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Abstract

The conventional control theory deals with systems which can be modeled by difference
or differential equations. Modern technology, however, has created an important class of
systems, called discrete event systems (DESs), which are not suitable for modeling by
difference or differential equations. A DES is a dynamic system that evolves according to

the spontaneous and asynchronous occurrence of events.

This thesis studies state feedback control of DESs. State feedback control was initi-
ated by Ramadge and Wonham, and is a useful control technique for a class of logical
control problems where <ontrol specifications are given in terms of predicates on the state
set. Several typical control problems such as deadlock avoidance problems and mutual
exclusion problems can be solved in this framework.

First, we address state feedback control problems for automata based models. We
present necessary and sufficient conditions for the existence of a state feedback controller
under partial as well as complete observations. We then extend these results to decen-
tralized state feedback control where, instead of a global controller, a collection of local

controllers controls the system so that the global behavior satisfies the global specification.

Next, we study state feedback control of concurrent DESs modeled by controlled Petri
nets. The effect of concurrency is an important problem in real-time control of DESs.
Petri nets can represent concurrency explicitly. We derive a necessary and sufficient
condition under which there exists the unique maximally permissive controller.

Finally, we study blocking in state feedback control in the context of stability of
the system. We present an algorithm to compute the minimally restrictive nonblocking
controller. But a nonblocking controller may be restrictive because it disables all behaviors
which may lead to blocking. In this sense, blocking controllers can be practically more

efficient than nonblocking ones if blocking in the closed-loop system is resolved easily
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by some external intervention such as rollback mechanism. To achieve this purpose we
present an optimization technique to improve some logical performance measures of a

blocking controller.



Acknowledgements

I wish to express my appreciation to Professor Shinzo Kodama for supervising this thesis,
encouraging me during the course of this work and providing me with the ideal environ-
ment for my research activity.

I am deeply grateful to Professor Sadatoshi Kumagai for his continuous encouragement
and valuable comments about this work.

I especially wish to express my sincere gratitude to Professor Toshimitsu Ushio for his
continuous guidance and numerous valuable discussions throughout this work.

I am thankful to Professor Hajime Maeda for his useful comments on this thesis and
his encouragement throughout this work.

My sincere thanks are due to Professors H. Terada, . Shirakawa, N. Komoda, K.
Yoshino, C. Hamaguchi, H. Nishihara and K. Oura for serving as members on my disser-
tation committee.

I am grateful to Professor Ratnesh Kumar of University of Kentucky for his helpful
comments on this work.

I would like to appreciate Professors Kazumasa Hirai, Masao lkada and Kazunori
Yasuda of Kobe University for their continuous encouragement.

I would like to thank Dr. Dong-1k Lee for his continuous encouragement and support.
I also would like to thank the members of Kodama Lab. and Kumagai Lab. for their
kindly cooperation.

Finally, I warmly thank my parents, who always support and encourage me.

III



Contents

1 Introduction

1.1 Discrete Event Systems . . . . . . . . . .. ... ... .
1.2 Control of Discrete Event Systems . . . . . .. ... ... ..........
1.3 Contributions and Organization of the Thesis . .. .. ... ... .. ...
Preliminaries
2.1 Controlled Discrete Event Systems and State Feedback Controllers . . . . .
2.1.1 Automata Based Model . . . ... ... . ... ... ...
2.1.2 Controlled Petri Nets without Concurrency . . . . . .. .. ... ..
2.1.3 Controlled Petri Nets with Concurrency . . . ... ... ......
2.2 Predicates . . . . . . . L e e
2.3 Review of the State Feedback Control Theory . .. .. .. ... ... ...
2.3.1 Control-Invariance and Permissive Controllers . . . . . .. ... ..
2.3.2 Controllability and Observability . .. ... ... ... .......
2.3.3 Modular State Feedback Control . .. ... ... ... ... ....
2.3.4 Concurrently Well-Posedness . . . . .. ... .. ... ........
2.3.5 Maximally Permissive Controllers for Petri Nets . . . . . . ... ..
State Feedback Control under Complete Observations
3.1 Introduction . . . . . . . . . . e e
3.2 T'-Controllability and State Feedback Controllers. . . . . . ... ... ...
3.3 The Supremal I'-Controllable Subpredicate . . . . . . . . ... .......
34 Example . . . . oo

- 3.5 Concluding Remarks . . . ... ... ... ... oo

v

11
11
11
13
15
18
19
20
21
24
25
26



CONTENTS \Y%

4 State Feedback Control under Partial Observations 41
4.1 Introduction . . . . . . . . . . . . . e 41
4.2 Balanced State Feedback Control of the Golaszewski-Ramadge Model . . . 42
4.3 State Feedback Control of the Ramadge-Wonham Model . . . .. .. ... 47
4.4 Modular State Feedback Control . . . . . . . . .. .. .. ... ....... 53

4.4.1 Modular Specification and M-controllability . . . ... .. .. ... 53
4.4.2 Modular Feedback Synthesis . . . . . . .. ... ... ... ..... 55
4.5 Concluding Remarks . . . .. ... ... ... ... L. 62

5 Decentralized State Feedback Control 64
51 Introduction . . . ... ... ... ... ... .. ... ... . 64
5.2 Decentralized State Feedback Controllers . . . . . . . .. ... .. ..... 65
5.3 N-Observability and Decentralized Controller . . . ... ... .. ... .. 67
5.4 Decentralized Control with Tolerance . . . . . . . .. ... ... ... ... 75

5.4.1 The Infimal Controllable Superpredicate . . . .. ... .. .. ... 75
5.4.2 The Infimal N-Observable Superpredicate . . .. ... ... .... 77
5.4.3 Decentralized State Feedback Control Problem with Tolerance . . . 80
5.5 Concluding Remarks . . . .. .. ... ... ... . o L. 86

6 State Feedback Control of Petri Nets 87
6.1 Introduction . . . . . . .. .. . .. 87
6.2 Controllers for Petri Nets without Concurrency . .. ... ... ... ... 87

6.2.1 Maximally Permissive Controllers under Complete Observations . . 88
6.2.2 Maximally Permissive Controllers under Partial Observations . . . . 94
6.3 Controllers for Petri Nets with Concurrency . . . ... ... ... .. ... 98
6.3.1 Event Assignment Control . . . . . ... ... ... ... ...... 98
6.3.2 Resource Allocation Control . . . . .. .. .. .. ... ....... 101
6.3.3 Comparison between Gy and G, . . . . . .. ... L L. 104
6.4 Concluding Remarks . . . .. ... ... .. ... L. 106

7 Stabilization and Blocking 107

7.1 Introduction . . . . .. ... 107



A% ! CONTENTS

7.3 Blocking and E-stability . . . .. ... ... ... .. ... ... ..... 110
7.4 Logical Performance Measures . . . . . . . .. ... ... ... ....... 114
7.5 Nonblocking State Feedback Control . . . . . ... .. .. ... ...... 117
7.6 Improvement of Logical Performances . . . . . . ... ... ... ...... 119
7.6.1 Improving BM . . . . . . . . . ... e 119
7.6.2 Improving PM .. .. ... . .. ... o 122
7.6.3 Successive Improvements of BM and PM . . . ... ... ..... 128
7.7 Concluding Remarks . . . ... ... ... ... .. .. o ... 131

8 Conclusions 132



Chapter 1

Introduction

This thesis studies state feedback control of discrete event systems (DESs). State feedback
control was initiated by Ramadge and Wonham [68]. This theory provides systematic

methods of synthesizing controllers for a class of logical control problems on DESs.

1.1 Discrete Event Systems

The conventional control theory deals with systems which can be modeled by difference
or differential equations. Modern technology, however, has created an important class
of systems, called discrete event systems (DESs) [10, 21, 102, 69, 3, 109], which are not
suitable for modeling by difference or differential equations. A DES is a dynamic system
that evolves according to the spontaneous and asynchronous occurrence of events. For
example, sending a packet in a communication network, machine breakdown in a flexible
manufacturing system and arrival of a customer in a queueing system can be regarded
as events. States of a DES have logical or symbolic values, and state trajectories are
piecewise constant and event-driven as shown in Figure 1.1, where z!, z?, ..., are states
and «, B and A are events [69]. Examples of DESs include flexible manufacturing sys-
tems, communication networks, computer operating systems, traffic systems and database
management systems.

Several models for DESs have been proposed. The simplest models, called untimed
models, ignore the timing of occurrence of events, and deal with only the order of event
sequences. These are suitable models for dealing with logical control problems such as

deadlock avoidance problems [5, 27], concurrency control problems [1, 40] and mutual
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exclusion problems [66, 19]. Untimed models are classified into logical models such as
automata [23] and Petri nets [65] and algebraic models such as communicating sequen-
tial processes (CSP) [22], a calculus for communicating systems (CCS) [56] and finitely
recursive processes (FRP) [31].

On the other hand, the timing of occurrence of events is important and must be taken
into account in order to analyze some quantitative properties such as average throughput,
waiting time and so on. This leads to timed models. These can be also classified into
nonstochastic and stochastic models according to whether the timing of occurrence of
events is deterministic or stochastic. Logical models including the timing information
such as temporal logic [51] and timed Petri nets [70] are said to be deterministic logical
models. Process models with the timing information such as the min-max algebra [15]
are called deterministic algebraic models.

Stochastic models such as queueing networks [21] and stochastic Petri nets [55] have
been used to study both quantitative and qualitative properties [69]. These models,

however, have a shortcoming that it is generally difficult to analyze them.

state

T+ —
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Figure 1.1: A state trajectory of a DES.
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1.2 Control of Discrete Event Systems

Typical control problems of DESs include concurrency control problems, mutual exclusion
problems and so on. For each of these problems, several control techniques have been
investigated based upon the specified feature of each problem. However, as the complexity
of control specifications for DESs has been increasing, it is getting important to discover
general principles of control of DESs. This leads the need of systematic methods of
synthesizing controllers which do not depend on the specified feature of the problem.
For example, recent manufacturing systems are quite flexible and must adapt to changes
of complex specifications efficiently. In this connection, we need a multitasking control
system which supports the fast development of reliable control software [4]. A systematic
control theory of DESs can provide a formal design method of such a system as shown in
[4].

Ramadge and Wonham have proposed two control techniques for logical control prob-
lems: supervisory control [67] and state feedback control [68] in order to establish a sys-
tematic control theory of DESs. In their framework, the set of events are decomposed
into two subsets of controllable and uncontrollable eventé. Each controllable event can be
enabled or disabled by external control while any uncontrollable event cannot be disabled.
A controller disables some of the controllable events based upon observations of events or
states so that the system satisfies the given control specification [105, 106].

When a control specification is given in terms of a formal language, supervisory control
is useful. A controller, called a supervisor, disables some controllable events according to
the event string executed by the system. Ramadge and Wonham proposed the notion of
controllability of languages, and showed that there exists a supervisor for a given language
if and only if it is controllable [67]. Then this result has been extended to modular control
[107], control under partial observations [52, 14], decentralized control [14, 53, 103, 72, 32],
hierarchical control [108], on-line control [13] and real-time control [45, 59, 6, 2].

On the other hand, state feedback control is suitable for control specifications given
by predicates on the set of states. A state feedback controller disables some controllable
events based upon the current state of the system. Ramadge and Wonham considered
a control problem that the given predicate remains true at all reachable states in the

closed-loop system invariantly. In other words, any forbidden states are nerver reached
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in the closed-loop system, which is one of the fundamental requirements in control of
DESs. It has been showed that there exists such a state feedback controller if and only
if the predicate is ¥,-invariant [68]. Mutual exclusion problems and deadlock avoidance
problems can be formulated as the problem.

Li and Wonham addressed a control problem where desirable behavior of the system
is specified by the set of all reachable states. Intuitively, the problem requires that all
desirable states are reachable without visiting any forbidden states, which means that
some tasks can be accomplished successfully. It has been shown that there exists a
controller such that the set of all reachable states in the closed-loop system is equal to
the given predicate if and only if the predicate is controllable [46, 38]. These results have
been extended to modular control [68, 47], control under partial observations [49, 38],
control under strict concurrency [48, 100] and real-time control [60, 75].

Moreover, these theories have been applied to several application areas such as manu-
facturing systems [35, 7], database systems [40, 33, 74], communication systems [71, 99, 61]

and rapid thermal multiprocessors [4].

1.3 Contributions and Organization of the Thesis

This section provides an outline of the main contributions and the organization of the
thesis.

Chapter 2 gives basic notations on controlled DESs and state feedback controllers.
We first introduce two kinds of controlled DES models, automata based models [67, 20]
and controlled Petri nets [29, 34], and give the definitions of state feedback controllers for
each of these models [68, 34]. Next, we define several predicates on the set of states which
will be needed in the subsequent chapters. Moreover, we review basic results on the state
feedback control theory initiated by Ramadge and Wonham.

In Chapter 3, we address the state feedback control problem (SFCP) formulated in
[46] and [49] under complete observations. The SFCP requires that the set of all reachable
states in the closed-loop system is equal to the given predicate, namely, a control speci-
fication. Li and Wonham studied the problem in the Ramadge-Wonham model [67, 68]
where each controllable event is assigned to be enabled or disabled by external control

independently [49]. They gave a necessary and sufficient condition for the existence of a
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solution to the problem. The condition is called the controllability condition. However, a
given predicate is not always controllable. In this case, we have to synthesize a controller
for its controllable subpredicate. Li and Wonham also presented a closed form expression
of the supremal controllable subpredicate of a given predicate [49]. A simple method for

synthesizing a controller for the subpredicate is given by Kumar et al. [38].

Golaszewski and Ramadge considered controlled DESs with arbitrary control pat-
terns, which is called the Golaszewski-Ramadge model [20]. The Golaszewski-Ramadge
model is a generalization of the Ramadge-Wonham model. They showed that (L(G),T)-
controllability introduced in [20] is a necessary and sufficient condition for the existence
of a supervisor, where control specifications are given in terms of formal languages. It was
also shown that the supremal (L(G),I')-controllable sublanguage of any language exists

if the set ' of control patterns is closed under union.

We study SFCPs in the Golaszewski-Ramadge model under the assumption that the
set I' of control patterns is closed under union [93, 92]. First, we derive a necessary
and sufficient condition for the existence of a state feedback controller. We will call the
condition the I'-controllability condition. However, the given predicate is not necessarily
I-controllable. So we derive a closed form expression of the supremal I'-controllable
subpredicate of the given predicate. These results are a generalization of those obtained

in [49, 38].

Chapter 4 studies state feedback control under partial observations. In some real situa-
tions, states of the system are not completely observed. Such situations can be represented
by introducing a “mask” which is a mapping from the state space to the observation space
[38, 37]. In this framework, a state feedback controller must take the control action based
upon the observation under the mask. In the Ramadge-Wonham model, Li and Wonham
first studied this problem and defined observability of predicates under a restrictive as-
sumption on the mask [46]. The assumption holds for vector DESs [44, 49] but it does not
in general. Kumar et al. proposed another definition of observability without imposing
any restriction on the mask [38]. They then showed that controllability and observability
defined in [38] are necessary and sufficient conditions for the existence of a dynamic con-
troller which uses the entire history of state observations and control actions. But it is

practically impossible to check their observability condition if a DES generates an infinite
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number of observation sequences because the condition requires that the set of all possible

observation sequences satisfies some property.

We study (static) state feedback control under partial observations without any as-
sumptions on the mask [84, 85, 91, 87]. First, we consider a balanced state feedback
controller [49] in the Golaszewski-Ramadge model. At a reachable state of the closed-
loop system, a balanced controller enables every event whose occurrence keeps the control
specification true. We give a necessary and sufficient condition for the existence of a

balanced controller.

Next, we consider the Ramadge-Wonham model. In the case of complete observations,
any state feedback controller can be replaced by a balanced controller without changing
the set of reachable states [49]. However, we show that this property does not hold under
partial observations. So we present a necessary and sufficient condition for the existence
of a (not necessarily balanced) state feedback controller. We will call the condition the
M-controllability condition. Kumar et al. gave necessary and sufficient conditions for
the existence of a dynamic controller [38]. However, they did not discuss the existence of
a state feedback controller. Obviously, a state feedback controller is a special case of a
dynamic one. But a state feedback controller is easier to implement than a dynamic one.
Moreover, our condition has computational advantage in contrast to those obtained by
Kumar et al. because the computational complexity to check our condition is polynomial
if the system is modeled by a finite automaton. So our condition is useful from the
practical point of view. It is also noted that our condition is a generalization of the result

obtained in [49).

Moreover, we study modular control synthesis in the Ramadge-Wonham model. In the
case where a predicate is decomposed into conjunction of component predicates, modular
control synthesis [68] is very effective. Li and Wonham studied modular state feedback
control under complete observations [47, 49]. We consider modular (not necessarily bal-
anced) state feedback control under partial observations. We show that M-controllability
of component predicates implies M-controllability of their conjunction under a certain
condition. We then present a necessary and sufficient condition under which a state

feedback controller can be constructed in 2 modular fashion.

In Chapter 5, we consider decentralized state feedback control [86, 85, 81, 83, 94]. For
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distributed systems such as communication systems, a decentralized controller is more
suitable than a centralized one. In the context of supervisory control [69] based upon
formal languages, several decentralized control problems have been studied in [14, 53, 103,
72, 32]. However, the decentralized state feedback control problem based upon predicates
has not been discussed.

First, we consider the decentralized state feedback control problem (DSFCP), which
requires that the set of reachable states in the closed-loop system is equal to the specified
predicate. We introduce the notion of n-observability of predicates, and prove that the
controllability and n-observability are necessary and sufficient conditions for the existence
of a solution to the DSFCP.

Next, we consider the decentralized state feedback control problem with tolerance
(DSFCPT), which requires that the set of reachable states in the closed-loop system is
in the given admissible range. We show that the infimal controllable and n-observable
superpredicate of a given predicate plays an important role in solving the DSFCPT. We
then prove that there exists the infimal controllable and n-observable superpredicate of a
given predicate under a certain condition, and derive its closed form expression.

Chapter 6 studies maximally permissive controllers (MPCs) [35] for controlled Petri

nets (CPNs). In real DESs, there are two possible control schemes:

(S1) Control is done by event assignment i.e., the corresponding events are assigned to

be enabled concurrently.

(52) Control is done by resource allocation i.e., the corresponding events have to share

the resources.

For example, consider a situation in which two users share one resource, and the
control specification is to insure that more than one user cannot occupy the resource
simultaneously. Resource allocation control is done by assigning the number of users who
can occupy the resource, and it is not specified beforehand which user is permitted to
occupy it. On the other hand, event assignment control has to decide who occupies it.
Because two users may start to use the resource simultaneously if both are permitted
to occupy it, resource allocation control is more effective than event assignment control

in real-time systems. Also the effect of concurrency is a very important problem in the
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design of real-time control of DESs [48, 100]. If we restrict to serial DESs, both event
assignment and resource allocation can be modeled by automata based models, whereas,
in concurrent DESs, resource allocation cannot be modeled because such models cannot

represent the multiplicity of available resources.

In this connection, we note that a Petri net can represent the number of resources by
the corresponding number of tokens as well as simultaneous occurrence of events by a bag
over the set of transitions [65]. Especially, a CPN is an adequate model for controlled
DESs with concurrency. A CPN can model both event assignment and resource allocation
with suitable firing rules. Resource allocation can be modeled by assigning patterns of
input tokens to the external input places. In order to model event assignment, we use a
permission arc connected to each specified transition, and the assignment is represented

by putting one token in the corresponding external input place.

A given predicate ) is said to be control-invariant if there exists a state feedback
controller f such that all reachable markings in the CPN with f satisfy () whenever the
initial marking satisfies it [68, 34]. Such a controller f is called a permissive controller. In
general, there are more than one permissive controller for a control-invariant predicate.
A maximal element in the set of permissive controllers is called a maximally permissive
controller (MPC). The MPC is not necessarily unique in CPNs because, when we assign
patterns of input tokens to the external input places, it does not mean that each transition
is assigned to be enabled or disabled independently [95]. Krogh has proposed an algorithm
for computing all MPCs [34]. Then, however, if there are more than one MPC, we have
to select one MPC among them. The unique MPC is optimal in the sense that it allows
the largest set of transitions to fire at each marking. Also, from the theoretical point of
view, it is interesting to study the uniqueness of the MPC. Ushio has given a necessary
and sufficient condition for the unique existence of the MPC [95, 98]. However, we have

to construct the set of all permissive controllers in order to check the condition.

We first consider CPNs without concurrency. We derive the necessary and sufficient
conditions for the unique existence of the MPC under partial as well as complete obser-
vations, which can be checked without constructing the set of all permissive controllers
[78, 90]. Next, we extend the results to CPNs with concurrency controlled by either event

assignment or resource allocation [88, 79]. We then show that the unique existence of
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the MPC in resource allocation control implies that the same is true in event assignment

control.

In Chapter 7, we study blocking in state feedback control in the context of stability
of the system [89, 82, 80]. Control problems in DESs such as manufacturing systems are
often specified by both admissible states and target states. Admissible states represent a
set of states in which state trajectories of a system should reside. Target states, which is
a subset of admissible states, represent the completion of some tasks. Desirable behaviors
of a system are represented by trajectories of admissible states which reach target states
in a finite number of transitions. Such trajectories mean that the system has completed

some task successfully.

If control specifications are given not only by admissible states but also by target
states, the notion of the stabilization of DESs [64, 63, 8, 9, 104, 39, 76, 77] plays an
important role to design state feedback controllers. Intuitively, a DES is called stable if
all possible state trajectories visit target states in a finite number of transitions. We define
blocking [67, 12] in the context of state feedback control as follows: a system is said to be
blocking if some trajectories of admissible states cannot reach the target states. In other
words, a system cannot complete the execution of the task. So the notion of stabilization
is useful to study blocking. To the best of our knowledge, blocking has never been studied
in the context of state feedback control. Note that in contrast to [12] where behavior over
finite transitions of the system are considered, we can also deal with behavior over infinite
transitions in the context of state feedback control. Therefore blocking in state feedback

control includes not only deadlock but also livelock.

In the context of supervisory control, blocking can be dealt with by marked traces
of events, and both nonblocking and blocking supervisors have been studied [68, 12, 42].
The optimization techniques of a blocking supervisor in terms of two logical performance
measures, a satisficing measure and a blocking measure, have been proposed [12]. We
define two similar performance measures, called a prestabilizing measure and a blocking
measure, to analyze blocking in state feedback control. The former measure is described
by the predicate indicating states such that all admissible trajectories starting from them
can be extended to target states, while the latter by the predicate indicating states which
may lead to blocking. Note that the meaning of the blocking measure in state feedback
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control is different from that in supervisory control. In supervisory control based upon
formal languages, blocking means that there is a state such that no state trajectory from it
can reach target states [54]. But state feedback control can treat a wider class of blocking,
that is, the following case is also regarded as blocking: there is a state such that some
(infinite) state trajectory from it cannot reach target states. Note that such a state may
transit to a target state by an adequate firing sequence of events.

We first present an algorithm to compute the minimally restrictive nonblocking so-
lution [41, 12]. But a nonblocking controller may be restrictive because it prevents all
behaviors which may lead to blocking. In this sense, blocking controllers can be practi-
cally more efficient than nonblocking ones if blocking in the closed-loop system is resolved
easily by some external intervention such as rollback mechanism. A manufacturing system
is a typical example of such a system. Then by similar techniques to [12], we perform the
optimization of a given blocking controller in terms of the two performance measures.

Chapter 8 concludes the thesis with listing possible directions of future research.



Chapter 2

Preliminaries

This chapter gives basic notations on controlled DESs and state feedback controllers, and

reviews the state feedback control theory initiated by Ramadge and Wonham [68].

2.1 Controlled Discrete Event Systems and State
Feedback Controllers

This section introduces two kinds of controlled DES models, automata based models and
controlled Petri nets, and gives the definitions of state feedback controllers for each of

these models.

2.1.1 Automata Based Model
Let G be a DES modeled by an automaton [23].
G =(X,%,61z°), (2.1)

where X is the (possibly infinite) set of states, ¥ is the finite set of events, a partial
function 6 : £ x X — X is the transition function, and z° € X is the initial state. Let m
and n be the numbers of elements of ¥ and X, respectively. Let £* be the set of all finite
strings of elements in ¥, including the empty string e. The function § can be generalized

to § : £* x X — X as follows [23]: for any z € X and any s € &*,
o(e, ) = =,

5(30’, l') = 5(01 6(57 .’II)),

11
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whenever é(s,z) and §(c, 6(s,z)) are defined. We shall write 6(s,z)! for any s € ¥* and
any ¢ € X if 6(s,z) is defined.

Ramadge and Wonham incorporated a control mechanism into G as follows [67, 68].
The set ¥ is decomposed into two subsets ¥, and ¥, of controllable and uncontrollable
events, respectively, where ¥, U ¥, = ¥ and . N X, = . Each controllable event can
be enabled or disabled independently while all uncontrollable events cannot be prevented
from occurring by external controllers.

A state feedback controller proposed by Ramadge and Wonham [68] disables some
controllable events based upon the current state of G so that the behaviors of the closed-
loop system satisfy the given control specification. A subset v of ¥ including X, is called a
control pattem, which indicates the events enabled by a controller. The condition X, C «
implies that all uncontrollable events cannot be disabled by a controller. Let I' be a set
of all control patterns.

F={ye?2¥ 5, CyCx}, (2.2)
where 2F is the power set of £. A controlled DES G with ' given by Eq. (2.2) is called
the Ramadge-Wonham model.

Golaszewski and Ramadge introduced a controlled DES which allows arbitrary control
patterns [20]. In their model, T is given by a subset of 2% satisfying the following condition
(C2-1) [20].

(C2-1) There exists a control pattern v € I' with o € » for any o € X.

In general, T is a poset with respect to the set inclusion “C”. Such a controlled DES
is called the Golaszewski-Ramadge model [20]. The Golaszewski-Ramadge model is a
generalization of the Ramadge-Wonham model.

A state feedback controller f € I'* for G is formally defined by a mapping from X to
T [68], where I'X is the set of all mappings from X to I. f € T'X is static in the sense
that it selects a control pattern based upon only the current state of G. A closed-loop

system G | f for Eq. (2.1) with a controller f is described as follows [68]:
G l f = (Xa2750f7$0)7 (23)

where a partial function 6.5 : ¥ X X — X is defined by

_ | b8(o,2) if o € f(z),
bes(0,2) = { undefined otherwise.
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That is, each event o € & with o ¢ f(z) is disabled at the state £ € X. A block diagram
of G | f is shown in Figure 2.1.

veTl zeX

Figure 2.1: A block diagram of the closed-loop system G | f.

2.1.2 Controlled Petri Nets without Concurrency
Let NV be the set of all nonnegative integers. A Petri net is described by a 5-tuple [65, 58]
N =(P,T,1,0,M,), (2.4)

where P is the finite set of places, T is the finite set of transitions, My : P — A is the
initial marking, and 7 : T' x P — N (respectively, O : T' x P — A) is the number of arcs
from a place to a transition (respectively, from a transition to a place). It is assumed that
PNT =0. Let M : P — N be a marking of N, that is, M(p) denotes the number of
tokens in a place p € P.

We review execution rules for a Petri net N briefly [65, 58]. We assume that no two
transitions can fire simultaneously in N. A transition ¢ € T is said to be enabled at a

marking M, denoted by M|t >, if and only if the following condition holds.
I(t,p) < M(p) VpeP.

After the firing of ¢, M changes to M’, defined as follows, and we shall write Mt > M’.
For each p € P, '

M'(p) = M(p) + (O(t,p) — I(t,p)).
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A (finite) sequence w = ti,...t; is called a firing sequence from M to M’, denoted by
M[w > M’, if and only if there exist markings M, My, ..., and M;_; such that M[¢t; >
M, Mi[t, > M,,..., and M;_4[t; > M’. A marking M is called a reachable marking if
and only if there exists a firing sequence from the initial marking M, to M. Let R(N) be
the reachable set for N.

We introduce a controlled Petri net (CPN) N, for Eq. (2.4) as follows [30, 29]:

Nc - (P U Pc7T7 I7 Ic7 O’McO)v - (25)

where P, is the finite set of external input places, I, : T x P, — {0,1} is the number of
arcs from an external input place to a transition, and My : (P U P.) — N is the initial
marking. It is assumed that PN P, =T NP.=0. Let M,: (PUP.) —» N be a marking
of N, . For each p € P, M.o(p) = Mo(p), while My(p.) for each p. € P, is assigned by a
state feedback controller defined later. Let T, and T,, C T be the set of transitions whose

firings can and cannot be controlled by the external input places, respectively [34, 95].
T.={teT; I(t,p.) =1 for some p. € P,}.
T.=T-T.,:={teT; t¢T.}.
For each t € T, let ¢t C P, be the set of external input places for 1.
‘t = {pc € Py L(t,pc) = 1}.

