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PREFACE

One of the most widely enployed techniques to implement a dala

st:rrcture on a computer memory is the one that allocates data items by an

add.ressing function, as is typical in the realization of arrays. This

nethod" is decidedly superior to I'chaining methodrt in some practical points

such as accessing time or memory utilization. However, there have been no

satisfactory theories that discuss generally the cl-ass of d.ata structures

which nay adnuit effj-cient addressing functi.ons.

rrData Graph Theoryrr developed by A.L.Rosenberg is very enlightening

in that it proposed a data stmcture nodel si-nple enough to be treated

mathematically and gives an keen insight into that cl-ass of data st:ructures,

by presenting many investigations into the st:ructural uniformj-ties of data

graphs.

In this thesj-s, motivated. by his instmctive works, we discuss the

problems of data stmctures wj-th addressing functions.

In Chapter 2, a relational data graph .f = (C, R) is newly defined

to describe and investigate a more general stmcture represented. by a general-

ized d.i-rected,graph in which more than two equi-labeIed edges emanate from

a node. We fornrulate and discuss the uniforrnities needed. to acquire an

rrindex setrf.

In chapter ), lhe class of

is specified and. characterj-zed in

an efficient addressing function.

In chapter 4, a new class

is introduced, each of which has

relational data graphs with strong uniformity

d"etai1, which is advantageous to devising

of data st:ructures ca1led |tTA-structuresrl

a composite stmcture of trees and arrays,
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tr'or TA-st:r:.ctures, their indexing methods are described, and a few types

of addressing functions are constnrcted and evaluated.

In Chapter I, the labeling scheme for TA-st:ructures.is presented

and for a labeled TA-structure, its addressing scherne is explal-ned.

Febmary, 1978

Tatsuo Tsuji
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CHAPTER ■.

II「TRODUCTION

One of the most wid.ely enployed. techniques to inplement a d.ata

strueture on a computer memory is the one of allocating d.ata items by

an addressing function. This method. is d.ecidedly superior to "chain-

ing method." from the following practieal points of view. First, the

mechanism for traversing the structure so realized tend.s to be simple

and to require little overheatl for ttbookkeeping". Second, the tteostt'

of effecting transitions in the structure is often more unifonn and, in

many practical situations, this cost is uniformly 1ow. Finally, with

frfuJ.lrr graphs such as nonsparse arrays and. complete trees, this teehnique

tends to be more conservative of storage. Holrever, this technique suffers

at least two basic drawbacks. ft tends to be wasteful of storage when

applied:to structures which are not f'fuj-1rr and it tend.s to be infl-exible

-minor changes in the structure may necessitate a totally d.ifferent seheme

for calcu-l-ating addresses

For a given d.ata structure A(a logical- structure represented by

a directeii graph), its ad.d.ressing funetion.4.^n be construeted. by taking

the next two steps (See Fie.1). First, by exploiting the structural

uniformity of A , one should gi-ve an index to each cell in / which speci--

fies the ttrelative position" from some "base celltt; of course, the ind.i.ces

of arrays are integer tupples, and. those of trees are finite strings.

Fol1owingly, for the index setr/( A ) obtained, one shou-l-d design a fune-

tion ,1. vhien allocates ,-f tA ) to a set of addresses, A, on a compurer

menory. J t I ) must be ful1y simple, however, to be able to construct

-1‐
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an efficient ,4 in the sinplicity of computati.on and memory utrrization,

The fu11y simple Jf l), however, is guaranteed only when strong uniform-

ity exists in A. But, even if A is fairly uniformly stnrctured. and,

consequently, fu11y simple tf Cn) "url 
be obtained., the constmction of

Tefficient ,4 which *apu J( A ) to address set A is often nuch diffi-

cu1t. The reason for this difficulty is that the stmcture of A is

too sirnple to eapture faithfully the rrstmctural informationrr of J (N,

arrd .thus {, "cco"d.ing 
to some simpte z4. Arrays are farniliar data st-

mctures usually stored by ad.d.ressing functions and only trees at'e occa-

sionaly so stored except arrays.

f?re effort to discuss generally and theoretically such a process

of designi-ng an add.ressing function is a much laborious and d.ifficult

task, since the organization of the function is inherently dependent on

the rrshapert of individual d.ata stmctures and littl-e can be said" generally.

More concretely speaking, to clarify the answers theoretically to the

following questions is substantially difficult:(f) Unat classes of dlrta

stnrctures are implementable using a family of rrsimplel functions?

(Z) Wfrat class of functions suffices to implement some prespecified data

structures?

0wing to these d.ifficulties, there have been no satisfactory the-

ories that deal with such data structures with add.ressing functions (or,

we say directly accessible data strr:ctures). I'Data Graph llheoryrr devel-

oped. by A.L,Rosenberg, however, is very enli-ghtening in that it proposes

a data stmcture model simple enough to be treated mathematically, and

gives a keen insight j-nto that class of data stmctures, by presenting

many investigations into the structural unifozmities of data graphs'

-3‐



fn this thesis, motivated. by his instructive and stimulating works,

ve d.iseuss the problems of data structr:res with addressing firnctions.

In Chapter 2, a relational d.ata graph [ = (C, n) is newly d.efined,.

ft is possible that f captures more general and natr:ral structure of

d.ata, which is represented. by a generalized d.irected. graph where more than

two equi-labeled. edges emanate from a nod.e. Each element of R is a

relation rather than a function on the set C of d.ata cells. Owing to

the relationality of reR, in reLationa^L data graphs, a set of d.ata j-tems

can be obtained. by the application of one retrieval proced.ure. We forrnul-ate

and. d.i-scuss the class of relational- data graphs with faborabl-e uniforrnities

needed to acquire a simple ind.ex set. Furtherrnore, we make the detailed.

study of such uniforrnities by investigating the algebraic and graph-theoretical

properties of R.

In Chapter J, ve specify the class of relational data graphs with

strong uniformities, which shows the potential usefulness for devising

a t'good." function with respect to memory availability or computational

simplicity, and so on. We give structural characterizations of relational

d.ata graphs with such strong uniformities.

In Chapter l+, with the theoretical basis d.eveloped. in the previ-ous

ehapters, we i.ntroduce a new cl-ass of data structures callecl ttTA-structures".

A TA-structure f = (C, tr') has a composite structure of trees ancl arrays,

and. lt j-s al.J.ocated by an ad.dressing function. Ind,exing method.s for

TA-structures are d.escribed., which reflect both the string type and integer

tuple type ind.ices. Moreover, a few types of addressing functions for

the index set epecified are constructed..

Chapter 5 is devoted to the label-ing schemes for TA-struetlrres,

‐ 4-



an labeled. TA-structures by some specified. labeling scheme are presented.

For an l-abeletl TA-structure, its ad.dressing mechani-sm is explained.

-5-



CWllER 2

RELAT工 ONAL DATA GRAPIS

2.1 Introduction

Given a problem and its associated data, by anal-yzing the semantic

of the problem, then irnposing the problem-oriented stmcture on the data,

we can construct an efficient procedure for solving the problem. Ttrough

even in a case of a simple problem, because of the many criteria conflict-

ing with each other, it is generally d.ifficult to obtain the optimum

stmcturing of the d.ata.

However once a data stmcture is established according to some

criteri.a and. implemented in a computer, many important properties of the

data stnrcture, on the computational stage, become independent of the

contents of d.ata i-tems.

Instead of above mentioned problem-oriented approach to the data

stmcturing, stud.ying properties of data stmctures, whose analysis

depends only on their forrns themselves, would be an effective approach.

Investigating algebraic and graph-theoretical properties of the various

stmctures underlying data strructures, we eaJl expect to erploit the

stmctures on which many fundamental manipul-ations can be applied effec-

tively,

I{uch research has been done in concern with such morphological

fozrnulation of data stmctures, For example, ChildII], RosetbergltT-20],

Fleck[!], Turski[l+2,1+3]. Amorrg such excellent works, "Data Graph Theory"

developed by A.L,Rosenberg is very enlightening one where he proposed

a moclel simple enough to be treated. mathematically, A d.ata graph

-6‐



is obtained. from a d.ata structure by masking out the specifie data items

at the nodes of the structure and concentrating only on the linkages

in the structure. Linkages d.enoting various rrrelations" arnong d.ata

items are partial functions ).'s on C (tfre set of data cells). Data

graph is d.efined in terrns of these functions. Two notions arising in

data graph reaJ-ization have been isolated, namely relative ad.d.ressing

and. relocatability, vhich can be stud.ied. in terrns of the struetures of the

data graphs involved. fn [fT], these two notions are precisely forrnulated

and those data graphs are charaeterized to which these tuo notions are

applicable. fn [f8-eO] , the properties of those d.ata graphs are investigatecl

in detail.

In his for:nulation of data graph however, owi-ng to the functionality

of ).'s, at most one item is related, to some itemby each of l,'s.

This makes it inevitable that onJ-y one d.ata item is obtained. by the

application of one retrieval procedure. This wou.Ld. be a vital- l-imitation

when the size of d.ata structures become large and their fast processings

are d.emanded..

In this chapter, relational- data graph [ = (C, R) is newly d"efined.

to d.escribe and. investigate more general structure as is represented. i-n

Fig.2.1 in which more than two equi-l-abel-ed. edges emanate from a nod.e.

Each element of R is a relation rather than a function on the set C

of data cells. We introd.uce "block partitionabLe relationaJ- data grapht'

whieh is mainly discussed. in this chapter. In block partitionable

relational data graph, owing to the relatj.onal-ity of r€ R, a set of

d.ata items called "blockt' can be obtained by one retr,ieva^l- proeed.ure.

So a higher rank data such as a set of blocks can be F'l so successfully

‐ 7‐
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treated. in our new model, By the notion of rrroot blockrt, we characterize

those class of block partitionable relational data graphs, each of whose

blocks can be indexed by the link sequence from the root block ce11.

The detailed properties characteristic to the class of relational data

graphs with root bl-ocks are studied, In addition, we make various

forrnulatj-ons such as. rrskefeton mappingrr whi-ch would offer effective

schemes for manipulati.ng relational data graphs. Some results in [17

-20] are naturally erbend.ed in our new model.

2.2 Relational Data Graphs and. Block Partj.tionability

In this section, first a relational data graph is specified.

Then, a block partitionable relational data graph is introduced and its

several properties are studied. Or the block partitionable rel-ational

d.ata graphs, l/e formulate a class of relational data graphs which admit

a rrroot blockrr, and investigate various properties of them. For a rela-

tional data graph in this class, we can have an indexing method of it;

each block in it ean be indexed uniquely by-the link sequence frorn the

root block cell-. It is stated in the next section that relational data

graphs with root bLocks can be allocated on a computer memor;'by rrrelative

block addressingr'.

First we establ-ish the notational conventions j.ncluding the ones

employed in the following chapters.

NOTATION, Let r

r€ CXC. Each relation on C

(the power set of C), anrl the

binary relation on a set C, namely

be viewed as a function rt C n 2C

set {"'e Cl(crc')er} isdenoted

ａ　　　額
　
　
一・．

Ｃ
　
　
　
ｅ

ｅ

　

　

　

　

　

　

ｃ

ｂ
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by cr or often denoted. by r(c). For two relations "I, "2, we

write ,Ir2 for the composite relatj-on defi-ned. by,

.r!"2={"t€Cl(d, ct)Qry d€cr1} fora11 c€C. Wedenoteby Rr

the monoid of relations generated from R und.er relational compositions

with identity function IC. We write "k for k-fold composition of

r with itself, whence 
"O = 1C. 7p(") j-s a set of relations defined

on c € C, that is {ee ff t"'€ Cr (cr ct) eE}, t'a relation E 6Rz is

total on Crr implies that EePn(") for every ce11 c 6 C; that is,

when viewed as a function, e is total on C, For Eg * and C,g C,

1/C, implies the restrj-ction of E to Ct, that is e/C'= EcC'xC',
For l=trTr,.. "rr€ "r 

(ri€R), the i-prefix Ei is the string

L, = rrr, ... "i 
(f < l(n, 60 is the empty string).

nefinition 2,!. A refational Aata er (rdg for short) is

specified as an ordered pair f = (C, R), where

(i) C is a countable set of data cel-Is.

(ii) R is a finite set of relations defined. on C,

(iii) tr'or all c, d€ C, there exists a relatj-on E ent such that

d. e cf, nanely tr is represented by a strongly connected directed

graph.

Rosenbergts definition of a data graph is exactly equal to the

definition of an rdg if we restrict relations to functions in (ii)

Definition 2.2。    Let r = (C, R) be an rdgo    For ay  こ, η

`7R(bO)' if the fo■
lo■ring condition is obtained, lbol  iS Cal■ ed a base

‐ 10‐



block of r  and r  is ca■ ■ed a block Dartitionab■ e rd, (bprdg fOr

short).

b。こr、 boη  キ φ   
―

     b。こ = boηθ

lt shou■d be noted that baseblocks are sing■ eton set。 .

The set of base blocks of  r  is denoted by BP.

Example 2.1. Fj-g.2.2 is an example of a bprdg where tsf =

{tt}, {e}}.

Definition 2.). Let p = (C, n) be a bprdg and tbOl. %.,.

Tkren the relation 
=OO 

on C is defi.ned as follows.

For al-1 "!, "2CC,

C■ 奮ごboC2  ⇔   
ヨ
こ(7R(bO)'   cl, c2 ( bOこ・

Proposition 2.1.   Let 「 = (C, R) be a bprdg and  ib。
}(BF・

IIlhen the relation ― bo   S an equ■
va■ence re■ ation on  Ce

Proof.   That γ bo  iS reflexive and symmetric is ob■
ri ous  from

the deFinition.   We show the transiti■ rity of ttb。 .   For each  cl, c2'

Cう (C' 
・

et  cl ==boc2  and  c2■
=ЪoCぅ

・   Then' from the deFinition of =ご
b。 ,

there eⅨist  こ, η(7R(bO)  Such that   cl, c2( bOこ   and  C2' C3 ( bOη・

Hence, b。こ∩bonキ
/・

 Since, Ibol iS a baSO block of P, b。 こ=boη .

Therefore   c., cぅ
 ( bOこ ' SO that  cl   b。  ぅ・   That =bo   S an equ■ va―

‐
11‐



Figure 2.2. A block partltionable rdg

-12-



lence rel-ation on C i-s,'now shown. Q.E.D.

From the above proposition, we can see that C is partitioned by

the equivalence relation :On. Each equivalence class is calIed a

block of I induced by a basl block {b.f.

