same smoothed-density
model fails to describe,Az for flexible polymers. In
other words, the Stockmayer-Casassa theory should be
invalid for AS’ though it almost quantitatively ex-
plains the ratios of A5 to AZZMh for the two typical

3 above 2. The

flexible polymers in the region of ag
same argument applies to the Koyama theory, which is
essentially identical to‘the Stockmayer-Casassa theory.
The Yamakawa theory gives g Qalues that are too large.
In conclusion, none of the available theories can
explain the observed molecular weight dependence of Ag
for PS in benzene and PIB in cyclohexane. Even quali-
tatively, there exists a serious discrepancy in g
between our experiments and the two-parameter theory
when ag is approached to unity by lowering the molecu-
lar weight in a given good solvent. The discrepancy
is similar to that in ¥, indicating that the current

two~-parameter theory for A3 overlooks something impor-

tant, as is the case for A2'
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Chapter IV
Theta Solvent Systems

Iv.1 Introduction

In this chapter, AZ and Ag for two theta solvent
systems, PS in cyclohexane and in trans-decalin, are
determined as functions of M, and T. It is shown that
A3 for either system remains positive at ©. Since
this implies the breakdown of the binary cluéter ap-
proximation at ®, the A2 daté are used to test the
available theories of Ag based on the smoothed-density
' 12,15

modelll and the first-order cluster expansion,

both taking three-segment interactions into account.
Iv.2 Results for Polystyrene in Cyclohexane

Iv.2.1 Data Analysis

Figure 4.1 illustrates the concentration depend-
ence of Kc/RO for PS fraction 4a-B in cyclohexane at
the indicated temperafures. The curves fitting the
data points at the respective 7 bend upward and appear

to converge to a common ordinate intercept.
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Figure 4.1 Concentration dependence of scattering

intensity at zero angle for PS fraction 4a-B in cyclo-

hexane at indicated temperatures.
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The Bawn plots constructed from these data accord-
ing eq 2;16 are shown in Figure 4.2, The plotted
points at any T follow a straight line, whose intercept
and slope may be equated to 2A2 and 3A3, respectively.
Similar plots for six PS fractions 2b-B, F’4-B, 4a-B,
F-40B, F80-B, and F288-B at a fixed T of 34.5°C are
displayed in Figure 4.3. The values of A2 and A3 for
the six fractions at different T are summarized in
Tables IV-1 and 1IV-2, respectively.

With the A2 and A3 data for a given fraction at

each T, the apparent molecular weight M, defined by

pp

eq 2.17 was calculated as a function of c. Figure 4.4

shows that the resulting plots of M%pp vs., ¢ for the

six fractions at 34.5°C are horizontal and permit

unambiguous determination of Mg at infinite dilution,

1%y
i.e., M, of the respective fractions. The values of
M, obtained at 34,5°C agreed with those at other tem-
peratures within * 1% for any fractions. Thus, only

those at 34.5°C are presented in both Tables IV-1 and
Iv-2. We note that the M, values in cyclohexane agree
with those in benzene within * 2.5%, especially within
* 1% for fractions 4a-B, F-40B, and F80-B (see Table

IT1I-1).
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Figure 4.2 Bawn plots constructed from the data in

Figure 4.1.
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Table Iv-1
Values of A2 for Polystyrene Fractions in Cyclohexane

at Different Temperatures

A2/107% mol g72 cm3

2b-B F’4-B 4a-B F-40B F80-B F288-B

T/°C M, = 2.07 M, = 5.07 M, =9.97 M, = 37.3 M = 8.3 M = 300

x 10% x 104 x 104 x 104 x 104 x 104
27.0 -7.5 ~7.4 -7.5 -6.5 —— —_—
29.0 -5.1 ~5.0 ~5.4 -4.0 -4.5 —_—
31.0 ~2.9 -3.1 ~3.1 ~2.4 -2.6 -2.4
33.0 -0.7 ~1.4 -1.3 -0.7 -0.8 ~0.7
34.5 1.0 0 0 0 0 0.2
36.0 2.6 1.1 1.4 1.3 1.0 0.9
38.0 4.6 2.1 2.5 2.7 2.1 1.9
40.0 6.3 3.6 3.9 3.7 3.3 2.5
42.0 7.5 5.0 4,9 4.7 4.1 3.2
45.0 — 6.3 _— — _ 4.1




Table 1v-2
Values of A3 for Polystyrene Fractions in Cyclohexane

at Different Temperatures

A5/10™% mo1 g73 cm®

2b-B F’4-B 4a-B F-40B F80-B F288-B
7/°c M, =2.017 M, =5.07 M, =9.97 M, =237.3 M, =84.3 M, = 300
x 10% x 104 x 104 x 104 x 10% x 10%
27.0 6.4 6.0 6 7.0 S— —
29.0 5.9 5.7 5. 5.9 9.4 —_—
31.0 5.9 5., 5.0 4.g 8.q 12
33.0 5.6 5.4 3.4 6.7 10
34.5 5., 5.4 4.4 4., () 9
36.0 4.q 5.4 4.4 3.g T.q 10
38.0 5.1 5.4 4.g 3.5 T.g 10
40.0 5., 6. 4.4 4. 9., 15
42.0 5.4 6.4 5., 4.4 9.4 16
45.0 — 7.5 —_— — —_— 20
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Figure 4.4 Plots of Mépp vs. ¢ for

fractions in cyclohexane at 34.59cC.
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i1v.2.2 Second Virial Coefficient and Theta

Temperature

Figure 4.5 depicts the temperature dependence of
Az for the indicated PS fractions in cyclohexane.
Except for the lowest molecular weight fraction 2b-B,
AZ becomes zero at 34.5°C (£ 0.03°C); the graphically
estimated A, value for F288-B is 2 x 107% mol g™2 em3,
but it cannot be distinguished from zero within experi-
mental uncertainties. This is in accord with Miyaki
et al.,33’38 who showed that Az of PS in cyclohexane
vanishes at the same T of 34.5°C for M, ranging from
1.9 x 105 to 5.6 x 107. Thus, it seems reasonable to
conclude that above M, ~ 5 x 104, ® for the PS +
cyclohexane system is virtually independent of molecu-
lar weight. This disagrees with the finding of
Vink,31 whose osmotic pressure data for the same system
showed that © appreciably increases as the molecular
weight is lowered from 4.1 x 105 to 3.7 x 104.

Recently, Huber and Stockmayer7 found that Ao for

low molecular weight PS (M < 104) in cyclohexane at

W
35°C is positive and markedly increases with decreasing
M@ (in their work, this temperature is the theta point

for high molecular weight samples). Similar trends
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were reported by Konishi et al.8 for PS in cyclohexane
at 34.5°C and by Tamai et al.g for poly(methyl metha-
crylate) in acetonitrile at the theta temperature
44.0°cC. Our positive A; value for the lowest molecu-
lar weight fraction 2b-B at 34.5°C is consistent with

these results for PS in cyclohexane.

