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PREFACE

One of the most widely employed techniques to implement a data
structure on a computer memory is the one that allocates data items by an
addressing function, as is typical in the realization of arrays. This
method is decidedly superior to "chaining method" in some practical points
such as acceéssing time or memory utilization. However, there have been no
satisfactory theories that discuss generally the élass of data structures
which may admit efficient addressing functions.

"Data Graph Theory" developed by A.L.Rosenberg is very enlightening
in that it proposed a data structure model simple enough to be treated
mathematically and gives an keen insight into that class of data structures,
by presenting many investigations into the structural uniformities of data
graphs.

In this thesis, motivated by his instructive works, we discuss the
problems of data structures with addressing functions.

In Chapter 2, a relational data graph I = (C, R) is newly defined
to describe and investigate a more general structure represented by a general-
ized directed graph in which more than two equi-labeled edges emanate from
a node, We formulate and discuss the uniformities needed to acquire an
"index set".

In chapter 3, the class of relational data graphs with strong uniformity
is specified and characterized in detail, which is advantageous to devising
an efficient addressing function.

In chapter 4, a new class of data structures called "TA-structures"

is introduced, each of which has a composite structure of trees and arrays.

- 1V -



For TA-structures, their indexing methods are described, and a few types
of addressing functions are constructed and evaluated,
In Chapter 5, the labeling scheme for TA-structures is presented

and for-a labeled TA-structure, its addressing scheme is explained,

February, 1978

Tatsuo Tsuji
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CHAPTER 1.

INTRODUCTION

One of the most widely employed techniques to implement a data
structure on a computer memory is the one of allocating data items by
an addressing function. This method is decidedly superior to "chain-
ing method" from the following practical points of view. First, the
mechanism for traversing the structure so realized tends to be simple
and to require little overhead for "bookkeeping". Second, the "cost"
of effecting transitions in the structure is often more uniform and, in
many practical situations, this cost is uniformly low. Finally, with
"full" graphs such as nonsparse arrays and complete trees, this technique
tends to be more conservative of storage. However, this technique suffers
at least two basic drawbacks. It tends to be wasteful of storage when
applied to structures which are not "full" and it tends to be inflexible
-minor changes in the structure may necessitate a totally different scheme
for calculating addresses.

For a given data structure ZS(a logical structure represented by
a directed graph), its addressing function /4 can be constructed by taking
the next two steps (See Fig.l). TFirst, by exploiting the structural
uniformity of A, one should give an index to each cell in A which speci-
fies the "relative position” from some "base cell"; of course, the indices
of arrays are integer tupples, and those of trees are finite strings.
Followingly, for the index setbp(A) obtained, one should design a func-
tion xi which allocates uﬁ(d ) to a set of addresses, A, on a computer

memory. bﬂ(,ﬁ) must be fully simple, however, to be able to construct
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an efficient ‘Al in the simplicity of computation and memory utilization.
The fully simple‘,y(ZS), however, is guaranteed only when strong uniform-
ity exists in A. But, even if A is fairly uniformly structured and,
consequently, fully simple J(A) can be obtained, the construction of
efficient 4 which maps J(A) to address set A is often much diffi-
cult. The reason for this difficulty is that the structure of A 1is
too simple to capture faithfully the "structural information" of fJ(A),
and thus Z}, according to some simple /4; Arrays are familiar data st~
fuctures usually stored by addressing functions and only trees are occa-
sionaly so stored except arrays.

The effort to discuss generally and theoretically such a process
of designing an addressing function is a much laborious and difficult
task, since the organization of the function is inherently dependent on
the "shape" of individual data structures and little can be said generally.
More concretely speaking, to clarify the answers theoretically to the
following questions is substantially difficult:(l) What classes of data
structures are implementable using a family of "simple" functions?

(2) What class of functions suffices to implement some prespecified data
gtructures?

Owing to these difficulties, there have been no satisfactory the-
ories that deal with such data structures with addressing functions (or,
we say directly accessible data structures). "Data Graph Theory" devel-
oped by A.L.Rosenberg, however, is very enlightening in that it proposes
a data structu;e model simple enough to be treated mathematically, and
gives a keen insight into that class of data structures, by presenting

many investigations into the structural uniformities of data graphs.



In this thesis, motivated by his instructive and stimulating works,
we discuss the problems of data structures with addressing functions.

In Chapter 2, a relational data graph [ = (C, R) Ais newly defined.
It is possible that [ captures more general and natural structure of
data, which is represented by a generalized directed graph where more than
two equi-labeled edges emanate from a node. Each element of R 1is a
relation rather than a function on the set C of data cells. Owing to
the relationality of reR, in relational data graphs, a set of data items
can be obtained by the application of one retrieval procedure. We formulate
and discuss the class of rélational data graphs with faborable uniformities
needed to acquire a simple index set. Furthermore, we make the detailed
study of such uniformities by investigating the algebraic and graph-theoretical
properties of R.

In Chapter 3, we specify the class of relational data -graphs with
strong uniformities, which shows the potential usefulness for devising
a "good" function with respect to memory availability or computational
simplicity, and so on. We give structural characterizations of relational
data graphs with such strong uniformities.

In Chapter 4, with the theoretical basis developed in the previous
chapters, we introduce a new class of data structures called "TA-structures".
A TA-structure T = (C, F) has a composite structure of trees and arrays,
and it is allocated by an addressing function. Indexing methods for
TA-structures are described, which reflect both the string type and integer
tuple type indices. Moreover, a few types of addressing functions for
the index set specified are constructed.

Chapter 5 is devoted to the labeling schemes for TA-structures,



an labeled TA-structures by some specified labeling scheme are presented.

For an labeled TA-structure, its addressing mechanism is explained.



CHAPTER 2

RELATIONAL DATA GRAPHS

2.1 Introduction

‘Given a problem and its associated data, by analyzing the semantic
of the problem, then imposing the problem-oriented structure on the data,
we can construct an efficient procedure for solving the problem, Though
even in a case of a simple problem, because of the many criteria conflict-
ing with each other, it is generally difficult to obtain the optimum
structuring of the data.

However once a data structure is established according to some
criteria and implemented in a computer, many important properties of the
data structure, on the computational stage, become independent of the
contents of data items,

Instead of above mentioned problem-oriented approach to the data
structufing, studying properties of data structures, whose analysis
depends only on their forms themselves, would be an effective approach.
Investigating algebraic and graph-theoretical properties of the various
structures underlying data structures, we can expect to exploit the
structures on which many fundamental manipulations can be applied effec-
tively. |

Much research has been done in concern with such morphological
formulation of data structures. For example, Child[l], Rosenberg [17-20],
Fleck[5], Turski[42,43]. Among such excellent works, "Data Graph Theory"

developed by A,L,Rosenberg is very enlightening one where he proposed

a model simple enough to be treated mathematically, A data graph



is obtained from a data structure by masking out the specific data items
at the nodes of the structure and concentrating only on the linkages

in the structure. Linkages denoting various "relations" among data

items are partial functions A’s on C (the set of data cells). Data
graph is defined in terms of these functions. Two notions arising in
data graph realization have been isolated, namely relative addressing

and relocatability, which can be studied in terms of the structures of the
data graphs involved. In [17], these two notions are precisely formulated
and those data graphs are characterized to which these two notions are
applicable. In[18-20], the properties of those data graphs are investigated
in detail.

In his formulation of data graph however, owing to the functionality
of MA’s, at most one item is related to some item by each of A’s.

This makes it inevitable that only one data item is obtained by the
application of one retrieval procedure. This would be a vital limitation
when the size of data structures become large and their fast processings
are demanded.

In this chapter, relational data graph [ = (C, R) is newly defined
to describe and investigate more general structure as is represented in
Fig.2.1 in which more than two equi-labeled edges emanate from a node.

Each element of R 1is a relation rather than a function on the set C
of data cells. We introduce "block partitionable relational data graph"
which is mainly discussed in this chapter. In block partitionable
relational datg graph, owing to the relatlionality of re¢R, a set of
data items called "block" can be obtained by one retrieval procedure.

So a higher rank data such as a set of blocks can be also successfully
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treated in our new model, By the notion of "root block", we characterize

those class of block partitionable relational data graphs, each of whose
blocks can be indexed by the link sequence from the root block cell.

The detailed properties characteristic to the class of relational data
graphs with root blocks are studied. In addition, we make various
formulations such asl"skeleton mapping" which would offer effective
schemes for manipulating relational data graphs. Some results in [17

-20] are naturally extended in our new model.

2,2 Relational Data Graphs and Block Partitionability

In this section, first a relational data graph is specified.
Then, a block partitionable relational data graph is introduced and its
several properties are studied, On the block partitionable relational
data graphs, we formulate a class of relational data graphs which admit
a "root block", and investigate various properties of them. For a rela-
tional data graph in this class, we can have an indexing method of it;
each block in it can be indexed uniquely by the link sequence from the
root block cell, It is stated in the next section that relational data
graphs with root blocks can be allocated on a computer memory by "relative

block addressing".

First we establish the notational conventions including the ones

employed in the following chapters.

NOTATION, Let r be a binary relation on a set C, namely

Q

re CXC, Bach relation on C can be viewed as a function r: C —+» 2

(the power set of C), and the cell set {c’'€ C|{c, c'Dér} is denoted



by cr or often denoted by r(c). For two relations ry, r we

2’

write T T for the composite relation defined by,

or r, = fereCl<d, cDer,, aecrl} for all c €C. We denote by RT

the monoid of relations generated from R under relational compositions

with identity function 1 We write rk for k-fold composition of

Co

r with itself, whence ro =1 V-R(c) is a set of relations defined

C.
on c €C, that is {56 Iﬂgc'e c, <c, c'>6€,}. "a relation & €RT is
total on C" implies that £e¢ VR(c) for every cell c €C; that is,
when viewed as a function, § is total on C. For £e R* and C'cC,
£/C' implies the restriction of § to C', that is E/C' = £gC'xC!,

For § =r ces T € RT (rie R), the i-prefix g, is the string

172
E"i =TT, ees T, (1¢ igm, g, is the empty string).

Definition 2,1, A relational data graph (rdg for short) is

specified as an ordered pair I = (C, R), where
(1) € is a countable set of data cells.
(ii) R is a finite set of relations defined on C.
(iii) For all c, deC, there exists a relation & €R® such that
dect, namely [ is represented by a strongly connected directed

graph.

Rosenberg’s definition of a data graph is exactly equal to the

definition of an rdg if we restrict relations to functions in (ii)

Definition 2.2, Let P = (C, R) be an rdg. For any &, n

€ VR(bO), if the following condition is obtained, {bo} is called a base

- 10 -



block of I' and [ is called a block partiti (bprdg for

short).
bENbyn ¥ g —> by& = byn.

It should be noted that baseblocks are singleton sets.

The set of base blocks of [' is denoted by lB[,.

Example 2.1. Fig.2.2 is an example of a bprdg where B, =

r
{{1t, {91}

Definition 2,3, Let I = (C, R) be a bprdg and {0} € B

Then the relation o, on C 1is defined as follows,
0
For all Cys Cyp eC,

3
“1=p %2 & EePp(by), cqy oy € DE.

Proposition 2,1, Let TI' = (C, R) be a bprdg and {vo} € Bpe

Then the relation =~ is an equivalence relation on C.
0

Proof, That f_:_/_b is reflexive and symmetric is obvious from
0

the definition, We show the transitivity of —~ For each

. C.y Coy
bo 1 2

Then, from the definition of

c,eC, let and ¢

c, ==, C ~ Cy.
3 1 bo 2 2 bo 3
there exist ;, neVR(bO) such that ¢y, ¢, € ‘bOF, and  C,, Cy € D.

=,
bO

Hence, b ENbyn % .  Since, (b} is a base block of [, bE = byn.

O} 0~

Therefore Cqs 05 € bOF,, so that 2 2b003. That :bo is an equiva-

-1 -
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FPigure 2.2. A block partitionable rdg
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lence relation on €  is'mnow shown. Q.E.D.

From the above proposition, we can see that C is partitioned by
the equivalence relation ==y - Each equivalence class is called a

0
block of [ induced by a base block {bo}_.

Let Br[bo] denote the set of blocks of I' induced by {bo},

then Bn[by = {B 1B =1, EeV(p))].

Example 2,2. For the bprdg [ in Fig.2.2, Bu(1] = Bpl9] =

111}, {2, 33, 4, 5, 6}, {7, 8}, {91}

Base block {bo} is an entry block of [, Accessing to each
block of [' can be successfully accomplished by starting from the base
block cell bo. Some of the properties of bprdg’s are developed, which

result in Theorem 2.3.

Lemma 2.2, Let I = (C, R) be a bprdg. For any cell c €C,

any base block {bo} € By, and &(—VR(c),
by€cE —» cf = {bo}.

