
Title MIXED PROBLEMS FOR THE WAVE EQUATION WITH A
SINGULAR OBLIQUE DERIVATIVE

Author(s) Soga, Hideo

Citation 大阪大学, 1979, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/27741

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



者
日 我 日 ムた



「Ｃ一

MIXED PROBLEMS FOR THE WAVE:EQUAT工 ON

WITH A SINGULAR OBLttQuE DERIVATttVE

Hideo Soga

I Pecat'*,tu/ S1**r'tW >6 ' ! 1? f )

Introduction. Let O be a domain in n2 with a compact
-&\*€,+€!V/vVvvV

boundary I, and consider the mixed. problem

口u = :毛暑― Δxt tt f(X′ t) in iお

駄 7は
→ヽ on f x

X(0′ t。 )′

(9′  tO)′

ド嫁  16`X)    On1 9′

も ィJじ
ミき uュ (x)  °n  Ω′

where v = v (x) is a non-vanishing real i vector field
t|q crtnrfwt_$)

definedf - ):F7-w{ say that (0.1) i" i well-posed when

there exists a unique solution u(x+) in c-(CI'x[O,tn]) for

(Ol■ )

any (f , r u.,, u., ) € c-(Ox t0rt.,l ) x c'(rx [0rt.,J ) x c-(O)
6-xc(o) SatiSfying the compatibi■ ity condition of infin■ te

order.



In the case where ν ■s non―character■ stic to r

anywhere′  var■ous reSu■tS have been Obtainedo  lt鰺 11

known for:a 0"r-t\ka the problem (0.1) is c- we1l-posed

if v is para1lel'anywhere to the normal vector n of f
(the Neumann boundary condition). Ikawa t31 showed that

(i.9
(0.I) il C- well-posed, also if v is obtique\16-ot paralle1

to n) anywhere on f (the oblique boundary condition) -

When these two type,s are mixed,, the shape of O has to be

taken into consideration. Ikawa [4r5r5] exarnined it in

detait

In the present paper we shall study (0.1) in the

case where v is not necessaril-y non-characteristic to f.
We assume that v is tangent to f at finite number of

poins ( of f ). And we call them singular points. At

each singular point the Lopatinski condition is not

satisfied; therefore, the mixed problem frozen there is

not C- well-posed (cf . Satcamoto t13l ) . We can classify
behcuio r

the -s*a.€e of v near each singular point into the fol-low-

ing three types: As x' (€ f) passes the singular point in

the direction of the tangential component of v(x') to f,
(I) <v (x') ,n(x') > changes sign from positive to

negative;
(II) <v (x') ,n (x') > changes sign from negative to

positive;
(III) <v (x') in (xr ) > does not change sign ,

where n(x') is the unit inner normal vector to f. Assum-
)ing that Q = Ri, the author tISl has examined. the problem



(0.1) in the case (f) and, (III). We want here to inves-

tigate (0.1) in a more general domain in each case-

One of our main results is as follows:

Theorem ■:  If the function くo(x')′ n(1:)> (cc∞ (r))

changes sign on I (the

problem (0.1) is not C

case (r) or (rI) ), then the mixed

- well-posed,.

As is seen from the proof of Theorem 1 (see 54), we

may say that in the case (I) the uniquness does not hold

and that in the case (II) the solvability is violated.

Another main result is the following

Theorem 2. Assume the conditions (a) and (b):

(a) <v(x') rr(x')> does not change sign on f
.t/z @

case (III)') and lcv(x'), n(x')>l is C smootfi

(b) v is oblique anYwhere.

Then, the mixed problem (0.1) is C* $7sff:posedl and

domains of dependence are bound.ed,, but it has not a

propagation speed

(the

on I;

finite

eompar*nr: I't+tq I

ry
Egorov-.Kondrattev tIl considered an elliptic oblique

derivative problem similar to the above problem (0-1):

= f (x)

= 9(x')

in O,り

ｈ司

ＸＡｒ
ｉ
Ｊ
ｌ
ｔ

(0。 2)
on r′



vrhere a(xrD*) is an elliptic differential operator of
second order on 0 and v is a non-vanishing rear vector
field tangent to .r on its submanifold r0. They assumed

that dim tO = d,im I t ( i 1) arra4n.t v is transversal
to f0. Then the behavior of v near ro can be classified
into the three types (I) tu (III) in the same way. On

account of Egorov-Kondratrev [1], Mazfja [Lll, the author

[1a1 , etc., in short, in the case (I) the kerne]. of (0.2)

is infinite-dimensional, in the case (If) the cokernel of
(0.2) .is infinite-dimensional and in the case (IfI) the
same results as in the coercive case are obtained,.

As can be readily seen, our resurts (i.e. Theorem L

and 2) are analogous to those of the above problem (0.2).
our methods, however, little similar to those in the
elliptic case

' I,et us mention the procedure of the proofs of Theorem

1 and 2. Let ? be the poisson operator of the following
Dirichlet problem consid.ered in appropriate functionar
spaces3

t)= 0   ■■

= h(X・ ′t)

Ω X (―∞′ ")′

0■  r x (―∞′ ∞):

′
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■
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‥

颯

　

ｕ

ロイ
Ｊ

ｌ

ｔ

bet  T 五  =  :了PhlrO  T19n ‐1と

II:l::II::|Can be reduced tO that Of the eく

though T is hard to deal with +r.-S€n€€€+, T d
ガ緞
a疑

to a -(usr+a&| pseudo-differential operator f



人 たに7
is near where the Lopatinskian vanishes.

Analysing the (asymptotic) null solution of i ft = 0,

r^re proye Theorem.l in 94. In 55, deriving an estimate

f6士  壼鼻 the same■襲翼当菖勧晏L aζ  in the ttuthOr [■ 5]′  we veri―
fy Theorem 2 by the procedure similar to that of lkawa

t31 .

§l,  Notations and properties of oseudO‐ differetia■

9peratOrs.  ‐

we denOte by Sm (mG R)the set Of functions P(Z′ ω)

(C∞ (R2長R2)satiSfy■ ng fOr a■■ mu■ ti―indices α′β

‐
IЭ,《Pし′01≦ Ciβに|lω l)m~|,|′ (z′のCR?X晨2′

仏さre Э:二 (誇)β ,na al=(缶 )α O,Or
define a pseudo― differentia■  operator

p(Z′ ω)CSm we

p(z′ Dz)ゃy

r
p u = p (zrDrlu(z) = l.t=tn (z,wl0(o)do, u(z) € .:o r

_,

where iu = ,jil-2aw, J is the space of rapidly d,ecreasing
r.

functions and O(ul) is the Fourier transform le-azou k)dz.
J

We denote by Sm the set of these operators p(zrDrln and

call p(zrar) the symbol of p (zrDr). It is well known that
the estimate

A

'llp("tDrlall , S c ll"ll ,**, u€{ (se R)

holds for p(z,wl € Sm, where the norm ll .ll" is d.efined. by

,, ,,2 ( ,z.Sr^..,2-Ilull : = ltr + lrl')-lo(r,r) l'd^.'r !r s 
J 

,--r .



For p (zru) € sm and q (z,ul € sm' ," set
(r

o(P.q) lz,wl - Bi+" \\"-tu"* (e6,ezlp(2, to+d) q(z+v,wl
)l

.dlf,6,

where y(z,ur)e ;( and x(0,0) = f. Then we have o(p.q),(z,ul
€ sm+m' and

o(p.q) (zrD"lu = p (z,Dz) (qu) I u. ,8.

