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論 文  概

本論文は,著者が大阪工業大学において行った,円柱状および球状物体による電磁散乱

波のモード振幅係数 (以下,これを散乱係数という)についての一連の研究を,本文 6章

と付録 1章にまとめたものである。

第 1章 序 論

第 1章では,円柱状および球状物体の電磁波散乱問題に関する研究の歴史的背景と現状

について概説し,これまで多くの研究成果があるものの,未だ解明されていない問題点を

挙げて,本研究の目的と地位を明確にしている。

第 2章 無限長円柱物体のダイポ…ル波励振

第 2章では,均質な無限長円柱物体 (以下,円柱という)の近くに円柱軸と平行に電気

または磁気ダイポール波源を置いたときの遠点の散乱電磁界を,ヘルツベクトルと複素積

分の鞍点法を用いて解析し,円柱の散乱係数を導出している。そして,散乱係数の性質を

知るために,円柱の媒質が完全導体,誘電体および誘電性と磁性を共に示す場合について,

円柱の代表的な固有モードに関する数値計算を行っている。ここでは,散乱係数の振幅周

波数特性および代表的な周波数における円柱軸を含む面内の指向特性を示している。そし

て,媒質が低損失のときの散乱係数は各モードごとに入射周波数に対して多くの共振を示

し,その共振周波数は散乱方向が円柱軸に近づくに従い高くなること,共振周波数の間隔

も同様な傾向で広くなること,さ らに,媒質の損失が大きくなるに従い共振は次第に減衰

し媒質が完全導体のときの性質に近づくことなどを計算例で示している。また,円柱軸に

直角で波源を含む面内の散乱係数は,円柱に軸と直角な方向から平面波が入射したときの

円柱の散乱係数と同一になることも示している。

第 3章 球状物体のダイポール波励振

第 3章では,均質な球状物体 (以下,球という)にダイポール波が入射したときの散乱
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電磁界をグリーン関数を用いて解析し,球の磁気形および電気形散乱係数を導出している。

そして,それらが平面波入射のときの散乱係数と同一になることを示している。さらに,

この磁気形および電気形散乱係数は,円柱軸と平行に電気 (ま たは磁気)ダイポール波源

を置いたときの円柱軸に直角で波源を含む面内の円柱の磁気形 (ま たは電気形)散乱係数

とそれぞれ同じ形式になることを述べている。

第 4章 円柱および球の散乱係数の統一的取扱い

第 4章は,本論文の主要部分である。ここでは,第 2章と第 3章の結論から,円柱の磁

気形および電気形散乱係数,球の磁気形および電気形散乱係数などを一つの式で統一的に

表示し,さ らに,こ の式を複素平面上の点 (-1/2,0)を 中心とする式に変形することに

より,散乱係数の性質が見通しよく得られることを示している。すなわち,物体を構成す

る媒質が無損失または完全導体のときの散乱係数は常に複素平面上の点 (-1/2,0)を 中

心とする半径1/2の 円周上にあること,媒質に有限な損失があるときは点 (-1/2,0)か ら

の距離が1/2以下になること, 媒質の定数が周波数に無関係であれば周波数が高くなるに

従い点 (-1/2,0)か らの距離が一定の値に近づくことを示している。そして,媒質が低

損失のときの散乱係数は各固有モードごとに共振を示し,その共振周波数間隔は媒質定数

が大きくなるに従い狭くなること,共振周波数は損失の大きさによって大きく変化しない

こと,媒質の損失が大きくなるに従い共振は次第に減衰し媒質が完全導体のときの性質に

漸近することなどを数値計算例で示している。また,高い周波数領域における散乱係数の

簡単な近似式を導出し,こ のときの磁気形および電気形散乱係数が相互に点 (-1/2,0)

に関してはぼ点対称の関係になることを示している。また,こ の近似式による値を厳密な

値で評価し,近似式の適用範囲を示している.さ らに,これらの散乱係数の性質を基にし

て,円柱および球の散乱断面積の適切な計算法を示している。

第 5章 実 験

第 5章では,散乱係数の解析の妥当性を実証するために行った誘電体および金属円柱に

関する散乱実験について述べている。散乱係数を電磁界の中から分離して測定することは

困難であるため,こ こでは円柱の近くに軸と平行に線状空中線を置いたときの遠点におけ

る入射波と散乱波との合成電界強度を実測し,計算値と比較する方法を用いている。誘電
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体としては純水および食塩水を用い,円柱の共振周波数における遠点の電界の水平面指向

特性並びに媒質の損失に対する相対電界強度を実測し,計算値とよく一致することを示し

ている.また,円柱軸に直角で波源を含む面内の散乱指向特性は,円柱の長さに無関係で

あることを確めている。さらに,工業用アルコールおよび固体の誘電体を用いた実験にお

いても同様であることを述べている。また,銅の円筒を用いた場合も計算値とよく一致す

ることを示している。このような実験では到底解析の全域にわたる確認は困難であるが,

少くとも実測の範囲内では散乱係数の解析が妥当であることを実証している.

第 6章 結 論

第 6章は,以上の各章で得られた結果をまとめて結論としている。

付 録

付録は,本研究の値数計算に用いた複素ベッセル関数の数値計算法と,食塩水の損失係

数の測定結果を示している.
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第 1章 序

均一な媒質の無限長円柱および球状の物体(以下,これらを円柱および球という)に よる

電磁波散乱についての研究は古くから始められた。)'9)'0。 初期にはこれらの物体に平面

波が入射した場合の散舌L現象が取扱われた。)~0'(1め '02),(1の。 後にダイポール波
6)'0),(10,

。の
'。
わをはじめ, 球面波, 円偏波およびピーム波などが入射した場合が多く取扱われ,

その成果は枚挙に尽し難い。円柱および球の散乱問題は,これまで一般にそれらの半径α

と入射波長スとの関係で,α ≪スをレイリー領域,α >え を幾何光学領域,α =λ を共振

領域としてそれぞれ取扱われてきた。前の二つの領域に適した解法として,それぞれレイ

リー近似および幾何光学近似がある。共振領域に対しては,これら二つの近似法の拡張に

よるかまたは他の適当な近似法が用いられるが,一般的な方法はまだ確立されていないと

いってよい(18),(19)。

周知のように,散乱波は,伝搬媒質における電磁界の波動を表すベクトルモード関数と,

散乱体の境界条件によって決まるモード振幅係数 (以下,散乱係数という)と の積として

展開される。このうち,ベ クトルモード関数は,散乱波の伝搬媒質が自由空間であれば実

変数になる。それに対し,円柱 (または球)の散乱係数の表式は,散乱体の媒質定数と円

柱 (または球)ベ ッセル関数とによって構成される。ここで,媒質が無損失または完全導

体であれば表式を構成するベッセル関数はすべて実変数になる。しかし,媒質に有限な損

失があるときは,表式の一部に複素ベッセル関数が含まれる.一般に複素変数関数の数値

計算は容易でない。特に,複素変数の虚数部が大きくなると計算し難くなる。そのため,

複素変数の範囲により適当な近似法がしばしば用いられる。複素変数の虚数部が実数部に

比べて4ヽさい場合の近似計算は比較的容易であるため,円柱および球の散乱問題において

も,媒質が無損失または低損失の場合について多くの報告がなされてきた
“
)'0'C),(1の ,OD,

(10~0め ,Cの ~9め。それに対し,媒質の損失が大きい場合については, これまではとんど検

討されていないのが現状である。

散乱問題を取扱う場合,種々の形状の散乱体について解析を試みることは必要である。

しかし,解析的に散乱係数が得られている散乱体について,限られた範囲における近似を

用いることなく,入射周波数および散乱体の媒質定数に制限されない取扱い方法を検討し,

論
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広い範囲にわたる散乱係数の性質を系統的に解明することも一つの重要な課題と考えられ

る。

本論文は,電磁散乱の基礎的問題として,円柱および球に電気または磁気ダイポール波

が入射したときの散乱電磁界を解析し,それらの散乱係数の振舞いについて考察しようと

するものである。なお,こ こでは平面波入射のときの散乱係数との比較を行うとともに,

円柱および球の散乱係数に共通する事柄を取り上げて,入射周波数および媒質定数の広い

範囲における散乱係数の性質を,以下の各章において明らかにしている。

本論文の第 2章では,円柱の近くに円柱軸と平行に電気または磁気ダイポニル波源を置

いたときの遠点の散乱電磁界を,ヘルツベクトルと複素積分の鞍点法とを用いて解析し,

このときの円柱の散乱係数を導出している。散乱係数の性質を知るための数値計算は,円

柱の代表的な固有モードについて行い,円柱の媒質が完全導体,誘電体および誘電性と磁

性を共に示す場合を取扱っている。そして,散乱係数の振幅周波数特性と,代表的な周波

数における円柱軸を含む面内の指向特性を求め,媒質の損失が大きくなるに従い円柱が完

全導体の場合の性質に近づく様子を計算例で示している。さらに,円柱軸に直角で波源を

含む面内の散乱係数は,円柱軸に直角な方向から平面波が入射したときの散乱係数と同一

になることも示している。

第 3章では,球にダイポール波が入射したときの電磁界をグリーン関数を用いて解析し,

球の磁気形および電気形散乱係数を導出している。そして,こ の散乱係数が平面波入射の

場合と同一になることを示している。また,こ の散乱係数は,円柱の軸に直角で波源を含

む面内の散乱係数と同様な形式になることも示している。

第 4章では,第 2章と第 3章の結論から,円柱の軸に直角で波源を含む面内の磁気形お

よび電気形散乱係数と,球の磁気形および電気形散乱係数を一つの式で統一的に表してい

る.本章は,本論文の主要な部分であり,円柱および球における散乱係数の周波数および

媒質定数に対する基本的性質を明らかにしている。すなわち,これまで一般的に用いられ

てきた散乱係数の表現形式を,複素平面上の点 (-1/2,0)を 中心とする式に書き変える

ことにより,円柱および球の散乱係数の性質が見通しよく得られることを示している。そ

して,媒質が無損失または完全導体のときの散乱係数は常に複素平面上の点 (-1/2,0)

を中心とする半径1/2の 円周上にあること,媒質に有限な損失があるときは点 (-1/2,0)

からの距離が1/2以下になること, 媒質の定数が周波数に無関係であれば周波数が高くな
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るに従い点 (-1/2,0)か らの距離が一定の値に近づくことを示している。また,媒質の

損失が大きくなるに従い完全導体のときの性質に近づく様子を数値計算によって示してい

る。ついで,高い周波数領域における散乱係数の簡単な近似式を導出し,こ のときの磁気

形および電気形散乱係数は相互に点 (-1/2,0)に 関してほぼ点対称の関係になることを

示している。また,近似式による値を本来の厳密な値で評価し,近似式の適用範囲などに

ついて述べている.さ らに,これらの散乱係数の性質を基にして,円柱および球の散乱断

面積の適切な計算法についても示している。

第 5章では,これまでの解析の妥当性を確認するために行った実験について述べている.

散乱係数を電磁界の中から分離して直接的に測定することは困難である。したがって,こ

こでは遠点における入射波と散乱波との合成電界を計算し,実測値との比較を行う方法を

用いた。実験は,VHF,UHF帯 およびSHF帯において行った。散乱体には,塩化ビ

ニール系の薄いフイルムを円筒状にした容器に純水および食塩水 (食塩の濃度により損失

が変わる誘電体)または工業用アルコール (CH30H)を 入れたもの,固体誘電体 (TD

K製 ,KU-16,25)を 円柱状にしたものおよび金属 (銅)円筒などを用いた。また,波源

には半波長以下の細い線状空中線を用い,これを円柱の近くに円柱軸と平行に置いた。こ

のように構成したときの円柱軸に直角で波源を含む面内の遠点の相対電界強度を計算し,

実測値と比較した。このような実験では,解析の全域にわたる確認は困難であるが,少な

くとも実験の範囲内においては解析の妥当性が実証された。

付録においては,通常の電子計算機を用いて広い範囲の複素変数に対する円柱および球

ベッセル関数を数値計算する場合の一つの方法について述べている。この数値計算法は,

本研究の成果に大きく寄与している。付録には,また,誘電体としての食塩水の種々の濃

度に対する損失係数の測定結果も示している。
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第 2章 無限長円柱物体のダイポール波励振

2-1 まえがき

均―な媒質の無限長円柱物体 (以下,円柱という)に よる電磁波散乱についての研究は

古くから始められた。)。 初期の段階では平面波入射の場合が取扱われたが,後に平面波以

外の入射波についても研究されてきた。ダイポール波入射の場合もいくつかの報告がある

が,それらは主に円柱の媒質が完全導体の場合0'C)'0)ま たは低損失の誘電体 (1の '(1め ,Cの ,

C2)の ものが多く,損失の大きな誘電体および媒質が誘電性と磁性を共に示す場合はあま

り取扱われていない。また,波源については,円柱軸に平行な電気ダイポールの場合が多

く, 磁気ダイポールを取扱った例は少ない6)'0)。 しかも, 円柱軸に直角で波源を含む面

内の散乱特性が主に取扱われ,任意の方向の散乱電磁界については完全導体円柱の場合を

除いてほとんど検討されていない。また,円柱が任意の媒質である場合と完全導体の場合

とを比較して検討されたものも見当らない。

本章では,円柱の近くに円柱軸と平行に電気または磁気ダイポール波源を置いたときの

遠点の散乱電磁界を解析することにより,散乱波のモード振幅係数 (以下,散乱係数とい

う)を導出し,その諸特性を明らかにしている。解析では,まず,入射 1次界.円柱から

の散乱界および円柱の内部界のヘルツベクトルから得た散乱電磁界の展開係数を求めた。

ついで,遠点の散乱電磁界の表式に複素積分の鞍点法を用いて散乱係数を導出した。周知

のように,円柱による散乱波は,円柱の固有モードごとに分解することができる。これま

で散乱波をモード別に取扱って議論されたものは少ない。ここでは,散乱波の性質を知る

ため,代表的なモード次数における散乱係数を種々の円柱媒質について数値計算している。

そして,散乱係数の振幅周波数特性と,代表的な周波数における円柱軸を含む面内の指向

特性を示した。その結果から,媒質の損失が小さいとき散乱係数は各モードごとに多くの

共振を示すが,損失が大きくなるに従い共振は減衰し,完全導体円柱の性質に近づく様子

を計算例で明らかにしている。また,共振周波数は,散乱方向が円柱軸に接近するに従っ

て高くなり,各共振点の間隔も同様な傾向で広くなることを示している。さらに,円柱軸

に直角で波源を含む面内の散乱係数は,円柱軸に直角な方向から平面波が入射したとの散

乱係数と同一になることも述べている。
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第2章 無限長円柱物体のダイポール波励振

2-2 散乱電磁界の解析

自由空間 (εO,μO)中に置かれた円柱 (半径α,誘電率 εl,透磁率 μl)と ダイポール波

源との座標関係を図2-1の ようにとり, 直交座標 (X,y,Z), 円筒座標 (ρ ,φ ,Z)

P(R,0,')

Z

P′ (′.,.o)

′~ QtF。
′o,o)

f。 ,μ。

4

図 2-1 座標関係

および球座標 (R,θ ,φ )(ただし,本章ではθを図2-1の ようにとる)を併用する。電

磁界の時間因子を exp(わ′)(ω は波源の角周波数)と し,以後の記述においてはこれ

を省略する。点 000,0,0)にあるZ方向をむいた電気ダイポール 〃Z(Iは素電流,

″Zは長さ)または磁気ダイポール ″αZ(解 =ノωμOrSセま電流Jが流れる面積Sの微小ル

ープの素磁流)が点P(R,θ ,φ)につくるヘルツベクトルはZ成分のみである(18).モ ーメ

ントraZ/Jω または 耐 |なωによるヘルツトルベクをそれぞれπ傷または πシ'(夕 は入

射1次界を表す)と すれば,それらは次のように与えられる(10'Cの 。

め,πノ〕=協箔需・竿 (2-1)

ここで, γは点0から点Pま での距離,力 =ω /cO・μ。 (自 由空間波数)である。式 (2-

1)を円筒波に展開する。まず, 2次元におけるグリーン関数は,図 2-1の γ′を用い,

〃∫
のを 0次の第 2種円柱ハンケル関数として,次式で与えられる。め.

G(0レ′)=―ノπ〃

`2)(々

γ′)
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そして,exp(―ル/)/″ をZ方向の波数力に関するフーリエ積分で表せば, 次のようにな

る (13)。

≠ ―÷∫卜・″Po夕づ%
ただし,β2=ヵ2_λ 2.

式 (2-1)のヘルツベクトルを図2-1

関数の加法定理を適用すれば,式 (2-1)

(2-3)

の座標で表すため,式 (2-3)に ベッセル

は次のようになる。の'Cの ,Cめ .

ι′πφ

(ρ Sρ。) (2-4)

ここで,ふ,″9はそれぞれ %次の円柱ベッセル関数,第 2種円柱ハンケル関数である。

点0にある電気または磁気ダイポールの 1次界が円柱に入射したとき,円柱表面における

電磁界の境界条件を満足する形で円柱による散乱界および円柱の内部界が決定される。こ

の計算の遂行には,波源が電気または磁気ダイポールの場合のそれぞれについて,散乱界

と内部界の電気および磁気ヘルツベクトルを求めなければならない。

まず,波源が電気ダイポールの場合の散乱界と内部界の電気お よび磁気ヘルツベクト

ルをそれぞれ π,,π′・ (ι は電気ダイポールを表し,sは散乱界を表す),πグ,π夕″(γ

は内部界を表す)と すれば,それらはヘルムホルツの方程式を満足することから,次のよ

うに与えられる。①.