Let df [bOl denote the set of blocks of F induced by ib.] ,

then Er[bo] = {r ln = boE, E eyR(bo)}.

E,xample 2,2. For the bprdg f

[ [r], 12, 1i, 14, 5t 5], tt, e;, {g}}.

in Fig.2,2, &lt) = BrlgJ =

Base block {lO} is an entry block of F. Accessing to each

block of [' can be successful]y accomplished. by starting from the base

block cell- bO, Some of the properties of bprdgts are developed-, which

result in Theorem 2.1.

Lerwna 2.2. Let F = (C, n) Ue a bp.rd.g. For any ce11 c (,C,

any base block {uo} e \,r and Ee 7n("),

bo€cE ==+ cq = {bo}.

Proof, trbom the strong corneectivity of F, there exists n e [R(bO)

such that c € b'n. Say, there exists d ecE such that a # bO.

Then bOnE I ld, bol , but since la e Rr is defined at every cell in C,

b01c = {bg}, so that bonEnbolc * p and bonE # bo1c. This contradicts

that tbOl is a base block of F, that is, there are no decf such

- 13 _



that d#bO. Hence,

Iheorem 2.J. Let

blocks ibrl , lb2) e ts6,.,

cf = {b9}.

n = (C, n) be a bprdg.

Q.E.n.

For any two base

Ttre bfpeki.pg

proof. Let teErlbr] and blE=s(EeVR(bl)). For(e[*(lr),

we assume that b2 € bl< : Then from Lemma 2.2, Or( = b2 . For

any c € B, there is an n eVR(lr) such that c € b2rt from the strong

connectedness of tr, Hence, blBnbr(n * 9, Since { bf} is a base

block of F, IrE = br(n from lefinition 2.2, namely brE = brn.

sj.nce bz\e Brlba] ' brE = ne EofarJ, conversely, for any block 3 e

En[bz], le fir[b1) j.s shoun in the salne way, Thus Bolot) = Etlb2)
fo11ows. Q.E.D.

The above theorem implies that the partitioning of C by the

equivalence relation : h gives the same set of blocks, which is inde-
"0

pendent of our choice of a base block {l.}e nr. This independence

pernrits us from now on to denote the set of blocks of a bprd.g sinply as

BE without b0.

ん
「

[b.l=ゐ
『

[b2〕 °

Definition 2,4. Let p = (C, n) be a bprdg.

mapping tz C ---> fu, is defined as foflows.

For each Be$Ot

cy=B e c€8.

-14-



By the blocking mapping of tr, each ceI1 c € C is alloted to the

bLock which contains it.

Definition 2.5。   Let  l「 = (C, R) be a bprdg・     工f there exists

IC。〕( Sゃ  Such that for a■
■  こ, η(7R(CO)'

C。こ = Con  ==>   こ =η

is satisfied, Ic。 } iS Cal■ ed a root b■ ock of l「 .

(2.1)

Exampl-e 2.J. Eie.2.1 G) is an example of an rdg which admits

a root block { U and Fig.2., (3) is an rdg which adnits two root

blocks {1} and {z}.

Sketch of proofs of Exanple 2.3.

rie . 2. 3(A )

To show t 1l is a root block, first we can see the equalities
-2ab = Ic and a-c = a hold. The set of blocks Btr is Bf =

tn ll = lan, n = Or1 r2r...l (.0 = 1c). Let t" be an arbitrary relation

to the block 1an (n = Or1r2r...) and let [E]" be the number of

occurence of r€R = {a, b, c} in e, Then, [E]. = [E)o * [L]" * "
must holds. Repeated application of the above equalities into E"

reducesこ to an due t。 に〕a=[こ〕b+[こ 〕c tt nθ

For 、lexamp■ e, consider the b■ ock  la = 1う , 4}.    Let

■a = ■こ。    Then,

こ = aうbC, SO

u1b" =.2(rt)"

“ 15-



Fig,2., (B)

First, to show {1}. is
6

ab = c- = fC, aC = a.. hOld.

n = or1 r21,.Jutl I B = lcan, n

relation to the block lan.

Again, repeated application of
I p 1 f -'loue to |'9J" = [qJO + n.

For example, consid.er the block

1a = lE. Then,

( '.'ab =

r..2( ac=

a root block, note that the equalities

The set of blocks is Ef = tf lg = lan,

= 0r1 ,2r. ..), Let t" be an arbitrary

For such E, [81, = [E]o + " must hold,

the above equalities reduces E to J,

1a = {3, 41. let 1=u1b.b, to

Zac

9

Ｃ

　
　
ａ

■

In this way, every relation to the block 1an (n = 0r1r2r...) can be

shown to be equal (as a set of binary relations) to un, so all are

equal. Since, lan is an arbi.trary block, {li is a root block.

Q.E.D.

^1a.b = a2(ab)cb

2.acD

a(ac )r
ao

a(ab)

=a

Sinilarly every relation to the block

to "un. That t1] is a root block now

{2} is shown to be also a root block.

LCa Carr

foflows.

ab = Ic)

( '.' ac = a)

'ab=1c)

shown to be equal

By a sinilar method,

- 16 -
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(A)

Figure 2.3(A) tho examples of rdg with root blocks
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(B)

Figure 2.3(B) Two examoles of rdg with root blocks
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Let f = (C, R) be an rdg which admits a root block t"OJ,

For an arbitrary block B of F, there exists a relation EeV*(cO)

such that 3 = cnE. From (Z.t) we can see that all of the relations

ne V"(co) *"rr irr", B = cot are exactly equal (as binary relations)

to E, Hence a unique relation from the root block ce1l 
"O 

can

be assigned to eaeh block of F. This unique relation is desj.gnated.

as the rrindexrr of the block. Thj-s notion of a tfroot blockrf is a general

forrnulation of rrrootrt in[f?]. Several properties and features of an

rdg w'ith root blocks are provid.ed by investigating the stnrctures of

relations in RE.

Le■ llna 2。 4゛

■

IF  o。 (c。こ  f° r

Let 
『

 = (C, R) be an rdg With a root block 〔c。
}・

観yこ (7R(CO)'こ =lc.

Proofe   Since  c。 lc = tc。
},  C。

■
c∩ c。こ ≠メ′O   By the b■ ock

partitionability of lP,  colc = o。 こe    Since  tc。 } iS a r。。t block of

lP,  こ = lc  fO■ lows from (2.1).                                     Q.EoD.

Lemma 2。 5.   Let  l「  = (C, R) be an rdg With a root block  tc。
}・

Each  こ(7R(CO)is totale

Proof.   For each  c(c。こ,  there ex■ sts an  η(7R(C)  Such as

COC Cη  because of the strong connectedness of l「 .    ThereFore  c。 (c。こη

ho■ds.    From the above ■emma, こη = lc  iS Obtained.    The totality

・  From Lemma 2.2, in fact, 
"OE = { "o}.
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of lC ensures that E is total on C. Q.E.D.

Now, let mt d.enote the set of root blocks of an rdg f .

fheno it is verified. that an rdg with root blocks has sueh a characteristic

property as is exhibited. in the following theorem.

Ttreorem 2.5. Let [ = (C, R) be an rd.g with root blocks. For

anv t"t]' l"2lrnO, every t€VR(ct) such that cr€crE (from Lerrwta 2.2,

in fact c2 = c1E) is a f\rnction.

Proof. From the strong connected.ness of [, there exists n €

V*(cr) such that 
"1€ "21'. Then, cl6 eaEn is obtained. Since

l"a] is a root block of tr, En = IC from Lemma 2.1+. Sfutrilarly,

nE = lC since {"2} is also a root block of f. Now assrme the existence

of ", "3, c4€C such that ca€ eE and c4ect but 
"3 I "1*. Then

there exists cr 6 cE such that cf n = c inrroking 6n = lC. Henee,

cr€ cf rtE and e4 €c'nE. While c, f c4, and this contradiets nt = 1C.

Therefore, for each e ( C, there is at most one element in c6, that is

to say E is a firnetion on C. Q.E.D.

For example, in Fig.2.3(B), the relation c€R between the two root

blocks {f} and {2} is a function.

It shou■d be noted that from Theorul1 2.6 or frOm Lcrlma 2.2, the

futo* Lenma 2.2, ia fact c, = cr6.
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nert corollary is obtained.

Corollary 2,7. If there is a rel-ation r € R which is not

function, there exj.sts no rdg tr' = (C, R) such that evelcy cell is

root block ce1l.

Proof. Immediately follows from Theorem 2.6. or from Lemma 2.2.

Q.E.D.

2,1. Realization of Relational Data Giaphs

This section considers the realization problem of a: relational

d.ata graph on a computer memory (a random access memory device such as

cores or a disk mernories). Numerous techniques for real-i-zJ-ng data

strr:ctures have been developedr each having unique advantages and

disadvantages, While most methods of realization c€u:r be used with

arbitrary relational d-ata graphs, our concentrating method. requires high

uniformities i-n the stmcture of the graph. Fj.rst a general d.efinition

of a realization of a relatj.onal data graph is given. Then, a

real,izalj-on method by I'relative block addressingtt is forrnulated, and

shows that the class of reLational data graphs which can be realized. by

this method. is exactly equal to the class of relational data graphs with

root blocks.

Definition 2,5. let [' be an arbitrary rd.g, and. 1et

set of ad.d,resses sueh that #C<SA. Then a realization of

ａ
　
　
　
ａ

Ｓ
，■

ａ

　

　

Ａ

ｂｅ
　

　

ｏｎ

Ａ

　

Ｆ
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a pair of mapping,

〈σ,′ 〉

where C t C ---+ A is one-to-one total, and

f t R _+ [=a l"ae lxa]x is a one-to-one monoid

homomorphism mapping. Thus, 1C = 1Or and for E, I € R-,

(こη)f = (こ F)(η 7)・

The pair 〈σ,′〉 SatiSfieS the following oonditions for a■ ■  ccC  and

r(R,

(i) , 7 (cr)("f) gca :* cr * p,

(ii) cr * g -) Gr)o = (cr)("f).

According to this definition, if Tarf) realizes I = (C, n)

on A, then (Cr, nf) is isomorphic to tr.

One of the most familiar technieue for implenenting data structures

is the method of ilrelative addressingrf. Informally this technique

is described. as specifying a base ad.dress and representing the addresses

of the various cel1s in the st:ructure as di.splacements from this base

ad.d.ress. Here for the class of bprdgts, a real'ization by rrrelative

block addressingt' is given, which specifies displacements for the bloeks

rather than the cells.
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Definition 2.7, For a bprdg n = (C, R), (O-,f) is called a

realization of f if

(i) There exists a base address aO€ Cc ,

(ii) Bijective (= one-to-one onto) displacement function

d 'Ev+ [<^' € R'f I ao-efioaJ=S) exists and for everv

block BQfiOt

Ba= ar^,(36;.
V

Accessing to the block Bo' on A can be accomplished. by knowing

the displacement 86 of the block B and the base add.ress aO.

The following result can be obtained, which implies that this realization

scheme is an equivalent notion to the exj-stence of root blocks.

Theorem 2.8. A bprdg f= (C, n) is.reah-zable by relative block
..^ad.dressing if and only if it admits root blocks.

Proof. l,et A (a set of ad.dresses) exj.st such that #C-<#A.

(1) Say that tr has a root block f"ol. Let 0- be an arbitrary

total one-to-one mapping of C into A. For such fr, define the map

f . Rt --* {"a l"ne Rx a}x as follows:

For each € e Rt, EF = o-IEq- .

-1Then, ICI =o'-r:.rc = 1A, and for each eI, eZ€ Rz, (erf) Gzn = @r1{)
(o-I;zn) = fTltEzr = (EtEz)f , so the f specified as above is a monoid

homomorphism mappi-ng, First, we show that ( rr?) is a reali-zati-on
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of r in A。

(i)Let ¢≠(cの (r′ )⊆ C,then(cσ)(r′)=(c″)(〆・ rの =(cr)〆⊆Cの

So(cr)″ ≠ ,́and cr≠ ″。

(ii) For any  c(C  and  rcR,  let  cr ≠ φ  henCe  r(7R(C)・     Then,

(cr)″ =c『〆・ r″ =(c″)(〆・ rの =(cの (rf).

Thus,〈″,′〉 rea■izes  P  in  A.

Here we d.efine a total one-to-one function grEf 
- 

Rz as follows.

For al■   B(衡 , ■f  COこ = B,  Bβ = こ.

Since  β  is a Function, such  こ  is unique■ y determ■ ned for  Bcar・

It is easi■ y seen that a bprdg r  with root b■ocks adnits such  β.

Now we show that く″,′〉 iS a realization by re■ ative b■ ock addressinge

Let  β  aS defined abovee    Let  ao   coσ   and  δ = βF・    By definition

of Ω ,9=ッ トβγ・  For e¨h B(4『 , B″ =C。 (Bβ )″ =c〆〆・ (Bβ )″ =

a。 (Bβ )′ = a。 (B'P)= a。 (lδ ),    ThuS,〈 7,′) iS a realization by re■ ative

block addressュ ng.

(2)  Oonversely, ■etくク‐,′〉be an re』 ization of 
『

  by relative

b■ ock addressing with base address  ao    d diSplacement function δ θ

Cons■ der the cel■   c。
 = aor~・

CC.    Ijet  こ, η  be arbitrary e■ ements

Of 7R(CO)Such that c。 こ =Cono  NOW,(c。 こ)″ =(C〆 )にf)=a。 に ァ),

and(con)″ =a。 (η′),therefore

(■ ) bOth  a。 (こ′) and  a。 (η F) are included in  C%

(■i)a。 (こ′)= a。 (η′).

Since δ is ontO function,from(■ ),

(iii) 
ヨB., B2C以

5『 '  B■
δ= こ′, B2δ =η′・

From our choice of  co  and the definition of δ , ■t fO■■ows that

(iv)  (c。こ)″ 〒 a。 (こ′)= a。 (B.δ )= B=″ .
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Since f is one-to-one,

(v) coE = Brr or equivalently,

Similarly,

(vi) con = 82, or equivalentl-y,

Since 
"0E = con, and since

E=n since f isone-to-one.

be a root block ce1l of tr and.

(cOこ )′ =こβ

(c6η )δ =η′.

δ  is a Function,  こ′

We have thus shown

the theorem is provede

=ηβ・    Therefore,

CO = aOr~・   tO

Q.EoD.

2.4. Skeleton Stmctures of Relational Data Graphs

In a block partitionab■e relational data graph l「 = (C, R) deFined

in section 2。 2, not only the structure among the cells (c― structure),

but a■ so the structure ttong the blocks (あ
lP…

structure)can be described.