For a CPN N,, a mapping 7 : P, — {0,1} is called a control pattern, and ¥(p.) is the
number of tokens assigned to the external input place p, € P, [95]. Let T' = {0,1}* be
the set of all control patterns. For each v, , 5 € T', the sum 7, + 75 is defined as follows:
for each p. € P,,

(Ve + 1) (pe) = max{va(pc), ve(pc)}- (2.6)

A controlled DES is modeled by a pair G = (N,,T'). A transition ¢ € T is enabled at
M., denoted by M.[t >, if and only if the following conditions hold [95].

I(t,p) < M.(p) Vpé€P,

I.(t,p.) < M.(p:) Vp. € P..
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After the firing of t, M, changes to M., defined as follows, and we shall write M [t > M.
For each p € P
M;(p) = Mc(p) + (O(t,p) — I(t,p)),

and, for each pc.e P., M!(p.) is determined by a state feedback controller defined later.
A state feedback controller f € ') is defined by a mapping from a reachable marking

of N to a control pattern. Let G | f denote the closed-loop system with a controller f.

Letting M be a marking of N, the corresponding marking M, of the closed-loop system

G | f is described by
_ | M(p) ifp e P,
Mele) = { /(M) itpeP.

It is obvious that, for each reachable marking M, of G | f, there exists a reachable marking
M € R(N) such that M(p) = M.(p) for any p € P [95]. For each f and f; € TRW™) we
define the sum f; + f, as follows: for any M € R(N),

(f1 + f2)(M) = /(M) + f2(M). (2.7)

2.1.3 Controlled Petri Nets with Concurrency

Let N = (P,T,1,0,M,) be a Petri net defined by Eq. (2.4). We extend NNV in order to

include concurrency, that is, simultaneous firing of transitions. Let
N = (P,T,1,0,M,) (2.8)

be the extended model. In N°", we permit the case where a transition can fire n-times
(n > 1) at the same time. A bag over T will be called a transition bag, or a b-transition
for short. (Reader are referred to [65] for definitions and notations of bags.) Let T be
the set of all b-transitions. T can be regarded as a subset of 7% by identifying {¢} € T
with ¢t € T. A b-transition ¢, of N°™ is said to be (concurrently) enabled at a marking
M, denoted by M]|t, >, if and only if the following condition holds.

ZI(t,p) <M(p) VpeP.

t€ts
After the firing of ¢,, M changes to M’, defined as follows, and we shall write M[t, > M'.
For each p € P,

M'(p) = M(p) + 3_(O(t,p) — I(t,p))-

i€ty



16 CHAPTER 2. PRELIMINARIES

It is obvious that the reachable set for N®" is equal to R(NN). So we also denote the
reachable set for N°* by R(N). Let T, C T*“ be the set of b-transitions which can be

enabled at some reachable marking M € R(N).
T, = {ty € T¥ Mty > for some M € R(N)}.

Let N = (PUP,,T,I,1.,0, M) be the CPN for Eq. (2.8). We consider two control

schemes for N{*:

(S1) Control is done by event assignment i.e., the corresponding events are assigned to

be enabled concurrently.

(S2) Control is done by resource allocation i.e., the corresponding events have to share

the resources.

Let T¥ and T2 be the set of all bags over T, and T, respectively. For each t, € Tj,
¢ty C P. will be defined by

= J .

tety

In the control scheme (S1) (respectively, (S2)) for N2°*, a mapping v : P, — {0,1}
(respectively, P, — N) is called a control pattern, and y(p.) € {0,1} (respectively, € N)
is the number of tokens assigned to the external input place p, € P. [95]. Let T'; = {0,1}%
(respectively, I'; = AN'P¢) be the set of control patterns for (S1) (respectively, (52)). For
each v, , 75 € I'; or T'y, the sum ~, + 4, is defined by Eq. (2.6).

Controlled DESs with the control schemes (S1) and (S2) are modeled by pairs G; =
(N, T;) and G, = (N2, T,), respectively. In Gy, a b-transition #, is enabled at M,, if
and only if the following conditions hold [24].

> I(t,p) < M.(p) VpeP
tety

I.(t,p.) < M.(p.) Vté€t, and Vp, € P..
The second inequality is different from the usual firing rules in Petri nets, and an arc from
an external input place to a transition will be called a permission arc. In G,, a b-transition
t, is enabled at M, if and only if the following conditions hold [95].
> I(t,p) < Mc(p) Vpe P,

i€ty
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> IL(t,p.) < M(p.) Vp.€ P..

i€ty

Under the marking M, shown in Figure 2.2, for example, {¢;,%;} is enabled in G; while it
is not enabled in G,. Note that, in both G, and G2, M_ [t} > for every ¢ C ¢, if M_[t, >.
After the firing of ¢,, M. changes to M, defined as follows: for each p € P,
M((p) = M.(p) + >_(O(t,p) - I(t,p)),
tety :

and M/(p.) is determined by a state feedback controller defined later.

Figure 2.2: An example of CPNs where a place, an external input place and a transition
are represented by a circle, a box and a bar, respectively.

In a controlled DES G, (respectively, G,), a state feedback controller f € F?(N) (re-
spectively, € I‘f(N)) is defined by a mapping from R(N) to I'y (respectively, T';). Let
G1 | f (respectively, G, | f) denote a closed-loop system with a controller f. Letting M
be a marking of N°”, the corresponding marking M, of the closed-loop system G, | f
(respectively, G, | f) is described by

_ ) M(p) if pe P,
Mi(p) = { fM)(p) ifpe P,

For each f, and f, € I‘f(N) or € Ff(N) , the sum f, + f; is defined by Eq. (2.7).
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2.2 Predicates

In this thesis, we consider the case that control specifications are given in terms of predi-
cates on the set X of states (respectively, the set R(V) of reachable markings) in automata
based models (respectively, in CPNs). Let Q be the set of all predicates on X (respec-
tively, R(N)). In this section, we only consider the case that the system is modeled by
an automaton (. Note that all predicates defined in this section can be applied to CPNs
directly.

We say that a predicate ) € Q is true (respectively, false) at z € X if Q(z) = 1
(respectively, = 0). For any predicates (); and @, € Q, negation ~ @Q;, conjunction

@1 A Q2 and disjunction @, V ), on Q are defined as follows: for any z € X,

~ Q@) =1 & Q=) =0,
(@1AQ2)(z) =1 & @i(z) =1 and Qs(z) =1,

Q1V Q2 =~ ((~ Q1) A (~ @2)).

We define a partial order on Q as follows: @1 < Q2 if @1(z) < Q2(z) for every z € X.
Also we shall write Q1 < Q2 if @1 < @2 and Q1(z) < Qz2(z) for at least one z € X.
We say that @ is a subpredicate of Q)3 or Q7 is a superpredicate of @, if @1 < Q,. The
predicates 0 and 1 € Q are defined by O(z) = 0 and 1(z) = 1 for each = € X, respectively.

For each ¢ € X, the predicate D, € Q and the transformations wp,, wip, and sp, on
Q are defined as follows [16, 17, 68]:

1 |
D,(z) = { 1 if §(o, ),

0 otherwise.

1 ifé(o,z)! and Q(é(c,2)) =1,
wpo(Q)(2) = { 0  otherwise.
wlp, (Q) = wps(Q)V ~ D,.
1 ifde’ € X with Q(z') =1 and §(0,2’) = =,
spe(@)(z) = { 0  otherwise.
(Readers are referred to [16] and [17] for detail explanations of these predicates.) The
predicate wip,(Q) holds on the states where the occurrence of o leads them to states

satisfying @), or o is not defined. The predicate sp,(Q) holds on the states which are
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reachable from states satisfying ) by the occurrence of ¢. The transformations wp,, wip,
and sp, are called the weakest precondition, the weakest liberal precondition and the

strongest postcondition, respectively [16, 17].
Let @ € Q be a predicate with Q(z°) = 1. The predicate Re(G, Q) € Q is defined
inductively as follows [49]:

(C22) Re(G,Q)(=) = 1;

(C2-3) If Re(G,Q)(z) =1 and wp,(Q)(z) = 1 for some o € X, then Re(G, Q)(6(c,z)) =
¥

(C2-4) Every state which satisfies Re(G, Q) is obtained as in (C2-2) and (C2-3).

Any z € X with Re(G, Q)(z) = 1 is reachable from z° via states satisfying Q. That is, for
any ¢ € X with Re(G,Q)(z) = 1, there exist z!,2?%,...,2™ € X and 0% o',...,0™ 1 € &
satisfying the following conditions (C2-5)-(C2-7) [49]:

(C2-5) é6(0%,2%) =29t for j=0,1,...m—1;
(C2-6) Q(z')=1 forj=0,1,...m;
(C2-7) z™ =uz.

For any state feedback controller f € I'X, the predicate Re(G | f,1) represents the set
of reachable states in G | f. For convenience denote Re(G | f,1) by Re(G | f). We
call Re(G | f) the closed-loop predicate for f. For any z € X with Re(G | f)(z) = 1,
there exist z!,2?,...,2™ € X and 6% 0',...,0™! € ¥ satisfying the following conditions

(C2-8)-(C2-10) [49):
(C2-8) 6(0?,29) =2/ forj =0,1,...m—1;
(C2-9) o7 € f(z?) forj=0,1,...,m—1;

(C2-10) z™ =z.

2.3 Review of the State Feedback Control Theory |

This section reviews the state feedback control theory initiated by Ramadge and Wonham

in [68].
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2.3.1 Control-Invariance and Permissive Controllers

In this subsection, we consider a DES G given by Eq. (2.1). Let @ € Q be a predicate.
We interprete () as the control specification. For a state feedback controller f € 'Y and

an event o € X, the predicate f, € Q is defined by

fola) = { (1) ftgefwjirsf.)’

Ramadge and Wonham considered a control problem which requires that @ is true
at all reachable states in the closed-loop system from each z € X with Q(z) = 1 [68].
Control-invariance of predicates was introduced in order to solve the problem. A state
feedback controller f € T'X is said to be a permissive controller of Q if, for any ¢ € I,

the following equation holds [68].

Q@ < wip,(Q)V ~ f,. (2.9)

@ is said to be control-invariant if there exists a permissive controller of @) [68]. It has
been proved in [68] that there exists a solution to the problem if and only if @ is control-
invariant. In the Ramadge-Wonham model, @) is control-invariant if and only if it is
¥, -invariant, that is, @ < wlp,(Q) for any o € I, [68]. Let Per(Q) C T'* be the set
of all permissive controllers. A partial order “<” on I'* is defined as follows: f; < f;
if fi(z) C fa(z) for all z € X. A controller fro.r € Per(Q) is said to be a mazimally
permissive controller (MPC) for @) if no controller f(# fn.z) € Per(Q) satisfies that
JSmaz < f [34]. In the Ramadge-Wonham model, for any control-invariant predicate Q,
the MPC exists uniquely {96], and is given by

fo) = { £~ {0 € %y wip,(Q)) =0} i Qx) =1, .10

b otherwise.

However, a given predicate may not be control-invariant. We define the two subsets

Cl(Q) and CI,(Q) of Q as follows:
CI.(Q)={Q € Q; @ <Q and @' is control-invariant},

CL(Q)={Q € Q; Q' > Q and Q' is control-invariant}.

In the Ramadge-Wonham model, both the supremal element of C'I.(Q) and the infimal
element of CI5(Q) under “<” always exist and are denoted by QT and Q!, respectively
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[68]. QT and Q' can be regarded the two optimal approximations of Q. Consider the two
sequences {Q);} and {Q}} of predicates defined by

Qo:=Q, Qir1:=QA ( A wlpa(Qj)) for j = 0,1,....

UEEu

and

Q=Q, Qu=QV ( V Spa(QQ-)) forj=0,1,...,

AN
respectively. Then QT and Q' are given by
R'=AQ; and Q'=V Q}
JEN JEN

respectively [68], where N is the set of all nonnegative integers.

Ushio studied MPCs in the Golaszewski-Ramadge model [96]. In general, there exist
more than one MPC in the Golaszewski-Ramadge model. In [96], the notion of weakly
interaction was introduced, and it was proved that there exists the unique MPC for raJ

control-invariant predicate @) if and only if @ is weakly interactive.

2.3.2 Controllability and Observability

In this subsection, we consider a DES G modeled by the Ramadge-Wonham model. Let
Q € Q be a predicate. Control-invariance of @} ensures that there exists a state feedback
controller such that all reachable states satisfy @ in the closed-loop system. However,
control-invariance of ) does not characterize the set of all reachable states, that is, there
may exist z € X with Q(z) = 1 which is not reachable from the initial state in the
closed-loop system [46]. So Li and Wonham studied the following problem [49]:
State Feedback Control Problem (SFCP): For a predicate Q € Q with Q(z°) = 1,
synthesize a state feedback controller f € 'Y such that Re(G | f) = Q.

Li and Wonham introduced the notion of controllability of predicates in order to solve

the SFCP.

Definition 2.1 [{9] Let Q € Q be a predicate with Q(z°) = 1. Q is said to be controllable
(with respect to G) if Q is ¥,-invariant and the following equation holds.

Q < Re(G, Q). (2.11)
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The following proposition has been proved in [49].

Proposition 2.1 [{9] Let Q € Q be a predicate with Q(z°) = 1. Then there exists a
state feedback controller f € TX such that Re(G | f) = Q, that is, f is a solution to the
SFCP if and only if Q is controllable.

When @ is controllable, a solution to the SFCP is given by Eq. (2.10).

However, a given predicate is not always controllable. In this case, we have to syn-
thesize ‘a controller for its controllable subpredicate. Let ) € Q be a predicate with
Q(z°) = 1. We denote the set of all controllable subpredicates of Q by C(Q) C Q.

CQ)={Q €Q; Qz*) =1, Q <Q and @ is controllable}.

The predicate [Q] € Q is defined as follows [49]:

[Q)(z) = 1 if z satisfies the following condition (C2-11),
“ 1 0 otherwise.

(C2-11) For any s € &%,
8(s,z)! = Q(é(s,z)) =1,

where ¥Z is the set of all finite strings of elements in ¥, including e.

Assume that [Q](z°) = 1. Then it has been proved in [49] that the supremal element of
C(Q) under “<”, denoted by sup C(Q), exists, and is given by

sup C(Q) = Re(G, [@D-

sup C(Q) is said to be the supremal controllable subpredicate of ) [49]. A simple method
for synthesizing a controller for the subpredicate is given by Kumar et al. [38]. In vector
DESs, Li and Wonhan showed that computation of sup C(Q) can be reduced to a linear
integer programming under certain conditions [50]. Ushio discussed relationship between
controllability of predicates and that of formal languages [97].

In some real situations, however, states of the system are not completely observed. In
order to represent such situations, we introduce a mask M : X — Y defined by a mapping
from the state space X to the observation space Y, that is, M(z) € Y is observed when
the current state of G is z € X [37, 38]. Note that the mask M is not necessarily injective.
In this framework, a state feedback controller f € T'* selects a control pattern f(z) based

upon M(z). That is, f satisfies the following condition (C2-12) [49, 38]:
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(C2-12) For any z, 2’ € X,
M(z) = M(z') = f(z) = f(2).

Let F, be the set of all controllers which satisfy the condition (C2-12).
A state feedback controller f € I'X is said to be balanced if f satisfies the following

condition (C2-13) [49]:
(C2-13) For any o € ¥ and any z, 2’ € X,

Re(G | f)(z) = Re(G | f)(<') = 1 and §(0,2) = &' = o € f(2).

Let Fy be the set of all balanced controllers which satisfy the condition (C2-12).

Li and Wonham also studied the problem formulated as follows [49]:
Balanced State Feedback Control and Observation Problem (BSFCOP): For a
predicate @ € Q with @(z°) = 1, synthesize a balanced state feedback controller f € Fj

such that Re(G | f) = Q.
For a predicate @ on X, the predicate M(Q) on Y is defined as follows [49]:

1 if M(z) =y for some z € X with Q(z) =1,
0 otherwise.

M@ -{

For a predicate Q' on Y, we will define the predicate M~1(Q’) on X as follows [49]:

W@ ={ 0 i

Li and Wonham imposed the following assumption (H) on the mask M in order to solve

the BSFCOP [49]:
(H) For any o € ¥ and z,z’ € X such that §(o,z)! and (0, 2')!,

M(z) = M(2") & M(6(o,z)) = M(é(c,z)).

Indeed, the assumption (H) holds for vector DESs {44, 49] but it does not in general.

Definition 2.2 [{9] Let Q € Q be a predicate. Q) is said to be observable (with respect
to G) if, for any o € ¥, the following equation holds.

M7 (M(sp(Q) AQ)) A sps(Q) < Q.
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Proposition 2.2 [/9] Let Q € Q be a predicate with Q(z°) = 1. Assume that the
assumption (H) holds. Then there exists a balanced state feedback controller f € Fy such
that Re(G | f) = @, that is, f is a solution to the BSFCOP if and only if Q is controllable

and observable.

When @ is controllable and observable, a controller f € I'X given by the following equation
is a solution to the BSFCOP.

= {FOB@n O L

where
2.(Q,z) = {0 € I.; there exists 2’ € M~} (M(z)) with (wp,(Q) A Q)(z') = 1}.

Kumar et al. proposed another definition of observability without imposing any restriction
on the mask M [38]. They then showed that controllability and observability defined in
[38] are necessary and sufficient conditions for the existence of a dynamic controller which

uses the entire history of state observations and control actions.

2.3.3 Modular State Feedback Control

We consider a DES G given by Eq. (2.1) under complete observations. In this subsec-
tion, we deal with control specifications which are given in terms of conjunction and/or
disjunction of component predicates.

Modular state feedback control was firstly studied by Ramadge and Wonham [68].
In the Ramadge-Wonham model, it has been proved in [68] that control-invariance of
component predicates implies control-invariance of the total predicates, that is, for any
control-invariant predicates @1, @2 € Q, @1 A Q2 and Q)3 V @ are also control-invariant.

Li and Wonham considered the case that a control specification is constructed from
conjunction of component predicates in the Ramadge-Wonham model [47, 49]. For state

feedback controllers f and g € I'X, we shall define the conjunction f A g € T'* as follows:
fAg(z)=f(z)Ng(z) foranyzeX.

Let Q; and Q, € Q be predicates with Q,(z%) = Q,(2°) = 1. Assume that [Q,](z%) =
[@2](z°) = [@1 A Q2](z°) = 1. Then there exist balanced state feedback controllers f; and
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f» € T'X with Re(G | f;) = sup C(Q,) and Re(G | f;) = sup C(Q;), respectively [49]. It
has been proved in [47] that Re(G | fi A f2) = sup C(@1 A Q2). However, the following

equation does not always hold.

sup C(Q1) A sup C(Q2) = sup C(Q1 A Q2). (2.13)

Predicates @ and @’ € Q with @(z°) = @’(z°) = 1 are said to be nonconflicting (with
respect to G) if the following equation holds [47].

Re(G, Q) A Re(G, Q') = Re(G, Q A Q). (21)

It has been also proved that Eq. (2.13) holds if and only if sup C(Q;) and sup C(Qs) are
nonconflicting [47].

However, the above results cannot be applied to the Golaszewski-Ramadge model
directly. Ushio presented conditions under which the unique MPC can be constructed in

a modular fashion for the Golaszewski-Ramadge model [96].

2.3.4 Concurrently Well-Posedness

Let G = (X, %, 6,z°%) be a DES modeled by the Ramadge-Wonham model. We extend G
in order to include concurrency [48, 100]. The extended concurrent DES G*™ is described
by

G = (X,2%, 6", z%). (2.15)

An event ¢ = {0y,0y,...,0m} € 2% indicates the simultaneous occurrence of oy, 03, ..., Opy.
Let v(e) be the set of all concatenations of all events belonging to e. We impose the
assumption that 8(sy,z) = 6(s,,z) for any sy, s, € v(e) and any z € X if 8(sy,2)!. The
assumption always holds for vector DESs [44, 49]. The transition function §°°™ : 2% x X —
X is defined as follows: for any e € 2% and any z € X, §"(e,z)! if and only if §(s, z)! for
some s € v(e) and §(c, z)! for any o € e. If §°"(e,z)!, then 6°°*(e,z) = é(s, z) for some
s € v(e). §°" is well-defined by the above assumption.

Let @ € Q be a predicate, and Per(Q) and Per®™(Q) be the sets of all permissive
controllers in G and G*°", respectively. Note that Per(Q)) is nonempty if and only if
Pere®(Q) is nonempty [100]. It is obvious that Per®™(Q) C Per(Q). Ushio et. al.

presented a necessary and sufficient condition for concurrency to have no effect on control,
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that is, Per™(Q) = Per(Q). A predicate @ € Q is said to be concurrently well-posed
(CWP) if the following condition (C2-14) holds [48]:

(C2-14) For any {a, 8} € 2% and any z € X with Q(z) =1,
6" ({a, B}, 2)!, Q(6(a,2)) =1 and Q(6(8,2)) =1 = Q(6*"({e, 8},2)) = 1.

Let @ € Q be a control-invariant predicate. Then it has been proved that Per®™(Q) =
Per(Q) if and only if @ is CWP [100].

2.3.5 Maximally Permissive Controllers for Petri Nets

Let N = (PUP,,T,1,1,,0,My) be a CPN with concurrency. For each t, € T}, the
predicate D,, € Q and transformations wp,, and wip;, on Q are defined as follows [34, 95]:

_ 1 if M[‘tb >,
Dy,(M) = { 0 otherwise.

1 i M[ty>M and QM) =1,
wpy, (Q)(M) = { 0 other[vsise. A

wlptb(Q) = 'I.Uptb(Q)V ~ Dtb'
In the controlled DES G, for a state feedback controller f € Ff(N) and a b-transition
ty € Ty, the predicate f;, € Q is defined by

Fu (M) = 1 if I(t,p.) < f(M)(p.) Vt€t, and Vp, € P,
t ~ 10 otherwise.

Also, in G, for f € I‘f(N) and t, € Ty, fi, € Q is defined by
' <
ftb(M) — { 1 if ZtEtb Ic(tapc) >~ f(M)(pc) Vpc = Pc’

0  otherwise.

Let @ € Q be a predicate, and Peri(Q) and Perz(Q) be the sets of all permissive
controllers of Q) in G; and G,, respectively. Note that Per;(@) is nonempty if and only if
Pery(Q) is nonempty. It has been proved that Per;(Q) # 0 (Peri(Q) # 0) if and only if
@ is Tr-invariant, that is, @ < wip,, (Q) for any t, € Ty N Ty [68, 34]. In general, there
are more than one permissive controller for a T'r-invariant predicate @ [95].

A partial order “<” on I‘?(N) and T’ 21:{(N) is defined as follows: f; < f, if and only if
H(M)(p:) < fo(M)(p.) for any M € R(N) and any p. € F..

In this thesis, the following condition (C2-15) will be imposed on f € I‘};(N), which is
called the minimum token condition, or the MTC for short [95].
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(C2-15) For any M € R(N) and any p. € P,, f(M)(p.) = 0 or there exists a b-transition
ty such that M[ty > and f(M)(p:) = Tier, 1c(t, pe)-

It is obvious that, for every state feedback controller f € Ff(N) , there exists a controller
F* € TE™ with the MTC such that if (fio A Dy, )(M) = 1 then f}(M) = 1 for any
M € R(N) and any t, € T, [95].

Let ,(Q) C Pery(Q) be the set of permissive controllers with the MTC for Q). A con-
troller fmae € Peri(Q) (respectively, 2,(Q)) is said to be mazimally permissive controller
(MPC) for @ in G, (réspectively, G,) if no controller f(# fiaz) € Peri(Q) (respectively,
22(Q)) satisfies that fr.. < f [34, 95]. In general, there exist more than one MPC in
either of G; and G,. Krogh has proposed an algorithm for computing all MPCs [34].
Holloway and Krogh presented a computationally efficient method to compute MPCs in
controlled marked graphs [24]. It has been proved that the computational complexity of
the method is polynomial [36]. They also derived sufficient conditions for liveness in the
closed-loop system with a MPC [25]. The method proposed in [24] has been applied to
other subclasses of CPNs: controlled state machines [101] and controlled complementary-
places Petri nets [11]. Holloway and Guan defined a subclass of CPNs which includes
both controlled marked graphs and controlled state machines, and extended the result in
[24] to the subclass [26]. In [19], Giua et al. presented a synthesis method of Petri net
supervisors for the problem same as [24].

However, if there are more than one MPC, we have to select one MPC among them.
The unique MPC is optimal in the sense that it allows the largest set of transitions to

fire at each marking. A necessary and sufficient condition for the unique existence of the

MPC has been shown in [95].

Definition 2.3 [95] Let Q € Q be a T-invariant predicate. @ is said to be weakly

interactive, (WI) in Gy (respectively, G2) if, for any f, g € Per1(Q) (respectively, Q2(Q))
and any ty, € Ty, the following equation holds.

Q < wlpy, (Q)V fi, V g,V ~ (f + 9)s,- (2.16)

Proposition 2.3 [95] Let Q € Q be a Tr-invariant predicate. Then the MPC for @
exists uniquely in Gy (respectively, Go) if and only if Q is WI in Gy (respectively, G).



Chapter 3

State Feedback Control under
Complete Observations

3.1 Introduction

In this chapter, we study the state feedback control problem (SFCP) formulated in 2.3.2
in the Golaszewski-Ramadge model. The SFCP requires that the set of all reachable
states in the closed-loop system is equal to the given predicate. First, we derive a nec-
essary and sufficient condition for the existence of a state feedback controller under the
assumption that the set T' of control patterns is closed under union. We will call the
condition the I'-controllability condition. However, a given predicate is not necessarily
T-controllable. So we next derive a closed form expression of the supremal I'-controllable
subpredicate of a given predicate. Finally, we demonstrate synthesis of a controller for a

simple manufacturing system.

3.2 TI'-Controllability and State Feedback Controllers

We consider a DES modeled by the Golaszewski-Ramadge model. Let G = (X, %, §,2°)

be an automaton defined by Eq. (2.1). In this chapter, we assume the following condition

(C3-1).

(C3-1) T is closed under union, that is, for any 43 and v2 € I', 17 U, € T

28
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Let @ € Q be a given predicate with Q(z°) = 1. For Q € Q and z € X, we define the
subset I'(@,z) € T as follows:

0(Q,z)={yeT; A wip,(Q)(z)=1}.

4547

(@, z) consists of all control patterns disabling all events whose occurrence leads to a

state where () is false. We define the transformation © on Q as follows:

{1 #IQ2) #0,
0(Q)(=) = { 0  otherwise.
Proposition 3.1 For any predicate Q) € Q and any state ¢ € X with ©(Q)(z) =1, there
exists the supremal element of T'(Q,z) under “C”, denoted by sup I'(Q, z).
Proof: It is sufficient to prove that, for any 71, v2 € ['(Q, z), 1 U2 € T'(Q, z). Since

oceviUy2 oEY oEY2

= 1,

A wip,(Q)(z) = (/\ ’wlpa(Q)) A (/\ WIPo(Q)) (z)

we have v, Uy, € I'(Q, z). )
The predicate Tp(Q) € Q is defined inductively as follows:
(C3-2) Tp(Q)(=%) =1

(C3-3) IfYp(Q)(z)=1and D,(z) =1 for some o € sup I'(Q, z), then Tp(Q)(é(o,z)) =
L

(C3-4) Every state satisfying Tp(Q) is obtained as in (C3-2) and (C3-3).

From the above definition, for any z € X with Tp(Q)(z) = 1, there exist z*,2?,...,2™ € X
and ¢°,0%,...,6™! € T which satisfy the following conditions (C3-5)-(C3-8):

(C3-5) 6(0?,2%) =2’ for j =0,1,...,m — 1,
(C3-6) Q(z')=1 forj=0,1,..,m,
(C3-7) o? e supl(Q,z7) forj=0,1,..,m—1,

(C3-8) a™ =uz.
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We introduce the notion of I'-controllability of predicates in order to solve the SFCP.

Definition 3.1 A predicate Q € Q with Q(2°) = 1 is said to be T-controllable (with
respect to G) if the following equation holds.

Q@ < Tp(Q) A O(Q). (3-1)

We now give a necessary and sufficient condition under which a solution to the SFCP

exists.

Theorem 3.1 Let Q € Q be a predicate with Q(z°) = 1. Then there exists a state
feedback controller f € TX such that Re(G | f) = Q, that is, [ is a solution to the SFCP
if and only if Q is T'-controllable.

We need the following lemma in order to prove Theorem 3.1.