Furthermore the asymptotic expansion formula

は。513い。あし′o― 票N許 (器)αplZⅢ P:qι :ふ111     ‐
 lα l・

c sm+m.― N (Ь」= ニユ:7)
is obtained. for any integer N (>0). For p(zrwl € Sm there
exists a symbol p* (zral) € Sm such that

(p (zrD") u, v) = (u, p* (z ,Dr)v) t o,.r. ,{ ,

and the following aslzmptotic expansion formula ho1d.s for
any N (>0):

lol.N
These properties are described in H6rmander t?l or
Kumano-go I7l.

we introduce another class of pseudo-differetial
operators, whose symbols have a parameter T = o- iy (Oe

1R-' y:0). Namely, the symbol p(yrrlrr) is a c* function
-lrin R-xRi with the parameter t and satisfies the following
inequality for all non-negative integerscrE:

alDlp.(z,ω) C Sm~Ne
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: pu〒 p`y′ Dy′ Tlu=

Let us define e nOrm ‖,

t6tic exPans■on

P (Y'r rr)

j_ob.it a constant ind.epend.ent of r. we

he set of these symbols, and for p(yrnrr)
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′n′ T)0(η )′η′ u(y)(

with the parameter t by

ho■ds:

il‖:=」
「γ+ lτ

lン

かシf。 (・
|ド

る
|:

Then, for B (y, n, r) e S.1

The above constant C is un■form ■n ■ .  :Hereafter′  a■■ the constants

in Ltttittates ζtatど懇↓ン生ti thL norm m.:11ei島
]lillilttl''tefisT°

 °

'II:ISly
事ヽ犠ξ
hif          then

F(y′η′σ)Ca, be Fegarde` as a SymbO■  in lT)(・  = σ ≧ ■).
We say that a symbol_p(y′ η′T)e Sl,aS a homogeneous aSymp―

∞

when pft(v,lr1,l,r) = Ni"

…

二IT12 I 1, j=0r1r. .. ) and

We call

二重生」聖L型生三上 the principa■  sym●o■ of p and denote it b〕椰p)(V′η′τ)・

Proposition l・ ■0 ■et」と(y′ η′■)C二塁Land‐
p(y′ ηlT)C蓋

Suppose that ,け
F: X二

旦三菫L旦⊇Lコ蜃重型L≦≦I壼墜L」蓋型二」墜圭型堅1三里墜壁L

Satisfies

７
′

-* \T z/

e.d'-Ny,o,r) €sSZ 1N=



In*(v,rr,r)l -:. otlnl + l.ll* (d

then lhe followinq estimate i€-qb:Ea-i.:gcll3ag.--anll_spl:-stanf

N

‖卜Ⅲm.s≦ C(‖bullL+‖ u‖L_N)′ uC (scR).

We can prove this proposttion by constructing a paFa“

m,tFiX fOrip(y′
2y′
T)aVOi・ aPlё On △ (Cfo Hёrmander [2]).

I P19pOsitiOn ■。21  Let p(y′ η′T)C ttL and_itS_2r.nC・ pa■

Parl P■ (y′ η′■) fu■ fi■

Im p■ (y′η′τ)IQ`″ f(・′T)CΔ ∩{lτ l≧ ■}′

s an open conic set. Then, for any X(nrt)€

″
↑

satisfvinq supp X C,A there-.is. a constant C

@

r.m (p(y,Dy,.)xv,xv) :6(r)lllx"ill3 - cil#illfr ,

v(y)€ f' (ltl z 1)'

Corollary. In the above proposition, if l(yrnrt) (€

,こ,)γ
3atisfieF ,別IP
-satisfies sgpp i. c L , then we have for any N

Im"け ′Dy:→ 文V′ x,易
δ

")‖
ヌ
V略 ■ 』 又V‖:

'C2‖
V‖:N′ Ve

″↑

Proofo  we set

q(y′ η′τ)= (Im p.(y′ η′T)―  δ(■ ))χ .(η ,T)′

Where X Чη川 とヽ:′ χЧη′を)=1 0n supp χ and supp xk△ .Then it

fo■■ows that

q(y′ η′τ)≧ O  fOF (y′η)c32: lτ l ≧ ■′

=mば
p― IδけD ttV′ x→ ≧ばqx■ χ→―Ci‖ XⅧ :・

Let qF denote the Friedric,s apprOximation of q (cf. Theorem 5`ュ

of Kumano‐ go [7]).  Then′  we have q tt qFell),五 a (4FV′↓

' 

≧ 0。



Therefore we obtain

Im ttxV′ x→ ―δ
")‖
xv‖ :=平囃 。一iδ←)xl′χ→ ≧―c2‖χⅧ:=

Next, let us check the corollary. Let X"(nrt)
€ s3, x'(nit) I on 

"riP.p ! and supp XocA. Then, from the

above proposition it follows that

rm (p/Iv, Xiv) 3 6 (r l lll Xi" il3 - crlll Xt" illfr

zryqril3 - 
"2ilt1"il3 

- cat[.''[E*

On the other hand we have

Im (PX実 ヤ′ XttV)= Im(pttV′  叉V)+

+

≦  Im(pttv′  文v)+

Therefore the coro■ ■ary is obtained.

Im(PXttV′ (χ生■)文v)   .

Im(P(xL■ )文V′  又V)

と
4‖
V薩長°   .
The proof iS 96mp■ ete.

Now′ we ,ё t

L(y,P長′DyIT)

wherさ τ = σ ニ ュγ (。 ( 晨・ :

IピⅢⅢIЭンリ1下 +:
b半
 こき(y′η′τ)the rO?ts of

L。し′ξ
ll.|「 ギ|:耳二2aj´銀」1'η

k「j=°
,

。bo181L■,: さき(」 :η′T)are lttfι :とieols‐ °1 6rder 6ne in
(η

'T)and are smooth where 
三古(ジ′η′1).and ξ五(y′η′TP are

distinct each othere  We obtain the fo■ ■owing factriza―

tion formu■ a′ which is proved in Kumano二 oo [91 (See Theo―

rem 0 6f[9]).

二 Di + jジ三三:[2うづく`くy)t'D〕Dl ′
j=0′■

γ≧0)and坊が鮮le
for α = 0′■′..。 }.

the equation (in t)

贅 =(R・ )= .

We denote

Ｏ
Ｊ



Pr6p6sition ■。3.  Let ξ古(y′η′τ)and こ5(y′η′T' be dis_
ti,Ct 9n R]挙

否ェF iS an open con19 set)O  Then t,ere are

symbo■ s lt(y′η′τ)(::)Suさ , that

i)  ξ土(v′η′τ)have homOge,eous asymptotic eXPansiOns

whose  principa■   symbO■ s    σ。(ξ
上) satisfy

.σ。|こ
土
)(y′η′T)= こ志(y′η′τ)  fOr yc R・′ (η :.)c△ ;

‐  ‐ i■ ) ,et  L土  . Dx ― こと(y′ Dシ′T,e  Then′「or onv

l(ylh′・
) C 13    SltiSfy=ng SEttP X C:今 ′ We laVe

Lx = 千 L+x + r.Dx   =2 ′

支l =χ■「Lす 十 r3D文 + r4 ′                    ‐

Wh「
Fe Fj T Fjty,py′ T)こ 1っ =護累%)(jT■

・…′
ll・

Let O(y)be a rea■ ―valued C∞ function in R・  satisfy―

ing 10(y)| ≦ ■ lor ジとR・′ 0(y)= y for lyl ≦芸lnd O(y'
=,・ fPr lγ l ≧ l:  F°

l p(ジ′η′TI(弓lWe ,et

(■ 。3) .    ptp)(y′ η
:τ
)= p(p01普 )′  η′T)    (p1 0)・

Then p(p)(y,rrr) belongs to tT. Moreover, pF)(yr1rr) is
equ,・  t° P(y′■′τ)if ll,| ≦:′  and indёpendent of y if lyl

≧ p・

■9mma ■o■・  Le, A・ ′ A・  be open sets of ,十 = {(η′■)=

η
2+lτ

l子 = ■, γ ニ ー Im τ 2o}and  西・C=A・ .  ALsune that
●●

qly:η′T)Cil)has a h3mbgeneous aξ ymptotic expansion  
黒

q.二
j(y′ η
`T)Such that q.(y′

η′τ)is rea■―va■ued and satis―

fies

(■ .4) IЭ
η
q.(y′ η′τ)|≧ δ (>0)′   y(R・ ′ (η :τ)CS..

■0



(■ )

(■i)

(.:二 )導  {Э I'埋
l(y′η′T)Dyと二j(y′ P′・ ) ~I DiC呈

)(y′η:τ )3ηζttj(ソ′η′T)

* 0_j (y, n, t) ] * r_N (y, n, r) .

Here r-*(y,n,r) is a symbol belonging to s[f ana

that the symbol of tdp), 6l has the asymptotic expansion

Then, if p

there exists a symbol e (y,rt,r) a tl, such that

Jf)(y,.D",r)r e(y,D",t)l (= f)r-ef)l e";1,

ilpf e(y,rrrr)C[\, 0Soo(e) 51'
E(y,rtrr) - I for y€ Rl, (n,t) €A (n2*ltl2z1),

where △ (respe A)= {(η ′T)= (λη・′λモ)= (η・′を')C△ . (respe

Al)′ λ>0}.