O::e of our next concerns is to extract lhe fir-stmcture from |Ia

would con-To specify the By,-stntcture seperately from the C-structure

tribute to make the proeessing of each block itself easier.

In this section, we provide the skel-eton mapping fi = (e I K) of

a block partitionabLe relational data graph tr = (C, R).

The napping 5 reveal.s the skeleton structure of tr, that is n(n) =

(S, nt), This skeleton strructure h(f ) serves itself as By,-stntcture

of tr. e maps each celI c€C to a single cell seS which d.enotes

the block containi.ng the cell, and lc maps each relation re R to a

function rr on S. It is proved. that the existence of a root block

in [' is preserved under the mapping h. In add.ition, for a block

partitionable relational data graph tr the condition is provided which
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einsures the eristence of roots in fr(n),

Definition 2.8. Let f' = (C, R) be a bprdg. The skeleton

mapping: of f is a pair of mappings defined as foIlows. S is an

arbitrary set of cells such that #(Bi =#(S).

h=く 8,К 〉.

where E = "IUr

y! C -'--'> B, $l-ocking mapping),

u. BF 
- 

S is an arbitrary one-to-one total function,

K! R ---> nt =lrtlreR] is a total function and for any

r€R, rr€ Rr is specified accord.ing to the following m1e,

=, = {(c1e, cz")l (c1, c2)€ rJ.

h(f) j-s ealled the skeleton stmcture of ['.

(2。 2)

Example 2.1+ . The skel-eton structures o f Fig . 2. 3( A ) and

Fie.2.3(B) are afforded, in Fie.2.l+(A) and Fie.2.l+(B), respectively.

Now 1et the domain of K extend from R to RT, For each E -

T^T^ .., r € Rz 'L I n (each =i is contained in R), Et is defined as follows.
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(A)

(3)

Figure 2.h. The skeleton structures of rdgs depicted ln Fig.3
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Ft _F !c_,r?r 1'1 (r.e n)e - \2'r- ^I-2 n l_

The mapping e is generally a many-to-one function from C to S.

tr'rom the d,efinition of block partitionability, "ly = .2I hold"s for each

c(C, feVr(c) and c.-, c.ece, Then from the one-to-oneness of u,

cle = c.e is obtained, Therefore the notation ("E)" is perrnitted-

and it in fact denotes de for arbitrary celI d e cf,. Then, from

Equation (Z.Z), for each c6C and reVo(c),

(ce)r' = (cr)e. (2.う )

is obtained. Equation (Z.l) insures that rt6 Rr is a function on Cr.

And the strong connectedness of h(f), the fact that for each 11, sr€S,

there exists Et€ Rtu such that saEr = sr, is guaranteed. from the strong

connectedness of tr and Definition 2.8. Hence, h(f) = (Ce, RK) specifies

an rdg trt = (S, Rr) where each rr€Rr is a function on S, and owing

to the functionality of rrC Rt, it follows that Fr is block partitionable.

It shbuld be noted that h(f ) is a data graph in the sense of [U] ,

Equation (2., is now extended in the following proposition.

Proposition 2.). l,et [' be a bprd.g. For each c eC and each

E r V"(c),

(cc)こ
: = (Cこ

)ε . (2.4)

Proof. let t, = "I=2 ... r* (rre R) and 4i = T\r2 ,.. "j
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(the j―prefix of  こ,  1く j《 m-1)・     There eⅨ ists  d(cこ j  Such that

rj+1(VR(a)  for each  lく(j《 m―■O    By Equation (2.う ),  (dc)r:+1 =

(drj+.)ε .    And  d(cこ j  yieldS  ac = (cこ j)c  and  drj+.⊆ :cこ jrj+1

yie■ ds  (drj+1)E = (Cこ
jrj十■)ε

' So that  (cこj)cr:+. = (Cこ jrj+.)ε .

Hence,(c8)こ '=(cc)■ rム ・¨
琳 =(Crl)cri.¨ 鶴 =(Crlr2~・ L)ε・

= (cこ )ε .    This comp■ etes the proof.                           Q.EcD.

Here we will make sure that the extension of K from R to Rz

is well defined. Tor alL "l, , rm, rm+l, , ,n€ R, 1et

TI'r2 ... ", = =r+lTm+2 ,.. rn, Then for arbitrary ceI1 c in the

domain of "1 ... "* 
(o" 

"rn+l ... =rr), "=1 .,. ", = ""r* rn, so

(cr, ... r*)e = ("=**1 ... rrr)e. From Equation (2.4), (ce)rf ,.. rj

= (ce)"i*l ... rl. Since c is arbitrary, rf .,, rfi = rfu, ,,. ri
is obtained. Therefore K is a total function from RT to pF.

Thus the erbension is well defi.ned,

Proposition 2.10   Let 
「

 = (C, R) bO a bprdg

For  こ, η(7R(bO)' if  (b。 8)こ t = (boc)η
', then  b。こ

Proof.   If

nalne■ y(b。こ)Yu=

(bOこ )γ  = (boη )γ .

(b。こ)γ = b。 こ  and

= (bor)n', by Proposition

for s = ]'u.. Since u

and lb♂ 〔野.

=bon.

2.9  (b。こ)8 = (boη )c,

■s one― to_one,

(b。8)こ :

(bon)γu

bo  is

(boη )γ = bon. Hence, boE = bon.

Proposition 2.l-.l-. Let p = (C, n) be a bprdg and

Forany s€S and fte Rtzrif EteVo,(")rthereexists

a base block ce1l, so bO6, b.n 14, therefore

Q.E.D.

h(lP)=(S,R!).

c(su ・  such
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that E€ 7"(" ),

Proof. Immed.iate from Equation (Z,Z) Q.E. D.

Proposition 2,!2. Let p = (C, A) be a bprdg, For {UOie ry
and E,€ Va,(b6), Ee V"(to).

Proof. frnmediate from Proposition 2.I!, since the base block

tbO) is a singleton set. q.E.D.

If h(f) = (S, R') 
.nas 

a root block ls6l, "O is simply referred

to as a root of h(f), Such h(f) is a rooted data graph in the sense

of[171, Hereaftert cE is often d"enoted as cr.

Tlneorem 2.IJ' If an rdg p = (C, n) has a root block { "0},
then h(f ) has a root cfi.

Proof. For each E', I'eV"(ci), 1et "68' - "6n'. From

?roposition 2,1-2, 4t \( V"("0), "o coE = con by Proposition 2.I0.

Then E = n, because l"O) is a root, block of ['. So fK= qK, i.e.

Et = rl'. Hence, ci is a root of h(tr). q,E.D.

Example 2.1. Fig.2.:(a) has a root block {1}, while its
skeleton structure afforded in Fig.2.l*(A) nas a root. Fig.3(e) has

root blocks {1}, {2}, while its skereton structure afforded in rie.l+(g)

has roots 1 and. 2.
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It is made clear by the above theorem that the exj-stence of a root

block is prese:rred. wrder the skeleton mapping h, but the existence of

a root block in C is not a necessary condition to ensure that h([')

has roots. The following theorem affords a necessary and sufficient

cond.ition to guarantee the existence of roots in h([').

Theorem 2,L4, let 6' = (C, n) be a bprdg. A necessary

and sefficient condition to ensure the existence of roots in h(f')

is that BOrBf exists such that for any 
"1, "2. BO and any Ee V"(cr),

n e V*(cr),

(er6)v = (crn)v 
= 

vnc$r, tur., d, e B, (arL)r = (d2n)y.

(2。 5)

Proof. (l) First, assume that h(f) has a root "O and BO

-1- "o* 
-. For a"ny "1, "2. Bo and any qe V"(cr)r t 6V"(cr), 1et

(cr6)v = (crn)v. Then, (crE)e = (crn)" applying the functionality

of u and r = yr. Since Ee VU(cr) and neV"(cr), by Proposition

2.9 ("fr)6t - ("2")qt. 
"1, "2 

€ B0 implies "1" = "2" = "O and

since "O is a root of h(f ), Et = rlt,

1' , \t e Vp, (so), therefore from Lemma

S, that is, for an arbitrary s e S, s[r

the one-to-oneness of u ensures that

Then from Proposition 2.11, d' dre B

n €VR(d2). Since for arbitrary s € S,

2.5r Et and n I are total on

- sq,. Let B = su-l, then

B is also arbitrary on B tr,,

exist such that E € VR(dl),

sqt - snr, for: such dl, d2 € B
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(qe)E' = (d2e)n'. Then from Proposition 2.9, (ar6)e = (arn)e.

(arE)v = (arn)y is obtained. Hence,Since u is one-to-one,

(e.>) forlows.

(Z) Conversely, 1et BOC Bf exists such that for any c1, c2 €86,

any EeV*(ca), neVr(er), (z.S) holds. Let Bou = so and. for any

Et, ntaVn,(so), "oEt = s.rl'. Then from Proposition 2.11, .1, 
"2€B0

exist such that E€Va(cr), neTr(cr). since "lt = c2e = so, (cre)6'

(cre)n'. Protrnsition 2.9 implies that (crE)e = (crn)e , so (crE)V =

("rn)V, fhen from (2.>) for arbitrary B€ng., there exist dl, d2€ B

such that (d1g)y = (arn)v. By Proposition 2.9, (d1e)E' = (d2e)n'

and dla = dre = Bu. Si-nce B is an arbitrary block in BO, Bu is

an arbitrary cell in S. Therefore E'= nt, then h(f) has a root s0.

Thus the theorem is proved. a.E.D.

(2.>) implies the following fact that if "1 and .2 are contained

same block, then for an arbitrary block Se Ef, there exist dl, d2

such that both UfE and den are contained. in the same bloclt.

Example 2.6. There are no root blocks in Fig.2.5. This is

assured. as follows. In the figure, base bloek cell- 1 ls the only

cand.idate for a root block. Assume that {f } is a root block.

Sinee lab = 1r ab = Ia from Lernma 2.\. But in fact ab = I,r so

i1J is not a root bLock

Although there is no root blocks in Fig.2.5, its skeleton strueture

given in Fig.2.5 has a root eelI I obviously.
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Figure 2.1. An rd.g with no root blocks but its

skeleton structure has a root

skeleton
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Remark. The bprdg depicted in Fi.g. 2.7 G) has no root blocks

The reason is as follows. In the figure, the set of base blocks is fr, =

tto},t-4,{-2},...}. For each {c}e ft,r assume that {cJ ' is a root block.

trbom the figure, cab = c so ab = lC from Lerrna 2,4. fut, lab * L

so that l"] is not not a root bl-ock. So Fig.2,]G) has no root blocks.

In the skeleton stnrcture of FiS.2.? (e) d.epicted in Fig.2.t (S),

however, all the ce1ls are obviously root ce11s.

Coro1lary 2.'l says that there exists no class of rdgts F = (C, n)

where eve4f ce11 is a root bLock cel1, if there exists a nonfunctional

relation r € R. But, we'see from the above example that there is a

class of rdgts [F = (C, n) such that everT cell in the ske]-eton stmcture

n(n) = (S, nt) i" a root block cel1, even if there exists a nonfunctional

relation r ( R.

2.5. Conclusion

We have newly d.efined. a relational data graph 6'= (C, n) as a

general d.escription for a data stnrcture. In a relational data graph,

a set of data items can be obtained by the application of one retrieval

procedure, owing to the relationality of r € R.

The forniulation of rrblock partitionabilitytt is given, then the

class of block partitionable relational d.ata graphs with root. blocks are

characterized", each of r,rhose bLocks can be i.ndexed un:iquely by the link

sequence from the root block ce1l. Several properties and features of

relational data graphs with root blocks are studied; one of the striking

properties is that every relation between any two root blocks is restricted
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Figr:re 2.J. An rd.g (a) sucfr that every celI of its skeleton structure (B)

is a root



to a functional relation.

Then the rea\i-zatl-on problem of a relational data graph is considered.

It is shovm that the class of relational data graphs which can be realized

by rrrelative block addressingtt is equal to the class of relational data

graphs which ad.mit root blocks.

Subsequently, the skeleton mapping h is i.ntroduced, which exposes

the skeleton st:rrcture of a block partitionable relational d,ata graph tr.

It is proved that if [' has a root block, then h(f) has a. root.

In addition, for a block partitionable relational data graph tr the

condition is provid.ed which ensures the exj.stence of roots j-n h(F).

Even if f has a root b1ock, so that each block in [' can be

indexed, the condtj.tion (2.1) cannot provide a sufficient uniformity for

tr to be addressed by some simple function. The nert chapter is devoted

to the investigation into the more stronger uniforrnity whJ.ch would contribute

to obtain an efficient addressing function.
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CHAPTER 3

RELAT10NAL DATA GRAPHS WITH STRONG tINIFORMITIES

3.■   Introduction

As is previousely expLained., in a relational d.ata graph f whlch

admits a root block, each block of f can be uniquely ind.exed. and

allocated. on a computer memory by relative block ad.d.ressing nethod.

But, if the function r (re R) is not sinple and. thus the ad.d.ressing

function which maps the ind.ex set to an add.ress set is prohi-bitely complex

to compute, the ad.vantages of the realization method mean litt1e practically.

In f with a root b1ock, the ttconnectivity relatj-onst' aJnong cells

of i.ts any two substructures are id.entically the sa.ne with each other.

Such uniformity, however, is not sufficient to obtain an efficient

ad.dressing function.

lfhen we consid.er the structures such as complete trees or arrays

which admit efficient and powerful ad.d.ressfng functions, we notice that

these structures are constructed. by repetitive patterns, and moreover

each of the substructures are also eomplete trees or arrays.

Such strong uniformity that the shape of each substructr:re j-s sa:ne .r

as that of the superstructure seems to be indispensabfe to d.evise a simple

ind.ex set and. an efficient ad.d.ressing function.

In this ehapter, we formulate relational data graphs with such

strong unifoi:nities. For the class of block partitionable relational-

d.ata graphs F's, two kinds of self-embedd.ings (mappings fron C into C)
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are defined., which embed t' itself into its substmcture. So each

of the substmctures shares the same shape as well as connectivity.

We clarify the stmctural properties of block partitionable

relational d.ata graphs with such self-embed.d.ings.

1.2 Self-embeddings of Relational Data Graphs

In this section, we provide some classes of block partitionable

relational d.ata graphs with self-embeddings O. By e, tr itself is

embed.d.ed. into its substrLrcture Fsub, so every operation on tr is also

applieable recursively to trurb. Two kind.s of self-embed-d.abilities

are prowided. and some of their properties are stud.ied-. Here the property

rr0"-redrrnd.ancyil is introduced, which is not discussed. in the functional

model (aata graph).