Proof, From the strong connectivity of [', there exists n eVR(bO)
such that c¢ bone Say, there exists d €cf such that 4 # b
Then bynE 2{d, by}, but since 1C(-RT is defined at every cell in C,
bolg = { by}, s0 that bOnE,. Nbly, # g and byng # byl This contradicts
that {bo} is a base block of [, that is, there are no decf such

- 13 -



that d # b, Hence, c& = {b.}- Q.E.D,

ol
Theorem 2,3, Let [ = (C, R) be a bprdg. For any two base
blocks {bl} , {b2} € IBII‘"

@p[bl] = @p[bQ] .

Proof. Let BE Er[bl] and b =3B (e VR(bl)). For QGVR(bl),

we assume that b,€b( : Then from Lemma 2,2, blz = b For

2 2 °
any c € 3B, there is an n eVR‘(bz) such that c ¢ b2n from the strong
connectedness of I, Hence, blE,ﬂ bin # ¢. Since {bl} is a base
block of T, blF, = bl(n from Definition 2,2, namely blg = b,n.

Since bne @F[bg] y b€ = Be @T[bz]. Conversely, for any block B ¢
Br[bz]’ Be Bp[b)] is shown in the same way, Thus  Bpltq] = Bp(Ps)

follows, Q.E.D,

The above theorem implies that the partitioning of C by the

equivalence relation =, gives the same set of blocks, which is inde-
0

pendent of our choice of a base block {bo}e IB[,. This independence

permits us from now on to denote the set of blocks of a bprdg simply as

ﬁ[' without bo.

Definition 2.4, Let [ = (C, R) be a bprdg. The blocking
mapping v: C ——>d3[[1 is defined as follows,

For each Be BT’

cy =B & ceB,

- 14 -



By the blocking mapping of [, each cell ceC is alloted to the

block which contains it.

Definition 2.5, Let [' = (C, R) be a bprdg. If there exists

{cp} € Bp such that for all E, neVR(co),
cog = cqn - E=mn (2.1)
is satisfied, ico} is called a root block of I,

Example 2.3, Fig.2.3 (A) is an example of an rdg which admits
a root block {1} and Fig.2.3 (B) is an rdg which admits two root

blocks {1} and {2}

Sketch of proofs of Example 2.3,
Fig.2.3{A)
To show {1} is a root block, first we can see the equalities
2 ‘ . _
ab =1, and ac=a hold. The set of blocks Bp is dBP =
{B|B= lan, n = 0,1,2,... } (ao = 10)' Let & be an arbitrary relation
to the block 1a” (n = 0,1,2,...) and let [E]. be the number of
occurence of r¢R ={a, b, c} in E, Then, [&]a = [&]b + [E]C +n
must holds, Repeated application of the above equalities into &
n
reduces & to a  due to [E]a = [&]b + [&]C + n,
For -example, consider the block 1la = {3, 4}. Let & = aBbc, s0
la = 1E&. Then,

aBbc = az(ab)c

- 15 -
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In this way, every relation to the block 1a" (n = 0,1,2,...) can be
shown to be equal (as a set of binary relations) to an, so all are
equal, Since, 12" is an arbitrary block, {1} is a root block.

QoEoDo

Fig.2.3% (B)

First, to show {1} is a root block, note that the equalities

2

ab=c¢c =1 n

g+ ac =a hold, The set of blocks is B ={B|B =1a",
n=0,1,2,...JU{B| B = 1ca”, n = 0,1,2,...}. Let & be an arbitrary
relation to the block 1la'. For such &, [&]a = [g]b + n must hold,
Again, repeated application of the above equalities reduces & +to an,
due to [é]a = [E]b + n,

For example, consider the block 1la = {3, 4}. Let & = a3bcb, s0

la = 1E,. Then,

aBbcb = a2(ab)cb
= ach (. ab = 1C)
= a(ac)b
= a2b ( ".ac = a)
= a(ab)
= a (" ab = 1C)

Similarly every relation to the block lca” can be shown to be equal

to ca'. That {1} is a root block now follows, By a similar method,

{2} is shown to be also a root block. Q.E.D.

- 16 -



(4)

Figure 2.3(4a) Two examples of rdg with root blocks
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(B)

Figure 2.3(B) Two examoles of rdg with root blocks
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Let [ = (C, R) be an rdg which admits a root block {cod-
For an arbitrary block B of [, there exists a relation 565%‘00)
such that B = cE. From (2.1) we can see that all of the relations
ne§7R(cO) such that B = con  are exactly equal (as binary relations)
to &, Hence a unique relation from the root block cell Cq can
be assigned to each block of [, This unique relation is designated
as the "index" of the block. This notion of a "root block" is a general
formulation of “root" in([17]. Several properties and features of an

rdg with root blocks are provided by investigating the structures of

relations in RFY,

Lemma 2.4, Let [ = (C, R) be an rdg with a root block {co}.
1
If ¢y € cof; for any F,GVR(CO), & = lc.
Proof. Since colC = {co}, cOlC/W coé + 2. By the block
partitionability of I, colC = coé. Since {co} is a root block of

r, £ =1, follows from (2.1). Q.E.D.

Lemma 2.5. Let [ = (C, R) be an rdg with a root block tegh

Each £¢€ VR(cO) is total.

Proof. For each ¢ €coE, there exists an n(;V%(c) such as

coe cn because of the strong comnectedness of . Therefore coe coén

holds. From the above lemma, &m = lC is obtained. The totality

1 .
From Lemma 2,2, in fact, cOE = iCO}-

- 19 -



of lC ensures that & 1is totsal on C. Q.E.D.

Now, let JL[, denote the set of root blocks of an rdg T.
Then, it is verified that an rdg with root blocks has such a characteristic

property as is exhibited in the following theoren.

Theorem 2.6. Let [ = (C, R) be an rdg with root blocks. For
any {c;}s {cg}eﬂr, every EGVR(cl) such that czeclg (from Lemma 2.2,

in fact = clE) is a function.

€2
Proof. From the strong connectedness of [, there exists n¢
V%(cz) such that cle:czn. Then, cle clgn is obtained. Since
{cl} is a root block of [, &n = 1, from Lemma 2.k, Similarly,
ng = lC since {c2} is also a root block of T. Now assume the existence

of ¢, c3, che C such that c_¢ cf and ch.ecg but c3 # c), Then

3
there exists c'€ cE such that ¢'nm =c¢ invoking £&n = lc. Hence,
c3e-c'nE and c), ec'ng. While c3 # c),» and this contradicts nf = lC'

Therefore, for each ¢ €C, there is at most one element in c¢&, that is

to say & 1is a function on C. Q.E.D.

For example, in Fig.2.3(B), the relation c €R between the two root

blocks {1} and §2} is a function.

It should be noted that from Theorem 2.6 or from Lemma 2.2, the

2From Lemma 2.2, in fact c, = clE.

- 20 -



next corollary is obtained.

Corollary 2.7. If there is a relation re¢R which is not a
function, there exists no rdg I' = (C, R) such that every cell is a

root block cell,

Proof, Immediately follows from Theorem 2,6, or from Lemma 2, 2.

Q.E.D.

2.3. Realization of Relational Data Graphs

This section considers the realization problem of a: relational
data graph on a computer memory (a random access memory device such as
cores or a disk memories), Numerous techniques for realizing data
structures have been developed, each having unique advantages and
disadvantages, While most methods of realization can be used with
arbitrary relational data graphs, our concentrating method requires high
uniformities in the structure of the graph. First a general definition
of a realization of a relational data graph is given, Then, a
realization method by "relative block addressing" is formulated, and
shows that the class of relational data graphs which can be realized by
this method is exactly equal to the class of relational data graphs with

root blocks,

Definition 2,6, Let [ be an arbitrary rdg, and let A be a

set of addresses such that H#C ftA. Then a realizationof [ on A is

- 2] -



a pair of mapping,

<0',F>

where ¢ : C — A 1is one-to-one total, and
: *
f:R — {rA |ryCAxA} is a one-to-one monoid

homomorphism mapping. Thus, 1C. =1 A? and for &, n€RT,

(En)p = EPY(nP).

The pair (TP satisfies the following conditions for all c¢ €C and

r €R,
(1) g # (er)(zp)CCor => cr # g,

(11) ecr# g = (cx)o= (co)(xp).

According to this definition, if (¢,p) realizes I = (C, R)
on A, then (Cr, RP) is isomorphic to I,

One of the moét familiar technique for implementiné data structures
is the method of "relative addressing". Informally this technique
is described as specifying a base address ahd representing the addresses
of the various cells in the structure as displacements from this base
address. Here for the class of bprdg’s, a realization by "relative
block addressing" is given, which specifies displacements for the blocks

rather than the cells,

- 22 -



Definition 2.7. For a bprdg I = (C, R), (v, P> is called a

realigation of [ by relative block addressing, if

(1) There exists a base address agé€ Co,

(ii) Bijective (= one-to-one onto) displacement function
03 @T—>{w € R |aowe13[rd}=§2 exists and for every

block Beﬁn.,,
Bo = aO(B(j ).

Accessing to the block Be on A can be accomplished by knowing
the displacement B§ of the block B and the base address age
The following result can be obtained, which implies that this realization

scheme is an equivalent notion to the existence of root blocks.

Theorem 2.8, A bprdg = (c, R) is realizable by relative block

addresgsing if and only if it admits root blocks.

Proof. Let A (a set of addresses) exist such that #C<#A.
(1) Say that ' has a root block {co}. Let ¢ be an arbitrary
total one~to-one mapping of C into A, For such ¢ , define the map
. BT * .
f: R* — {r, |T,CAXA} as follows:
For each &€ R, Ep = 0—15,(7.
=1 = T -1
Then' 10’7 =0 1CU - lA, and for each él’ 5_»2 eR ’ (alP)(€2f) - (0 @10')
| _ . . .
(077 0) =0 B0 = (&liz)f. So the p specified as above is a monoid

homomorphism mapping. First, we show that {(g,p) is a realization
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of T in A,
(i) Let ¢ # (cr)(xzp)cC , then (co)(zp) = (co—)((r_lro—) = (cr)rgcCo.
So (er)r # 8, and cr # g.
(i1) For any ceC and reR, let cr # ¢ hence reVR(c). Then,
(cr)o = cos Lrg = (ca)(orlraé = (co)(zp).
Thus, (¢, p> realizes [' in A,
Here we define a total one-to-one function B:éBF —> R® as follows.
For all BeBp, if cf =3B, BB =E,
Since B is a function, such & is uniquely determined for ISQBb.
It is easily seen that a bprdg [ with root blocks admits such @,

Now we show that (7, > is a realization by relative block addressing.
Let B as defined above, Let ay = cq0 and § = Bp. By definition
of £, 2=(BP)p. For each BefB, Bor=c,(BB)r= e (BB) =
aO(BB)f = ao(BQP)7= ao(Bg). Thus, ¢(7,p)> is a realization by relative
block addressing.,

(2) Conversely, let (o ,pP> be an realization of I' by relative
block addressing with base address 2, and displacement function 4 .

Consider the cell ¢y = aO¢—1€ C. ILet E, n be arbitrary elements
of Vp(ey) such that cf =cm.  Now, (cE)r = () (EF) = ay(EF),
and (con)v = ao(nf), therefore .
(i) both ao(if) and ao(nf) are included in Co,
(11) a,(&p) = aglnp).

Since § is onto function, from (i),
(iii) E’Bl, BoeBps By8 = Efy By6 = np.

From our choice of s and the definition of § , it follows that

(iv) (e B)r = ay(Ef) = ay(B§) = By,
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Since ¢ is one-to-one,
(v) CO& = Bl’ or equivalently, (cog)§ =Ef.
Similarly,

(vi) cgn = By, ox equivalently, (con)d = np.

Since cOE = ¢y, and since ¢ 1is a function, &f =np. Therefore,
£ =n since P is one-to-one, We have thus shown cy = adv’l to
be a root block cell of I’ and the theorem is proved, Q.E.D,

2.4, Skeleton Structures of Relational Data Graphs

In a block partitionable relational data graph [ = (C, R) defined
in section 2.2, not only the structure among the cells (C-structure),
but also the structure among the blocks (dST—structure) can be described,
One of our next concerns is to extract the &Bp-structure from T,
To specify the gB[pstructure gseperately from the C-structure would con-
tribute to make the processing of each block itself easier.