Lemma 3.1 Let Q € Q be a predicate with Q(z°) = 1. Then, for any state feedback
controller f € TX such that Re(G | f) = Q, the following equation holds.

f(z) €D(Q,z) V€ X with Qz) = 1. (3.2)

Proof: Consider z € X with Q(z) = 1. Since Re(G | f) = @, we have Re(G | f)(z) = 1.
For any o € f(z), if D,(z) = 0 then wip,(Q)(z) = 1. If D,(z) = 1 then Q(é(c,2)) =
Re(G | f)(6(o,z)) = 1, which implies that wip,(Q)(z) = 1. Therefore, we have f(z) €
IQ,z). m

Proof of Theorem 3.1: (<) By I'-controllability of @, ©(Q)(x) = 1 for any z € X
with Q(z) = 1. So we can construct a controller f, € I'* as follows:
_ [ supT(Q,z) if Q(z) =1,

fi(z) = { by otherwise. (3.3)
We shall show that Re(G | f,) = Q. We shall first prove that Re(G | f;) £ Q. For any
r € X with Re(G | f,)(z) = 1, there exist z*,2?,...,2™ € X and 0% 0%,...,0™1 € &
satisfying the conditions (C2-8)-(C2-10) for f = f,. We shall show by induction that
Q(z) = @(z™) = 1. By the assumption, we have Q(z°) = 1. For the induction step,
suppose that Q(z*) = 1. By the condition (C2-9) and Eq. (3.3), o* € sup I'(Q, z*). So we
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have wip,«(Q)(z*) = 1, which implies that Q(z**') = Q(6(c*,2*)) = 1. This completes
the induction.

Next, we shall prove that @ < Re(G | f,). Since @ < Yp(Q), for any z € X with
Q(z) = 1, there exist z!,2%,...,2™ € X and 0°,0',...,6™! € ¥ satisfying the conditions
(C3-5)-(C3-8). In order to show that Re(G | f;)(z) = 1, it is sufficient to prove that
o’ € f,(z') ( =0,1,...,m — 1). By the conditions (C3-6), (C3-7) and Eq. (3.3), we have
o’ € fo(a?).

(=) Suppose that there exists f € ['X such that Re(G | f) = Q. Consider z € X with
Q(z) = 1. By Lemma 3.1, we have f(z) € I'(Q, z) # 0, which implies that ©(Q)(z) = 1.

We next prove that Tp(Q)(z) = 1. Since Re(G | f) = @, there exist 21,22, ..., 2" € X
and ¢° ¢',...,0™"! € ¥ which satisfy the conditions (C2-8)-(C2-10). We shall show by
induction that Tp(Q)(z) = Tp(Q)(z™) = 1. By the definition of Tp(Q), we have
Tp(Q)(2°) = 1. For the induction step, suppose that YTp(Q)(z*) = 1. It follows that
Q(z*) = 1. Then by the condition (C2-9) and Lemma 3.1, o € f(zF) C sup I'(Q, z¥).
Therefore, we have Yp(Q)(z*+!) = 1. This completes the induction. o

When Q is I'-controllable, the controller f, € I'* given by Eq. (3.3) is a solution to
the SFCP. Note that Theorem 3.1 is a generalization of the results for the Ramadge-
Wonham model obtained in [49, 38]. In the Ramadge-Wonham model, the condition of
I'-controllability is reduced to that of controllability.

Example 3.1 We consider a DES G shown in Figure 3.1, where ¥ = {¢',0%,0%}, X =
{z°, 2!, 2%, 23} and z° is the initial state. Let I' = {{o?,0%},Z}. Obviously, I satisfies
the condition (C3-1). Consider a predicate @ € Q given by

1 ifze {2°2 2%},

Q=) = { 0 otherwise,

Then we have

[(Q,2°) = {{o},6"}} and [(Q,2") = I(Q,2") =T,
which implies that ©(Q)(z°) = 0(Q)(z') = 0(Q)(z?) = 1. By the definition, Yp(Q)(z°) =
1. Since D,1(z°) = 1 and o' € supI(Q,z°) (respectively, D,2(z°) = 1 and o* €
supI'(Q,z°), we have Tp(Q)(z') = 1 (respectively, Tp(Q)(z?) = 1). So @ is I-
controllable, which implies together with Theorem 3.1 that a solution f to the SFCP
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exists, and is given by

{ot,0%} ifz=2"

flz) = { z otherwise.

Figure 3.1: The DES of Example 3.1.

3.3 The Supremal I'-Controllable Subpredicate

Theorem 3.1 shows that if @ € Q with Q(z°) = 1 is I'-controllable, then there exists a
state feedback controller f € I'* such that Re(G | f) = Q. However, a given predicate
@ is not always I'-controllable. In such a case, we have to synthesize a controller for its

I'-controllable subpredicate.
Let Q@ € Q be a predicate with Q(z°) = 1. We define the subset I'C(Q) C Q as

follows:
Ic(Q)={Q € Q; Q'(z% =1, @ < Q and @’ is I'-controllable}.

The following proposition shows that there exists the supremal element of I'C(Q) under
“<”. denoted by sup 'C(Q), if I'C(Q) # 0.

Proposition 3.2 For any Q € Q with Q(z°) = 1, there ezists sup I'C(Q) if I'C(Q) # 0.
Proof: Let I be any index set, and @, € I'C(Q) for each a € I. Letting
Q=V Qu
aecl
it is obvious that Q(z°) = 1 and Q < Q. We shall show that Q is T-controllable. For any
z € X with Q(x) = 1, there exists § € I such that Qg(z) = 1. By I'-controllability of @g,
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we have Tp(Qp)(z) =1 and ©(Qs)(z) = 1. Since Qg < Q, it follows that Tp(Q)(z) =1
and ©(Q)(z) = 1. So @ is I'-controllable. Therefore, I'C(Q) is closed under V, which
implies that there exists sup I'C(Q). o

Remark 3.1 For Q € Q with Q(z%) = 1, T'C(Q) is not always nonempty. We give
a counter-example as follows. We consider a DES G shown in Figure 3.2, where ¥ =
{o!,0%}, X = {2° 2,22} and 20 is the initial state. Let T' = {{o?}, {o?,0?}}. Obviously,
I satisfies the condition (C3-1). Consider a predicate ) € Q given by

{ 1 ifze {°2'}, ‘

0 otherwise,

Q(e) =

Then it is easily shown that I'(Q’, z°) = 0 for any subpredicate @’ of @ with Q'(z°) =1,
which implies that I'C(Q) = 0.

Figure 3.2: The DES of Remark 3.1.

We call sup I'C(Q) the supremal I'-controllable subpredicate of @). In the following, we

derive a closed form expression of sup I'C(Q). First, we define I'-invariance of predicates.

Definition 3.2 A predicate Q € Q is said to be I'-invariant (with respect to G) if the
following equation holds.

Q< 0(Q) (3.4)

In the Ramadge-Wonham model, the condition of I-invariance is reduced to that of ¥-

invariance [68]. Let @ € Q be a predicate. We define the subset I'7(Q) C Q as follows:

Q) ={Q' €Q; @ <Q and Q' is I-invariant}.
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I'7(Q) is nonempty because 0 € I'/(Q)). We denote the supremal element of I'/(Q) under
“<” by supI'I(Q). We call supI'I(Q) the supremal I-invariant subpredicate of Q. The

following corollary can be proved in the same way as Proposition 3.2.
Corollary 3.1 For any Q € Q, there ezists sup I'I(Q).

For @ € Q, we consider a sequence {Q;} of predicates defined by
QO = Q, Qj+1 = Q A @(QJ) fOI‘j = 0, 1, (35)

Proposition 3.3 Let Q) € Q be a predicate and {Q;} be the sequence of predicates defined
by Eq. (3.5). Assume that there exists m € N (the set of all nonnegative integers) such
that Qn, = Qm+41. Then

sup I'7(Q) = Qm. (3.6)

We need the following lemma in order to prove Proposition 3.3.

Lemma 3.2 Let @ € Q be a predicate and {Q;} be the sequence of predicates defined by
Eq. (3.5). Then, for any Q' € TI(Q),

Q<Q, VieN. (3.7)

Proof: We shall prove Eq. (3.7) by induction. Obviously, Q' < Q. For the induction
step, suppose that @' < Q. Then by I'-invariance of @', the following equation holds.

i

QAQ

< QA6(Q)
< QAO(Qk)
= Qrtr-

QI

This completes the induction.

Proof of Proposition 3.3: Since Q,, = Q41 < O(Qy.), we have Q,,, € TT(Q). We also
have by Lemma 3.2 that @' < @,, for any Q' € T'I(Q). a

The following corollary shows that sup I'/(Q) = A;cx @; under a certain condition on
I.
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Corollary 3.2 Let Q € Q be a predicate and {Q;} be the sequence of predicates defined
by Eq. (3.5). Assume that T is closed under intersection, that is, for any y1 and v2 € T,
1Ny €. Then

supTI(Q) = Qoo = A Q. (3.8)

JEN

We need the following lemma in order to prove Corollary 3.2.

Lemma 3.3 Assume that I' is closed under intersection. Then the transformation © on
Q is conjunctive, that is, for any indezx set I on Q,
© (/\ Qa) = A 0(Qu) O (39)
acl ael

Proof: It is obvious that, for each a € I,

0 (/\ Qa) < 0(Qu),

acl

which implies that

0 ( A Qa> < A 0(Qu).

acl o€l
We shall prove the reverse inequality. Consider z € X with A,c; ©(Qo)(z) = 1. For each

a € I, there exists v, € I with 7, € I'(Qq, ). Let 4 := Nyer Va- Since T is closed under
intersection, we have 4 € I'. For any o € 4, if D,(z) = 0 then wip, (Aser @<) (z) = 1.
We consider the case that D,(z) = 1. Since 0 € ¥ C 74 € I'(Qu, z) for each o € I, we

have
atp, (A Q)@ = A\ wlpn(Q)(e)
ael a€el
' = 1.
So we have ¥ € T' (Ayer Qar ©) # 0, which implies that © (A4e; Qo) (z) = 1. 0

Proof of Corollary 3.2: First, we shall prove that Q» € I'/(Q). By Lemma 3.3, we

have

Q?ao = /\ C?j

JEN

= QA (/\ (Q/\@(Qj)))

JEN
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< A o@y)

jeN

o(Ae)

which implies that Qu € ['I(Q). For any @’ € T'/(Q), we have by Lemma 3.2 that

Qoo= /\QjZQ/a

JEN
which implies that sup I'/(Q) = Q- o

Remark 3.2 When the set X of states is finite, it is easily proved that Eq. (3.5) always
converges to supI'J(Q) after a finite number of iterations. Note that Eq. (3.5) may

converge after a finite number of iterations even if X is infinite.

The following theorem presents a necessary and sufficient condition under which

I'C(Q) is nonempty.

Theorem 3.2 Let Q € Q be a predicate with Q(z°) = 1. Then TC(Q) # 0 if and only if
sup C1(Q)(z°) = 1.

We need the following lemmas in order to prove Theorem 3.2.

Lemma 3.4 Let Q € Q be a predicate with Q(z°) = 1. For any z € X with (8(Q) A
Tp(Q))(z) =1, the following equation holds.

sup I(Q, z) = sup I'(Yp(Q), ). (3.16)

Proof: Since ©(Q)(z) = 1, supI'(Q, ) exists. First, we shall show that supI'(@,z) C
sup I'(Tp (@), z). It is sufficient to prove that sup I'(Q,z) € I'(Yp(Q),z) # 0. Consider
o € sup'(Q,z). If D,(z) = 0, then wip,(Tp(Q))(z) = 1. We consider the case that
D,(z) = 1. Since Tp(Q)(z) = 1, we have Tp(Q)(8(c,z)) = 1, which implies that
wlp, (Tp(Q))(z) = 1. So we have supI'(@, z) € I'(Yp(Q), z).

Conversely, since Tp(Q) < @, we have supI'(Tp(Q),z) CsupI'(Q, ). 0

Lemma 3.5 The transformation T on Q is idempotent, that is,

To(To(Q) = To(@) VQ € Q with Q(a°) = 1. (3.11)
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Proof: Since Tp(Q) < @, it follows that Tp(Tp(Q)) < Tp(Q). We shall prove
that Tp(Q) < Tp(YTp(Q)). Consider z € X with Tp(Q)(z) = 1. Then there exist
2, 2%, ..., 2™ € X and 0% 0?,...,0™ ! € ¥ satisfying the conditions (C3-5)-(C3-8). We
shall prove by induction that Tp(Tp(Q))(z) = Yp(Yp(@))(z™) = 1. By the defini-
tion of Tp(Tp(Q)), we have Tp(Yp(Q))(z°) = 1. For the induction step, suppose that
Tp(Tp(Q))(z*) = 1. Then it is obvious that (0(Q) A Tp(Q))(z*) = 1. By the con-
ditions (C3-5), (C3-7) and Lemma 3.4, we have D,«(z*) = 1 and o* € supI(Q,2*) =
sup ['(Yp(Q), z¥), which implies that Tp(Tp(Q))(z**!) = 1. This completes the induc-

tion. a

Proof of Theorem 3.2: (<) We shall show that Tp(supI'I(Q)) € I'C(Q). First, we
shall prove that YTp(sup I'I(Q)) is I-controllable, that is, the following equation holds.

Tp(supT1(Q)) < Tp(Yp(sup T'I(Q))) A O(Yp(sup I'1(Q))). (3.12)

Consider z € X with Tp(supI'I(Q))(z) = 1. By Lemma 3.5, Yp(YTp(sup T'I(Q)))(z) = 1.
We shall show that O(Tp(supT'1(Q)))(z) = 1. Since YTp(supI'I(Q))(z) = 1, we have
supT'I(Q)(z) = 1, which implies that O(sup '/(Q))(z) = 1. So we have by Lemma 3.4
that

sup D(sup T7(Q), ) = sup (T p(sup T1(Q)), z) € D(Tp(supTI(Q)), ) # 0,

which implies that @(Tp(sup'I(@)))(z) = 1. Thus YTp(supI'I(Q)) is I'-controllable.
Since YTp(supTI(Q)) < supTI(Q) < @, we have Tp(sup'I(Q)) € TC(Q).

(=) By the definition of I'C(Q), @'(z°) = 1 for any Q' € T'C(Q). Since Q' € TI(Q),
we have Q' < sup I'7(Q), which implies together with Q’(z°) = 1 that sup I'1(Q)(z°) = 1.
O

Example 3.2 We consider the same system as Remark 3.1. Since X is finite, we have
by Proposition 3.3 that sup'/(Q) = 0, which implies together with Theorem 3.2 that
I'C(Q) is empty.

The following theorem presents a closed form expression of sup I'C(Q).

Theorem 3.3 Let Q € Q be a predicate with Q(z°) = 1. Assume that sup'I(Q)(z°) = 1.
Then sup I'C(Q) is given by the following equation.

sup'C(Q) = Tp(supT'I(Q)). (3.13)
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Proof: From the proof of Theorem 3.2, we have Tp(supT'I(Q)) € T'C(Q). Obviously,
Q' <supTI(Q) for any Q' € I'C(Q). So we have by I'-controllability of Q' that

Q' < Tp(Q") < Tp(supTI(Q)),

which implies that Eq. (3.13) holds. O

3.4 Example

We consider a simple manufacturing system consisting of two groups of two machines and
a buffer shown in Figure 3.3. The machines in Group 1 take materials and pass products
to the buffer B after processings are completed. Then the machines in Group 2 take
products from B in order to carry out further processing. Each machine M;; (2,7 = 1,2)
is modeled by an automaton whose state transition diagram is shown in Figure 3.4, where
states I;; and W;; are “idle” and “working”, respectively. The buffer B is also modeled by
an automaton with the state set A/ (the set of nonnegative integers). Its state transitions

are as follows:

Bi; =12 :non+l,

a; (7=1,2) : n—-n-1.
The sets ¥ and X of events and states are given by

8 ={aij, By ; 1,5 = 1,2},
X = {(z11, 712, 221, T2z, T) 5 @5 € {Li;j, Wi5} (3,5 = 1,2) and 2 € N},
where z;; (1,7 = 1,2) is the state of the machine M;; and z; is the state of the buffer B.
Let 2° = (143, I13, I51, I52,0) be the initial state and I be the set of control patterns given
by
I'= {y1,72, 713,74}

where

n o= I

Y2 = {eg 855 1,5 =1,2},

v = {ewj, B 4,5 =1,2},

v = {Bj;1,7=12}



3.4. EXAMPLE

machine machine
My, N 1 My
buffer
B
machine // \\ machine
M 12 M 22
Group 1 Group 2

Figure 3.3: A simple manufacturing system.

Figure 3.4: A state transition diagram of M;;.
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It is obvious that I' satisfies the condition (C3-1).
Now we consider a control specification that the buffer content x; is always at most e
(> 1), which is given by the following predicate ) € Q:

1 if Ty S e,
0 otherwise.

Q(($11,$12,1721,$2272b)) = {

For simplicity let e = 1. It is easily shown that @ is not I'-controllable, and sup I'C'(Q) is
given by

1 if (211, %12) + 25 < 1,
0 otherwise,

sup FC(Q)((fEn, T12,T21, T22, $b)) = {

where

2 if T = W11 and T2 = W127
ﬁ(xn, 1312) = 1 if (3311 = Wi, and 212 = 112) or ($11 = I;; and ;5 = le),
0 otherwise.

A state feedback controller f € T'X such that Re(G | f) = sup I'C(Q) is given by

v i §(z11, 212) + 25 =1,
41 otherwise.

f((il?u, L1245 T21, 22, ivb)) = {

3.5 Concluding Remarks

We studied the SFCP in the Golaszewski-Ramadge model. First, we defined I'-controllability
of predicates, and showed that I'-controllability is a necessary and sufficient condition for
the existence of a state feedback controller under the assumption that the set I of control
patterns is closed under union. We then derived a closed form expression of the supremal
I'-controllable subpredicate of a given predicate. These results can be applied to the case
where there is no assumption on I' by adapting nondeterministic state feedback controllers

[48] instead of deterministic ones [73, 93].



Chapter 4

State Feedback Control under
Partial Observations

4.1 Introduction

In this chapter, we study state feedback control under partial observations without any
assumptions on the mask. First, we consider the balanced state feedback control and
observation problem (BSFCOP) formulated in 2.3.2 in the Golaszewski-Ramadge model.
We show a necessary and sufficient condition for the existence of a balanced state feedback
controller.

Next, we consider the Ramadge-Wonham model. We present a necessary and sufficient
condition for the existence of a (not necessarily balanced) state feedback controller. We
will call the condition the M-controllability condition. Kumar et al. showed necessary
and sufficient conditions for the existence of a dynamic controller [38]. However, they
did not discuss the existence of a state feedback controller. Obviously, a state feedback
controller is a special case of a dynamic one. But a state feedback controller is easier to
implement than a dynamic one. Moreover, our condition has computational advantage
in contrast to those obtained by Kumar et al. because the computational complexity to
check our condition is polynomial if the system is modeled by a finite automaton. So our
condition is useful in the practical point of view.

Finally, we study modular control synthesis in the Ramadge-Wonham model. We show
that M-controllability of component predicates implies that of their conjunction under
a certain condition. We then present a necessary and sufficient condition under which a

controller can be constructed in a modular fashion.

41
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4.2 Balanced State Feedback Control of the Golaszewski-
Ramadge Model

In this section, we study the BSFCOP in the Golaszewski-Ramadge model. Let G =
(X,X,8,2°) be an automaton defined by Eq. (2.1), and @ € Q be a predicate with

Q%) = 1.
We present a necessary and sufficient condition for the existence of a solution to the

BSFCOP.

Theorem 4.1 Let Q € Q be a predicate with Q(2°) = 1. Then there exists a balanced
state feedback controller f € Fy such that Re(G | f) = Q, that is, f is a solution to the
BSFCOP if and only if the following conditions (C4-1)-(C4-3) hold.

(C4-1) @ = Re(G,Q), equivalently Q < Re(G, Q).

(C4-2) Foranyy €Y with M(Q)(y) = 1, there ezists a control pattern v, € T' satisfying

the following equation.

E(y) Ny = Zo(y), (4.1)

where
Y(y)={oc €L ; D,(z) =1 for some z € M~ (y) with Q(z) =1}
and

To(y) = {0 € X ; wp,(Q)(z) =1 for some z € M~ (y) with Q(z) = 1}.

(C4-8) For any o € T, the following equation holds.

QA M (M(wp,(Q) A Q)) < wips(Q). (4.2)

Note that computational complexity to verify the conditions in Theorem 4.1 is O(mn?)
if X is finite.
We need the following results in order to prove Theorem 4.1. The following lemma

gives an interpretation of the condition (C4-3).
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Lemma 4.1 Let ) € Q be a predicate. Then the condition (C4-3) holds if and only if,
for any ¢ € ¥ and any z,z’ € X with Q(z) = Q(2') = 1, the following condition (C4-4)
holds.

(C4-4) M(x)=M(z'), Do(z) = D,(2') =1 and Q(é(c,2')) =1 = Q(6(s,z)) = 1.
Proof: («) Consider ¢ € ¥ and = € X satisfying
(@AM (M(wp,(Q) A Q)))(z) = 1. (4.3)

Obviously, wip,(Q)(x) = 1 if D,(z) = 0. Suppose that D,(z) = 1. Eq. (4.3) implies that
there exists ' € X such that M(z) = M(2'), wp,(Q)(z') = 1 and Q(z’) = 1. It follows
that D,(z’) = 1 and Q(6(c,2')) = 1. So we have by condition (C4-4) that Q(6(c,z)) = 1,
which implies that wlp,(Q)(z) = 1. Therefore, for any o € ¥, Eq. (4.2) holds.

(=) Consider 0 € ¥ and z,2’ € X such that Q(z) = Q(z') = 1, M(z) = M(z'),
D,(z) = D,(z') =1 and Q(é(v,2')) = 1. Then we have-wp,(Q)(z’) = 1, and Eq. (4.3)
holds by the above assumption. So by Eq. (4.2), we have wip,(Q)(z) = 1, that is,
Q(6(o,z)) =1. o

The following proposition gives a role of the condi_tidns (C4-2) and (C4-3).

Proposition 4.1 Let Q € Q be a predicate. Then there ezxists a state feedback controller
f € F, which satisfies the following condition (C4-5) if and only if the conditions (C4-2)
and (C4-8) hold.

(C4-5) For anyo € ¥ and any z € X with Q(z) =1,

D,(z)=1ando € f(z) & Q(é(o,z)) =1.
Proof: (<) Suppose that the conditions (C4-2) and (C4-3) hold. Then consider f € I'*
given by

_ | e i M(Q)(M(z)) =1,

f(z) = { any  otherwise, (4.4)
where yp(z) is a control pattern satisfying Eq. (4.1) with y = M(z). It is obvious that
f € F,. We shall show that f satisfies the condition (C4-5). Consider z € X with

Q(z) =1, and let y = M(z). Then M(Q)(y) = 1. For any o € X such that D,(z) = 1
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and o € f(z), we have o € E(y) N f(z) = Lg(y), which implies that there exists z’ € X
such that M(z') =y, Q(z') = 1, D,(2') = 1 and Q(6(c,2")) = 1. So by Lemma 4.1,
we have Q(6(c,z)) = 1. Conversely, consider ¢ € ¥ such that Q(6(c,2)) = 1. Then
o € Yo(y), and by the condition (C4-2) and Eq. (4.4), we have ¢ € f(z). Therefore, f
satisfies the condition (C4-5).

(=) Suppose that there exists f € F, which satisfies the condition (C4-5). First, we
shall prove the condition (C4-2). Consider y € Y with M(Q)(y) = 1. Let v, = f(z) for
z € M~!(y). Note that v, is uniquely defined since f satisfies the condition (C2-12). We
shall show that

L(y) Ny € Zo(y)-

For any o € X(y) N +,, there exists 2’ € X such that M(z') =y, Q(z') =1, D,(2") =1
and o € f(z'). Since f satisfies the condition (C4-5), we have Q(é6(o,2z')) = 1, which
implies that o € ¥g(y). Conversely, we shall show that

2(1) N7y 2 Saly).

For any o € ¥g(y), there exists 2’ € X such that M(2') =y, Q(z') =1, D,(z') =1
and Q(6(o,2')) = 1. Then it is obvious that o € ¥(y). Since f satisfies the condition
(C4-5), we have o € f(z'), which implies together with M(z’') = y that o € f(z’) = ~,.
Therefore, v, satisfies Eq. (4.1), and the condition (C4-2) holds.

It remains to prove the condition (C4-3). Suppose that there exist ¢ € ¥ and z,2' € X
such that Q(z) = Q(z') = 1, M(z) = M(z'), D,(z) = D,(2') = 1 and Q(6(0c,z’)) = 1.
By Lemma 4.1, it is sufficient to show that Q(6(s,z)) = 1. By the condition (C4-5),
we have o € f(z'), which implies together with M(z) = M(z') that o € f(z). Since
D,(z) =1 and o € f(z), the condition (C4-5) asserts that Q(é(c, z)) = 1. O

By the proof of Proposition 4.1, it is shown that, for a predicate ) € Q, a controller
f € F, given by Eq. (4.4) satisfies the condition (C4-5) if the conditions (C4-2) and (C4-
3) hold. The following lemma shows that f is a solution to the BSFCOP if the conditions
(C4-1)-(C4-3) hold.

Lemma 4.2 Let Q € Q be a predicate with Q(z°) = 1. Then if the conditions (C4-1)-
(C4-3) hold, then Re(G | f) = @ for a state feedback controller f € F, given by Eq. (4.4),
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and f is balanced.

Proof: First, we shall prove that Re(G | f) < Q. For any z € X with Re(G | f)(z) =1,
there exist z!,2%,...,#™ € X and 0¢°,0!,...,0™ ! € T satisfying the conditions (C2-8)-
(C2-10). We shall prove by induction that Q(z) = Q(z™) = 1. By the assumption,
we know that Q(z°) = 1. For the induction step, suppose that Q(z*) = 1. By the
conditions (C2-8) and (C2-9), it follows that D «(z¥) = 1 and o* € f(z*). The proof of
Proposition 4.1 shows that f satisfies the condition (C4-5). Therefore, we have Q(z*+1) =
Q(8(c*, z*)) = 1. This completes the induction.

Next, we shall prove that Q < Re(G | f). The condition (C4-1) implies that, for any
r € X with Q(z) = 1, there exist z',z%,...,2™ € X and 0°,0?,...,0™"! € ¥ satisfying the
conditions (C2-5)-(C2-7). In order to show that Re(G | f)(z) = 1, it is sufficient to prove
that o7 € f(z/) (j = 0,1,...,m — 1). By the conditions (C2-5) and (C2-6), Q(z?) =1
and Q(6(c?,z7)) = 1 for each j. Recall f satisfies the condition (C4-5). So, we have
ol € f(a%).

Finally, we shall show that f is balanced. Consider ¢ € ¥ and z,2’ € X such that
Re(G | f)(z) = Re(G | f)(z') = 1 and 6(o,z) = 2. Since Re(G | f) = Q, we have
Q(z) = 1 and Q(6(o,z)) = 1, which imply that o € f(z) since f satisfies the condition
(C4-5). So f is balanced. O

Proof of Theorem 4.1: (<) By Lemma 4.2.

(=) In order to derive the condition (C4-1), it is sufficient to prove that @ < Re(G, Q).
Consider f € Fy such that Re(G | f) = Q. Then, for any z € X with Q(z) = 1, there
exist z!,z%,...,z™ € X and 0% 0l,...,0™ 1 € X satisfying the conditions (C2-8)—(C2-
10). We shall show by induction that Re(G,Q)(z?) = 1 (j = 0,1,..,m). From the
definition of Re(G,Q), we have Re(G, Q)(z?) = 1. For the induction step, suppose that
Re(G, Q)(z*) = 1. Then it is obvious that @(z*) = 1, which implies that Re(G | f)(z*) =
1. By the conditions (C2-8) and (C2-9), we have §(c*,z*) = zF*! and o* € f(z*), which
imply that Re(G | f)(z**1) = 1, that is, Q(z**!) = 1. So we have Re(G, Q)(z**1) = 1.
This completes the induction, and we have Re(G, Q)(z) = 1.

It remains to prove the conditions (C4-2) and (C4-3). Since f € F,, Proposition 4.1
implies that it is sufficient to show that f satisfies the condition (C4-5). Consider z € X
with Q(z) = 1. Then Re(G | f)(z) = 1. For any ¢ € ¥ such that D,(z) = 1 and
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o € f(z), we have Re(G | f)(6(o,z)) = 1, that is, Q(6(c,z)) = 1. Conversely, for any
o € ¥ such that Q(6(c,z)) = 1, it follows that D,(z) = 1 and Re(G | f)(é(o,z)) = 1.
Since f is balanced, we have o € f(z). Therefore, f satisfies the condition (C4-5). O

Example 4.1 We consider the DES shown in Figure 3.1. Let T = {{o'},X}. Assume
that the mask M : X — Y is given by

M@z)=y VzeX.

Consider a predicate () € Q given by
|1 ifze {2},
Q=) = { 0  otherwise.

By the definition, we have Re(G, Q)(2°) = 1, which implies together with wp,:(Q)(z°) =1
that Re(G,@)(z') = 1. So the condition (C4-1) holds. It is obvious that M (Q)(y) = 1 and
{o'} €T satisfies Eq. (4.1), which implies that the condition (C4-2) holds. Additionally,
since wip,1(Q)(z°) = wip,1(Q)(z') = 1, we can easily show that the condition (C4-3)
holds. Thus, by Theorem 4.1, a solution f to the BSFCOP exists, and is given by

f(z)={c'} VzeX.