′e飩%ι
This PttQpoSitiOn in the case N = l is due to lkawa

[3].           |

Proofo  we take open sets △
i′
 △ぅ′・・・′ △長 and Ai′  Aぅ′

・・・′ 4轟 in s. Such that

△・⊂,△i⊂ C△1_■ CC°
・・ CC△iCCAiCC・ … CCAic⊂ A・ ′

where ACCB denotes AcB. For△
i′
 △う′0・ 0(CS十 )We set

△.={(■ 7τ )=(λ η・′ λ■
0)=(η・′ ■0)C△

i′
λ >0}′ … …

AsSulne that ζ(y′ η′■) iS Of the foニ ュ‖

N―■

ζ(γ′η′T) , 
喬
こ―j(y′ 1′「

l

Wher, こ_:(γ′η:T) (C ttτ F)|。 10mogeneous of order ―j in

(■ )を ) (■
2キ
IT12>.).  Then iti f。 ■■6ws from tho fOェ .ltu■ a (■ .■ )

■■



。o ==  9 ′

■_T)D卜_im戸 )

L(y′η:1)31ζ _・
(y′η′■)}(j二■).

we shal■ choOS, こ。′10・ ′ ζ―N+■ S° that each term in

::ieilII::i:l」
j'1:; :]:|:l:il≒イ:塁:[|:::'LfL」」[::亀:

A-, (v,rt,r) is defined bY

′η′■)Эη「_j

=0(j≧

The characteristic curves of this equation

be hornogeneou●  of o:der o in (■′■) (η 2す II(            1'fy

tt■ ) (41キ IF11と 1

x(η ′τ)

0 S X S I, supp XCA, and X(n,t) = l on A|-"-GE--us-con-

sider the following equation with the parameLer r:
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(■ .7)
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dヽ 二
ds

,lζ二。

since andftvrrtrr) and, a"elf)tv,rtrr) are c- real-valued

色η)′  we have a uniqte 二olutiOn (ダ (s,η′■)′

■e7)defined On ―∞ く s く ∞.  It fo■■ows
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where Co and "g, .t. constants independent of y, rlr T and

p. From these inequalities and the assumption (1.a1 vte

obtain
(1.e) ol=l S lY(s;rtrr)lscrl=1,
(1.10) lfrtrinrtl - nl s 1"c'l=l - rl (lnl + l.l + 1) -

for constants C, and C, independent of s' r1r T and p-

Combining (1.8), (1.9) and (I.10) ' we see that if p is

small enough the following statements i) n, iii) are valid:

i)
-1cl'tlnl + I'l) S lfrt=in,t)l+ltt5cr(lnl + Itl),

se R, ,? + t.12. ri

ii) rf (n,t) SAj - I'j (n2*ttt2:1), then (fr(sin,r),

t) € Ai+t - Ij*, for s €R (j = Lr"', N' An*l = Ar AN*l

= A);

iii)

ゝ ,′ `CR′
.2+lτ l?二 ■0

Therefore, we obtain the required solution e-i(V,TlrT) of

(L.6). Noting that 9(s;rtrr) and fr(s;rtrr) are homog'eneous

of order 0 and 1 in (nr'r) respectivelyr we see that

6_i (yrn,t) is homogeneous of order -j in (n'T ). Further-

more, from the above statement ii) it follows that

ζ。(y′ηl■ )=■ lf`η′・ )C△ 2′
:譜F ζO(y′ P′■)C A2′

SfT ζ―j(y′η″T)CA3+2 ~  △j+2 (1 ≦ j ≦N―■)′

２＋
●

３

Ａ⊂τηｙ■
一
●コ¨

Φｐｐ

，
τ
ｕ
η
Ｓ

13
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Hence the lemma is proved.

Remark 1. I. We can make the assumption (1.4) in

Lemma ■。■ weaker as fo■■ows=

(■ :4).

In

ing a■ ■

。n Σ土 =

■。■ to

i) O is mapped. near

space {(*,9): *

laner(Y,n,t) t : 6 (> 0), y€ Rl, (n,r) e['' - a'.
Ifact: There exist symbols gs(yrtrr) n % satisfy-

the assumptions in Lemma 1.1 and equal to q (y,,lrT)

{ (n,r) € I- - A; tDn91(y,n,r) : d}. Applying Lemma

gt, we have ea(y,?,T) € s,f, sucfr that

:(→ 鯉′電]Cギ′

|(・・
)'響 ζJy′η「・ )C Att U A(碑 n■ =φ ′ Σ二⊂⊆ L)′

9≦  σO(ζ土)≦  ■′ ζ
=(y′
η′T)= ■ if (η′1)cΣキ U△・

こ(y′η′τ)= こ十(y′η′T)こ _(y′η′T) fu■ fi■■S a■■ the requirё‐

mentse

52. Reduction to the problem in a half-space

Let x = (x1, *Z) be an orthogonal loca1 coordinate

system defined near a singular point xi e f such that x,
= *2 = O denotes xi and the xr- axis is tangent to 1 at
xi. Let the curve I (near xi) be expressed, by the equa-

tion x, = U (x2) and fl (near xf ) by xl > U (*Z) . Irie take

another local coordinate system: * = *l - p(xr) , I = *2.

Then we have

１
０

　

Ｆ

Ｘ to (a neighborhood of) a half

to t(*,y): *, = 0);

14



ii) △x = :fi:| :iら it tr]nSf9rサ「d lear X6 t°

111(・+・・け):｀議2~う口・1"轟す器2T歓ジ)卜 ′

価e」と|・ =詳。,dピ =幸 いOte thュt uЧの=の F

・・・ ):▼
iS transformed near x6 ●0

,("缶
+ β("卜 ′

where a (i) and I (y) are c- functions d.ef ined near i = 0

and satisfy o(0) + 0 and B(0) = 0.

Rewriting i, f with x, y, we set

L(yrDxrDy,Dt) : -(f + u' Q't2't-t(l ,il

2a(y)Dxpy l b(y)Di t こ(y)D

―  b(y)Dこ
 )

D2 +
X Ｘ

　
　
　
′

-1
0 (v) = o (v) *8 (y)

/^l

For a c- function f(Vt defined near y = 0 we define fl"'(y)

(≡

same way as (1.3), and write for A = X
Y

(‐
p>0) in the

=0(VI嘔′y'1)
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From the statements i) 4, iii) stated
tO ttc

that (0.1) is-equivalent
―Ltβ粋鶴Xイ 九ルゥイ空″″

ult=0

Dtult二。

uo (x,y)

u, (xry)
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tion is rewrited. respectively by the term ,r(p)(Vl in (2.1)

in the fo■■owing way (■ et p > O be sma■■ enough〕
=

く O and l。 )(y)く  O for y > 0,

く O and ψO々y) > o for y > OF

く 0)fOr every y キ 0,

Hereafter we often abbreviate L(9), rp@I ... to t1tp1....

I Proposition 2,■ .  ■) 工f the prob■ em (2.■ ) ■oCa■―

ized at any singu■ ar point  ェs c  We■■―posed for a p > 0′

then to。 ■) iS c∞ |"e■■―posed.

liユたI  If (0.■ ) iS CT we■■_Posed′ then the prob■ em

(2.■ ) loCa■ iZed at any singu■ ar point  is c∞  we■■―p6ged

fOr any sma■ ■ p > o.

We note that if (0.■ ) (Or (2。 ■))is C∞ We■■―posed

then sO is a■so the mixed pr9b■ em 9on'idered on t. ≦ t≦

tう  (fOF any t.く  t2)With the initial COlditiOn On t = t■ 0

lroof of Proposition 2.L. Let us prove only i).

ii) can also be verified in the same way.