In this section, we provide the skeletén mapping h = (e, k> of
a block partitionable relational data graph [ = (C, R).
The mapping h reveals the skeleton structure of I, that is h(T') =
(s, R'). This skeleton structure h(I') serves itself as /B p-structure
of I, ¢ maps each cell c €C +to a single cell s ¢S which denotes
the block containing the cell, and K maps each relation réR to a
function r' on S. It is proved that the existence of a root block
in " is presérved under the mapping h. In addition, for a block

partitionable relational data graph U the condition is provided which
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ensures the existence of roots in h(l),

Definition 2.8. Let I = (C, R) be a bprdg. The skeleton
mapping of ' is a pair of mappings defined as follows, S is an

arbitrary set of cells such that lt(ﬂBP) = H#(s).

h =(e,Kk>.

where ¢ = yu,
y: ¢ — &BT (blocking mapping),
u: dBF-——+ S is an arbitrary one-to-one total function,

K:R —> R'={r'|reR} is a total function and for any

reR, r'€R' is specified according to the following rule,
rt = {(cle, ce>| (eqy e e r}. (2.2)
h(l') is called the skeleton structure of [,

Example 2.4, The skeleton structures of Fig.2.3(A) and

Fig.2.3(B) are afforded in Fig.2.4(A) and Fig.2.4(B), respectively.

Now let the domain of K extend from R to RF, For each & =

T Tp ees T € R™ (each r; is contained in R), &' is defined as follows,
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The skeleton structures of rdgs depicted in Fig.3
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g' =ER=rir) ... 1) (r, €R)

The mapping € is generally a many-to-one function from C to S.

From the definition of block partitionability, CqY = C,Y holds for each

cecC, é‘EVh(c) and c,, c,é€ct. Then from the one-to-oneness of u,
c,€ = c,e is obtained.  Therefore the notation (cE)e is permitted
and it in fact denotes de for arbitrary cell d ¢cE. Then, from

Equation (2.2), for each ceC and rEVR(c),

(ce)r' = (cr)e. (2.3)

is obtained, Equation (2.3) insures that r'¢ R' is a function on C°'.

And the strong connectedness of h(['), the fact that for each sy» S, €8,

2
there exists '€ R'Y such that slé' = 85, is guaranteed from the strong
connectedness of [ and Definition 2.8, Hence, h(I') = (Ce, Rx) specifies
an rdg D' = (S, R') where each r'€R' is a function on vS, and’owing

to the functionality of =xr'¢ R', it follows that ['' is block partitionable.
It should be noted that h(l') is a data graph in the sense of [17].

Equation (2.3) is now extended in the following proposition.

Proposition 2.9. Let ' be a bprdg. For each c¢ €C and each

£eVp(e),

(ce)g = (cE)e. (2.4)

Proof. Let §E = )Ty ese

T (rie R) and gj =TT ... rj
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(the j-prefix of E, 1< j<m-1). There exists 4 ecgj such that

i€ VR(d) for each 1< j¢ m-1. By Equation (2,3), (ds)r5+l =

(drj+1)s. And decgj yields de = (cgj)s and drj+1_C_ cajrj+1
1 - t —
yields (drj+l)e: = (céjrj_'_l)s, S0 that (cl*;j)arj_‘_l = (cF,J.rJ._i_l)‘e.
P LV | t - ] -
Hence, (ce)&' = (ce)r1r2 ceo Tl = (crl)er2 cew ) = (crl:c2 ces rm)e.

= (c&)e. This completes the proof. Q.E.D.

Here we will make sure that the extension of Kk from R to R’

is well defined,. For all Ty ees 9 T

! Tmel? e rnéR, let

TyTy ees T = Te1Tmeo **° Tne Then for arbitrary cell ¢ in the

domain of =x . T or r vee T Cr, +.. ' = CT ees T s0
1 °° m( m+1 n>’ 1 m m+1 * "n’

— 3 ] ]
(crl cee rm)s = (crm_'_1 eee rn)e. From Equation (2.4), (cs)rl cee T
= 1 1 : ; ; 1 1~ ot '
(ce)rm_i_:L oo x0 Since ¢ is arbitrary, r] ... T!'=71x!. ... 1!
is obtained, Therefore K is a total function from R® +to R'.

Thus the extension is well defined,

Proposition 2,10 Let [ = (C, R) be a bprdg and '{bo}e By

For &, neVp(by), if (bge)E! = (be)n', then bE = bon.

Proof, If (boa)é' = (boe)n', by Proposition 2,9 (bog)e = (bon)s,
namely (boﬁ)yu = (bOTI)YU- for e = yu. Since u 1is one-to-one,
(bOE,)Y = (bon)y. b, is a base block cell, so b.E, by ez}ﬂ,, therefore

(b 8)y = b £ and (b.m)y = b.n. Hence, b.& = b.q. Q.E.D.
0 0 0 0 0 0

Proposition 2,11, Let I' = (C, R) be a bprdg and h(r') = (S, R').

For any se¢S and E'e R, if E';'EVR,(S), there exists ¢ rssu.":L such
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that E¢ VR(c ).

Proof., Immediate from Equation (2,2) ‘ Q.E.D.

Proposition 2,12, Let [ = (C, R) be a bprdg. For {bo}e B

and £'€ Vg, (bY), EeVp(by).

Proof, Immediate from Proposition 2,11, since the base block

{bo} is a singleton set. Q.E.D.

If h(") = (S, R') has a root block {sp}s s, is simply referred
to as a root of h(l), Such h([') is a rooted data graph in the sense

of [17]. Hereafter, ce 1is often denoted as c',

Theorem 2,13 If an rdg ' = (C, R) has a root block fegds

then h(l') has a root cl.

Proof. For each &', n'e-VEﬁcé), let clE' =cin'. From
Proposition 2,12, E, ne‘V%Kco), 80 coﬁ =cqn by Proposition 2.10.
Then & =7, because jco} is a root: block of T . So &x=nK, i.e.

g' =n'. Hence, c¢! is a root of h(T). Q.E.D.

0

Example 2.5. Fig.2.3(A) has a root block {1}, while its
skeleton structure afforded in Fig.2.4(A) has a root. Fig.3(B) has
root blocks {1}, {2}, while its skeleton structure afforded in Fig.l4(B)

has roots 1 and 2.
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It is made clear by the above theorem that the existence of a root
block ié preserved under the skeleton mapping h, but the existence of
a root block . in [ is not a necessary condition to ensure that h(I')
has roots. The following theorem affords a necessary and sufficient

condition to guarantee the existence of roots in h(I').

Theorem 2,14, Let [ = (C, R) be a bprdg, A necessary
and sufficient condition to ensure the existence of roots in h(I')

is that BOE@II" exists such that for any c¢,, c,¢ B, and any &EVR(cl),

ne VR(CQ) s

(e B = (en)y = "BeB, "4y, d,eB, (aE)y = (dm)y.
(2.5)

Proof. (1) First, assume that h([') has a root Sq and BO

=su ., For any c,, c,€ B, and any &¢ VR(cl), nEVR(C2)’ let
(clé)y = (czn)y. Then, (cli)e = (c2n)e applying the functionality
of u and & = yu, Since L€ VR(cl) and neVR(cg), by Proposition
2.9 (cle)%;' = (028)1']'- ¢y C, €By implies c,e =c,e = s, and
since s, is a root of h(r), &' =n'.

', n'e VR,(SO), therefore from Lemma 2.5, &' and n' are total on
S, that is, for an arbitrary se¢S, s&' = sy'. Let B = su“l, then
the one—to-:oneness of u ensures that B is also arbitrary on dS[,.

Then from Proposition 2.11, d;, d,€ B exist such that EeV.(4,),

TIEVR(d2). Since for arbitrary seS, sf' =sn', for such dj, d,€3B
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1 = ' e s -
(dls)E (d2€)n . Then from Proposition 2.9, (dl£)€ (dgn)e.
Since u is one-to-one, (dlE)y = (dgn)y is obtained. Hence,

(2.5) follows.

(2) Conversely, let B, € ZBT exists such that for any c,, c2<;BO,
any EGVR(cl), ”EVR(°2)= (2.5) holds. Let Byu = s, and for any
' ' " = ' cps ‘
E', n e‘ﬁi,(so), sOE sgn’' - Then from Proposition 2.11, c,, ¢, € By
. s = - '
exist such that £€‘7R(cl), 1]60%(02). Since c € = c € = 5, (cle)E

(czs)n'. Proposition 2.9 implies that (cl£)€ = (cen)e, SO (clE)Y =

there exist d

(c2n)Y. Then from (2.5) for arbitrary B€ZA3 d26 B

r 1’
such that (dlg)y = (dgn)y. By Proposition 2.9, (dle)g' = (dze)n'

and dle = d4.€ = Bu, Since B 1is an arbitrary block in ‘QBT’ Bu 1is

2
an arbitrary cell in S. Therefore E' = n', then h([') has a root sS4
Thus the theorem is proved. Q.E.D.
(2.5) implies the following fact that if c, and c, are contained

in the same block, then for an arbitrary block IBGJBT, there exist dl’ d2

in B such that both dlg and d2n are contained in the same block.
Example 2.6. There are no root blocks in Fig.2.5. This is

assured as follows. In the figure, base block cell 1 is the only

candidate for a root block. Assume that {l} is a root block.

Since lab =1, ab = 1, from Lemma 2.k, But in fact ab = 1,, sO

{1} is not a root block.

Although there is no root blocks in Fig.2.5, its skeleton structure

given in Fig.2.6 has a root cell 1 obviously.
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Figure 2.5. An rdg with no root blocks but its

skeleton structure has a root

t)' /\A b, b.
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Figure 2.6. The skeleton structure of Fig.2.5
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Remark. The bprdg depicted in Fig,2.7(4) has no root blocks
The reason is as follows. In the figure, the set of base blocks is qp =
{103,413, {-23, .. .. For each {c}¢ B, assume that {c}' is a root block.
From the figure, cab =c¢ so0 ab = 1C from Lemma 2,4. But, lab #£1

so that {c} is not not a root block. So Fig.2.7(A) has no root blocks.

In the skeleton structure of Fig.2.7 (A) depicted in Fig.2.7 (B),
however, all the cells are obviously root cells,

Corollary 2.7 says that there exists no class of rdg’s [ = (C, R)
where every cell is a root block cell, if there exists a nonfunctional
relation ré€R. But, we see from the above example that there is a
class of rdg’s [ = (C, R) such that every cell in the skeleton structure
h(C') = (S8, R') is a root block cell, even if there exists a nonfunctional

relation ré€R.

2.5. Conclusion

We have newly defined a relational data graph [ = (C, R) as a
general description for a data structure, In a relational data graph,
a set of data items can be obtained by the application of one retrieval
procedure, owing to the relationality of re€R,

The formulation of "block partitionability" is given, then the
class of block partitionable relational data graphs with root blocks are
characterized, each of whose blocks can be indexed uniquely by the link
sequence from the root block cell, Several properties and features of
relational data graphs with root blocks are studied; one of the striking

properties ig that every relation between any two root blocks is restricted
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to a functional relation,

Then the realization problem of a relational data graph is considered.
It is shown that the class of relational data graphs whieh can be realized
by "relative block addressing" is equal to the class of relational data
graphs which admit root blocks.

Subsequently, the skeleton mapping h is introduced, which exposes
the gkeleton structure of a block partitionable relational data graph .
It is proved that if [I' has a root block, then h(I') has a root.
In addition, for a block partitionable relational data graph [ the
condition is provided which ensures the existence of roots in h(I).

Even if I’ has a root block, so that each block in [ can be
indexed, the condition (2.1) cammot provide a sufficient uniformity for
' to be addressed by some simple function, The next chapter is devoted
t0 the investigation into the more stronger uniformity which would contribute

to obtain an efficient addressing function.
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CHAPTER 3

RELATIONAL DATA GRAPHS WITH STRONG UNIFORMITIES

3.1 Introduction

As is previousely explained, in a relational data graph [ - which
admits a root block, each block of [ can be uniquely‘indexed and
allocated on a computer memory by relative block addressing method.

But, if the function r (r€R) is not simple and thus the addressing
function which maps the index set to an address set is prohibitely complex
to compute, the advantages of the realization method mean little practically.

In T with a root block, the "connectivity relations" among cells
of its any two substructures are identically the same with each other.
Such uniformity, however, is not sufficient to obtain an efficient
addressing function.

When we consider the structures such as complete trees or arrays
which admit efficient and powerful addressing functions, we notice that
these structures are constructed by repetitive patterns, and moreover
each of the substructures are also complete trees or arrays.

Such strong uniformity that the shape of each substructure is same
as that of the superstructure seems to be indispensable to devise a simple
index set and an efficilent addressing function.

In this chapter, we formulate relational data graphs with such
strong uniformities. For the class of block partitionable relational

data graphs [’s, two kinds of self-embeddings (mappings from C into c)
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are defined, which embed I' itself into its substructure. S0 each
of the substructures shares the same shape as well as connectivity,
We clarify the structural properties of block partitionable

relational data graphs with such self-embeddings.