Definition 5.I Self-enbeddine of a bprdg ['' = (C' R) is a total

injection (one-to-one into) O: C ----> Cr satisfyi-ng the condition that

for an arbitrary c€C and. r€Rr

cr * il' :=t (cr)ee(co)r.

lP  is said to be unifoェ.11lv se■ f… e面beddab■ e if there is a  lb。 }( B「

such that for a■■  c(C  there is a se■ f-9mbedding  ec  Of l「   with  b。 Oc

= c,    Such  bO  iS Cal■ed a base cel■ of 
『

.

' cr * I e> r€Rr
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Exarnple J.I Fig.2.5 given in Example 2.6 is a uniforrnly self-

embeddable rdg. Tig.3,2 is also an example of a uniformly sel-f-embed.d.ab1e

ru6.

^ /- \ -.Proof. (1) That FLg.2.5 is uniforrnly self-embeddable is proved

as foll-ows. Since Fig.2.5 j-s isomorphic to Fig.J.I, we d.o on fig,1.1.

' ) (mrneNutO]), Or- -r specified as follows is a self--t'or cerl. \mrn/ \mrn€NU(uj/, \,,,r1rl

embedd,ing of F.

o(r,rr) = {((r,i), (i+m,i+")) li,i . N utoi}.

To show this, note that for mrn)O, (tr1)a + p and ((i,i)a)e =

l(i*r,i),(i,i+I)Je = t(i-+m+l,i+r),(i+m,j+n+I)| (e1,n,rr) is brieflv written

as O), while ((l,j)e)a = (i+mrj+n)a = {(i+m+1ri+r),(i+m,j+n+1)},

so ((i,j)a)e = ((t,i)e)".

For i,i2L, (t,j)o = f (i.-r,i),(i,j-l)], so ((i,i)l)e =

i(i+*-r,i+r),(i+m,j+n-r)) and ((i,i)o)u = (i+*,j+n)b = f (i-+m+l,i+n),

(i+*,;+n-r) ], so ((i,i)u)e = ((1,i)e)1.

Especially, (0,i)l = {(0, j-r)i G>t), so ((0,i)l)e = {(', j+r,-l)i,

while, ((0, j)e)r = (m, j+n)b = {(m-1, j+r), (m, j+n-l)} (n)t),

{ (0,;+n-r)} (m = o)

so, ((o,j)u)e g ((o,j)e)r. sinilarly, ((i,o)l)e g((i,o)0)u (i >o).

Thus for all ce11 (r,r) (rnrne tlu{o}), O(rnrrr) given as above is a

self-embedding of lP, Hence tr is uniformly self-embeddable,

(2) Next, we prove the uniforrnly self-enbedd,ability ot Fi.,e.3.2.

We prove on Fig.J,J (where e denotes a null string) which is isomorphic

to Fig.J.2.
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Figure 3.1. An rd.g isomorphie to Fig.2.!
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bb

Figure 3.2. A uniformly self-embeddabLe rdg
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First, for lk(C - 1キ l, let

til = {(*, k)} | <', [oo") | 'e c - {*}],

here [<0n denotes the concatenation of strings [c, O, [1.

-1 'l
e; i-s a self-embedding of Tig.J.j. We prove this fact. First, g;

is obviously total injection, and

(*")ei ={r}r* = {ncoi, (*el)u. = ka = {ro, u1}, so (*")eig1*e})".

(na)錢 =Im。 ,nl}4=lk010,kOnl},(m4)a=(kOn)a=lkmo,kOn■ },SO

6a)咀 =(m《 )a.

And(ab)《 =Iキ〕嘘=lkl,(t4)b=IkO〕b=lkl,SO(ε b)《 =に 4)b・

((mO)b)4=in〕 唯=lkOnl,((no)4)b=(km。 )b={kOnl,henCe((nO)b)嘘

=((nO)4)be  Sini.arly for口 1(C_1栄 },((ml)b)唯 =((n.)唯 )b.

(価6>)唯 =神 → 《 =lkOn.l,(価 の
強
>=は 師 0× =lk∝■},SO that

((nO)c)ql = ((・0)ql)c.    Sinilarly for  lnl e C - 1■ , E, 0, ユ
l,

((n■ )c)唯
 = ((m.)4)C・

In ■ike mamer, it is proved that

く=|く姜,k〉 luIくn,klr)ln(C-1キ〕I

■s also a se■ f―embedding.

For  ■, ■et  Oキ = ■c (obviously a gelf_embedding).

Thu6 Fig.う 。う (■ g.う :2)is a血 form■y se■ f― embeddab■ e rdgo        Qθ E.D.

In Fie.1.2, the nexb functions,
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bbbb

Figure 3.3. An rdg lsomorphic to Fig.7
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{{0, 1), 1r, 6), <2, rz>, <1, ■う),… …̈ }

l<0, 1), (1, ?), (2, r4), (1, r5>, ,...,,|

are both self-ernbed.d.ings ,r,

Same prcedures as accessing, starting from base
't

applied recursively to accessing cells B0; anC

starts from cell 3,

一一
　

　

　

　

〓

■

う

　

２

う

０

　

　

　

０

ce■1  0  ёan be a■ so

BO:, in fact the access

From the above exanple,,when F is

c 6 C, more than one 0C may exist.

is urriquely deterrnined for each c € C.

unifoコ 11ly se■ f_embeddable, for each

But in the functional case,  Oc

Intuitively, one can irnagj-ne a sel-f-embedd.ing as taking a copy of

f and laying it over a second copy so that every node and edge of the

first copy covers a comesponding element of the second. This is reflected

in the assertion that cy f I implies (cr)O g(c0)r. For example in

Fig,J,2, however, if 01 is chosen, many cel1s such as 7,i.4, I5 and

links such as Q,2, It>, <tr 7> fail to be covered. by the first copy.

Next, we wiLl specify sueh uneovered cells and lj,nks,

Definiti on ぅ.2.

a base cell of 
『

.

こGヽ
11も。)(bO°C)こ

  and

Each ce■■ in  C。
  

― CO is ca■ ■ea a  0
C           ~C

Let f be uniformly self-embeddable and. bO be

For the self-ernbedd.ing ec specified, let tU^ =

for each r eR, 1et r€" = {("r.t", "20") l{"r, Jr) . "}.

‐ 44 ‐
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t,2lin L/_ (=lce - =0") ir called a 
-0"r€ti c

Now, by a straightforward induction,

inDefinition3.lfrom reR to Lef.
can be obtained.

Theorem J,1. If a bprdg

the skeleton stnrcture h(f) has

-redundant 1ink.

lre can extend the condition

Then the following theorsn

t - ^\= (C, R) is uniformly self-embeddable,Ｐ

　
　
　
ａ

Proof, Since [' is r.rniformly self-embeddabler for any c € Ct

there exists {bO} € E[, such that for all c € C, there is a seff-ernbedding

O" of tr with 
"00" = ". CIi n(n) = (S, nt), for arbi.trary €', rt'

€ Vpr(Ot), we assume b6E' = b6n'. Then, from Proposition 2.1,2,

Er rf€VR(bo). tr?om this and Proposition 2.L0, bOE = bon holds, so

(IOE)V = (bon)y, Therefore from Theorem 2.L4, it is sufficient to say

that for any c( C, ("6)V = (q)y, Firsi from the cond:ition in'Defini',,ion

J.!, f or any c € c, both (toE)o"-c (boo")E = cE, a:ra (b'n)ecg (n06")n

= crl hold, bOE = b.l and the fr.urctionality of 0" results in that

(loE)e" = (bon)e. * P. so ct"ocn + f. Ilence, ("8)v = (cn)v and

bf = boe is a root of rt(n).

Exarnp:-e J.2, The

has a root 1. And. the

skeleton stmcture of

skeleton stnrcture of

Q.E,N.

Tig.2,5 afforded in Fig.2.6

Fig, J,2 has a r.oot 0 s .

Nexb strengthening Definition 1.It

in which both 0 -redundant cells and e^
CC

we give another

-redundant links

self-embedding

are precluded,
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Definiti on う.う。   Self― iSomorphic― embedding of a bprdg l「  = (C, R)

is a total injection  08 C― C, SatiSfying that for arbitrary c(C

and  r(R,

(i) I I (co)rgce 
-> 

cr * Q,

(ii) cr*g + (cr)e=(co)r.

r  is sa.d tO be un■ fo■ l11■y self―■somorphic― embeddable, if there ■s

a  lb。)( 1ぃ   SuCh that for all  c(C  there is a self― isomorphic― embedding

oc   f r  with  c。 °
c   C°

    Such  bo  is ca■■ed a base cell of r.

ExaIInp■ e う。う。 Fig。 2.3(B)iS a unifo■ l11ly self_isomorphic― embeddable

rag.    This fact is eas■ ■y ver■ fied by v■ sua■ inspection  of the graph.

For a uniforrnly self-isomorphic-enbed.dable rdg the nert theorem

folf ows iruned.iately.

Iheorern 1,2. A unj.fozrnly self-isornorphic-enbeddable rdg p = (C, n)

has a root block.

Proof. Since tr is uniformly self-isomorphic-embed.dab1e, there

exists a base cel-l- bO defined in Definition 1.1, For this bO and

arbitrary 6r rt€yR(bO), let bOE = b.rt. For an arbitrary c6C, by the

condition (ii) in Definition 1.1, (loB)e" = (b00")6 = cE, ana (lon)e" =

(loe")n = crl, Since c is arbitrary, E = q is obtained- This
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completes the proof, Q.E.D.

From now on, ■et a bprdg lP = (C, R) be a uniforlnly self― embeddable

rdg.    By Definition ぅ。1。 , there exists a base ce■ ■  bo  such that, for

all  c(C  there is a self― embedding  Oc  of l「   with  c。 Oc = c.

Now, we operate the skeleton mapping on lP  and then obtain its

ske■ eton structure  h(lr)= (S, R')。    Let  ec  be a se■ f―embedding of

lP  mentioned above, we constrtlct frOm  Oc, the function  08  on  S  accOrding

・   to the fo■ lowing equation.

eJ = {(.1", .z) l(cy c2). t"} (う 。1)

The totality of  Oc  on  C  8uarantees that  Ot  is a total function
C

on  So       lnvoking Equation (ぅ 。1), for any  d(C,

(do")e = (dE)o;
(う 。 2)

■s obta■ned.

Fig,2.う  (B)is a unifoェ .1ly self― isomorphic― embeddable rdg, but its

skeleton structure, depicted in Fig,2.4 (B)iS nOt uniformly self… isOmorphic―

embeddable nor uniform■ y se■ f_embeddable.

Our neⅨt interest is to investigate the necessary and sufficient cOndition

that the skeleton strtlcture of lP, h(lP)= (S, R') is unifOrm■ y se■ f_embeddable

and  b6 = bOC  SatiSfies the condition of un■ forlnly self― embeddability in

pefinition う.1, namely  b6  is a base cell of  h(l「 ).
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where こd(▽R(bO) and b。 こd

Proof.   d(dY  and

condition in Definition 3.1,

dOc(cこ
d.

Le..1la ぅ。ぅ For any d € C, and any c € C,

dOcC cこ
d,

= dγ .

b。こd = dγ   imp■y  dOc C (b。こd)Oc.    By the

(b。こd)Oc⊆ (b。Oc)こ
de   b。Oc=c,thereFore,

Q.E.De

lemma

bfO" = s.

う。4.   Let  Os

Then, for each

be a self-enbed.d.ing

-1c€su ,

Of l(「 )= (S, R:) obeying

s  = 08・

]Iere el comes from Equation (J,1).
c

Proof, For an arbitrary s1€ S and an arbitrary d e urrr-l, let

bo6u = dv. since oe = (toEu)e, s, = (boEd)" = (boe)Ee = liEj, so

that u'Ou = (U681)eu. Moreover, by the condition of nefinition 1.1,

the functionality of Ee and b60u = s, the next follows, (l6E;)e" =

1l5eu)E[ - "Ee. Therefore, 
"10" - r€i can be obtained, Oe the other

hand, from Lenrna 1.1, d0" a cEa, And from Equation (1.t), (&, ("6u)r)

€ e; holds. Hence, 
"rOJ = (ae)e; = (cfu)e = (ce)E; = uE;, Since,

Sl°
s = Sこと'  S10s

e■ement of  S, so

= "tOJ can be obtained, Here, "1 is an arbitrary

Os = 080

‐ 48 ‐
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The above lemma j.nsists that if the self-embed"dingu 0" of h(f)

obeying ble^ = s exist, they are a1l- obtainable from the self-embedding
US

O" (" e "rr-1) according to Equation (l.r).

Next, we provide a necessary and sufficient cond.ition to guarantee

that the skefeton stmcture of [', namely h(f) is uniformly self-embeddable

and bA is a base cel-f of h(f).

Theorem J.5. h(f ) = (S, n') i" a uniforrnly self-embedd.able a^nd

b.1, = b^e satisfies the condition of uniformly sel-f-embedd.ability if and only
UU

if for an arbitrary c € C, er is one-to-one,

Proof, First, 1et n(n) be uniforml-y self-embeddable and for

an arbitrary s € S, there exists a self'embedd.ing 0" satisfying b6O"

= s. Then, b}' lemma J.{, €" = 0J. So the one-to-oneness of O"
l

ensures that e; is one-to-one. Since c € su-' and s is arbitrary,

c i-s also arbitrary on C,

Conversely, for an arbitrary c € C, let e; be one-to-one. The

botality of Ol is assured, Now for any s i S and any rr € Rr,-c
let srt + fl, then for an arbitrary d. e su-1 , dr * p. Since [' is

uniformly self-embed.dable, from the condition in Definition 1.I,

(dr)ecg (ae")r e ((do")=)v. Hence, ((ar)e")u = ((ao")r)e.

Whi1e, from Equation (1,2), ((ar)o^)" = ((ar)e)e: = ((ae)r')e' ='c'c"''c
(d,r')O'= (sr')O'. and ((ae )")e = ((aO )e)r' = ((a,)er)rr = (s0')r'.

c c, c. .. c. \\uolvc/r - \ c,

Hence, (":')0; = (soi)rr is obtained. Now, it is shown that 0;

satisfies the cond-ition in Definition 3.1.

Therefore- h(f) is unifonnly self-embedd.able and since br.$- = c,rr^v5v-LvAv'0-c-,
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Equati.on (l.Z) assuxes btO;

0n the presenring of

unfur the skeleton napping

1,5 also holds.