Let {xj} }ra the singular points, and setJ i=lr...rN "-
for c >0

(2。 3)

which we call the mixed problem localized at the singular
point- The classification (I) qu (III) stated in rntroduc-

暉
={XC豆 ,IX― Xilく C}・

W' m,ke c sO sma■ ■
 lhat u惇

)∩ u:)= φ (i キ j)ani that in

each u9 (o。■) is ,quiVa■ ent to the ■oca■ized prob■em

16



(2.1). From the results in the case where there is no

singular point (cf. Ikawa t3l ) , we see that if the data

in (0.1) vanish on ,..[."flx[O,tol (tO is small enough for
' j=t 

.il. - t*re) there is a solution u(x,t) with support in (O - 95)
x[O,tOl . Furthermorer w€ see that if (xrt) e (il' - tue.\j:t 7-

x(OrtOI there exists the bounded domain of depend.ence of

the point (x,t), which is d.isjoint with ,iU?'"to,tnl .j=l J v

Let u(x,t) be a solution of (0.1) with null data

(i.e. f = O, g = 0, o0 = oI = 0). Then, from the above

statement concerning the domain of dependence it follows

that supp "a.g,u$x[0,t0]. 
since the uniqueness for each

localized problem (2.f) is assumed, we have u = 0. There-

fore the solution of (0,1) is unique in C-ti'*tO,tOJ).

Let us show existence of the solution of (0.1).

Solving the Cauchy problem ignoring the boundary condi-

tion of (0.1) r w€'may assume that f - 0 and t0 = tl = O.

Then the compatibility condition implies that olslt:+0 =

o for k ■ o′  ■′.・・=  Take a partitiOn Of unity {φ j(x)}j=|..N

on O  such lhlt SuPP φO C雨 ~ 11」『
)ind supp bj C嗜 〕(j T 

・
′

:..I N).  ObViOus■ y′  if (f′ g′ u6′ u.)= (0′ g′ 0′ 0)iS COmpat_

ib■ e′  SO iS (0′  φjg′  9′  0) (j = 0′ ...′  N).  From the

resu■ ts in the non― singu■ ar cose′  we find a sO■ utionl

u(° )(長 lt)Satisfylng

= φOg  On

ΩX(0′ t。 )′

「
X(0′ t。 )′

■ n

= ato@)lt=o = o on CI.

■7



Since each localized problem (2.1) is supposed C* well-
posed., for the data with support near the origin there

a unique solution of (2.I) with support near the origin
(apply Theorem 3.1 in 53). Therefore, for j : Lr2,...,

we have a solution u(j) satisfying
,ri
In*Jl = 0 .in ox (0, tg) ,
I

I ggf - = ois on rx (0, to) ,
1 Dv f r r v

I

[ "t:t;r=o = Eauo);r=o = o on o.

N
u(x,t) =t u(j) (x,t) ( € c-(dx to,t'l ) ) is the required

j=o
solution. The proof is complete.

■ S

§]: l pOmainS Of Dependencee

ln this section′ assuming that the so■ution of (0.■ )

■s unique′ we sha■■ study the dOma■ n of dependenceo  we

note that the so■ ution is uniq■e On t. ≦ t ≦ t2 F°r aly

tiヽ 12 if the uniqveness is guara■ t,ed On O≦ t≦ to fOr

SO■9 t0 1 0 1be9atse El′  :了
are independent of t).  From

The6rem 3。 ■ and 3。 2 stated ■ater′  it f9■■ows that the

doma■n of dependё nce is bounded at any point a■ thOugh

(0.■ )has not a finite propagatiOn speed.  The resu■ ts

in this section are a■ ■ va■ id also for the prOb■ em (2。 ■).

Fol a set s of R2x[。 ′ ∞)we set

‐ i(s)=縄 (壼 +刈′
wherさ i =・ {不 = (x′ t): t≧ IXI}・   Then′  as is we■ ■ known′

■8



the solution Of the Cauchy prob■ em

ias suppOrt in i(S) (s = tsupp f).u`supp

(Supp u.x{t=0})).  L91 「 be giVen by

l   x二 lx.(ζ )′  |:電ギ(ζ )|・・
(X.(S〕  iS a periooiC_C∞ function on R・ )′

u。 *{t=0〕 )1」

and for_釜もcr

set

lκⅢⅢⅢI=∫:   |
贔 、ヽシイ11 :qual i: the p」 Opal:[|も n :p::: :fill:011ied

:::ilim(:::Zilp:11:x=。1'li:wl・ i:]i:(SiLb[ei non~Singu■

ar

l =は 6′●0)={は '′ t)C「 X[0′→'XI=X.(S)′
t― t。

≧ IK(S,X6′  )卜 SC昼
ユ
}′

Ё
I(s3)■ x壕,(琵 IX.)).(St,「挙[0′

∞))0

Theorem 31■ e  Assume that the solution of (0.■ )iS
｀ ¨ヽ V´ ・゙ ～νヽ～ "ν

´

un■que ■n c° (Ω X[0′製 )。 _Let_S be_(supp fと上上I三upp u。  文{t=0})

菫望L聖主主主主三並整二堕聖窒翌型蝉U Supl」
Then the so■ ution u(x′ t)Of (0′ ■)haS SuppoFt in

Σ(S)=量 (S)UΣ .(s.).

FrOm this theorem it is seen that for any ε > 0

Ｑ

ｌ



lh「Fe iS a constant t(8) > O Such th,t OgLな 熟ξlFp[u(x′
t)]

is cOntained in c― neighbёrhood 6f 。墨≧簑flFp[the d,tal i
ln the case where (0。 ■)has nO singu■ ar point′  the

above theorem has been obtained (cfo lkawa [3]).

Remark 3。 ■.  If the

hold,s, the above theorem

data in that space.

uniqueness in the Sobolev space

is valid for the solutions and

(=ftJ′ )

Proof of Theorem 3。 ■.  Because 口 ,nl :t,(・ , (0・ 1))
do not depend10n t' it Suffices to show that supp u n

{0 ≦ t ≦ t。 }《二Σ(S) fOr a sufficient■ y sma■■ t。 > 0.  For
eaむh singu■ ar loint xl (j = 

・ ′・
..N)we defile もや

'(c>0)by
(2.3).  L「 t e be S' Sma・・ that u:epn▼ 1°= φ if i キ j′  and
tak, ' Stta■■ tO Such that every Σ(u摯)― 出 ハ{。 <t<t。 }tj =

111‐

11][ i:|:i「
1'inilW::ゝ :1:::ubl φ::Lui? and Set u(j)

・=1 0j(干)u(X′ t)O  Then u(j) Satisfies
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E- = inf{tr (xl,t) €I(s*)}JJJ
Then, for any t (O

S E by the method.s in the non singular case (cf- Ikawa

t3l), which implies that supp otirnlO S t S tlc[(sj)

(because the solution is unique). Nextrconsider the prob-

Iem (3.I) on € s t, s to with the initial data (o(i)lt=t,

aaoti'lt=E) on t = f. Then, by the result concerning the

domain of dependence in the non singular caser w€ see

that supp u(rln{tr5t5to}CX(Sj). Therefore it is conclud-

ed that
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Therefore we obtain the theorem.

The following theorem is another main result in this
section:

Theorem 3'.2. Let the mixed. problem (0.1) be C- well-
posed. Then (0.f1 has not a finite propagation speed.

Proof. We can prove this theorem by the same proce-

d.ure as in the author tlSl (see Theorem 4.I of t15t).
Let us mention an outline of the proof.

Obviously we have only to study near each singular
point x[. For v

D(x6,tr;v) = D= [x,t) € CI'x [0,trl ; lx-xi I S (tr-t)v] .

Assume that (0.1) has a finite propagation speed less
than v

that if the equalities

口u=0 ‐9, P(苓ふ′ti'V)′

(317'1:毒コF=9°nD∩ (FX[0′ t.])「

olt=' = Etolt:' = O on Dn{t=O}

hold the solution u(xrt) equals 0 on D. In the same way

as in the proof of Theorem 4.1 of [15], we can construct
an asymPtotic solution

u* (x,t;k) = * "tut 
(x,t) v, (x,r) (it1 -j

j=o

such that vO(x6′ t■ )キ  O and

22



甲
uN T eikΦ ttVNtik)~N in ΩX(0′ tO)′

神i=O  on D∩ (「 X(0,tOl)′

u長 lt=0 = 5tuNlt=0 = 0  0n Dハ {t=0}。

(0.■ )iS Supposed c∞  we■■―posed′  there

solution w., (xrt;k) satisfYing
I\

[lw' = "ikogvu in Ox(0,tg),

Since exists a

押lr=

WNlt=0

０

　

　

〓

on  
「
X(0′ tO)′

atWNlt=0 = 9  0n Ω′

and the estimate

ItNlo,o s crl"tutcltNl

holds for constants Crr C2,

ind.ependent of k. Take N

u(X′ t,卜)=u、 (X′ tFk)~

0

.c,D' S czk-

.[. and a domain Dr (] D)

so that 9, ( N, and set

-NI( ik) "w* (x, t; k)

Then u(X′ t,k)SatiSfies (3.2)′  but u(X6′ t■
'k)ミ
 O fOr

■arge k′  wh■ch proves Theorem 3.2.