(ρ≧≧α) (2-5)

(ρ≦≦α) (2-6)

と π′,πメ
″の展式 (2-5)と (2-6)の B乳 ,Cλ と D食 ,F角 ャょそれぞれ πソ,πメ3

∞Σ
　̈
　
勧

～‥
∞　

″
”一̈赫「物

¨
協

ｐ
´
　
　
　
　
　
　
・

π

Л

ＩＩ

可

』
ド
レ
ド
　
勧

”
　
　
　
　
　
可

″
　
　
　
″

一
　

　

　

＜

‐
に
√
Ｊ
　
η

“
Ｚ
　
　
“
″
　
　
　
　
　
・

π

　

　

π

１

１

１

１

１

Ｊ

ｂ
に
Ｆ

∞Σ
一

，
“
「　
　
励

淵
”

一一
　

　

＜
α

凋
句
訓
句
　
協

π
　
　
π
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開係数であり,α =/力12_″ (ただし,力1=ω/ε l・μl)である。また,π *,,πtterにおいて

は,εO,εlの代 りに μO,μlを用いなければならないが,それらは後の計算に便宜を与える

ため係数 Ct,Flに含めるものとする。

展開係数 B,,C駒 および D名 ,F:は ,式 (2-4),(2-5)お よび (2-6)の ヘ

ルツベクトルがつくる電磁界に円柱表面の境界条件を適用した連立方程式を解くことによ

って求められる。

波源が磁気ダイポールの場合もまったく同様である.こ のときの散乱界と内部界は,式

(2-5)と (2-6)におけるπ,→π′'(み は磁気ダイポールを表す),π′8→πケ,π′

→π力″,π夕r→π′とし,また,展開係数は, 3え→B″,Ct→α ,p角→D身 ,Fぇ→F力 とそれ

ぞれ変更することにより得られる。

周知のように,電気および磁気ヘルツベクトルをそれぞれ π および π*とすれば,電

磁界 ユ Fは 次式で与えられる。

(2-7)

図2-1の点Oの電気 (ま たは磁気)ダイポールによるヘルツベクトル π (または が )

はZ成分のみである。したがって,それらを Fzで代表し,円筒座標 (ρ ,φ ,の を用いる

と,ベ クトル解析の公式から,jρ ,Jφ ,レ を単位ベクトルとして,7× (Jノし),7× 7× (ιzFz)

は次のように与えられる。

1鷹篤算  |

ら蹄′×(:zFz)=Jρ 一め
一“
１

一
ρ

(2-8)

(2-9)

の最終項は,具 体 的 な

(2-10)

7× 7× czFzD=ら影嘉り十ら÷彩tけ∴
"サ

)+ル%輌ン}

電磁界がヘルムホルツの方程式を満足するとき,式 (2-9)

α2=ヵ12_λ2ま たは β
2=ヵ2_λ2を用いて,次のように表せる.

÷場0開 +ルや一ば,βり&

また,界が expσ″)・ exp(―″Z)に比例することから,

サ=″必し,等 =TブZFz
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である。そして, ム と〃″)を ん で代表し,Z′πを乏%の第1次導関数とすれば, 次

のように表せる。

発る(")=β・Z′,(βρ)             (2-12)
以上の関係から, 波源が電気ダイポールの場合の入射電磁界 PP,コη (ι は波源が電

気ダイポールであることを表す),円柱の散乱電磁界 E゛ 8,Iσlぉ よび円柱の内部電磁界

ECr,Fθ rは式 (2-4)～ (2-12)を用いて次のように与えられる。

PL一
電子髪争∫L,ま"´

(‐
″
嘱 ぷ 第 棚

鰐「1ぷ淵切2∬l鮮紛″″ル

(:言:Fρ

O)             (2-13)

・″=―誰[∞が∞ν"σαめ
|″イ|:『鮮鵬

一jφβ
∬llγlL〃I:)。

ι―′λ″″λ
  F≦:二||)

厚| βρｏ＞　
　
　
　
　
　
が
群
　
　
ル
　
　
　
の

α

男

勒
　
　
　
　
　
　
陪
ｒ
Ｌ
ｒ
　
　
磁
　
　
　
い

一　
　
　
　
　
士
　
　
　
　
　
＋
　
　
　
　
　
＋
　
　
　
　
　
一

一一　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
〓

[:::|

″
　
　
　
　
　
　
畑
　
　
″　
　
　
デ
　
　
一

ρβ
Ｏ
，〃

＞

　

　

　

　

　

　

　

　

　

　

　

　

　

ρ

ρ

　

　

　

　

　

　

　

　

　

　

Ａｐ

β

　

　

　

　

　

　

　

　

　

　

＜

′緻
　
　
　
　
　
　
　
η

Ｊ
　
　
　
　
　
　
　
凋
生
∬
句

(2-14)

(ρ≧≧α) (2-15)
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士
1発争Illま1仇∽

+ら

1件|::|。
九師)±ノ十

1阜
l″
|・

″品)|

ザFl叡→物  にの
ただし,tr=ε 1/εO,μr=A/μ o。

式 (2-13)～ (2-16)お よび円柱表面ρ=α における境界条件

IIIZl跳ltiτ夕}
から展開係数 B角,Ci,Dλ,F:は求められる。このうち,散舌し電磁界に関係す る B駒 と

C食 を求めると次のようになる。の.

鶏 =夏の
2← _働 2瑞

「
脅 響 {榔 ト

ツ r÷
チチ{競冬}

・{瑞―ル÷手需瑞 1  0 18aD

CゼLβ∽嘲赫
・
{〃
P′りの協
“
の一瑠)“の。″
“
の
}]

ただし,

一pり刊鵬ψ器 |

1蝙
―ル÷り辮

1.

(2--16)

(2-17)

(2--18b)
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特に,円柱が完全導体のときの Blと Cえ をそれぞれ B′πと C髪,(幽rは完全導体を

表す)と すれば,それらは式 (2-15),(2-16)お よび式 (2-18a),(2-18b)

において,εr→∞,μr=1,た 1→∞,α→∞ として次のように与えられる。の'9め .

場π=―デチ留方               (2-19a)

C′.=0 (2-19b)

波源が磁気ダイポールの場合の 1次電磁界 Eれ',コ"(ヵ は波源が磁気ダイポールであ

ることを表す),散乱電磁界 Eλ8,Iん。ぉょび内部電磁界 E力r,1鍛rも上記と同様にして

次のように得られる。

pL―維E∞ "i∞烈■の|″÷Л脚跡器
もβ」肥鍬

))″% F認動 "①
p娃―競E∞π婁∞́

(‐ど色ぷ静器
れ轡∬I鮮∬瓶″佛Ⅷ〉″励

(α

≦ρ

二||)          (2--21)

脱〕一維E∞πi∞ φ́
l′
レ闘。″い″/⑭

ギ囲¨響可十[1響0¨
珈β陣1響⑭呵プレ]響⑭響→。ι―′れ″αλ                              (ρ≧α)         (2‐-22)
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開―箭 [∞πi∞ φ́
lρ
レ [1観K?

ギI=』J十Flm
・α『筆FlロツFlJ´%

そして,こ の場合の散乱電磁界の展開係数 B夕,C夕 を求めl[1:よ ぅになるli「

23)

」鰤勁̈ 掠0
-″″{みつ一μ÷チ表讐券卜・ふCの }

仲″謡糀岬可
C'=嘉〔力μOβ (等)(1-多 )
・
{〃
紗ωの。九′∽の一月け/“の。み

“
の
}〕

ただし,

Zλ =一
|(夕)2(1_μ )・ {″

7)ωあ
}2

一″″F/“の‐《1発そ島分L″絆q
・レ晨の一ル÷券業夕☆静券トイ緻01

また,円柱が完全導体のときの B夕 と C夕 をそれぞれ B多ルと Cル.とすれば, それら

は次のようになる.

(2-24a)

(2-24b)

β
ttπ
=一
端

-11-
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Cttπ =0 (2--25b)

以上の解析により,図 2-1に示す座標関係にある電気または磁気ダイポール波源から

の入射波による円柱の散乱電磁界が表示できた.

2-3 遠方界の電磁波散舌L係数

2-2節で得た散乱電磁界の表式にはんに関する無限積分が含まれるため実際の散乱電

界などを求めるには不向きである。そこで,観測点PO,φ,Z)が波源 000,0,0))の 位

置に比べて充分遠くにある場合を考える。

ここでは,波源が電気ダイポールの場合を主として取扱うことにする。このとき,遠点

(ρ→∞)の散乱電磁界 Eβ主∞,I,■"は,式 (2-15)に ρ→∞を代入し, 〃夕
)(β
ρ)と

〃″)(βρ)の ρ→∞における次の近似式

響⑭=ソ筆ゲ
昨午つ

〃絆′⑭γ/慕メげ~午つ
(p+-) (2--26)

と,図 2-1に示す座標関係

ρ=R∞sθ,Z=R sin θ

を用いて次のように表せる。

脇菫トー新E∞πi∞ノ
綿+午→。

/嘉高島・畔)“ρめ

。

|―

Jρ″

l::|±

Jφωβ

IIi覧 |十

場β21::||

.ι―JR“COSθ +脚 nの 動              (ρ →∞) (2-27)

ここで,式 (2-2つ の無限積分に鞍点法を適用する。そのため,

β=2COS γ,λ =力 sin r,γ =θ +ノ″                      (2-28)

として, γなる複素平面に変数変換すると,

π∫l〔1)の
=グ′|・COSl卜の
|       (2-Э
-12-



第 2章 無限長円柱物体のダイポール波励振

となる。また, /(γ )=ル COs(γ一θ)とすると,被積分関数の鞍部点γ=γ.は ,

/r(r)=―ルsin(γ―θ)=0 (2-30)

を満足し,γ8=θ を通る積分によって最良表示される。 さらに,遠点を問題にすることか

ら,こ の積分は ,3の ごく近くの最急勾配路での積分により漸近値を求めることができる。

この積分路はγ平面の実軸と約-45° で交る直線である。積分路と
`γ
8と の距離 lγ一θlを

ηとすれば,

γ―θ=η・ι
~′
■~

となる。ここで,ノ (つの第1近似

スつγルーカ子

を用いれば,式 (2-27)は次のように表せる。

臓 珂
一 孫 πi“

ル 十争 λ″十グμ η 岬の

。
)//瑠宅滞・ι

~″2ザの

ｂ
Ｌ
Ｆ

β●レ＋
α

島

μｏ
　
貯
叩＋一

Ｂ

　

Ｃ
″一

π一４　　鷹「

η

　

　

η

(p-+*)

(2-31)

(2-32)

(2-33)

(2-34)

特に,γ=では ,

|:li:li::|:。 たcosθ  l

となり,次の結果が得られる。

日笙一孫#,i∞aバ
Ⅲ
"」
'L→

十ψイ珂Jρ島降髭1‐″Ftt‐Pは0
(ρ→ ∞)

-13-

(2-35)



ただし,3務。と θる。はそれぞれ式 (2-18a)と (2-18b)に あ=ル sil■ θ,β =力∞sθ

および α=/ε r・μ′・力cos θを代入したものである。 また, 円柱が完全導体のときの Bλ s

を B ttπ。とすれば,β %π 8は式 (2-19a)に β=力 coS θを代入したものであり,これ

|ま Carter6)お ょび Luck6)の結果と一致する。 本論文では,3角 8,3カル8お よび 0角 8

を波源が電気ダイポァルのときの散乱係数と呼ぶことにする。また,

ι′(πφ+Jり
Lπ )=ク +1(cos Zφ +ノ sin πφ)

〃9=(-1)π 〃″),3色π.=B,3
(2-36)

ε
　
Ｂ

ｒ
μ。Ｆ
Ｐ

∞
カ
ω士

　

　

　

　

　

φ

「
―
―
―
Ｉ
Ｊ

　

　

　

π

鈴
鴫
　
　
螂

θ

ｌ

ｌ

い
性
い

¨

０
　

　

　

　

＋

″∞

Ｃ
　
響

ｒ
′′^ｒ
ｌ
Ｐ^

∞
カ
ω

として，
お

・助
　
　
Ｅ
　
Ｉ

ｒ

ｌ

ｌ

ｌ

ｌ

ｌ

」

をレ

の関係から式 (2-35)は さらに次のように表せる。

降 1=―
協 千 ム

卍 」 緻 lpO COSの

E,0__
可

~

(p+-)
(2-37)

ただし,(0=1,cπ =2(κ≧1)

式 (2-37)の電磁界表現を球座標 C,θ ,φ)を用いて書き直すと, θ成分の単位ベク

(π・ノπ+1・〃″)(″ 0∞Sθ )

となる。また,E緯∞と I'1∞ のθ成分およびφ成分をそれれぞE:3,

で表せセゞ,予想されるように,

(ρ→∞)

(2-38)

E`3と 島辱8島聯=

岬,器=呼
-14-

(2-39)



第2章 無限長円柱物体のダイポール波励振

となる。

波源が磁気ダイポールのときも上記と同様な方法により式 (2-22)か ら遠点の散乱電

磁界が求められる。そして,こ の場合の散乱係数 B夕3,β ル28お よび C″3も ,式 (2-

24a),(2-25a)ぉ ょび(2-24b)に λ=ル sin θ,β =力 ∞Sθ おょび α=/ε r・μr・力∞Sθ

を代入して得られる。

特に,円柱軸に直角で波源を含む面内(θ =0)の B3.(θ =0),3ルπ.(θ =0)と α 8(θ =0)

およびB13(θ =0),3姦π3(θ =0)と Cl。 (θ =0)は次のようになる。

鶏 で つ 一

Bふけ ―淵
εえ.(θ =0)=0

B脇〃 =の 一
端

ε18(θ=0)=0

(2-40)

(2-41)

(2-42)

B夕 .(θ =0)= _/幕
・ふ(々α)ザ7(/ε′。μ

「
ルα)一/票″(滋)・J.(/εグ・μr・力α)

ル″r・」らrP(滋).″ (/ε r・μ
「
力α)一/手」らr′ン(力α)・ふ(/εグ・ル・力α)

(2-43)

(2-44)

(2-45)

式 (2-40)～ (2-45)は ,円柱に軸と直角な方向から平面波が入射したときの散乱

係数と一致する。)'K61,3),(18)。 式 (2-40),(2-41)は 一般に円柱の磁気形散乱係数と

いわれ,式 (2-43),(2-44)は 電気形散乱係数といわれるものである。

2-4 散乱係数の計算例

散乱波は,例えば式 (2-38)で示されるように,モ ード別に分解することができる。

そして,各モードにおける散乱波は,散乱係数,〃″)(力ρO cos θ)ぉょび∞sθ ocos κφに比

例している。そのため,散乱波の状態は容易に推測し難い。しかし, モード別の |〃 F)

-15-



(力ρO∞sθ)|と lcos κφlの性質は簡単にわかるため,各モードにおける散乱係数の大きさ

がわかれば,散乱波の大略は予想できる。 ここでは,主 として IB″,31,IBふ。|および

IB翻 の代表的なモードについての数値計算例を示す。計算では,入射周波数に代えて正

規化周波数を採用し,これを滋 =χ と表示する:また,円柱の媒質定数 ε,お よび μrは ,

(2-46)

の形で表す。

完全導体円柱のχに対する IB遜81と lβ遭81(κ =1)の特性 (周波数特性に相当)に

5

χ

(a)

5

ズ

(b)

図2-2 F五.L IB艦.|の周波数特性(″ =力α)

;三アllζllT) |

50°

一
。
篭

ｍ
一

080・  259

-16-



第 2章 無限長円柱物体のダイポール波励振

ついての計算結果をθをパラメータにして図2-2 1al,oに 示した。lβ轟31と IB」31

はχに対して多くの共振を示す。θが大きくなるに従い第 1番目の共振点はχの大 きい

方にずれる.π =1以外のモードにおいても同様な傾向が示される。IB231の 第 1共

振点を除く各共振点のIB為=|と IB協 811ま常に 1となる。また,最小値は零となる。

IB五 81と IB■。|の第1共振点の κを χ近1と χ艦1(添字 1,1は π=1の 第 1

共振点を表す)と表し, θに対する″遜1と χ轟1の変化を図2-3に示す。π=1以外

のモードでも同様な特性を示し, θが ″2に近づくと″
“
11および χ脇1は無限大に近

づく。そして, 各共振点の間隔も図2-3と 同様な傾向を示す.また, θ=0の ときの

χぶ 1と χ脇1は,π が大きくなるに従い比例的に大きくなる。

IB轟 81と IBユ・|の正規化周波数χを
バラメータとするθ指向特性を図 2-4(0,0

に示す。図 2-4(のは, IB五 81が θ=0の 方向で最初に零となるχの値 (笙 3.8)ま で

の特性を示した。図 2-4 1alに おいて,0<χ≦1.83菰3の第 1共振点のχの値)の範囲の

lβ品81は θ=0の 方向で最大となる。しかし,χ≧1.8ではχが大きくなるに従 い指 向

性の最大方向が円柱軸に近づくことがわかる。χ笙3.8では IB五.(θ =0)1笙 0と なる。そ

0(deg)

図2-3 θに対する |,五。|,IBふ.|の第1共振点″五1,為乱

５

．篭
Ｘ
　
．　
．躍
×

0

-17-



I =90" g:90'

0● 0°
0.5

1BM:s(0)|

(a)

o.5

lar'lrtorl
(b)

l.0

図2-4 曰五81, β孟.の θ指向特性

して,χ≧3.8では′=0の方向から新しいロープが現れ, ″が増大するに従いロープの

数が増えることも計算結果からわかっている。このことは,図 2-2 falか らも予想できる。

図2-40は, 図2-4 1alと 同じ″の範囲における IBttε lの指向特性を示す。 lβM缶
|

の第1共振点χ遭1(笙 0.95)ま でのχでは θ=0の方向で最大 となるが,0。 95≦″

≦1.81(lβ認1(θ=0)|力 最`初に零となるχの値)では θ=0以外の方向で最大となる。χ

≧1.81では新しいロープが θ=0の方向から現れてくる。一Jllに 1易焼.|お よび 1島脇81

のθ指向特性においては,χ が大きくなるに従いロープの数は比例的に増加する。

円柱の媒質定数が εrO=81(水),tan偽 =0,0.01,0。 1,1,μr=1のとき,θ =0方向の

χに対する 曰1:|の変化を図2-5に示した。また,図 2-5には円柱が完全導体のと

きの IB′lJ(図中にνで表示)も示してある。tan δd=0の とき,共振点では常に曰1:|

=1であり,最小値は零である。 tan δαキ0では,tanれ が大きくなるに従い 131:|は

IBジ131に漸近する。ε″ざ=81では,tan為≧10で IBl:1笙 lβ遜。|と なる。 ここで興味

あることは,I Bf81の共振曲線の途中のたるみの部分が IB近.|の近くにあり,特に tan

偽=0ではその性質がよく現れていることである。このような性質は,εrO≧3におけるす

べてのモードで常に現れることが計算結果からわかっている。したがって,tan為=0の

ときの IB乳=|の各共振点と,1島焼31の
χに対する特性がわかれば (こ の計算は簡単で

-18-



第2章 無限長円柱物体のダイポール波励振

ion,d=o

(εゎ=81,tanδa=0,0.01,0.1,1,μ "=1,π
=1)

図2-5 θ=0の ときの IBf.|の 周波数特性 (″ :IBMisl)

-19-



ある),各 πについての IBλ .|の χに対する特性が容易に予想できる。IB脇 |と IBttπご|

との関係も同様である .