Example 4.2 We consider the same manufacturing system as 3.4. Let M : X —

{0,1,2} x Z* be the mask as follows:
M((xn,i'?u’ 3721,3722,%)) = (ﬁ($11,$12),$b)7

where
2 if Ir11 = W11 and T12 = le,
ﬂ(xllaa:l?) = 1 lf (:1:11 = Wll and Ty = 112) or (11311 = 111 and T = W12)’
0 otherwise.
That is, we can observe only the number of working machines in Group 1 and the buffer
content.
It is easily shown that @) does not satisfy the conditions in Theorem 4.1. We consider
a subpredicate Q' of Q) given by

1 if f(zy1,212) + @5 < 1,
0 otherwise.

Ql((ivuaﬂ?lz,xm,xzz,xb)) = {
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Then @’ satisfies the conditions in Theorem 4.1, and there exists a balanced controller

f € Fy such that Re(G | f) = @'. In fact, f is given by

v if §(z11, 212) + 26 = 1,
v otherwise.

f(($11,$12,$21,$22, l‘b)) = {

4.3 State Feedback Control of the Ramadge-Wonham
Model

In this section, we assume that a DES G is modeled by the Ramadge-Wonham model [67,
68], where 3 is decomposed into two subsets X, and X, of controllable and uncontrollable

events, respectively, and the set T' of control patterns is given by Eq. (2.2), that is,
F={ye2%L,CyC3}

Li and Wonham imposed the assumption (H) shown in 2.3.2 in order to solve the
BSFCOP. Indeed, it holds for vector DESs [44, 49] but it does not in general.
We propose a definition of observability.

Definition 4.1 A predicate Q) € Q is said to be observable (with respect to G) if, for any
o € X, FEq. (4.2) holds.

The following corollary shows that in the Ramadge-Wonham model, the conditions

obtained in Theorem 4.1 are reduced to those of controllability and observability.

Corollary 4.1 For a predicate Q@ € Q with Q(z°) = 1, there exists a balanced state
feedback controller f € F, such that Re(G | f) = Q if and only if Q is controllable and
observable (in the sense of Definition 4.1).

Li and Wonham has proposed a concept of observability, and obtained necessary and
sufficient conditions for the solvability of the BSFCOP under the assumption (H) [49].
Their observability is equivalent to that defined above under the assumption (H). So Corol-
lary 4.1 is a generalization of the Li and Wonham’s result. Note that the computational
complexity to verify the conditions in Corollary 4.1 is also O(mn?) if X is finite.

In the case of complete observations, for any f’ € I'X, there exists a balanced controller
f € TX such that Re(G | f) = Re(G | f') [44, 49]. But this property does not always

hold under partial observations. We shall give a counter-example as follows.
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Example 4.3 We consider a DES G shown in Figure 3.2. Let X, = {¢*} and &, = {o'}.
Assume that the mask M : X — Y is given by

M(z)=y VzelX.

Consider a predicate ) € Q given by

1 itz e {292,
Q) = { 0  otherwise,
and a controller f' € I'Y given by
flz)=%, VzeX (4.5)

Then f' € F,, and Re(G | f') = Q. But f’ is not balanced because §(c?,z") is disabled
by f’. Moreover, it is easily shown that there does not exist a balanced controller f € Fj

such that Re(G | f) = Re(G | f').

The above example implies that even if @ € Q does not satisfy the conditions in
Corollary 4.1, there may exist a controller f (which is not balanced) such that Re(G |
f) = Q. The following proposition can be easily proved by Corollary 4.1.

Proposition 4.2 For a state feedback controller f' € F,, there exists a balanced state
feedback controller f € F, such that Re(G | f) = Re(G | f') if and only if Re(G | f') is
observable (in the sense of Theorem 4.1).

Next, we consider a problem formulated as follows:
State Feedback Control and Observation Problem (SFCOP): For a predicate
@ € Q with Q(z°) = 1, synthesize a state feedback controller f € F, such that Re(G |

f=Q.
Note that the SFCOP does not require a balanced controller.
For Q € Q and y € Y, we shall define the subset A(Q,y) € X, as follows:

A(Q,y) = {0 € Z. ; there exists z € M~}(y) such that (QA ~ wip,(Q))(z) = 1}. (4.6)
The predicate Re*(G, Q) € Q is defined inductively as follows:

(C4-6) Re*(G,Q)(=") =1,
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(C4-7) If Re*(G,Q)(z) = 1 and wp,(Q)(x) = 1 for some o € ¥ — A(Q, M(z)), then
Re*(G,Q)(8(a,z)) = 1, where ¥ — A(Q,y)={c€X; o ¢ A(Q,y)};

(C4-8) Every state satisfying Re*(G, Q) is obtained as in (C4-6) and (C4-7).

From the above definition, for any z € X with Re*(G, @Q)(z) = 1, there exist 21, z2,...,2™ €
X and 0%,01,...,0™! € ¥ satisfying the following conditions (C4-9)—(C4-12):

(C4-9)  §(a?,2%) =29t forj=0,1,..,m —1;
(C4-10) Q(z?)=1 forj=0,1,..,m;
(C4-11) o € T — A(Q,M(z7)) forj=0,1,....,m—1;
(C4-12) 2™ = 2.
- Note that the definition of Re(G, Q) does not require the condition (C4-11) (see thé

conditions (C2-5)-(C2-7)). Obviously, Re*(G,Q) < Re(G, Q).
We introduce the notion of M-controllability of predicates.

Definition 4.2 A predicate Q € Q with Q(z°) = 1 is said to be M-conirollable (with
respect to G) if Q) is Xy -invariant and the following equation holds.

Q < Re'(G, Q). (4.7)

We give a necessary and sufficient condition under which a solution to the SFCOP

exists.

Theorem 4.2 Let Q € Q be a predicate with Q(z°) = 1. Then there exists a state
feedback controller f € F, such that Re(G | f) = Q, that is, f is a solution to the SFCOP
if and only if Q is M-controllable.
Proof: (<) Consider f € T'* given by
[ SoAQME) i M@ME) =1,

fla) = { z otherwise. (4.8)
It is obvious that f € F,. We shall show that Re(G | f) = Q. We shall first prove that
Re(G | f) £ Q. For any z € X with Re(G | f)(z) = 1, there exist z*,z?,...,2™ € X and
0% 01,...,0™ 1 € ¥ satisfying the conditions (C2-8)-(C2-10). We shall show by induction
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that Q(z) = Q(z™) = 1. By the assumption, we have Q(z°) = 1. For the induction
step, suppose that Q(z*) = 1. If o € I, then we have Q(z**!) = Q(8(o*, %)) = 1
since @ < wip,x(Q). Suppose that o € L. Letting y = M(z*), M(Q)(y) = 1. By the
condition (C2-9) and Eq. (4.8), we have o* € f(z¥) = £ — A(Q,y). Since o ¢ A(Q,v),
we have Q(z*+!) = Q(6(c*,2*)) = 1. This completes the induction.

Next, we shall prove that Q < Re(G | f). Since @ < Re*(G, Q), for any = € X with
Q(z) = 1, there exist z,2%,...,2™ € X and 0% 0%, ...,0™"1 € ¥ satisfying the conditions
(C4-9)-(C4-12). In order to show that Re(G | f)(z) = 1, it is sufficient to prove that
ol € f(2?) ( =0,1,...,m — 1). Obviously, M(Q)(M(z’)) = 1. By the condition (C4-11)
and Eq. (4.8), we have 0/ € £ — A(Q, M(z%)) = f(z9).

(=) Suppose that there exists f € F, such that Re(G | f) = @. It is obvious that, for
any o € L,, Q < wlp,(@). We shall prove that @ < Re*(G, Q). Since Re(G | f) = @Q, for
any ¢ € X with Q(z) = 1, there exist z!,z%,...,2™ € X and 0%, ¢%,...,06™ ! € ¥ which
satisfy the conditions (C2-8)-(C2-10). We shall show by induction that Re*(G, Q)(z) =
Re*(G,Q)(z™) = 1. By the definition of Re*(G, Q), we have Re*(G, Q)(z°) = 1. For the
induction step, suppose that Re*(G, @)(z*) = 1. It is proved that Q(zFt') = 1 in the
same way as the proof of Theorem 4.1.

It remains to show that o* € ¥ — A(Q, M(zF)). Suppose that of € A(Q, M(z¥)).
Then there exists ' € X such that M(z') = M(2*) and (QA ~ wip,+(Q))(z') = 1. So
we have Q(8(c*,2')) = 0. Since Re(G | f) = @, we have Re(G | f)(z') = 1. We also have
of € f(zF) = f(z') since M(z') = M(z¥). It follows that Re(G | f)(6(c*,z")) = 1. This
contradicts the hypothesis that Re(G | f) = Q. Therefore, we have by the definition of
Re*(G, Q) that Re*(G,Q)(zF+!) = 1. This completes the induction. O

When @ is M-controllable, the controller f € T'X given by Eq. (4.8) is a solution to the
SFCOP. Note that the computational complexity to verify the condition in Theorem 4.2
is also O(mn?) if X is finite.

Obviously, a state feedback controller is a special case of a dynamic one studied in [38].
So the condition in Theorem 4.2 satisfies those for the existence of a dynamic controller
obtained by Kumar et al. [38]. However, they did not discuss a necessary and sufficient
condition for the existence of a static controller. A static controller is easier to implement

than dynamic one. So from the practical point of view, Theorem 4.2 is useful. Moreover,
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the condition in Theorem 4.2 has computational advantage in contrast to those obtained
in [38].

We shall show that, for any M-controllable predicate @), there exists the unique maxi-
mally permissive controller [34, 96]. Let F,(Q) be the set of all state feedback controllers
f € F, such that Re(G | f) = Q. The following proposition shows that there always
exists the supremal element of F,(Q)) under “<”, denoted by sup F,(Q).

Proposition 4.3 For any M-controllable predicate Q € Q with Q(z°) = 1, sup Fo(Q)
ezists and is given by Fq. (4.8).

Proof: Consider f € 'Y given by Eq. (4.8). Then, from the proof of Theorem 4.2, we
have f € F,(Q). Suppose that there exists g € F,(Q) which does not satisfy that g < f.
Then there exist ¢ € ¥ and z € X such that o € g(z) and o ¢ f(z). It is obvious that
o € ¥, and M(Q)(M(z)) = 1. Since o ¢ f(z), we have 0 € A(Q, M(z)) which implies
that there exists 2’ € X such that M(z') = M(z) and (QA ~ wip,(Q))(z') = 1. It is
easily proved that Q(6(c,z’)) = 0 and Re(G | 9)(6(o,2’)) = 1, which contradict the fact
that g € F,(Q). O

Example 4.4 We consider the same system as Example 4.3. We have Re*(G,Q)(z%) =1
by the definition of Re*(G, Q). It can be easily shown that A(Q,y) = {o?}, which implies
together with wp,:1(Q) = 1 that Re*(G,Q)(z') = 1. Thus, @ is M-controllable, which
implies together with Theorem 4.2 that a solution to the SFCOP exists, and given by
Eq. (4.5).

Example 4.5 We consider the system consisting of three processes and two resources
shown in Figure 4.1. The processes 1 and 3 use the resources 1 and 2, respectively, while
the process 2 uses either the resource 1 or 2. Each process is modeled by an automaton
shown in Figure 4.2, where the state I; and W;; are “idle” and “using the resource j”,

respectively. The sets ¥ and X of events and states are given by
Y= {al, 91, Qgz, O3, ,3,‘ (’l = 1, 2, 3)},

X = {($17$27$3) ; T1 € {—717W11}, T2 € {127 Wa, W22}, T3 € {13,W32}},

where z; (¢ = 1,2, 3) is the state of the process i. Let z° = (I3, I3, I3) be the initial state.
Assume that X. = {&1, @01, 022,03} and £, = {8 (: = 1,2,3)}.
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Process Process Process
1 2 3
Resource Resource
1 2

Figure 4.1: The system consisting of processes and resources.

Process 1 Process 2 Process 3

Figure 4.2: State transition diagrams of processes.
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Now we consider a control specification that at most one process can use a resource
simultaneously, which is given by the following predicate Q € Q:

0 if (zq = Wiy and 22 = W) or (22 = Wy and 23 = Whay),
1 otherwise.

Q(ar,2)) = {

We consider the case that we cannot know which resource a process is using while we can

observe whether a process is idle or using a resource. So the mask M is given by

M(a:l’ T2, $3) = (y17 Y2, y3),

where

o I,' if T; = Ii,
i = W; otherwise.

It is easily shown that @ is not observable but M-controllable. By Theorem 4.2, the
SFCOP is solvable and f := sup F,(Q) is given by
( Y- {021} if Ty = Wn, TI9 = 12 and I3 = I3,

Y- {0(22} lf Iry = Il, Iq9 = 12 and r3 = W32,
Y- {0121, 0122} if 2y = Wiy, 25 = I; and x3 = Why,

A

f((z1,20,23)) = ¢ B —{} if 2y = I, 3 € {Wa1, Wa,} and x3 = Wi,
- {03} if Iy = Wll) g € {W217 W22} and T3 = I3,
Y- {al,ag} if Ty = Il, Iy € {Wzl, W22} and T3 = I3,
Y otherwise.

\

4.4 Modular State Feedback Control

4.4.1 Modular Specification and M-controllability

In this subsection, we consider the case that a control specification is constructed from
a finite number of conjunctions of component predicates. Let Q; and Q; € Q be M-
controllable predicates with @Q1(z°) = @Q3(z%) = 1. Then Q; A Q; may not be M-

controllable. We shall give a counter-example as follows.

Example 4.6 We consider a DES G shown in Figure 4.3, where & = X, = {¢!, 02,0}
and X = {z° 2!, 22, 2%, 2*}. Let 2° be the initial state. Assume that themask M : X — Y
is given by

M(z)=y VzeX.
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Figure 4.3: The DES of Example 4.6.

Consider M-controllable predicates ¢J; and @), € Q given by

if z € {29 21,23}, 1 ifz e {2° 2% 23},

1
@(2) —{ 0 otherwise, and Qs(2) _{ 0 otherwise,
respectively. Then @, A Q3 is given by

_ 1 ifze {-'170, -'33}7
Q1A Qxz) = { 0  otherwise.

It is easily shown that @; A @2 is not M-controllable.

Theorem 4.3 Let Q; and Q2 € Q be M-controllable predicates with Q1(z°) = Q2(z°) =
1. Then Q1 A Qo is M-controllable if and only if the following equation holds.

Re’(G,@1) A Re™(G,Q2) < Re™(G, Q1 A Q). (4.9)

Proof: (<) Since @; and @, are M-controllable, the following equations hold for any
o€ X,

Q1 < Re(G, Q1) Awlp,(Qu),

Q2 < Re™(G, Q2) A wips(Q2).
From Eq. (4.9), we have

Q1AQ2 < Re'(G,Q1) Awlp,(Q1) A Re™(G, Q2) A wips(Q2)
< Re’(G,@Q1 A Q2) Awlps(Q1 A Qs),

which implies that Q; A Q2 is M-controllable.
(=) It is obvious that Re*(G, Q1) < @ and Re*(G, Q2) < @,. So we have

RC*(G, Ql) A Re*(G7 Q2) S Ql A Q2)
which implies together with M-controllability of @; A @2 that Eq. (4.9) holds. 0
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4.4.2 Modular Feedback Synthesis

This subsection discusses the modular feedback synthesis in the Ramadge-Wonham model.
It is obvious that if f and g € F,, then f A g € F,.

We consider the problem formulated as follows:
Modular State Feedback Control and Observation Problem (MSFCOP): For
M-controllable predicates @1 and Q; € Q with Q,(z°) = Q2(z°) = 1, synthesize state
feedback controllers f € F,(Q,) and g € F,(Q2) such that Re(G | fAg) = Q1 A Q5.

The MSFCOP requires that a controller for @; A Q)2 is constructed by conjunction of

f € Fy(@h) and g € F,(Q2).

Proposition 4.4 Let Q, and Q); € Q be M-controllable predicates with Q1(z°) = Q4(2°) =
1. Then there exist state feedback controllers f € F,(Q:1) and g € F,(Q3) such that
Re(G | fAg) = Q1 AQ: if and only if Re(G | fi A fo) = Q1 A Q2, where fi := sup F,(Q1)
and fy :=sup F,(Q2), respectively.
Proof: (<) Obvious.

(=) Since f1 € F,(@,) and f; € F,(Q;), we have

Re(G| fi A f2) < Re(G'| f1) = Qs

and

Re(G | i A f2) S Re(G | f2) = Q2.

Moreover, f < f; and g < f,. Therefore,

i AQ: = Re(G|fAg)
< Re(G| fiAf2)
S Ql A Q27
which implies that Re(G | fi A f2) = Q1 A Q.. a

From the above proposition, the MSFCOP can be reduced to check whether Re(G |
fi A f2) = Q1 A Q. In general, even if Q1 A Q2 is M-controllable, fi A f2 & Fo(Q1 A Q2).

We shall give a counter-example as follows.
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Figure 4.4: The DES of Example 4.7.

Example 4.7 We consider a DES G shown in Figure 4.4, where ¥ = X, = {01, 0%, 0%}
and X = {z° 2!, 22,23, 2*}. Let 2° be the initial state. Assume that themask M : X —»Y
is given by

M(z)=y VzelX.

Consider M-controllable predicates (); and @), € Q given by

_J 1 ifz e {22, 2%}, _J 1 ifze {2 2% 23},
Qo) = { 0 otherwise, and Qy(z) = 0 otherwise,
respectively. Then @Q; A @), is given by
|1 iz e {2%2%,
QA Qa(e) = { 0 otherwise.

It is easily shown that Q; A Q2 is also M-controllable, and f; and f; are given by
fi(z) = {0',0°} and fo(z) = {¢?} Vz € X,
respectively. Then f; A f; is given by
finfo(z) =0 Vze X.

So we have
1 ifz=2°

Re(G | f A fo)(2) = { 0 otherwise.
Therefore, Re(G | fi A f2) # Q1 A Q2.
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We define the predicate Re*(G, Q)0 Re*(G, Q,) € Q inductively as follows:
(C4-13) Re*(G,Q1)ORe*(G,Q2)(2°) = 1;

(C4-14) If Re*(G,Q1)0Re*(G,Q2)(z) = 1 and wp,(Q1 A Q2)(z) = 1 for some o €
% — (A(Q1, M(2)) U A(Q2, M(2))), then Re*(G, Q1)0Re™(G, Q2)(8(0,2)) =1, ;

(C4-15) Every state satisfying Re*(G, @1)ORe*(G, @Q,) is obtained as in (C4-13) and
(C4-14). -

From the above definition, for any =z € X with Re*(G, @Q1)0Re*(G, Q2)(z) = 1, there
exist z!,22,...,2™ € X and ¢%d',...,0™"! € ¥ satisfying the following conditions (C4-

16)—(C4-19):

(C4-16) 6(0?,2%) = 27+ for j =0,1,....,m — 1;

(C4-17) @1 AQ2(2%) =1 for 3 =0,1,...,m;

(C4-18) o7 € T — (A(Qy, M(2%)) U A(Qq, M(2?))) for j =0,1,....m —1;
(C4-19) z™ = z.

We now give a necessary and sufficient condition under which a solution to the MSF-

COP exists.

Theorem 4.4 Let @, and Q; € Q be M -controllable predicates with Q1(z°) = Q4(z°) =
1. Then Re(G | fi A f2) = Q1 A Q2 if and only if the following equation holds.

Re*(G, Ql) A RB*(G, Qg) S RC*(G, Ql)ORC*(G, Q2) (410)

Proof: (<) From the proof of Proposition 4.4, it is sufficient to prove that Q; A Q2 <
Re(G | fi A f2). M-controllability of @ and @2 implies that @; < Re*(G, Q1) and Q; <
Re*(G,Q2). By Eq. (4.10), for any z € X with Q1AQ2(z) = 1, Re*(G, @Q1)ORe* (G, Q) (z)
1, which implies that there exist z,2%,...,2™ € X and ¢°,0?,...,0™ ! € I satisfying the
conditions (C4-16)-(C4-19). Using these conditions and Proposition 4.3, it is proved that
Re(G | fi A f2)(z) =1 in the same way as the proof of Theorem 4.2.

(=) Since

Re’(G, Q1) A Re™(G,Q2) S Q1A Q2 = Re(G | f1 A f2),
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1t is sufficient to prove that
Re(G | fi A f2) < Re™(G, Q1)ORe™ (G, Q2).

It is obvious that, for any z € X with Re(G | fiA f2)(z) = 1, there exist 21,22, ...,2™ € X
and 0°,0',...,0™"! € ¥ satisfying the following conditions (C4-20)-(C4-22):

(C4-20) §(0?,29) = 27+t forj =0,1,....,m—1;
(C4-21) o7 € fi(z?) N fo(z?) for j =0,1,...m —1;
(C4-22) z™ =gz.

It is proved by induction that Re*(G,Q1)ORe*(G, Q2)(z) = 1 in the same way as the
proof of Theorem 4.2. O.

For f, g € T'X and Q € Q, we shall write f = g (rel Q) if f(z) = g(z) for all
z € X with Q(z) = 1. If Eq. (4.10) holds, then @; A @ is M-controllable. Then letting
fs :=sup F,(Q1 A Q2), the following equation does not always hold.

fi N fa=fs (rel @1 A Q2). (4.11)

So fi A f2 does not always act in the same way as f, at each state satisfying Q; A Q5. We

shall give a counter-example as follows.

Example 4.8 We consider a DES G shown in Figure 4.5, where £ = X, = {¢?, 02,03, 0%},

X = {2° 2!, 22 23,2} and z° is the initial state. Assume that the mask M : X — Y is
given by
M(z)=y VzelX.

Consider M-controllable predicates @); and Q; € Q given by

_J 1 iz e{z’ 2,2}, 1 ifze {2 2%},
Q=) = { 0  otherwise, and Qo(z) = 0  otherwise,

respectively. Then f; and f; are given by

fi(z) = {o',0°} and fo(z) = {0?,0°,0%} V€ X,
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Figure 4.5: The DES of Example 4.8.

respectively. Then f A f; is given by
fiA foz) = {¢*} Vz e X.

It is easily shown that Re(G | fi A f2) = @1 A Q2. However, f, is given by
fo(z) = {0°, 0%} Vze X.

Therefore, Eq. (4.11) does not hold.

Theorem 4.5 Let Q; and Q; € Q be M-controllable predicates with Q;(z°) = Q4(2°) =
1. Assume that the condition in Theorem 4.4 holds. Then fi A f; = f5 (rel Q1 A Q3) if
and only if, for anyy € Y with M(Q1 A Q2)(y) = 1, the following equation holds.

A(Q1,y) U A(Q2,y) € A(Q1 A Q2,y). (4.12)

Proof: (<) Since fi A f2 € Fo(Q1 A Q2) and f; = sup F,(Q1 A Q2), we have fi A fo < fs.
We shall show that

foSHinfe (rel Qi A Q) (4.13)
Consi\der z € X with Q; A Qq(z) = 1. Letting y = M(z), M(@Q1 A Q2)(y) = 1. By

Proposition 4.3, we have

fiz) = T-A(Q1AQ2,Y)
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C ¥ —(A(Q1,y)U A(Q2,9))

= (Z-A(Q19)N(Z - A(Q2y))
= fiz) N fa(z)

= fiA fa(2).

Therefore, Eq. (4.13) holds.
(=) For any y € Y with M(Q; A @2)(y) = 1, there exists z € X such that M(z) =y
and Q; A Q2(z) = 1. Since fi A fo(z) = fs(z), we have

X — (A(Qby) U A(Q27y)) =X - A(Ql A Q2ay)7

that is,
A(Q1,y) U A(Q2,y) = A(Q1 A Q2,Y)-

a

Finally, we consider the case that both ¢, and ¢}, € Q are controllable and observable
predicates with @;(2°) = @3(z°) = 1. Obviously, both @, and Q, are M-controllable.
Then f; := sup F,(Q:) (: = 1,2) always exists and is balanced. The following proposition
shows that f; A f; is also balanced.

Proposition 4.5 Let @, and Q2 € Q be controllable and observable (in the sense of
Definition {.1) predicates with Q,(z°) = @Q2(z°) = 1. Then fi A f; € F.

Proof: By Corollary 4.1, it is obvious that f; and f, € F,. Also, clearly, f; A f, satisfies
the condition (C2-12). We shall show that fi A f; is balanced. Consider o € ¥ and
z,z' € X such that Re(G | fi A f2)(z) = Re(G | fi A f2)(2') =1 and §(o,z) = 2’. Since
Re(G | fiNfa) < Re(G | f;) (i = 1,2), we have Re(G | fi)(z) = Re(G | fi)(z') = 1.
Also since f; and f, are balanced, we have o € fi(z) N fa(z) = f A fa(z). So fi A fo is
balanced. a

Theorem 4.6 Let ; and Q; € Q be controllable and observable (in the sense of Defi-
nition 4.1) predicates with @1(z°) = Q2(z°) = 1. Then Re(G | fi A f2) = Q1 A Q2 if and
only if Q1 and QQ, are nonconflicting.

We need the following results in order to prove Theorem 4.6.
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Lemma 4.3 Let Q) € Q be a controllable and observable (in the sense of Definition 4.1)
predicate with Q(z°) = 1. Then

Re(G,Q) = Re*(G, Q) (4.14)

Proof: Obviously, Re(G,Q) > Re*(G,Q). We prove the reverse inequality. Consider
z € X with Re(G, @)(z) = 1. Then there exist z',z?% ...,z™ € X and ¢°,0%,...,06™ 1 € &
satisfying the conditions (C2-5)—(C2-7). We shall prove by induction that Re*(G, Q)(z) =
Re*(G,Q)(z™) = 1. From the definition of Re*(G,Q), Re*(G,Q)(z°) = 1. For the
induction step, suppose that Re*(G, @)(z*) = 1. In order to show that Re*(G, Q)(z**') =
1, it is sufficient to prove that o* ¢ A(Q, M(z¥)). If o € ., then of ¢ A(Q, M(zF)).
Suppose that o € ¥.. By the condition (C2-6), we have Q(z*) = Q(z*+!) = 1. So
observability of () implies with Lemma 4.1 that Q(6(c*,z')) = 1 for any z’ € X such that
Q(z") =1, M(z') = M(z*) and D,x(z') = 1. So of ¢ A(Q, M(z*)). This completes the

induction. 0

The following corollary can be proved in the same way as Lemma, 4.3.
Corollary 4.2 Let Q1 and Q2 € Q be conirollable and observable (in the sense of Defi-
nition 4.1) predicates with Q1(z°) = Q2(2°) = 1. Then

Re(G, 01 A Q2) = Re™(G,Q1)0Re™ (G, Q2). (4.15)

a

Proof of Theorem 4.6: (<) By Theorem 4.4, it is sufficient to prove Eq. (4.10). We
have by Lemma 4.3 and Corollary 4.2 that
Re*(G, Ql) A Re*(G, Qz) = RC(G, Ql) A RC(G, Qg)
= RC(G, Ql A QZ)
= Re*(G,Q1)0Re™ (G, Q7).

(=) Obviously, Re(G, Q1) A Re(G, Q2) > Re(G, Q1 A Q2). We shall prove the reverse
inequality. By Proposition 4.5 and Corollary 4.1, Q; A Q3 is controllable and observable.

So we have

RC(G, Ql) A RG(G, Q2) S Ql A Q2
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< Re(G,Q1 A Qa).

By Theorem 4.6, the following corollary can be easily proved.

Corollary 4.3 Let Q; and Q)2 € Q be controllable and observable (in the sense of Def-
inition 4.1) predicates with Q1(z°) = Qq(z°) = 1. Then the following statements are

equivalent.

(a) Q1A Q: is controllable and observable (in the sense of Definition 4.1).

(b) Re(G| fiN f2)=Q1AQ:. O

Note that there exist controllable and observable predicates @; and (), such that
Eq. (4.11) does not hold. However, f; A f; practically acts in the same way as f, at each

state satisfying @y A ()2, as shown in the following proposition.

Proposition 4.6 Let Q; and Q2 € Q be controllable and observable (in the sense of
Definition 4.1) predicates with Q;(z°) = Q2(z°) = 1. Assume that Q; A Q4 is controllable
and observable (in the sense of Definition 4.1). Then for any z € X with Q1 A @Q2(z) =1
and any o € fi(z) — fi A fo(z), Ds(z) =0.

Proof: Assume that §(c,z)!. Since o € f,(z), we have @y A Q2(6(c,2z)) = 1. So
observability of @; (i=1,2) implies together with Lemma 4.1 and Proposition 4.3 that
o € fi(z), which contradicts the hypothesis that o ¢ f; A fa(z). |

4.5 Concluding Remarks

In this chapter, we studied state feedback control under partial observations. We first
presented a necessary and sufficient condition for the existence of a balanced state feedback
controller in the Golaszewski-Ramadge model. Next, in the Ramadge-Wonham model, we
showed a necessary and sufficient condition for the existence of a state feedback controller
which is not necessarily balanced. Moreover, we discussed modular state feedback control
under partial observations, where a control specification is given in terms of conjunction

of component predicates. We showed that M-controllability of component predicates
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implies that of their conjunction under a certain condition. We then presented a necessary
and sufficient condition under which a state feedback controller can be constructed in a

modular fashion.