Iv.2.3 Third Virial Coefficient

The temperature dependence of Ag is shown in
Figure 4.6, Importantly, A3 for any fraction remains
nonzero at ©. This reveals the breakdown of the two-
parameter theory for A3 near the theta point; the
theory predicts that Ao and A3 simultaneously vanish
when the binary cluster integrél becomes zero.2 The
curve for each fraction is nearly parabolic with a
broad minimum around 34.5°C, and the minimum becomes
very shallow as M@ decreases. This molecular weight
dependent variation in Ag with T is probably the first
finding and awaits some theoretical interpretation.

The highest polymer concentration studied for a
given sample in cyclohexane is 2 - 4 times higher than
that investigated for benzene solutions. In benzene
solutions, distinct downward curvatures were observed

in Bawn plots when the measurement was extended to such
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high concentrations. On the other hand, any Bawn
plots for cyclohexane solutions show no discernible
curvature, suggesting that in poor solvents, the seéond
and third virial terms dominate [(KC/RO) - (1/Mh)] over
a wider concentration range than in good solvents.

The fourth virial contributions to the S(cl,cz) VS,

cy + Cg and [(Kc/RO) - (1/M@)]/c vs. ¢ relations are
different (compare eqs 2.14 and 2.16), and hence the
linearity of the former plot does not necessarily
ensure that Kc/Ey at © contains no substantial Ay
contribution in the range of ¢ studied. This point is
discussed in the following using the data presented in
Figure 4.3.

When Ao = 0, it follows from eq 2.11 that
Q = [(Ke/Ry) -~ (1/M,)1/c2
= 3A3 + 4A4c + ... (AZ = 0) (4.1)

Equation 4.1 indicates that @ is essentially independ-
ent of ¢ if it is dominated by Ag in the concentration
range considered; we note that this equation is ap-
plicable when an accurate M, is known in advance.
Figure 4.7 shows the plots of & vs. ¢ constructed from

the KC/RO data in cyclohexane at 34.5°C and the M@ data
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in benzene for three fractions 4a-B, F-40B, and F80-B
whose M, values in the two solvents agreed within

+ 1%. We have omitted intensity data at low ¢ where
'KC/RO is not removed from the input value of l/M% by
more than 1%. All the plotted points except two at
the lowest c¢ for fractions 4a-B and F-40B fall on
horizontal lines for the respective fractions, yielding
Az of 4 x 1074, 5 x 1074, and 7 x 1074 mol 73 cm® for
fractions 4a-B, F-40B, and F80-B, respectively; the
deviations of the two points from the lines are proba-
bly immaterial, since the differences between KC/RO and
1/Mh values for them are only about 2%. The substan-
tial agreement of these A3 values with those at 34.5°C
in Table IV-2, along with the observed c-independent
behavior of @, convinces us that A4 has a negligible

contribution to Kb/Ro when the Bawn plot is linear.

Iv.2.4 Some Remarks

With the experimental relation <Sz>0 = 8.8 x 10718
2 . . 33,38
M, cm® reported by Miyaki et al. for polystyrene
in cyclohexane at 34.5°C, the overlap concentration c*
defined by3 ¥ o= 3M@/(4nA%<82>03/2) was estimated for

each fraction. The calculated c* values were 20 - 30%

higher than the highest concentrations studied for
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three fractions F’4-B, 4a-B, and F-40B and 2 - 3 times
higher than those for others. Thus, we find that at
least for these three fractions the concentration
dependence of [(Kc/RO) - (l/Mh)] in cyclohexane at
34.5°C is determined substantially by A3 only over a
wide range of ¢ from 0 to 0.7c%.

Nonetheless, there is a low concentration region
in which Ke/Rg at ® is unaffected by Aj. For exam-
rle, KC/RO calculated for fraction 4a-B with the A& and
Ag values at 34.5°C in Table IV-2 stays equal to 1/M;

within 1% up to as high a c as 8.8 x 1073 g cm™3

(= 0.180*). Such c-independent behavior of Kc/R
vielding A2 = 0 is just what is usually observed in
theta solvents. In this connection, it should be

noticed in Figure 4.1 that ©® for the fraction 4a-B
appears to be not at 34.5°C but at 33°C owing to the
compensation of negative A, and positive Agj in the
range of ¢ between 1 x 10’2 and 2 x 10_2 g cm-g.
Hence, ® may be underestimated if light scattering

data at relatively high ¢ are analyzed by the conven-

tional Kb/Ro vs. ¢ plot.
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Iv.3 Results for Polystyrene in trans-Decalin

IV.3.1 Second Virial Coefficient and Theta

Temperature

Analyses of light scattering data for PS fractions
in trans;decalin in a temperature region from 13 to
55°C are presented in Figures 4.8 through 4.11. The
numerical results for 4, and A3 are summarized in
Tables IV-3 and 1IV-4, respectively, along with those
for M, at 21°cC. We again note that the M, values at
this temperature agree with those not only at other T
in the same solvent but also in benzene (Table III-1)
and cyclohexane (Table IV-1) within experimental er-
rors.

Figure 4.12 shows the temperature dependence of A2
for the indicated fractions. The theta point for each
fraction was determined from the intersection between
the line for A9 = 0 and the solid line fitting the data
points. The values of ® thus obtained as a function
of M, are shown by unfilled circles in Figure 4.13;
bars attached to the circles represent the experimental
uncertainty. In contrast with the M -independence of
® in cyclohexane for M, > 5 x 104, ® in trans-decalin

increases approximately from 21 to 23°C as M, decreases
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Table IV-3
Values of A2 for Polystyrene Fractions in trans-Decalin

at Different Temperatures

,42/10_5 mol ghz cm3

2b-B F’4-B 4a-B F-40B F80-B F288-B

T/°C M, = 2.06 M, = 5.12 M, = 9.62 M = 37.2 M, = 84.3 M = 308
x 104 x 104 x 104 x 104 x 10% x 104

13.0 — -11.0 -9.5 S—— — —
15.0 ~11.4 -7.9 -7.6 -7.0 — —
17.0 -8.2 ~5.5 -5.6 -4.5 -3.8 -3.0
19.0 -5.3 -3.0 -3.5 -2.5 -1.7 -1.0
21.0 -3.0 -1.6 -2.0 -1.0 -0.3 0.2
22.0 ~1.5 _ -0.5 S S— —_
23.0 0 -0.1 0 0.2 1.0
25.0 1.5 1.3 1.7 1.5 2.2
35.0 9.0 8.0 7.8 7.0 6.6
45.0 14.8 13.5 12.7 11.0 9.2
55.0 19.5 18.5 16.0 14.5 11.1 8.9
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Table iv-4
Values of Ag for Polystyrene Fractions in trans-Decalin

at Different Temperatures

,43/10'4 mol g'3 cm6

2b-B F'4-B 4a-B F-40B F80-B F288-B
T/°C M, = 2.06 M, =5.12 M, = 9.62 M, = 37.2 M, = 84.3 M = 308
x 104 x 104 x 104 x 104 x 104 x 104
13.0 e 6.3 6.1 e — S—
15.0 7.5 5.9 8.0 —- —
17.0 5.9 4.4 5.5 6.4 16 17
19.0 4.g 3.4 o 4.4 10 14
21.0 5.0 3.4 4.q 4., 10 12
22.0 4., e 7 R — —
23.0 3.9 3.4 4.4 4.g 11 12
25.0 3.g 3.g 3.g 4.4 11 11
35.0 4.5 5.4 3.4 ‘o 11 28
45.0 5.4 5.6 5.6 6.7 21 39
55.0 6.q 5.0 7 8.g 26 48
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from 105 to 10%°.  This finding is striking, in that ©
for any flexible polymer has long been believed to be
independent of molecular weight unless M is too low.
In the following, we compare in detail our ©® data in
trans~decalin with those reported by previous
workers.37’64"66