3,2 Self?embeddings of Relational Data Graphs

In this section, we provide some classes of block partitionable
relational data graphs with self-embeddings 6. By 6, [ itself is

so every operation on [ is also

embedded into its substructure Fsub’
applicable recursively to Psub' Two kinds of self-embeddabilities
are provided and some of their properties are studied, Here the property

"ec-redundancy" is introduced, which is not discussed in the functional

model (data graph).

Definition 3.1 Self-embedding of a bprdg [ = (C, R) is a total

injection (one-to-one into) 6: C—> C, satisfying the condition that

for an arbitrary ceC and rTeR,
p)
cr# ¢ —> (cr)sc(co)r.

" is said to be uniformly self-embeddable if there is a {bo}g B
such that for all ce€C there is a self-embedding 6, of C with boec

= C. Such b is called a base cell of T.

0

3cr¢¢¢$reR,
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Example 3.1 TFig.2.5 given in Example 2.6 is a uniformly self-
embeddable rdg. Fig.3.2 is also an example of a uniformly self-embeddable

rdg.

Proof., (1) That Fig.2.5 is uniformly self-embeddable is proved
as follows. Since Fig.2.5 is isomorphic to Fig.3.l, we do on Fig.3.1.
For cell (m,n) (myneNuU{0}), e(m n) specified as follows is a self-
’

embedding of [,
O(m,n) = 1€(1,3), (irm,3m)) (1,5 €N ULO}].

To show this, note that for m,n»0, (i,j)a * g and ((i,j)a)e =
{(i41,3),(1,3+41)} 6 = {(i+m+l,j+n), (i+m,j+n+1)} (e(m,n) is briefly written
as 0), while ((i,j)0)a = (i+m,j+n)a = {(i+m+1,j+n),(i+m,j+n+l)},
so ((i,j)a)e = ((1,3)0)a.

For i,jz1, (i,3)b = {(i-l,j),(i,j-l)}, so ((i,j)p)e =
{(i4m-1,j4n), (i+m,j+n-1)} and ((i,3)6)b = (i+m,j+n)b = {(i+m+l,j+n),
(i+m,3#n-1)], so ((1,3)b)6 = ((1,3)8)D.

Especially, (0,3)b = {(0,3-1)} (§21), éo ((0,3)p)e = {(m,3+n-1)},
while, ((0,3)8)b = (m,j+n)b = {(m-1,j+n), (m,j+n-1)} (m>1),

{(0,3+n-1)} (m = 0)

So, ((0,3)p)ec ((0,3)e)n. Similarly, ((i,0)b)e<((i,0)8)b (i 20).

Thus for all cell (m,n) (m,ne¢ NU{0}), e(m,n) given as above is a
self~embedding of I, Hence [ is uniformly self-embeddable,

(2) Next, we prove the uniformly self-embeddability of Fig.3.2.

We prove on Fig.3.3 (where € denotes a null string) which is isomorphic

to Fig.3.2.
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- 40 -



P aN
\ /\

o

% bb :G °.-bb-.<1 A'pbpaa’ppiadbb-aa’bb-aa’bba 0.-b ba
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First, for ke€C - {*}, let
eui = {¢*, K>} | Cn, Kony [nec - {*}],

here kOn denotes the concatenation of strings k, 0, n,
enlc is a self-embedding of Fig,3%.3. We prove this fact. First, 6
is vobviously total injection, and

(*a)eulc ={a}e& = {k0}, (*ei)a = ka = {kO, kl}, so (*a)e&g(*eul{)a.

For meC - {*},

{mO, nl}ei = {kOno, koOnl}, (meulc)a = (kOn)a = {kOnO, kOnl}, so
(nen];)a.

And (ab)ell{ = {*}enlc = {Kk}, (&eﬂt)b

(na)ei

(ha)eﬂ];
{KO}b = {Kk}, so (eb)eni = (&eulc)b.

For m0€C - {*},

((an)b)GE]; = {m}enl{ = {kOn}, ((nO)Gnlc)b (kOn0)b = {kOn}, hence ((nO)b)eﬂlc
= ((no)e[i)b. Similarly for mlé€C - {*}, ((nl)b)eﬂlc = ((tnl)eﬂ]{'}b.

Last, for mleC - {*, €, 0, 1},
((an)c)eu]; = inl}en]; = {konl}, ((IIIO)@&];)C = (kOn0)c = {kOnl}, so that
((00)e)e,
((m1)e)g, = ((l)g)e.

In like manner, it is proved that

((m0)qg)e.  Similarly for mleC -{*, ¢, 0, 1},

6 = <*, K}Uf(n, Kimp|neC - §¥}}

is also a self-embedding,
For *, let 8, =1, (obviously a self-embedding).

Thus Fig.3.3 (Fig.3.2) is a uniformly self-embeddable rdg. Q.E.D.

In Fig.3.2, the next functions,
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Figure 3.3. An rdg isomorphic to Fig.7
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0, = {<0, 3, 41, 6, <2, 12>, (3, 13>, coeres}

1
3

62 = 140, 33, <1, T3, <2, 143, <3, 153, ......}

are both self-embeddings 93.
Same prcedures as accessing, starting from base cell O can be also
applied recursively to accessing cells Bel and BG;, in fact the access

3

gstarts from cell 3,

From the above example, -when [ is uniformly self-embeddable, for each

¢ €C, more than one 6, may exist. But in the functional case, ©

C c

is uniquely determined for each c eC,.

Intuitively, one can imagine a self-embedding as taking a copy of
[ and laying it over a second copy so that every node and edge of the
first copy covers a corresponding element of the second. This is reflected
in the assertion that cr # ¢ implies (cx)6 C(c®)r, For example in
Fig.3%.2, however, if Sé is chosen, many cells such as 7, 14, 15 and
links such as (12, 13>, (3, 7> fail to be covered by the first copy.

Next, we will specify such uncovered cells and links,

Definition 3.2. Let T be uniformly self-embeddable and bO be
a base cell of I, Forvthe self-embedding 6, specified, let Ce =

c
L (boec)g and for each reR, let r0 = {(clec, 026c>|(cl, 02>e-r}.
eV (b,)
R0
Each cell in Cg - cec is called a _9c—redundant cell. And each link
c
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in U (r|o, - 6,) is called a 8 -redundant link.
reR c
Now, by a straightforward induction, we can extend the condition
in Definition 3.1 from reR to E €RC. Then the following theorem

can be obtained,

Theorem 3.1. If a bprdg T = (C, R) is uniformly self-embeddable,

the skeleton structure h(I') has a root,

Proof, Since [ is uniformly self-embeddable, for any c €C,
there exists {bo}e B, such that for all c €C, there is a self-embedding
6, of [ with c® =c. on h(r) = (S, R'), for arbitrary &', n'
e§7R,(b'), we assume béé' = bin'. Then, from Proposition 2,12,
£, n EVGR(bO)’ From this and Proposifion 2.10, by = byn holds, so
(bog)y = (bdn)Y. Therefore from Theorem 2,14, it is sufficient to say
that for any ce¢C, (ci)y = (cn)y. First from the condition in Definition
3.1, for any ce€C, both (bog)ecg(boec)g = cf, and (bon)ecg(boec)n

= cn hold, b.E =D and the functionality of €  results in that
0 c

On

(b0§)60‘= (bon)ec # B, So c¢ENnen # ¢. Hence, (c&)y = (en)y and

by = b is a oot of h(T). | Q.E.D.
Example 3,2, The skeleton structure of Fig.2.5 afforded in Fig.2.6

has a root 1. And the skeleton structure of Fig.3.2 has a root Oe.

Next strengthening Definition 3.1, we give another self-embedding

in which both ec—redundan£ cells and ec—redundant links are precluded,
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Definition 3.3.  Self-isomorphic-embedding of a bprdg [ = (C, R)

is a total injection ©: C —=C, satisfying that for arbitrary c €C

and reR,
(1) ¢ # (cB8)rced =—> cr ¢ 4.
(i1) cr# g — (cr)e = (cO)r.

" is said to be uniformly self-isomorphic-embeddable, if there is
a {bo}e [Bll" such that for all c€C there is a self-isomorphic-embedding
ec of ' with coec = c, Such bO is called a base cell of .
Example 3.3. Fig.2.3(B) is a uniformly self-isomorphic-embeddable

rdg. This fact is easily verified by visual inspection of the graph.

For a uniformly self-isomorphic-embeddable rdg the next theorem

follows immediately.

Theorem 3.2, A uniformly self-isomorphic-embeddable rdg [ = (C, R)

has a rbot block,

Proof, Since T[' is uniformly self-isomorphic-embeddable, there

exists a base cell bO defined in Definition 3.3. For. this b and

arbitrary &, n (_—VR(bo), let bOE" = byn. For an arbitrary ce€ C, by the

N

condition (i;) in Definition 3.3, (bog)ec (boec)g = cf, and (bon)ec =

(boec)n = cn. Since ¢ is arbitrary, & =n is obtained. This
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completes the proof, Q.E.D.

From now on, let a bprdg I = (C, R) be a uniformly self-embeddable
rdg. By Definition 3.1., there exists a base cell bO such that, for
all c éC there is a self-embedding ec of I’ with coec = C.

Now, we operate the skeleton mapping on [' and then obtain its
skeleton structure h(l') = (S, R'). Let 6, be a self-embedding of
I’ mentioned above, we construct from ec, the function eé on S according

to the following equation.
6! = {(cls, c e |(cl, 02>E-90} (3.1)

The totality of ec on C guarantees that eé is a total function

on 8. Invoking Equation (3.1), for any de€C,
—_ ]
(ae,)e = (ae)e! (3.2)

is obtained.

Fig.2.3 (B) is a uniformly self-isomorphic-embeddable rdg, but its
skeleton structure, depicted in Fig.2.4 (B) is not uniformly self-isomorphic-
embeddable nor uniformly self-embeddable.

Our next interest is to investigate the necesséry and sufficient condition
that the skeleton structure of [, h(l') = (S, R') is uniformly self-embeddable
and b! = b.e satisfies the condition of uniformly self-embeddability in

0~ 0
Definition 3.1, namely b! is a base cell of h(r).
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Lemma 3.3 TFor any d¢€C, and any c €C,
dece c&d,

where &dGVR(bO) and bO§d=dy.

Proof, d€dy and bE, =dy imply do € (bogd)ec. By the

condition in Definition 3.1, (bogd)ecg;(boec)ad. b8, = ¢, therefore,

dGc € CE"d’ Q.E.D,

]

Lemma 3.4. Let ©_ be a self-embedding of h(r) = (s, R') obeying

bje_ = s. Then, for each ce¢ su_l,

Here 6! comes from Equation (3.1).

Proof, For an arbitrary s,¢ S and an arbitrary des u_l let

1 1 ’

— 1 — - = | - =
bty = dy. Since de = (bogd)e, s, = (boad)s = (boe)gd = biEL, SO
that Sles = (bé&(‘i)es. Moreover, by the condition of Definition 3,1,

the functionality of ! and b4, = s, the next follows. (bé&é)es =

1] | S 1 -— ] ]
(boes)gd = sﬁd. Therefore, s,6_ = sf! can be obtained. On the other

1
hand, from Lemma 3.3, 46 € clye And from Equation (3.1), (de, (CE‘d)E>

1 | J— | - —_ | S t 3
€ 8! holds. Hence, s,0! = (ds)ec = (cid)s = (ce)gd = sgi. Since,
ey _ . . . .
sles = s&d, sles = slec can be obtained, Here, sy isan arbitrary
element of S, so Gs = 9(':. Q.E.D.
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The above lemma insists that if the self-embeddings GS of h(r)
obeying bé@s = 8 exist, they are all obtainable from the self-embedding
6, (ce su-l) according to Equation (3.1).

Next; we provide a necessary and sufficient condition to guarantee
that the skeleton structure of [, namely h(') is uniformly self-embeddable
and Dbl is a base cell of h(r).

Theorem 3.5. h(') = (S, R') is a uniformly self-embeddable and
bé = boe satisfies the condition of uniformly self-embeddability if and only

if for an arbitrary ceC, 9& is one-to-one,

Proof. First, let h(l) be uniformly self-embeddable and for

an arbitrary se€ S, there exists a self-embedding es satisfying b'es

0
= s. Then, by Lemma 3.4, GS_= eé. So the one~to-oneness of es
ensures that eé 'is one-to-one. Since cesu - and s is arbitrary,

¢ is also arbitrary on C,

Conversely, for an arbitrary c€C, let eé be one-to-one, The
totality of ©!' is assured. Now for any s €S and any r'é€R',
c
let sr' # ¢, then for an arbitrary d.esu—l, dr # p. Since [ is

unifdrmiy self-embeddable, from the condition in Definition 3.1,
(dr)ecg;(dec)rg;((dec)r)y. Hence, ((dr)ec)s = ((dec)r)s.
While, from Equation (3.2), ((dr)ec)e = ((dr)s)@é = ((ds)r')eé =
(d'r')eé = (sr')eé, and ((dGC)r)s = ((dec)e)r' = ((de)eé)r' = (seé)r'.
Hence, (sr')eé = (s@é)r' is obtained. Now, it is shown that 6
satisfies the’condition in Definition 3.1.