= s. This completes the proof. Q.E.D.

the uniformly self-isomorphic-embed.dability

h, we can immediately conclude that Theorem

1.1 Further Characterizatj.on of Uniforml-y Self-Isomorphic-Embeddability

It is clear that a more simple addressi.ng function can be employed

to store a uniforrnly self-isomorphj-c-embeddable relational data graph than

uniformly self-embed.dable one, since it has no redundant lirrks or redundant

cells and is more homogeneously eonstmcted..

In this section, taking notice of this usefulness underlying a

uniforrnly sel-f-isomorphic-embed.dability, we give further characterizations

of this strongest uniforrnity, The main result is obtained. which states

LhaI a unifozmly self-isornorphic-embed"d.able relational data graph is nainly

composed of complete trees. The lerunas and the theorern obtained in this

section will contribute the proof of Theoren 4.1 in the next chapter.

Throughout this section, we assume that a bprd.g 6' = (C, n) is

uniforrnly self-isomorphic-embeddable with a base cel1 cO.

Lemma J,6. For each a e V"(co)AR and each c€Cr #(ca) = f ("0").

Proof. Since tr is uni.formly self-isomorphie-embeddable, there

exists a self-isomorphic-embedding 0" of tr with 
"00" = c, for each

c eC. c.a t I arrrd lefinition 3.1-(ii) irnply (coa)e. = (c00")a = c&.

-50-



The totality and one-to-oneness of O" yield fr(ca) = #Go"). e.E.D.

Lenma i.T. (r) For arbitrary a€ VR(co)nR, T1e.1.4(a) is a

forbid.den subgraph of [',

(z) For arbitrary a e V"(cO)n n and b € R, Ti.e.1.4(l) is a forbidden

subgraph of tr.

Proof, Assunring that tr contains Fig,l.{(A) or Fig.1.4(B) as a

subgraph, we will show contradictions.

(f) Since tr is uniforrnly self-isomorphic-embed.dab1e, there exists

self-isomorphic-enbedding ,", such that "0n., = c2. c'u * O and

Definition 1.1-(ii) yi.eld 
"2u = (cOO"^)a = (coa)e.^. d ecra and the

""2 " "2
one-to-oneness of n., guarantee

the existence of e e JOa such that

e0^ = d, !'Ihi1e, from the strongc
1̂

connectivity of F, there exists

Ee 7"(e) such that co e ef,.

Moreover (uE)e^ - ("0^ )E = dE
"2 "2

and (eE)e^ ? cnO^ = c, result in"2 ""2
d\) c* From Theorem J.2, {"OJ

is a root b1ock, so by Lemma'2.),

uE = LC. Or the other hand', since
Figure 3.5(A) An explanatory figure

Fj.e.1.+(e) is supposed to be contained of the proof of Lemma 3.7(f)
in [' as a subgraph, (c, cr) e aE and "I f .2, so that af. + tr.

This is contradiction.

(Z) For cell crr there exists a self-isomorphi-c-embedding 0"_ ("OUo_= 
"r),-1 L

′~

メー
こ

ヽ

′

＼
、、
‐ノ
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ia)

^ l.t''l-gure 5. + .

(e)

of a uniformlY self-isomorPhic-Forbidd.en subgraPhs

enbed.d.able rdg

-52-



As in the proof of Part(■ )the

ёxistence of  e(coa  such that

eOc.   d  is ensuredo    Moreover,

(eOc.)b ≠ /  since  db = (eOcl)b

and  db ≠ φo    HenCe  eb ≠ ¢  is

obtained from Definition う。う…(i).

TheFefore, app■ ying Definition ぅ。う

―(ii), we can obtain  (eb)Ocl =

(eOc.)b = db)Cl, S°  that  (eb)0。
.

'Cl   CO°c.     lhe 
°ne…to… oneness

of  Oc.  ensures  eb)c。 , whence

CO( °
Oab.    On the other hand,

〈Cl' C2〉 (ab  and  Cl≠ C2' S° that

ab ≠ ■
c・
    ThiS is contradiction.

Part(■ )and Part(2)comp■ete the

′

―
、

Figure 3.5(B) An

of the proof of

proof of the lemma.

＼
＼ヽ
、ノ

）

exp■anatory figure

Lemma 3.7(2)

Theorem う.8。   For

Ca  is defined as  Ca
C                  C

, ta/C:}) iS depiCted

arbitrary a €VR(oO)n R,

= U (".i), ttre subgraph
i>o -/rrr r L6. /, . v.

Q.E.D。

#(coa)=k(kン 2)。

P  specified by

ｔｅ

　

　

ｆ

ｌ

　
　
　
０

ａ
　
ｃ

ｆ

　

Ｃ

Ｉ

　

′

、

Proofo By Le■lmaう。6, #(daり =

From this and Lemma う。7-(■ )(Fig。 う。4(A)

thё theoren immediately fo■■ows.

Theorem J,B says that a

6' = (C, n) is mainly composed

k is obtained for each

is a forbid-den subgraph

ｄ

　

　

ｆＯ

`Ca。C

lP),

Q.E.D。

unifornly self-isomorphic-embeddable rdg

of tree-like stzuctures (for example, see

′ ⌒ ‐
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Figure 3.6.   The subgraph specified (C卜 ta/C:D
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う。4

Fig。 2.う (B)or Fig.ぅ .7)When there exists  a(R  such that 力「(Coa)>2.

The reason why we say 'itree_■ ■ker comes frOm the fact that the class Of

rag's characterized by Theorem う。8 contains such graphs that possess links

which re■ ate each ce■l to its brother cel■ s (say, ■inkで  in Fig.う 。7).

Moreover, Lemrna ぅ。7-(2)implies that each link 7「 (R which emanates

frOn ce■■  c(C  and is incident into its father cell is a function and

is never incident into the other ce■ ls (see ■ink l酔  in Fig。 う。7).    In

Theorem う.8 we have assumed  k>2, for in the case of  k = 1, (C:,{a/C:})

may be a ring structure as is depicted in Fig。 う。8(B).

Concl-usion

In this chapter, for the class of bl-ock partitionable relationaL

data graphs tr=(C, R), two kind.s of self-embeddabilities are fozmulated.

These uniforrni.ties, especially uniforrnly self-isomorphic-enbed.dability,

might be essential in establishing an efficient addressing function,

tr'or tr with these uniformiti.es, we clarify the existence of root

blocks in [' or h(f). Subsequently, it is shown that the two kinds

of self-embed.d.abilities are both preserved under the skeleton mapping h

^:if every er on Ce constructed from each kind of self-embed.ding 0"

of tr =""pl"ti.re1y is one-to-onel Lastly, concentrating on the structural

advantages of a uniformly self-isomorphic-embed.d.abLe relational data graph

F, we study i'ts properties in d.etail-. These studies result in that a

relational data graph with the uniformity is mainly composed of conplete

trees except a cerbain case.
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Figure 3.7. Another example of a uniformly self-isomorphic-

ernbed.d.able rdg

-56-



O      α…

(A)

(B)

^6Figure 3.U. The subgraph

case of l{ =

specified

l-

57-

by  (C:, la/c:}) in the



Now we summarize schenatically in Fig.J,9(A), the hierarchy of

the uniforrnities of relational data graphs hitherto developed,

Fie.j.9(l) is the hierarchy restricted to the functional case (aata graph).

We supply in Fig.j.IO, an example of [' whose skeleton stmcture has a

root, but tr itself has no root blocks nor be uniforrnly self-embed.d.ab1e.

As is stated. previously,. a uniformly self-isomorphic-embeddable

relational data graph d.oes enjoy advantageous stn:.cture for constmcting

ad.d.ressing functions. But the reason that we say rrad.varrtageousrf is based

on much intuitive ground, and in fact for In with the unifornrity, we did

not discuss generally its actual addressing functions.

ft seems a much difficult task to treat, addressing functions from

a general point of view. In fact, the fonn of an add.ressing function

is highly contextual; it is heavi]y d-epend.ent on the shape of the individual

data stmctures.

In the next chapter, with the theoretical basis developed thus far,

we define new data stnrctures and const:ruct their addressinE functions

from some cri-teria.
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rdg (Fig.2.1)

rdg whose skeleton stmcture
has a root (Fig,r.lO)

blocks
Fig.Z.J A

uθ s.e. rdg

(Fig.2.5
Fig.2。 7
igeう。1)

Fig`う。2,Fig.う 。う

u.s。 ■.e. rdg
(■g.2.う

1塾 :ぅ。7)

rdg = bPrd.g

rdg with roots

u, s. e. rdg

u.s.i.e. rdg

‐
　
い
０
　
‐

(A)

Figure う。9。  (A)The hierarchy of the uniformities of

(r)

hierarchy restricted to the functional caserdcfq**o " (5/ ',]ne
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CHAPTER 4

TREE―ARRAY COMPOSITE STRUCTIIRES AND THEIR ADDRESSING FUNCT10NS

4.■   Introduction

Fevr classes of data stn:ctures are as well und.erstood or as widely

used as arr.ays and./or trees. The most high 1eve1 programming languages

offer some array processing facilities; indeed, certain languages such

as Fortran and APL have been designed wj-th anays as the basic data

strti.ctures. While, in some high 1eve1 languages sueh as PL/T and C0BOL

we caJr use trees for representi-ng the hierarchical strrrctures, which are

often introduced on data. These structures seems to be useful and

powerful in the sense that they are often required for the efficient

solutions of most problems with their associated d.ata, and what is more,

the specifications of data elements, i.e. indexing, are d-one in quite

simple ways.

As for the realizati.on method

most familiar d.ata stmctures usually

We can find much research i-n concerrr

(for example, F+l , lg), lzz),122.28)

(for a variety of efficiency-related.

method.

of these structures, arrays are the

implemented. by ad.d.ressing functions.

with ad.d.ressi-ng functions of arrays

). Trees except conplete ones are

reason) seldom stored by d-irect-access

As is nentioned previously, the constnrction of an addressing function

is highly contextual, so it seems that practically significant results

cannot be expected, if one treats the constmction process from a general

point of view.
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In this chapter, rather than continue the abstract and general

treatment of data stnrctures which may ad.mit ad.d.ressing functions, we

shall give investigations of specific family of directly bccessible data

stmctures, with the theoretical basis developed in the previous two

chapters.

We present a new class f of d.ata structures allocated by addressing

functions. | = (Cr F) 6 f, which has a eomposi-te structures of trees

and, arrays (we call it a TA-stn:cture), can be naturally introduced and

d.efined. in terms of a d-dimensional array Aa and uniformly self-isomorphic

-ernbeddability. We show that a TA-stmcture I is uniquely constrrrcted

from Aa for the specified rrdimensionalitytr of f. Followingly we

specify the various stmctures rrsliced. outrr from TA-stmcture l, and for

those stmctures we describe the several indexing methods which reflect both

the string type (tree indexing) and integer tuple type (array indexing)

indices, so that sharing their own characteristics and ad.vantages.

Moreover we establish a few kinds of addressing functions for the index

set specified, according to the case that rrtree-orj-ented.rr processing is

mainly required and rrarray-orientedrf processing is mainly required., and.

according to the case that access time is primary prefered and. memory

utilization j-s primary prefered.

4,2 TA-stmctures

In this section, firstly we defj.ne graphically the d-dimensional

array Aur and then define a TA-stnrcture | = (C, F) in terrns of a

uniformly self-isomorphic-embed.d.ab1e relational data graph tr whose
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skeleton stmcture h(f) is Ad, Secondly, we prove that a TA-stmcture

f is uniquely constructed from Ad for the speclfi-ed rrclimensionality'l
/\

of f. Subsequently, a TA-stmcture r\mtn/ rtsliced outfr from r is
/\

specified r. and. then a tree ft and an array f, sliced out from f\mtn/

are presented.

Definition 4.1

Ad=(S,M),Where

(i)   S  is the set of ce■ ■s

the set of pos■ tive ■ntegers and

integers.

(■i)  M = GsU,p' Where both

of  d  transforlnations of  Se

The d.-d.imensional- array is the ordered. pair

specified. as

Nd is the

S = Nd, where N is

set of d-tuples of positive

G and
S

Let  Nd

G-^ are the following sets

denote the set N^ = t1r...rd).

For each s =

(sbi ) j

Gs = ibil i(Nd}

Gp=141i(Nal

くSl,。・0,Sd〉 eS,

s. + I (i = i)

(Sイ1)j =

(successor links)

(predecessor links)

(j

(j

S. - 1
0

S.
」

S

、

―

ゝ

―

―

ノ

・■
　
　
　
　
　
・■

(si = 1)

S.
3

(j ≠ i) ,

(si ≠ ■)
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Examp■ e 4.■   Fig.4.l iS the two dimensional array  A2' Where

Cs=la,b〕 ,鑢d Gp=1・
'ノ

;。

In order to be able tO cOmpute the address assigned to each cel■

s(S, it is sufficient that  Ad  has the structure detemined by the

successor links  Gpe    But' f° r example, ■n Fig。 4。 1, the transition

from ce■1  くi, j〉  tO  く■ - 1, j〉  Or 〈i, j ― ■〉 cannot be accomp■ished

if  Ad  has n°  °ther links than  Gs,    Gp  iS the set of links prov■ ded

for the ease of transitions along arbitrary direction.

It shou■d be a■ so noted that  Ad  is infinite along each axis.

Definition 4.2 A (T, A)-stzucture is a uniforrnly self-isomorgihic

-embed.dable rdg 6' = (C, n) subjecting to the following conditions.

c^ is a base cel1 of tr.
U

(i) The skeleton stmcture h(r) is the d-dimensional array Ad =

(s, u) (u = c"UcD). Especially, for cell lL = (1r...11)6S,

--1Ite = "0.
(ii) At most one element in G^K-1 is a relation whi.ch is not a

s

ftrnction. The elements in G K -1 are al-l- functions,p

Note that e and K come from nefinition 2.8.

C■ear■y, a〈 T, A〉―struCture lP  is the d_dimensiona■  array if in

(■ 1)a■■ e■ ements itt  Gs´ ヽ
~・

  are functional relations.

If a re■ati on  r(G κ
~・

⊆ R  eⅨists which is not a function, we shall
S

denote  rべ (F by  "al'  on the sequel.
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Figure 4.1. The two d.imensional array
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When .S(c,^,(a,o-1)) = kr we cal-l (d, k) the dime4signality of ['.

According to th:is forrnat, the dimensionality of the d.-dimensional array

Aa is represented as (d, 1) . It should be noted, that n = (G"n -t) U
1(c n -')-D

Example {.2. The (T, A)-stmcture of dimensionality ((2, 2> is

shown ln FJ-g.Q.2.