54. Proof of Theorem 1.

condition (I)

suffices from

or (工工)。f (2。 2).  To

ii)Of Proposition 2.■

Theorem 4.I. Suppose that ,p@)t') in (2.1) satisfies

23

If the assumption of Theorem I is fulfilled, the

rp(9)1"y in the problem (2.L) localized at a certain singular

point satisfies the

prove Theorem 1, it

to verify



』「　　　・・Ｓ
ｎｅｈＴ

the €eJ*o.rr:lngr condition (I) or (rI) of (Z.Z).

事 脚 Qニ ユ 山 ≧ +二 臓 Ind_絆ぃ ェ ュ ね 叫 鼻 島

In the case (■ )We ca, prove the theorem in the same

way as in the author [■ 51′  name■y′ by constructing an

appFOPriatO asymptotic so■ uliOn Of (2.■ )viO■ating an

inequa■ ity to be satiSfied if‐  the prOb■em is C" we■ 1-

posёd (see §, Of [■ 51).  But thIS method cannot be app■ iニ

ed in the case (Iェ ).  In this paper we emp■ oソ a method

app■icab■e  t6 both cases (I)and (=I).

At firSt we sha■ ■ construct an (apprOx■mate)PoiSSOn

oづ踏atOr Of (2・ 1)by the methods of the Fourier integra■

OpeFatore  Consider the equation (in こ )

r,o(v ,E,Tt,6l = E2 + 2a(y)nE + b(y)n2 - u(y)o2 =

for y€Rl, (nro)€ R2. when (nro) €a = {(nro): o2

o (o2 + n2) ] (o is a small positive constant), this

tion has the distinct real roots

eitv'rfro) = -a(v)n + ffiz'
AppJ-yj-ng Proposition 1.3, we have s1-mbo1s q*(yrrlro) € Sl

1

t e s,i, o : 1) with the properties stated in i) and' ii) of

Proposition 1.3. Hereafter we denote UV Et(y,n,o) the

principal symbols of E*(y,47o) r and assume that ef,tvrrlro)

are real-valued on whole *1"*3rr. trrle set

0′

n: >

equa―

24



△+ = △ハ{(η′σ)=σ
>0}・

Lemma 4。■。  Let △+ ,ё a coni91_9pel_ et S'Ch that △主

c a., and let p in (2.1) be small enough. Then, for an

x+(y′ t′ η′σ)C SO SatiS三塁in.,け黒P X+C'ナ  and―
S・

'p X―
争1型里畳堅重止上

1) L+つす(X'C CI(ST∞ )° (x≧ 0)′

響静餞ω=品■ρプリ′
り 挙高c cIいう は≧り′

::lit:i:::ζ:::|二:[:;|::[|:|:||ギ
争キ
|三

J墜三二
≒
」
|1型
壁翌
・

V) defining T by
ス7  .

壼 h T 五
iO十
hlx=6

wと have i es■ md

(B = Dy + ψDx )′

o,",(t) : (n + 0(y)ef tv,rtro))x*(y,t,tro)-u 
X_

Proof . W.e make the above operator P' (ttl in the

same way as Kumano-go t$l constructed fundamental solu-

tions for operators of the type L* : Dt- 1n

(see g3 of t8l ) .

As is described in Theorem. 3.1 of [8], the eiconal equation

'CI(,m)denOtes the set of Sm_va■
ued C∞  functions_

→
 声ェ至ュ_二至≧⊇主_二重 C  SIn。

。th in the rator-norm) such

な



Ⅳ
ハ
φ

ｆ
■
■
ｔ

※γ′欧N
= yη + tσ

=0′  X≧ 0

((η ′σ)C R2)

(y$q = (ait.ar() ),

has a unique sO■ ution φ(X′ y′ t′η′σ) Satisfying φ― yn― tS乙王(S・ )・
a'lr\{-

We assume that F'(x) has the formJ*

(lt巧キ|「′
yit)=∫
∫

ゴがx′ y′ t′η′めA(η′の
0グη

`σ

 ′

ej督

～
′t,p′りCC要

“

])′

and..define {e*} inductively so that the requirements i)

-
and ii) are satisfied. Then we obtain the transport

equation of the form

平i19。 Wit' 911y                    14.■ )haS the sol,ti°n

=鴫 ―lr… → にi pr00f Of Theo―

lem 3.2' of Kumano― g6 [81).  There exists a symbo■

e(X,y,t,t,o) ecltsOl such that 
"l*,=1..= X*, supp e C lJ

―N・
一

 ―  ―   j=0

,IPP I■_and eは ′
y′ t′ η′σ)―

_鶴
ejは ′y′ t′ η′の CC塁 (S~｀ い

= ■′ 2′ 。。。) (Cf. Theorem 2.7 of Hё rmandeF [2]).
|

(41」 , わ+り(|′ y′ :| =∫ 19挙p{iφ (X′
:「

t′

1lσ
l:]|:::lillri)

26



1.7

Then, obviously p. satisf j-es i) and ii).. Since 
"tprp "

CI, we obtain iii) by Proposition 1.3 (Proposition 1.3

is valid also when X in ii) is a Fourier integral opera-

tor). 'From the definition it follows that
x1

o*?*nl*=o = (fl"W<u-r + n*e) ndnd")l*=o

+- +
Ei (vrDy,Dt) X' (y,trD"rDt) h + r (yrt,Dy,Dt)h,

where .r (y rt, t, o) e S0, which yields v) . The bicharacter-

iStic stri′  {q(x): p〈 xう泰
~I<q・
′ q2)′  (p.′  p2)}

≡墜圭丼thrOugh (y′ t′η′σ) (η
2+σ2 
≧ .) is defined by.

器二=`ηξ古(qirp)′

器ネ=― lσξ古(41ル )′

ql姜
=0 = (y′

t)′

器二Эyこ古(qi′ P)′

計=Э tξ古(q・′p)← 0)′

_plx=。 T (η′
°) 0

is sma■■ enough {,(X)′
)(3)(:△ +

C4: Q・こtた崚   ・
t 6'' (> o) for i € Rl,

It is seen that if

follows from p(0) =

ρ > 0

(η ′σ)

b(ジ)0―夕銀古('′ ′ヽむ, = ―黎 シ′h′め +aけ )、
(fr,6) €A+ (i2*62 > I).

≧0′ WhiCh imp■ ies t + & ≦42(X)

lhat {q(|)}x>o iS , charaCt'riSti9

1け露
ejこ {(X′ y′ t)=γ。+3長 ≦t}(j=0′

we have $$, t"l : eot *

Z 0. Therefore, noting

of (4.1) r w€ see that

). rhis yields iv) J
@omplete.

From these facts

for x

curve

-l Lr...

Now, let us consider the Dirichlet problem

f "t = O in nf"1--,t') ,
1r
I rl*=O = h on R*x1--'tO) .

fies the uniform Lopatinski condit,ion (cf. Sakamoto t12l).Ｓ●■ｔａＳ

　

　

ｔｅ

Ｓ

　

　

Ｓ

●■ｈ
“
　
　
ｅ

Ｔ
　
　
Ｗ

C軍 (MX(―∞′t。 ])二 {u(C∞ (MI(―∞′tO])'SIFF u CIt■ ′t。 ]ror some

t.(く t。)}(M=く Or R・ )。 ・

Then′  fOr any h(y′ t)CC軍 (R・長 (一

"′

t。 1)lhere eXiSts a unique so■ ution

w(1′ y′ t)ii c軍 (≪ |(二∞′tOl)′ and StTP W Cit■′10]f?l■ 6ws from Su=p h
27



こ[ti′ tol・  W, defin, an operat9r T oA c軍 でR・ X(|∞′tO])bi               .