Therefore, h(I') is uniformly self-embeddable and since b 60 = c,

0
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Equation (3.2) assures b'eé = s, This completes the proof. Q.E.D.

On the preserving of the uniformly self-isomorphic~embeddability
under the skeleton mapping h, we can immediately conclude that Theorem

3,5 also holds.

3.3 Further Characterization of Uniformly Self-Isomorphic-Embeddability

It is clear that a more simple addressing function can be employed
to storé a uniformly self-isomorphic-embeddable relational data graph than
uniformly self-embeddable one, since it has no redundant links or redundant
cells and is more homogeneously constructed,

In this section, taking notice of this usefulness underlying a
uniformiy self-isomorphic-embeddability, we give further characterizations
of this strongest uniformity. The main result is obtained which states
that a uniformly self-isomorphic-embeddable relational data graph is mainly
composed of complete trees, The lemmas and the theorem obtained in this

section will contribute the proof of Theorem 4.1 in the next chapter,

Throughout this section, we assume that a bprdg I' = (C, R) is

uniformly self-isomorphic-embeddable with a base cell Cqe

Lemma 3.6, For each a GV%(co)f\R and each c¢C, Hf(ca) = lf(coa).

Proof, Since I is uniformly self-isomorphic-embeddable, there

¢, for each

i

exists a self-isomorphic-embedding ec of ' with coec

c €C. cqa # ¢ and Definition 3,3-(ii) imply (coa)ec (coec)a = ca.
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The totality and one-to-oneness of 6, yield H(ca) = ¢f(coa). Q.E.D.

Lemma 3.7. (1) For arbitrary ac¢ V%(co)r)R, Fig.3.4(A) is a
forbidden subgraph of [,
(2) For arbitrary a(&Vh(co)f)R and bE€R, Fig.3.4(B) is a forbidden

subgraph of [,

Proof, Assuming that [ contains Fig.3.4(A) or Fig.3.4(B) as a
subgraph, we will show contradictions.,

(1) sSince [ is uniformly self-isomorphic-embeddable, there exists

self-isomorphic-~embedding ec such that cOGC = Coe o2 # ¢ and

2

Definition 3.3-(ii) yield c @ = (00602)a = (coa)Scz. dec,a and the
one~to-oneness of © guarantee

02 a //\\
the existence of e€c,a such that @ o

\
eec = d, While, from the strong
2 a i /

connectivity of [, there exists
S Vﬁ(e) such that cj € eE.

Moreover (e£)e = (e® )& = d§
o 2
=c result in

and (eF,)eC 3¢c.6

©0%, = %2
. 2 2 a
dg > Coe From Theorem 3.2, {co}
is a root block, so by Lemma. 2.4,

af, = lC. On the other hand, since
Figure 3.5(A) An explanatory figure

Fig.3.4(A) is supposed to be contained of the proof of Lemma 3.7(1)
in ' as a subgraph, (cl, 02>6 af, and cq # Cpy SO that af # 1C.
This is contradiction.

: (2) For cell c,, there exists a self-isomorphic-embedding ec (coec = cl)‘

’
1 1 1
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(A) (B)

Figure 3.4. Forbidden subgraphs of a uniformly self-isomorphic-

embeddable rdg
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As in the proof of Part(l) the

éxistence of e€c.a such that

0
eec = d is ensured, Moreover,
1
(6 )b # ¢ since db = (e®_ )b
1 °1
and db # g. Hence eb # ¢ is

obtained from Definition 3,3-(i).
Therefore, applying Definition 3.3

-(ii), we can obtain (eb)ec =
1
(eecl)b = db3dc,, so that (eb)eCl
3c, =¢,.6 . The one-to-oneness
1 0 cq
of 8 ensures eb>dc,, whence
Sy 0

cnt coab. On the other hand,

(cl, 02>6 ab and cl¢ Cpy SO that

Figure 3.5(B) An explanatory figure
of the proof of Lemma 3.7(2)

ab ¢-1C' This is contradiction.

Part(l) and Part(2) complete the proof of the lemma. Q.E.D.

Theorem 3.8. For arbitrary aeVR(cO“)n R, let #(cga) = k (k22).
If Ci is defined as C: = U (ca'), the subgraph of [ specified by

iz0

(Ci, {a/C%}) is depicted in Fig.3.6.

Proof. By Lemma 3.6, H(da) = k is obtained for each 4 ecj.

From this and Lemma 3.7-(1) (Fig.3.4(A) is a forbidden subgraph of I'),

the theorem immediately follows. Q.E.D.

Theorem 3,8 says that a uniformly self-isomorphic-embeddable rdg

I = (C, R) is mainly composed of tree~like structures (for example, see
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Figure 3.6.

------

The subgraph specified by (Ci, {a/Cz})
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Fig.2.3(B) or Fig.3.7) when there exists a ¢R such that #(coa)éé.

The reason why we say "tree-like" comes from the fact that the class of
rdg’s characterized by Theorem 3.8 contains such graphs that possess links
which relate each cell to its brother cells (say, link T in Fig.3.7).
Moreover, Lemma 3.7-(2) implies that each link Teé R which emanates

from cell c€C and is incident into its father cell is a function and

is never incident into the other cells (see link 7T in Fig.3.7). In
Theorem 3.8 we have assumed k22, for in the case of k =1, (C:,{a/Ci})

may be a ring structure as is depicted in Fig,3.8(B).

3.4 Conclusion

In this chapter, for the class of block partitionable relational
data graphs r=(C, R), two kinds of self-embeddabilities are formulated.
These uniformities, especially uniformly self-isomorphic-embeddability,
might be essential in establishing an efficient addressing function.

For ' with these uniformities, we clarify the existence of root
blocks in T or h(I). Subsequently, it is shown that the two kinds
of self-embeddabilities are both preserved under the skeleton mapping h
if every Gé on Ce constructed from each kind of self-embedding GC
of I respectively is one-to-one. Lastly, concentrating on the stfuctural
advantages of a uniformly self-isomorphic-embeddable relational data graph
", we study its properties in detail. These studies result in that a
relational data graph with the uniformity is mainly composed of complete

trees except a certain case,
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Figure 3.7. Another example of a uniformly self-isomorphic-

embeddable rdg
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8 8 .
Figure 3.8. The subgraph specified by (Cc, {a/CC}) in the

case of k =1
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Now we summarize schematically in Fig.3.9(A), the hierarchy of
the uniformities of relational data graphs hitherto developed.
Fig.3.9(B) is the hierarchy restricted to the functional case (data graph).
We supply in Fig,3.10, an example of [ whose skeleton structure has a
root, but I’ itself has no root blocks nor be uniformly self-embeddable.

As is stated previously, a uniformly self-isomorphic~embeddable
relational data graph does enjoy advantageous structure for constructing
addressing functions. But the reason that we say "advantageous" is based
on much intuitive ground, and in fact for [ with the uniformity, we did
not discuss generally its actual addressing functions,

It seems a much difficult task to treat addressing functions from
a general point of view. In fact, the form of an addressing function
is highly contextual; it is heavily dependent on the shape of the individual
data structures.

In the next chapter, with the theoretical basis developed thus far,
we define new data structures and construct their addressing functions

from some criteria,
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_69..

rdg (Fig.2.1)

bprdg (Fig.2.2)

rdg whose skeleton structure
has a root (Fig.3.10)

rdg with roo
blocks
Fig,2.34)

u.s.e, rdg
(Fig.2.5
Fig.2.7

Flg.B.l) Fig,B.Q,Fig.B.B)

u,s.i.e. rdg
(Flgo 2-3(:8) 14
Fig.3.7)

(4)

Figure 3.9. (A) The hierarchy of the uniformities of rdg’s

rdg = bprdg

rdg with roots

u,s.e, rdg

u.s.i.e. rdg

(B)

(B) The hierarchy restricted to the functional case
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Figure 3.10.

An example of '+ whose skeleton structure has a root,

but

itself has no root blocks nor be uniformly self-embeddable



CHAPTER 4

TREE-ARRAY COMPOSITE STRUCTURES AND THEIR ADDRESSING FUNCTIONS

4.1 Introduction

Few classes of data structures are as well understood or as widely
used as‘arrays and/or trees. The most high level programming languages
offer some array processing facilities; indeed, certain languages such
as Fortran and APL have been designed with arrays as the basic data
structures, While, in some high level languages such as PL/I and COBOL
we can use trees for representing the hierarchical structures, which are
often introduced on data. These structures seems to be useful and
powerful in the sense that they are often required for the efficient
solutions of most problems with their associated data, and what is more,
the specifications of data elements, i.e. indexing, are done in quite
simple ways,

As for the realization method of these structures, arrays are the
most familiar data structures usually implemented by addressing functions.
We can find much research in concern with addressing functions of arrays
(for example, (4], [9], [32] .[22-28].). Trees except complete ones are
(for a variety of efficiency-related reason) seldom stored by direct-access
method,

As is mentioned previously, the construction of an addressing function
is highly contextual, so it seems that practically significant results
cannot be expected, if one treats the construction process from a general

point of view.
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In this chapter, rather than continue the abstract and general
treatmeﬁt of data structures which may admit‘addressing functions, we
shall give investigations of specific family of directly accessible data
structures, with the theoxetical basis developed in the previous two
chapters,

We present a new class I of data structures allocated by addressing
functions. I' = (C, F)e 0, which has a composite structures of trees
and arrays (we call it a TA-structure), can be naturally introduced and
defined in terms of a d-dimensional array Ad and uniformly self-isomorphic
-embeddability. We show ‘that a TA-structure TI' is uniquely constructed
from Ad for the specified "dimensionality" of T. Followingly we
specify the various structures "sliced out" from TA-structure 'y, and for
those structures we describe the several indexing methods which reflect both
the string type (tree indexing) and integer tuple type (array indexing)
indices, so that sharing their own characteristics and advantages.
Moreover we establish a few kinds of addressing functions for the indexl
set specified, according to the case that "tree~oriented" processing is
mainly required and "array-oriented" processing is mainly required, and
according to the case that access time is primary prefered and memory

utilization is primary prefered,

4,2 TA-structures

In this section, firstly we define graphically the d-dimensional

array A;, and then define a TA-structure T = (¢, F) in terms of a

uniformly self-isomorphic-embeddable relational data graph [ whose
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skeleton structure h(I') is A, Secondly, we prove that a TA-structure
I' is uniquely constructed from Ad for the specified "dimensionality"

of T, Subsequently, a TA-structure P(m,n) "sliced out" from ' is
(m,n)

specified, and then a tree 1"Jc and an array Pa sliced out from T

are presented,

Definition 4.1 The d-dimensional array is the ordered pair

A = (s, M), where

(1) S is the set of cells specified as S = Nd, where N is
the set of positive integers and Nd is the set of d-tuples of positive
integers.

(ii) M= G U Gp, where both G, and Gp are the following sets

of d transformations of 8. Let N, denote the set N, = {1,...,a}%

[}
1]

{bil ieN,} (successor links)

(]
il

iyi| ie.Nd} . (predecessor links)

For each s = (sl,...,sd> €3S,
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Example 4.1 Fig.4.1 is the two dimensional array A2, where

G, = {a, b}, and G, ={m, »j.

In order to be able to compute the address assigned to each cell
8 €S, it is sufficient that Ad has the structure determined by the
successor links Gp. But, for example, in Fig.4.1l, the transition
from cell (i, j> to (i -1, j> or (i, j - 1> cannot be accomplished
if Ad has no other links than Gs' Gp is the set of links provided

for the ease of transitions along arbitrary direction.

It should be also noted that Ay 1is infinite along each axis.

Definition 4.2 A (T, Ad-structure is a uniformly self-isomorphic

-embeddéble rdg [ = (C, R) subjecting to the following conditions.

CO is a base cell of .

(i) The skeleton structure h([') is the d-dimensional array Ad =
(s, M) (M= GSUGP). Especially, for cell L =<{1,...,1>€S,
ls—l = cye

(ii) At most one element in GSK'J' ig a relation which is not a

function, The elements in Gpi<—1 are all functions.
Note that €& and K come from Definition 2.8.
Clearly, a (T, A)-structure [ is the d-dimensional array if in

(ii) all elements in G_K ~1 are functional relations.