図2-6は , 無損失の誘電体円柱について, θ=0方向における B,3,31=の /ε′0に

対するそれぞれの第 1共振点 χ劣1,″ 11を ,π をパラメータに計算した結果である。

χllと χllはほぼ 1//εrに比例している。第 1共振点より上の周波数における共振点

の間隔もほぼ 1//ε,0,に比例するが %の値により大きく変化しないことも数値計算から

わかっている。また,円柱の媒質が誘電性と磁性とを共に示すときの第 1共振 点 もほぼ

1//ε rOoμ′0に比例する。

円柱の媒質定数が ε70=81,tan δd=0,o.ol,0.1,1,μ r=1の とき,χ に対する I Bi31

の変化をθをパラメータにして図 2-7に示す。θが大きくなるに従い第 1共 振 点 の χ

および各共振点の間隔が大きくなることがわかる。また, tan為 力`大きくな るに従 い

IB:。 |が IB五.|に漸近する様子もよくわかる。そして, tan δaが小さいとき,θ =0

〓こ
×

Φ〓
×

:        10

/ε r。

(a)

図 2-6 y%に 対する B λ8,

√gr。

(b)

3夕8の第1共振点 ″λl,場 1(θ =0,tanδα=0,μr=1の場合)

．‐０。

５。

３。

２。
１５

Ю

　

５

３

２
　
１

ｍ　５。
３。
２。
１５
‐０
５
３
２
１
０
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第2章 無限長円柱物体のダイポール波励振

X                 X

εro=81, 10n'd=o,o.01,o.1,1, 0=∝ 2515C751

図 2-7 誘電体円柱における IB缶 |(″ =1)の周波数特性
(tanδaと θをパラメータとする)

ton)o = O.ot

10nSd=o.: tOnSd=1

-21 -



以外では共振点の IB`ε l力 1`以上になる場合もあることが示されている。 π=1以 外の

ときも類似の傾向が見られ, 共振点のχの値も t尋れ により大きく変化しない。 これら

のことは IBl.|についても同様である。

円柱の媒質定数が ε70=4,81,400,tan偽 =0,μr=1の とき, θに対する IB`slの 第

1共振点 ″flお よび共振点間隔の概略値 Z″

`を
図 2-8に示す。θに対して χllと Zχ:

は同じ傾向を示し,θ が ″2に近づくと χ:1と ∠χfはともに無限大に近づく。 %=1

以外の IB,31お よび IB181に 関しても同様な性質が見られる。

円柱の媒質が誘電性と磁性を共に示すときのχに対する IB`81の計算例を図 2-9に

示す。ここでは,これまでの計算例との比較を考慮して, εrO・μrO=81に選んだ。図2-

9の下部の(1),(2),(3)で示す媒質定数のときの I B f81を 図中の(1),(2),(3)で 示した。な

お,図の左側lalには tan δα=tan蝙 =0の場合を, 右側0には tan為 =tan δπ=0.1の場

合をそれぞれ示した。図 2-9 1alか らわかるように,θ =0では常に Fi・ |≦1であるが ,

θ=0以外では IB:.|が 1以上になることもある。図 2-90か ら,tan δαぉよび tanら

o(deg)

一一――:Xl, '. ax?
図2-8 θに対する IBf.|の 第1共振点

- 22 -―
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０

５

一罐
ｍ
一

０

　

　

５

０

　

　

５

０

　

　

５

０

　

　

５

χ

(n)ヵon5d=ヵ on5m=o

(l)ar。 =1305  ,

(2)gro=9   ′

(b) ,ton5o =f,on5m = o,1

pro=6

lJr o= 9

(3)ε ro=6 ,  μ ro=13,5

図 2-9 円柱が εrと μ″で構成されるときの IB:.|(π =1)の周波数特性
(媒質定数とθをパラメータとする)
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が大きくなると,(1)の場合は 曰%131の性質に,(3)の場合は IB多 181の性質にそれぞれ漸

近し,(2)の場合は IB%181と I BL131と の中間的な性質に漸近することがわかる。一般に

円柱の損失が大きくなるに従い, lεrl>lμrlの ときの IB:311ま IB%π81 の性質に,

lε r l<lμ rlの ときの IBλ 81は IBttπ 81の性質にそれぞれ漸近する。 曰鳥εlで は これ

080°
:0

n=1

n=,

n=2

(1)ε ro=31

0●ぴ
1.0

030°
1.0

0● 0°
1.0

n・ 2

nt2

0〓 0°

10

030°

IB品。 |

IB%“=|の θ指向特性

-24-

(3) εro=400

(π =1,2)

lontd.o, o.ol

X31.841(χ :1)

X=O.l196(x?

X=0.1916{X21)

図 2-10 1島 .|,

!.0



第2章 無限長円柱物体のダイポール波励振

らの関係が IB密.|と 逆になる。

円柱の媒質定数が ε,0=4,81,400, tan δα=0,0.01,0.1,1,μ r=1の とき,π =1お

よび 2における IBλ.|の θ指向特性を代表的なχの値について求め, 同じ%と ″におけ

る IB%π81(図中に″ で表示)と共に図2-10に示した。図2-10(1)は
'brO=81の

とき

である。(1)の最上段の図は, π=1モ ードで χ=0。 1の場合であり, χがπ=1モ ード

の第 1共振点 χflよ り小さい場合の例である。 tan δdが小さいときは複数のロープをも

つが,talll δαヵ`大きくなるに従い lβ frlが IB%101に漸近することを示している。(1)の

上から2番目の図は,π =1で χ=χ :1の場合である。このときは,常にθ=0の方向で

最大となる単一ローブとなり,tan δαの増大に従い I B i31は 曰 %181に漸近する。(1)の

上から3番目の図は,π =1で χ=0.3の場合である。このχの値は IB`31がπ=1モ

ードの第 1共振点より大きい場合の例である。tan δαが小さいときの IBi=|は特定の θ

方向に鋭い指向性をもっている.(1)の最下段の図は, π=2で χ=χ ,1の 場合であり,

π=1,χ =χ ilの場合よりθ=0の方向で鋭い指向性をもっている。図 2-10(2)お よび

(3)は ,それぞれ ε′0=4お よび 400の場合の多=1,2モ ードの χil,χ,1に おける IBλ .|

のθ指向特性である。これらはいずれも ′=0の方向で最大となる単一ロープを もち,

εrOが大きくて tan δd力Ⅵ さヽいときのθ指向特性は極度に鋭くなることを示している。一

般に共振点での IB名 .|と IBれ |は θ=0で最大となる単ニロープであり, 共振点を外

れると複数のローブまたは特定のθ方向のローブをもつようになる。そして,%の 値 が

大きいほど,ま た tan δαが小さいはどθ指向特性は鋭くなる。しかし,いずれの場合も

tan δαが大きくなるに従い完全導体のときの特性に漸近する.円柱の媒質が誘電性と磁性

を共に示す場合のθ指向特性についても図2-9で述べた事柄と同様なことが言える。

以上の図2-2から図2-10までの計算例は, 主に IB焼
`|, IBふ =|と

lβl.|につ

いて示した。これらの計算例から IB181についても予想することができる。

また, 2-2節で述べたように,完全導体円柱については C%,=cttπ =0であり, 一

般の円柱においても θ=0方向では常に C角 .(θ =0)=qε (θ =0)=0である。 θキ0に

おける IC.|(または IC脅 81)を正規化周波数 力α=χ について数値計算するためには,

式(2,18b)(または式 2-24b)か らわかるように,ω またはαを指定する必要がある。

したがって,こ こでは図2-7と の対応を考慮して,lθえ81/(ωεO)についての計算例を示す。

円柱の媒質定数が εγO=81,tan δα=0,0.01,0.1,1,μ″=1の とき,π =1で θ=0° ,25° ,50° ,
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一籠
一

€ro=81,

w2-11

一駆
一

1。 n,d=0,0.01,0,1,1, 0=∝ 25:5∝ 751 h=l

誘電体円柱における lq81/(ωε。)の周波数特性

(tanδことθをパラメータとする)

tonSd = o.i ionf'd = 1
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第2章 無限長円柱物体のダイポール波励振

75° における I Ci31/(ωεO)の計算結果を図2-11に示した。θ=0° では常に I Cisl/(ωεO)

=0である。θ=25° ,50° ,75° における I Ci31/(ωεO)の各共振点のχの値は, それらに対

応する図2-7の 各共振点のχとはぼ同じである。そして, 共振点における I Ci31/(ωεO)

の大きさも図2-7と 同様な傾向を示す。すなわち,tan δαが大きくなるに従い共振点に

おけるIC i3/(ωεO)は小さくなる。 図2-11の場合は tan δα≧10で I Cf81/(ωεO)=0と

なる。これは,完全導体円柱のQ臨.が常に零であることからも予想できる。このような

ICλ .1/(ω ,0)の性質は, 1民=|において tanら が大きくなると |二脇.|に 漸近する

性質に類似している。 IC脅 81/(ω拗)についても同様である。これらのことから, l ελθl

(またはI Cλ 81)も I Bisl(ま たは IB131)と 基本的に同じ性質をもつことがわかる.

したがって,一般に円柱における θ=0方向の散乱波は入射ダイポール波と同一偏波方向

であるが,完全導体円柱以外の θキ0方向では楕円偏波になっていることがわかった。

2-5 むすび

本章では,無限長円柱の近くに円柱軸と平行に電気または磁気ダイポール波源を置いた

ときの遠点の散乱波の散乱係数を導出した。そして,種々の円柱媒質における散乱係数の

入射周波数および散乱方向に対する諸特性を計算例によって明らかにした.すなわち,こ

の場合の円柱の散乱係数には,次のような性質があることがわかった。

1.完 全導体円柱ではその大きさが常に 1以下であり,周波数に対して各モードごと

に多くの共振を示す。また,周波数が高くなるに従い円柱軸を含む面内の指向特性のロー

ブの数は増加する。

2.一 般の媒質においても,その損失が小さいときは,各モードごとに多くの共振を

示し,媒質定数が大きくなるに従い共振周波数の間隔は狭くなる.

3.媒 質の損失が大きくなるに従い共振は次第に減衰し,完全導体円柱の性質に漸近

する.

4. 円柱軸に直角で波源を含む面内では平面波入射のときと同一であり,その大きさ

は常に 1以下になる.そ して,こ の面内の散乱波は入射ダイポール波と同一の偏波方向に

なる。

5。  円柱軸に直角でない方向ではその大きさが 1以上になることもある。そして,散
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乱波は一般に楕円偏波になる。

6.散 乱方向が円柱軸に近づくに従い,各モードの共振周波数は高くなり,同様な傾

向で各共振周波数の間隔も広くなる。

本章で取扱った散乱係数は,円柱軸に直角で波源を含む面内を除いて,実際の有限長円

柱には適用できない。しかし,こ こでの解析結果によって,円柱散乱の基礎的性質が明ら

かとなった。
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第 3章 球状物体のダイポール波励振

3-1 まえがき                     、

均―な媒質の球状物体 (以下,球という)による電磁波散乱についての研究は今世紀の

初頭円柱より早くから始められ①,散乱問題の基礎として,これまでに多くの報告がなさ

れてきた。)'“ )'6),(1の ,(1つ。したがって,平面波入射の場合の球の散乱波のモード振幅係数

(以下,散乱係数という)もすでに解析的に得られている
“
)'aa, ここでは, 第 2章との

関連により,球にダイポール波が入射したときの散乱電磁界をグリーン関数を用いて解析

する。そして,球の磁気形および電気形散乱係数が平面波入射のときと同一になることを

示す。また,これらの散乱係数が円柱の場合の軸に直角で波源を含む面内における円柱の

磁気形および電気形散乱係数と同じ形式になることも示す .

3-2 散乱電磁界の解析

解析には,直交座標 (κ ムの と球座標 (ら θ,φ )を用い,球 (半径α,誘電率 εl,透

磁率 μl)の 中心を座標の原点と一致させる。また, 第 2章との関連において, 単位の強

さの電気 (または磁気)ダイポール波源がX軸上でZ軸と平行にあるものとする (図 3-

P(400')

Pノ (rt子 |,)

Q(r。 ,ナ,o)

CO,μ o′ 礎

図 3-1 座標関係

0

〔1,μ l′ カ
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1参照 )。

点 rOにある波源から球に電磁波が入射したときの散乱電磁界を解析するため, 自由

空間におけるグリーン関数を示せば次の如くである●0).

C(r rOI力 )=ル
ム 琴雛 ■ 冴

(塑

鱚

・
|ビ
携π(P)Jビ為π(凡)+Ⅳ為ル(「

0)。 Ⅳ傷ル(10)}   (rミ
rO) (3-1)

なお,こ こでは時間因子 exp(わ′)を省略し,以後も同様とする。式 (3-1)におい

て,″ =0,1,2,… ,解 =0,1,2,… π,(0=1,軌 =2(π≧1)である.また,端π, 馬 ルは複

素球面関数 ex"滋φoP雰 (COS θ)(ただし, P竹 (cos θ)は陪ルジャンドル関数)から作ら

れた複素球面角ベクトル関数と球ベッセル関数との積で構成されるベクトル関数であり,

次式で表わされるCの。

障制=/―t出の脇)I   C3 2)

脇争い場のみ脇)|
十/荻π丁耳・瑞 の み み

降 鶴 l K3-3)

ここで,23,θ は,

」 軍 雇 方

報 口

|   

¨

とし,J″ ,Jν ,J″ および :r,jθ ,′φをそれぞれ直角座標および球座標の単位ベクトルとすれ

ば,次式で与えられる。0)。

P"(θ ,φ)=Jγ×χ脅(θ ,φ )

=井勝,トーゐわいのし+解―⊃χ震
―(1+δ。れ】χttll― (1-δ Om)(κ―解+1)
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第 3章 球状物体のダイポール波励振

・●―舛υχ無+C+婦χ制〕
―与jν〔(1-δ Oπ)(κ +解)(κ十協-1)′X臀■
+(1+δ Oれ)′κ脅11-(1-δ Oπ )(κ一滋+1)

0(π―解+2)′χ臀■―(1-δ Om)′χ臀‡]

+10+の X卜1+いZ+⊃χ雅珊    (3-5)
Bれ,(θ ,φ)=:r× Cれ,

=η永両J/:電吾lCl→総。十の
。
(κ +″ -1)X竹

=l―
(1+δO"】κ狩1:J

+/写戸雲:I(1-あわ(″―“+1)(″
―″+2)χ努尋―(1+為")瑠‡]}

粥≒ちν平 い総。+の
。
(κ +″ -1)′χ臀二十(1+δ O")′X脅11

+)/傷
嘉葛F〔
(1-あの鮨―″+DO一 π+のノχ狩■+0+島紛iヽ‡]}

+函島「ち1/写し+041-/慕。一″・ lyヌ摯司
(3-6)

C"ル (θ ,φ)=― jr× B"π

=/Z(π +1)修
j″〔(1-δO"(Z+%)(総―″+1)メ脅・

+(1+δ。″)二χ
"+1〕

一与ち〔。一δO")。 +解 )
。●―Z+DX『 1-Kl―妬Dχケ]一ちが4  (3-7)

図3-1に 示す点 0(γO,π/2,0)で Z方向をむく電気または磁気ダイポールの入射 1次

電磁界は,式 (3-1)～ (3-7)と

′×E=―′ωμI                         (3-8)

の関係を用いて表せる。また,こ の一次界が球に入射したときの球からの散 乱 界 は, 式

(3-1)の 臨 π,2Lπ に未定係数 απ,bル を乗して与えられる。同様に, 球の内部電磁

界は,式 (3-1)に おいて た→力1(球の波数)と し,端 π,島れに未定係数 ら,あ を

乗じて与えられる。これらの未定係数は球表面における電磁界の連続条件から決定される.
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まず,波源が電気ダイポールの場合の入射電磁界 EP,12は ,式 (3-1)で示される

ように,α <γ </0の場合とγ>γOの場合とにより表現が異なる。式 (3-1)～ (3-

8)の関係を用いて EF,IPを示せば次のようになる。D.

Ep=ノタ1羽絣 ム%(舞劣ギ

×
〔
JrSh θ

鶴 絆 PoP(∞
S,)・瑠 (COS θ)。″

(タチ
0)。

み
九
(タチ0)。

“

S■

十ち
レ
2PК∞s,。 PК∞Sの・力PC多う磁 Cチ】

一

品

PttSか 。Pω Sの 。〃
Cチ う <タ チ0卜

S Zφ

+ら
力 IPК

∞S,・ Pω鋼 ・力PCチう協 CttD

―S■ θoP(∞s,)。P臀 (COs θ)。〃
('多

。
)。
ノ
(タチ0)}Sh ttφ〕

ぐ
<懲
♪ 
“
一
"

ただし,

P(coS θ)=(π +1)(κ +Z)P″ _1(∞Sθ)一 ″(κ 十 ″ +1)P臀 +1(∞Sθ )

ノ(ルγ)=み協{γサル(々γ)},ス γ々)=み多{γ・λP(λγ)}

rF=_ω匈ム牙多:」卜が量%:争:協ず≦ξ書ら隼

×
〔
J7{Sh θ・解 (κ +1)P撃

(cOS,)・
P彎 (COs θ)。あP(タチ

0)。

み
ノ。
(夕

'0)。

Sh″
}

―:θ
l。み 下 〔

PttlCOS,)。P(∞Sθ )・力P(筋0)ザC,0)

+P(∞ S,)・ P"(COSの 。〃
(タチ
0)。
九 (仏 )〕

。Sh″
}

十ゴφ
IP′
。Shθ・PttlcOS,)・ P脅 (∞Sθ )・力PC多 0)。ノ

(タチ0)

~(2π
+1)2 PIC°

S,)。 P(∞Sθ )。〃
(タチ
0)・
」in(夕,0)〕

∞S■
}〕

'              (α≦″≦角)    (3-10)
散乱電磁界 EO,131ま ,磁気形および電気形未定係数 απおよび bル を用いて次のよう

に表わされる。なお,以下の記述においては,

葛締 葛%1作翻宅謬L=ΣΣ
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第 3章 球状物体のダイポール波励振

と略記する。

E8=ルΣΣ
〔
jr{bπ oSin θ

(窃簿3P(COS,)・
P臀 (00S θ)

×〃ψγO)。み″)(″ )・∞s■卜ち{απ。解2′臀os,)
×P竹 (∞Sθ )。力P(たγO)。物絆 (力γ)一

満
・P(∞S,)・′(∞Sθ )

×〃ψγO)・ IfC力γ)}∞ S・ 十:φ
。 作 万 {α

πoP臀
(∞
S,)

×P(∞Sθ )・力P(ルγO)。乃P(力γ)一うル・shθ oPlcos,)。 P脅 (∞Sθ )

×JfC力γO)・スカγ)}sh″φ〕    (γ≧α)    (3-11)

r=_ωεO ΣΣ〔jrlα・・Sh θ・協(π +1)P臀Os,)
×P"(∞ sθ )。みP(力″0)。

み
力P(力/)。 Sh ttψ

卜
:θ{弁

×
〔
α,。 Pl(∞S,)・ P(∞Sθ )。あP(力″0)・ス カ″)+ιル・PlcoS,)