T h  T  BWI支=0  (= (Dy + ψ(y)Px)Wlx=。 )・
       |

As is easi■ y seё n′  this Operator T = Tto dOes nOt depenf on to′  tha, ユ●|  
‐

for arbitrary t'r t6 (t0 < t6) taoh = Tq,h on --
the mixed probtem (2.1) 1s'C- rvell-posed if and only if for any

(4.3) g(y,t)eC; satisfying stpp g ct0,t0l there exists a unique solu-

tion h(y,t) of Th = g in citnl*1--,t61 ) whose support is in nlx[0,t

In fact: Ignoring the boundary condition of (2.L, and solving the Cauchy

problemr w€ may assume that the data (f ,grugrul) in (2.1) satisfy f = O,

r0 = ot = 0 and alSll=g = O (j = 0,1,...). If for any g (€C;) with

STp g⊂ [。 itOl th,re exists a,o■utiOn h(y′ t)Stated in(4.3)′
we haVe

a functiOn青 (x′ y′ t) (CC+)Such that s,Pp wこ [0′ t。 ]′ Wlx=6 = | 'nO Lw

= 0 on,R2*(--rtOl . This w is a solution of (2.1) for the data (0r9,0r0).

[:II[::「 :吉lalioI::::::l li::t)Viti「 ][ipsI」::l:[0:五

i] :eS°・uil:l i「
 (li・

)|

The operator T stated in Lemma 4.■  approximates to T in the fO■ ■ow―  .

■ng sense:

LeFrma 4.2.Let¶ t)(C♂)=19n[2,0′∞)ano supp,ατ。′∞)′ and

■et 7(t)で c♂ )sOtiSfy supp7⊂ ←∞′γ)(o<2%く て).Furthermore′
■et x(η ′σ) (CSO)be homOgeneous of Order O (η

2+。 2 
≧ .)and Supp x(1△ 十

(`二 C二 △+)′  and assume that x+(y′ t′η′σ) in Lemma 4。
■ ib equa■ to ■ on a

neighborhood of supp[Υ (t)X(h′ σ)]・  Then′  for any pOSユ tive integer N

we have

i) [ft* - f)fxhllfi S c[r'lll,, h(y,t)eJ i

ii) (if ρ in (2.■ )is Smal■  enough_for N)

‖x9kT二 管)lh‖長≦c‖ h‖ i`  h(y′ t)CJ′

where ‖・‖t iS the norm of the Sobo■とつ自pa9e H、 (R《。)・

_p_rp_ol. By means of Corollary of Theorem 2 in Sakamoto LL2l TI ,

'for m = O, 1r... we have the estimate

●1 ‐               |     _         23  ,          … 、___……_



温向痰レ櫂く
+‖琴tり裟＼

∵
・ll  二Cil忍瞬終|レ命ヾ リイトベ′
|とre聖饉型おr士 %L…・

溢11♂
21組yli md匹

登 ゴ 藩逸愛 恩
2dydt

Let

Lw

be the so■ ution of

二 O in R:x(―
"′

{

こ)′ _

t)′wl*=o : 9xt- . on Rl* 1--,

and set 
N
^1-fr(x,y,t) = p'(fXh).

-t I
2<.

Then it't

follows that

‖,(T ― 薔)9Xh‖長 ≦ ‖B(W 
― ")!

≦ C2(胸 T'断饉 十 胸xけ「
青
しル轟fく
ざ`ヾ・

It is obvious  frOm i■ )of Lemma 4.I  that

lW~轟♭イfh龍■‖(・
―xt)?χり長餞←

C31h)1、

using (4。 4)and iii)。 f Lemma 4.■ ′ we obtain

卜x"=わ 1/濠 C4
係‖豪 |%舗ミ

s cs llhr\
Therefore i) of Lemma 4.2 is derived.

Let us show ii) of Lemma 4.2. Let

4

p in (2.1) be so S7not,0



that by Lemma 1.1 we have a syrnbol e (y,l,o) e s0fnt& satisfying
le , E-le s-N-l , e (yrrl,o) : 1 for (n,o)eI* and "tnp 

-e 
cA+. Denote

by vr(x,y,t) teclt the solution of

( t* = 0 in *i" t--,i+l) ,
1+;
t rl*=o = fttltr(y,t) on Rl*1-o,t'+1) r

and take c- functions ft ttl , Y, tt) such that supP ?tc(to,o") ,

supp 91 Ct--,i,+l) and ?rttl = I on suPP 9, Itttl = I on (-*,E1 .

Then, using (4.4) , vre have
l

llxF(r - i)ghll ' = llxia{w -P*(?h)}lli
s llxfet91C91'- fl(?h)]ll,l * crl?hli.

Let us express ?{9,, by the Fourier integral operator. ble write

r$$9tw) = 91e r,frw +. tr,, ?rl 6frw + 9, t tl, ,e7- [L-L+, e I ] irw
* ?tll,-L+,6lirw = Jt * J2 * J3 * J4-

It is easily seen that

‖P8卜〕
J」
6′ 。くtくこ≦

C2‖酬■′0<tくこ十■≦ 93‖
9瑚 土

for any a and i- = Lr2. In vievr of Proposition 1.3 we have for any

Fro面 finiteness of propagation speed′  there is a constant x。  ,uch

that supp[予 .W]⊂ [0′ X。 ). Let O(X'(CC∞ )=l on(―
∞′支]五五d o on

[長+■′∞)′ where tt is a constait ■arger lh,n l。  + (tt■ )3~・  (3 is the

constant in iv)of Lemma 4.■ ).  We Set

―
■
■

ｈマ
５
Ｃく

〓
■＋ｔ̈＜ｔく０■Ｗ４

Ｃく

一

一
ｔくｔく００３

Ｊ囁

i(x,y,t) = o (")[lt*,"-=) t tt+,e lirw] (s)ds.

Then′ from Lemma 4◆ ■ it fo■10wS that

。lx=。 TO′  FTpヤ F:'0′
∞)′

‖x7B予‖長≦C6‖ヤiW‖ ふ≦C6‖
fFh‖

6′

ll o,tr,{r,+v- t E+, e I irw} ll o

: ll Dfi,t)il,*v- [E+ , el irw] ll 6, s.*.x * llQfi.ll*?ll o, i<x<i+l

30



≦C71'■W‖ .≦ Cё lCFh‖ 1,

Here, rhe inequality llo,io"*oll0,r(x<*+r s c9ll9r*llr is derived from

thl T,F lhat ilptp'|"(S)01舜
ptp e(x― S)■ φ if S≦ 長 ≦ x(e(X)iS

tle l,ymbO■ i,(4.2)).Noting,4=覧 L~[こ十′こ]ャ.w+?i「ξ「′ζ]L+f.W

aid itl:こ ]cS~ド
…・′‐b」 ProplSitiO, ■・3 and tie ■ast O= the abOve

estimates we have for any α

‖苺 メ
」1-W'HO≦ ‖D:ば L+―LI Ⅶ 。

+‖ Dα ttL… (LI予―[こ
+′
こ]9.w)‖ 。

‐ | |  |    +H Dα覧に「′こ]L+ヤ.司10≦ C.。‖
'Ц

li e  ‐

Thuξ we eё e that 静(x′ジ′t)= 予 +,Pす (1lζ l■?h)iS the requireo eXprls―

,iOn Of ttiこ

'■

W: W Satisfies

'雪
P'⊂にo′ 1)′

‖p81)L(覧こヤiW―詢‖0′ oく tくこ≦C■」|?瑚 i(0≦ lα l≦ N)′

ll gtrQt'-mlli, ocrci 1 ctzll?hlli

From thesё  and (4。 4)′  it fO■■OWs that

IB(覧こヤ.W―

")|1長

′0く tくこ≦
C■
3‖?h‖ i・

on the other hand we haVe

‖x予 (T―壼)Υ司1轟 ≦‖,(覧ζ

'生

W=予)‖長′0く tくこ+‖χヤB{青
―
P+(ヤ
h)HI(

十C.411?hll土′

and by Lerrma 4.■

‖文,B{"― P+(Υ h)}|1長 ≦‖χ7BP+(■こ

'.|■

)?可 1轟 +‖ xTB司 1長

≦C■ 5‖ThlliO

Therefore we obtain the estimate ii)of the ■emma.  The pr6of is

comp■ 9te.