The literature data for ®, all obtained by use of
the conventional linear or square-root plot (see egs
2.11 and 2.12), are shown by different marks in Figure
4.13. Though Berry52 determined ® of a PS sample to
be 21.3°C, his datum is not included here, because the
molecular weight of the sample is not given. It can
be seen that the ©® values by different groups are at
variance, being in the range 20.4 - 24°cC. On the
basis of our experience, we estimate the experimental
uncertainty of ® to be * 0.5°C. Taking this uncer-
tainty into account, we can say that our ® data are in
rather good agreement with those of Fukuda et al.37
(the filled circles) and Konishi et al.%% (the unfilled
squares) for M, above 8 x 105 but closer to those of
Inagaki et a1.65 (the filled squares) for M, below 4 x
105,

Fukuda et al.37 found that ® for Pressure Chemi-
cal’s (PC’s) sample is higher by 3°C than that for

their own anionically prepared PS samples shown in
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Figure 4.13. They attributed this to a possible but
unknown difference in microstructure between the two
kinds of sample. However, this interpretation is not
conclusive, since for cyclohexane solutions these
authors observed no difference in © between the sam-
ples. It should be noted that our ©® of about 23°C
for PC’s samples 2b-B and 4a-B (M, ~ 2 x 10% and 105)
in the figure agrees essentially with that for Tosoh'’s
sample F’4-B (M, ~ 5 x 104). Interestingly, this ©
value is very close to 23.4°C for PC’s sample deter-
mined by Fukuda et al. from light scattering, though
the molecular weight of the sample of these authors is
not given.

Nose and Chu’s © value®6 (the unfilled triangle
in Figure 4.13) was determined at relatively high c of
2 x 1073 to 2 x 1072 g em™3, As remarkéd in section
IV.2.4, a conventional plot at such high ¢ leads to an
appreciably low ® unless A, is estimated separately
from A3, as was done in the present work (see below for
A3 values at ©). The discrepancy between our ©
(22.5°C) and Konishi et al.'s (ZloC)64 at M, ~ 4 x 105
in Figure 4.13 remains to be seen. The two ©® wvalues
ought to agree with each other, since the scattering

data of the latter group were taken at sufficiently low

c for Tosoh's sample F-40, the same as our F-40B in its
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origin. In passing, we determined ® for the same
sample F-40 (Mh = 3.71 x 105) as Konishi et al.’s from
additional light scattering measurements to be 22.0°C,
which is slightly higher than Konishi et al.’s value
but agrees substantially with 22.5 (+ 0.2)°C for our
fractionated sample F-40B.

In Appendix A, it is shown that the intrinsic
viscosity [#] in trans-decalin at 21°C (@ for high
molecular weight samples) varies as Mhl/z and that
below M, ~ 4 x 10°, [7] values at 21 and 23°C are
approximately the same. Thus, the Gaussian behavior
of [7] is observed at 21°C down to M, ~ 2 x 10% de-
spite the fact that ©® for M, < 10° is about 23°cC. In
other words, ® for the PS + trans-decalin system would
erroneously be concluded to be 21°C regardless of M,
if it were determined only for samples with Mh higher

than 8 x 10°.

Iv.3.2 Third Virial Coefficient

Figure 4.14 shows the temperature dependence of Ag
for the indicated fractions in trans-decalin. The
general features of the curves are very similar to

those for cyclohexane solutions in Figure 4.6, and in
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particular, A4 in trans-decalin also remains positive

at any T encompassing ©.

IvVv.4 Discussion

Ag_at the theta point

The molecular weight dependence of Ag for PS in
cyclohexane at 34.5°C and in trans-decalin at 21.0°C is
shown in Figure 4.15, along with that for PS in benzene
at 25°C.

Although the temperatures of 34.5°C for cyclohex-
ane and 21.0°C for trans-decalin are the theta points
for high molecular weight samples, i.e., not always
equal to ® for low molecular weight ones, the indicat-
ed Ag data in the two solvents'may be equated to A3(®)
{those at ®) within experimental errors, because Ag
very near ©® 1is insensitive to T as shown in Figures
4.6 and 4.14.

The two sets of data for A3(®) in Figure 4.15
happen to be almost superimposed on a single curve,
which 1s essentially horizontal with A3(®) ~ 4.5 x
10™% mo1 g—3 em® for 2 x 10% < M, <5 x 10% and appears
to rise with increasing M, for M, > 5 x 105. We note,
however, that no much emphasis can be put on this

upswing of A3(®) at high M, since our light scattering
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measurements on high molecular weight fractions were
confined to low-concentration regions in which S(cy,eg)
values in the Bawn plot are not removed much from zero
(see Figures 4.3 and 4.10). It is important to ob-
serve in Figure 4.15 that the A3(®) values are one or
two orders of magnitude smaller than those in the good
solvent benzene at any M.

Since A3 near © remains positive in both cyclo-
hexane and trans-decalin, it is mandatory to take
three-body segment interactions into consideration in
discussing A3 near the theta point. In the following,
we compare the present data with the first-order per-
turbation theory15’18 for Aq formulated with the ter-

nary cluster integral g4 incorporated, i.e.,

NAZHB

30

Ag = (B4 + orders in B,83, 532, and 323)

N2 am<s?y 3
- ( ) (23 + ver ) (4.2)
3 M

where

-3 3
) B4 (4.3)

Zq = |
3
2nb2

According to eq 4.2, Aj 1is independent of M when
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both g, and B3 are vanishingly small. This is con-
sistent with the behavior of A3(®) observed for M& < 4
x 10% in Figure 4.15,. If as was proposed by Cherayil
et al.,l5 eq 4.2 is applied to the A3(@) data in this
molecular weight region, a value of 4 (+ 1) x 10°45
cm6 is obtained for B3 in both cyclohexane and trans-
decalin. This value in turn yields zq ~ 0.003 in
cyclohexane and zq ~ 0.005 in trans-decalin when use
is made of the <Sz>0 - Mﬁ relation of Miyaki et
al.33:38 o1 the former and that of Konishi et al.%%
for the latter. These Zq values may be considered
essentially the same within the uncertainty in their
determination; the difference between them arises from
that in b between the two solvents (0.74nm in cyclohex-
ane and 0.68nm in trans-decalin).