If a relation r eGSK—lQR exists which is not a function, we shall

denote rrKeF by "a" on the sequel.
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The two dimensional array

Figure 4.1.
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When #(co(a K_l)) = k, we call ¢4, k> the dimensionality of [,

According to this format, the dimensionality of the d-dimensional array

Ad is represented as ¢d, 1» . It should be noted that R = (GSK”l) U
' -1
G

(G k™)

Example 4.2, The (T, A)-structure of dimensionality {2, 2» is

shown in Fig.4.2.

Definition 4.3, Let [ = (C, R) be the (T, Ad-structure of

dimensionality «€d, k) and cO be the base cell of T, For each

ceC, we have H(c(a r\_l)) k from Lemma 3.6, Let us denote the cells

n

c .c c ..
tdo, dl""’dk—-l}' By "functionizing"

in c(am—l) as c(aw—l)
the relation ak * as ca, = dz (0¢igk - 1), we can obtain a functional
graph T = (C, F) where each element in F is a function; the functionality

of each element other than a, (0¢igk - 1) is guaranteed by Definition

4.2-(ii). It is obvious that I' is uniquely specified for the given
r. I is called the TA-structure induced from [ and CO is also
called a _base cell of T, €d, k) is again called the dimensionality
of T,

According to the above functionizing operation, the relation a ~
is partitioned into the following k functions, namely, aK_l =
agUaqU---Ua_q- Let a be defined as a = {a , 8;yee0, ak—l}’

then F = (R - {an " })Va

- 66 -



of dimensionality €2, 2»

The T, AY-structure

Figure b.2.
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Example 4.3. We show in Fig.4.3 the TA-structure of dimen-

sionality €2, 3).

The uniformly self-isomorphic-embeddability of any (T, A)-structure

insures the next proposition.

Proposition 4.1. Any TA-structure is uniformly self-isomrphic

-embeddable,

In the skeleton mapping h = (e, K> specified in Definition 2.8,
€ is generally a many-to-one mapping, so for a given ['' which is the
skeleton structure of some [, the rdg which admits ['! Vas its skeleton
gstructure cannot be uniquely specified in general. We will prove
however that a TA-structure TI' is uniquely constructed from 4, (= n(r))
for the given dimensionality of TI', so that the TA-structure- I' induced
from I is also determined uniquely.

In the following, let k ©be restricted to k22, In the
d-dimensional array Ay = (s, M) (M= GSL)GP), for s =(8y, Sypeeey g0
€38, let s' = (82, Szyeees sd). Without loss of generality, we can let
€G  as a (akfl is the relation which is not a function as is previously

mentioned), Y, € GP is especially denoted by Tr.

Construction of a TA-structure I = (C, F) from the

d-dimensional array A, = (s, M)

Let ¢, be a base cell of T' and (co(a K‘l)) = k.
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Figure 4.3. The TA-structure of dimensionality <2, 3)
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(1) Construction of C TFor each s€3, let

s = {(g, &") | Eea1™H) C (4.2)

¢ =gt = {(E, ') | Eeax, s¢ sj (4.2)

(2) Construction of a and (Gs - {a})vﬁ—l For each (&, s')
€ C and each aié a,

(5, 5"y = (Ea,, 5') (4.3)

For each (£, s')¢ C and each bje GS - {a},
(8, 8o, k™) = (5, 5)) (4.4)
Here, s! = (52,..., sj+l,..., sd)-

L For each (£, s')€C - {(e, s') | sesS}

(3) Construction of GPK_

(e is the empty string),
(€, s)(MK™) = (&, s*) (4.5)

Here, E' =E ., vhen |E| =m (E;m_l is the (m-1)-prefix of &).

For each )/J.GGP - {m} and each (g, s')eC - {(e, s') | se€s},

(8, 8 (v k™) = (&, s!) (4.6)
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In Equation (4.6), s' = (32,..., sj—l,..., sd)

Theorem 4. 2. TA-structure is uniquely determined for the specified

dimensionality «d, k» of T,

Proof. The uniqueness of C Let T = (C, R) be a (T, A)-

structure of dimensionality {4, k» , then h(P) = (S, M) is the d-
dimensional array A,. Let 8, = {s€8| s = 1} and M, = {mo = m/SOI
m €M}, then the subgraph Al = (so, My) of A, is the (d - 1)-dimensional

array such that a/SO¢ My Therefore all the relations in 'Mow—l =

{m K'-l/Soe:":L | meM} are restricted to functional relations, so that

1

h—l(A('i) = (SOE- y Mok -l) is isomorphic to Al. Hence, for each s €S,

se is a singleton set, so se”l can be denoted by s!' (s' = (82""’ sd)
for s =(1, 8,4...4 5,0€5).
-1 . a U . -1.\i
Now let C, =S, ={s'|s€S,}, C_,= (s'(a k™)) for
0 0 0 s i>0 \

each s'¢ Co, then from Theorem 3.8 the subgraph of [ specified by

(cZ,, {aK-l/C:',}) is isomorphic to Fig.3.6.  First we show C = U ¢?

s'eCo
c2 U CZ’, is obvious, and we prove c € U C:, for each c€C,
1 t
s GCO s GCO
Since ce€S and h(l') is an array, there exists se8, and 120
such that ce = sa', s = s'e (s GCO) and (2.4) ensures ce = (s'e)a’

= (s'(a K-l)i)e, then cy = (s'(a K-l)i)Y follows from the one-to-oneness
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of u (mappings y and u were defined in Definition 2.6),
Invoking that singleton set {s'} is a block of I, (s'(ak 1) )y =

s'(am—l)l is obtained, Therefore c e s'(a K—l)l and ce¢ U C:,
S'GCO

are concluded, Hence, C = U C
8 eC

Now let a K—l be functionized according to Definition 4.3

. a -1l,.a .
(a = {ags Byseees a‘k-l})‘ Since (CS', fak /Cs,?) is a k-ary
complete tree by Theorem 3.8, for arbitrary c¢€ CZ' we can denote the

path from s' to c¢ by a string & €a¥*, Using this & and s',
¢ can be denoted by (&, s'). Hence, C = {(F,, s') |Eeax, s'e CO}.
Then, s'€CyCC is newly denoted as (e, s'). Here we make sure

that two distinct symbols (&, s ), (n, s') e U ¢® o1 never denote

s'€ CO

the same cell. For arbitrary (e, SI'D) and (e, sc'l) € C, (sI') # S('l)’

,)O o7 ) = ¢ follows from Lemma 3.7-(1). Hence two cells

(es (e,s!

c, d€C denoted by (E, 51'3) and (n, sc'q_) (SI'J # s('1 or & # 1)
respectively are two distinct cells, Therefore cell set C 1is

specified by (4.2).

The unigueness of a and (GS— {a}) K_l That each a; ea

is uniquely determined and given by (4.3) is obvious from the uniqueness
of ak™t guarantecd by Theorem 3.8. We now prove the uniqueness
of ij-l. For arbitrary (£, s')ecC, (&, s')e = (|El+ 1, s')

from (L4.1).
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Here in general, when s = (sl, Sppeeey Sd) y (i, s')y =i, So9eees sd}.
Since h([') is an array, ((E, s')e:)bj = (lEl+ 1, s!) from Definition 4.1.
While T' is uniformly self-isomorphic-embeddable by Proposition 4.1,

Theorem 3.2 assures that base cell S of I is a root of T.

Therefore by Lemma 2.5 each ij-lé VR(CO) is total, so that
b e Vp((E, 51).  Men (5, s0e)b, = (B, s)(b, k™)) spsiying
(2.3), nence (g, s")(b; K1) €CIEl+ 1, s1pu™ = {(n, =) | 1 = [EI}.

Since I' is uniformly self-isomorphic-embeddable, (5, s')(bj K—l) =

1

(¢, s'), so b.K ~ is determined uniquely as (4.4).
+ J

1

The uniqueness of GpK B Since I admits root c_., for arbitrary

O’

2

S

igad, (bjw'l)( vy K"l) =1, ( )/jer) is obtained from Lemma 2.4,

so that (E, s;_)( Vs vq'-l) = (&, s') follows, Hence, k! is determined
uniquely as (4.6). Owing to (a K-l)(’ITK-l) = 1,, there exists, for

each ceC, dec(a K—l) such that d(TTK—l)- = c. In fact however,

we can assert that for each c'é€ c(a K"l), c'T=c¢ is obtained, invoking
the uniformly self~embeddability of TI' and its strong connectedness,

'The detailed proof of this assertion is omitted, This assertion results

in that for each (&, s')€¢C - { (e, s')|ses}, Wl is determined

as (4.5). Q.E.D.

Definition 4.4 Let I = (C, F) be the TA-structure of dimensionality

y
€4, k. We define the TA-structure D(Mm) _ (g(mm) plm,n)y

n.)

n implies (n2,..., i
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n

sliced out from I' by (a', b,2y0 0y bgd) as follows. °

m,n ) ] i i j A
olmm) _ {cgEby2..-b5d [Eea, 0<i<m, 0K, <y}

p(mn) _ 1po(m0) | ¢ ep),

n

Each component of (a, b,2yeee, bgd) specifies cross-section.

(mm) = (m, Nyyeees nd) is called the dimension of P(m"n). €4, k) is

also the dimensionality of F(m,n)’

Bxample 4.4 We show in Fig.4.4 the TA-structure sliced out from

the TA-structure of dimensionality <2, 3> (given in Fig.4.3) by (a12, bg)

Definition 4.5 Let p(mm) Lo the TA-structure sliced out by

(a", bSQ,..., bgd) from the TA-structure of dimensionality <4, k>.
m,n
From 1"( ? ),
1 )
(1)  The tree T, = (C,, F,) sliced out by (n-a", by2seee, byd)

(mea*, mi+ m'¢m, n%gnt) is defined as follows.

Q
]

1 1 5
{ognEbg2...byd |Eea, 0<igm'}

=
Il

. = 1£/c, | £€7]

1 ] 1 ] 1]
In (n.a" , bg yerns bgd), (ny D52e00 bgd) affords the root of T,

n

1.n
5 )

> Por simplicity, we denote as b

2 in stead of (bew— 2
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Figure 4.4, The TA-structure sliced out from Fig.4.3 by (azz, bg)
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m' . o .
and a specifies the cross-~section.

(2) The array I = (C_, F,) sliced out by (-, b *pz,..., b d+pd)

(n, E€a*, Imj+|E|<m, n!+p, < nt) is defined as follows.
+J 1+d ]
{conﬁbi’ 2......bdd d 0gig|E) Og‘jtgpt}’

F, ={f/C, | feF].

Example 4.5. From the TA-structure specified in Example 4.4,

(A) The tree I', sliced out by (1.a

% b,)

¢*1%0’

O+2
(B) The array T, sliced out by (1C 180 )

are depicted in Fig.4.5.

4.3, Indexing of TA-structures

In fact, the index of a data cell is really an encoding of the
very path from the base cell to the sought cell the realization scheme
we are concentrating renders unnecessary to follow,

While, since a TA-structure I = (C, F) is composed of both
trees and arrays, structural aspects of trees and arrays coexist in T,
So an index method of I' can be naturally derived which reflects both
string type (characteristic to trees) and integer tuple type (character-
istic to arrays) indices.

This section is devoted to the indexing of a TA-structure T

which assigns to each cell c €C its relative position from base cell
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-
N/ <
B
3
1
VR
|-
A4
OD =
/L
A4

av M

Figure 4.5. (A) The tree I, sliced out from Fig.k.h by (lcalao, b2)
O+2)

(B) The array [_ sliced out from Fig.h.t by (lcalao, b,
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c Moreover, for the several structures sliced out from TA-structure

OD
' or P(m,n)’ effective indexing methods are provided, which present

programmers much convienience in processing such "local structures".

Let T = (C, F) be an arbitrary TA-structure and c, be the
base ceil of I, Although each cell ceC can be indexed by an arbitrary
sequence of atomic links C(;GVGJCO) such that CO<c = ¢, it should be
noted that the following structural property of I' may permit us to

specify the index of c¢ wuniquely,

Theorem 4.3, Let I = (C, F) be an arbitrary TA-structure.

- : -1 _
Then for arbitrary b, and bj in (Gs- fa})k 7, bibj = bjb..

For arbitrary a; ¢ a and arbitrary bj in (GS— {a})bc-l, a.b. = b.a..

. 2 2 . .
In Fig.4.% for example, coaobazb a, and coa0a2b alb identify the

same cell and both are reduced to coaoa2al-b3 applying the above theorem,
It is such decomposability of a path into the path in the tree involved

énd that of the array that mekes it possible to denote the index by the

followin fashion,

Definition 4.6. Let I = (C, F) be the TA-structure of dimensio-

nality“«d, k» and o be the base cell of T, The index set I of

P is,

I= {(‘c:»’ 32"0‘9 Jd>l g € a*, j2>1},
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The indexing function J:0 —1 is given as follows.