Chapter 5

Decentralized State Feedback
Control

5.1 Introduction

For distributed systems such as communication systems, a decentralized controller is
more suitable than a centralized one. In the context of supervisory control [67] based
upon formal languages, two types of decentralized control problems have been studied
[14, 53, 103, 72, 32]. One is the synthesis problem without tolerance [72] which requires
that the behavior of the closed-loop system equals the given legal language. The other is
the synthesis problem with tolerance [72] which requires that the behavior of the closed-
loop system lies in the given admissible range. However, the decentralized state feedback
control problem based upon predicates has not been discussed.

In this chapter, we study decentralized state feedback control based upon predicates.
First, we consider the decentralized state feedback control problem (DSFCP), which re-
quires that the set of reachable states in the closed-loop system is equal to the specified
predicate. We introduce the notion of n-observability of predicates, which is a natural
extension of observability defined in Definition 4.1, and prove that controllability and
n-observability are necessary and sufficient conditions for the existence of a solution to
the DSFCP.

Next, we consider the decentralized state feedback control problem with tolerance
(DSFCPT), which requires that the set of reachable states in the closed-loop system is
in the given admissible range. We show that the infimal controllable and n-observable

superpredicate of a given predicate plays an important role in solving the DSFCPT. So

64
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we prove that there exists the infimal controllable and n-observable superpredicate of a

given predicate under a certain condition, and derive its closed form expression.

5.2 Decentralized State Feedback Controllers

In this section, we define a decentralized state feedback controller. Let G = (X, %, §, z°)
be an automaton defined by Eq. (2.1). A control mechanism for G is as follows. We
assume that the controlled DES is modeled by the Ramadge-Wonham model. Given
subsets X;., Xy, ..., Bne (not necessarily disjoint) with X, = UL, X, for each 7, the set T';

of control patterns is given by
Ii={7€2%L-5.CvnCx},

where ¥ — ¥, = {0 € £ ; o ¢ Z;.}. Every local state feedback controller f; : X — T
(¢ = 1,2,...,,n) is defined by a mapping from X to I';. That is, each f; controls only
the events which belong to X;.. Also f; must take the control action according to the
corresponding local information. Let M; : X — Y; (1 = 1,2,...,n) be n masks defined by
a mapping from the state space X to the corresponding local observation space Y;, where
M;(z) € Y; is observed by a local controller f; when the current state of G is z € X.
Every local controller f; selects a control pattern f;(z) based upon M;(z). That is, f;
satisfies the following condition (C5-1):

(C5-1) For any z, 2’ € X,
Mi(z) = Mi(z') = fi(z) = fi(z").

A collection {f;}%; of n local state feedback controllers f; (: = 1,2,...,n) satisfying
the condition (C5-1) is called a decentralized state feedback controller. The closed-loop

system G | {f;}7.; with a decentralized state feedback controller {f;}™, is as follows:
Gl {fi}e = (X,5,6;,2°%, (5.1)

where a partial function 8.5 : £ x X — X is defined by

| 8(o,2) if Vi € {1,2,...,n}, 0 € fi(z),
G { undefined otherwise.
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That is, an event o is enabled by {f;}™, if and only if o is enabled by each f;. A block
diagram of G | {f;}", is shown in Figure 5.1. Let Re(G | {f:},) be the closed-loop
predicate for {f;}",, which is true at all and only reachable states in G | {f;}/,. For any
r € X with Re(G | {fi}~,)(z) = 1, there exist z*,22,...,2™ € X and 0%, 0,...,0™ 1 € &
satisfying the following conditions (C5-2)-(C5-4).

reX e X
" el Ml ......... 7n€rn Mn
Mi(z) e, M,(z) €Y,
1 fl [ ] fn —

Figure 5.1: A block diagram of the closed-loop system G | {f;}~;.

(C5-2) §(07,2%) = 27+t for j =0,1,....m —1;
(C5-3) o7 € fi(z?) fori=1,2,..,nand j=0,1,..,m—1;
(C5-4) z™ =z.
A decentralized controller { f;}7, is said to be balanced if { f;}~_, satisfies the following
condition (C5-5).
(C5-5) For any o € X and any z, ' € X,
Re(G | {fF)(@) = 1, Re(G | {/i})() = 1 and 8(0,2) = o'
= Vie{l,2,..,n}, o€ fi(z).
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Given a control specification @ € Q, a balanced decentralized controller {f;}*; such that
Re(G | {fi}~,) = @ permits the enablement of every event whose occurrence leads to
the states satisfying @) at every z € X with Q(z) = 1. Let F; be the set of all balanced

decentralized state feedback controllers {f;}~,.

5.3 N-Observability and Decentralized Controller

Let Q € Q be a given predicate with Q(z%) = 1. We interpret Q as the (global) control
specification for the system G. We formulate the decentralized state feedback control
problem as follows:
Decentralized State Feedback Control Problem (DSFCP): For a predicate Q € Q
with @(z°) = 1, synthesize a balanced decentralized state feedback controller {f;}7, € Fy
such that Re(G | {fi}y) = Q.

The DSFCP requires that the set of reachable states in the closed-loop system with
a balanced decentralized controller is equal to the set of states satisfying (). Note that if
n = 1, then the DSFCP is reduced to the state feedback control and observation problem
discussed in [49, 38] and Chapter 4.

For a predicate @ on X, the predicate M;(Q) on Y; (: = 1,2, ...,n) is defined as follows

[49]:
1 if Mi(z) = y; for some z € X with Q(z) =1,

Mi(Q)(y:) = { 0  otherwise.
For a predicate @; on Y; (z = 1,2,...,n), we will define the predicate M;'(Q;) on X as

follows [49]:
if Qi(Mi(z)) =1,

otherwise.

M@ = { |

For each o € ¥, In(0) is defined by In(c) = {i ; o € L;.}. We shall define the notion
of n-observability which plays an important role in the DSFCP.

Definition 5.1 A predicate ) € Q is said to be n-observable (with respect to G) if, for
any o € Y., the following equation holds.

QA ( /\ Mi_l(Mi(wpa(Q) A Q))) < U’lpv(Q)- (5'2)

i€In(o)
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Note that the computational complexity to check n-observability is O(mn?) if X is finite.
If n = 1, then the condition of n-observability is reduced to that of the observability
defined in Definition 4.1. Note also that the n-observability condition requires that, for
any o € X, and any z € X with Q(z) = 1, the following condition (C5-6) holds.

(C5-6) If there exists z; € X such that M;(z) = M;(z;), Q(z;) = 1 and Q(8(o,z;)) =1
for each i € In(c), then Q(6(c,z)) =1 or §(o,z) is undefined.

The notion of n-observability corresponds to those of ({M;},{Z; .}, L(G))-controllability
[14], coobservability [72] and decomposability [32] in supervisory controls based upon
formal languages.

We now present necessary and sufficient conditions for the existence of a solution to

the DSFCP.

Theorem 5.1 Let Q € Q be a predicate with Q(z°) = 1. Then there exists a balanced
decentralized state feedback controller {f;}7, € Fy such that Re(G | {fi}%,) = Q, that is,
{f:}~, is a solution to the DSFCP if and only if Q is controllable and n-observable.

In order to prove Theorem 5.1, we shall construct local state feedback controller f; €
I'¥ (i = 1,2,...,n) in the following manner. For each y; € Y; with M;(Q)(y;) = 1, let
v:(y:) € T; be a control pattern given by

Yi(w:)
= (8~ i) U{o € Zic 5 wp,(Q)(z) =1 for some & € M; ' (y;) with Q(z) = 1}.

Then f; is given by

b otherwise.

Note that the computational complexity to construct f; is O(mn?) if X is finite. It
is obvious that each f; satisfies the condition (C5-1). So {fi}™; consisting of f; (i =
1,2,...,n) is a decentralized state feedback controller, and a candidate of the solutions to

the DSFCP.

Lemma 5.1 Let Q € Q be a predicate with Q(z°) = 1. Then if Q is controllable and
n-observable (with respect to G), then Re(G | {f:}%,) = Q holds for the decentralized
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state feedback controller {f;}%., consisting of f; (1 =1,2,...,n) given by Eq. (5.3).
Proof: First, we shall prove that Re(G | {fi}=;) < Q. For any z € X with Re(G |
{fiY)(z) = 1, there exist z',2%,...,2™ € X and 0% 0',...,0™"! € ¥ satisfying the
conditions (C5-2)—(C5-4). We shall show by induction that Q(z) = Q(z™) = 1. By the
assumption, we have Q(z°) = 1. For the induction step, suppose that Q(z*) = 1. If
o* € ¥, then controllability of @ implies that Q(z*+!) = Q(8(c*, z¥)) = 1. Suppose that
o* € .. For each i € In(o%), let y; = M;(z¥). Then M;(Q)(y;) = 1. By the condition
(C5-3) and Eq. (5.3), we have o* € f;(z*) = 7i(y:), which implies that there exists z; € X
such that M;(z;) = yi, wp,+(Q)(z:) = 1 and Q(z;) = 1. So M (M;(wp,+(Q) AQ))(z¥) =
1. It follows that

(Q A ( N M7 (Mi(wp,s(Q) A Q)))) (eF) = 1.
i€In(c*)

Thus, by n-observability of @, we have wip,+(Q)(z*) = 1, which implies that Q(z**!) =
Q(6(c%,2*)) = 1. This completes the induction.

Next, we shall prove that @ < Re(G | {f;}%,). Controllability of Q shows that, for any
z € X with Q(z) =1, Re(G, Q)(z) = 1, which implies that there exist z',z?,...,2™ € X
and 0% 0%, ...,0™"! € T satisfying the conditions (C2-5)-(C2-7). It is sufficient to prove
that 07 € f;(z) (: = 1,2,..,nand j =0,1,...,m —1). Suppose that o* ¢ fi(z*) for some
! and k. Then it is obvious that o* € Z;.. Let y; = M;(z*). Then M;(Q)(w) = 1. By the
conditions (C2-5) and (C2-6), it follows that §(c*,z*)! and Q(z**) = Q(6(c*, %)) = 1.
Therefore, we have by the definition of ;(y;) that o € (), which implies together with
Eq. (5.3) that o* € fi(z*). This is a contradiction. 0

Proof of Theorem 5.1: (<) We have by Lemma 5.1 that Re(G | {f;}%,) = @ for
{f:}, consisting of f; (: = 1,2,...,n) given by Eq. (5.3). We shall show by contradiction
that {f;}~, is balanced. Suppose that there exist ¢ € ¥ and z,2’ € X such that
Re(G | {f:} ) (z) = Re(G | {fi}ioy)(2") =1, 8(0,z) = 2’ and o ¢ fi(z) for some I. Then
it is obvious that o € ;.. Since Re(G | {fi}71) = Q, it follows that Q(z) = Q(z') = 1.
Let yi = Mi(z). Then Mj(Q)(yi) = 1. We have by the definition of v,(y;) that o € vi(y1),
which implies together with Eq. (5.3) that o € fi(z). This is a contradiction. Therefore,

{fi}?=l € Fd'
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(=>) Suppose that there exists {f;}7o; € F; such that Re(G | {fi}%,) = Q. We have

to prove the following three conditions.
(C5-7) @ < Re(G,Q);

(C5-8) @ < wlp,(Q) for any o € Xy;
(C5-9) Egq. (5.2) holds for any ¢ € X..

First, we shall prove (C5-7). Since Re(G | {fi}%,) = @, for any = € X with Q(z) =1,
it follows that Re(G | {f:},)(z) = 1, which implies that there exist z!,z?,...,2™ €
X and 0% 0!,...,06™! € X satisfying the conditions (C5-2)-(C5-4). We shall show by
induction that Re(G,Q)(z) = Re(G,Q)(z™) = 1. By the definition of Re(G,Q), we
have Re(G, Q)(z°) = 1. For the induction step, suppose that Re(G,Q)(z*) = 1. Then
it is obvious that Q(z*) = 1, which 1mphes that Re(G | {fi}~,)(zF) = 1. By the
conditions (C5-2) and (C5-3), 6(c*,2F) = z**! and of € f;(=F) (: = 1,2,...,n). So we
have Re(G | {f:}~,)(z**) = 1, which implies that Q(z**') = 1. Therefore, we have by
the definition of Re(G, @) that Re(G, Q)(z**!) = 1. This completes the induction.
Next, we shall prove (C5-8) by contradiction. Suppose that there exist o € ¥, and
z € X such that Q(z) = 1 and wip,(Q)(z) = 0. Since Re(G | {fi},) = @, it follows
that Re(G | {f:},)(z) = 1. Also since wip,(Q)(z) = 0 and o € X,, it follows that
8(c,z)! and o € fi(z) (z = 1,2,...,n). So we have Re(G | {fi},)(6(c,2)) = 1, which
implies that Q(8(c,z)) = 1. This contradicts the hypothesis that wip,(Q)(z) = 0.
Finally, we shall prove (C5-9) by contradiction. Suppose that there exist o € ¥, and
z € X such that

Qz) =1, ( N M7 (Mi(wp(Q) A Q))) (z) =1 and wip,(Q)(z) = 0.

i€ln(o)

Since Re(G | {f:}%~,) = @, it follows that Re(G | {fi};)(z) = 1. For each ¢ €
In(o), there exists z; € X such that M;(z) = M;(z;), Q(z;) = 1 and wp,(Q)(z;) = 1
since M (M;(wp,(Q) A Q))(z) = 1. It follows that Re(G | {f:}%,)(z:) = Re(G |
{fi}1)(é(o,z;)) = 1. Since {f;}i=; is balanced, we have ¢ € fi(z;). Additionally, since
M;(z) = M;(z;), we have by the condition (C5-1) that o € f;(z). On the other hand, for
any [ with [ ¢ In(o), it is obvious that ¢ € fi(z). Since wip,(Q)(z) = 0, it follows that



5.3. N-OBSERVABILITY AND DECENTRALIZED CONTROLLER 71

6(a,z)!. Therefore, we have Re(G | {f;}i=1)(6(o,z)) = 1, that is, Q(6(o,z)) = 1. This
contradicts the hypothesis that wip,(Q)(z) = 0. O

Figure 5.2: The DES of Example 5.1.

When @ is controllable and n-observable, the decentralized state feedback controller

{fi}%, consisting of f; (i =1,2,...,n) given by Eq. (5.3) is a solution to the DSFCP.
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Example 5.1 We consider a DES G shown in Figure 5.2, where ¥ = X, = {0!,0?,0°},
X = {(«° z%), (20, z2), (1}, 2%0), (211, 2*!), (1%, £*?)} and (21, £%°) is the initial state.

Let M; (z = 1,2) be the mask given by
]\/I,'(:Irl, 172) = ;.

Assume that 3y, = {0}, 0%} and ¥y, = {0%,0°}. We consider a predicate QQ € Q given by

£ (12 22
a@={] Broie

Obviously, @ is controllable. Also we can easily show that @ is n-observable, that is,
for any 0 € X, and z € X with Q(z) = 1, the condition (C5-6) holds. For example,
consider o' € ¥, and (z'%,2%°) € X. Then In(c') = {1}, M;((z'°, %)) = My((=°, z*)),
Q((z'°,2z%)) = Q(8(ct, (219,2%))) = 1. Additionally, Q(6(c?, (21°,2%°))) = 1, which
implies that (C5-6) holds. Thus, by Theorem 5.1, a solution to the DSFCP exists, and
consists of f; (i = 1,2) given by

e ={ £ (L
Example 5.2 We consider a simple manufacturing system consisting of two machines
G: and (5 shown in Figure 5.3. We have three events as follows:

a: The machine GG, starts working.

b: The machine G; completes working, and the machine G, starts working.

¢: The machine G, completes working.
Each machine G; (¢ = 1,2) is modeled by an automaton whose state transition diagram
is shown in Figure 5.4, where I; means that G; is idle and W;; (5 = 1,2, ...) implies that
G; is processing the 7 parts simultaneously. The entire system G is also modeled by an

automaton. Then the sets ¥ and X of events and states are given as follows:
Z = {a7 b7 c}7

X ={(z1,22) ; @ € {L;,W;; (1 =1,2,...)} (i =1,2)},

where z; is the state of G;. Let 2° = (I3, I2) be the initial state and M; : X — Y; (1 = 1,2)
be the mask given by
M;((z1,22)) = .
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That is, a local state feedback f; (i = 1,2) can only observe the current state of G;. We
assume that I, = {a}, Ly = {b} and X, = {c}.
Now we consider a control specification that each machine G; (¢ = 1,2) can process

at most one part simultaneously, which is given by a predicate Q:

Q(x) — 1 if z € {(117]2)7(I17W21)7(WIhIZ)’(WHaWZl)},
10 otherwise.

It is easily shown that @) is controllable and n-observable. Therefore, by Theorem 5.1,
there exists a balanced decentralized controller {f;}2.; such that Re(G | {fi}%,) = @,
and f; and f, are given by

) ={ (be} it M) = W,

otherwise,
and
_ {(1, C} lf M2(37) = W217
Frlz) = { )y otherwise,
respectively.

Figure 5.3: A simple manufacturing system.
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a a

DY () O
b b
b b

%) Twa) ()
C C

Figure 5.4: State transition diagrams of G; and Ga.

5.4 Decentralized Control with Tolerance

In the last section, we showed that controllability and n-observability are the necessary
and sufficient conditions for the existence of a solution to the DSFCP. If the given predi-
cate is not controllable and n-observable, then we have to synthesize a decentralized state
feedback controller for its controllable and n-observable subpredicate. In this case, it
is important to find a controllable and n-observable subpredicate which guarantees ac-
ceptable behaviors. In this section, we consider the decentralized state feedback control
problem with tolerance (DSFCPT), which requires that the set of reachable states in the
closed-loop system is in the given admissible range. Without loss of generality, we assume

in this section that G is accessible [67], that is, all states are reachable from z°.
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5.4.1 The Infimal Controllable Superpredicate

Let Q € Q be a predicate with Q(z°) = 1, and C(Q) C Q be the set of all controllable

superpredicates of Q).
C(Q)={Q' €Q; Q@ <Q and Q' is controllable}.

C(Q) is nonempty because 1 € C(Q). In general, the set C(Q) is not closed under “A”.

We shall give a counter-example as follows.

Figure 5.5: The DES of Example 5.3.

Example 5.3 We consider a DES G shown in Figure 5.5, where &. = {o!,0%}, &, =
{o3,01} and X = {z° 2!, 22,23}. Let z° be the initial state, and Q € Q be a predicate

given by

1 ifz=2z°

Qz) = { 0 otherwise.

Consider controllable predicates @; and @, € C(Q) given by

Ql(x)z{ 1 ifze {2, . 0s(2) ={ 1 if z € {z°,22,2°),

0 otherwise, 0 otherwise,

respectively. Then it is easily shown that Q; A Q. ¢ C(Q).
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However, we shall show that the infimal element of C(Q) under “<”, denoted by inf C(Q),
exists under a certain condition. We call inf C(Q) the infimal controllable superpredicate
of Q.

We define the transformation ¥ on Q as follows:

1 ifds € ¥ and 2’ € X with Q(z') =1 and é(s,2’) = z,

0 otherwise.

Q) = {

Theorem 5.2 Let Q € Q be a predicate with Q(z°) = 1. Assume that Q < Re(G, Q).
Then inf C(Q) exists, and is given by

inf 0(Q) = ¥(Q). (5.4)

Obviously, we have Re(G, Q) < @ by the definition of Re(G, @), and the assumption
of Theorem 5.2 is equivalent to @ = Re(G, Q), which means that every state z € X with
Q(z) =1 is reachable from the initial state z° via states satisfying Q. So the assumption
is reasonable.

We need the following lemma in order to prove Theorem 5.2.

Lemma 5.2 Let Q € Q be a predicate with Q(z°) = 1. If Q < Re(G,Q), then ¥(Q) €
C(Q).

Proof: Since ¢ € X, it is obvious that @ < ¥(Q). We shall prove that ¥(Q) is
controllable. First, we show that U(Q) < Re(G, ¥(Q)). For any z € X with ¥(Q)(z) = 1,
there exist z(g),Zq),...,Tm) € X and o(0), 0(1), -+, F(m—1) € X, satisfying the following
conditions (C5-10)-(C5-12).

(C5-10) 6(U(j),$(j)) = T(j41) for y=0,1,....m —1;
(C5-11) Q(z() =1;
(C5-12) :E(m) = T.

We shall prove by induction that Re(G, ¥(Q))(z) = Re(G,¥(Q))(z(m)) = 1. Since @ <
Re(G,Q) and Q < ¥(Q), we have Q < Re(G, ¥(Q)). It follows that Re(G, ¥(Q))(z()) =
1. For the induction step, suppose that Re(G,¥(Q))(zx) = 1, which implies that
Y(Q)(z®)) = 1. Then obviously, ¥(Q)(zx41)) = 1. So we have Re(G, ¥(Q))(z(x+1)) = 1.

This completes the induction.
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It remains to show that ¥(Q) < wip,(¥(Q)) for any ¢ € &,. Consider o € ¥, and
z € X with ¥(Q)(z) = 1. If D,(z) = 0 then wip,(¥(Q))(z) = 1. If D,(z) =1 then, by
the definition of ¥(Q), we have ¥(Q)(6(c,z)) = 1, which implies that wip, (¥(Q))(z) = 1.
0

Proof of Theorem 5.2: By Lemma 5.2, it is sufficient to show that, for any Q' € C(Q),
¥(Q) < Q. Assume that there exists z € X such that ¥(Q)(z) =1 and @’(z) = 0. Then
there exist z(o), z(1), .-, T(m) € X and o(g), (1), -+, F(m-1) € I, satisfying the conditions
(C5-10)—(C5-12). Since @ < @', we have Q'(x(o)) = 1. So there exists £ (1 < k < m) such
that Q'(z)) = 0 and Q'(z(;)) = 1for j =0,1,...,k—1. Obviously, Wwips,_,, (@) (@@x-1)) =
0, which contradicts controllability of @)’. m]

Note that even if the assumption in Theorem 5.2 holds, C(Q) is not necessarily closed

under A (see Example 5.4).

5.4.2 The Infimal N-Observable Superpredicate

Let Q € Q be a predicate, and let O(Q) C Q be the set of all n-observable superpredicates
of Q.

0(Q) ={Q €Q; @ < Q" and @’ is n-observable}.
Since 1 € O(Q), O(Q) is nonempty. The following proposition shows that O(Q) is closed
under “A” in contrast to C(Q).

Proposition 5.1 For any predicate Q € Q, O(Q) is closed under A.

In order to prove the above proposition, we need the following lemma, which can be easily

proved.

Lemma 5.3 For any indez set I on Q and any mask M; (t = 1,2,...,n), the following

equation holds.

M (M,- (/\ Qa)> < A\ MPHM(QU)). (5.5)

a€l acl

Proof of Proposition 5.1: Let I be any index set, and Q, € O(Q) for each o € I.
Then it is obvious that Q@ < A,c; @o. We show that A,c; @« is n-observable. By Lemma
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5.3 and n-observability of each @, we have, for any ¢ € X,

(na)n( p w (o on (n2) (4 0)))
_ (Q/E\IQQ)A I/\()M< (!G\I(wpa(Qa)AQa))))
< (A@)r( A AM wpa@a)w)))

a€l i€In(o) ol

_ /\( (/\ e wp,@a)w))))

acl i€In(o)

< A wip(Qa)

ael

= wlp, ( N Qa)

ael

0

By Proposition 5.1, there always exists the infimal element of O(Q) under “<”, denoted
by inf O(Q). We call inf O(Q) the infimal n-observable superpredicate of Q.

We define the transformation ® on Q as follows:
2(Q)=V SPa( ( A MM, (wpa(Q)/\Q))))
gEL, i€In(o)

Then, for Q) € Q, we consider a sequence {();} of predicates defined by

Qo=Q, Qis1=Q;VOQ;) forj=0,1,.. (5.6)

Theorem 5.3 Let Q € Q be a predicate and {Q;} be the sequence of predicates defined
by Eq. (5.6). Then
inf O( \/ Q]y (57)

JEN

where N is the set of all nonnegative integers.
We need the following lemma in order to prove Theorem 5.3.

Lemma 5.4 Let Q € Q be a predicate and {Q);} be the sequence of predicates defined by
Eq. (5.6). Then Qo := V;ep @ is n-observable.
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Proof: Consider ¢ € ¥, and z € X such that

(Qoo/\ ( A M,-'I(M;(wpa@m)ww)))) (€)= 1.

i€ln(c)
If D,(z) = 0 then wlp,(Qw)(x) = 1. We consider the case that D,(z) = 1. Since
Rw(z) = 1, we have Qi(z) = 1 for some k € N. Also, for each i € In(c), there
exists z; € X such that (wp,(Qw) A Qw)(z;) = 1 and M;(z) = M;(z;). So we have
Qoo(zi) = Qoo(6(0,;)) = 1, which implies that Qk(z;) = 1 and Qy(6(0,z;)) = 1 for
some k; and k! € N. Consider £ € M such that ¥ < k, k; < k and k! < k for all
¢ € In(o). Since {Q;} is the monotonically increasing sequence, we have Qz(z) = 1 and

(wps(Q%) A Qz)(z;) =1 for all 1 € In(o), which implies that

(Qz A ( A M7 (Mi(wp,(QF) A Qz)))) (z) =1

i€In(o)

It follows that ®(Qz)(é(0,z)) = 1, that is, Qz41(6(0,z)) = 1. Since Qz;1 < Qoo, We have
Qw(6(c, z)) = 1, which implies that wip,(Qw)(z) = 1. O

Proof of Theorem 5.3: Since Q < Qo, We have by Lemma 5.3 that Q., € O(Q). It
remains to show that, for any Q' € O(Q),

Qe < Q"

We shall prove by induction that @; < Q' for any j € M. Obviously, Qo < Q’. For the
induction step, suppose that Qx < @’. Consider x € X with Qr41(z) = 1. If Qk(z) =1
then @'(z) = 1. We consider the case that ®(Qx)(z) = 1. Then there exist ¢ € X, and
z’ € X such that
§(o,2") = z and (Qk A ( N M7 Mi(wps (Qk) A Qk)))) (2') = 1.
i€In(o)
Since @ < @', we have
(Q' A ( N M7 (Mi(wpe(Q') A Q')))) (') =1.
i€In(o)

So n-observability of @’ implies that Q’(z) = 1. This completes the induction. Therefore,

we have Qo = V;en @ < Q. O
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5.4.3 Decentralized State Feedback Control Problem with Tol-
erance

Let Q@ € Q be a given predicate with Q(z®) = 1. In this subsection, we consider the

following problem:
Decentralized State Feedback Control Problem with Tolerance (DSFCPT): Let

A and @ € Q be predicates such that A < @ and A(z°) = 1. Then synthesize a balanced

decentralized state feedback controller {f;}%; € F; such that A < Re(G | {f;}~,) < Q.
We interpret A as the minimally acceptable behavior. The DSFCPT requires that the

set of reachable states in the closed-loop system with a balanced decentralized controller

lies between two sets of states satisfying A and @, respectively.

Let CO(A) € Q be the set of all controllable and n-observable superpredicates of A.
CO(A)={Q €Q; A< @ and Q' is controllable and n-observable}.

CO(A) is nonempty because 1 € CO(A). We denote the infimal element of CO(A)
under “<” by inf CO(A). We call inf CO(A) the infimal controllable and n-observable
superpredicate of A. Assume that there exists inf CO(A). Then it is easily proved that
there exists a solution to the DSFCPT if and only if

inf CO(A) < Q.

When inf CO(A) < Q, the decentralized controller {f;}™, consisting of f; (: = 1,2, ...,n)
given by the following equation is a solution to the DSFCPT.

o) = { H(Mi(e) i Mi(int TO(A4)(Mi(z)) = 1, (55

by otherwise.

where

% (Mi(z)) = (E-Z;)U{o € Zi; wp,(inf CO(A))(2") =1 for some 2’ € M;}(M;(x))
with inf CO(A)(2") = 1}.

Unfortunately, CO(A) is not always closed under “A” because C(A) is not necessarily
closed under A. So inf CO(A) does not always exist. However, we show that under a
certain condition, there exists the infimal controllable and n-observable superpredicate of

a given predicate.
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Let Q € Q be a predicate with Q(z°) = 1. We consider a sequence {@J} of predicates
defined by
Qo:=0Q, Qj41:=infO(¥(Q;)) forj=0,1,... (5.9)

Theorem 5.4 Let Q € Q be a predicate with Q(z°) = 1 and {Q;} be the sequence of
predicates defined by Eq. (5.9). Assume that Q < Re(G, Q). Then
inf CO(Q) = Qo := \/ Q;- (5.10)
JEN

We need the following lemmas in order to prove Theorem 5.4.