Very recently, Chen and Berry57 showed that KC/RO
- 1/Mw for a PS sample (M@ = 8.6 x 105) in cyclohexane
at ® increases almost linearly with cz in a concentra-
tion region roughly from 0.70* to 40*. They took this
finding as evidence for the nonvanishing of A3(®) and
estimated Zg at ©® to be 0.0045, using the experimental

A3(®) and eq 4.2, This zZg value is close to our

estimate 0.003 in the same solvent.
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Molecular Weight Dependence of A2 near the Theta Point

From the foregoing discussion, it is evident that
B3 for PS in either cyclohexane or trans-decalin
cannot be ignored near the theta point. In this
subsection, we compare the A2 data in cyclohexane at
34.5°C and trans-decalin at 21.0°C with the currently

available theorieslls12,15

which take B3 into account,
The first-order perturbation theorylz’15 for 4, is

written in the form

NAHZ 4 3 3/2 6 1/2
Ao = {Bo + ( ) B:01 - 2(—) ]
2 2 M2 27 sl/2 g, p2 3 n
+ orders in B,2, 8,83, and B3%) (4.4)

where ¢ is a cut-off parameter which approximately
represents a minimum number of consecutive segments
necessary for the formation of a loop in one chain; it
should be much smaller than n. We note that the n~17/2
term in the braces of eq 4.4 is not affected by the
stiffness or non-Gaussian nature of <short chains (see
Appendix B).

Equation 4.4 indicates that the theta state for
sufficiently long chains, signified by ®oo in the

ensuing presentation, is attained by compensation of
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negative g, and positive 46‘1/2(3/2nb2)3/253 values
provided both Bz and B3 are vanishingly small. Thus,

under this condition, A2(®°°) (Az at ®oo) is represent-

ed by
aNyn® 3 372 g4
As(B) = - ( ) (4.5)
2
°° M 27 b2 nl/2
which predicts that A2(®co) varies as —l/nl/z. This

is in line with results from computer simulations.§8—71
Figure 4.16 compares the experimental Ao (0O o)

values for PS in cyclohexane (the unfilled circles) and
trans-decalin (the squares) with the solid curve com-
puted from eq 4.5 for B3 = 4 x 10745 ¢cpb (estimated
above from A3) and b = 0.7 nm; -the ® values in cyclo-
hexane and trans-decalin have been taken as 34.5 and
21.0°c, respectively. The figure includes Huber and

7" (the filled circles) in cyclohexane

Stockmayer’'s data
(in their case, O = 35°C). The solid curve cones
fairly close to the data points in trans-decalin for

M, > 10°. However, its decline with decreasing molec-

W

ular weight is incompatible with the cyclohexane

points, which stay zero down to M, ~ 5 x 104 and then
sharply go up. The discrepancy occurs whatever value
may be taken for B3, as may be seen from eq 4.5. We

therefore conclude that the first-order perturbation
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theory fails to give a consistent explanation for the
observed Mﬁ—dependence of A2(®c°) in cyclohexane and
that in trans-decalin.

Huber and Stockmayer7 found that the upswing of

the experimental A2(® in cyclohexane at low M% in

o)
Figure 4.16 can be explained qualitatively by the
smoothed-density theory of Orofino and Flory11 for A2‘
Near @, this theory (see eq 5.12 in Chapter V) is
written in the form

2
Ny n 3 3/2 B
A
{52 + 33/2( 3

Ag + ...} (4.6)

2 M2 2 71 b2 nl/2

which indicates that the condition for (O is given by

172 (com-

32 = 0 and hence that A2(®°°) varies as 1/n
pare with eq 4.5). The dashed line in Figure 4.16
represents the theoretical value of A2(®co) computed
from eq 4.6 with Bo = 0 for the same B3 and b values
as above. Though its rise with a decrease in molecu-
lar weight is consistent with the cyclohexane data, the
curve begins to deviate appreciably from zero at as
high a molecular weight as 3 x 106, and moreover it
contradicts the data in trans-decalin in which A2<®a:)
decreases with lowering M_.

Apart from the above comparisons between theory

and experiment, the discrepancy between the perturba-
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tion and smoothed-density theories themselves cannot be
overlooked. It is serious, in that the two types of
theory give different explanations of ®oo unless B3
happens to be zero: The condition for ©_ is given by
By + 4(3/226%)3/28,/61/2 = 0 in the perturbation
theory, while it is given by Bo = 0O in the smoothed-
density theory. In the next chapter, we show that the

Orofino-Flory theory11

is incorrect for nonzero B3 and
that a correct treatment of the smoothed-density model
leads to an expression consistent with the first-order
perturbation calculation. Thus, Huber and Stockmay-
er’s explanation mentioned above has no theoretical
base.

In short, the first-order perturbation theory is
the only one that is currently reliable for Az very
near @, but as shown above, it fails to explain con-
sistently our A2(®co) data. Second and higher order
calculations on Ag and Ag may be worth trying. Howev-
er, we deem it necessary to find a certain physical
factor in addition to 53, overlooked in the current
polymer solution theory. The reason is that the

observed opposite M,-dependencies of A2(® in cyclo-

o)
hexane and trans-decalin seem difficult to explain on

the basis of essentially the same A3(®) values and

hence approximately the same B5 or zg values in the
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two solvents. As shown in Appendix B, the stiffness
of polymer chains does not affect A2(®°°) to first
order. At present, we are unable to say what the

factor is.
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Appendix A

Intrinsic Viscosity of PS in trans-Decalin

Intrinsic viscosities [# ] for six PS fractions in
trans-decalin at 21 and 23°C were determined, using a
conventional capillary viscometer of the Ubbelohde
type. The results are shown in the form of log [#]
vs. log M@ in Figure A.1, in which the unfilled and
filled circles refer to 21 and 23°C (i.e., the theta
temperature for high and low molecular weight frac-
tions), respectively. The unfilled circles are fitted
accurately by a straight line having the slope 0.5
expected for Gaussian chains, i.e., for long flexible
chains in the theta state. The filled circles fall on
the same line for M, < 4 x 105 and deviate upward from
it for M, > 8 x 105. Thus, [#] is virtually unaf-
fected by the temperature difference of 2°C if M, is
lower than 4 x 10°. It is instructive to notice that
without precise ® data in this Mh region, ® for the PS
+ trans-decalin system might be concluded to be 21°cC

regardless of Mﬁ.
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Appendix B

Perturbation Calculation of A2 for Wormlike Chains

Equation 4.4 is based on the Gaussian chain model
valid for infinitely long chains. Thus, we ought to

-1/2

examine whether the n term in it is affected by

chain stiffness. To this end, with the Kratky-Porod

72

wormlike chain, a typical model for stiff polymers,

we perform a first-order perturbation calculation on Ay
in this appendix.

This model chain is characterized by two parame-
ters, the contour length L of the chain and Kuhn’s
segment length 1'1. The latter is Jjust twice the
persistence length of the chain and a direct measure of
stiffness associated with chain bending. Following

73 we use a wormlike bead

Yamakawa and Stockmayer,
model, i.e., an array of n beads, each being separated
by spacing b along the chain contour. In this model,
L is equal to nb, and the interaction between two beads
and that among three beads (two belonging to one chain
and the rest belonging to the other chain) are repre-
sented by 52 and 33, respectively.
For simplicity, we assume b to equal l-l and

measure every contour distance in units of 1—1, SO
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that the reduced contour length AL = n. Then, Ao
near @ is expressed as

N n2 28 n

A 3

(By + — (n - t)G(0;t) dt + ...)
2, nb3 7 0

(B-1)
where t denotes the reduced contour distance between
two beads belonging to one of the two interacting
chains and G(0;t), the ring-closure probability, i.e.,
the distribution function representing the probability
of contact of the two beads separated by t along the

73

chain contour. Yamakawa and Stockmayer evaluated

this function to be

3 3/2

G(o;t) = (57;)

go(t) (B-2)

where

go(t) = — ™A/t (1 + ¢ 0) (t £ 0.96093)

(B-3)

1 5 79
(1 - — - ) (t > 0.96093)
L ¢3/2 8t 640t2

with Cb = 1504.9, Cl = -0.81242, and A = 7.0266.