Joyd J
For ¢ = b2b Beeeessbid .
F’ d (&ea*, JQ)O),

H(e) =€y dptlyennnnn, 34410 (4.7)

The index of c€C given in (4.7) is an integer tuple type index whose
firét component is especially a string type index, Thus the conventional
indices of a tree (string type) and an array (integer tuple type) are
naturally extended and composed in the index, This reflects the structural
property of a TA-structure I = (C, F). That is, for the corresponding
(T, A)-structure [ = (C, R), its skeleton structure h(I') is an array Ay

and one of whose successor links expands into trees in T,

Definition 4.7. Let P(m,m) be a TA-structure which is sliced
n
out by (a", by2yeeesnsy bgd) from the TA-structure I' of dimensionality

€d, k», and c, be the base cell of T, . The index set I(m,tn) of

0
P(m,n) is,

n
(m, ) _ {(g, 32,......, Jd)lF,Eax, 1s32\nd+l}
The indexing function (f : cmm) . mm) o e following

one~to-one function.

Ja (E<a’, 0<jgn )

. J
For ¢ = c:o<‘;b22......bd

S (e) = ¢, Jotlyereonn,ydgtly (composite type of string
and integer tuple)
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Definition 4.8. Let P(m,n) be the TA-structure presented in
Definition 4.7.
(1) For a tree r, = (Ct’ Ft) sliced out from P(m,n) by

(nea", b;Z,......, bgd), its index set is

The indexing function ‘th : 6 — I, is given as follows,
For c=c.ng b2 pla (n,& ea” +1EIgm, 0< Jj,<nyp)
= O j 2 oeo 00 d n’ L IT” < 4 \Jl\ L/s

S e) = € (string type) (4.9)

(2) For an array Pa = (Ca’ Fa) sliced out from P(m,n) by

1 ]
(&, 2*P2,......, n3d*Pd), its index set is

Iy = {Kipy dppeenneny 10| 1€aCIEIHL, 164, pp4l (2€05 )}

The indexing functionb,{)a : Ca —_— Ia is given as follows.

nl+i +i

n'
22 2"""bdd

For ¢ = cdnéi b d (n, g€ am, In| + 1El<m,

1

O <nd+ipgng ),

A (e) = {iy#lyeueuan, 141> (integer tuple type)

(4.10)
It is noteworthy that after slicing out a tree Pt Oor an array Pa
from P(m,n), its indexing can be accomplished by string type (4.8) or

integer tuple type (4.10) index respectively, being independent of the

composite type index (4.8), Consequently, when a programmer refers to
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a cell in I"t or Pa’ he may concentrate his attention only on its

position in Pt or Pa’ without any care of its position in P(m,n).

4.4 Addressing Punction of TA-structures

This section is devoted to the construction of addressing functions
which mép index sets of TA-structures and each of their local structures
(i.e.,trees or arrays sliced out) to an address set.

For an addressing function established, some of the criteria for
assessing the guality of it must be considered. At least, the next threé
criteria should be markedly takeninto account.

(a) Complexity of accessing to a data cell : the computational complexity
of the addressing function /¢ .

(b) Efficiency of storage utilization : the extent to which _4 stores
the set of data cells C in contiguous memory block, a measure of the

size of "gaps",

(¢) Complexity of traversal : For fie-F and (&, m)>eI, the difficulty

of computing the sequence

(£ )y (55,8, 0)y (5,058 0)), wevnenns

Pirst we construct two kinds of /L's for a "finite" TA-structure

P(m,m), taking account of criterion (a). One of them facilitates the

(nm).

traversals in each tree Pt in T The other facilitates the trav-

(mom)

ersals in each array Pa in T except along the "tree direction".

But these addressing functions can be obtained at the cost of
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criterion (b) : many "gaps" deteriorate the storage utilization,
Second we construct another two kinds of /L's inserting modifying
terms which compensate the gaps to the first two functions. Last we

give ,Lﬂs for the local structures sliced out from P(m,m).

In the beginning, we give a general definition of an addressing

function for an arbitrary data structure A which admits index set I,.

Definition 4.9. Let A be an arbitrary data structure which admits
index set Ia. An addressing function of A is the next one-to-one

total function.
A/:IA————»N,'

where N 1is a set of natural numbers, each of which denotes an address
of a computer memory (a random access memory ). |

We now discuss addressing functions of TA-structure P(m,m).

For the sake of simplicity, the dimensionality «d, k) of P(m"“) is
restricted to d = 2, We shall have little trouble extending our results
to the case of 423,

Many computational procedures would call for repeated traversal
along the specific directions (e.g. "tree-direction" or "array-directions")
of TA-structures, Since such traversal-oriented procedures are so common,
we now construct for P(m,n-l) two kinds of. addressing functions by

which repeated traversal along the specific direction is facilitated.

- 82 -



Let P(m,n) be a TA-structure of dimensionality {2, k» , and

{E," > be an index of an arbitrary cell in P(m’n—l).

A (&, 3)

a € + (3 - 1) (4.11)

A (e )

i

j +n(a€ - 1) (4.12)

Here, =2, a. ... a. (a, € a) is the decimal representation of k-
ll 12 lQ lj

. . m _ W m
ary number 13, .00 4g,y and ?k = a8 ) T 898 1 ee. 8 1 = 2k -~ 1.

For instance, for DP\?1?) of dimensionality «2, 33,

A/t( <aoa‘2’ 3)) alaOaZ + ?§<5 - 1) = 11 + 17)( 2 = 45’

]

fia( Cagags 3>) =3 + 3(aj3ga, - 1) = 3 + 3x(11 - 1) = 33.

Tt should be noted that the address of the base cell o, is

,4%(A(e, 1>) = j4a( (e, 1)) =1 regardless of the dimensionality

(man'l). (m,n—l)

and the dimension of T’

Although T is relocatable

(m,n-1)

in the sense that one can allocate T anywhere by fixing ¢

0
at an arbitrary address. This relocatability is easily guarantecd by

adding /Lt or /¢é the displacement address(co) - 1.

Example 4,6. Address of each cell in Fig.4.4 allocated by /4t

or /ié is shown inside or outside the cell in Fig.4.6 respectively.
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Figure 4.6. Allocation of Fig.Lk.k by /¢t (inside the cells)

and =Aia (outside the cells)
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1f At is chosen, a memory block is assigned to each tree Ti

in P(m,n—l)’ and to each cell set on the same level in Ti’ a consecutive
storage area is afforded, If ,4,a is chosen, a consecutive storage
area is afforded to each "b-axis".

It is noteworthy that /ét and ’¢a are based on storage mapping

functions of an array of dimension (m,n) ; i.e.,

A(¢i, 3)) =41 +m(j -1) (by row-wise order),
A(Ki, 30 ) =3 +n(i -1) (by column-wise order),
respectively. Only simple decimalization of alE, is additionaly required

to compute the address of (&, j). It should be noted however that
the storage utilization is not so good in the allocation by ,J,t or Aa
because of a "gap" existing between i-level and (i+l)-level in each tree.
This gap becomes wider when the level increases.
. . o . (m,n-1)
Now, we estimate the memory availability briefly when T =
(m,n=-1) (m,n-1) . sy s
(c¥™ , PV ) is stored by /ét or 4’3.' Here it is assumed

that one storage location is occupied by a single cell, In the following,

let 4 be At or /éa’ All the results that will be obtained are
same on At and /éa'

(m,n-1)

Let wrlz be the number of cells in each tree in T , hence
m ] : (m,n-1) . m
Ty = Y k=, Then, C‘ =g While, the size of storage area
i=0

required to store C(m,n-—l) is ,4«( ((k—l)m,n> ) =n ?E ( 57112 = 2k - 1),
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Hence memory availability ai is given as follows.

m
nfk- kmﬂ;l

npm (k1) (27-1).

m
O

For example, ag = 13/17, ag =1 for all m, and

lim o = lim o = 1/2. In addition,
k k
m-»co k—»o0
oc‘lf’l o™e 12 o ai{“ﬂ K2-1
=~ (£1), ~ (<1) for k>3,
m m+2 m 2
o 2k =3k : o k

Now, let (SE be the gap between i- and (i+l)-level in each tree,

i.e., gli‘ = A((aé*l, i>) - /4'(<81i<-1’ i>). ‘Then the gap ratio

k k k.
By = 654/ 05 1o

X k1+2_2k1+1+l
W oota

In particular, l§§ =1 for all i, which implies that there exists no

gap when k = 2 (binary tree). When k>3, B?z;k is obtained,

. (m,n-1) .

In the allocation of I'*’ by ”Lt or /ta’ it can be seen
that “E deteriorates monotonously with the lower bound 1/2 as k or
m increases, If one desires efficiency of storage utilization, by
inserting only a simple term which cancels every gap in each tree, one can

obtain new addressing functions of 100% storage utilization for arbitrary

k and m.

- 86 -



GE - afh) + 77 - 1)

A(Ce, 35)

A (<8, 5>) =

I
o
+
o]
~~
H‘"l
o
]
\
[\
1
| e
S’

Especially when k = 2, the insertedterm a.kli’IQ becomes 0O, so that

/4,' and /4,' coincide with /{ /(, respectively This implies the
t a t? a :
fact that a binary tree can have efficient addressing functions in both

memory availability and accessing time, i.e,, c0mputational simplicity.

1
Example 4.7. We show allocations of TA-structure in Fig.4.4 by /ét

| .
and /La inside and outside cells in Fig.4.7.

(m,n-1) n'-—l)

1
Let I, be a tree sliced out from T by (nea” , b

t
, : _ b
and T be an array sliced out from I‘(m’ n-1) vy (n°E, b° *P 1).

Lastly, we give addressing functions for both T and I‘a. Four kinds

.t
1 1
of functions can be constructed according to - ’J't’ ’ia’ /¢t’ /La.'

A(8) = Ang, n>) ( jElg m ),
A (<, 30) = ACng, s n'+3> ) (i< I8+ ).

Here,/{GfAt, /ia’ ,é;, /4/;‘}
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1
Figure 4.7 Allocation of Fig.k.4 vy A’t (inside the cells)

!
and by A’a (outside the cells)
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4.5 Conclusion

With the theoretical basis developed in the previous chapters,
we have newly defined a directly accessible data structure called a TA-
structure, which is a composite structure of trees and arrays. We have
described indexing methods of TA-structures and constructed their addressing
functions from some criteria,

We have not discussed an allocation of an infinite TA-structure
I = (C, F), which is "extendible" in the sense of[23].

In the following, we give an example of an addressing function for the

TA-structure of dimensionality £2, 2.
Foxr <£, J> eI,
. jml =
A<, 3>) =27 (aE - 1)

It will be a difficult but interesting work to analysis such an addressing

function of an infinite TA-structure under the three criteria listed in the

introduction of this chapter,
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CHAPTER 5

LABELED TA-STRUCTURES
5.1 Introduction

Of course, it is possible that each of the link labels in a TA-
structure T = (C, F) carries some meaning of the relation between the items
related by the link, The link labels are in fact the names of the functions
in 7, Thus the variety of "relations" which one can impose on the
links of ' is fairly restricted: in fact, restricted to HF kinds of
"relations", and this #F is usually small owing to the high uniformity
6f r, Moreover, each kind of successor links of both trees and arrays
in I' should emanate from every cell, Such restrictions arising from
the strong vniformity of I' may inevitably narrow the scope of the data
gtructures that are representable naturally and efficiently by our TA-
structures, Indeed we can say that the set of functions (links) F of
a TA-structure is only able to bear some rough meanings., That is to say,

F is not fully refined (or partitioned) to hold the meanings of various
ielations among the data items,

It is one of the urgent tasks that we establish a new scheme which
would overcome such defect. Such a scheme is especially needed when we
employ tree structures by which hierarchical structures (which is often intro-
duced on a data set) can be described directly and naturally.

In this chapfer, we provide the‘strategy of partitioning each function
in acF into the set of sub-functions. For a TA-structure thus "divided"

we explain its labeling scheme. Then we construct an addressing function

for this labeled TA-structure.
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5.2 Labeling Schemes of TA- structures

In this section, we provide the strategy of partitioning each
functioﬁ in ac¥ into the set of sub-functions. By the application
of this strategy to P(m,:n), we are able to obtain the "refinement of I‘(m’m)",
namely Re(l"(m’n)). What is more, we provide a labeling scheme ((, Z)
which fixes an arbitrary label that represents the meaning of the connection
between two items of a tree in Re(l"(m’n)).

In the following, let I = (C, F) be a TA-structure of dimensionality
€4, kY, and let p(mm) _ (c<m’“), F(m’“)) be a TA-structure sliced

out from 1T,

Definition 5.1. ILet a ¢ acCF (0<i<k-1). The refinement of

a,_on (m, m) is defined as

Re(ai;(m,n)) = {aﬂl 1< m}.

a., is provided according to the following rule,

if
ap = (KB 3 Bagy 3| [EI= 21, d¢n) (5.1)

In (5.1), <& 3> =<, Jpr Jzseess Jg> and J¢m implies that 3,87,
for each 2¢pgd.