×P″ (∞Sθ )・″ψγO)・カメ(力″)〕 sh ttφ
}

+Jφ
{〔
απoπ
2.sh θ.P臀

(coS,)。
P臀 (∞Sθ )。λP(力 /。 )。 JfC力γ)

~(2κ
+1)2P(∞

S')・ P(∞Sθ )・スル70)・力P(ン )〕∞s■
}〕

(″≧≧α)        (3-12)

球の内部電磁界 Er,コ
′は,磁気形および電気形未定係数 ιπおよび αルと,球の比誘

電率 εr,比透磁率 μ′を用いて次のようになる。

Erタ キ
。
ル Σ Σ

ト ト
hθ
争緋 器
P(∞ S,)・ P"“ OSの

×スレめ赫 ″幕の。S■ }
+Jθ
Iら
・″・P臀

(COS,)・
P雰 (COS θ)・力P(力″0)幌 (/cr・μ″・力γ)

~(2″
+1)2・
PIC°S,)・ P(COS θ)・ス カ″0)。ノ("r・ル ル″)}coS・

+:φ
{ゐ  [ι

πoP鷲
(∞
S,)。 P(∞Sθ )・λP(力″0)晩 (/cr・μ″力の

一あ 。Sh θ・P(∞S,)・ P脅 (∞Sθ )・ス カ″0)・ノ(/εグ・μ′・力″)〕 sh ttφ
}〕

(″≦α)        (3‐ -13)
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(/≦≦α)

ただし, εr=ε 1/εO,μr=Й″o・

以上の電磁界に対しては球の表面γ=α において,境界条件

(3-14)

E′ +E:=E′
,

〃′+″ ;=〃′ (3--15)

が成立する。式 (3-9)～ (3-14)の θ成分と式 (3-15)か ら散乱波に関する未定

係数 απ,bπ を求めると次のようになる。

Er=一 ω匈・ εrΣ Σ
[jr{ι

ル・ Sh θ・ ″ (η +1)Pttlcos,)。 P雰 (∞Sθ)

×カメψの
ラ石再÷再裏フ
九(ン「戸フ子の

sh解4-ち {ス2′争Tァ

×
〔
ιπo P″
(COS,)。

P(COS θ)・力″
)(ルγ。)・J(/εro μr・力/)+あ。P(∞s,)

×P脅 (∞sθ )・スル″0)協 (/εァ・μr・力γ)}sh″φ
石φ
レ
″ ¨hみ P脅

←朔 蠍
鰯 のイ 。標 /赫 の

一
フ浄 呼

P(∞S,)。 P(C∝ θ)・ JfK力γ。)仇 (/er・μr・力″)〕 ∞s″φ
}〕

/ε r力P(ルα)・J(/cr・μr・力α)―ル/μr〃(力α)づ枕(/ε r・μr・力α)

ノ■も、(力α)・J(/εr・μグ・力α)一 /εγj「(力α)。九(/er・メ′′・力α)
/μ″λP(力α)。 ノ(/cr。ル・力α)一 /crJfC力α)。九 (/cr・μr力α)

(3-16)

また,完全導体球のときの α2を α″π,みπを

それらは式 (3-16)に おいて,ε′→∞,件 =1

α″ルーー
メ)(ヵα)'場

π=一 粥

場,(″は完全導体を表す)と すれば ,

として次のようになる。

(3-17)

απ (ま たは α″π)お よび ιπ (または 場 ")は
,それぞれ,球の磁気形および電気形散

乱係数といわれるものであり,これらは平面波入射の場合
“
)'(12)と 同一である。

波源が磁気ダイポールの場合の球の散乱係数も上記と同様な方法で求められる。この場

合の電磁界は ,

7× ″=わεE                               (3-18)

の関係と式 (3-9)～ (3-14)か ら次のように得られる。すなわち, 入射電磁界の 17
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第3章 球状物体のダイポール波励振

は式 (3-9)に おいて E'→Fpに,EPは式 (3-10)において ■p→Epにするとと

もに係数 ―ωεOを ωμOに変更すればそれぞれ得られる.散乱電磁界の J甲 は式(3-11)

において ♂→″9, απ→ι青,bπ→αl(・ は波源が磁気 ダイポールを表す)と し, ま

た E8も式 (3-12)に おいて IB→P,一ωεO→ω拗,απ→婦 bπ→αlとすれば得られる。

また,内部電磁界の ″rは式 (3-13)に おいて P→rr,θπ→al ら→ιlに 変更 し,

Erも式 (3-14)に おいて rr→P,一ωεO・εr→ qυOoμr,ιπ→グお,4→ι務に変更して得

られる。

以上の諸式から,こ の場合の電気形および磁気形散乱係数 α青および b方 は次式のよう

に得られる。

α青= _/π卜九(力α)。ノ(/εグ・μ″・力α)一 /ε′・J(力α)。九(/ε r・μ′・力α)

う1=一

/μ r・オ
)(力α)・ノ(/ε r・μr・力α)~/ε r・ Jfc力α)。九(/roμ r・力α)

/εグ。九(力α。)ノ(/cr・μ″。たα)一 //2グ・ノ(力α)・九 (/εグ・μr・力α)

ノεr・λy)(ヵα)。ノ(/cr・μr・力α)~ル/μグ・IЙ(力α)づ幌(/ε′・μr・力α)

すなわち,α穂と み1は /μrと /Crをそれぞれ交換した関係であり,波源が電気ダイ

ポールのときの απと みπはそれぞれ ら1と α青と同一になる.ま た,完 全導体球 の

のあ と ιふ  は次のようになる。

(3--19)

(3-20),  タルπ=_九 (力α)

″)(力α)

式 (3-20)を式 (3-17)と 比較すればわかるように,α″πとら島 は同一であり,場,

と こ脇 は同一である。

3-3 円柱と球の散舌L係数の対応

第 2章で求めた円柱の θ‐0における散乱係数と3-2節で求めた球の散乱係数との対

応関係を示せば表 3-1の ようになる。すなわち,球のときの九 を 九 に,ノ を 九′に,

カメ)を 〃″)に,〃 を〃″)′ にそれぞれ置き換えれば円柱の場合になる。また,九,嶋 ,

〃″),〃″)を ん で代表し,九 ,κπ,み″),あ″
)を

Zπ で代表すれば,それらの間には次

の関係がある。め'30.
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表 3-1

球

α
"ま
たは らあ

αr.または 4レ

らたまたは α売

ら″πまた|ま られ

B漁 (θ =0)

,f“ (θ =0)

B幾 (θ =0)

Bふ8(θ =0)

Zπ (Z)=/島・乙+`(2) (3-21)

したがって,球の磁気形および電気形散乱係数と,円柱の θ=0における磁気形および電

気形散乱係数とは極めて類似しており,本質的には同じ性質を持つことがわかった。

3-4 むすび

本章では,球に電気または磁気ダイポール波が入射したときの球の電磁波散乱係数をグ

リーン関数を用いた電磁界の表現式から導出し,平面波入射の場合と同一になることを示

した。そして,球の散乱係数と円柱の場合の円柱軸に直角で波源を含む面内の散乱係数と

は同じ形式であり,性質も極めて類似することを示した。
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第 4章 円柱および球の散乱係数の

統一的取扱い

4-1 まえがき

第 2章と第 3章では,電気または磁気ダイポール波が円柱または球に入射したときの電

磁波散乱係数を解析した。そして,円柱の軸に直角で波源を含む面内の散乱係数と球の散

乱係数がいずれも平面波入射のときと同一になり,しかもそれらは同じ形式になることを

示した。円柱および球の散乱についての研究の歴史は古く0～0, これまで多くの成果が

あるものの,いずれも円柱および球の媒質定数並びに入射周波数に対する取扱い範囲に制

限があった。周知のように,散乱現象はこれまで円柱および球の半径αと入射波長λとの

関連において,α≪′,α γλおよびα>ア の各領域において近似的に取扱われて きた。

また,媒質も完全導体または低損失誘電体が主に取扱われ,損失の大きい誘電体および媒

質が誘電性と磁性を共に示す場合などはほとんど検討されていない。それは,媒質の損失

が大きくなると,散乱係数の表式に含まれる複素円柱または球ベッセル関数の数値計算が

困難になるためである。そのため,数値計算に便利なように散乱係数の表式を変形した取

扱い方法も種々検討されたが,いずれも適用範囲に限界があった。→。 したがって, 広範

囲の入射周波数および媒質定数に対する円柱および球の散乱係数の性質は未だ充分解明さ

れていないといえる。

本章は,本論文の主要部分であり,任意の媒質定数と広い周波数域における円柱および

球の散乱係数の基本的性質を以下のようにして明らかにしている。まず,第 2章と第 3章

の結論から,円柱の軸に直角で波源を含む面内の磁気形および電気形散乱係数と,球の磁

気形および電気形散乱係数とを一つの式で統一的に表示している。ついで,こ の式を複素

平面上の点 (-1/2,0)を 中心とする表式に変形することにより,散乱係数の性質が見通

しよく得られることを示している。そして,円柱および球の媒質が無損失または完全導体

のときの散乱係数は常に点 (-1/2,0)を中心とする半径 1/2の円周上にあること,媒

質に有限な損失があるときは点 (-1/2,0)か らの距離が 1/2以下になること,媒質定

数が周波数に無関係であれば,周波数が高くなるに従い点 (-1″,0)からの距離が一定

の値に近づくことを示している。また,複素ベッセル関数の数値計算法を検討し,これを
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散乱係数の計算に適用することにより,媒質の損失が大きくなるに従い完全導体の性質に

近づく様子を計算例で示している。また,高い周波数領域における簡単な近似式を導出し,

このときの磁気形と電気形の散乱係数が相互に点 (-1/2,0)に 関してはぼ点対称の関係

になることを計算例とともに示している。さらに,近似式による値を厳密な値により評価

し,近似式の適用範囲などについて考察している。さいごに,これらの散乱係数の性質を

基にして,円柱および球の散乱断面積の適切な計算法も考察している.

なお,複素ペッセル関数の数値計算法は付録に記述している。

4-2 散乱系数の統一的表示

式 (2-40),(2-43)お よび式 (3-16),(3-19)を 統一的に次のように表示す

る。

q・/1(″ )・ FI(2)一 の・Fl(χ )・ /1(2)
ρπ=~

ただし,

(4二 1)
Qザ1(″ )。 Fお (2)一の・F'(χ)・ /お (2)

Fλ (χ )=/π ll(″ )一
“
・/1(χ )/″

F,(χ)=F為 (χ)一ノFλ (χ )

Fλ (χ)=/,41(χ )一
“
・/λ (χ)/χ

/1(2)=″λ(Z)+″λ(2)

Fλ (2)=ノπll(Z)一κ・/1(Z)ル .

ここで,χ =力α (α :円柱または球の半径,力 =ω/ε O・μO=2π /λ :自 由空間波数,ω :入射波

角周波数,ス :自由空間波長)であり,2ゴ /επ・μr・χ (ε′=ε rO(1-ノ tall δα):複素比誘電率,

μr=μ″0(1~ノ tan蝙):複素比透磁率),α とC2は/ε7または/万 である。ん は円柱

または球ベッセル関数を表し,右肩の指標1は 九,ノルを,2は 嶋 ,κルを,4は 〃ア)λ絆)

をそれぞれ表す。F為 は九,九 の第 1次導関数九
′
,九
′を,Fλ は嶋′,“π

′を,F力 は″″),

λ″)をそれぞれ表す。″λとグλは複素ベッセル関数の実数部と虚数部である。 そして,

式 (2-40)の B幾 (θ =0)を ρ′,式 (2-43)の B傷 .(θ =0)を ρλ,式 (3-16)

のαπ,♭πをριπ,ρれ,式 (3-19)の α穂,ιlを ρふ,ρ。1と する。また,円柱およ
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第4章 円柱および球の散乱係数の統一的取扱い

び球が完全導体のときの ρπを一般に ρν, とし,式 (2-41)の  2孟 3を ρジπ, 式

(2-44)の B協=を ρttπ ,式 (3-17)の 物π,b″ルを ρ″απ,ρ″oπ,式 (3-20)

の 場 ,,タル"を ρttπ , ρあ2とすれば,それらは次式のように表せる。

(4-2)

式 (4-1)と (4-2)をまず次式のよ狂　
　
　
　
巧

次

　

に
ヽ
フ

ただし,

Иル=

|:[π〕 (4-3)

(4-4)

(31・/3(″ )・ F:(2)一 C2・ Fζ (χ )。ノ)(2) =Gπ +ノD"
Cl・ /お (χ )・ Fお (2)一 C2・ F)(χ )・/お (z)

И″π=/:(χ
), F7(χ )

/L(χ) F)(χ )

ここで, lρπl≦1であることと,Gπ とつπがともに実数であることから, 一〇〇≦θπ≦

十∞であり,Dπ≧0である。また,И″πは常に実数であり,一 ∞≦И″π≦+∞ である。

これらのことから,式 (4-3)は さらに次式のように変形できる。

|:[π l=一 |タ
ー
|クiル |・
expllil

ただし

ら=持一σttTてg争午Tttl`

ら→m‐ 為
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″″π=与

θ″π=tan~1鋳

式 (4-4)は , 元来複素平面上の原点 (0,0)を基準に表示された式 (4-1),

(4-2)を,同平面の点 (-1/2,0)を 中心とし,(-1/2,0)か らの距離 ″πまたは

γ″,と ,実軸からの偏角 θπまたは θЙル によって表示したものである。式 (4-3)を

このように変形することにより,ρ,ま たは ρ2.の性質が一層明瞭になる。

4-3 統一表示式による散舌L係数の解析

4-3-1 固有モードと共振現象

式 (4-1)の 分母は,一般に複素数の根により零になる。

合はその軸方向に伝搬しない磁気形および電気形固有振動モー

気形および電気形固有振動モードを規定する。すなわち ,

Cl・/,(χ )・Fλ (2)一 Q・ F,(χ )・几(2)=0

γル,ソ/(/ε O・μOoα)=ω
′=ωπ,ソ +ノκル,ソ

とし,exp(カリ)の実数部をとれば

Re〔exp●bけ)〕 =exp(―κπ,ッサ)・∞S(ωπ,ッサ)

(4-5)

が成立する複素数根 γπ,ソ は上記の磁気形および電気形固有モードの自由減衰振動を規定

する.こ こで,

その複素数根は,円柱の場

ドを規定し,球の場合も磁

(4-6)

(4-7)

となる。式 (4-6)の ωπ,ソ は円柱または球の自由減衰振動の固有角周波数を,κπ,ッ は

振動の減衰 (制動)定数を与える。ここで, %は固有モード次数であり, νは γπ,フ の絶

対値の小さい方から数えた順位である.円柱または球が低損失であれば,入射波の角周波

数 ωが ωπ,ソ に近づくと円柱または球は電気的に共振する。共振の大きさは,ρルの大き

さとして現れる。最も典形的な場合として,媒質が無損失 (εr,μrが実数)の ときは,式

(4-1)の 変数はすべて実数になるため,ρπは次のように表せる.

ρπ=~爾
ア爾死T

ただし,

=40-
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第 4章 円柱および球の散乱係数の統一的取扱い

′″=Q・ /方 (χ)・ F,(/crO・μrO・χ)~Q・ F為 (χ )。ノ1(姉 0。χ)

協 =―障 ① 鳥 ν諄丁7λ→
一CrF■ ① 孔 晰 面J

式 (4-7)に おいて,″π=0となるχで ρπは共振し,こ のとき,ρπ=-1と なる.式

(4-6)の ω,πッと式 (4-7)の Zル =0と なるωとは一般に異るが,両者は互いに

接近している。媒質に有限な損失がある場合の円柱および球の固有振動を取扱った報告も

多くある。)'(1の ,08),91)が , このことについて議論するこが本論文の目的ではないのでこ

こでは省略する。しかし,数値計算によれば,媒質の損失が零から次第に大きくなった場

合,共振現象が現れる範囲内において共振周波数は大きく変らない。このことは,後の計

算」ljで示す。媒質が完全導体の場合も式 (4-7)と 同様な取扱いができる。

4-3-2 散乱係数の一般的性質

散乱係数の一般的な性質は,式 (4-4)に より明らかにされる。 まず, ρπにおいて,

媒質が無損失のときは
'ル

=0と なる。したがって,こ のときは″π=1/2と なり,ρπは複

素平面上の点 (-1/2,0)を 中心とする半径 1/2の円周上にある。そして,Gπ =oの と

き円柱または球は共振し,ρπ=-1と なる。 Gπ =± ∞ のときは ρπ=0となる。また,

tanぬ および tan鋭 のいずれか一方または双方が零でないときは, Dπ≧oと なり, γπ

<1/2と なる.しかし,媒質の損失が大きくなるに従い /π は 1/2に近づく。媒質が完

全導体のときの ρ抑 セま常に ″″″=1/2で ある。

4-3-3 高い周波数領域における散乱係数の性質

誘電体および磁性体は一般に周波数により媒質定数が異るのが常であるが,こ こでは散

乱係数の基本的性質を検討するために一応媒質定数は周波数に無関係とする。このような

仮定を設けると, 周波数が高い場合は式 (4-3)に おいてχ→∞に相当する。 したが

って,Z=/ε″・μr・χであることと,式 (4-1)の Fl(χ),FL(2)お よび Fλ (χ)の関

係から,こ のときの式 (4-3)の Иπを Иル′で表せば,Иπ′は次のようになる。

Иπ
′=
Cl・/:(χ )・/"Ll(2)一 C2・/ヱ 1(χ )。ノ1(2) (4-8)
q。/力 (χ )。/πLl(Z)一 C2・/鷹 1(χ )。/1(2)

また,複素変数 Zが大きいときのベッセル関数と tan zは次のようになる。6),C7)
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亀

"笙

虎盤

劣1:卜
=∬
(Z

tan z笙′

π
　
　
　

、ヽ
′
ノ

【一４
争

↑

　

一

式 (4-9)の 関係を式 (4-8)に入れると И/1ま簡単な表現になる。式 (4-8)

からわかるように,42′ は式 (4-9)の /2/(π z)お よび 1/2と無関係になる。χ→∞

におけるρl,ρl,ρoπ ,ρ oれ をそれぞれρ%,ρ究
′
,ραπ′,ρ b″ で表せば, 式 (4-3),

(4-8)および (4-9)からわかるように,ρだとρ″ルおよびρ身′とρbπ′|まそれぞ

れ類似の特性を持つ。そこで,まず,ραπ
′および ρ。メ の性質について考察する。また,

Clと C21ま /ε′または /μrであるが,便宜上次のようにおく。

CI=ICll oexp(― ル 1), C=IC21・ eXp(―ル 2)           (4-10)

(1)ICII>1,IC21>1の とき :