-102-



Substituting of eq B-2 with eq B-3 into eq B-1,

followed by integration, gives

2
Nan 3 3/2
s (B2 + =) B303.160 -
2M 2n b n

A2
+ ...} (B-4)

Comparison with eq 4.4 shows that the n"l/z term in eq
4.4 for Gaussian chains is unaffected by chain stiff-
ness. Note that if ¢ is taken to be 1.602, the two

equations coincide with each other up to the order

172
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Chapter V

Remarks on Smoothed-Density Theories for Flexible

Chains with Three-Segment Interactions

V.l Introduction

As discussed in the preceding chapter, the Orofi-
no-Flory (OF) smoothed-density theory11 for Ao is

inconsistent with the first-order perturbation calcula-

tionlz’15 unless the ternary cluster integral B3

happens to be zero. This inconsistency was pointed

12

out first by Yamakawa about 25 years ago, but its

origin has been left unexplored. Tanakal?

presented a
mean-field theory for Ag (based on the smoothed-density
sphere model) taking B3 into account, and qualitative-
ly explained the molecular weight-independent behav-
ior4'6 of Az below ©®. However, the Tanaka theory is
essentially equivalent to the OF theory and hence
inconsistent with the perturbation calculation.

12

Yamakawa also showed a similar inconsistency to exist

in the end-distance expansion factor «a p defined by aR2
= <R2>/<R2>0, with <R2> and <R2>0 being the mean-square

end-to-end distances in the perturbed and unperturbed
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states, respectively.

In this chapter, we investigate the origin of
these inconsistencies between the smoothed-density and
first-order perturbation theories, confining ourselves
to infinitely long chains. First, we calculate AZ
using the smoothed-density model but taking into ac-
count chain connectivity which is ignored in the OF
theory. Then, a similar calculation is made on aRz.
The results demonstrate that the neglect of chain
connectivity in the OF theories for both Ag and aszis
responsible for the above-~mentioned inconsistencies.
We also examine the validity of the uniform expansion

2

approximation2 to «a p” near ®, by carrying out a sec-

ond-order perturbation calculation.

V.2 Second Virial Coefficient

We consider two identical, long flexible chains of
molecular weight M each of which is Gaussian in the
unperturbed state. Given an average intermolecular
potential V5, as a function of the distance S|, between
the centers of mass of the two chains, A2 may be ex-

pressed by11

N
A
Ay = ;;5 J{l -~ expl-Vyo(S19)/kpT]}dSyg (5.1)
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Taking two- and three-segment interactions into ac-

count, we may express V12 in the smoothed-density model

asz
n n
Vig(S12)/kpT = B ile 15:1 J'pil(s)piz(s - §y5)ds
n n n
+ 28 b p) > .fP- - (s,8)P; (8 - Si,)ds
3 i1=1 Jy=iq+1 ip=1 11T 12

(5.2)
Here, Pil(S) for Piz(s)] denotes the distribution
function for the distance vector s of segment iy in
chain 1 (or segment iz in chain 2) from the center of
mass, and Piljl(s,s), the bivariate distribution func-
tion representing the probability that a pair of seg-
ments il and jl in chain 1 are located at s.

We consider no intramolecular excluded-volume
effect. Then, the distribution functions Pbil(s) and
Pbi1J1(S’S) in the unperturbed state are obtained by
the standard method? as

Poi (s) = (3/2m<5; %50)%/% exp(-85%/2¢5;, %>q) (5.3)

1 1
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Posi, j (509) = [3/2mb?(j; - 11)]3/2(3/2n<0j1j12>0)3/2

X exp(—332/2<Di . 2>0)

171
(for jl > il) (5.4)
where
. nb? 3i; 31,2
1 3 n n
) nb2 31 3j12 3(.f12 - ilz)(.fl + 1'1)
<D. ,“>n = —[1 - + -
i.j, 0 2 3
1“1 3 n n 4n

(5.6)

The segment density distribution function ZFbi (s) may

11
be replaced in a good approximation2 by

S Py; (s) = n(3/2m<8%55)3/2 exp(-3s2/2¢5%>3) (5.7)

iq 1

with <Sz>0 = nb2/6. To evaluate I Py 4 J (s,s8) we
i1<Jy 171

introduce a cut-off parameter ¢ which approximately

represents a minimum number of consecutive segments

necessary for the formation of a loop in one chain, so

that il < j1 - 6. With this parameter, Zfbi (s, s)

J
1¥1
for very large n may be evaluated first by integration

over iy by part and then by use of the above Gaussian
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approximation to X ijl(S) (i.e., eq 5.7 with the sum
J1
replaced by an integral). The result thus obtained

reads
2n5/2 3 3 332
2 Py; j (s,s) = ( )° exp(- ———F5)
ig<jy 11 6372512 " 2x¢s% 2¢85%>,
(nl/255 s1/2 5 1y (5.8)

Substitution of eqs 5.7 and 5.8, together with a
similar expression for POiz(S - 312)’ into eq 5.2, fol-

lowed by integration, yields

(5.9)

where 2z, and z3 are the excluded-volume parameters
defined by eqs 3.5 and 4.3, respectively. The inte-
gral in eq 5.1 with eq 5.9 is approximately evaluated

by the OF procedure11 to give

16%A%<Sz>03/2 33/2”1/2 n 19
Ay = In[1 + ————— (z, + 4(=) / zg) ]
33/ 252 4 c
(5.10)
for positive or small negative Az. If intramolecular
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excluded-volume effect is introduced by invoking the

3/2
0 ’

uniform expansion approximation,2 <Sz> Zg, and Z3

in this expression are replaced by <Sz>03/2a3, zz/ag,

and Z3/a6, respectively, with a being an expansion
factor.

When zp + 4(n/6)1/223 is much smaller than unity,

eq 5.10 gives

Ny n? 4 3 /s
A [Bo + ( ) Ba + ...] {6.11)
27 om2 27 s1/2 212 3
which conforms to eq 4.4 for infinite n, i.e., to the
first-order perturbation calculation. Equation 4.4

can be derived from eq 5.1 with eqs 5.2 through 5.6 (or
even by use of the Gaussian approximation for Zfbil).
Either eq 5.10 or 5.11 indicates that ©_ is the tem-
perature at which g, + 46_1/2(3/2nlﬁ)3/233 = 0.