Next, let us construct an aymptotic

3■



null solution of Th = 0 which is of the form

hlu (y, t; k) = fi"tko 
(v't) r-o (v, t) k- j (k

FO -J

where 0 (yrt) is a real-valued. C- function. As is stated'

in Lemma 4.!, the symbol of t has a homogeneous aslTnptotic
. g , . texpansion 

i=f,nr-i 
(y,t,t,o) and its principal s1'mbol q, is

oi the form stated in v) of Lemma 4.1. The following

proposition plays a basic role on construction of the

required solution.

Proposition .4 .1 .

assume that g(z) is a

fies

Let p (z,w) e sm and h (zl e citnnt.
real-valued C- function and satis-

具婦J▽λ(Z)|>°
0

haveThen we

i) 2器 ID〕p(z′ Dz)(eikλ h)(Z)|≦ Cょkm+lα
l'

ii) if p(z,u) is homogeneous of order m in ot (ltl Z

1), the following asymptotic expansion is obtained, for

any integer N

d-ik'q'(z)p (z,Dr)("ik[rr) (r) = H"r(z)am-j * rN(z;k)]*-il
j=0 r

＞

■

Ｚ

　

　

一

夢
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Э
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Э
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声
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where a。 (z)′ … 1′ aN―■(Z)and rN(子 ′
k)(CC∞ (Rl))Sat手 ,fy

Fupp aj C SIpp[p(Z′
▽λ(Z))h(Z)]′

‐  穏 IDttrNレ潤|I C klα
l・

α

we can prOve this proposition by the mё th6d of sta―

tionary phase (eoge′  cf. §4 of Matsumura [■ 01).

Remark 4.1. rn the above statement i), p("iklrr) is

computed also in the following way:

‖p(z′ Dz)(eikth)(Z)‖ N tt CNkm+N(N = 0′ ■′..。 ).

By this proposition we can write

e_iko (") ir,* {")

|      = k{q.(Z′、▽Φ)Yo}

+ ・ ・ ・ ・ ・

|          十 k「
λ
{4.(z′▽o)V…λ_1 +Σ≡【Эzg(Z′▽Φ)Dzy_λ

‐               | l            t γ(Z)V_λ 
… Ψ_λ (Z)}

+ 。・・ `,      (Z = (y,t) ) ′    :

.  2
where γ(z)=q。 (Z′ VΦ )… 夢耳L.Эぽ♂i(Z′▽?Эィポ(Z「 }ald]′

Ψ三二(7)iS a flnCti。 l dettermined with on■γ vo′ :・・′ V■λ+■・

Let us so■ve the fo■■OWing two equation (corresponding

tO the eicona■ and transport equatiOnsI=              ‐

(4.5)     q.(y′ t′ ▽Φ)〒 0 ′

(4.6)a nq.(y′ t′ ▽Φ)DyV-1+Э σq.(y′ t′ ▽Φ)DtV_λ
+γ (Z)V_.

= Ψttλ (y′ t)_

33



(4。 5)is of the form

l(Э
yΦ すΨOξ古け′▽0)x+=00

1t is eas■ ■y seen that the function

ユ

l '(y′
t)=∫

Iで・
―
=一万ぎキξ語トギ卦「調手≒轟藤覇πttt下'ア

五dS  + t

■s a so■ution of the equation

ayΦ すψりξ古け'▽0=0′
‐

and satisfies

に17)▽Φけ′OC△+and l▽Φけ′→1易 :け′→とR2

σ―axis (σ > 0) (iffor a conic neighborhO?d △
+ (く
二⊂△
キ)° f

Φ(y′ t) intO (416).enOugh).  Put thigp in (2.■ ) is Sma■ l

Thё n′ noting that (if p in (2.■ )is Sma■ ■ enough)

Enet(y,trrt,o) = I + {(y)tnEt(y,n,o)Z 6 (>0),

(η ′σ)C△ +′  t

(η ′σ)

t >

≧ 2こ。′

CΔ
十 ′

2t。 ′

b(y)σ
Эσ
ql(y′ t′

,′
σ)T ψ(y) 干 a tyln

b(y)σ
≦ ―δ (く 0)′  (η ′σ)ξ。(y′ η′σ)+ a(y)η

we see that the characteristic curve t =

CΔ+ ′

こ(y)of (4.6)is

of the following form:

i) if the condition

the curve is convex (i.e.

ii) if the condition

fied, the curve is concave

:与 (」
くO fOr y

田   4

(■。e`詩 (y)二 〇fOr

(I)墟

0五五d詩 (y)

is satis-
y<0and
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豊 二千0お=90linCe  σO曼

the samё form (Cf. (■ .2))′ thelabove statements are

・a■ so for T士 .

Therefore, by choosing the solution=& JaS.. of

(4.6) approprS-ately, we have

is of

Valid

to have
二emma 4.3. i)Let p in (2.1) be small enoughY.
― ―

―if the conditi6n (I) of (2.2) ho■ ds′  there ■s an

Lemma 4.2i)Of
Then t

as tic solution t;k) for an inteqer N

that

slPP \c l,2la, 4€ol D,

0翼 3ギ
AN ω′中 |≧・

c.kmTN′

Wh?Fe the AOrm lhlm′ o」J d9notOS Σ 謡 IDα h(y′ t)|_

STpフ緩 ItO′ 3t。 ]′

‖gN嘔 準 ・
‖「士gN

for large k,

¨
Ｔ

that

for large k,
-,/

c2i\)2.

0 Assume that X

and x+(yrtrrlro)

+ in Lemma 4。 ■ satisfleS SlFp 支
+(・
[こ
0′
 
“)

= | for (n,o) €I+, t 1280.

satisf ied, we have an aqppto!-ac--So

3」



Proof of Theorem 4.1. At first let us prove the

theorem in the case (I). Assume that (2.1) C- vrell-posed.

Then , tor any compact set D c,n]. there are an integer 9.
v

and a compact set D. (⊃ D)such that

lh10′ DX[0′ 3輸 ≦ CIThlλ ′法 [0′ 式 ]

wher,Dこhlt=。 =O fOr j=° '■……にf.(4。 3De putting
hN(半′|'k) Stated in i)of Lemma 4.3 into the above esti“
mate′  wё havё  (by 工)of Lemma 4。 2 and 4.3)

1S In*lo,ox[0,3ir] s cr(l(r - t)hrlc,o,x[0,3il
+lihNI五
′プX[0′ 3卸 )

scz****-1.
Let N > tn. Then the above inequality does not hold. whep

k+*o. ,

Next, let us examine the case (rr1 . Let (2.L) be C-

well-posed for a p (> O). Thenr so is it for any smal]. p

(> 0). Furthermore, there are a constant EO (> 0) for

any small p (> O) and an integer L independent of p such

that the estimate

(4.s) ll hll i,0<t<4Ep: cllrror'll i,, o.t.ai,
h6■d, 10を h(y′ t)cこ

3(R・
X[0′ 4t:])薔 ith Dthlt=。 

二 0 (j 二 9′
■,。 ..).  In faCt′ :fiX p = ρO.  Then′ for any t > o "e have

(4.9)  lhl.′ DX[0′ こ]曇 C■ 11°
hl鶏
′がx[0′こ]

for iとこ
3(R・
X[0′ t])with Dthlt=0 ・ 0 (j = 0′  ■′...)′  wh9re

λO iS an integer independent of γ′ D = [―■′ ■l and D3 is
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ヽ
′
　

　

ｎ

ｎ

）

　

一
■

a compact set cOntaining Do  Let αO(y)and α.(y)be c∞

finctions such t,■ t ,0(y)+ α.(y)〒  ■′ Supp α。(二 [― :「  :1
and.Supp α.⊂ (―

∞′―:]U[:′
∞)′ and.et hO and h. be

thと sOiutiOns O士  む。h。 = αO(■
゛ヽ)and ToL. = a.(ToL)respeC―

tive■yo  Then′  h = hO tt h. and it fo■ ■Ows from the resu■ t

in §3 concerning dOmains of depen,「 ,Ce that stFp hO(・ [~号′

ツald SヽFp hiC(す′「金]U[豊′
∞)if 9≦ t≦ ltpにρ(>

is a small constant depending on p). By the results

the non singular case (cf. Ikawa [3] ), we have

llhlll i, 0<t<4ip s c2llrphlll i, o.t.4t, '

since rFho = t%o if o S t : a€p, (4.9) yields

llhgll i, o.t.aEt s callr@h6ll i.urr,0<r<4ip .