Lemma 5.5 Let Q € Q be a predicate with Q(z°) = 1. Assume that Q@ < Re(G, Q).
Then
inf O(Q) < Re(G,inf O(Q)). (5.11)

Proof: Let {Q;} be the sequence of predicates defined by Eq. (5.6). We shall prove by
induction that

Q; < Re(G,Q;) forallj e N.

By the assumption, we know that Qo < Re(G, Qo). For the induction step, suppose that
Qr £ Re(G,Qk). Consider z € X with Qr+1(z) = 1. Since

Qk S RE(G, Qk) < RC(G7 Qk+l)7

if Qk(z) = 1 then Re(G,Qr41)(z) = 1. We consider the case that ®(Qi)(z) = 1.
Then there exist o € ¥, and 2’ € X such that §(o,z') = z and Qi(z’) = 1. Since
Re(G, Qr+1)(2') = 1 and Qr41(z) = 1, we have Re(G, Qi4+1)(z) = 1. This completes the
induction. Therefore, we have
infO(Q) =V @Q; <V Re(G,Q;) < Re(G,inf O(Q)).
JEN JEN
O

Lemma 5.6 Let Q € Q be a predicate with Q(z°) = 1 and {Q;} be the sequence of
predicates defined by Eq. (5.9). Assume that Q < Re(G, Q). Then

Q; < Re(G, Qz) foralli e N. (5.12)
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Proof: We shall prove Eq. (5.12) by induction. By the assumption, Qo < Re(G, Qq). For
the induction step, suppose that Q; < Re(G, Qx). By Theorem 5.2, W(Q}) is controllable,
which implies that ¥(Q)) < Re(G, ¥(Q4)). Then by Lemma 5.5, we have inf O(¥(Q;)) <
Re(G,inf O(¥(Q4))), that is, Qry1 < Re(G, Qry1). This completes the induction. O

Lemma 5.7 Let Q € Q be a predicate with Q(z°) = 1 and {Q;} be the sequence of
predicates defined by Eq. (5.9). Assume that Q@ < Re(G,Q). Then Qo := Vien Q; is
controllable.

Proof: By Lemma 5.6, we have

Qo =V @ <V Re(G,Q:) < Re(G, Quo).
JEN JEN

By Theorem 5.2, it is sufficient to show that Qoo = \II(QQO) Obviously, Qu < \IJ(QOO)
We shall prove that ¥(Q) < Qu. Consider 2 € X with ¥(Q)(z) = 1. Then there
exist s € X% and 2’ € X with Q. (z') = 1 and é(s,2’) = z. So we have Qi(z') = 1 and
\P(Qk)(w) =1 for some k£ € N. Since \I!(Qk) < Q~k+1 < Qoo, we have @oo(:v) =1. ]

Lemma 5.8 Let Q € Q be a predicate with Q(z°) = 1 and {Q;} be the sequence of
predicates defined by Eq. (5.9). Assume that Q < Re(G,Q). Then Qo := Vien Q; is
n-observable.

Proof: It is sufficient to show that Q. = inf O(Q.). Obviously, Qo < inf O(Qo). We
shall prove that inf O(Q.) < Q. We consider a sequence {@}} of predicates defined by

Qo= Quoy  Qiya = Q;V(Q)) forj=0,1,....

By Theorem 5.3, we have inf O(Qo) = Vjex @;- So it is sufficient to show that Q; < Qoo
for all ; € N. By the definition, Q} = Qoo For the induction step, suppose that @}, < Qoo.
Consider z € X with Q},,(z) = 1. If Q4(z) = 1 then Q. (z) = 1. We consider the case
that ®(Q%)(z) = 1. Then there exist o € X, and z’ € X such that

8(o,2') = z and (Q;c A ( /\( )Mi_l(M,-(wpa(Q;) A Q;)))) (z') = 1.

Since @/, < Q.., we have

(QmA ( A M;I(Mi(wpg(c}w)wm))» () = 1.

i€In(o)
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Then we can prove in the same way as the proof of Lemma 5.4 that

(@E A ( A M (Moo G) @m)) (#) =1 for some k € A

i€ln(o)

By n-observability of Qz, we have Qz(z) = 1, which implies that Q. (z) = 1. This

completes the induction. a

Proof of Theorem 5.4: By Lemmas 5.7 and 5.8, we have Q, € CO(Q). We show that,
for any Q' € CO(Q),

Qe < Q' (5.13)
It is sufficient to prove that Q,- < @ for all j € N. Obviously, @o < @'. For the
induction step, suppose that @ < @'. Then it is obvious that Q' € C(Q;). By Lemma
5.6 and Theorem 5.2, we have ¥(Q;) < Q. Moreover, since Q' € O(¥(Q;)), we have
Qrs1 = inf O(¥(Q4)) < Q'. This completes the induction. O
Note that even if the assumption in Theorem 5.4 holds, CO(Q) is not necessarily closed

under A.

Remark 5.1 When the set X of states is finite, it is easily proved that Egs. (5.6) and
(5.9) always converge to inf O(Q) and inf CO(Q), respectively, after a finite number of
iterations. Note that Eqgs. (5.6) and (5.9) may converge after a finite number of iterations

even if X is infinite (see Example 5.4).

Example 5.4 We consider a simple manufacturing system consisting of two machines
G4, G, and two buffers B;, B, shown in Figure 5.6. This system processes two types of
parts. Parts of both types are firstly processed by G, and completed parts of type 1 and
2 are passed to B; and B,, respectively. Then they are taken by G, for further processing.
Each machine G; (5 = 1,2) is modeled by an automaton whose state transition diagram
is shown in Figure 5.7, where I; and Wj; (z = 1,2) are representing “idle” and “processing
a part of type 1", respectively. Each buffer B; (: = 1,2) is also modeled by an automaton
with the state set A (the set of nonnegative integers), and its state transitions are as
follows:

Bii : n—n+1,

ay :n—on—1,
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The sets ¥ and X of events and states are given as follows:
Y= {ajiyﬂji (Za] = 172)},
X = {(xhx%blab?) y Ly € {Ij7VVj17M/J'2} and bi € N (Z>] = ]-’2)}7
where z; (j = 1,2) is the state of the machine G; and b; (: = 1,2) is the state of the
buffer B;. Let zo = ([y,13,0,0) be the initial state and M; : X — Y; (i = 1,2) be the
mask given by
M;((z1,z2,b1,b2)) = b;.

That is, a local state feedback controller f; (i = 1,2) can observe the current state of
B;. We assume that X, = {a1}, Z2c = {012} and B, = {az;, B (5,7 = 1,2)}. Now we
consider a control specification that buffer contents b; and b, are always at most e;(> 1)

and ey(> 1), respectively, which is given by a predicate @ € Q:

1 ifb;<e (2=1,2),
0 otherwise.

Q((z1, 2, b1, b2)) = {

For simplicity let e; = 1 (¢ = 1,2). Assume that the minimally acceptable behavior A € Q

is given by
1 ifzx € {(117]2, 07 0)7 (W117 I27 0) 0)7 (117 I2’ ]-7 0)’ (Il7 W217 07 0)
A($) = (WIZ) I27 07 0)7 (Il, 127 07 1)’ (Il’ W22707 0)}7
0 otherwise.

It is easily shown that () is not controllable and n-observable, and the infimal controllable

and n-observable superpredicate inf CO(A) of A is given as follows:

inf U—O—(A)(xl, T, bl7 bz)
_J 0 if(by >2)or (b >2)or (x; = Wiy and by = 1) or (z; = Wiz and by = 1),
“ 1 1 otherwise.
Since inf CO(A) < @, The DSFCPT is solvable. Then a balanced decentralized state
feedback controller {f;}2,; such that Re(G | {fi},) = inf CO(A) is consisting of f;

(2 = 1,2) given as follows:

Y —{a : if b,‘ = 1,
fi(($17$2,b17b2)) = { ¥ { ' } otherwise.
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Figure 5.6: A simple manufacturing system.

Figure 5.7: A state transition diagram of the machine Gj.
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5.5 Concluding Remarks

In this chapter, we studied decentralized state feedback control based upon predicates.
First, we addressed the decentralized state feedback control problem (DSFCP), which
requires that the set of reachable states in the closed-loop system is equal to the specified
predicate. We introduced the notion of n-observability of predicates and proved that
controllability and n-observability are necessary and sufficient conditions for the existence
of a solution to the DSFCP.

Next, we considered the decentralized state feedback control problem with tolerance
(DSFCPT), which requires that the set of reachable states in the closed-loop system is
in the given admissible range. We showed that the infimal controllable and n-observable
superpredicate of a given predicate plays an important role in solving the DSFCPT. So
we derived closed form expressions of the infimal controllable superpredicate, the infimal
n-observable superpredicate and the infimal controllable and n-observable superpredicate,

respectively, under a certain condition.



Chapter 6

State Feedback Control of Petri
Nets

6.1 Introduction

This chapter studies maximally permissive controllers (MPCs) for controlled Petri nets
(CPNs). Ushio has given a necessary and sufficient condition for the unique existence
of the MPC as shown in 2.3.4 [95, 98]. However, we have to construct the set of all
permissive controllers in order to check the condition.

In this chapter, we first consider CPNs without concurrency. We derive necessary
and sufficient conditions for the unique existence of the MPC under partial as well as
complete observations, which can be checked without constructing the set of all permissive
controllers. Next, we extend the results to CPNs with concurrency controlled by either
event assignment or resource allocation. We then show that the unique existence of the
MPC in resource allocation control implies that the same is true in event assignment

control.

6.2 Controllers for Petri Nets without Concurrency

We consider a serial controlled DES G = (N, ') where N, is a CPN defined by Eq. (2.5)
and T' = {0,1}f is the set of all control patterns. This section presents necessary and
sufficient conditions for the unique existence of the MPC under partial as well as complete

observations.

87
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6.2.1 Maximally Permissive Controllers under Complete Ob-
servations

In G, for a state feedback controller f € T*®™) and a transition ¢ € T, the predicate
ft € Q is defined by

_J 1 it L(tp) < f(M)(p.) Vp.€ P,
Fi(M) = { 0  otherwise.

Note that if ¢ € T}, then fi(M) = 1 for any f € T'*™) and any M € R(N). There exists
a permissive controller for a predicate Q € Q if and only if @ is Ty-invariant, that is,
Q@< wlpt(Q) for any t € T, [68, 34]. Ushio has shown in [98] that there exists the unique
MPC for a T-invariant predicate @ if and only if @) is weakly interactive (WI) in G, that
is, for any permissive controllers f, g € Per(Q) (the set of all permissive controllers for
@) and any t € T,
Q Swlp(Q)V fr VgV~ (f +9) (6.1)

We derive another form of a necessary and sufficient condition for the unique existence
of the MPC. For each p* € P. and each M* € R(N), the basis feedback controller
b(p:, M*) € TE(W) is defined by

b(p, M*)(M)(pc) = { (1) ftﬁ;iff and pe =15

Let Fy,, be the set of all basis feedback controllers.

Proposition 6.1 [96] Assume that a predicate Q € Q is T,-invariant and that a state
feedback controller f € TEW) s a permissive controller for Q. Then a state feedback

controller g € TEWN) s g permissive controller for Q whenever g < f.

Lemma 6.1 Assume that a predicate Q) € Q is T,-invariant. Then there ezists the unique
MPC for Q if and only if, for any M € R(N) with Q(M) = 1, the following condition
(C6-1) holds.

(C6-1) For anyt € T, with | °t |> 2,
b(pclyM)7 b(pc27M)7'-'7 b(pcm’M) € Per(Q) = wlpt(Q)(M) = 17

where °t = {Pc1,Pezy--rsPem} and | - | represents the number of elements of a set

or bag.
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Proof: (<) It is sufficient to prove that Q is Wl in G : Obviously, Eq. (6.1) holds for any
f and g € Per(Q) if t € T,. Suppose that Eq. (6.1) does not hold for some ¢ € 7. Then
there exist f, ¢ € Per(Q) and M € R(N) such that

Q(M) =1 and (wip(Q) V f; V g:V ~ (f + 9))(M) = 0. (6.2)
If | °t |= 1 then, since (f + g):(M) = 1, we have (f + g)(M)(p.) = 1 where °t = {p.}. So

f(M)(pc) =1 or g(M)(p) = 1.

Hence
fiVva(M) =1,
which contradicts Eq. (6.2).

If | °t |> 2 then we have, for any p. € %, (f + ¢)(M)(p.) = 1 since (f + g)«(M) = 1.

Let °t = {pc1,Pc2,---»Pem}. Then, for each p., € °t (j = 1,2,...,m),

f(M)(p.;) =1 or g(M)(p;) =1.
Hence

b(pe,;, M) < f or b(pe;, M) < g.
Since f, g € Per(Q), we have by Proposition 6.1 that b(p.;, M) € Per(Q) (7 = 1,2,..,m),
which implies together with the condition (C6-1) that wip,(Q)(M) = 1. This contradicts
Eq. (6.2).

(=) Assume that, for M € R(N) with Q(M) = 1, there exists t € T, with | °¢ |> 2
such that b(pa, M), b(pe2, M ),..., b(pem, M) € Per(Q) where °t = {ps1,Pe2, -+, Pem }- Let
f= chj eet 0(pe;, M). Since the unique MPC exists, Per(Q) is closed under sum [100],
and we have f € Per(Q). It is obvious that f;(M) = 1, which implies together with
f € Per(Q) that wip,(Q)(M) = 1. |

For each p, € P,, the subset T(p.) C T, is defined by
T(pc) = {t €Tl ‘t= {Pc}}'

We define the transformation wip,, on Q for each p. € P, as follows:

wipn (@) ={ O 3E o) vith wip(Q)a0) =0

That is, for M € R(N), if there exists ¢ € T(p.) such that Q is false at the marking after
the firing of ¢ then wip, (Q)(M) = 0, otherwise wip, (Q)(M) = 1.
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Dc1| @ @pl DPc2 ®p2

t1 — 19

y

p() Ow

Figure 6.1: The CPN of Example 6.1.

Example 6.1 We consider a CPN shown in Figure 6.1, and a predicate @ such that
Q(M) =1if M(ps) =0, and otherwise Q(M) = 0. For the marking M shown in Figure
6.1, wip,(Q)(M) = 0 and t, € T(p.2), which implies that wip,,(Q)(M) = 0. On the
other hand, since T'(ps) = 0, we have wip,,(Q)(M) = 1.

Lemma 6.2 Assume that a predicate Q € Q is T,-invariant. Then, for a marking M* €
R(N) with Q(M*) =1 and an external input place p} € P, b(p}, M*) € Per(Q) if and

only if wip,:(Q)(M*) = 1.
Proof: (<) T,-invariance of () implies that, for any ¢t € T,,,

Q< wlp,,(Q).

Consider ¢t € T with t € T,. Then we have, for any M € R(N) such that M # M*
and Q(M) =1, b(pX, M*),(M) = 0. If °t # {p}} then b(p:, M*);(M*) = 0. Moreover, if
°t = {p%} then wip,(Q)(M™*) =1 since wip,:(Q)(M™*) = 1. Thus, for any t € T,

Q < wip(Q)V ~ b(p;, M), (6.3)

which implies that b(p%, M*) € Per(Q).
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(=) Since b(pz, M*) € Per(Q) for M* € R(N) with Q(M*) =1 and p} € P,, Eq. (6.3)
holds for any ¢t € T. Also since Q(M*) =1 and b(p}, M*){(M*) = 1 for any t € T, with
°t = {p:}, Eq. (6.3) implies that wip,(Q)(M*) = 1. Therefore, wip,.(Q)(M*) = 1. a

The following theorem can be proved by Lemmas 6.1 and 6.2.

Theorem 6.1 Assume that a predicate ) € Q is T,-invariant. Then there exists the
unique MPC for Q if and only if, for any t € T, with | °t |> 2, the following equation
holds.

QA ( A ’wlppc(Q)> < wip(Q). (6.4)

pc€t
Eq. (6.4) implies that, for any M € R(N) with Q(M) = 1, if b(p;, M) is a permissive
controller for all p. € °t, then @ is true at the marking after the firing of ¢ or ¢ is
not enabled. Using Theorem 6.1, we can check the uniqueness of the MPC without
constructing Per(Q).
We show a synthesis method for the unique MPC if it exists. Each controller f € I'F(V)
can be decomposed into basis feedback controllers; f = 3 ,c;b; with b; € Fy,, for each

2 € I, where I is an index set. Hence, we can prove the following proposition.

Proposition 6.2 If there ezists the unique MPC f € TR for o T,-invariant predicate
Q € Q, then f is given by

f= T f (65

fePeT(Q)ana.s
Also, for anyt € T,

fi=~QV ( A wlppc(Q)) : (6.6)

PcEt

For any p, € P.andt € T, if | T(p.) |= 1 and | °¢ |= 1 then

A wip,.(Q) = wip(Q),

pcE€®t

and Eq. (6.6) is reduced as follows:

fo=~QV w’Pt(Q),I

which is equivalent to the unique MPC in the Ramadge-Wonham model [68]. Thus,

Proposition 6.2 is a generalization of the result obtained in [68].
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Example 6.2 We consider a simple manufacturing system consisting of two machines

MA,; and MA; and a buffer shown in Figure 6.2. p; (: = 1,2,3,4,5), p;; (7 =1,2,3) and

tr (k=1,2,3,4) are assigned as follows:
p1: MA; is idle.
p2: MA; is working.
p3: The buffer content.
pa: MA, is idle.
ps: MA, is working.
pe1: Control of the start of MA;.
pe2: Control of the buffer.
pe3: Control of the start of MA,.
t1: MA; completes working and passes the product to the buffer.
ta: MA; fetches a product from the buffer and starts working.
t3: MA, completes working.

P1 P4
2

tA: p3 b3 t4
Ko K
L\ L O K ]
\m \ /\p5

Pcl De2 Dc3

Figure 6.2: A Petri net model of a simple manufacturing system.

We write a marking M and a control pattern f(M) as a 5-tuple

(M(p1), M(p2)7‘ M(ps), M(ps), M(ps))
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and a 3-tuple
(f(M)(pe), f(M)(pe2), fF(M)(pes)),

respectively. Let M, = (1,0,0,1,0). We consider a control specification Q) € Q given by

QM) :{ é gt}jl\gr(gﬁeg -
that is, the buffer content is always at most one. Then reachable markings satisfying @
are as follows:

my = (1,0,0,1,0)

my = (1,0,1,1,0)

m3 = (1,0,0,0,1)

ms =(1,0,1,0,1)

ms = (0,1,0,1,0)

me = (0,1,1,1,0)

m7 = (0,1,0,0,1)

ms = (0,1,1,0,1)

It is easily shown that @ is T,-invariant. We shall show that there exists the unique
MPC for @ using Theorem 6.1. In Figure 6.2, the transition ¢3 is the only one such that
te T, and |t |> 2, and °t3 = {pe2, pe3}. In order to prove the uniqueness of the MPC it
is sufficient to show that, for m; (j = 1,2,...,8), the following condition (C6-2) holds.

(C6'2) (/\Pcecta wlppc(Q)) (mJ) =1 = wlpta(Q)(mj) =1

We only consider the marking my. For m; (5 = 2,3,...,8), we can verify (C6-2) in the
same way as m,. For p, € °t3, the transition t, is the only one such that ¢ € T, and
°t = {pc2}. Since wipy,(Q)(m1) = 1, we have wip,,(Q)(m;) = 1. Additionally, for
Pe3 € °t3, there exists no transition ¢ such that ¢ € T, and °t = {p,}, which implies that
wlp,,(@)(my) = 1. It follows that

( A wlppc@)) (m1) = 1.

Moreover, since t3 is not enabled at m;, we have wlp;,(Q)(m;) = 1. Therefore, the

condition (C6-2) holds. Thus, by Theorem 6.1, there exists the unique MPC f for Q, and
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fis given by
0,1) if M € {mg,ms},
1,1

,1)  otherwise.

6.2.2 Maximally Permissive Controllers under Partial Obser-
vations

In this subsection, we consider the case that only a marking of places belonging to the
subset P, C P can be observed [28]. In this case, a state feedback controller f € T'F(W)
selects a control pattern based upon a making of P,. For M, M’ € R(N), we shall write
M = M’ if M(p) = M'(p) for all p € P,. Then “=” is an equivalence relation on R(N).
We denote the equivalence class of M € R(N) mod = by C(M), that is,

C(M) = {M’ € R(N); M' = M}.

Let Z be the set of all equivalence classes. We define a mapping A : R(N) — Z as follows:
for any M € R(N),

AM)=C(M).
A state feedback controller f € TR®) under partial observations satisfies the following

condition (C6-3).
(C6-3) For any M, M’ € R(N)

AM) = AM') = f(M) = f(M).

Let Per,(@) be the set of all permissive controllers for () satisfying the condition (C6-3).
It can be easily proved that Per,(Q) # 0 if and only if @ is T,-invariant. We call a
maximal element of Per,(Q) under “<” a mazimally permissive controller under partial
observations (MPCPO). For a T,-invariant predicate, there does not always exist the
MPCPO uniquely.

For a predicate @ on R(N), we define the predicate A(Q) on Z as follows:

AQ)(2) = { é i)ftlzji\fwif(zv) with A(M) = z and Q(M) =1,

For a predicate Q' on Z, we define the predicate A~'(Q’) on R(N) as follows:

“@uen={; TTe0m=t
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We define the transformation owlp,, on Q as follows:

owlpy, (Q) =~ AT (A(QA ~ wip, (Q))).

For M € R(N), if there exists M’ € R(N) such that A(M') = A(M), Q(M') = 1 and
wlp, (Q)(M') = 0, then owlp, (Q)(M) = 0, otherwise owlp, (Q)(M) = 1.

For each p: € P, and each M* € R(N), the basis feedback controller under partial
observations b,(p*, M*) € "B is defined by

* * 1 ifAM =AM* a,nd c=z
b.(pz, M )(M)(pc)={ 0 othe(rwi)se (M) and e =

Obviously, b,(p%, M*) satisfies the condition (C6-3). Let F?,, be the set of all basis feed-

back controllers under partial observations.

Lemma 6.3 Assume that a predicate Q € Q is T,-invariant. Then, for a marking
M* € R(N) and an ezternal input place p} € P., b,(p:, M*) € Per,(Q) if and only

if owlpy(Q)(M*) = 1.
Proof: («) T,-invariance of @) implies that, for any t € T,,,

Q < wip,(Q).

Consider t € T with t € T.. Then we have, for any M € R(N) such that A(M) # A(M*)
and Q(M) =1, b,(pt, M*);(M) = 0. Also, for any M € R(N) such that A(M) = A(M*)
and Q(M) =1, if ¢t # {p:} then b(p:, M*).(M) = 0. We consider the case that ¢ = {p%}.
Since owlpy: (Q)(M™) =1, we have

ATHA(QA ~ wipye (@)(M™) = 0,
which implies together with A(M) = A(M*) that
(@A ~ wipy (@))(M) = 0.

So we have wip,:(Q)(M) = 1, which implies together with °¢ = {p*} that wip,(Q)(M) = 1.
Therefore, the following equation holds for any ¢ € T

Q < wip(Q)V ~ bo(p;, M), (6.7)

which implies that b,(p%, M*) € Per,(Q).
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(=) Assume that owlp,,(Q)(M*) = 0. Then there exists M € R(N) such that
®(M) = &(M*) and (QA ~ wip,(Q))(M) = 1. Since wip,:(Q))(M) = 0, there exists
t € T, such that “¢ = {p*} and wip,(Q)(M) = 0. We also have b,(p>, M*).(M) = 1. Since
b,(pk, M*) € Per,(Q), Eq. (6.7) holds, which implies that wip,(Q)(M) = 1. This is a

contradiction. O

Lemma 6.4 Assume that a predicate Q € Q is T,-invariant. Then if there exists the
unique MPCPO, then Per,(Q) is closed under sum.

Proof: It can be proved in the same way as Theorem 2 of [100] that, for any f and
g € Per,(Q), f + g is a permissive controller. Additionally, For any M, M’ € R(N) with
A(M) = A(M'), we have
(f+9)(M) = f(M)+g(M)
= f(M')+g(M)
= (f+9) (M),

which implies that f+g¢ satisfies the condition (C6-3). Therefore, we have f+g € Per,(Q).
[

The following proposition can be proved in the same way as Theorem 1 of [98].
Proposition 6.3 Assume that a predicate Q) € Q is T,-invariant. Then there ezists
the uniqgue MPCPO for Q if and only if the following condition (C6-4) holds for any f,
g € Per,(Q).

(C6-4) For anyt € T, the following equation holds.

QL wlp(Q)V fiVagV~(f+9) (6.8)

Using Lemmas 6.3, 6.4 and Proposition 6.3, we can prove the following theorem in the

same way as Theorem 6.1.

Theorem 6.2 Assume that a predicate QQ € Q is T,-invariant. Then there exists the
uniqgue MPCPO for Q if and only if, for any t € T, with | °t |> 2, the following equation
holds.

QA ( A Owlppc(Q)> < wip(Q). (6.9)

pcESt
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Eq. (6.9) implies that, for any M € R(N) with Q(M) = 1, if b,(p., M) is a permissive
controller for all p. € “t, then @Q is true at the marking after the firing of ¢ or ¢ is not
enabled. The following proposition presents a synthesis method of the unique MPCPO if

it exists.

Proposition 6.4 If there ezists the uniqgue MPCPO f € TRW) for a Ty-invariant predi-
cate @) € Q, then f s given by

[ S (6.10)
FE€Pero{Q)NFS, .
Also, for anyt € T,
fo= N\ owlp, (Q). (6.11)
PcESt

Proof: First, we prove Eq. (6.10). By Lemma 6.4, Per,(Q) is closed under sum, which
implies that

z f € Per,(Q).

fEPer (Q)NFY

bas

So we have

> f<f

fE€Pero(Q)NFE, ,
We prove the reverse inequality. Consider M € R(N) and p, € P, with f(M)(p,) = 1.
Then f(M')(p.) = 1 for any M’ € R(N) with A(M) = A(M’), which implies that
bo(pe, M) < f. Since f € Per,(Q), we have by Proposition 6.1 that b,(p., M) € Per,(Q)N
F? ., which implies that

( 2 f) (M)(p) = 1.

fEPero(@Q)NFL,,

Therefore,
f< ¥
fEPero(QINFZ .
Next, we prove Eq. (6.11). We prove that, for any ¢ € T,
fi< N\ owlp,.(Q). (6.12)
Pcect

Consider M € R(N) with f(M) = 1. Then f(M)(p;) = 1 for any p. €° t. By
Eq. (6.10), we have b,(p,, M) € Per,(Q) N F2,, which implies together with Lemma
6.3 that owlp, (Q)(M) = 1. Thus, Eq. (6.12) holds.
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We prove the reverse inequality by contradiction. Suppose that there exist ¢ € T, and
M € R(N) such that
N\ owlp, (Q)(M) =1 and Fi(M) = 0.

PpcECt

Since f;(M) = 0, there exists p, € °¢ with f(M)(p.) = 0, which implies together with
Eq. (6.10) that b,(p., M) ¢ Per,(Q) N Fy,,. However, since A, ce; owlp, (Q)(M) = 1, we
have by Lemma 6.3 that b,(pl, M) € Per,(Q) N Fy,,. This is a contradiction. O

Example 6.3 We consider the same manufacturing system as Example 6.2. We assume
that P, = {ps, p3}. By Theorem 6.2 and Proposition 6.4, we can show that the unique
MPCPO for @ exists, and is given by

) _J 0 if M€ {mgms} and p. = pea,
f(M)(p) = { 1  otherwise.

6.3 Controllers for Petri Nets with Concurrency

In this section, we study MPCs for CPNs with concurrency controlled by either event

assignment or resource allocation.

6.3.1 Event Assignment Control

We consider a controlled DES G; = (N2°%,T;), where N®" is a CPN with concurrency
and T; = {0,1}%* is the set of all control patterns.

Let T'(p.)“ be the set of all bags over T'(p.). We define the transformation cwlp,_ on
Q for each p, € P.:
0 i T(p.)#0 and wip,(Q)(M) = 0 for some ¢, € T(p.),
1

otherwise.

culpn ()00 = {

That is, for M € R(N), if there exists t, € T(p.)” such that @) is false at the marking
after the firing of ¢, then cwlp, (Q)(M) = 0, otherwise cwlp, (Q)(M) = 1. Note that
cwlp, (@) is defined with respect to a b-transition ¢, € T'(p.)* while wip, (@) is defined
with respect to a transition ¢ € T'(p.).
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Pc1| © @Pl D2 (@ @)D2

t1 — 1o

ps() O

Figure 6.3: The CPN of Example 6.4.

Example 6.4 We consider a CPN shown in Figure 6.3, and a predicate ) such that
QM) =1 if M(ps) <1, and otherwise Q(M) = 0. Let ¢, = {¢2,¢2}. For the mark-
ing M shown in Figure 6.3, wip,(Q)(M) = 0 and ¢, € T(ps)¥, which implies that
cwlp,,, (Q)(M) = 0. On the other hand, since wip,,(Q)(M) = 1, we have wip,,(Q)(M) =
1.