If POiljl(s,s) is approximated by Pbil(s)ijl(s)

and if eq 5.7 is used, Vio is obtained as
Vig(Sy0) /kpT = 3%/2[ zpexp(~35,,2/4¢8?>)
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This is the OF potential and leads to the OF expres-

11

sion (without intramolecular excluded volume):

167 Ny<5%>3/2 33/2,1/2

_ S 3/2
A, = In[l + (zo + 3 Zq) ]
2 33/2,2 4 2 3

(OF) (5.12)

Note that the parameters Xy and X5 in eq 17 of ref 11

are equal to 33/222 and 8. 33/223, respectively.12

In
the vicinity of ®, eq 5.12 gives eq 4.6. |
The OF equation 5.12 differs from eq 5.10 in the
ternary cluster term. Apparently, this discrepancy
results from the above replacement of Pbiljl(s,s) by
Pbil(s)ijl(s). Thus, we find that the inconsistency
of the OF theory with the first-order perturbation
calculation arises from this factorization approxima-
tion, i.e., ignoring the effect of chain connectivity
on the probability of segment collision in one of the
two interacting chains. This allows us to conclude
that the vanishing of Bz cannot be regarded as the

theta condition for long chains unless £4 happens to

be zero.
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V.3 End-Distance Expansion Factor

As mentioned in section V.1, the smoothed-

density11 and perturbation12 theories for ap are also
inconsistent. The former leads to
‘IRZ = 1 + dlzz + dzz3 + ... (smoothed-density)

(5.13)

with dy and d2 being positive constants, while the
latter is shown to give for large n
2

4
ap” = 1 + g [ZZ + 4(%ﬁ1/2z3] + .. (perturbation)

(5.14)

Thus, apart from the numerical constants, the two
expressions differ again in the molecular weight de;
pendence of ternary cluster term.

The end-to-end distance of a smoothed-density

chain may be calculated from2

-V(R)/kgT -V(R)/kpT

<R®> = (JRZPO(R) e dR)/(JPO(R) e dR)
(5.15)

using the unperturbed distribution function Pb(R) for

the end~to-end vector R and the intramolecular poten-
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tial V(R) given, respectively, by
Py(R) = (3/27xnb?)3/2 exp(-3R%/2nb2) (5.16)

i<J

+ 632 injk(S,S,S[R)dS (5.17)
i< g<k

In eq 5.17, Pij(s,sllﬂ denotes the conditional proba-
bility density of finding both segments i and j at
distance s from the center of mass under the condition
that the end-to-end vector of the chain is fixed to R;
Pijk(s,s,sllﬁ is self-explanatory. We evaluated
these functions first in the unperturbed state (see ref
2 for the procedure) and then gransformed them to those
in the perturbed state using the uniform expansion

approximation. The result thus obtained for V(R) is

written as

V(R) Zo n
= >
kpT ap’ i< [(J - 1)(n - j+ 1)]13/2
3(j - i)R®
x expl- ]

2nbla ?(n - j + i)

372

a g® i<JU [k = J)(j - i)(n - k + 1)]3/2
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3(k - i)R®
x expf- ] (5.18)
2nb?a p2(n - k + 1)

In passing, we note that there hold the relations
fPOiJ«(s,SIR)ds = PO(Oile) and fPOijk(s,s,is)ds =

Fb(O | R), with Pb(Oijllﬂ, for example, being the

ij' %%
conditional distribution function for the contact of

segments i and Jj under the condition of fixed R.

Using the Hermans—Overbeek74 approximation after

substitution of eqs 5.16 and 5.18 into eq 5.15, we get

n
5 3
a - a =z 2
R R 2 0 G- D2(n 4 1)5/2
3(J - 1)
x expl- ]
2(n - jJ + 1)
24 n3/2(k - 1)

2
a g ik [(j - i)k - N1¥/2%(n - k + 1)%/2

3(k - 1)
x expl- ji (5.19)
2(n - k + 1)

which in turn gives

2 23
5 _ 3 . (_g_)l/z[zz + 4(Jl)1/2 — (5.20)
o a s
R

When ap is close to unity, this equation agrees with
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eq 5.14 excepting the slight difference between the

numerical constants (27/3)}/2 (in eq 5.20) and 4/3 (in

eq 5.14); this difference is due to the Hermans-Over-
beek approximation. Equation 5.20 differs in the )
11

term from the OF type equation:
ap’ - ap® = djzy + dy —=  (OF type) (5.21)

The latter can be derived when Pij(s,SIR) and
Pijk(s,s,sllﬂ in eq 5.17 are approximated by

Pi(sl R)Pj(sl R) and Pi(sl R)Pj(sl R)Pk(sl R), respec-
tively. Thus, it may be concluded that, as is the
case with Ag, the factorization approximation is re-
sponsible for the discrepancy between the zg terms of
the OF and perturbation equations and that the OF type

theories for Ao and Qp are incorrect unless B3 = 0.

V.4 Discussion

We have shown that chain connectivity plays a
crucial role in the ternary cluster terms of A2 and
aﬁg. As may be seen from eq 5.19, a pair of segments
(i and J or J and k) close to each other contributes
primarily to the z3 term in eq 5.20; this is also the

case with Ao (see eq 5.4). Since a chain portion
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consisting of a small number of segments may not be
fully perturbed, the uniform expansion approximation
invoked in deriving eq 5.20 is likely to be invalid for
the ternary cluster term of ap at least near Q. If J
- i and kK - Jj segments are unperturbed for J between i
and i + t and between k - t and k (for kK - i > 2t) and
if nl/z >>1:1/2 >>(51/2, it can be shown that z3 re=
places z3/a}§ in eq 5.20. This suggests that a p near

® should read

4
ap’ - ap’ =3z (5.22)
where
Z = gy + 4(2) 1/ 22 (5.23)
(o)

In eq 5.22, we have replaced the numerical coefficient
(22/3)1/2 by 4/3. In the vicinity of ap = 1, this
equation gives aRz =1 + (4/3)2 - (8/3)Z2 + e
whereas eq 5.20 leads to aRz =1 + (4/3)Z2 - (8/3)Z2 -
(32/3)(n/6) /22,2 + ... if the coefficient (27/3)!/2
is again replaced with 4/3. Hence, the difference
between these equations appears in the second and

higher orders of z3 in the expansion.

To confirm the relevance of eq 5.22 near ©, we
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have made a second-order perturbation calculation of
aRZ for an infinitely long chain (see Appendix C},
with the result that

i 16 28
ap? = 1+ 22 - (— - Som)zf v ... (5.24)

This expression is in line with the Z-expansion of eq
5.22, leading to the conclusion that the uniform expan-
sion approximation is invalid near @. This should
also be the case for A,.