式 (4-9)の 九(2),″π(2), tan zを式 (4-8)に入れると, 4/は次のように

なる。

Иル
′笙
CrCOS(χ ―

券
π
)一
ノC2・ Sin(χ 一

券
π
) (4-11)

(I ZI→∞) (4-9)

(4‐-12)

CIosin(χ -41π
)十
ノC2・ COS(χ一

`;π

)

となる。また,ραπ,ρ oπ における式 (4-4)の ″,および θルをそれぞれ γα.,γひπ

よび 免π,θ。,と し,ρ
“

′
,ρ oπ
′ではそれらを γαπ

′
,″れ
′および 免π

′
,θ oπ
′
とすれをゴ,

の関係が成立する。

ここで, ραπ′,ρ oπ′のИπ
′
をそれぞれ Aα/,И。2′ で表せば,

4′απ=-1/И
′
。2

/αル
′笙/b′π,θαル

′笙θ。ル
′
+π

すなわち,同一モード次数の ραπ
′
および ρれ

′
は点 (-1/2,0

笙γoπ
′
の円周上にあり,しかもそれらはたがいに点 (-1/2,0)

係になることがわかる。

10 Cl=C2(ICll=I C21>1,91=ψ 2>0)の とき :

―- 42 -―

お

　

次

(4-13)

)を中心とする半径 ″απ′

に関してはぼ点対称の関



第4章 円柱および球の散乱係数の統一的取扱い

このときは,式 (4-11)お よび式 (4-3)から,

Иαπ
′笙Иbπ
′
=ノ,ραπ
′笙ρoπ
′笙~1/2 (4-14)

となり,ραπと ρoπ はχが大きくなるに従い点 (-1/2,0)に近づくことがわかる。

働 完全導体のとき :

媒質が完全導体のときのρ″απ,ρ″わπをそれぞれ ρれπ
′
,ρ″oπ
′
とし,こ のときの И″α2,

4渤ルをそれぞれ И″απ
′,И″レ
′, /″απ,γ″αルをそれぞれ γ2απ

′
,γ″。2′' θ2απ, θ″。ル

をそれぞれ θ″απ
′
,θ″。π
′
とすれば,式 (4-3),(4-4)お よび式 (4-9)から,

それらの間には次の関係が成立する。

∠″̈
′笙-1/421π′

″2.π
′
=γ″bπ
′
=1/2(=γ″απ=″″bπ )

θzαπ
′
γθ″。π
′
+π

(4--15)

すなわち,こ のときの ρ″α,′,ρ″bル
′
はそれぞれ ρ″αれ,ρ″o,と 同様に,点 (-1/2,0)

を中心とする半径1/2の 円周上にある。そして,それらはたがいに点(-1/2,0)に 関して

ほぼ点対称の関係になる。また,式 (4-15)の И″απ
′
ぉょび И″。ル

′
は,式 (4-11)

にそれぞれ Cl=∞ ,C2=1お よび Q=1,C=∞ を代入して,次のようにも表せる。

(4--16)

すなわち,4″απ
′
とИ″ぁ
′
πとは″に関して相互に〃2の位相差がある。すなわち,ρ″α2′

および ρ″。ル
′
はχに対してπの周期で変化し,しかもそれらは相互にはぼ 〃2の位相差

を持つ。したがって,lρ″απ
′
|が最大になるχの近くで lρ″れ

′
|は零になり, ρれ

′
πlが

零になるχの近くで lρ″bル
′
||ま最大になる。

周波数が高いときの(i),(0,回 の関係は,波源が磁気ダイポールのときにも当然適用で

きる。すなわち,χ→∞におけるρ勝んはρoπ
′
,ρ ;ん はρα/, ρ焼ル はρ″。2′,ρ ttπ は

ρ″αル
′とそれぞれ同一の性質になる。

次に, 円柱の場合の χ→∞ におけるρ発,ρ脅,ρ%ル,ρLル をそれぞれρ%,ρ″,ρ %π ,

ρttπ とする.こ のときは,式 (4-9)からわかるように, 式 (4-8)において,χ→

(χ一″4)と し,z→ /εγoμr(χ―π/4)とすれば,式 (4-11)～ (4-16)と 同一になる。

すなわち,χ がπ/4異るところで ρ″ はραπ
′と,ρλ
′
はρoπ
′と,ρ%2は ρ″απ

′と,

11111二 III∫三Zチ:「
π/2)  }
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ρ聾ルは ρЙれ
′
とそれぞれ同一の性質になる。

以上が統一表示式による散舌L係数の解析であり,円柱および球の媒質定数が周波数に無

関係のときは直ちに適用できる散乱係数の性質である。しかし,媒質定数は一般に周波数

によって変化する。したがって,実際の散乱係数は上記のように単純ではないが,こ の場

合においても,高い周波数領域における式 (4-12)～ (4-14)の 関係は成立する。この

ことは,特に媒質が誘電体の場合を取扱うとときに有利である。何故ならば, lεrl=∞ ,

μr=1は完全導体と等価であり,誘電体の損失が大きいときの散乱現象を予測するには極

めて便利である。

4-4 散乱係数の計算例とその考察

4-3節で述べたように,円柱の場合の円柱軸に直角で波源を含む面内の散乱係数と球

の散乱係数は,本質的に同じである。円柱については第 2章で計算例を示したので,こ こ

では球の場合の計算例を示し,それらについて考察する。なお,本節における散乱係数の

表示は従来の表示法を使い,球の磁気形および電気形散乱係数をそれぞれ αれ,舛 とし,

球が完全導体のときのそれらを α″ル, b″πとする。 また, 高い周波数領域における近似

表示のそれらを απ
′,ら′,α″/,わ″π

′
と表す。

球が完全導体の場合の の ,と 場ルの正規化周波数 χ=力αに対する計算例を図4-1

に示す。図4-1(のは, |ら洲 ,lb″πlの π=1,2,3 における周波数特性である。周

知のように,球にはπ=0モ ードの振動は存在しない①'C)'(12),91)。 図4-l lalで ,π ,p

(またはπ,α )の表示は,π モードタ番目 (ま たは
`番
目)の共振を表す。これは,式

(4-6)の ω2,ν に対応する表示である。完全導体球では,lb20tlの
`=1番

目の共振

を除き,χ に対する |ら洲 , 1場ル|のすべての最大値は常に 1になる。図4-10は ,

%=1の ときの α″1と 場1の χに対する複素平面上の軌跡を描いた ものである。式

(4-4),(4-15)で示したように,α″1,場1は常に点 (-1/2,0)を中心とする半

径1/2の 円周上にある.そして,ら″1の α=1で は χγl.4の ところで軌跡の回転方向

が反転している。このような性質は,κ =1以外の 場ルにおいても常に示される。 また,

χ=20～ 23における α.1と み″1と は式 (4-15)の 関係を示している。ついで, 図 4

-l ralの |%11 と完全導体円柱の図2-2(の のθ=0における IBЙ31と を比較する

と,両者は類似の特性を持つ。特に, χが大きい部分では,χ の値がほぼ 2/4異る位置

(lβ五31の χ に π/4を加えた値を lα″11の χとして見る)で両者はほとんど同 じ特
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完全導体球における町
",ら
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“
の周波数特性
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第 4章 円柱および球の散乱係数の統一的取扱い

性を示している.これは, 式 (4-9)における 九,嶋 と ノπ, ππによって生じる

ρ%,と ρ″αル
′との関係を明らかに示している。これのら関係は,π キ1の ρ%π , ρ″απ

′

およびρ焼 ,ρ″。1′ においても常に示される。

つぎに,誘電体球のπ=1におけるαl,α l′ および bl,brの周波数特性の計算例を図

4-2に示す。図4-2〔 1〕 lalは ,媒質定数がε′0=81(水 ),ta■δα=0,0.01,0.1の と

きのχ=0～ 5,20～25に対する l αll(太い実線)と lα l′ |(破線, ただし, tanδαキ0,

χ=20～ 25)を完全導体球の |夕″ュ|(細い実線)と 共に示した。 tanぬ =0の ときは χ

に対して多くの共振が現れ,それらの最大値は常に 1である。また,χ に対する各共振点

の間隔はほぼ同じである。そして, 各共振曲線の途中のたるみの部分は常に lα″11と 一

致している。 tan場 が大きくなるに従い lαll の共振は次第に減衰し lα211の特性に漸

近している。これは,第 2章の図2-5に対応するものであり,両者は極めて類似してい

る。図4-2〔 1〕0は ,左側のlalに対応する αlの χ (ただし, χ=0～ 5, 20～ 23)に対

する複素平面上の軌跡を描いたものである.4-3節 で述べたように, tan δα=0の とき

の αlは常に点 (-1/2,0)を 中心とする半径 1/2の と周上にある。そして,tallぉおよ

びχが大きくなるに従い点 (-1/2,0)か らの距離が一定になる様子をよく示している。

図4-2〔2〕lal,0は ,〔 1〕lal,0と 同じ表示法で ら1,み 1′ および 1場11を示したものである。

この図から,blも αlと 同様なことが言えることがわかる。また,図 4-2〔 1〕0と 〔2〕

0に おいて,tanぁ =o。 1の場合の χ=20～ 23における αlと ιlの軌跡を比較すると,

それらは同一のχの値で式 (4-13)の関係になっていることがわかる。他の誘電体球に

おいても図4-2と類似の特性が示される。

図4-2と 同一の媒質定数における l 
α21,l α2′ |(お よび lα3 H α3′ |)の周波数特性を,

図4-2〔 1〕 lalと 同一の表示法により,lα″21(お よび lα″31)と 共に図4-3(1)(お よ

び(2))に示した。tanぬ =0の とき,l α21の第 1共振点 (χ を零から大きくしたとき,最

初に現れる共振点)の χの値は, l α31の第 1共振点のχの値より小さい。一般に, πが

大きくなるに従い第 1共振のχの値は大きくなる (計算例は後に示す)。 しかし,l α21お

よび l α31の第 2番目からの共振点の間隔はほぼ同じである。図4-2, 図4-3か らわ

かるように,同一の ε,0における lαπlの共振点の間隔はπの値によって大きく変らない.

このことは,ベ ジセル関数の性質からも推測できる。次に, tanぬ キ0の とき,図 4-2

〔1〕 lalと 図4-3(1),(2)か らわかるように, 一般に,tan δaおよびπが大きくなるはど

l απlセま lα″πlにはやく漸近する。 また, 近似計算値 lαπ
′
|は %が大きくなるに従い

―- 47 -―



χ

(1)(n=2)

――――――:lo21,1031=・~:10M21,10M31, ‐‐―‐――――‐:IGら |′ latl

図4-3 誘電体球における lα %|,lα′πl(π =2,3)の周波数特性
(εゅ=81,tanδ凛=0,0.01,0.1)(lα ″,|も 共に示す)

|ら |から離れる傾向を示す。このことは,式 (4-1)の F為 (χ),Fλ (χ ),F為 (2)の性質,

および式 (4-3)の Иルと式 (4-8)の Иル′との関係からも予測できる (このこと

についての計算例は4-5節に示す)。

媒質定数が ε″0=4,36,400,tanぬ =0.01,μ r=1の とき,l αllの周波数特性を l α211

と共に図4-4に示した。tanれ が同一であれば ε70が大きいほど lαπlヤま lα″πlにはや

く漸近することを示す。

誘電体球の tanあ =0における/ε″0に対する απ,bπ の第 1共振点のχの値 ″απl,χひ,1

を図 4-5 1al,oに 示した。図4-5と 円柱の場合の図2-6と を比較すると,両図は同

じ傾向を示し,χα.1と χ。.1も はぼ 1//εrOに比例していることがわかる。一般に,誘電

体球の χα,1(ま たは χ。21)は完全導体球の α″π (または ι拗)の第 1共振点 χα懃1(ま

たは χひ″πl)(後の図4-14参照)よ り小さい。 しかし, 図4-5か らわかるように,

1≦εrO≦3では crOが月ヽさくなるに従い χαπl(または χ。.1)|ま大きくなり, χαπl≧χ″α,1

(ま たは χひπl≧χ。2,1)と なる。ε′0→1で χαπl(または χoπl)→∞ となる。 この場合に

おいても, tan花 が極度に大きく (tanぬ≧100)なれば:l απl(ま たは |ら |)は %π l
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第 4章 円柱および球の散乱係数の統一的取扱い

一
:1011, 一―一一:loMll

図4-4 誘電体球における l 
αllの周波数特性 (εゅ=4,3Q400,

tanぬ =0.01)(lα″11も共に示す)

(または 1亀洲 )に漸近することを数値計算により確認している。図 4-2～ 図4-5の

計算例を用いれば,誘電体球の媒質定数と周波数に対する散乱係数の一般的な性質が容易

に予■llで きる。

球の媒質が誘電性と磁性の一方または双方の性質を示す場合の計算例を図4-6に示す。

図4-6 Calは ,下の(1),(2),(3),(4),(5)で示す媒質定数のときのダに対 す る lαllを ,

lανllお よび 1場11と ともに,図の左側の(1),(2),(3),(4),(5)の 順番で示してある。 ま

た,図 4-60は ,talと 同じ媒質定数のときの αlの χに対する複素平面上の軌跡を描い

てある。図4-6(1)は ,媒質が誘電体のみの場合であり,本質的に図4-2〔 1〕 lal,0と 同

じである。図4-6(5)は ,現実にこのような物質が存在するか否かは別として,媒質が磁

性体のみの場合を,図 4-6(1)と 対比させる意味で示した。このときはχが大きくなると

l αllは 1娃11の性質に近づく。すなわち,(1)の定数の場合の lιllと 同じ特性になる。

図4-6(2)は ,ε′ と μrが共存する場合の lε rl>lμrl の例である。 このときの l 
αll

―- 49 -―
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図 4-5 誘電体球のソer.に 対する αゎ0%の第 1共振点

″
`“
1,あ甕(tanδ凛=0,π =1～ 100)

は lα″1卜 の性質に近く,χ が大きくなると lα211と はぼ同じ傾向で増減することがわか

る。図 4-6(3)は ,lεrl=lμrlの場合であり,l αllは lα″11と 1場11 の中間的性質を

示し,″ が大きくなると 1/2に近づく。図 4-6(4)は ,lεrl<lμァ|の例であり, このと

きの l αllは 1場11の性質に近く,χ が大きくなると |ら″11 とほぼ同じ傾向で増減する。

図 4-6(2)と (4)の場合は εrO・μro=36であり,χ が小さいときに現れる共振点の間隔は

図4-4の ε,0=36の 場合とはぼ同じである。 また, 図 4-6(3)の場合は ε′0。μ,0=81

であり, このときの共振点の間隔は図4-2〔 1〕 lalの場合とはぼ同じになる。すなわち,

損失が小さいときに現れる共振点の間隔は,ほぼ 1//ε rO・μ70に比例することが図4-6

(2),(3),(4)からわかる。また,図 4-6 0Dlに 示す αlの χに対する軌跡は,χ が小さいとこ

ろでは複雑であるがχが大きくなると式 (4-13)お よび式 (4-14)の関係になること

を示している。すなわち,(1)と (5)の場合の χ=20～23における αlはそれぞれ点 (-1/

ｍ
５。
３。
２。
　
１。
　
５
３
２
１
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第 4章 円柱および球の散乱係数の統一的取扱い
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図4-6 球の媒質が εr,μrの一方または双方の性質を示すときの
αlの周波数特性 (lαMll, |ら″11も共に示す)

2,0)に関してはぼ点対称の関係になっている。また,(2)と (4)の場合の χ=20～ 23にお

ける αlも 同様な関係になっている。 そして,(3)の場合の χ=20～ 23における αlはほ

′ゴ (-1/2,0)の位置にある。

以上は,球の場合の散乱係数の計算例であるが,4-2節 で述べたように,円柱の場合

の θ=0における散乱係数も本質的には同じである。したがって,第 2章, 2-4節 の計
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算例と本節の計算例とを参照すれば,円柱における B3.お よび β18の性質のあらまし

も容易に予想することができる。

4-5 散舌L係数の近似計算

4-3節で述べたように,入射周波数が高いときの散乱係数は簡単な近似式で表すこと

ができる。ここでは,散乱係数の厳密な計算値と近似計算値とを比較し,散乱係数を近似

計算するときの適用方法について検討する。なお,こ こでの計算は 2倍精度演算で行った。

ぽ

ペ

(εr。 =81,tanδα=0.1,μ
"=1,″
=3)

図 4-7 ″に対する η:ρ 31,ηφ3(lρ●31,lρ●′31も 示す)
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ト

めｔごゞ
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まず,近似計算値を評価するため次のように定義する。

Ttpot:li&##I, r6o:ldn-d,'l (4--17)

ここで,ρπは厳密値,ρπ
′は式 (4-11)を用いた近似値, φπ=tan-1(βπ/α")(式 4-

3参照),φπ
′
=tan-1(βπ
′
/απ
′
)(ただし,ρπ

′
=αル
′+″ ,′)である。、以下にηρ.卜

“

.の計

算例を示す.