Lemma 6.5 Assume that a predicate Q is T.”-invariant. Then for a marking M* € R(N)
with Q(M*) =1 and an external input place p% € P,, b(p:, M*) € Per,(Q) (the set of all
permissive controllers in G1) if and only if cwlp,: (Q)(M*) = 1.

Proof: (<) T-invariance of () implies that @ < wlip,, (Q) for any t, € T¥ N T;. Let
ty € T, be a b-transition such that ¢, N T # #. Then we have b(p:, M*),,(M) = 0 for any
M € R(N) such that M # M* and Q(M) = 1. If t,NT, € T(p}), then b(p%, M*),,(M*) =
0. Moreover, if t, N T. C T(p:) and D;,(M*) = 0 then wip, (Q)(M*) = 1. Thus we
consider the case that ¢, N T, C T(p?) and D,,(M*) = 1. We partition t, as

ty =ty U tbu’

where t,. € T and t3, € T%. Since cwlp,:(Q)(M*) = 1, we have wip,, (Q)(M*) = 1.
Let M’ and M" be markings such that M*[t,. > M’ and M'[t;, > M”. Then we have
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@(M') = 1. Moreover, T¥-invariance of () implies that Q(M") = 1. Since M*[t, > M",
we have wip,,(Q)(M*) = 1. Therefore, for any t, € T,

Q S 'LUlptb(Q)V ~ b(p:a M*)tln

which implies that b(p%, M*) € Per,(Q).
(=) Since b(p%, M*) € Pery(Q) for M* € R(N) with Q(M*) = 1 and p* € P, the
following equation holds for any ¢, € Tj.

Q < wlptb(Q)v ~ b(p:7M*)tb' (613)

Since Q(M™*) = 1 and b(p%, M*),,(M*) = 1 for any t, € T(p})“, we have wip,, (Q)(M*) =1
by Eq. (6.13). Therefore, cwip,:(Q)(M*) = 1. O

We show a necessary and sufficient condition for the unique existence of the MPC in G,

which can be checked without constructing Per;(Q).

Theorem 6.3 Assume that a predicate Q) is T¥-invariant. Then there exists the unique

MPC in Gy if and only if for any t, € T¥ N Ty, the following equation holds.

QA N cwlp,(Q) < wip,(Q). (6.14)

PcEtp

Proof: (<) By Proposition 2.3, it is sufficient to prove that @ is WI in G;. Obviously,
Eq. (2.16) holds for any f and g € Peri(Q) if t, € T N T,. Suppose that Eq. (2.16) does
not hold for some ¢, € T, such that t, N T. # 0. Then there exist f, ¢ € Per;(Q) and
M € R(N) such that

Q(M) =1 and (wip,,(Q) V f1, V 95,V ~ (f + 9)1,)(M) = 0. (6.15)

We partition ¢, as
tp = tpe U tpa,

where ty. € T and ¢y, € TY. Since (f + g):,(M) = 1, we have (f + ¢),. (M) = 1. Thus
for any p. € °ty, (f + g)(M)(p.) = 1, that is,

F(M)(p) =1 or g(M)(p) = 1.
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Hence
b(pe, M) < f or b(p., M) < g.
Since f, g € Per;(Q), we have by Proposition 6.1 that b(p., M) € Per;(Q), which implies
together with Lemma 6.5 that cwlp,, (Q)(M) = 1. Then,
Q(M) =1 and ( A cwlppc(Q)> (M) =1.

PcElye

So wip, (Q)(M) =1 by Eq. (6.14). Let M’ and M” be markings such that M[t,, > M’

and M'[ty, > M". Then we have Q(M') = 1. Moreover, T¥-invariance of () implies that

Q(M") = 1. Since M[t, > M", we have wip,,(Q)(M) = 1, which contradicts Eq. (6.15).
(=) Assume that there exist M € R(N) and t, € T¥ N T} such that

(Q A A cwlppc(Q)) (M) =1.
PcEty

Then by Lemma 6.5, b(p., M) € Per,(Q) for any p. € t,. Let f =3, cc;, b(pe, M). Since

the unique MPC existsin Gy, Pery(Q) is closed under sum [100], and we have f € Per(Q).

It is obvious that fi, (M) = 1, which implies that wip,,(Q)(M) = 1. Therefore, Eq. (6.14)

holds for any ¢, € T N T;. m]

Eq. (6.14) implies that, for any M € R(N) with Q(M) = 1, if b(p,, M) is a permissive
controller for all p. € “t;, then @ is true at the marking after the firing of ¢, or #; is not
enabled.

6.3.2 Resource Allocation Control

We consider a controlled DES G,. For M € R(N) with Q(M) =1 and p. € P, X(M, p,) €
N U {oo} is defined as follows:

0 if wip,, (Q)(M) =0,
X(M,p.) = { kmax i }EwIPPC(Q)A ~ cwlp, (Q)) (M) =1,
00 otherwise,

where
kmax = max{k € N; wlp,,(Q)(M) =1 for any t, € T(p.)* such that | |< k},

the symbol oo satisfies that & < oo for any £ € N. Intuitively, X(M,p.) denotes the
maximum number of tokens we can put into p. at M € R(N) under permissive controllers

when M(pl) = 0 for all p.(# p.) € P..
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Example 6.5 We consider the same system as Example 6.4. For the marking M shown
in Figure 6.3, we know that (wlp,,(Q)A ~ cwlp,,(Q))(M) =1 by Example 6.4. Then it
is easily shown that X (M, p.;) = kmax = 1. On the other hand, since T'(ps) = 0, we have
wip, . (Q)(M) = cwlp,,, (Q)(M) = 1, which implies that X (M, p.;) = oo.

Lemma 6.6 Assume that a predicate Q) is T -invariant. Then for any f € Perz2(Q), any
pc € P; and any M € R(N) with Q(M) =1, the following equation holds.

f(M)(p:) < X(M,p.). (6.16)

Proof: We shall prove the above lemma by contradiction. Suppose that there exist
f € Pery(Q), p. € P. and M € R(N) such that Q(M) = 1 and X(M,p.) < f(M)(p.).
Obviously, X(M,p.) # oco. If wip, (@)(M) = 0, then X(M,p,) = 0, which implies
f(M)(p:) = 1. Thus there exists t € T(p.) such that f;(M) = 1 and wip,(Q)(M) = 0,
which contradicts the fact that f € Pery(Q). If wip, (Q)(M) = 1, then there exists
tp € T(p,)* such that | #, |[< f(M)(p.) and wip, (Q)(M) = 0, and obviously, f;, (M) =1,
which also contradicts the fact that f € Perq(Q). o

For M* € R(N) with Q(M*) =1, p* € P. and k € N, we define g(p%, M*, k) € THV)
as follows:

k if M =M"*and p. =p},

stz b RO0G) ={ g M (6.17)

Lemma 6.7 Assume that a predicate Q is TY-invariant. Then g(p:, M*,k) € RN
defined by Eq. (6.17) is a permissive controller in G, whenever k < X (M*,p?).

Proof: T¥-invariance of @ implies that
Q L wlp,(Q) foranyt, e TV NT,.

Let ¢ € T} be a b-transition such that ¢, N T, # @. It is sufficient to consider the case that
M = M, t,NT, C T(p:) and D,,(M*) = 1 because, in other cases, it is proved in the

same way as Lemma 6.5. We partition ¢, as
o = toc U tpa,

where t,. € T2 and ty, € T2, If | tyc |> k, then ~ g(pl, M*,k),, (M*) = 1. If | 85 |<
k< X(M~, p?), then wip,, (Q)(M*) = 1 by the definition of X(M*,p}). Let M’ and
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M" be markings such that M*[t,, > M’ and M'[t,, > M"”. Then we have Q(M’) = 1.
Moreover, T%-invariance of ¢} implies that Q(M”) = 1. Thus, we have wip,, (Q)(M™) = 1.
Therefore, for any t, € T},

Q S U’lPt;,(Q)V ~ Q(PL M*1 k)tbv
which implies that g(p}, M*, k) € Perg(Q). 0
We define the predicate B;, € Q for t, € T* as follows:

Btb(M) _ { 1 lf Ztetb Ic(t’pc) S X(M’pc) vpc € Pca (618)

10 otherwise.

That is, for M € R(N), if the total number of arcs from p, to some ¢ € ¢, is at most
X (M, p,.) for p. € P, then B;,(M) = 1, otherwise B;,(M) = 0.
The following theorem shows a necessary and sufficient condition for the unique exis-

tence of the MPC in G,, which does not require to construct ,(Q).

Theorem 6.4 Assume that a predicate () is T -invariant. Then there exists the unique

MPC in G, if and only if the following equation holds for any t, € T N T.

Proof: (=) It is sufficient to prove that @ is Wlin G,. It is obvious that Eq. (2.16) holds
for any f and g € Q5(Q) if t, € T¥ N T,. Suppose that Eq. (2.16) does not hold for some
ty € Ty with t, N T, # 0. Then there exist f, ¢ € Q3(Q) and M € R(N) such that

Q(M) =1 and (wlp,(Q) V fi, V 9,V ~ (f + 9)1, ) (M) = 0. (6.20)
We partition ¢, as
by = toc U tpu,
where t,. € T and t;, € T“. Since (f + ¢)i,(M) = 1, we have (f + ¢)s, (M) = 1. Thus

for any p. € P,

2 Lt po) < f(M)(pe) or - L(t, pe) < g(M)(po)-

tEtye t€tpe

Also, since f and g € Q2(Q), by Lemma 6.6,

f(M)(p.) < X(M,p.) and g(M)(p.) < X(M,p.),
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which implies that
Z I(t,p:) < X(M, p,.).

t€the
Thus B,, (Q)(M) = 1. Since (Q A By, )(M) = 1, Eq. (6.19) implies that wip;, (Q) = 1.
Let M’ and M" be markings such that M[t,, > M’ and M'[ts, > M”. Then we have
Q(M') = 1. Moreover, T-invariance of @ implies that Q(M”) = 1. Therefore, we have
wlp,, (Q)(M) = 1, which contradicts Eq. (6.20).
(¢«) For t, € T¢ N T, let M* be a marking such that (Q A B;,)(M*) = 1. Then the
following equation holds.

Z L(t,p.) £ X(M*,p.) Vp.é€ P..

t€ty
Obviously, if D;,(M*) = 0 then wip,(Q)(M*) = 1. So we consider the case that
D,,(M*) = 1. We define f(p:, M*) € TE™) as follows:

if M = M* and p. = p,

otherwise.

F(p2, M*)(M)(p.) = { Oze L(,p)

By Lemma 6.7, f(pX, M*) € Pery(Q), and it is obvious that f(p*, M*) satisfies the MTC.
Moreover, we define g € I‘?(N) by

9= Z 'f(p:?M*)'
249
Since the unique MPC exists in G2, Q2(Q) is closed under sum [100]. Therefore, we have
9 € 23(Q) and g;,(M*) = 1, which implies that wip, (Q)(M*) = 1. )

The above theorem shows that, for any M € R(M) and any ¢, € T¥ N T} such that
(Q A By,)(M) =1, if @ is true at the marking after the firing of ¢, or ¢, is not enabled,
then the unique MPC exists in G,.

6.3.3 Comparison between §G; and G,

In this subsection, we discuss the relationship between the unique existence of the MPC

in G; and that in G,.

Theorem 6.5 Assume that a predicate Q) is T*-invariant. Then if the unique MPC ezists

in Go, then it also erists in G.
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Proof: By the definition of X (M, p.), the conditions cwip, (Q)(M) =1 and X(M,p.) =
oo are equivalent for any M € R(N) with Q(M) =1 and any p. € P.. For M* € R(N)
with Q(M*) =1, let t, € T¥ N T} be a b-transition satisfying the following equation.
A cwlp, (Q)(M™) = 1.
PcECty

Obviously, if X(M*,p.) = oo then Y i, L(t,pc) < X(M*,p.). If X(M*,p.) < o0, we
have I.(t,p.) = 0 for any t € ;. Thus the following equation holds.

Z Ic(tapc) < X(M*7PC) vpc € Pca

t€ty

which implies that B;,(M*) = 1. The unique existence of the MPC in G, implies together
with Theorem 6.4 that wip, (Q)(M*) = 1. Then for any ¢, € T* N T}, Eq. (6.14) holds.
Therefore, there exists the unique MPC in G, by Theorem 6.3. ]

Note that the reverse implication of Theorem 6.5 does not always hold. We shall give

a counter-example as follows.

Example 6.6 We consider a CPN N, shown in Figure 6.4. Let @) be the predicate
such that Q(M) = 1 if M(p1) + M(p2) < 1, and otherwise 0. We will write a mark-
ing M and a control pattern f(M) as a 3-tuple (M(p,), M(ps), M(p3)) and a 2-tuple
(F(M)(pc1), f(M)(pc2)), respectively. Let My = (0,0,2). It is easily shown that @ is
TY-invariant, and that there exists the unique MPC f in G; given by

2 0,0 if M € {(0,0,2),(0,1,1),(1,0,1)},
f(M) = { El, 1; otherwise. M )

On the other hand, the following two controllers f; and f, are permissive controllers with

the MTC in G,.
(a) fi(M)=(0,1) and fo(M) = (1,0) if M =(0,0,2).
(b) fi(M)= fo(M)=(0,0) otherwise.

The controller f, + f; is not, however, a permissive controller, that is, the MPC does not

exist uniquely.
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t
De2 \2 D2 t5 /)
b3
Dcl / | p1 ty

Figure 6.4: The CPN of Example 6.6.

6.4 Concluding Remarks

In this chapter, we studied the unique existence of the MPC in CPNs. First, we considered
CPNs without concurrency. We presented necessary and sufficient conditions for the
unique existence of the MPC under partial as well as complete observations, which can
be checked without constructing the set of all permissive controllers. Next, we extended
the results to CPNs with concurrency controlled by either event assignment or resource
allocation. We then showed that the unique existence of the MPC in resource allocation

control implies that the same is true in event assignment control.



Chapter 7

Stabilization and Blocking

7.1 Introduction

Control problems in DESs such as manufacturing systems are often specified by both
admissible and target states. Admissible states represent a set of states in which state
trajectories of a system should reside. Target states, which is a subset of admissible
states, represent the completion of some tasks. It is shown in this chapter that if control
specifications are given not only by admissible states but also by target states, the notion
of stabilization of DESs [64, 63, 62, 8, 9, 103, 39, 76, 77| plays an important role to design
state feedback controllers.

In the context of supervisory control [67], the optimization techniques of a blocking su-
pervisor in terms of two logical performance measures, a satisficing measure and a blocking
measure, have been proposed [12]. In the closed-loop system, the former measure indi-
cates admissible marked traces enabled by the supervisor, and the latter indicates traces
which lead to blocking. We define two similar performance measures called a prestabiliz-
ing measure and a blocking measure to analyze blocking in state feedback control. The
former measure is described by the predicate indicating states such that all admissible
trajectories starting from them can be extended to target states, while the latter by the
predicate indicating states which may lead to blocking.

In this chapter, we first present an algorithm to compute the minimally restrictive
nonblocking solution [41, 12]. But a nonblocking controller may be restrictive because
it disables all behaviors which may lead to blocking. In this sense, blocking controllers

can be practically more efficient than nonblocking ones if blocking in the closed-loop

107
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system is resolved easily by some external intervention such as rollback mechanism. A
manufacturing system is a typical example of such a system. Then by similar techniques
to [12], we perform the optimization of a given blocking controller in terms of the two

performance measures.

7.2 Stability and Stabilizability

In this chapter, we consider the Ramadge-Wonham model. Let G be a finite state automa-
ton G = (X, X, 6, 2°) defined by Eq. (2.1), where X is the finite set. We define notions of
stability and stabilizability in terms of predicates. A (possibly infinite) sequence of states,
x = z%zz2..., is said to be a (state) trajectory from z° in G if there exist 0°,0,...,€ &
such that 27+! = §(¢7,27) for all j = 0,1,2,...,. We say = € x if z; = z for some j. Let
T(G, z) denote the set of all trajectories x from z in G such that X is infinite or ends with
a state where no event can occur. A trajectory x’ is said to be a prefix of x if there exists
a sequence s of states such that x = x’s. Let () and E be predicates such that £ < Q.
A finite trajectory x is said to be (Q, F)-attracting if every state z € x satisfies () and x

ends with a state satisfying E.

Definition 7.1 Let Q, K and E be predicates such that E < K < ). Then a subpredicate
Q' of Q is (K, E)-prestable if, for all z € X with Q'(z) = 1, every trajectory x € T'(G, z)
has o (K, E)-attracting prefix. Moreover Q' is (K, E)-stable if, for all z € X with Q'(z) =
1, every trajectory x € T(G, z) satisfies either of the following two conditions.

e X is infinite and resides in K and visits states satisfying E infinitely often.
o x is finite and (K, E)-attracting.
If K = Q then we simply say that )’ is E-prestable or E-stable.

The above definitions are equivalent to the ones defined by Ozveren et al.[64, 63, 62]

except that our definitions require that every trajectory consists of states satisfying K.

Remark 7.1 Obviously, if a subpredicate @' of @ is (K, E)-prestable ((K, E)-stable),
then @' is also a subpredicate of K.
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Definition 7.2 Let ), K and E be predicates such that E < K < Q. Then a subpred-
icate Q' of @ is (K, E)-prestabilizable (respectively, (K, E)-stabilizable) if there exists a
state feedback controller f such that Q' is (K, E)-prestable (respectively, (K, E)-stable)
in the closed-loop system G | f. Such a controller is said to be a (K, E)-prestabilizing
(respectively, (K, E)-stabilizing) controller of Q'. If K = Q then we simply say that Q' is
E-prestabilizable or E-stabilizable (f is E-prestabilizing or E-stabilizing controller).

Remark 7.2 If K is control-invariant and a subpredicate Q' of Q is (K, E)-prestabilizable
(respectively, (K, E)-stabilizable), then there exists a (K, E)-prestabilizing (respectively,

(K, E)-stabilizing) controller of @’ which is also a permissive controller of K.

It can be shown in the same way as Corollary 3.3 (respectively, Corollary 3.17) in [64]
that the supremal (K, E)-prestabilizable (respectively, (K, E)-stabilizable) subpredicate
of @ always exists. Let P(K,E) (respectively, S(K, E)) denote the supremal (K, E)-
prestabilizable (respectively, (K, F)-stabilizable) subpredicate of Q.

Proposition 7.1 Let Q, K, K’ and E be predicates with E < K' < K < Q. Then if
P(K,E) < K’ then the following equation holds.

P(K,E) = P(K', E). (7.1)

Proof: Since K’ < K, it follows that P(K’, E) < P(K, E). We shall prove the reverse
inequality. Let f be a (K, F)-prestabilizing controller of P(K, E). It is sufficient to
prove that, for any z € X with P(K, F)(z) = 1, every trajectory x € T(G | f,z) has a
(K', E)-attracting prefix. Consider ¢ € X with P(K, E)(z) = 1. Then every trajectory
x € T(G | f,z) has a (K, E)-attracting prefix. Let x’ be the shortest (K, F)-attracting
prefix of x. Suppose that there exists 2’ € x’ with P(K, E)(z') = 0. Then every trajectory
x" € T(G | f,2') has a (K, E)-attracting prefix. We define the predicate P'(K, E) € Q

as follows:
P _J1 i#PK,E)z)=1lorz=2,
P'(K, B)(z) = { 0  otherwise.
Then it is obvious that P/(K,E) < @ and f is also a (K, E)-prestabilizing controller of
P'(K,E). This contradicts the fact that P(K, E) is the supremal (K, E)-prestabilizable
subpredicate of Q. Therefore, every trajectory x € T(G | f,z) has a (P(K,E), E)-

attracting prefix. Since P(K,E) < K', x has a (K', E)-attracting prefix. Therefore
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f is also a (K', E)-prestabilizing controller of P(K, E), which implies that P(K, F) <
P(K',E). 0

7.3 Blocking and E-stability

Let @ and E with £ < @) be predicates representing the set of all “admissible” and “target
” states, respectively. Desirable behaviors of a system are represented by trajectories of
admissible states which visit target states in a finite number of transitions. We define

blocking in the context of state feedback control using the notion of E-stability.

Figure 7.1: The DES of Example 7.1.

Example 7.1 We consider the DES shown in Figure 7.1, where it is assumed that X, =
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{at,0?,0%} and B, = {81, 5?%,3°}. Let Q and E be predicates given by
R(z)=1 VzeX,

and

E(z) = { 1 if z € {z1,22, 23,24},

0 otherwise,

respectively.

There are two types of blocking in state feedback control.
e There is a state such that no state trajectory from it can reach target states.

e There is a state such that some (infinite) state trajectory from it cannot reach target
states. Note that such a state may transit to a target state by an adequate firing

sequence of events.

Supervisory control based upon formal languages can treat only the former case [54]. Such
blocking occurs at zg and zg. On the other hand, the latter blocking occurs at zg. In
fact, state trajectories may drop into a infinite loop at z¢ and they never reach target
states. However, this case is not regarded as blocking in supervisory control because it

treats only finite sequences of events.

Definition 7.3 Let Q' be a predicate with Q' < Q. Then the system G is nonblocking for
Q' if Q' is E-stable in G, otherwise blocking.

Definition 7.4 Let Q' be a control-invariant predicate with ' < Q. Then a permissive
controller f of Q' is nonblocking for Q' if Q' is E-stable in the closed-loop system G | f,

otherwise blocking.

We shall show several properties of P(Q, E) and S(Q, E).

Proposition 7.2 The following algorithm computes P(Q, E).
Algorithm 7.1: Let X, := F and iterate:

Xig1 1= QA ~ Xi A ( A wlpa(Xk)) A (\/ wpa(Xk)) .

TET, gEL

Xk+1 = Xk \% Xk+1.
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Terminate when X1 = Xi. Then P(Q,E) := X;.

If Algorithm 7.1 terminates when X;y1 = X;, then an E-prestabilizing controller f of
P(Q,E) is given by

f(z) = { g U{o € Zwlp,(Xi_1)(z) = 1} Zhﬁ;()z)e_ 1 (k=1,2,...,9), (12)
Proof: Since X is the finite set and {X}} is a monotonically increasing sequence with
X, < @, Algorithm 7.1 terminates in a finite number of steps. Suppose that Algorithm 7.1
terminates when X;,; = X;. First, we shall prove by induction that f defined by Eq. (7.2)
is an E-prestabilizing controller of X;, which implies that X; is an FE-prestabilizable
subpredicate of ). Clearly, X, is E-prestable in the closed-loop system G | f. Suppose
that X is E-prestable in G | f. That is, for all z € X with X;(z) = 1, every trajectory
x € T(G | f,z) has a (@, E)-attracting prefix. Let z* € X be a state such that Xepa(z*) =
1. Then

/}: wip,(Xe)(z*) =1,

which implies together with Eq. (7.2) that, for any o € I, Xy (6.(0,z*)) = 1 if é.4(0, z*)\.

Also since

V wpe(Xi)(=") = 1,
gEL

there exists at least one o € X such that é.4(c,z*)!. So every trajectory x* € T(G | f,z*)
is described by x* = z*x, where x € T(G | f,z) for some z € X with X(z) = 1. Since
Q(z*) = 1, x* has a (@, E)-attracting prefix. Then X4 is E-prestable in G | f. This
completes the induction. Thus, f is an E-prestabilizing controller of X; and X; is an
E-prestabilizable subpredicate of Q. This implies that X; < P(Q, E).

Next, we shall prove that P(Q,E) < X; by contradiction. Suppose that there exists
z € X such that P(Q,E)(z) =1 and X;(z) = 0. For all 2’ € X such that X;(z') =0
and Q(z') = 1, there exists o € ¥, such that §(o,z’)! and X;(6(o,2’)) = 0, otherwise
there is no event o € ¥ such that X;(6(c,z')) = 1. Since X is the finite set, for any
state feedback controller g, there exists at least one trajectory x € T(G | g, ) which does
not have a (@, X;)-attracting prefix. Since £ < X, such a trajectory does not have a
(Q, E)-attracting prefix, which contradicts that P(Q, F)(z) = 1.

Consequently, we have P(Q,E) = X; and f is an FE-prestabilizing controller of
P(Q, E). O
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Note that Algorithm 7.1 has complexity O(mn?).

Corollary 7.1 For any o € L, the following equation holds.

P(Q, E)A ~ E < wlp,(P(Q, E)). (7.3)
Proof: Let z € X be a state such that (P(Q, E)A ~ E)(z) = 1. From Algorithm 7.1, we
have X x(z) = 1 for some k, which implies that

N wips(Xi-1)(z) = 1.
g€X,

Clearly, Xx—1 < P(Q, E). Thus we have

A wip.(P(@, E))(z) = 1.
oE€T,
O
Proposition 7.3 S(Q, E) is control-invariant, and any E-stabilizing controller of S(Q, E)
is also a permissive controller of S(Q, E).
Proof: Obviously, it is sufficient to prove that any E-stabilizing controller f of S(Q, E)
satisfies

S(Q, E) < wlp,(S(Q,E)V ~ f, Voe€X. (7.4)

Suppose that there exist ¢ € X and o € ¥ such that
S(Q,B)(z) =1 (7.5)

and

(wips(S(Q, E))V ~ fo)(z) = 0. (7.6)
Eq. (7.6) shows that é.5(o,z)! in G | f. Letting 2’ = 6.4(o,z), S(Q,E)(z') = 0 and
Q(z’) = 1. On the other hand, every trajectory x € T(G | f,z’) resides in @ and
visits states satisfying F infinitely often, otherwise x is (@, F)-attracting. We define the

predicate S’(Q@, E) € Q as follows:

, |1 ifSQ,E)z)=1lorz=2,
5(Q, E)z) = { 0  otherwise.

Then it is obvious that S'(Q, E) < @ and f is also an E-stabilizing controller of 5'(Q, E).
This contradicts the fact that S(Q, E) is the supremal E-stabilizable subpredicate of Q.
Therefore, Eq. (7.4) holds, which implies that S(@Q, E) is control-invariant and f is a
permissive controller of S(Q, E). O
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From Proposition 7.3, we can prove the following corollary.

Corollary 7.2 Any E-stabilizing controller f of S(Q, E) is nonblocking for S(Q, E).
Remark 7.3 In general, an E-prestabilizable subpredicate of @) is not control-invariant.

Example 7.2 We consider the same system as Example 7.1. We shall show that P(Q, E)
is not control-invariant. We apply Algorithm 7.1 to compute P(@, E). Then

if ¢ € {z1,2%, 2%, 24, 2%},
otherwise.

1
PQ B ={ §

It is easily shown that for 22 € X and 8! € &,,
P(Q, E)(2*) = 1 and wips (P(Q, E))(z?) = 0,

which implies that P(Q, F) is not control-invariant.

7.4 Logical Performance Measures

Let K be a control-invariant subpredicate of (). In this section, we introduce the following
two performance measures, a prestabilizing measure (PM) and a blocking measure (BM)

to evaluate logical performances of prestability and blocking in state feedback control.

PM(K) P(K,ENK),
BM(K) = KA~ P(K,EAK).

There exists a permissive controller f of K such that, for all z € X with PM(K)(z) =1,
every trajectory x € T(G | f, z) visits a state satisfying EA K in a finite number of transi-
tions. Note that PM(K) is (K, EAK)-prestabilizable, not (K, EAK)-stabilizable. On the
other hand, for any permissive controller f of K, each state z € X with BM(K)(z) =1
may lead to blocking in G| f. Note that BM indicates states which have the possibility
of blocking, but a state z € X with BM(K)(z) = 1 may transit to a target state by an
adequate firing sequence of events. So it is desirable that we select a control-invariant
subpredicate K of @) such that PM(K) is as large as possible and BM (K) is as small as

possible, which is a trade-off.
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Remark 7.4 Chen and Lafortune have proposed two performance measures called a
satisficing measure (SM) and a blocking measure (BM) in the context of supervisory
control [12]. In the closed-loop system, SM indicates admissible marked traces, and BM
indicates traces which lead to blocking. Note that the meaning of BM in state feedback

control is different from that in supervisory control as shown in Example 7.1.

Lemma 7.1 Assume that K € Q ts a control-invariant subpredicate of (). Then the
following equation holds for any control-invariant predicate K' € Q with PM(K) < K’ <
K.

PM(K')= PM(K). (7.7)

Proof: We first show that ,
EANK' =EAK. (7.8)
Since PM(K) = P(K,EANK) < K', wehave EA K < K', thatis, EAK < EAK'.
Conversely, we have EA K’ < E A K since K’ < K. Thus, Eq. (7.8) holds.
By Eq. (7.8) and Proposition 7.1, we have

P(K,EANK) = P(K,EANK'
= P(K'EAK'"),

which implies that PM(K') = PM(K). 0
By the above lemma, we immediately show the following corollary.

Corollary 7.3 Assume that K € Q is a control-invariant subpredicate of Q. Then the

following equation holds.
PM(PM(K)') = PM(K). (7.9)

Lemma 7.2 Assume that K € Q is a subpredicate of @ such that K = P(K,E A K)'.
Then K is an E-stabilizable subpredicate of Q.