Equations 5.22 and 5.24 are formally identical,

respectively, to the modified Flory equation (eq 5.22

with Z = zz) and the Zy expansion of aRz (eq 5.24 with
Z = 22)’ both in the binary cluster approximation (see
ref 2). If, as often assumed in the vicinity of @,

52 varies linearly with 1/T7 while 33 is independent

3 the relation Z = const M1/2(1 - ®/7T) holds in a

of T,
fixed solvent at temperatures close to ©. It is also
formally equivalent to the relation

Zy = const Ml/z(l - ®/T) (in the binary cluster ap-
proximation) that is often assumed in discussing poly-

2,3,52 As T is removed

mer properties very near 0.
from &, however, the relation Z = const Ml/z(l - ©/7T)
should become inadequate and zq in eq 5.23 may be

expected to approach z3/a}§ eventually.
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As discussed by de Gennes75 and Ptitsyn,76 the
Orofino-Flory type equation 5.21 for ap (or more
correctly for ch) prediets a coil-globule transition
to occur in a single chain fap below ®, provided that
dyozg is larger than a certain positive value. Howev-
er, this prediction is no longer correct, since the

theory ignores the effect of chain connectivity on

segment density distribution. For a1?<<1, our equa-
tion 5.20 gives ch3 = —4(n/d)1/zz3/zz, which is inde-
pendent of molecular weight. This result is incompat-

ible with the prevailing notion77’78 that a long flexi-
ble chain should collapse to a globule far below ©.
Probably, we should take into account segment interac-
tions higher than the ternary one to discuss the dimen-

79 incor-

sions of a collapsed coil. Sanchez’s theory
porates such interactions but neglects chain connectiv-
ity.

In conclusion, the factorization approximation to
segment density distribution functions associated with
three-segment interactions is responsible for the
inconsistency of the OF smoothed-denszity theories for
Ao and ap with the first-order perturbation calcula-
tions. Thus, the OF theories or similar mean-field

14,75,76

theories retain no valid place near ® unless

33 is zero.
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Appendix C
Second-0Order Perturbation Calculation of aEF for

an Infinitely Long Flexible Chain

When both 52 and B3 are vanishingly small, the
cluster expansion method? allows the distribution
function P(R) to be written

P(R) = Py(R) + B9 X Qb(R’Oij) + B3 X2 QO(R’Oij’Ojk)
i<Jj i< Jjg<k

- »822 2 > QO(R’Oij’Oks)
i<j k<s
i<k

- B2B83 2 X @y{R,0;;,05:,0,)

i<j s<tcu
- 332 Z 2 QO(R’oij’Ojk’OSt’Otu)
i< j<k s<{tu
i<s
+ 0(85°,82%835,8283%,83°) (C-1)

where

(R, 0;;,05¢:04,) = Po(R)Pp(0; ;,054,0,,)
= Po(Ry0; 550541040 + Po(R,0;,)Py(0,4,0,,)

+ PO(R,OSt,Otu)Pb(Oij)
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- 2Py (R)Py(0; ) Py(0g¢,0¢,) (C-2)
QR 0; ;0041 0g6104,) = PotRIPp(0; ;50 5500 054,04y)
- Po(R0; 5,0 5:054,04,) + Po(R,0; 5,0 ;) P5(0g4,04,)

+ pO(R’OSt’OtU)PO(O 0

ij1 0k

- 2Py(R)Py(0; 1,0 ;3 ) Po(0 4,0 .) (C-3)

and the other Qo’s are given in ref 2 or 12; the sub-
script O attached to each function refers to the unper-
turbed state.

The distribution functions in eqs C-2 and C-3 were
evaluated by the Wang-Uhlenbeck-Fixman theorem.2 The

results allow aRz for large n to be expressed as
ag? = 1+ (4/3)0zy + 4(n/0) 2231 - C12y% - Izyzg
- J232 + ... (C-4)
Here,
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1 J- 14+ u-s
I_ = b {E_ - }
Pgd32 st Poot- ot - s)(u - 1372
(p =1 -286) (C-7)
1 k-14+u-=s
J. = — > {F - }
Y .. . .
Pomgikstu P LU= ik - )t - s)u - 1]37/2
(p=1-17) (C-8)
16 28 2 .
and C1 = (*g - E?n); we note that the factor 2 in

eqs C-5 and C-6 arises from identical contributions
from different cases of relative positions of segments
in the chain and that Eb and Fb come from the first two
terms on the right-hand sides of eqs C-2 and C-3. The
expressions for Eb and Fb are so lengthy that we here
present only those contributing to Ip and Jb in the

limit of n = oo, along with the restrictions on the

sums in eqs C-7 and C-8. They are

(J- D(t- s u=-j+s-1 ~(u~-t)j- 82

FEo =
2
(u - 0320(j - D(t- s - (j- 821572

(1< s< j<t<w
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(J- tu - Mu- 98 + (s- i(u-~- t)(u-1)

E, =
3
(t- 9)32u- O(ji-i-t+ s - (j- t)215/2
(i< s< t< j<uw
. -
K, =
L - 9= G- i-u+ 932
(1< s< t<ucxy
u-8s
E- =
5
[(j- Mu- t(t-s-j+ 0132
(s <1< j< t« u)
(k—,})(t—s)(u+s-1’-—k)—(k-—s)z(j—i+ u-t
Fry =
2
(G- Du~ 9132k - )t - s) - (k - 52152
(i< j<s< k< t< u
(k- tHu-k){(j-i+ u- 8 + (s- Nu- t){u -1
F3 = 3/2 2
(- Dt- 9132k -j-t+ s)(u-t) - (k- )25

(i< j<s< t< k< u

k-1

F4 et
(= D(t-s)u- (k- j+s- ul?

(i< j<s< t<u< k)
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(J-0Ol(s - (k-1 +(u-k(u- D]+ (s- D) (u- kK(u-1i
F7 =

[k - Mt - 932 (u-t-Kk+ pj-i-t+s) - (j- 1)215/2
(i< s<t< j< k< u)

After lengthy calculations, we obtain for infinite n

_ _ _ 1z, n.1/2
12 = I3 = 8(1 27)(0_)

_ _ 16 n 1/2
I = 205 = — ()Y
T
32 n
Jg = —(—=)

Upon substitution into eqs C-5 and C-6, these expres-
sions yield I = 8C;(n/c)1/? and J = 16C{(n/g), so that

we arrive at eq 5.24.
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Chapter VI

Summary and Conclusions

This thesis has dealt with Ao and Ag for polysty-
rene (PS) and polyisobutylene (PIB), typical linear
flexible polymers, in good and theta solvents and with
the related theories. The main results and conclu-

sions are summarized below.

Good Solvent Systems (Chapter III1)

The second and third virial coefficients for PS in
benzene and PIB in cyclohexane, both at 25°C, were
determined by light scattering as functions of Mﬁ,
using the plot of Bawn et al.,23 the most reliable
method among the currently available ones. We also
determined <S2>z for the two good solvent systems. In
both systems, A3 varies as M@O’s for M, > 105. This
exponent 0.6 is the asymptotic value predicted by the
two-parameter theory. On the other hand, A4, exhibits
the predicted asymptotic behavior2 (Ay « M@-O'z) only

at very high M,, i.e., M, > 107 for PS and M, > 3 x 10°

W

for PIB.
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The interpenetration functions ¥ (see eq 3.1) for

the two systems are almost superimposed when plotted

against the cube of the radius expansion factor, aS3,

being consistent with the prediction from the two-

3

parameter theory. For ag” > 7, ¥ stays at 0.22

+ 0.02, which is close to the asymptotic value 0.235

predicted by Barrett’s theory39

ter theory) for large aS3. However, with a decrease

(the latest two-parame-

in aéﬁ below 7, the experimental curve gradually
rises, whereas Barrett’s theoretical curve or those

2,3 toward

from any other two-parameter theories decline
zZero.