ηlρ●1,ηφ,の最大値の周波数特性 (εr.=1・ 1,81,1000,

tanδa=0.001,0.1,10, ″=1,3,10)

0
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球の媒質定数が ε′0=81, tanぬ =0。 1,μr=1の とき,χ =100～ 105における lρα31,

l ρa3′ |を求め,こ のときの η ρ21と ηφれの計算結果を図4-7に示した。図4-7の下部

には l ρα31と l ρα3′ |も示した。図4-7か らわかるように,一般に ηρ几|と
“

2は lρπl

が小さい附近で大きくなる。したがって,近似計算の評価は,η ρん卜ηψんの最大値を用い

るのが適当と思われる。

誘電体球の lρ
“
|と l ραπ

′
|とを用い,ε70,tanあ およびπをバラメータとして,log χ

=2～ 7における ηρヵ卜ηφぇの最大値の周波数特性を図 4-8に 示 した。crOお よび

tanみ が小さいとき,log χ≦ 4における ηlρ2,“.は単調でない。これは,ρπが共振し

ているためである。εro,tanぬ およびχが大きくなると ρπの共振が減衰し完全導体の性

質に類似してくるため,η pπ lと ηφπはχが大きくなるに従い同じ傾向ではぼ 1ル に比

例して小さくなる。図4-8か ら,散乱係数の数値計算に ρπ′を使ったときの計算精度

が予測できる。一般に ρπ
′
を用いた散乱係数の数値計算では, 図4-8か ら予想される

精度よい高い精度の計算結果が得られる。図4-8か らわかるように,ε70'tallぬ および

πが大きくなるに従いρメのρπに対する近似は悪くなる。このことは,式 (4-1)の

Fl,F%お ょび式 (4-3),(4-8)か らも予測できる。媒質がεrと μ"の性質を

共に示す場合も同様な傾向を示す。

log χ=6において,ε r。 とπをパラメータにしたときの tanみ に対する ηρ′|の特性

を図4-9に 示した。 10g χ=6以 外の場合は, 図4-8と 図4-9か ら予測できる.媒

質が εrと μrの性質を共に示す場合も同様な性質である。

tto=1,'l €ro= 9 tro=81 εro3400

一く
雨

０
０
ヽ

10nJd

図 4-9 tanδ a

tcnεd           tanδ d            tonδ d

に対する ηlρれ|の最大値 (ただし,10y=6,μr=1)
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第4章 円柱および球の散乱係数の統一的取扱い

図4-10は,図 4-11を説明するための図である。これまでの計算例から,媒質に有限

な損失がある場合の正規化周波数χに対する lρπlと lρπ
′
|の性質を概略的に描けば図 4

-10の ようになる。すなわち,χ に対する lρπl,lρπ′||ま常に 1/2を中心に変化 し,

lρπl=1/2に おける″の値は lρπ
′
|=1/2に おけるχの値 ″

′
より常に小さい。そこで,

χ′―χ=ル とし,Z″ の大きさにより lρπ
′
|の lρ,|に対する漸近の程度を表す方法が考

えられる。

球の媒質定数が εrO=4,81,μr=1の とき,lραル|と lραメ|の χに対する Zχ を%につ

いて計算し,その結果を図4-H(1)に示した。図4-11(1)か らわかるように,∠χ はχの

大きさにはぼ反比例する。εro=4と 81の場合の両者においては図に現れるほどの差は認

められなかった。しかし,同一の tan場 では εrOが小さいはどχの大きいところまで共

振が現れるため,Zχ の適用範囲は自ら εroと tanぁ の大きさにより異る。ε′0=4と 81

の場合の Zχ の適用範囲を図4-11(1)に示した。また,χ に対する Zレ が εrOの大きさ

により大きく変らないことから, χ・Zχ =ξ を%について求め, その結果を図4-11(2)に

図4-10 ″に対する lρ
“
|と lρ

"′

|と の関係

χ

(1)

図 4-11 1ραπl,lρα′πIの ″に対する△″および ″。△″=ξ (εr。 =4,81,μ r=1)

10

れ

(2)

-'.ero 
=B I 

o'ool

-----',f,ro = 4
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示した。ξはπにはぼ比例し,π との間には次の関係がある。

10g ξ=-0.05610g物 +0.281 log2z+1.514 10g κ-0.001 (4-18)

lρ。ル|についても同様である。したがって,図 4-11(1)と (2)は ,誘電体球の散乱係数を計

算するとき,近似式の適用の可否を判断する場合に有効である。また,図 4-11は,誘電

体円柱および媒質が ε″と μrの性質を共に示す場合の円柱と球の散乱係数を取扱 う場合

も参考になる。

4-6 散舌L断面積の計算法

散乱係数を直接的に用いるものに,円柱および球の散乱断面積の計算がある。周知のよ

うに,散乱断面積は散乱係数の無限級数式として与えられる。しかし,これを実際に数値

計算するときの級数の加算項数の 決め方はこれまで 明らかにされていない。
め.4-2節

～ 4～ 5節で述べたように,円柱および球には多くの共振が存在する。したがって,加算

項数を安易に選べば不測の誤差を生ずるおそれがある.こ こでは,散乱係数の性質を基に

して,散乱断面積の適切な計算法について述べる。

4-6-1 円柱および球の散乱断面積

円柱にTM波 (またはTE波)が入射したときの円柱の単位長さ当りの散乱断面積 σ:

(または σ夕)(ι はTM波 ,λ はTE波入射を表す)は次式で与えられる(18)1

∞Σ
祠
(π (-1)π (4--19)

ここで,(0=1,("=2(κ≧1),ρλと ρ夕はそれぞれ 4-2節で用いた円柱の軸に直角な方

向の散乱係数 (3駒 ,(θ =0)と Bl.(θ =0))である。

また,球の散乱断面積 σεは次式で与えられる。2),(1の 。

σ8=争Σ (2κ +1)(lραπ12+lρ bπ 2)          (4-20)

ここで,ραルと ρoπ は4-2節で用いた球の散乱係数 (απと うπ)である。

4-6-2 級数式の項数決定法

散乱断面積を計算するときに考慮すべき散乱係数 ρルの主な性質は次のとおりである。

４

一カ〓

σ

　

　

σ

ρ

　

ρ
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第4章 円柱および球の散乱係数の統一的取扱い

(1)媒質の損失が小さいとき,ρπは各モードごとに正規化周波数χに対して多くの共

振を示す。

(2)χ を零から次第に大きくしたとき,最初に現れる各モードの第 1共振点は,媒質定

数が小さいはど,ま た,モ ード次数が大きいはど,χ の大きいところで現れる (図 2-6,

図4-5参照 )。                      .

(3)χ に対する各モードの共振点間隔は,媒質定数が大きくなるほど狭くなるが,媒質

の損失およびモード次数によって大きく変らない (図 4-2～ 図4-4参 照).

(4)媒質の損失が大きくなるに従い各モードの共振は次第に減衰し,媒質が完全導体の

ときの性質に漸近する.(図 4-2,図 4-3参 照 )。

(5)媒質が完全導体のときの lρ″ル|は , πが大きいはどχの大きいところで立ち上が

る (図 4-1(al参照 )。

以上は,散乱断面積を計算するときに用いる ρπの主な性質であるが,級数式の加算項

数を決めるためには次の計算例を補足する必要がある。

まず,加算項数は,媒質の損失に対する ρルの各モードの第 1共振点の振幅によって大

きく左右される。ここでは,誘電体球の ραル (すなわち απ)の例を示す.er=4お よび

n31

】
０Ｅ

一
”〓
¨

一

3

5

lonfd                            tanら

(0)                  (b
図 4-12 tanδ aに対する ρα"の

第 1共振点の振幅 l ραπll"

(εr.=4,81,μ″=1)

(ε ro・ 81)
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81における ραルの第 1共振点 χαπlの振幅 lραπll"(1は第 1共振点, %は最大値を表

す)の ta12場 に対する計算結果を図 4-12に示す。また,誘電体球の ρ.1(κ =1)の /ε′0

に対する第 1共振点の振幅 l ραlllれ を, tanみ をバラメータにして図 4-13に示した .

誘電体球の ρ。ルおよび誘電体円柱の ρ角,ρ脅も同様な特性である
。2),CD.図 4-12と 図

4-13からわかるように,媒質が誘電体のとき ρルの第 1共振点の振幅は,/6rO,tanぁ

およびχが大きくなるに従い指数的に小さくなる。媒質が εγと μrの性質を共に示す場

合も同様な傾向である。

つぎに,正 規 化 周 波数 χを零から次第に大きくしたとき,完全導体球の lρ ttπ lと

lρ″れ|の立ち上がり状態を示す計算例を図 4-14(al(lρ″απl),0(lρ″れ|)に示す。図4

-14において, ○印 (または△印)は, χに対する lρ″απl,lρ″πlが最初に 0.0001

(または 0.01)と なるχの値を %について求めたもので あ る。 また, 図 4-14には ,

lρ″απl,lρ″ゎπlの第 1共振点 χα″,1,χひ″πlも 示した(図 4-1(al参照 )。 完全導体円柱の

lρ %π l,l ρttπ lも それぞれ図 4-14(0,0に近いχの値をとる。

:Vl         10        100

V偏

図 4-13 誘電体球のソεっ に対する第 1共振点の振幅 l ραlll"

(π =1,tanδα=0.0001～ 1)

三
ｒご
一

tan》d=
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XX
●

0
0   
△

△

△ 。
XbMnl
O=0!

0,0001

10         100        1           10
n                                n

(o)                    (b)
図4-14 完全導体球の lρ Mα%|, lρχひ% の″に対する

立ち上がり (第 1共振点 乳″.1,あ″πlも 示す)

以上の ρ2,ρ″ルの性質を用いれば,円柱および球の散乱断面積の適切な計算法が得られ

る.こ こでは,これまでの計算例を参照するため,誘電体球と完全導体球の σsの計算法

について述べる。

1.誘電体球が非共振領域にあるとき :

この領域は,与えられた orの実数部 εrOと χ=力α (球の半径と入射周波数で決まる)

とを用いて図 4-5(al上にプロットした点の位置がπ=1の カープより下にあ る場 合 で

ある。図 4-5 1alを用いる理由は, 同一のπでは常に χαル1<χれ1の関係になるためであ

る。め。この領域の l ραπl, lρ。ル|は πが大きくなるほど小さくなる性質がある。 したが

って,こ の場合の計算は,級数が希望する有効桁数に定まるまで級数の各項をπ=1から

順次加算すればよい。tan δaが大きいほど加算項数は少くなる.

2.誘電体球が共振領域にあるとき :

この領域は, ε,0と χとによって決まる図 4-5 1al上 の点の位置がπ=1の カーブ

より上にある場合である。いま,こ の点の位置がπ=N(例 えば,N=10)の カープの近

くにあるとすれば, この球にはⅣおよびNよ り小さいモードの ρα2,ρ oル の共振または振

動が種々の大きさで存在する。また,こ の球にはπが大きくなるに従い指数的に振幅が小

XcMnl
O,01

0,0001
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さくなるⅣ以上のモードの振動も存在する。したがって,こ の場合の σsの計算は次のよ

うに大別して考える必要がある。まず,媒質の損失が極度に小さく tanあγOのときの加

算はⅣ以上の加算項数をとり,級数が希望の有効桁数に定まるまで加算を続行すればよい。

つぎに, 10~4≦ tanあ≦1の場合は,一般にⅣ以下の加算項数でよい。この場合,必要な

有効桁数を決めれば,図 4-12と 図4-13の計算例を参照して加算項数の大略が予測でき

る。例えば,有効桁数を小数点下 3桁にとれば,(2κ +1)lραπll%≦10~4と なる″の近

くに加算項数を選べばよい。 talllぬ が極度に大きい場合は次の完全導体球の場合の計算

法に準ずればよい。

3.完全導体球のとき :

完全導体球の場合の計算法は,基本的には誘電体球の tan偽 =0の場合の計算法と同じ

である。すなわち,与えられた χ=力αにおいて存在する ρ″α.,ρ″ひルの数によって加算

項数は決まる。図4-14からわかるように, 1鮨ぃ|, lρ″bπ lは π が大きくなるほど大

きいχの値から立ち上がる。したがって,例えば,級数の有効桁数を小数点下 3桁にとれ

ば,与えられたχを図4-14に適用し,(2π+1)lρ″απ12=(2π +1)lρ″lπ 12≦10-4 とな

る%を求めれば,π が加算項数になる。

以上は,誘電体球と完全導体球の散乱断面積の計算法であるが,円柱の場合も同様な方

法が適用できる。円柱および球の媒質が erと μ′の性質を共に示す場合も基本的な考え

方は同様である。しかし,こ の場合は εrと μrの配分関係により, 図4-12および図 4

-13に対応する計算をする必要がある。

4-6-3 計算例

ここでは,本節 4-6-2で の計算法が適切であることを証明するため,特定の共振点

における誘電体球の lρ
“
|,lρ。ル|を示す。表 4-1(1),(2)は , 媒質定数が ε,0-4,tan

δd=0～1.oの とき,″ =χα,10,1における lραル|, lρ oπ lを π=1～20について計算したも

のである。仮数値の右端のDは 2倍精度演算を示し, その右は指数である。 tanぬ =0の

とき,lρα,101=1.0と なるべきであるが,計算値は 0.999・・・になっている。これは,計算

機の入力に用いた χα,10,1の有効数字不足により生じたものである。したがって,tan δαキ0

における計算値も10桁程度の計算精度である。 表 4-1(1),(2)か らわかるように, tall

ぬ=0の とき,π ≦ 9の lραル|セま種々の値であるが, π≧11ではπが大きくなるに従い

lραπlは指数的に小さくなっている。しかし,tallぁ 力`大きくなるに従い共振モード (こ
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表 4-1(1)

εr。 =4,tanδα=0～ 1.0,μ′=1,π =1～ 20,″ =″α,1。 1
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0.171oo26〕 1824661D-02
0・ 206145477049544D-03
0.1995721325300530-04
0.1333119042053,2D-05
0.02550461i5500279-07
0.41576′ 5〕 〕6950′ 30-Oo
O.1300355154355730-09
0.5326● 42050136420-ll
O.22957805`644257D-12
0.69150〕 l〕『223011D‐ 14
0.1079644387410520-15

0.38o77〕 5951860420 00
0.495139479〕 074930 0o
O.6588749091458280 0o
O.3560090989490510 0o
O.4149552754149520 00
0.4929326716748660 00
0.3620920560525790 0o
O.1361893531135440 0o
O。 2268220962207830-01
0.2620656692841830-02
0。 251150238335(710-03
0.2032〕 27359735400-04
0.140482214006〕 090-05
0.3409490930656010-o7
0。 44096319655・ l〕 680-o8
0.204290202050439D-09
0。 0417003064491900-11
0。 り10231550〕 8071〕 0-12
0.1)277● 5092621000-13
0.3074781724063290-15

表 4-1(2)
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１

２

３

４

５

６

７

０

９

0。 177●602027866530‐ 04
0.も67ミ
`479040〕

255D-05
0。 9999999999902940 00
0。 2272516789971100‐ 13
0.31● 5014322645250‐ 19
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0.523● 501001215]ι D‐30
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O.3124000324059460-04
0。 1201260971673610-00
0.`5`0755109738210-3]
0。 707743546■ 037060‐ 10
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002296● 55978636370-23
0。 5713066703862500‐ 3●
000〕 16190790710040-40

0.0001

0。 56900163● 0253● 40‐04
0。 5192● 0■ 8137]〕 llD-05
0.98557● 0017599690-01
00■ 3770901672● 2990‐ 10
0。 52● 2● 60586623730‐ 13
0。 7512161569033900‐ 16
0。

'753206764も
う0450‐ 19

0.ι00170032●
`93070-210.10117ι 0671650670‐ 2●

0.〕 068● 49(30217190-01
0.ι 402386989■ 59200-0〕
0.1633092〕 20,02030-08
0.9096253305170● 40-12
0.2● 59■ 09■ 6513●●30‐ 1●
0.6720023L12022190-17
0.ι ]197860も 7● 57500‐ 19
0。 20313532■ 0218660-22
0。 2● 99〕 ユも726160100‐ 25

0.001

0.`10]125551526ι  PO‐ 03
0.98539]15]〕 32● 320‐05
0.10015059995S2370‐ 01
0。 037503677● 035010‐09
0.'242457● 7309,210‐ 12
0。 7512159506006120‐ 15
0.97532● 5● 55395'90‐ ιo
O.よ031700269920330‐ 20
0.10137● 0● 50902●●0‐ 23

0.30「
`734009■

99750-Ol
O.l10376496● 4もも890‐02
0.`799■ 907● 9``93LD‐ 00
0。 0607217550770130‐ 1:
0026530502● 0332540-13
0.6720612200,22● 50‐ :6
0.13197● 5650501780-10
0.203135L374730も lD-21
0.2● 99〕 12● :103037D-2■

0.01

１

２

１

４

５

６

７

３

９

0・ 3920165531● 2● 200‐ 02
0。 56も 〕658810■ 17260‐ 0`
0。 10● 2197660667510‐ 02
0.も 373810967357L〕 D-00
0。 52● 2025323694520‐ 11
0。 7511937620254● 〕D‐ 14
0.9753071516● 030● 0‐ 17
0。 10017722〕 0953320‐ 19
0.101373616963:〕 50-22

0.〕 ι37327321220530‐ 01
0.439907657● 130940-02
0.36● 5109753221■ 00‐07
0。 06● 5,21'71020420-10
0.2● 5855'● 76203030‐ 12
0.672000〕 3912ι 0160-15
0.13196630● 3●6● 200‐ 17
0。 20〕 ユ1600097LO● 〕0‐ 20
0.2● 990150● 6522690-23

0.1

１

２

３

●

５

６

７

３

９

0.299267960● 253330,01
0.■96● 61230● 259920-0〕
001099397970003330-03
0。 も199602012216530‐ 07
●.5199〕 50● 2● 6′●750-10
0.7● 39829401702〕 30-13
0.9739600002131030-16
0。 1000969500● 19● ]D‐ lo
Oo101323820912 1090-21

0.3767533095401460-01
0.76330351■ 0225]2D-03
0.3● 18916● 46213138-06
0085620■ 9226712590-09
0.263565710046〕

`ユ

D-11
0.66597`3878657520-14
0。 1307522552500920-16
0.2012207602290910-19
0。 2● 755670079● 0050-22

1.0

１

２

３

４

５

６

７

３

９

0.2604657520495070-01
0。 106530■ 717730910-02
0。 15500905013`0'30‐ 04
0。 9787053157628720-07
0。 29956231575r● 380-09
0o58607● 196345697D-12
0.059900192● 237010-15
0。 1007000523733● 90-17
●。971012722■535210-21

0.5〕 70「 43914■90050-01
0.17500639〕 5457930-0〕
0.1072401123976100-05
0.■ 556141798930380-00
0.ユ●■900279■ 177● 70‐ 10
0。 35011〕 1881399650-13
0.690360'6● 9100260‐ 16
0.1050● 582327ι ●●60‐ 10
0.120350146● 308000-21

第 4章 円柱および球の散乱係数の統一的取扱い

表 4-1(3)

εr。 =81,tanδ a=0～ 1.0,μ″=1,″ =1～乳″=″α,3,1
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の場合はπ=10)の振幅は支配的でなくなり,共振モードより低いモードが支配的になっ

ている。この場合,lρれ|も一般に π≦10のモードが支配的になる。表 4-1(3)は ,媒

質定数が εrO=81,tan δα=0～1.oの とき,ダ =χα,3,1における l ραπl,lρひπlを ″=1～9に

ついて計算したものである。 この場合も表 4-1(1),(2)の場合と同様なことが言える.こ

れらの計算例は,本節 4-6-2で 述べた散乱断面積の計算法が適切であることを示して

いる。

4-7 むすび

本章では円柱および球の磁気形および電気形散乱係数を統一的に一つの式で表し,さ ら

にその式を複素平面上の点 (-1/2,0)を中心とする式に変形することにより,円柱およ

び球の散乱係数の性質を,それらの媒質定数および入射周波数の広い範囲について明らか

にした。すなわち,円柱および球の各固有モードにおける散乱係数の性質は次のようにな

ることを計算例とともに示した。

1.媒質が無損失または完全導体のときは,常に複素平面上の点 (-1/2,0)を 中心と

する半径1/2の円周上にある。

2.媒質に有限な損失があるときは,点 (-1/2,0)か らの距離が1/2以下になる.