Definition Q.1, Let tr = (C, R) be the (T, A)-structure of

d.imensionality (d, k) and "O be the base cel-l of ['. For each

c€ Cr we have #("(uK-l)) = t from Lemma 3,6, Let us denote the cells
u , --fr t.C .C .c )in c(ah--) as c(ay\--) = lu;r qr...r{_rl, By I'firnctionizingrr

the rel-ation al\-r as "ri = d: (O<i<k - 1), we can obtain a functional

graph I = (C, f') where each element in F is a function; the functionality

of each element other than a, (O< i< k - 1) is guaranteed .by Definition

4,2-(j.1-). It i-s obvious that I is uniquely specified for the gi-ven

f. I i.s called the TA-stmcture induced from F and "O is also

cal1ed a base cefl of I. (d, k) i-s again called the @nsi-enalilX

of f.

According to the above functionizing operation, the relation a K-l

is partitioned into the following k firnctions, namely, t K-l =

rOU.lU...UL_f. Let a bed.efj-ned.as t=ltortl ,..., %-f]t
then r = (R - l"r.-ti)u*
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Example 4。 う。   We ShOW in Fig.4。 う the TA―stmcture of dimen_

sionality 《2, う》 .

The uniforrnly self-isomorph:ic-embeddability of any (T, A)-structure

insures the next ProPosition.

Proposition !.I. Any TA-stmcture is uniforrnly self-isomrphic

-embedd.able.

In the skeleton mapping h - (e, K) specified. in Definition 2.8,

e is generally a many-to-one rnapping, so for a given Fr which is the

skeleton stmcture of some tr, the rd.g which admits Ft as its skeleton

stmcture carrnot be uniquely specified. in general. We will prove

however t'hat a TA-st:ructure f is unj-quely constmcted from Oa (= ir(n) )

for the given d.imensionality of f, so that the TA-st:ructure- f induced

from f is also dete:rnined uniquely,

In the following, 1et k be restrj.cted to k> 2. In the

d.-d.imensional array au = (s, u) (u = c"UGo), for s = (srr srroo.t "a)
( S, 1et "' = (s2, s1t,,.t "d.). Without loss of generalitx, we can let bl

€.G^ as * (rn-l is the relation which is not a function as is previously

mentioned). /t € Go is especially denoted. by rr.

Constnrction of a TA-stmcture f' = (C, F) from the

d-dinensional array Ad = (S. M)

Let "O be a base cel-1 of f and (c.(a K-1)) = k.
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(2) Constmction of  a  and  (Gs - lal)K~l     For each  (こ , s')

( C  and each  ai〔 a′

(1) Constmction of  C  For each  s(S, ■et

u"-1 = i(E, s') | E€asl-]J

c = se-l = [(6, "') I E<**, sesj

(こ , s')ai T (こ ai, s')

For each  (こ , s')(C  and each  bj(Gs - lal,

(こ , st)(bj K~・ )= (こ , Sl)

Here,sl=(s2'・ °°
'Sj十

■,.… ,Sd).

(こ ,st)(ン jК
~1)=(こ

,sl)

(4。 1)

(4.2)

(4.う )

(4。 4)

3) Constmction of .Gon-t Foreach (E, "')€C - l(", s')lses]
(e is the empty 

"t"irrg) ,

(E, "')(ftK-') = (E', s') (4.5)

Here,  こ: =「m_■ , ・Ihen  lこ | =m  (こ m_l is the (m―
■)―preFix of  こ).

For each   ■
、 〔

Gp ~ 17ア l and each  (こ , sl)( C ― t(e, S') l s(S},

(4。 6)
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In Equation(4。 6), 電 =(S2'… °
'Sj…

1,… 。,sd)

Theoren 4。 2.   TA― structure is un■ quely deterrnined for the specified

dimensionality 《d, k》  Of 「 .

Proofo   The uniqueness of  C       Let  r = (c, R)be a  くT, A)―

structure of dimensionality ≪d, k》  , then  h(P)=(S, M) is the d¨

dimensional array  Ad.    Let  S。
 =Is(S IS. = ■l  and  Pl。  = Im。 = m/sO I

m(M}, then the subgraph  A& = (S。 , MO) Of  Ad  is the  (d ― ■)…dimenslona■

array such that  a/S。 ¢M。 .     Therefore all the relations ■n M。 べ l =

Im K~・ /Soε
1̈ 1m(M l are reStricted to functiOnal relations, so that

h…
1(Aょ

)= (SOC~1, M。 卜こ
-1) iS isOmorphic to  A&.    HenCe, for each  s(S。

,

sc―
■
  is a singleton set, so  sc~・   Can be denoted by  s'(st = (s2'・・ °

' Sd)

for s 〓〈■, s2'°・・
' Sd〉

(S).

Now ■et  C。
 = Soc~・

 = ISt l S(Sol,  σ:,= 
卜」。

(S'(aК
~・

)i) for

each  s'(C。 , then from Theorem う。8 the subgraph of lP  specified by

(C:,,  laK―・ /C:.}) iS iSOmorphic to Figeう 。6。     First we show  C = sUcoc:・ .

C⊇
sIご:。

C:t iS ObVious, and we prove  c estsoC:i fOr each  c C Cθ

Since  cc(S  and  h(lP) is an array, there ex■ sts  s eSo  and  iン 0

such that  cc・ = sa・ .     s = siC (S'(C。 ) and (2。 4)ensures  cc = (s'c)a・

= (s'(aK~・ )i)c, then  cγ  = (s'(aК
~1)・

)γ  f0110WS fron the one二to_oneness
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Of  u  (mappings  γ  and  u  were defined in Definition 2.6).

Invoking that singleton set  (S:} iS a b10Ck of l「 ,  (s'(ak…
1)i)γ

s'(aン、
~1)i  is Obtained.    Therefore  c(st(aК ~1)i  ald  c c tJ

stc C。

are cOncluded.    Hence,  C =  ヒノ
、 c:1.

s:〔 C。

Now let  aκ
~・

  be functionized according to Definition 4。 う

(a=Ia。 ,a.,・ …'%―■})・
  Since(C:,,Ia K~・/C:tl)iS a k_ary

comp■ ete tree by Theorem ぅ。8, for arbitrary  c〔 C:l We Can denOte the

path from  si  to c  by a string こ(ォ .    USing this  こ  and  s',

c ctt be denoted by に,s'). Hence, C=1に ,S:)に 〔が,s'(COle

Then,  st(C。⊆ C  is neW■ y denoted as  (e, st).    Here we make sure

that two distinct symbo■ s  (こ , sl),(η , Sと)Cs卜
」coC:l neVer denote

the same cell.    For arbitrary  (e, sl) and  (e, sと )(Co  (sI ≠ Sと)'

Cie,sl)「)Cie,sと)= φ  f011° WS from  Lemma う,7-(1).    Hence two ce■ ■s

・・　
♂
ｓ

c, こ(C  denoted by  (こ , sl) and  (η , sと )  (SI ≠

respective■ y are two distinct cells.    Therefore

specified by  (4.2).

Sと
  

r゙  こ ≠η)

cel■  set  C  is

The uniqueness of a and. (c
s―

 ∫a〕 )レベ
~1

That each a. ( a
L

is nrriquely d.eterrnined and given bV Q.l) i" obvious from the uniqueness

-'1of aK-* guarantecd. by Theorem J,B. We now prove the uniqueness

of ojn-t. For arbitrary (8, s') e c, (8, s')r = (lEl+ 1, s')

from ( l+ .1) .
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Here in genera■ , when  s = くsl, s2'° °θ
' Sd〉

 , 〈i, S') =〈 i, S2'・・・
' Sd〉

●

Since  h(『 ) is an array,  ((こ , s')E)bj = く|こ |+ 1, Si〉 from DefinitiOn 4.1。

Whi■e  r  is unifOun■ y se■ f_isomorphic―embeddab■ e by Proposition 4.1,

Theorem ぅ.2 assures that base ce■ ■  co  of 
「

  iS a root of  F.

lherefore by Lemma 2.5  each  bjK…
1(7R(CO) is tota■

, so that

bjいt“・ (7R((こ
' S')).    Then  ((こ

, s')8)bj = ((こ , s')(bj κ
~・

))c  applying

(2.う ),henceに ,s')鰤 jК
~1)(く

|こ |十 ■,SI〉 u…・ =I缶 ,叫)|口 |=|こ |}・

Since r is unifOEmlly self_isolnoitthic― embeddab■ e, (こ , st)(bjべ
…
・ )=

(こ , SI), SO  bjK~・   iS determined uniquely as (4′ 4)′

The un■ queness Of  Gp`三 二l        Since  P  adm直ts root  c。 , for arbitrary

2《 j《 d, (bjルヽ
~1)(ル

(jlぺ

~・

)= lc ( )も (Gp) iS °btained from IJemIIla 2.4,

so that  (こ , sI)( ルち
К

~・

)= (こ
' Sl) fo■

■OWS・     Hence,  ノ
も
К

~・
  iS determined

llnique■y as(4:6). 伽注ng tO(aκ
~・

)(■ だ・ )=■c,there e五 sts,for

each c(C,  d(c(aκ
~1) such that  a(lP K「

・ )・ = C.    In fact however,

we cm asserL tlat for each c'(c(aκ
¨
・ ), C'I「 =c is Obtained,invoking

the uniformly self― enbeddabi■ ity of  P  and its strong connecteaness.

The detai■ ed proof of this assertion ■s om■ ttede    This assertion resu■ ts

in that fOr each  (こ , sl)( C - 1(e, St)ISCS},  Trぃ (l  is determined

aS (4.5).                                                            Q・ E.D.

Definition 4.4   Let  P = (C, P) be the TA― structure of dimensiona■ ity

≪ d, k≫ 。    We define the TA― structure P(m,m)=(c(m,m), F(m,n))4

L r inrplies (npr..., rd.)
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sliced out from「 by(am,b:2,… .,bld)as f0110ws.5

c(m,n)=ic。こb:2.… bld lこ 〔辞,o《 iく m,Oく jt《 五
t),

Each component of  (am, b12,.。 。, bld) Specifies cross― seCtiOn.

(m,n)= (m, n2'° °°
' nd) iS Called the dimension of 「

(m,ln)。    《d, k》 is

a■ so the dimensionalitv of 
「

(・ ,n).

Exalnple 4.4   We show ■n Fig。 4。 4 the TA-3truCture sliced out from

the TA― structure of dimensionality 《2, う)〉  (giVen in Fig。 4.う )by  (ar, b:)。

Definition 4.5   Let  P(m,n) be the TA―stmcture s■ iced out by

(an,b:2,… .,bld)frOm the TA― structure of dimensionalitv《 d,k》・

From  P(m,n),

(■ )   The tree  rt = (Ct, Ft) s■ iCed out by  (η・am, b:ら ,。 .。 , bla)

(η (a計 , lη l+ m.《 m, ntく nt) iS defined as f01lows.

Ct=iConこb:ら・…blと
|こ 〔F,O《 iく mリ

Ft = tf/Ct l f〔 F〕

In(η・an:,b:ら ,¨ 。,b:よ ),(η ,b:ら ,… .,bl&)affOrds the root of rt,

5 Eor‐
simp■ icity, we denote as  b12  in stead of  (b2い 。・ )n2

F鰤 '→ =lf/C鰤 'n)lf(珂・
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Figure 4.4.   The TA― structllre s■ iced out from Fig.4。 3 by (a2, b:)
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and  am'  specifies the crOss_seCtiOn.

(2)The army Pa=(Ca'L)。 liCed out by(η 。こ,b:|+p2,… 。,b鱗+pd)

(η , こ(aき , lη l十 1こ |く m, nt+ptく nt) is defined as f01lows.

Ca=IConこ
ib::十

j2。

…….b::+jd Oく iく にtO《 jtく pt},

Fa=if/Cal f(FI.

Examp■ e 4.5。    From the TA… structure specified in Example 4.4,

(A)The tree  Pt  s■ iced Out by  (lcala。 , b2)

(B)The array  
「 a  SliCed out by  (lcala。 , b:+2)

are dep■cted in Fig。 4.5.

4,3. fndexing of TA-stzuctures

In fact, the index of a data ce1l is really an encod.ing of the

very path from the base celL to the sought ce1l the rea]j-zation scheme

we are concentrating renders unnecessaqr to foIlow.

llhile, since a TA-stmcture I. = (C, I) is composed. of both

trees and. arrays, structural aspects of trees and arrays coexist in I'.

So an ind.ex method of I can be naturally derived which reflects both

string type (characteristic to trees) and integer tuple type (character-

istic to arrays) indices.

. This section is devoted. to the indexing of a TA-stmcture f

which assj-gns to each cell c € C its relative position from base cel-l
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Figure 4. l. (a)

(e)

(e)

sliced out from Fig.l+. )+

sliced out from Fig.l+ . )r

br (laarao, be)

- t^ ,o+2rbY \faaaaor o,2 )

恥
　
　
恥

tree f,
T

array f-a
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cO. Moreover, for the several stmctures sliced out from TA-stmcture
f- -\I or Jr\r'rtLr", effective i-ndexing rnethod"s are provided., which present

progranmers much convienience in processing such rtlocal stn:cturesrt.

Let f = (C, F) be an arbitrary TA-stn:cture and- "0 be the

base cel1 of I. Although each ce1l c € C can be indexed by an arbitrary

sequence of atonric links 4"eVO(eO) such that "0(" = c, it shoul-d be

noted. that the following stmctural property of f may permit us to

specify the index of c uniquely,

Theorem 4.1. let f = (C, F) be an arbitrary TA-stnrcture.

Then for arbitrary bi and oj in (4"-{r})rc-1, brbj = rjor,

For arbitrary a. e a and arbi.trary oj j-n (c"- {r}) n-1, ribj = ojrr,

In Fig. 4.1 for example, c.a.barb2a, and cOa'arb2arb identify the

same cell and both are reduced to cnanuna..b3 applying the above theorem,vvlr

It is such decomposability of a path into the path in the tree involved

and that of the ayray that rnakes it possible to d.enote the index by the

followin fashion,

Definition [.6,

nality (d, k) and 
"O

I is,

= (c, r') be

base ceI1 of

i2r,.., ju)f 6 ear+, ir>r|.

TA-stmcture of di-mensio-

The index set I of

ｅ

　

　

　

●

ｈ

　

　

Ｆ

ｔＰ

　
　
　
ｅｈｔ

ｔｅ

　

　

ｅ

Ｌ

　

　

ｂ

r = t(E,
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The indeⅨing function  υ  : c ―
 I   is g■ ven as fo■ l ows.