Proof: Since K = P(K,E A K)', we have K < P(K, E A K). Conversely, it is obvious
that P(K,E A K) < K. So we have K = P(K,E A K), which implies that K is the
supremal (K, E A K)-prestabilizable subpredicate of ). Since K is control-invariant and
E N K < K, the following equation holds for any o € ¥,,.

EAK < wlp,(K).
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By using a (K, E A K)-prestabilizing controller f of K constructed by Eq. (7.2), we will
define a state feedback controller g as follows:
(z) = T, U{o € Ewlp,(K)(z)=1} i (EAK)z)=1,
IE= fz) otherwise.

For all z € X with K(z) = 1, every trajectory x € T(G | g,z) has a (K,E A K)-
attracting prefix x'. For any z € X with (EAK)(z) =1 and any 0 € &, K(é4(0,z)) =1
if 8.4(o, z)!. Therefore, it is obvious that K is a (K, E A K)-stabilizable subpredicate of
Q. Since K < @, K is also an E-stabilizable subpredicate of Q). m]

By the above lemma, we immediately show the following corollary.

Corollary 7.4 Assume that K € Q s a control-invariant subpredicate of Q) such that
BM(K) = 0. Then there exists a nonblocking controller for K.

Proposition 7.4
BM(S(Q,E)) =0, equivalently, S(Q,E) = P(S(Q,E),E A S(Q,FE)), (7.10)
holds. Also for any control-invariant subpredicate K of Q such that BM(K) = 0,
K <S(Q,FE). (7.11)

Proof: First, we shall prove Eq. (7.10). From Proposition 7.3, every E-stabilizing con-
troller f of S(Q,E) is also a permissive controller of S(Q, E). So, for any z € X with
S(Q, E)(z) = 1, every trajectory x € T(G | f,z) resides in S(Q, E) and visits states
satisfying E A S(Q, E) infinitely often, otherwise x is (S(Q, E), E A 5(Q, E))-attracting.
Clearly, S(Q, E) is the supremal (S(Q, E), E A S(Q, E))-prestabilizable subpredicate of
Q. Therefore, Eq. (7.10) holds.

Let K € Q be a control-invariant subpredicate of @ such that BM(K) = 0. Since
BM(K) = 0, we have K = P(K,E A K). Also control-invariance of K implies that
K = P(K,E A K)!. Thus, K is an E-stabilizable subpredicate of Q by Lemma 7.2.
Therefore, K < S(Q, E). | o

From Proposition 7.4, S(Q, E) is the largest control-invariant subpredicate of @} such
that BM(-) = 0. S(Q,FE) is said to be the minimally restrictive nonblocking solution
(MRNBS) [41, 12].
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On the other hand, if a control-invariant subpredicate K of @ satisfies that PM(K) =
P(Q, E), we call K the completely prestabilizing solution (CPS), which is similar to the
completely satisficing solution considered in [41] and [12]. But the CPS does not always

exist. We show a necessary and sufficient condition for the existence of the CPS.

Proposition 7.5 There exists the CPS if and only if P(Q, E)! < Q7.
Proof: (<) Since P(Q,E)! < Q' < Q, we have

P(P(Q,E)',EAP(Q,E)
= P(P(QvE)l’E)
< P(Q,E).

PM(P(Q,E))

Conversely, since P(Q, E) < P(Q, E)*, we have
P(P(Q,E)', E)
P(P(Q,E),E)
P(Q,E).

PM(P(Q,E)")

AV

Therefore, PM(P(Q, E)!) = P(Q,E). Since P(Q, E)! is control-invariant subpredicate
of @, P(Q, E)! is the CPS.
(=) Let a predicate K be the CPS. Since PM(K) = P(Q,E), P(Q,E) < K. By

control-invariance of K, we have

P(Q,E) < P(Q,E)
< K.

Moreover, K < QT since K < Q. Thus, we have P(Q, E)! < Q'. o

If P(Q,E)! < Q7, then it is obvious that P(Q, E)! is the CPS. P(Q, E)! can be computed
by using Proposition 8.2 in [68] and Algorithm 7.1.

7.5 Nonblocking State Feedback Control

In the last section, we showed that S(@,FE) is the MRNBS. This section presents an
algorithm to compute S(@Q, E).
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Theorem 7.1 The following algorithm computes S(Q, E).
Algorithm 7.2: Let X, := @ and iterate:

Xk+1 = P(Xk,E A Xk)T.

Terminate when Xy = Xi. Then S(Q, E) := X;.
Proof: Since P(Xy, EAXi)' < P(Xk, EAXi) < Xi, {X&} is a monotonically decreasing
sequence and X is finite, which implies that Algorithm 7.2 terminates in a finite number
of steps. Suppose that Algorithm 7.2 terminates when X; = P(X;, EAX;)!. From Lemma
7.2, X; is an E-stabilizable subpredicate of Q). Thus, we have X; < S(Q, F).

Next, we shall prove that S(Q,E) < X; by induction on the number of éteps in
Algorithm 7.2. Obviously, S(Q, E) < Xo = Q. Suppose that S(Q, F) < X;. Then from
Propositions 7.3 and 7.4, it follows that

S(Q,E) = S(Q,E)
= P(S(Q,E),EAS(Q,E)),

which implies together with S(Q, F) < X that

S(Q,E) < P(Xy,EAXi)!
= Xin.

This completes the induction. Therefore, we have S(Q, F) < X. O
Note that Algorithm 7.2 has complexity O(mn?).

Remark 7.5 If Q = 1, then Algorithms 7.1 and 7.2 are reduced to algorithms for com-
puting the supremal E-prestabilizable and E-stabilizable predicates proposed in [64], re-

spectively.

Let f be a (S(Q, E), E A S(Q, E))-prestabilizing controller of S(Q, F) constructed by
Eq. (7.2). Thus an E-stabilizing controller g of S(Q, E) is given by

g(z) = { B, U{o € Twlp,(S(Q, E))(2) =1} if (EAS(Q,E))(z) =1,
f(=) otherwise.
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Example 7.3 We consider the same system as Example 7.1. We apply Algorithm 7.2 to
compute S(Q, F). Then

_ 1 ifze {-1'1,1:5}7
5(Q, E)(z) = { 0 otherwise.

Then an E-stabilizing controller f of S(Q, F) is given by

L, U{c'} ifz=2l,
flz) =4 T, U{a’} ifz=25
by otherwise.

7.6 Improvement of Logical Performances

In 7.4, we defined two extreme solutions called the MRNBS and the CPS. The MRNBS is
optimal with respect to BM, but the behaviors of the corresponding closed-loop system
may be very restrictive. On the other hand, the CPS is optimal with respect to PM,
but blocking may occur very often. Thus, both the MRNBS and the CPS may not be
adequate solutions from the practical point of view.

It is obvious that, for any control-invariant subpredicate K of @, PM(K) < PM(Q").
But, in general, BM(Q") # 0. Let K = PM(Q")! = P(Q", EAQM)!. From Corollary 7.3,
we have PM(K) = PM(Q'). Since K is the smallest control-invariant superpredicate
of PM(Q'), we have BM(K) < BM(K) for any control-invariant predicate K with
PM(K) = PM(QT"). Therefore, we consider the set of admissible solutions [12] as follows:

Qas = {K € Q;S(Q,E) <K < P(Q",EAQ")! and K is control-invariant}. (7.12)

If an arbitrary admissible solution K € Q)45 is given, we may be able to improve PM
and/or BM. In the following subsections, we first present the operation to reduce the
blocking measure (respectively, enlarge the prestabilizing measure) without degrading the
prestabilizing measure (respectively, the blocking measure). Using the operations, we then
perform the optimization of a given blocking controller in terms of the two performance

measures by similar techniques to [12].

7.6.1 Improving BM

Let Kjs € Qas be the “initial” solution in designing a state feedback controller. In this

subsection, we show a design method to improve BM (Ks) without changing PM(Ks),
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that is, find Kppr € Qas such that BM(Kppr) is the smallest subject to PM(Kpgpr) =
PM(Kjs).

Proposition 7.6 P]W(f([s)l € Qas-
Proof: Since Kjs € Qas, S(Q, E) < Ks. So we have by Proposition 7.4 that

S(Q,E) P(S(Q,E),EAS(Q,E))
< P(Krs, E N Kis)
< P(st,E A 1{15)1

PM(Ks)".

Also P(K1s, ENKis)! < Kis < P(Q1, E A QM) since Kis € Qas. Therefore, we have

PM(Ks)* = P(Krs,E A Kis)*
< PQLEAQN.

Since PM (K Is)l is control-invariant, we have PM (K IS)l € Qas. O

We can prove the following theorem which presents a method for improving BM (K s).
Theorem 7.2 If PM(K;s)' < Kis, then the following equations hold.

BM(PM(Kis)Y) < BM(K;s), (7.13)

PM(PM(K;5)') = PM(Ks). (7.14)

Proof: Eq. (7.14) is shown by Corollary 7.3.
We shall prove Eq. (7.13). Let Ky = PM(KIS)l. By Eq. (7.14) and the assumption,

we have

BM(Kgp)

KpmA ~ P(Kpa, E A Kpag)
KpuA ~ P(Kis, E A Kis)
Kish ~ P(Kis, E A K15)
BM(Ks).

IA
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Moreover, there exists at least one € X such that Kpp(z) = 0 and K s(x) = 1. Then
it is obvious that P(Kjs, E A Kis)(z) = 0. So

BM(KBM)(:U) = (I{BM/\ ~ P(st,E A K[S))(:E)
= 0,
and
BM(KIS')(:I)) = 1,

which asserts Eq. (7.13). a

We define the BM improvement operation Agyr : Qas — (Qas as follows: for each

K € QAS7
Apy(K) := PM(K). (7.15)

Corollary 7.5

Apm(Apm(K1s)) = Apm(Kis)- (7.16)
Proof: Since K;g is a control-invariant subpredicate of @, we have by Corollary 7.3 that

PM(PM(Ks)') = PM(K;s).
Therefore,

PM(PM(Kis)")t = PM(Kys)',
which asserts (7.16). O
Corollary 7.5 means that the improvement of BM applying Agpys can be done by one
step.
Example 7.4 We consider the same system as Example 7.1. Let K5 € Qas be given by

1 ifz e {z!,2% 2% 25,27, 2%},

Kis(e) = { 0  otherwise.

Then
1 if z € {21, 23,2%},

PM(Kjs)(z) = { 0  otherwise,

and
if z € {z5,27,2°},
otherwise.

BM(Ks)(z) = { :
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Appn(K;s) is computed as follows:

if z € {a!, 23,25, 25},

Apm(Kis)(z) = { (1)

otherwise.
Since |
PM(Apm(Kis))(z) = { (1) :)ftief W{li 23,25},
and |
BM(Apu(Kis))(z) = { (1) :)ft Eefw‘é::’},

we have BM(Apm(Ki1s)) < BM(Kis) and PM(Apm(Kis)) = PM(K s), which shows
that the blocking measure is improved by applying the operator Agyr without changing
the prestabilizing measure. Also it is easily shown that Agpy(Apm(K1s)) = Apm(K7s).

7.6.2 Improving PM

Let Kis € Qas. In this subsection, a design method to improve PM(Kjs) without
degrading BM(Ks) is shown, that is, find Kpa such that PM(Kpps) is the largest
subject to BM(Kpp) < BM(Kjs).

We now introduce an algorithm for improving PM(Kjs) for K;5 € Q 45.
Algorithm 7.3: Let Ky := K5 and iterate:

E;:=EA(EV KT,
Kip1 = P(Q,E}) V K.

Terminate when Ky = Ki. Then Kpps := K.
Note that the computation of P(Q, Ej) in the above algorithm can be done by ap-
plying Algorithm 7.1. Since {K}} is a monotonically increasing sequence with K; < Q,

Algorithm 7.3 always terminates in a finite number of steps, and has complexity O(mn?).

Lemma 7.3 In Algorithm 7.3, K}, is control-invariant and K; < Q' for all k.

Proof: We shall prove the above lemma by induction. Obviously, K, = Kjg is control-
invariant and Ky, < Q. Suppose that K; is control-invariant and K; < Q. Since
K.y = P(Q,E?) V K;, we have

Ki $ /\ wlpa(Ki)
g€,

< A wip,(Kipr).
cETY
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Also by Corollary 7.1,

P(Q,ENAN~E; <\ wip,(P(Q, E}))
TED,

< A wip,(Kip).
gELy

Let z € X be a state such that (P(Q, E?) A Ef)(z) = 1. For any o € X, if D,(z) =0,
then wip,(Kiy1)(z) = 1. We consider the case that D,(z) = 1. Let 2’ = §(o,z).
Since EX(z) = (E A (E V K;)')(z) = 1, control-invariance of (E V K;)! implies that
(EVK;)(z') =1. If E(z') = 1, then E?(2') = 1, and wip,(E})(z) = 1. Since E} < Kiy1,
we have wilp,(K;y1)(z) = 1. Moreover, if E(z') = 0, then K;(z') =1, and

wip, (K;)(z) =1,

which implies that wip,(K;4+1)(z) = 1. Therefore, K;4, is control-invariant.
Next, we shall prove that K;;; < Q7. Obviously, P(Q, E?) < Q. So we have

-B%+1 = }D(CQ,IB;)‘V.B&

< Qv@
- Q.
Since K;,, is control-invariant, we have K;,; < Q. m|

By Lemma 7.3, we immediately have the following corollary.

Corollary 7.6 Kpys is control-invariant and Kpp < Q1.

Proposition 7.7 Kpys € Qs

Proof: Kpjps is control-invariant by Corollary 7.6. We have S(Q,FE) < Kpy since
Kis € Qas and Ks < Kpp. We shall prove that Kpyr < P(QT,E A Q")! by induction
on the number of steps in Algorithm 7.3. We know that K, = K;5 < P(QT,E A QT)%.
Suppose that K; < P(QT, EA Q). Since Kx41 = P(Q, E}) V Ky, it is sufficient to prove
that P(Q, E7) < P(QT, E A QT)'. We have

EAKwy: > EAPQ,E])
> EAE;
E;.

Il
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Since P(Q, E}f) < Kry1 < @, we have by Proposition 7.1 and Lemma 7.3 that

P(QrE;) P(Kk+17E;)

P(Ki41, EN Kiyr)
P(Q,EAQT)
P(QLEAQN

IA N

IA

Therefore, Kpy € QAS- (M

Lemma 7.4 EAKpyy = EA(EV Kpu)'.
Proof: Let E* = EA(EV Kpy)!. Then, from Algorithm 7.3, we have

Kpy = P(Q,E*)V Kppy. (7.17)
First, we shall show that E* > E A Kpy;. We have by Corollary 7.6 that
E* EN(EV Kpy)!

> EANKLy

= EAKppy.
Next, we shall show that £* < E A Kpp. From Eq. (7.17),

EANKpy = EAN(P(Q,E*)V Kpyr)
(EANP(Q,E"))V (E A Kpy)

> EAP(Q,E™)
> EAE
= FE~.
Thus, E*=FEA KPM- O
Lemma 7.5
Kpy = PM(Kpp) V Kis. (7.18)
PM(Kpy) = P(Q,E A Kpyy). (7.19)

Proof: We shall first prove Eq. (7.19). From Lemma 7.4 and Eq. (7.17), we have

Kpy = P(Q,E/\I{pM)VKpM.
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Hence,

PM(Kpym) = P(Kpm,EANKpum)

P(P(Q,E A Kpy)V Kpu, E A Kpay)
P(P(Q,E N Kpum), E N Kpyr)
P(Q,E A Kpyr).

v i

Conversely, by Corollary 7.6, we have Kpyr < @, which implies that P(Kpp, EA Kpym) <
P(Q, E A Kppy). Therefore, Eq. (7.19) holds.
Next, we shall prove Eq. (7.18). From Eq. (7.19) and the fact that K;s < Kpp,

Kpy = P(Q,ENKpym)V Kpy
= PM(KPM) V Kpm
> PM(KPM) V Krs. (7.20)

We shall prove the reverse inequality by induction on the number of steps in Algorithm
7.3. Obviously, Ky = Kis < PM(Kpp) V Kis. Suppose that K; < PM(Kpum) V Kis.
Let E* = EA(EV Kpy)'. Clearly, Ef < E*. So we have by Eq. (7.19) and Lemma 7.4
that

Kin = P(Q.E)VEK
P(Q,E")V K;
PM(Kpu) V K;
PM(Kpy) V Kis.

IA

IA

This completes the induction. Therefore, we have Kpyr < PM(Kpa)V Kis, which implies
together with Eq. (7.20) that Eq. (7.18) holds. O

Using Lemma 7.5, we can prove the following theorem which presents a method for

improving PM(Kjs).

Theorem 7.3 Let Kpys be the predicate computed by Algorithm 7.3 with the initial pred-
icate Kis. Then if Kis < Kppr for Kpyy, then the following equations hold.

PM(K;s) < PM(Kpy), (7.21)
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BM(Kpy) < BM(Krs). (7.22)
Proof: First, we shall prove Eq. (7.21). By Eq. (7.18), we have
KpuA ~ Kis = PM(Kpm)A ~ Kis,
which implies together with PM (K s) < Krs < Kpp that

PM(KPM)/\NPM( ’[5) > PM(KPM)/\NKIS

= Kpuh~ Kis
# 0. (7.23)
Also since K;s < Kpyy,
PM(K;s) < PM(Kpa). (7.24)

From Egs. (7.23) and (7.24), Eq. (7.21) holds.
Next, we shall prove Eq. (7.22). From Eq. (7.18), it follows that

BM(KPM) = KPM/\NPM(KPM)
= K[s/\NPM(KpM).

Therefore, since PM(K1s) < PM(Kpar), we have

BM(KPM) < Kish ~ PM(KIS')

= BM(Kjs).
a
We define the PM improvement operation Apps : Qas — @ as as follows:
Apym(Kis) := Kpp. (7.25)

The following corollary can be easily proved.
Corollary 7.7 APM(APM(KIS)) = APM(I{IS).

Corollary 7.7 shows that the improvement of PM applying Apys can be also done by one
step.
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Proposition 7.8 Let K' and K" € Qas be predicates such that K' < K”. Then the
following equation holds.

P(Q,E)V K' < P(Q,E")V K", (7.26)

where ' = EA(EV K')! and E" = EA (EV K",
Proof: Since K’ < K”, we have E' < E”, which implies that

P(Q,E") < P(Q,E").
Therefore, Eq. (7.26) holds. O

By applying the above proposition to each step in Algorithm 7.3, the following corollary

can be obtained.

Corollary 7.8 Let K' and K" € Q s be predicates such that K’ < K". Then the follow-

ing equation holds.

Apu(K") < Apae(K"). (7.27)

Example 7.5 We consider the same system as Example 7.1. Let K;5 € () 45 be the same
as Example 7.4. Then Apps(Ks) is computed as follows:

] if z € {2',22, 2%, 25,45, 27, 2%},
Apm(K1s)(z) = { 0 otherw{ise. }
Since
1 ifz € 1'171'2"7’.37'7:5 ’
PM(Apm(Kis))(z) = { 0 otherw{ise, /
and

if z € {z%,27,2°},
otherwise,

BM(ApulKis)(e) = { §

we have PM(API\J(KIS» > PM(Kls) and BM(APM(Kls)) = BM(Kls), which shows
that the prestabilizing measure is improved by applying the operator Apps without de-

grading the blocking measure. Also it is easily shown that App(App(Krs)) = Apm(Kis)-
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7.6.3 Swuccessive Improvements of BM and PM

In the last two subsections, we presented design methods to improve BM and PM ap-
plying operators Apps and Appys, respectively. In this subsection, we consider the case
that both operators are applied successively to optimize a given initial solution in terms

of both BM and PM.

For K15 € Q) 45, we shall define four predicates as follows:

K, = Apm(Kis).
K, = Apm(K,).
K. = Apm(Kis).
K; = Apm(K.).

Lemma 7.6 ABM(Kb) = Kb.
Proof: First, we shall prove that K, < Apym(K,). Since K, = P(K1s, E A Kis)t, we
have by Lemma 7.5 that

K, = P(Q,EANKy)V P(K1s,E A K1)t (7.28)

Also EAKis = E AN K, by Eq. (7.8). Moreover, since EA K;gs = EA K, < E A K, and
Krs < @, it follows from Eq. (7.28) that

K, < P(Q,E A Kp)*.
Thus, we have by Eq. (7.19) that
K, < P(Ky, E A K3)!

On the other hand, note that P(K3, F A Ky) < K. Then by control-invariance of Kj,
we have

P(Ky, E AN K)' < K.

Therefore, we have K, = P(K,, E A Ky)! = Apu(Ky). a

Lemma 7.7 Apy(K,y) = K.
Proof: Let K, := K,; and we apply Algorithm 7.3. Then, since K; < EV K, and K} is
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control-invariant,

E; = EAN(EVEKy!
> EAK,.
On the other hand, by the fact that K; < K, and Lemma 7.4,
EY EN(EV K,)!
< EA(EVK,)

EANK..

Note that PM(K,) < K; < K.. Then we have by Eq. (7.8) that EA K; = E A K..
Therefore, Ef = E A K.. We have by Eq. (7.19) that

Ky = P(QE})VK,
P(Q,EANK.)V K,
PM(K.)V K,
PM(K.)'V K,
K.

IA Il

Conversely, it is obvious that K; < K;. Therefore, we have K; = K; = Kj, which implies
that APM(Kd) = Kd. O

Lemma 7.8 K; < K.

Proof: From Lemma 7.5,
Ky = P(Ky, EANK,)V P(K1s,E A Kis)*.

On the other hand, we know that K; = P(K.,E A K.)!. Since K15 < Apm(K1s) = K.,

we have
P(Krs,EANKrs)t < P(K.,EAK.)!
= K.
It remains to show that P(K;, E A Ky) < P(K.,E A K.)!. In order to show that, it

is sufficient to prove that K, < K.. Since K, < Kjs, we have by Corollary 7.8 that
APM(Ka) < APM(KIS), that is, Ky < K.. Therefore, K, < Kj. 0
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The following theorem can be shown by Corollaries 7.5 and 7.7 and Lemmas 7.6, 7.7
and 7.8.

Theorem 7.4 The result of successive improvements of K;s € Qa5 by means of Apm(-)
and Appy(-) is presented in Figure 7.2 (where — denotes an application of the operator
labeling the arc). The partial order on the predicates in Figure 7.2 is shown in Figure 7.8

(where — implies <).

The above theorem shows that the task of optimization of a blocking controller can be
done by two steps. Figures 7.2 and 7.3 are graphically identical to Figures 8 and 9 in [12]
by replacing PM by SM, respectively. It is very interesting that formal representations
of results on optimizing operations are the same structures as those in [12] while meanings

of measures used in this chapter are completely different from those in [12].

ST

M Apy

Figure 7.2: Successive improvements of Kjg.
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Figure 7.3: Relationship among predicates shown in Figure 7.2.

Example 7.6 We consider the same system as Example 7.1. Let K;s € 45 be the same
as Example 7.4. Then predicates K, and K, defined above are computed as follows:

1 ifz e {z' 2% 2% 2% 2%},
0 otherwise.

1 ifz e {z? 2?23 2% 2%},

Ka(z) = { 0 otherwise.

Since
. 5
1 if z € {z!,2%, 23, 2%},

PM(Kp)(z) = PM(Kq)(z) = { 0 otherwise,

1 ifze {a®},
0 otherwise,

BM(K3)(z) = BM(K,)(z) = {
we have PM(K;) = PM(K,) > PM(K;s) and BM(K,) = BM(K,) < BM(K;s). This

shows that K, and K, are improved in terms of both BM and PM.

7.7 Concluding Remarks

In this chapter, we studied blocking in state feedback control in the context of stability of
the system. We introduced two performance measures, called a prestabilizing measure and
a blocking measure, for control-invariant predicates. First, we presented an algorithm to
compute the minimally restrictive nonblocking solution. Next, we presented techniques
for improving each of the two performance measures. Note that the complexities of
these techniques are polynomial. Moreover, we showed that the task of optimization of a

blocking controller in terms of the performance measures can be done by two steps.
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Conclusions

This thesis has studied state feedback control of DESs where control specifications are
given in terms of predicates on the set of states. A state feedback controller disables some
controllable events based upon the current state of the system so that the system satisfies
the given control specification. The state feedback control theory based upon predicate
can provide an efficient method of synthesizing controllers for a complex DES possibly
with an infinite state space [38, 18]. We summarize our contributions as follows.

Chapter 3 has addressed the state feedback control problem in the Golaszewski-
Ramadge model. First, we proposed the notion of I'-controllability of predicates, and
showed that I'-controllability is a necessary and sufficient condition for the existence of a
state feedback controller under the assumption that the set of control patterns is closed
under union. We then derived a closed form expression of the supremal I'-controllable
subpredicate of the given predicate. These results are a generalization of those obtained
in [49, 38].

In Chapter 4, we have studied state feedback control under partial observations. First,
we showed a necessary and sufficient condition for the existence of a balanced controller in
the Golaszewski-Ramadge model. This problem is also a generalization of that addressed
in [49, 38], where the system is modeled by the Ramadge-Wonham model.

Next, we considered the Ramadge-Wonham model. We defined M-controllability of
predicates, and proved that M-controllability is a necessary and sufficient condition for
the existence of a state feedback controller which is not necessarily balanced. Kumar et
al. have given necessary and sufficient conditions for the existence of a dynamic controller

[38]. Obviously, a state feedback controller is a special case of a dynamic one. But a state
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feedback controller is easier to implement than a dynamic one. Moreover, our condition
has computational advantage in contrast to those obtained by Kumar et al. because the
computational complexity to check our condition is polynomial if the system is modeled
by a finite automaton. So our condition is useful from the practical point of view. It is

also noted that our condition is a generalization of the result obtained in [49].

Finally, we have dealt with modular control synthesis in the Ramadge-Wonham model.
In the case where a predicate is decomposed into conjunction of component predicates,
modular control synthesis [68] is very effective. We showed that M-controllability of com-
ponent predicates implies M-controllability of their conjunction under a certain condition.
We then presented a necessary and sufficient condition under which a state feedback con-

troller can be constructed in a modular fashion.

Chapter 5 has studied decentralized state feedback control. For distributed systems
such as communication systems, a decentralized controller is more suitable than a cen-

tralized one.

First, we addressed the decentralized state feedback control problem (DSFCP), which
requires that the set of reachable states in the closed-loop system is equal to the specified
predicate. We introduced the notion of n-observability of predicates and proved that the

controllability and n-observability are necessary and sufficient conditions for the existence

of a solution to the DSFCP.

Next, we considered the decentralized state feedback control problem with tolerance
(DSFCPT), which requires that the set of reachable states in the closed-loop system is
in the given admissible range. We showed that the infimal controllable and n-observable
superpredicate of a given predicate plays an important role in solving the DSFCPT. So
we derived closed form expressions of the infimal controllable superpredicate, the infimal
n-observable superpredicate and the infimal controllable and n-observable superpredicate,
respectively, under a certain condition.

In Chapter 6, we studied the unique existence of maximally permissive controllers
(MFC) in controlled Petri nets (CPNs). Ushio has given a necessary and sufficient con-
dition for the unique existence of the MPC [95, 98]. However, we have to construct the

set of all permissive controllers in order to check the condition.

First, we considered CPNs without concurrency. We presented the necessary and suf-
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ficient conditions for the unique existence of the MPC under partial as well as complete
observations, which can be checked without constructing the set of all permissive con-
trollers. Next, we extended the results to CPNs with concurrency controlled by either
event assignment or resource allocation. We then showed that the unique existence of
the MPC in resource allocation control implies that the same is true in event assignment
control.

Chapter 7 has considered the case that control specifications are given not only by
admissible statves but also by target states. In this case, the notion of the stabilization
of DESs plays an important role to design state feedback controllers. In particular, we
studied blocking in the context of stability of the system.

We first presented an algorithm to compute the minimally restrictive nonblocking
solution. But a nonblocking controller may be restrictive because it disables all behaviors
which may lead to blocking. In this sense, blocking controllers can be practically more
efficient than nonblocking ones if blocking in the closed-loop system is resolved easily
by some external intervention such as rollback mechanism. We defined two performance
measures, called a prestabilizing measure and a blocking measure, for control-invariant
predicates. Then we presented techniques for improving each of the two performance
measures. Note that the complexities of these techniques are polynomial. Moreover, we
showed that the task of optimization of a blocking controller in terms of the performance
measures can be done by two steps.

The state feedback control theory leaves possible directions of future research listed

as follows:

o It is well-known that hierarchical structure is suitable for designing, analyzing and
controlling complex DESs. In this connection, hierarchical state feedback control

needs to be addressed.

¢ Real-time state feedback control initiated by O’Young [60] needs to be extended to

control under partial observations, decentralized control and so on.

e The supervisory control theory based upon formal languages has been extended to
stochastic DESs [43, 57]. The state feedback control theory for stochastic DESs
should be established.
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