3.媒質の損失が小さいときは,入射周波数に対して各モードごとに多くの共振を示す。

4.共振周波数は損失の大きさにより大きく変らない。

5。 入射周波数を零から大きくしたとき,最初に現れる共振周波数は,媒質の定数が大

きくなるに従い低くなり,モード次数が高くなるに従い高くなる。

6.入射周波数に対する各共振周波数の間隔は,媒質の定数が大きくなるに従い狭くな

る。

7.媒質定数が一定であれば,共振周波数の間隔は入射周波数およびモード次数によっ

て大きく変らない。

8.媒質の損失が大きくなるに従い共振は次第に減衰する。このとき,媒質定数が大き

いほど,また入射周波数が高いはど共振ははやく減衰する。

9.媒質の損失が極度に大きくなると完全導体のときの性質に漸近する。

10。 媒質の定数が周波数に無関係であれば,入射周波数が高くなるに従い点 (-1/2,0)

からの距離が一定の値に近づく。

H.媒質が有限な損失をもつとき,ま たは完全導体のとき,高い周波数領域における磁
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気形および電気形散乱係数は相互に点 (-1/2,0)に関してはぼ点対称の関係になる。

以上の外に,本章の計算例から,散乱係数の共振曲線の途中に見られる「たるみ」の部

分は,媒質の損失の大きさにより大きく変らないことがわかった。一般に媒質が無損失の

ときの散乱係数の数値計算は簡単である。したがって,円柱または球の媒質に損失がある

ときは,予めその媒質を無損失としたときの散乱係数を計算すれば,本章の計算例を参照

することにより,実際の散乱係数の概略を予想することができる。著者は,本論文の内容

とは別にマシュー関数を用いて楕円柱の散乱係数も計算している。この場合も同様なこと

が言える。つ'C6)。 また,本章では高い周波数領域における散乱係数の簡単な近似式を導出

し,`こ の近似式による値を厳密な値で評価することにより,その適用範囲などを示した。

さらに,散乱係数の性質を用いて,円柱および球の散乱断面積の適切な計算法も示した.

本章で明らかにした散乱係数の性質は,円柱および球による電磁波散乱問題を取扱う場

合に有効に利用できる。そして,本章の解析は,将来新しい材料 (例えば,任意の誘電性

と磁性を共に示す材料)が関発されたときの散乱現象を予測する場合および希望する散乱

波を得るための設計指針を与える。
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第 5章 実

5-1 まえがき

ここでは,第 2章から第 4章までにおいて検討した円柱および球の散乱係数の解析結果

の妥当性を確認するために行った実験について述べている。一般に散乱係数を散乱電磁界

の中から取 り出して測定することは困難である。したがって,こ こでは波源からの入射波

と散乱波との遠点における合成電界の相対電界強度を計算し,その値を実験で確認するこ

とにより間接的に解析の妥当性を実証する方法を用いる。実験は,VHF,UHFお よび

SHF帯 の周波数において行う。散乱体には誘電体および導体の円柱を用い,波源には電

気ダイポールの代りに線状空中線を用いる。誘電体円柱には塩化ビニール系の薄いフィル

ム (厚さ 0。 2筋)で作った円筒の容器に純水または食塩水 (食塩の濃度により損失係数が

変わる誘電体)お よび工業用アルコール (CH30H)を 入れたものと,固体誘電体 (TDK

製,KU-16,25)を 円柱状に加工したものを用い,導体円柱には鋼の円筒を用いている。

そして,円柱の近くに円柱軸と平行に測定波長の 1/2以下の長さの線状空中線を置いたと

きの円柱軸に直角で波源を含む面内の遠点の相対電界強度を測定し,計算値と比較してい

る。以上のような構成の実験では,到底解析の全域にわたる実証は困難であるが,少 くと

も実験の範囲内では計算値と実測値はよく一致しており,解析の妥当性を確認している。

5-2 遠点の合成電界

ここでは,実験との関連で,図 2-1お よび図 3-1の点Qに Z方向をむく電気ダイポ

ール波源があるときの遠点 (ρ →∞)におけるZ方向の合成電界 (入射電界と散乱電界)

を取扱 う。

5-2-1 円柱の場合

円柱の場合の遠点の合成電界のZ成分 (Ez,ρ→∞と表示する)は,式 (2-13)の ρ>ρ 0

における Ppの Z成分の遠点における入射電界 (E′ ,ρ→∞と表示する)と ,式 (2-37)

の散乱電界 E鋒∞のZ成分 (E,,ρ一 と表示する)と の合成として与えられる。こ
こで,
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E〃
,ρ
→∞は,第 2章の 2-3節 で遠点の Eア■∞を求めた方法と同様にして,次式のように表

せる。

E′′→∞笙κ宅許ム(ル・ノ
π+1(々∞sθ)2.ム (ヵρO。∞Sθ )。 cosπφ  (ρ→∞)

(5-1)

ただし,

作 ―
絲

こ こで ,

属 (2・ノ
ルプX力ρO・∞sθ )・∞sπφ=ιノらC¨″∞ψ

の関係
“
め
'C4)を用い,式 (5-1)の E〃,ρ_と式 (2-37)か ら得た E2,ρ_と の合

成電界 島 ,p→∞を表示すれば,次式のようになる。2)。

ら,け∞笙ノκttψ∞鋼1″
るい̈卿

哺%ク観8・″Pψ的・∞0-4    “一幼
5-2-2 球の場合

球の場合の合成電界 島,r→∞は,式 (3-9)の γ>″0における コpの θ成分と, 式

(3-11)の Pの θ成分に,/→∞における次の関係 Cの

カメψ鉾ク‐名赫:,スル年一ノカP∽

を適用する。そして,球にはπ=0モ ードの散乱が存在しない(12),ODこ とを考慮すれば ,

C,r_は次式のように表せる。

為″∞=≠ |ふん
恥鋼輛φ

+ノが]″移::トノπ・1がJ(″ :編:協ず≦ξピら1

×
|%・
″。P努 (0)・ P″ (COS θ)。カメ)(″0)
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5-3 数値計算式

5-2節 の式 (5-2)と (5-3)は ,相対電界強度を求めるには不向きである。そ

こで,まず,円柱の場合,ダイポール波源がX― y面上の遠点に生ずる電界の強さを基準

とし,その点における 鳥 ,ρ→∞の電界強度 IE″ |′→∞を表すと次式のようになる。わ。

|&lρ→∞α∞s2θ〔1+スタ+B;+2{Иφ・∞S(力ρ。・∞sθ・∞sφ )
+島。sh(力ρO。∞S θoCos φ)}〕う             (5-4)

ただし,

∠φ= Σ (-1)7・ (π・Locos πφ― Σ (-1)丁。2・ 銑。cos κφ
,=o,2,4,・ "                       π‐1,3,5,・ ¨

∞          π                  "        π 1́

為=Σ (-1)7・ (2・銑。Cos Zφ +Σ (-1)■ ・2・フイル・cos zφ
π=0,3,4,・ ¨                      ,‐ 1,3,5,・ ¨

し:ル =几 (λρ。・ COS θ)・ β,一 Ⅳ ルG"ooCos θ)・ α名

7,=ふ (力ρO・∞sθ )。α:+Ⅳル(力ρo・∞sθ )・β鵞

B'8=蝙 +″え。

式 (5-4)は,言 うまでもなく円柱が無限長のときであり,こ の式を用いた数値計算は

θ=0,すなわちX― y面上においてのみ有効である。また,有限長円柱であってもX―

y面上の相対電界強度は式 (5-4)と 同一になる。2)。

つぎに,球の場合も波源の電気ダイポールがθ=0方向の遠点に生ずる電界を基準 に,

易r→∞における相対電界強度 1島 |′→∞を求めると次式のようになる。D.

1島 |″→∞笙(R:+Iう
1                       (5-5)

ただし,

Re=Sin θocos(力 /0・ sin θocos φ)

+Σ締 鹿喘静場す≦轟子・島・∞s″
Im=sin θ osin(力γO・ sin θocos φ)
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―Ё絡 鹿(π曰 1毛語半。税・∞s ttφ

乱 =〔
{%π
晩 (力γO)一 βαル・鳩 (力/0)}COS(κ +1),

+{%π・κル(力″0)+βの。九(力の
}sh(″
+1),〕″2.P″ (0)・P″ (cos θ)

+〔
{α
。ル・Ⅳ(力γO)+β oπザ(力γO)}∞ S(″+1),
一
{α
oπ・ノ(力″0)一β。ル・Ⅳ(々″0)}sh(π +1),〕満 P(0)・ P(∞sθ )

亀=〔
{%π
・″π(力γO)+βαπ晩(力γ。)}∞S(Z+1),

一
{%π
幌 (″0)一β

"・
物 ψ /ο)}Sh鮨 +1)例 解 ｀P臀 (0)・ P″ (∞sθ )

一日%がノψの部rⅣψリトκ+⊃ ,
+じ・嵐″D協 デル の 卜凛み D例満 P⑨

oPCSの

αル=ααル+″ .π

うル=α。.+″。,

式 (5-4)お よび式 (5-5)は ,実際に計算機を用いて計算できる円柱および球の

場合における遠点の合成電界の相対電界強度を表す式である.

5-4 実験設備

実験設備は,VHF,UHF帯 用として建物 (7階)の屋上に設置した 9× 9m2の鋼板

(厚さ 0.8mm)の グランド板と,SHF帯 用として屋内に電波吸収壁を備えた電波暗室

(3.4× 2.7× 2.6m3)と がぁる。グランド板は,図 5-1に 示すように,中央部に直径 1

mの ターンテープルを備え,2× 2m2の水平部の外側は降雨排水のため -13/1000の負勾

(負勾配部) (水平部) (負勾配部)

受信空中線
線形空中線

__一‐一 一
‐~・
可ぴ

ターンテーブル駆動部

図5-1 グランド板の側面図

-69-

０

　

　

　

タ

５３

一‐‐‐３̈
73500可

rO¬



配になっている。ターンテーブルは 0。 1° ステップの制御ができ,毎分約120° の角速度で

回転し,中央部に給電用の端子が取付けられるようになっている.受信空中線は,二条の

レールの上にあり,グランド板との距離が可変できる台車のポールに取付けられる。VH

F,UHF帯 の発振器と受信機はグランド板直下の測定室内にあり,タ ーンテーブルも同

室内から遠隔制御できる。また,電波暗室は,図 5-2に示すように,床面を除く5面が

3GHz以上の周波数帯において,-25dB以下の反射係数をもつ電波吸収壁によって囲ま

れている.室内には回転台と受信用ホーンの支持装置とがあり,回転台は室外から制御で

きるようになっている。

レ コー ダ ー

増幅器

発振器

(側面図 )

図5-2 電波暗室の構造
(単位 :m)

5-5 実験とその考察

実験は,誘電体円柱と金属円柱について行った。 VHF,UHF帯 の周波数における誘

電体円柱による実験は,図 5-1に示すように,グランド板中央のターンテーブルの中心

と円柱の軸を一致させ,ユ ニポール構成とした.誘電体円柱には, 塩化ビニール系 の薄

受信

【

`:i][11-J~ン
(平面図)

金属円筒 受信Ｆ

Ｌ
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いフィルム (厚さ 0.2mm)で作った円筒 (半径α=25,44mm)に ,イ ォン交換によって

得た純水 (εグ0～ 81,tanぬ =0.02,ノ=300MHz,T=25℃ )。
9),ま たはこれに食塩 (NaCl)

を溶解させた食塩水 (食塩の濃度により損失係数が変わる誘電体.付録参照)を測定波長

の約1/2の高さまで入れたものを用いた。 また, ダイポール波源の代りに,長さが測定波

長の1/4以下の細い (太さ lnlmφ )硬銅線を用いた。式 (5-2)の 第 2項からわかるよ

うに,円柱の散乱特性が最も顕著に現れるのは ρO=α のときである。 したがって, この

実験では波源用空中線を円柱軸と平行にフィルム円筒の外側に密着させ,タ ーンテーブル

の背面から給電した。また,受信用空中線は,図 5-1に示すように,グランド板の負勾

配部から測って約 6° の仰角方向に設置した。 これは, グランド板が完全導体でないため

に起る板面効果と,グランド板端部の回折波による影響を除くためである.こ のような受

信方向であっても,第 2章の図2-8からわかるように,こ の実験の目的にはほとんど支

障がない。むしろ, 水の温度による誘電率の変化。9, フィルム円筒の変形およびグラン

ド板が正方形であるための影響が大きい。実験を行う際には,天候,測定時刻および受信

空中線の位置 (グランド板からの距離)などに細心の注意をはらった。

測定周波数は,散乱特性が最もよく現れる円柱のπ=1および2モードの第1共振点周

波数を用いた。いま,これらの周波数を/1お よび/2と し, 円柱の媒質定数が ε″0=81,

tan偽 =0,0.02,0.1,0.3の ときの |&ρ→∞のφ指向特性を計算し, これを図5-3に

実線で示した。また,それに対応する測定値 (ただし, tan偽=0,02(純水), 0.1,0。 3

(食塩水))を図5-3に破線で示した。図5-3からわかるように,計算値と実測値は

よく一致している。また,同様な方法により,/1と /2において, φ=π 方向の IEz″

実線 :計算値,破線 :実測値 (ft=502MIIz,f・ 2=808 MHz)

図5-3 1鳥 lρ→∞のφ指向特性 (ρ。=α=25mm)

(搾員lち重lt・l≧
・
∫ll』:Ll夢

=1)
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(tanぬキ0のときの IZレ lρ→∞を tanぬ =0のときの値で正規化したもの)を , ε′0=81,

tanぬ =0.02～ 0.5について測定し,計算値 (実線)と共に図5-4に示した。この場合

も計算値と実測値はよく合っている。IIレ |″をφ=π で求めた理由は,図 5-3からわか

るように,tanみ に対する I EzlⅣ の変化がφ=0方向より大きいためである。なお,こ

れらの実験の外にフィルム円筒に工業用アルコール (CH30■ εrO=31,tanぬ =0.08,ノ=

300MH2,T=25° C)。9)を入れたときの実験も行った, さらに, SHF帯 においても固体

誘電体 (TDK製 ,KU-16,25,ε″0笙 16,25, tanぬ =0.0003,0.0002,ノ=900MHz r=

22℃)を円柱状に加工したものを用い,電波暗室内でグランド円板 (直径 lm)を用いた

ユニポール構成の実験も行った。またこのときは,角形反射板を併用したφ指向特性の測

定も行った。
7)。 これらは何れも計算値とよく一致していた。

ついで,有限長円柱であっても,円柱軸に直角で波源を含む面内の相対電界強度のφ指

向特性は円柱の長さによって変化しないことを確認するための実験を行った。実験では ,

長さ 4m,内径50mmφ ,肉厚 lmmの建築用塩化ビニールパイプを用い,これに純水を入

れた誘電体円柱と,測定波長の1/4の長さの線状空中線 (太さl mlnφ の硬銅線)を用い,

空中線をビニールパイプの外側に密着させた。そして,測定周波数を /1および /2に選

び, 水の高さを変えたときのφ指向特性を求めた。さらに, 空中線の長さを 1/4波長以

10n δd

実線 :計算値, ・印 :実測値

図 5-4 tanδ aに対する 1島い(φ =,,ρ O=α =44mm)

鷹l堆t職熱鴬識 )

Ｚ

一
Ｎ

回

一

fr =285MHz

0
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第 5章 実

fo= 4Omm

f=o

70mm

φ=0

f=4ent

5GHz

6 oHz

7 c,H,

(C=35mm)

実線 :計算値,破線 :実測値

図5-5 金属円柱の 1鳥 lρ→∞のφ指向特性(α=35mm)
(ρO=40,55,70mm,メ =4,5,Q7GHz)
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下に短縮すると共に水の高さもこれと同一になるように調整してφ指向特性を測定した.

これらの実験では,水の高さが約1/20波長になるまで (これ以下では,受信電界強度が弱

くなり,測定不可能になった)φ指向特性はほとんど変らなかった。また,受信空中線を

グランド板から約30° の仰角方向に設置して同様の実験も行った。このときは,水の高さ

によりφ指向特性は多様に変化した。これらの実験により,円柱軸に直角で波源を含む面

内の散乱指向特性は円柱の長さに無関係であることが確認された。

つぎに,SHF帯 において金属円筒 (外径70mmφ ,肉厚2.2nlm,長さlmの銅円筒)を

用いた実験を行った。この場合は,円筒内部に平衝給電線を通し,円筒の中央 (両端から

50cmの位置)の小さい穴 (2.2nunφ)から円柱軸と平行に設置した半波長空中線 (大き

0.8-φ )に給電し, この空中線と円筒との距離を変えて測定した (図 5-2参照)。 こ

のときの測定結果を計算値と共に図5-5に示した。このときも計算値と実測値はよく一

致している。

5-6 むすび

本章では,散乱係数の解析の妥当性を実証するために行った実験について述べた。ここ

では,散乱体に誘電体および金属の円柱を用い,ダイポール波源の代りに円柱軸に平行な

線状空中線を用いて円柱軸に直角で波源を含む面内の遠点における入射波と散乱波との合

成電界強度を測定した。そして,誘電体に純水および食塩水を用いたときの円柱のπ=1

と2モ ードの第 1共振点周波数における遠点の電界の水平面指向特性と,媒質の損失に対

する相対電界強度を実測し,計算値とよく一致することを示した。また,円柱軸に直角で

波源を含む面内の散乱指向特性は円柱の長さに無関係であることも確めた。また,工業用

アルコールおよび同体誘電体を用いた場合も同様であることを述べると共に,銅の円筒を

用いた場合も計算値とよく一致することを示した。このような実験では到底解析の全域に

わたる散乱係数の性質を確認することは困難である。しかし,少くとも実測の範囲内では

解析の妥当性が実証できた。また,こ の実験結果は,第 2章と第 3章で述べた円柱と球の

散乱係数の相互関係から,球の散乱係数も間接的に実証している.こ こでは,実験設備な

どの関係から,第 2章で示した円柱軸に対する方向の散乱係数について,それが近似的に

適用できる円柱の長さを決めるための実験はできなかった。これは,今後に残された課題

である。
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第 6章 結 論

本章は,こ の論文の結論として,本研究の成果を総括して述べている。

第 1章では,無限長円柱および球状の物体による電磁波散乱に関する研究の歴史的背景

を概説し,これまでの研究においてもなお残された問題があることを示し,本研究の目的

と地位を明確にした。

第 2章では,均質な無限長円柱物体の近くに円柱軸と平行に電気または磁気ダイポール

波源を置いたときの遠点の散乱電磁界を,ヘルツベクトルと複素積分の鞍点法とを用いて

解析し,円柱の散乱係数を導出した。そして,散乱係数の性質を知るために,円柱の媒質

が完全導体,誘電体および誘電性と磁性を共に示す場合の散乱係数を円柱の代表的な固有

モードについて数値計算した。ここでは,散乱係数の振幅周波数特性と代表的な周波数に

おける円柱軸を含む面内の指向特性を示した。そして,媒質が低損失のときの散乱係数の

共振周波数は,散乱方向が円柱軸に近づくに従い高くなること,共振周波数の間隔も同様

な傾向で広くなること,お よび,媒質の損失が大きくなるに従い共振は次第に減衰し媒質

が完全導体のときの性質に近づくことなどを示した。さらに,円柱軸に直角で波源を含む

面内の散乱係数は,円柱に軸と直角な方向から平面波が入射したときの円柱の散乱係数と

同一になることも示した。

第 3章では,均質な球状物体にダイポール波が入射したときの球の磁気形および電気形

散乱係数を導出し,それらが平面波入射のときの散乱係数と同一になることを示した。そ

して,こ の磁気形および電気形散乱係数は,円柱に電気または磁気ダイポール波が入射し

たときの軸に直角で波源を含む面内の円柱の磁気形および電気形散乱係数とそれぞれ同じ

形式になることを示した。

第 4章では,円柱の場合の軸に直角で波源を含む面内の磁気形および電気形散乱係数と,

球の場合の磁気形および電気形散乱係数などを一つの式で統一的に表示した.そ して,こ

の式を複素平面上の点 (-1/2,0)を 中心とする式に書き変えることにより,散乱係数の

性質が見通しよく得られることを示した.すなわち,円柱および球の媒質が無損失または

完全導体のときの散乱係数は常に複素平面上の点 (-1/2,0)を中心とする半径1/2の 円
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周上にあること,媒質に有限な損失があるときは点 (-1/2,0)か らの距離が 1/2以下に