For c=c。こb:2bクθ…θ・・b:d に(が ,j2)0),

J(") =(€, jr+!r......) ju+r) (4θ 7)

The ind.ex of c € C given in (4.7) i" an J.nteger tuple type index whose

first component J.s especially a string type index, Thus the conventional

indices of a tree (string type) and an array (integer tuple type) are

naturally exbended. and composed. in the index, This reflects the structural

property of a TA-st:rrcture I = (C, tr'). That is, for the comesponding

( T, A)-st:cucture F = (C, n), its skeleton stmcture h(f ) is an array A^

and one of whose successor l-inks expand.s into trees in f,

lefinition 4,7. let ,(*'t) be a TA-stn:cture uhich is sliced
r Tfi -n- -IL-rout by \?i*, b22r..... . , bad) from the TA-stmcture I of dimensionality

(d, k), and "O be the base cel1 of l. The i-ndex set ,(*'ar) of

',(trt) .: ^I lDt

,(*rt) = {(E , i2r,,..,., id) | E € am, 1< js-< nd+}J

The indexing runctiOn tメ ): C(m'n)→   I(m,n)  is the f。1lowing

one―to― one function.

For'c=oOこ b:2..¨ θθb:d にく認, 0《 j〆 n )

.,0 (") = (E, ir+rr...... rju+t2 (composite type of string
and integer tuple)
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DefinitiOn 4.8.   Let  P(m,m) be the TA―structure presented in

DefinitiOn 4.7.

(1)  For a tree  rt = (ct, Ft) sliced out from  
「

(m,ln) by

(η・ am,b:2,…
… … ,bld),itS index set is

rt=tElEea'i.

The indexj-ng function .,P t , Ct 
- 

ft i.s given as fol1ows,

For c=oonこ jb:2.… ….b:d(η ,こ (♂ ,日 |十 1こl(m, 0く j費くn2),

υ t(c) = こ (String type)         (4。 9)

(2)   FOr an array  Pa = (Ca' Fa)  sliced out from  
「

(n,ln) by

G・こ,b:う
+p2"…

…
nlよ

+p→
,its index set is

ヽ

Ｐ

Ｊ

ｄくく２１＋
受

ｐく
２

●■ど
゛

１１＋こが，■ど
ヽ

１＞
ｄ

●■
つ
こ

０■
１

●ユ／
ヽ

〓
ａ

Ｉ

1°

r C=COnこ
i.b'十

二
2.… ….bl&十

id  (η
,こ (♂ ,lη l+に |く m,

0く r電 十、くn9),

J ut") = (ia+l r....,., iu+1) (integer tuple type)

(4.10)

工t is noteworthy that aFter slicing out a tree  Pt  or an array  
「 a

from「 (m,m),its inde五 ng can be accomplished by string type(4.8)or

integer tuple type (4.10)index respective■y, being independent of the

composite type index(4.8).  Consequent■ y,when a proraIImer refers tO

The ind.exing functi on ,.! u r C, * J, is given as follows.
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a cell in rt or lr, he may concenfuate hj-s attention only on its
position i.n ft oT |rr without any care of its position in I'(trt).

4,4 Addressing trVnction of TA-st:ru.ctures

This section is devoted to the construction of ad.d.ressing functions

which rnap index sets of TA-stmctures and each of their loca1 st:lctures
(i.".rtrees or arrays sliced out) to an ad.dress set.

For an add.ressing fu.nction established,, some of the criteria for
assessing the quality of it nust be considered. At least, the next three

criteria should be markedly takenj-nto account.

(") Complexity of accessi-ng to a data ceLl : the computational complexity

of the ad.d-ressing functio" .4 .

(l) Efficiency of storage utilization : the extent to which ,4, stores

the set of d"ata cel1s c in contiguous memory block, a measure of the

size of rrgapstr.

(") cornplexity of traversal : For f . 6 F and qf , n)er, the difficulty

of computing the sequence

(rr(8, r')), (rrrr(E, n)), (rfzfr(E, ")), .........

First we constrtlct two kinds of Lt " for a rrfinite't TA-stmcture

f \r'rtrrl, taking account of criterion (a). One of thern facilitates the
l'- -\traversals in bach tree ft in |\r'rrurl. The other facil-itates the trav-

ersals in each aTr:ay I in I'(*'t) except along the "tree direction".a

3ut these ad.d.ressing functions can be obtained" at the cost of

-Bl



criterion (b) : many t'gapstt deteriorate the storage utilization.

Second we constmct another two kinds of ,4.'" inserting nrodifying

terms which compensate the gaps to the first two functj-ons. l,ast we

give l,t for the local stmctures slieed out from ,(*'a'').

In the begir:ning, we give a general definition of an addressing

function for an arbitrary data stmcture A which admits index set 16.

nefinition 4.9. l"t 4 le an arbitrary data st:r:cture which admits

,index set IA. An addressinE function of f is the next one-to-one

total function.

I
,/d" z t6 ------) N,

where N is a set of natural numbers, each of which denotes an address

of a cornputer memory (a rand.on access memory).

We now discuss addressing firnctions of TA-stmcture p(*'r').

For the sake of simplicity, the dimensionalily (d, k) of ,(t'rt) is

restricted to tr = 2. We shall have little trouble extending our results

to the case of d)r1.

Many computational procedures would call for repeated. traversal

along the specific directions (".g. trtree-directionrr or ttarray-directionstt)

of TA-stmctures. Sinee such traversal-oriented procedures are so conmont
/ .\

we now construct for f\mtn-r/ t"o kinds of. addressing functions by

which repeated traversal along the specific d.irection is faciLitated,
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くこ, j〉

Let ,,(*rt)

be an index

TA-structure of

arbitrary cell

dimensiOnality 《2,

in  P(m,n_1).

k) , and

= 2km_ 1.

ａ
　
　
　
額

ｅ

　

　

ｆ

ｂ

　
　
　
ｏ

lere'  ai. i2  
・・ a.

ary number  i.i2 ・・・ i2'

For instance, for P(2,2)

= alak_1 ... ak-1

《2,う》,

(ai.(
」

and

Of

Lr(<uouz,3)) = a■aOa2 +夕
;(う

 ― ・ )= l■  + 17ス 2 = 45,

l^(<uo^2, 1))=1+ 3(ufouz ― ■)= う + うX(■1 - 1)= うう。

It should be noted that the address of the base ce■ l  oo  is

\f <e, 1) ) =,4^((e, t) ) = 1 regardless of the dj.mensionality

and the dinension of 
「

(m,n_■ ).    Although  P(・ ,n_1) is

in the sense that one can al■ ocate  P(m,n_1) anywhere by

at an arbitrary address.    This relocatabi■ ity is eas■ ■y

adding メιt  or  ノιtt  the disp■
acement   address(c。 )… ■.

Example {,6. Address of each celI in TL1. .{ allocated by /Lr

or ,4-u is shown insid,e or outsid.e the cell in Tig.Q.6 respectively,

relocatable

rrerr6 "o

guaranteed by

χ t(〈
こ, j〉 ) = 平  +′ I(j - 1) (4。 11)

χ a(〈
こ, j〉 ) = j + n(alこ - 1) (4.12)

a) is the decimal representation of k-

′I=孔

dimensi onality
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Figure l+.5. Allocation of Fig.l+.\ uy 4" (inside the cell-s)

and A^ (outside the cel1s)
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Tc II1 ,4f is chosen, a memor1r block is assigned to each tree T.,

/* - r\in p\rrrlrr-rl ond to each ce1l set on the same level- in T* r & consecuti-ve

storage area is afford.ed.. If ,4, is chosen, a consecutive storage

area is afford.ed. to each "O-r*ru",*

It is noteworthy that ,lf and tru are based on storage mapping

functions of an array of d.imension (mrn) i i.e. t

A(〈 i,j〉 )=i tt m(j_1) (by row-wise ord-er),

A(<i,j))=j tt n(i_1) (by column-wise order),

respectively. Orly simple decimaIization of utl is additionaly required

to compute the address of <1, j ) . ft should be noted however that

the storage utilization is not so good in the allocation by ,Lt or 4^
because of a rrgapt' existing between i-level and. (i+l)-levet in each tree,

This gap becomes wider when the level increases,

Now, we estimate the memory avail-ability briefly when ,(m,tt-l) -
/r.(*rt-l ) 

"(trn-r)1 
i< q*nrorr . t t

\U' ' ' , y' ' / .o o'--o* by ,4t or 4^. Here it is assumed,

that one storage location is occupi-ed- by a single cel-l-. In the following,
r. ltlet L be ,{f or ,+ u. A11 the resul-ts that will be obtained are

t-l
same on A 1 and 

'L a.

tree in P(m,n-1), hence

the s■ ze of storage area

)= n夕 1  (′1 = 2km _ .)。

Let  

「
I  be the number of cells ■n each

σ塁 = iloki・  Then,   C(m,n―
■)= 11「

1。
    while,

required to store  C(m,n…
1) is 

メι(〈 (k―■)m,n〉
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Hence memorry availability "l is given as follows.

α
l二潰=ここ:jlililI15.

For example,  α
; = 1う

/・7,  α】 = ■  fOr all  m, and

mlll 
αl Fk11l αl = ・/2.    In addition,

ギ≪裏∫は⇒・争～争lC llお r k》λ
Now, ■et ど,I  be the gap between  i―  and  (i+1)…■evel in each tree,

i.e.′ δI=メι(く at十
■
,j〉 )― メι(〈 ,1_1,j〉 )・  IIlhen the gap ratio

βI = δI+./δ l  iS

i+2 ^- i+l -^K K -',Zk +I-i =-Ti;F:-.
K -ZR +I

In particular, 6? = 1 for all i, which implies that there exists no

gap when k = 2 (Uinary tree), When k>-1t Ff=f. is obtained.

rn the atlocation of ,(m'n-l) bv ,1.. I ' 'Dy .&1 or l^, it can be seen

mthat ai d.eteri.orates monotonously with the lower bound L/2 as k or

m i-n"""r""". If one d.esires efficiency of storage utilization, by

inserting only a simple term which cancels every gap in each tree, one can

obtain new addressing functions of IOO% storage utilization for arbitrary

k and m.
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χl(く こ, j〉 )= (石Iξ  ― al:ち )+ ″1(j - 1)

ズιl(〈こ, j〉 )= j + n(alこ  ― al:L ― ■)

Especia■ ly when k = 2, the insertedterm  al[i  becomes  O, sO that

メt  and  メ「i  COincide with ノιt' ノイa  reSpective■yo    This imp■ ies the

fact that a binary tree can have efficient addressing functions in both

memory ava■lability and access■ ng time, i.e.,computational s■ mplic■ ty.

Example 4。 7.   We show allocations of IPA― structure in Fig。 4。 4 by  ノこ1
and ノこl inside and outside ce■■s in Fig.4。 7.

Let 
「 t  be a tree s■

iced out from  P(m,n-1) by  (..anl, bn'-1)

and  Pa  be an array sliced out from  P(m, n_■ ) by  (η。こ, bn,十
p_1).

Last■y, we give adaress.ng functions for both  
「 t  and  Pa     Four kinas

of functions can be constructed according to /ヽ_t, ィa, ノιl, ノιl・

lr( E ) = ,L-(<ne, '') ) (に |く m'),

ノこA(〈
i'j〉 )=ノι(く ηこi_.,nt+j〉 ) (iく に卜■).

Here,ゑ 1/t,ん,4,礼 l・
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Figure l+.J All-ocation of Fig.l+.)+ ly

and by &^ (outside the

.+" tinsid.e the cells)

cel-ls )
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4.5 Conclusj-or:

With the theoretical- basis developed. in the previous chapters,

we have newly defined a directly accessJ-b1e d-ata stmcture caLled a TA-

st:ructure, which is a composite structure of trees and arrays. We have

described indexing methods of TA-structures and. constructed their addressing

functions from some criteria,

We have not discussed an allocation of an infinite TA-stmcture

| = (C, F), which isrtextend.ibJe" in the sense of[23].

In the following, we give an example of an add.ressing function for the

TA-stnrcture of dimensionality (2, 2>.

For くこ, j〉 (I,

χ(くこ,j〉 )=2j~1(2:平 -1)

It will- be a difficult but interesting work to analysis such an ad.dressing

functi.on of an infinite TA*structure under the three criteria listed in the

introduction of this chapter.
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CHAPTER 5

LABELED TA― STRUCTURES

5.1 Introduction

0f course, it is possible that each of the link labels in a TA-

stmcture 1 = (C, f) carries some meaning of the relation between the items

related by the link, The link labels are in fact the narnes of the functions

in F, Thus the variety of lrelationsrr which one can impose on the

links of  r  is fairly restricted8 in faCt, restrictea to ttF  kinds of

::re■ ationstt, and this ″F  is usua■ ■y smal■  owing to the high uniformity

of 
「

. Moreover, each kind of successor links of both trees and amays

in f should emanate from every cell, Such restrictions arising from

the strong uniformity of I may inevitably narrow the scope of the data

stnrctures that are representable naturally and. efficiently by our TA-

st:mctur€s. lndeed we can say that the set of functions (1ints) F of

a TA-stmcture is only able to bear some rough meanings. That is to say,

F is not fu11y refined (or partitioned) to hold the meanings of various

relations alnong the data items.

It is one of the urgent tasks that we establish a new scheme which

would overcome such defect. Such a scheme is especially needed when we

employ tree st:rrctures by which hierarchical- stmctures (which is often intro-

duced- on a data set) can be d.escribed directly and naturally.

In this cltapter, we provide the strategy of partitioning each function

in acF into the set of sub-functions. For a TA-stmcture thus ildivided"

we explain its labeling scheme. Then we construct an addressing function

for thi.s labeled TA-structure.
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5.2 Labeling Schemes of TA- structures

In this section, we provide the strategy of partiti-oning each

function in ac F into the set of sub-functions. By the application
/- -\ /- -\of this strategy to l\'"tE-l, we are able to obtain thettrefinement of f\"'t*'/'t,

, /- -\.narnefy Re(f \r'r"r;. What is more, we provide a labeling scheme (L, ,)

which fixes an arbitrary 1abe1 that represents the meaning of the connection

between two items of a tree in ne(r(n'r');.

In the following, 1et f = (C, F) be a TA-structure of d.imensionality

(d, k ), and. ret ,(*rt) = 1g(*rt), p(m,rt)) l" a TA-stmcture sliced

out from f.

Definition 5。 1.  Let ai(a⊂ F(oく iく k…1).

ai―
―
°n  (m, ln) iS aefined as

"iQ is provided accordi-ng to the following mle,

工n (5。 1),  くこ, 夕〉=くこ, j2' jう
'°
・°

' jd〉
  and  jく n  implies that  jpく np

for each  2《 pく こ.