For either system, the reduced third virial coef-
ficient g defined by A3/A22M% depends on M,; as M,
increases, it increases to 0.45 - 0.50 after passing
through a shallow minimum of about 0.25 at M, ~ 105.
When plotted against ¢153, the values of g for PS and
PIB also form a composite curve, as required by the
two-parameter theory. For a:ﬁ > 2, this experimental
relation is reasonably well described by the two-param-
eter theory of Stockmayer and Casassa24 based on the
smoothed-density model. However, the agreement is due
primarily to the cancellation of theoretical defects

involved in A4, and Ajg. Further, as a53 approaches

unity, the theoretical g goes to zero, while the exper-
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imental g slightly increases. This discrepancy is
similar to what is observed for ¥, indicating that
something important is overlooked in the two-parameter

theories of both A2 and A3 in good solvents.

Theta Solvent Systems (Chapters IV and V)

Two theta solvent systems, PS in cyclohexane and
in trans-decalin, were studied and their Ao and Ag were
determined as functions of M ,6 and temperature T. The
curve of Ag vs. T for each fraction in either solvent
is nearly parabolic with a broad minimum around the

theta point ® where Az vanishes, and the minimum be-

comes very shallow as M% decreases. Importantly, A3
remains positive at @, being about 4.5 x 10"4 mol g"3
em® for 2 x 10% < M, < 4 x 10% in both systems. This

positive Ag reveals the breakdown of the two-parameter
theory at ®, since the theory predicts that A2 and Ag
simultaneously vanish at this temperature.

The theta point for PS in cyclohexane is 34.5°C
down to M, ~ 5 x 10? and tends to lower as M, is
further decreased, while in trans-decalin, it increases
from 21 to 23°C when M, is lowered below 4 x 10°,

Thus, Ay at O (® for sufficiently high molecular

weight samples) is positive below MQ ~ 2 X 104 in
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cyclohexane and negative below M, ~ 4x 105 in trans-
decalin. The Orofino-Flory smoothed-~density theory11
taking into account three-segment interactions is
consistent with the former finding. On the other
hand, the first-order perturbation theorylz'15 incorpo-
rating such interactions almost quantitatively explains
the latter finding. In other words, neither theory
can explain consistently the observed behavior of AZ
for PS in the two theta solvents.

The two types of theory mentioned above are incon-
sistent with each other and give different interpreta-

tions of ® the concept most basic to polymer solu-

o’
tion studies. Thus, the origin of this serious incon-
sistency was investigated in this work (Chapter V).

It is shown that the factorization approximation to
segment density distribution functions, invoked in the
Orofino-Flory smoothed-density theory, is responsible
for the inconsistency and that a proper treatment of
those distribution functions leads to a result consist-
ent with the first-order perturbation calculation.
Thus, unless three-segment interactions are negligible,
the Orofino-Flory theory widely accepted and appreciat-
ed so far retains no valid place. Its prediction of

the coil-globule transition in a single chain far below

® has no theoretical significance.
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To sum up, this thesis work has revealed serious
shortcomings of the current theories of polymer virial
coefficients. In good solvents, the two-parameter
‘theory appears to work well only for long chains.

This suggests that for such chains binary interactions
predominate over ternary ones. On the other hand, in
theta solvents, the two-parameter theory breaks down
regardless of chain length, and consideration of three
segment interaction is mandatory. We wish to empha-
size from the experimental point of view that the
present work has established a procedure of accurately
determining A; and A3 in theta solvents as well as in

good solvents.
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List of Abbreviations and Symbols

polyisobutylene

polystyrene

second virial coefficient

second virial coefficient at the theta point
SN for sufficiently high molecular weight
samples

third virial coefficient

third virial coefficient at the theta point
©

fourth virial coefficient

segment length

polymer mass concentration

overlap polymer mass concentration

reduced third virial coefficient defined by
eq 1.3

probability of contact of the two beads
separated by the contour distance t along the
contour of a wormlike chain

scattering intensity measured at a scattering
angle 6 with a vertically oriented polarizer
and no analyzer

Boltzmann constant
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K light-scattering optical constant defined by
eq 2.9

L contour length of a chain

M molecular weight of a monodisperse polymer

Mépp apparent molecular weight defined by eq 2.17

Mh number-average molecular weight

M, viscosity-average molecular weight

M, weight-average molecular weight

n refractive index of a solution (Chapter 11I)
or segment number in a chain (Chapters III,
IV, and V)

my refractive index of benzene

An excess refractive index

Ny Avogadro constant

P(g) intramolecular scattering factor

P(R) distribution function of the end-to-end
distance R

Pb(R) P(R) for an unperturbed chain’

Pb(Rij’okl’ cee 5 04,4)
multivariate distribution function for
segment distances Rij’Rkl’ cee g Ruv where
okl’ for example, signifies that Rkl = 0.

Pi1(s) distribution function of the distance s

between the center of mass and ilth segment

in a chain 1
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Poiq(s)

Piqiq

(s, s)

Pi](s) in the unperturbed state

bivariate probability density of finding
ilth and jlth segments of a chain 1 at

distance s from the center of mass

conditional probability density of finding
ith and Jjth or ith, Jjth, and kth segments of
a chain at distance s from the center of mass
under the condition that the end-to-end

distance R is fixed.

Py jisy8IR), Py jpls,s,sIR)

Pij(S’S'R) or Pijk(s,g,sIR) in the
unperturbed state

= [(Ke/Ry) - (1/M)1/c*

= 2.3)

intermolecular interference factor associated
with I polymer chains

Rayleigh ratio of benzene at 90° for
unpolarized light

reduced scattering intensity measured at
scattering angle 8 for a solution of
concentration ¢ with a vertically oriented

polarizer and no analyzer
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V(R)

Vi2(812)

excess scattering intensity at scattering
angle 8 defined by RG,UV(C) - RG,UV(O)
RG at zero scattering angle

end-to-end vector of a chain

distance vector between segments i and J
mean-square radius of gyration

z-average mean-square radius of gyration
<S> in the unperturbed state

<Sz>z in the unperturbed state

= [(Ke/Ry) - (1/M)1/c
(Kc/Rg) oz o (Kc/By) czeq
B €2 - A1

distance between the centers of mass of two
chains

mean-square distance between the center

of mass of a chain 1 and its i{th segment
temperature

average intramolecular potential of mean
force under the condition that the end-to-end
vector is fixed to R

average intermolecular potential of mean
force on two chains 1 and 2 under the
condition that the distance between their

centers of mass has a given value 812
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W(RIZ)

Z2

Z3

Py

polymer weight fraction

potential of mean force acting on segments

1 and 2

excluded-volume parameter for binary segment
interactions, defined by eq 3.5
excluded-volume parameter for ternary segment
interactions, defined by eq 4.3

effective excluded-volume parameter defined

by eq 5.22

expansion factor

end-distance expansion factor

radius expansion factor

binary cluster integral

ternary cluster integral

parameter in renormalization group methods
intrinsic viscosity

scattering angle

theta temperature

theta temperature for sufficiently long
chains

wavelength of light in scattering medium
wavelength of light in vacuum

solution density

solvent density
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depolarization ratio

cut-off parameter

instrument constant of light scattering
photometer

interpenetration function defined by eq 3.1
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