The refinement of a on (m, n), Re(a; (m, n)) is defined as follows.

Re(a; (m, n)) = U Re(a, 5 (m, n))
a.ea
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Then, the refinement of F(m’“), Re(F(m’n)) is defined as

re((™)y = (M) o /c(min)y pe(a;(m, 'n))

Last, the refinement of P(m,n)’ Re(I‘(m’n)) is defined as follows,

Re(r(™M0)y o (c(m) | po(plmm)yy,

Example 5.1, For P(2’2) in Fig.4.4, Re(P(2’2)) is given in

Fig.5.1,

Definition 5.2, For aig(ogig k-1, 1<{< m) specified in (5.1),

let ¢ %be fixed, and @, be defined as follows.
o ={a;, | 0<i<k-1}.

Definition 5.3. Refine plm,m) according to Definition 5.1 and

obtain Re(I’(m’n)). Let L,, Lyy..., L be an arbitrary set of labels

1’

such that f#L,=k, and ¢, ¢ peeey ¢ be an arbitrary one-to-one function
g 1 T2 m

such that ¢p: ap—> Ly (1< €< m). Here oy comes from Definition 5.2.

L = U Ly is called a label set of a/c(m"n), and %= | ¢y is
1¢fsm 1<f<m.

called a labeling function of a/C(m’m). Note that ¥ is a function

which maps Re(a; (m, n)) to L and generally this I is not one-to-one.

(L, =) is called a labeling scheme of P(m,n)' Note that each label

(m,n)'

Q¢ specifies a (partial) function on C
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Figure 5.1. The refinement of the TA-structure in Fig.lL.l
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Definition 5.4, Refine DU™®) ana optain Re(P(m’n)).
For the labeling scheme (L, %) of P(m’n) specified, let F(m,n) -
( plmm)_ {a/c(m’n)})LJx;. Then, ‘

Re(r‘(m’n)) - (C(m,m)’ F(m,rn)>
TN~ T —~—

is said as the labeled F(m,n) by (AL, %).

Example 5.2. Foxr P(2’2) of dimensionality {2, 23» and the following
labeling scheme of P(2,2), the labeled P(Z’Z)by Q(,, %), namely
Re(P(2’2)), is described in Fig.5.2. o = U Lyy T = U ¢, are

——————— f=1,2 £=l,2
specified as follows,

I

L, = { FANAME, MANAME}, L { BIRDAY, AGE }

2

by = {Cagys FANAME) , (ayy, MANAMED}, ¢, = {(ay,, BIRDAY) , (a ,, AGE)}

Definition 5.5. Let (o, &) be a labeling scheme of p(mm),

We say the following table representation of (£, £) as a labeling table

of T (mr‘n) .
aO al » . * » . . ak_l
1 9,1 %,1 91,1
2 90,2 4,2 91,2
m ClO,m ql,m qk-l,m




AGE

BIRDAY
fP

_BIRDAY ‘C >

\C/ | B1roay
O

BIRDAY {>
€®§§NL

~_
W),

Figure 5.2. A labeled TA-structure
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Here, Iy = {qO,Q’ ql,!’ oo qk—l,f} (L<f<m).

Example 5.3. Let (K, Z) be as in example 5.2, then the labeling

table of P(2’2) is given as follows,

e &
1 FANAME MANAME
2 BIRDAY AGE

5.3, Addressing Schemes of Labeled TA-structures

In this section, first for a TA-structure I‘(m’n) labeled by some
labeling scheme (f,, %) in the previously described manner, we explain
its indexing method by introducing an index labeling function ¢.

Second, for the labeled index set I(m’n) of a labeled P(m’n), we explain

an addressing mechanism which makes use of a specified labeling table of

pmyn)

Definition 5.6, Let (L, Z) be a labeling scheme of I..(m,n).

Obtain the labeled TU™P) by (L, %), namely Re(r{™®)y,
T —

Let I pe defined as ,

——~—

}fm"“) ={<,4 , ;p)l{: e, (€ L XL,X oo XLy, 1<t gm, < n}.

For the index set I(m"n) of P(m,n), we define an index labeling function

P I(m,n)___) I(m,n) as follows,

—~—
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For each (a, a, ... a. , J)¢€ I(m’m) (1¢t<m, a, ¢ a),
ll 12 l_t lj

*( <&, 3)) = <(ai11¢1)(ai22¢2) (aitt"%t)’ 3> (aijjeaj)

Let ¢(<E&, 3> ) be denoted as (& , 7). Clearly, the labeled index

get I(m,(n) serves itself as an index set of Re(r‘(m’n)).
-~ T’

(m"n)

Proposition 5.1, Por a given T and its labeling scheme

(L, ¥), the index labeling function ¢ is one-to-one.

Proof.  The one-to-oneness of each function ¢p (1L m) immedi-

ately assures that ¢ is a one-to-one function,

Now we explain an addressing scheme of a labeled F(m’n). Let
1"<m’ln) = (C(m’m), F(m’n)) be a TA-structure of dimensionality {d, k».

Let (&L, Z) be a labeling scheme of Re(P(m’m)). For the labeled

(mym)

index set and an addressing function A of I‘(m’m>, we define

A: I(m’n)-——> N as follows, FPor (&, Jy€ I(m’m),

~

A, 35) = AW, 0. (5.2)

~ Note that since ¢ is one-to-one, tp-1(<< , J)) is uniquely determined
for (¢, J)€ I(m’n). That ;@{/ is an addressing function of Re(l"(m'n))
T ——

is ensured by the following proposition.,

Proposition 5,2. The function A: 1(MB)__ . N defined by (5.2)

(m,n) ) .

is an addressing function of Re(D
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Proof. For arbitrary (4,, 3D, {{as j)EI(m'm), let {é(((u 3>)

A, 33).  men, AN, 35)) = AT, 3>)) from

: -1 .
(5.2). since 4 is an addressing function, hence one-to-one, ¢~ ({<,, I))
= (p'l((éz, 3>). The proved one-to-oneness of ¢ implies (¢, J)

=(lyy I . Tus A is one-to-one and the proposition follows from

Definition 4.9. Q.E.D.

(m,m)

Now, for a given T and its labeling scheme (J{, I) specified,

(P(m,lﬂ) )

we describe the addressing algorithm of Re using the labeling

table. This is achieved by simple table looking up. Let /44 be an
)

(man)

arbitrary addressing function of T , and <qlq2 e Qo j;)e;\('m’n

be an arbitrary labeled index (qié Li’ 1<tgm). Let £ be a variable

whose value is in {ao, a.l, cen ak—l}*’ and [ be a variable whose value
is in U le L2x th. NEXT(z) is an operator whose value is the
1<tgm

first label in g, and REST(Z) is an operator whose value is ¢ with

NEXT(z) removed.

(1) Let £ = e and L=qq, .- q, -

(2) Let I = 0.

(3) Let I =7+ 1. Scan the I-th row of the labeling table and find
out NEXT(Z).
(4)  Obtain the function a; in a corresponding to the position of
I
NEXT(Z).
(5) Let € = £a; and ¢ = REST(g).
I
(6) If Ipt, calculate A( <E, 3>). This result is the desired
address of (qlq2 ee Qs I . Stop.

(7)  Go to (3).
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I(m,tn)

T~

Of course the address of <e, J) e can be obtained by calculating

A (<e, 3>).

5.4 Conclusion

In this chapter, a labeling scheme for TA-structures is presented,
and for a labeled TA-structure its addressing scheme is explained.

Now we conclude the merits of TA-structures (labeled TA-structures)
(i) The use of tree structures enlarges the scope of problems and their
associated data which can be dealt efficiently. That is, in the solutions
of many problems, the attributes or relations introduced on the set of
data items are "dominate-dominated" hierarchical relations. These hierar-
chical relations can be represented directly and efficienly by employing
tree structures.
(ii) Every data cell in TA-structures can store a data item; in "structures”
available in PL/I or trees available in COBOL, any data cells except leaf
cells cannot store data items.
(iii) A set of trees can be treated and the correspondence between two cells
in two trees Ft1 and th can be described explicitly. Furthermore,

each of these correspondence relations serves themselves as transition

paths between T and T, .
t t;

1
(iv) Labeled TA-structures are traverse-oriented structures; the linkages
can be labeled so that a desired cell is accessed from an arbitrary cell by
specifying the string labels of linkages between the two cells.

(v) The "local structures" of data stored in TA-structure can be easily

specified by slicing out trees or arrays. Moreover, when a programmer

refers to a cell in a tree or an array sliced out, he may concentrate his
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attention only on its position in it, without any care of its position in
the entire TA-structure.

On the other hand, we indicate the demerits of TA-structures
comparing with the data structures employed in the current high level
programming languages.

(i) Only complete trees can be available. When we want to represent an
irregular tree, we must embed it into some complete tree. Thus it is
often the case that the availability of data cells deteriorates extremely,
because of the so many unused cells,

(i1) Every data item stored in a cell of a TA-structure should have the
same data type (e.g., integer type or real type), or more strictly, the
same length,

These demerits are both inevitable limitations which stem from the
realization scheme of TA-structures adopted. The relaxation of these
limitations should be explored urgently; the use of other realization methods
such as chaining by pointers may be needed together with our concentrating
method, if necessary. It seems that a generalized TA-structure (and its
labeling) such as exhibited in Fig.5.3 is the most relaxed structure which is
"eompletely" directly accessible by an addressing function of "tolerable"
complexity. In fact the addressing function in Fig.5.3 is fairely complex
to compute and the cost of traversal is much high, comparing with the ordinary

TA-structures.
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103

0 1 2 3
1 A B c -
2 D E - -
3 F G H I

Figure 5,3 A generalized TA-structure and its labeling table
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CHAPTER 6

CONCLUSION

In this thesis, we have discussed several problems concerning with
data structures with addressing functions.

In Chapter 2 and Chapter 3, a model called a relational data graph
is propésed, for studying uniforﬁities in the structure of the "generalized"
directed graphs underlying data structures. Several advantagéous uniform;
ities needed to design addressing functions are formulated and investigated
in detail. Chapter 4 and Chapter 5 are devoted to the specific family
of directly accessible data structures called TA-structures, each of which
has a composite structure of trees and arrays.' For TA-structures, their
indexing methods, construction of addressing functions, and their labeling
schemes are explained,.

Although we have stated that the strong uniformities such as the two
kinds of uniformly self-embeddabilities seem to be indispensable to devise
simple index sets and efficient addressing functions, this is based on much
intuitive ground and we have not suggested a systematic way to construct
addressing functions for the class of relational data graphs with those
uniformities.

To treat and discuss generally the construction process which is
applicable to the wider class of relational data graphs such as those with
root blocks, is a very difficult, but interestingand practically valuable
persuit. For the success of this persuit, it seems an immediate task to
establish a measure as far as possible for each of those quality criteria

of addressing functions listed on Page 81. For example, it is possible
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to treat the criterion (c¢) (complexity of traversal) as "a easy traversal

means a traversal by (px + q)-type functions", This means that in

' = (C, R) (restricted to a functional graph) and its realization (¢, p)

on N (the set of natural numbers), for each ce C and f.€ R, the realization

of fi’ namely fif is given as follows.

(CU)(fiF) = PiX(CU) +q (pi,qi: constant)

Especially, in the case of finite arrays, for all fie R, p; = 1,
and in the case of k-ary complete trees, for all successors fie R, pi may
possibly be k.,

In general, the three criteria on Page 81 are mutually conflicting
and the weights assigned to each of those criteria are highly dependent
on particular computing environments, It also seems an important and
fruitful direction for further study to discuss the interplay among the
criteria,

As for TA-structures, in spite of the disadvantages of TA-structures
described previously, it seems a much significant work to design a programming
language in which TA-structures are available and to construct a processor for
the language, because of the various advantages of TA-structures outweighing
their drawbacks. -

TA-structures can be declared in an arbitrary programming language
in which array structures are available, and allocated on a storage area.

For we can transform a TA-structure P(m,n) into an array by linearly
(m,m).

rearranging the data cells in each tree in T For instance, for a

TA-structure P(m,n—l) of dimensionality &2, k», we provide an array A

' . . m
of dimension (f>k, n);f7E is given on Page 83, Then each index <&, j)
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of 1_,(m,n-l)

is transformed into a new index (alé, j> of A,
In [hl], we adopted Fortran as a language in which array structures
are available, Based on Fortran, we design a language where TA-structures

are declared and manipulated. It is an important work remained to dissolve

" the demerits of TA~structures and'provide a user more convenient facilities.
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