なること,媒質の定数が周波数に無関係であれば,周波数が高くなるに従い点 (-1/2,0)

からの距離が一定の値に近づくことを明らかにした。また,媒質が低損失のときの散乱係

数の各モードにおける共振周波数の間隔は,媒質定数が大きくなるに従い狭くなること,

共振周波数は損失の大きさによって大きく変らないこと,媒質の損失が大きくなるに従い

完全導体のときの性質に漸近することなどを数値計算例で示した。ついで,高い周波数領

域における散乱係数の簡単な近似式を導出し,こ のときの磁気形および電気形散乱係数が

相互に点 (-1/2,0)に関してはぼ点対称の関係になることを示した。この近似式による

値を厳密な値で評価し,近似式の適用範囲を示した。さらに,これらの散乱係数の性質を

基にして円柱および球の散乱断面積の適切な計算法を示した。

第 5章では,散乱係数の解析の妥当性を実証するために行った誘電体および金属円柱に

関する散乱実験について述べた。散乱係数を電磁界の中から分離して測定することは困難

であるため,こ こでは円柱の近くに軸と平行に線状空中線を置いたときの遠点における入

射波と散乱波との合成電界強度を実測し,計算値と比較した。誘電体としては純水および

食塩水を用い,円柱の共振周波数における遠点の電界の水平面指向特性並びに媒質の損失

に対する相対電界強度を実測し,計算値とよく一致することを示した。また,円柱軸に直

角で波源を含む面内の散乱指向特性は,円柱の長さに無関係であることを確めた。さらに,

工業用アルコールおよび固体誘電体を用いた実験においても同様な結果が得られることを

述べると共に,銅の円筒を用いた場合も計算値とよく一致することを示した。この実験に

より,少 くとも実測の範囲内では散乱係数の解析が妥当であることを実証した。

付録においては,本研究の数値計算に用いた複素ベッセル関数の数値計算法および食塩

水の濃度に対する損失係数の測定結果を示した。

本研究は,無限長円柱および球状物体について,すでに解析的に得られているこれらの

物体の散乱係数と,本研究において新しく導出した散乱係数について,物体の媒質定数お

よび入射周波数の広い範囲における性質を明らかにした。ここでは,媒質の周波数特性 ,

温度特性, ヒステンシス特性および分極特性などとの関連性には触れていない。しかし,

本論文で記述した円柱および球の散乱係数の性質は,これらの散乱体による散乱波の解析

に,ま た,他の形状の散乱体による散乱現象を検討する際に有効と思われる。

今後の散乱問題の解析に,ま たは散乱現象を利用した装置の開発に役立てば
'著
者の幸

いである。               「
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付-1        
付 録

複素ベッセル関数の数値計算法

実変数に:対するベッセル関数の単精度 (8桁)お よび 2倍精度

既に確立されている(3

(16桁)の数値計算法は

1),(32).し かし, 複素変数に対する数値計算法は未だ決定的な方法

は見当らないようである.こ こでは,本研究の数値計算に用いた複素円柱ベ

九 (2)お よび複素球ベ:ッ セル関数 九(2)の数値計算法1         

ツセル関数

付-1- ‐1 九(2)              

こついて述べヽる(25),(26)

と九(2)の表示式                |

九 (2)。 九(2)(但 し,                       

・

Z=χ +″)の表示式は多くある

計算に用しヽた表示式のみを列記する。
3),〈 25)。          

ここでは本研究の数値(33),(34)が
,

九(2)=(,)π底浅評獅(`)2r

=(9'い S″ +ノ sh a急編 。け)″いS2γθ+ノ sh 2%

但し, I ZI=/戸                      

り

十ノ
2,θ =taIIl~1■

χ                 (付

-1)

九(Z)=i(-1)'7=0  
・ど≒・″の(χ )

十ノ遍(-1)r凸・″
r+D(χ

)

但し,ノ解r),ノ解″+1)はそれぞれ                    (付

-2)

ム の (2γ )1 次,(2/+

九 (2)=(22)π Σ -               1)次

の導関数

(-1)r。 (κ H

′=0月9π ttν絆″

=(21z)ル。(∞s πθ+ノ sh″θ)葛淵
・

)!

。
lz12
7(cos 2γθ+          )!プsin 2γθ)

ズの=IW識
(付-3)

晏2ふ
テSin(z_券 π

)

+ Σ    (-1)
r=o O側 ⑫

惣 梶 舛 1か
C°SIZ ttπ

月
,-2γ -1)!(

1絲―プ開階
80 -―
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・(∞s2γθ一ノSin 2γθ){(sin χ・∞s″+ノ∞Sχ・由磁夕)

。 COS(π ″ 2)一 (∞ sχ・ ∞ S妙 ― ハ h χ
osh秒

)。 Sh(π π /2)}

〔〈π-1)/2〕

+ Σ
r=o

(-1)・ (π +2γ +1)!

(2γ +1)!(劣 -2γ -1)!(21zl)2r+1

。
(cosCン +1)θ 一 ノ dn(2γ +1)θ }{(COS χ

。
∞ S妙 ―

ハ in χ
oSin妙

)

。Cos(κπ/2)+(sh χ・∞Sり +ノ∞s χoSin妙 )

・sin Cπ″列
但し,〔 〕はガウスの記号

九(2)=葛 (-1)静″の(χ)+ノ底(-1)′てグ書プ″
r+D(″

)

(付-4)

(付-5)

式 (付-1),(付-3)お よび式 (付-4)は IZIと θを用いて,ま た,式 (付-2)

と (付-5)|ま χと夕を用いてふ(2)と 九(2)の実数部および虚数部をそれぞれ計算す

ることができる。

付-1-2表 示式の基本形
式 (付-2)と (付-5)には ノ2r/(2/)!お よび 夕2r■ 1/(2γ +1)!の 係数があり,式 (付
-1)と (付-3)においても類似の係数を有している。いま,これらの係数の基本的性

質を知るため,χ
π
/″!=蛇 (但 し, χ>0, ″=0,1,2,… )と して K"の性質を検討す

れば,次のようである。3)。

i)0<χ ≦ 1の場合 :%=0の とき 島 =1(最大),%≧ 1では %の増大 に従 い

κπは漸減する。

ii)χ >1の場合 :″ =0の とき f傷=1,協≧ 1では %の増大に従って漸増し,π =

〔χ〕(但し,〔 〕はガウスの記号)の とき最大となり,解>ひ〕では漸減する。
ili)%→ ∞において,鶏→0と なる(33)。

χと解の組合せにより ]鶴 は極度に大きくなることもある。一般に ″=〔χ〕のときの

κ.を 1偽 =″ 。10η (但し,″は仮数)とすれば,η =0.43〔χ〕の関係になる.式 (付―

1)と (付-3)の係数は″との関連により上記のように単純ではないが,ほぼ同様な傾
向である。 九(2)と 九(2)を数値計算するときに桁落ちなく必要な有効数字を得るため

には,これらの係数の性質と演算桁数との関係を充分考慮する必要がある(25),06)。

付-1-3 計算精度
九(2)と 九(2)の計算では, Zと πにより使用する表示式を適切に選択すればよい.ま

ず,Z=χ +力 において, ノ≦ 1の場合は式 (付-2),(付-5)を 用いると便利である
(25).こ れらの式では 九 (χ),九 (χ)の (2″)次および (2γ+1)次の導関数を用いるが,
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付-1-2の ′%の 性質から推測できるように, γに対する九(2),九 (Z)の収束がはや

いため多くの導関数を必要としない.そのため,こ の計算は実変数に対する九 (χ ),九 (χ )

の計算精度と同程度の精度の九(2),九(2)が容易に得られる利点がある。5),C6)。

次に, 夕>1の場合の任意の Z,π に対する計算法を述べる。ここでは,式 (付-1)

と (付-3)は類似の式であり,九(2)については式 (付-3)と (付-4)とを比較す

る。そのため,まず,式 (付-3)の性質を検討するため,こ の式を次のように書き変え

る。

九(2)=Иπ・ι
"′
Σ島・ιノ2rθ
r‐ o

但し,И″=(21zl)π ,

Pr=制 ・ Z″

(付-3)′

いま,式 (付-3)′ について,π =1,IZI=2お よび%=5,IZI=12の 場合を例にと

り,展開各項 /に対するИ.・ Prの値を付図-1に示す。九(2)の実数部と虚数部は展開

各項に exp(ノ 2燿)を乗じたものの加算と exp(″θ)に比例する.したがって,九 (2)は
Иル・Prの有効数字の桁数によって計算精度が左右される.ただし,こ の場合,exp(″θ),

exp(ノ 2″θ)は任意の有効数字が得られるものとする。一般に,計算機は浮動小数点方式で

あり,単精度8桁, 2倍精度16桁演算 (但し,10進法)を行う。付図-1から分かるよう
に,π =1, IZI=2で の加算は単調に収束するため, 例えば 2倍精度演算による スル,
Pr,exp(ノπθ),exp(ノ 2γθ)を用い, カロ算項数を12以上に選べば, 計算機の丸め誤差を

考慮しても,少 くとも14桁以上の精度の九(2)が得られる。しかし,π =5,IZI=12の

場合のように, γについて ∠π・Prに極大がある場合は加算において桁落ちが生じ,結果

的に九(2)の有効数字は減少する。この辺の事情を具体的に示すため ノ=0(θ =0),すな

わち実数χに対する九(χ)の計算例を用いる。九(χ)の 2倍精度計算法は既に確立され

ている(31),(32)。 この計算法による九(χ)の値と,式 (付-3)′ の 121=χ (θ =0)における
Иπ,島 を 2倍精度演算したときの 九(χ)の値との相対誤差が 10~13～ 10-5と なるχと%

との関係は付図-2の ようになる。付図-2から,式 (付-3)を用いた場合, χが小さ
いほど, またπが大きいほど 九(χ)の計算精度が良くなることが分かる。 この ことは

九(2)についても言える事柄である。また,式 (付-1)を用いた 九(2)の計算において

も同様なことが言える。したがって,式 (付-1)と (付-3)を用いて, IZIが大きく
πが小さいふ(2)と 九(2)を計算する場合は, IZIに対して充分大きいπ (こ のπは付

図-2か ら予測できる)における九(2)と 九(2)を求めておき, 次の漸化式により,順

次πを漸減させて目的の九(2)と 九(2)を得る方法をとればよい(25)。
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(付-6)

式 (付-1)と (付-3)の展開各項を 2倍精度で計算した場合,九 (χ)の誤差は付図
-2の ようになるが九 (χ)も はぼ同様になる.例えば,九 (χ),九 (χ)の誤差が 10~13と
なるχ(但し,″ >10)と πとの関係は次のようになる。

式 (付-1)の場合 :π■0.082χ 2+0.0005χ -0.01

式 (付-3)の場合 :π■0.082χ 2+0.004″ -1

また,式 (付-6)を用いて 九_1(2)ま たは 九_1(2)の実数部および虚数部を求め る場
合,実際には次の関係式を用いる。

無81需i″,壕1+Kの |

Rel夕
11:|}={2μ ll

Ｚ

　

Ｚ

ふ

九
+ノ IIIlll

Ｚ

　

Ｚ

ム

九
Ｒχ

Ｚ

　

Ｚ

几

九
ｍ

π
　

＋

９
“
　
％
９

″

〓

Ｚ

　

Ｚ

ふ

九
ｍ

』m晩柳―バe晩謝
χ2+ノ 2

―R奪
l謝

このような計算を行ってもふ(2)お よび 九(2)の性質から誤差の累積は, ほとんど考慮

しなくてもよい(31),(32)。

九(2)の計算には式 (付-4)を用いることもできる。式 (付-4)は加算項数が有限で
あるため計算機に適しており,π が小さく IZIが大きいときに用いて便利である。式 (付

-4)においても,係数に (π +2γ )!/〔(2γ)!(π -2″)!(21zl)2っ ぉょび (π +2″ +1)!/〔 (2γ
+1)!(π -2/-1)!(21zl)27■ 1〕 があり,π と IZIの大きさによりγについて極大が存在す

る場合が多い。また,こ の式には cosり,sinり を含むため,ノ が大きいときのこれらの

演算精度 (後述)を考慮する必要もある。しかし,π ≦ 5, IZI≧ 5においては式 (付―

3),(付-6)を用いた計算法より有利である。

以上は, すべて 2倍精度演算における九(2)と 九(2)の計算精度について検討した結

果である。しかし,実際に必要な 九(2),九 (2)の有効数字は単精度 (8桁)程度で事足

りる場合が多い。 したがって

' 
上記の事柄を考慮して 2倍程度演算によって得られる ふ

(2),九 (2)の値を用いれば, π,2の大きさに殆んど制限されない実用的なふ (2),九 (2)

の値が通常の計算機を用いて得られる.

付-1-4 特殊計算法

付-1-3は あくまでも表現式の細部が正確に演算されたものとしての議論であるが,
実際の演算では多くの問題がある。次にこれらの主なものについて述べる。

i)指数修正
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通常の計算機では演算可能な指数に限界があり,その限界を越えるとオーパフロー,ア

ンダフローを生じ,演算が実行できない。したがって,演算途中において指数がある限定

値を越えた場合には指数を修正する必要がある。本研究では,指数が±30を越えるごとに

指数のみの記憶回路にこれをプールしておき,演算の修了時点において全指数を集計する

方法を用いた。

ii)双曲線関数の計算

双曲線関数は変数が大きくなると極度に大きな値になる。双曲線関数の計算精度は結局

指数関数の計算精度で決まる。ι
″
(但し,χ >0)を計算する場合,〆 の有効数字を定め

られた桁数に確保するためには,χ の値が大きくなるに従い使用するιの有効桁数も増や

す必要がある。しかし,実際問題として任意の″に対してιの有効桁数を追従させること

は困難である:ま た,この場合″の値がある程度以上になると計算機はオーパフローする。

従って, この場合は χ=α%十う(但し,π =0,1,2,… )と し, 計算機がオーバーフローし

ないαとみを求め,ι
α
",ι
あの仮数部と指数部について演算すればよい。通常の計算機の

演算可能な指数範囲は普通±99程度であるため,α とらは 230以下であればよい。しかし,

前記の指数修正法の適用を考慮すれば,例えば α=100とすると便利である。ιの有効数

字を16桁, α=100, b=0と したときのπに対する演算誤差を後述の多桁演算法により

確認した結果,%=1で は10~14,π =102で は 10-11, π=104では 10-10程度の誤差で
あった。そのため, ここでの計算法は,一般のノの範囲における si話秘∞sり の値とし

て,充分実用的であると考えられる。

iii)多桁演算

前述のごとく通常の計算機の演算桁数は有限であり,丸め誤差, 2進数10進数の変換誤

差もある。したがって,通常の演算における有効数字を評価するためには計算機の演算桁

数 (単精度, 2倍精度などの)と無関係な演算プログラムを作成する必要がある。本研究

では整数形の配列を用い, 配列要素の一つごとに0～ 9ま での数値を入れ, その一つを

一つの位としてⅣ個の配列をⅣ桁として取扱う計算法を用いた。また,別の配列に正負の

符号と指数を入れ,通常の筆算と同じ要領により,加・減 。乗・除の演算を行 った。式

(付-1)～ (付-4)を 2倍精度で計算した結果の評価には,配列の要素を 100桁で演算
したものと比較した。

市)多進数演算

ili)の多桁演算は10進法で説明したが,配列要素には何進法を用いても同じ要領で計算

できる。この研究に用いた計算機の容量と10進表示との関係から,本研究では10000進法

を用いた。このようにすれば,計算機のメモリーは約 1/4になり,演算の時間も約1/16に

短縮された。
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付 2- 食塩水の損失係数

誘電体の損失係数を簡単に変える一つの方法として,水に NaCl(食塩)を溶解させる

ことが考えられる。常温における水の複素比誘電率 εr=εrO(1~ノ tanぬ )は ,ε,0笙 81であ

り,水中の不純物を除去しても tanぬ =0.02である (但し,/≦ 109HZ)(29)。 本研究の実

験ではイオン交換により得た高純度の水に NaClを溶解させ, これを εroγ 81,tan δα=
0.025～ 0.5の誘電体として用いた.食塩水の VHF,UHF帯 における εrの測定方法
を付図-3に示す。被測定食塩水は内径約40nlmの 同軸円筒 (真鍮製,ZO=50ρ )に入れた。

同軸円筒の内部に可変短絡板を設け,約 20Cmの 同軸ケーブルを介してVHF,UHF帯 用
のアドミッタンス・プリッジに接続した。短絡板の位置と NaCl濃度に対する入カアド

ミッタンスから,食塩水の εr。 と tan発 を測定した。その結果, 食塩水の ε′0は NaCl

濃度 0～ 0。 15%の範囲内で εrO笙 81であった。それに対し,tan δαは付図-4に示すよう

に,NaCl濃度にはぼ比例して増加した。

VHF,UHF帯用
アドミッタンス 。ブリッジ

付図-3 食塩水の ε
"の
測定方法

短
絡
板

」け】／ノノノノ／／
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付図-4 NaCl濃度に対する tanδα
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