The refinement of  a 

…

,  Re(a;(m, n)) is defined as fo■ ■ows.

輸 m)=ar」・Tm)

Re(ai;(m,n))= lait1 1《 fく ml.

１Ｒ
ノｎく●Ｊ１

一

の
人〓

こ

の●■
ａ

ｒ
ち

／
＼”こく

ｒ

Ｊ

ｌ

ｔ

〓
ｔ●■

ａ
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Then, the refinement of  F(m,n),  Re(F(m,n)) is defined as

Re(F(m,n))= (F(m,n)_ a/c(m'n))∪ Re(a;(m,`n))

Last, the reFinement of  P(・ 'n),  Re(P(m'n)) is defined as follows.

Re(P(m'n))= (c(m,n), Re(F(m,m))).

Exalnple 5.■ 。   For 
「

(2,2) in Fig.4.4,  Re(P(2,2)) is given in

Fige 5.■ 。

DeFinition 5.2。    For  ai2(° くiく k…■, 1く でくm)  specified in (5.■ ),

■et ′  be fixed, and  α
`  be defined as fo■

■Ows.

a! = {ric I o<i<k-1}.

Defirrition 5.3. Refine ,(t'rt) according to Definition !,1 and

obtain ne(r(t'n);. Let L!, L2r,..1 L'n be an arbitrary set of labe1s

such that f,LQ= k, and *y Q2r...r Q^ be an arbitrary one-to-one function

such that Qgz ap-L[ (fcA{m). Here ot comes from Definition 5.2.

L = U Ls is catted a label set of ulc(^r^), and x - U Qt is
lr<{<m 

/_ *\ 1([<m.

ca11ed a labeline function of afl\"')"tt. Note that X is a function

wh:ich maps Re(a; (*, r)) to L and generally this X is not one-to-one,
/\

(L, Z) i" called a labeling scheme of r'\mrn/. Note that each label-

q,cd- specifies a (partial) function on a(*'t).
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Figure 5。■. The refinement of the TA―Structllre in Fig。 4.4
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Definition 5.4. Refine ,(t'm) and obtain ne(r(mrn);.

For the labeling scheme (L, t1 of ,(tra't) specified, let tl(*rt)
/- -\ /- -\,( F\,"rrr,r- la/C\,',rn,,' j) Ut_. Then,

ne(r(m'n)) = 1g(*,rt)
z-'-"--.-z

the labeled」 m,m)整Lに ,Σ L

, F(m,n))
～

is said as

Example 1.2. For

labeling scheme of ,(z'z),

ne(r(212)), is described in

,(z'z) of d,imensionality K2,

the label-ed ,(zrz)6u (L,

rie.5.2. oL = 
Iy,r" n, ,

2> and the following

-\L ) , naJl]teLy

= UQo are
L=l12 -

specified. as follows,

Lr = IFANA]vrE, MANAME], Lz =

0r = l("01, FANAIVIE) , (h, MANAIvE)], Q2 =

{lrruer, AcE }

t(".r, BTRIAY) , (utz, AGE)J

随
　
　
ｏｆ

Definition 5.5. I,et (L, Z) be a labeling scherne of a(*,*).

say the following table representation of (L, t) as a labeling table

p(r,*).

K-l_
a。 al

１

　

　

２
　
　
　
●
　

●
　

●
　

ｍ

Q., . Q. 'rvtf arf

Qnc Q1 2"''-,"

qO,m  ql,m

q.-K-1 
, J-

'K-L, Z
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BIRDAY

BIRDAY

BIRDAY

BIRDAY

Figl17.e 5。 2.  A ■abe■ ed TA―structl■re
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Here, Lf={q。
,2,q.,1'¨

°
'qk_1,′ |(・ く′くm).

Exalnp■ e 5。 ぅ.

table of 
「

(2,2)is

let ({-, Z) be as in example 5.2, then the

gi.ven as fo1lows,

labeling

１

　

　

２

5.1. Ad.dressing Schemes of labeled TA-stmctures

工n this section, first for a TA― structure  P(m,n).abeled by s6me

■abe■ing scheme  ∝ , Σ) in the previously described manner, we explain

its indexing method by introducing an index labeling function  9.

Second, for the labeled index set  工(m,m) 。f a labe■ ed  P(m,n), we exp■ ain

an address■ ng mechan■ sm which makes use of a Spec■ fied labeling tab■ e of

P(m,n),

DeFinition う.6.   Ilet

Obtain the labeled  P(m,n) by

Let  I(m,n) be defined as ,

(L, Z) be a labeling scheme of 1(t't).

({, L) I namely ne(r(m'n);.
---/

だ
m'n)={〈ζ,j〉 lζ = e,1eLtxL2x "lt, 1(t(m, J<r}l,

For the index set  I(m,m) 。f 
「

(m,n), we define an index labe■ing Function

l: I(m,n)_ I(m,n) as f。 .lows。
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1°

r eaCh〈 ai.ai 2… e ait,3)(I(m,m)(.《 t(m,■
.(a),
」

Ψ( くこ, 」))= 〈(ai.111)(ai22ψ 2) ・・・ (aittlt), ♪〉  (aijj〔 α
j)

Let  9(く こ, ♪〉) be denoted as くこ , j)・    C■ ear■y, the labe■ ed index

set  .(m,ln) serves itself as an index set of Re(P(m'n)).

-

Proposition 5.■ .   For a given  
「

(m,m) and its labeling scheme

((て′, Σ), the index■ abe■ing function 9  is one… to― one,

Proof.   The one― to_oneness of each function ψ
` (■

《′くm) illllnedi_

ately assures that  9  is a one― to_one functionθ

Now we exp■ ain an adaressing SCheme of a ■abeled  P(m,n)。     Let

P(m,m)二 (c(m,n), F(m,m)) be a TA… Stmcture of dimensiona■ ity 《d, k》 .

Let  (κ , Σ) be a labeling scheme of Re(P(m'ln)).     For the labeled

index set  I(m,ln) and an addressing functiOn ノこ 。f 「
(m,ln), we define

ノこ: I(m'ln)_ N  as fol■ ows.    For くζ , コ〉( I(m,ln),

,4(<c , i,) ) = ,,l,@-tec, i,) )). (5。 2)

Note that since q is one-to-one, t-t((( , j,) ) is uniquely determined
/- -) I (- 

^\.for (( , jr)e f \r'ltsrl. That ! is an ad.d.ressi-ng function of Re(l\'"r"'21/------
is ensured. by. the following proposition.

nction &., t(*'t) t N defined ly (5. z)

is an addressing function of 
""1r(*'*)11 

-
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Proof. For arbitrary ( 4,, J), (1r, jr)er(In't), 1et &f<<,, J))

=7!{ <1,, r) ). rhen, A@-'(<1,, J) )) = ',4'@-'(<1,, i,) )) rrom

$.2). sinc. ,,4 is an addressing function, hence one-to-one, *-t((4, , J> )

= q-I(<1r, i) ). The proved one-to-oneness of I implies ((,, i,)

=(1r, J> . Thus 4 is one-to-one and the proposition follows from

Definition 4.9. Q'E'D'

Now, for a given ,(m'm) and its labeling scheme (d-, L) specified.,

we deseribe the ad.dressing algorithm of ne(J'(n'n)) using the labeling

table. This is achieved by simple ta,otLll* .rrn. Let ,t be an
/\

arbitrary add.ressing function of ,(n,n), and. (qrqz %, j,)af,")

be an arbitrary labeled ind.ex (ere r,., l( t(rn). Let 6 be a variable

whose value is in {.0, .t, ... , .t_r} *o and E be a vari-abl-e whose val-ue

llis in -y Lrx Lrx... xl,a. NEXT(6) is an operator whose value is the
f.(t(m -

first labeI in (, and REST(6) is an operator whose va^l-ue is q with

NE)m( E) removed.

(r) Letf =u and 6=q.1q2...%.
(z) Let r=0.
(:) tet I = I + 1. Scan the l-th row of the ]-abeling table and find.

out NEXT(E).

(lt) obtain the function 
"r, in a corresponding to the position of

NElm( e ).

(:) Let E-6ai, and 6=REST(6).

(6) rf r)zt, cal-euf-ate ,Q <E, J> ). fhis resurt is the desired.

ad.dress of (qfqZ ... \, ,) . Stop.

(r) eo to (s).
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Of cOurse the address of  くe, D〉 G工
(・

'ln) can be Obta■ned by ca■ cu■ating

χ (〈 e,夕〉).

5。 4 Conclusion

fn this chapter, a labeling scheme for TA-structures is presented,

and for a labeled. TA-strueture its ad,d.ressing scheme is explained.

Now we conclude the merj-ts of TA-structures (latetea TA-structures)

(l) fhe use of tree structures enlarges the scope of problems and their

associated. d.ata vhich can be dealt efficiently. Tnat is, in the solutions

of many problems, the attributes or rel-ations introd.uced on the set of

d.ata items are f'd.ominate-dominated" hierarchical rel-ations. fhese hierar-

chical- relations can be represented. directly and. efficienLy by employing

tree structures.

(ii) Every data cell- in TA-structures can store a data item; in "struetures"

availabl-e in PL/I or trees avaifable in COBOL, any d.ata ceLl-s except leaf

cells cannot store data items.

(iii) A set of trees can be treated. and. the correspond.ence betveen two cel-ls

in two trees f* and. f* can be d.escribed. explicitly. Furthermore,
ul t/2

each of these correspondence rel-ations serves themselves as transition

paths between l- and f..
ul t/2

(iv) Labeled TA-structures are traverse-ori.ented. structures; the linkages

can be label-ed so that a desired ce11 is accessed. from an arbitrary cell by

specifling the string labels of linkages between the two cell-s.

(v) fhe ttlocaL structures" of d.ata stored in TA-structure can be easily

specified. by slicing out trees or arrays. Moreover, when a prograruner

refers to a cell- in a tree or an array sliced out, he may concentrate hj-s
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attention onJ-y on its position in it, without any care of its position in

the entire TA-structure.

On the other hand, we indicate the d.emerits of TA-stnrctures

comparing with the data stmctures employed. in the current high leve1

programming languages.

(i) O:1y cornplete trees can be available. When we want to represent arr

irregular tree, we must embed it into some complete tree. Thus it is

often the case that the availability of data cel1s deteriorates extremely,

because of the so many unused. cells.

(ii) Every d.ata item stored in a ceI} of a TA-stmcture should have the

sane data type (e,g., integer tytrle or real type), or more strictly, the

same length,

These d.emerits are both inevitable limitations which stem from the

realization scheme of TA-stn:ctures adopted.. The relaxation of these

l-irnitations should be explored urgently; the use of other realization methods

such as chaining by pointers may be needed together with our concentrating

method, if necessary. It seems that a generalized. TA-stmcture (and its

labeling) such as exhibited in Fig.5,1 is the most relaxed stmcture which is
Itoonipletely" directly accessible by an add.ressing function of rrtolerable"

conplexj-ty, In fact the addressi.ng function in Fig.5,1 is fairely complex

to compute and the cost of traversal is much high, comparing with the ordinary

TA-stmctures.

- 100 ‐



１

　

　

２

　

　

う

Figure 5. I A generalized TA-structure and. its labeling table
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CHAPTER 6

CONC],USION

In this thesis, we have discussed several problems concezning with

data stmctures with addressing functions.

In Chapter 2 and Chapter J, a model called a relational data graph

is proposed, for studying uni.forrnities in the stmcture of the rrgeneralized[

directed graphs und.erlying data st:r:ctures. Several advantageous uniforrn-

ities needed to design ad,d.ressing functions are forrnulated and investigated

in detail. Chapter { and'Chapter J are devoted. to the specific family

of directly accessible data stn:.ctures caIled TA-stn-rctures, each of which

has a composite stru.cture of trees and arrays. For TA-stmctures, their

indexj.ng methods, constmction of addressing functions, and their labeling

schemes are exnlained.

Although we have stated. that the strong uniforrnj-ties such as the two

kinds of uniformly self-embeddabil-ities seem to be indispensable to devj-se

sirnple index sets and efficient ad.d.ressing functions, this is based on much

intuitive ground and we have not suggested a systematic way to constmct

addressing functions for the class of relational data graphs with those

uniforrn:ities.

To treat and discuss generally the construction process which is

applicable to the wider cl-ass of reLational data graphs such as those with

root blocks, is a very difficult, but interestingand practically valuable

persuit. For the success of this persuit, it seems an immed"iate task to

establish a measure as far as possibl-e for each of those quality criteria

of addressing functions l-isted. on Page 81.
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to treat the criterion (c) (complexity of traversal-) as "a easy traversal

means a traversal by (p* + q.)-type functionstt, This means that in

f' = (C, R) (restricted to a functional graph) and its reali zation ( f, f )

on tl (tne set of natural numbers), for each c € C and f- € R, the real-i zation

of f., namely fi? is given as follows.

(ca') (rrP ) = pr' ("r) + qi (ni , r, : constant )

Especially, in the case of finite alrrays, for aII f. € R, pi = 1,

and in the case of k-ary complete trees, for al-l- successors f.e R, pi may

possibly be k.

In general, the three criteria on Page Bl- are mutually conflicting

and the weights assigned to each of those criteria are highly dependent

on particular computing environments, It also seems an important and

fmitful direction for further study to discuss the interplay arnong the

criteria,

As for TA-structuxes, in spite of the disadvantages of TA-structures

descrj-bed previously, it seems a much significant work to design a programning

language in which TA-stmctures are available and to const:rrct a processor for

the language, because of the varj.ous advantages of TA-stmctures outweighing

their drawbacks

TA-stnrctures can be decLared in an arbitrary pxograrnming language

j-n which array stmctures are available, and allocated on a storage area.

For we can transfozm a TA-stzuctuze ,(*'r') into an arra'y by U-nearly

rearranging the data ce11s in each tree in ,(*'ot). For instance, for a
/ -\

TA-stnrcture ptmrn-'L ) of dimensionality ( 2, k) , we provide an ar:ray A

of dimension (fil, 
"); pil is given onpage B). Then each index (L, j)
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of ,(mrn-r) is transfo.11led into a new index 〈a.こ , j〉  Of  A.

tn I t+l] , we ad.opted Fortran as a language in which array st:ructures

are available. Based. on Fortran, we design a language where TA-stnrctures

are declared and manipulated. It is an important work remained to d.issolve

the dernerits of TA-stmctures and provide a user more convenient facilities.
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