Therefore (4.8) is obtained.. Let tgtt) e c-, suPp ? Ct2Er,

∞)a■0 9'(t)= ■ O■  [号,6′  ")′ and ■さt h‐ be a sO■ ution of

fh : ?'n*r where g* is the function stated in ii) of

Lemma 4.3 (set €0 = io). Then,from ii) of Lemma 4.3 it

follows that

r S llgsrll 62 = (rh, eN) ' = (frqrr, ep) ' ,

where 9(t) ( ec-) = I for t < 3Ep and Y(t) = o for t :

4i . we take a symbol X(n,o) (e s0) such that X(n,o) =
p

1 on a conic neighborhood of o-axis (o31) and supp XCI+

(I* is ttre set in (4.7)), and write

(,Tヤれ′ gN). = (ヤ T'h′ gN). + ('■ Th′  (χ―■)gN).

+ (7(T―■)?h′  χgN). + (.Tヤ h′  (■―χ)gN).
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ll (1 - x)s*llr,2(o) s cak * ,

where D is a compact set in R2. Therefore, using (4.8),

we have

|・ 41≦ C5‖ 1旺 ′0く tく 4tJ(・
~^)gN‖

±
2(D) (D=Suppャ T,り

= I1 + 12 + rg + 14

ii) of Proposition 4.1 yields that for any m > 0

-1scok-
Similarly, it follorvs that

1lrzl s czk-'

(4.8) and ii) of Lemma 4.3 yield

f rrf = I (qh, fr*g*) ' ls cslln116,zir<tcairllt*gNll 6,zl7tr.ai,

s arno *.

By means of ii) of Lemma 4.2 and Proposition 4.1 (Remark

4.I) r w€ have

Its | : llx{ (r - i) ?hllfi lls*lllg

≦ C.0‖ヤh‖ i・ C■■k~N

: "rrnu'*-
$Ie choose N beforehand so that 9"

that

1 s *'rrl s crrk-l ,
T=I

which is a contradiction when k + -. The proof is

complete.
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If the assumption (a) of Theorem 2 is satisfied, the

g(y) in the problem (2.f) is written by the form

V (v) = f(vt2 (or !(vlz ) ,

where fty) i-s a real-va1ued. C- function defined near y =

0 and satisfies f(0) = 0 and ftV) t 0 for y { 0- Let us

consider the problem

.?..1l,@)('r)u= r,(P'(yrD*rDyrT)u = f (xry) in nf ,
(s.lx

["t3',",D*,D")u = {o"u + tt'ilvl2 + e)Dxu}l*=0 = s(v)
on nl

Here r = o - i1 (oe nI, y : 0) and 0 S e

samll constant) . we d.efine a norm lll 'lll* (m : 0,1,...)

wュth the parameter T by

l岬|バ =二 1「 17いず
刊
岬塁Pl型 12呻 ・

Similar■ y′ Ⅲ,‖L (S,R)is defined by

95. Proof of Theorem 2.

Theorem 5.■ .  For any integer m (> 0)there exist

」TI蔽 71,‖
`蔽
れ

.

A rnain task in this section is to prove

COnFlants YO and C ln,ependent of T and c such that if γ

=―Im T≧  γ0

γ
ll‖
二11+彗 iDlu‖lij+.≦ Cγ

~・
(Ⅲ A3L(1)u‖二+‖ Bどt嘔亀

"
1(x′ぃとc3d三:)(9≦し180)′
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- v.' xr\+,/where /\ = (oX_* lt lvlV.

We note that the statements

valid'also in the case where the

(5。 1)・ iS Of the fOrm D

Now, we ionsider the equation (in E)

(5.2) Lo (y,E,trr) 3 E2 + 2a(y)nE + r(v)n2 - b(y) "2 
:0'

(yrn) € n1*R1,'y = ;rm t > o'

This has two roots Ef;(y,n,t) of the form

(5◆ 3) i(y,rrr) = -a(y)n + (y)(モツ=こ5

in this section ar.e all

boundary operator in

+a(y)ヽ 各普
/′

キ‡乳こ:(γ′P′ 7~lγ )・   ?b°
i~

of order one in (η ′T)_

ncR′ γ =―工mτ ≧ 0〕 ′

d} (d>0)′

(■
0′ T')C△

&′
λ >0}・

ⅢLユ rl■施■ドr00t wittttξ#tiL鸞翼島fltty農
L。 l h, f。

■■OWing estimat9 hO■ dS=

(5.4) ±・m こ志(y′η′1)≧   δ
'  (。

 > 0). ctde ",|卜
 
鷲;:(Ч′ヤ′q)deFti

|。1 6と 早
■
 we ふe=inと  こ:(y′η′σ)=

Ou'・半 こ:(ジ 11′「
)are hOm?gene° us

we set

■ご十二1(h′τ)=η
2+ITI子
=・′

ム& = {(n.′ T・ ,e SttF lη '| く

(5。 5)△d 〒 {(η′τ)= (λη'′  λτ・)=

Let d′  d.′ d2 be sma■■ positive conFtints (d2  `d■
)・ . Then: if ρ

in (5.■ ) is sma■ ■ enough′  from the form (5.3)we haVe

(5。 6)ξt(y′η・′・
1)キ こ5(y′η'′τ

。
)′ yCR・′(■ .′■1)C■

1′

(5.7)IReЭη「5(y′η:′τ
。)|≧ δ:(>。 )′  yeR・′

(η・′T・ )C Cξ&1-△配∩{0≦
~エ

ザ劉・

牛o



Since ef tVrrt,r) and eOtv,t,r) are distinct on l-;r, rnre can

apply Proposition 1.3 to the operator L(t) (= r.(P)(t)), and

we have symbols Et(y,rtrr) a t*, such that oo(Et) (y,rtrr) =

:ii"::'"1"r"=l:'/ffifi"t "":- 

(v'D"''l) has the propertv

(fY)z + e)t+(v,D",t) (o s e

lemma plays an essential role

= D  +ey
The following

of Theorem 5.1.

く́
　
乱ヽ
錯

Lelrlma 5.1.Let x(η′T)(C S3)be holnogeleouS 9f° rder
。 (n2+IT12 ≧ .)and SatiSfy χ

l'li)1:.:)i: :              )SIPP X(=△ dl d■  iS lh' C°
nSt]n

t,11, be equa■ to l On a neighborh8od Of RIX(Supp l)・

Then′  for s c R there are constanls γo and C independent

of ε,and T such that if γ = ― Im τ ≧ γ0

‖xvⅢξ
2≦
,(γ
―・1こPcV‖ζ+;+iV‖ζ_1)′  v(y)eJ(o≦cく c。 ):

we sha■■ prove this ■emma ■ater.   :

1                        1

繰

Proposition 5.1. For m = 0'1,

C and v^ independent of r such that.U

to)'

proof

there are constants

γ==Im τ≧γ0

-atsis€ies ,th€r uni€esm r@i,ora.r By Sakamoto

tl2l I we have

if

4■

X・  y



ｎ

　

　

　

０

・
■

　

　

一Ｙ

γ‖lⅢi+.+=‖ Dキ‖IT:十■≦C(γ
~・‖L(|)u疇 +‖uⅢ∴:1)′
uは′
"C C8薇
わ・

COmbining this proposition with Lemma 5.■ ′ we obtain

Lemma 5.2. Let X(n,r) te s,f,l be the sl,mbo1 stated
rL,

Lemma 5.1. Then, for m = 0r1r... there are constants

and C independent of e and r sucir that if y = -Im t iyO

^m*1.A
vlllx (D", tt "lll*ir . Hlllo]x 

to", t) ulll;zr*,

≦C fY~・‖A'派 )u‖iキ ャ
~キ

‖BctⅢl+:=mu‖二:P′
u (x,Y) e c[ tnf l

Proof . Let X'(n,t) ( € E:)) be homogeneous of order o

{n2*lt12 : r), supp X'CAd,
hood of supp X. At first,

is a constant yt such that

and χ.(η ′τ)= ■ On a neighbor―

we show that for s > O there

if γ≧γi

(5■ )‖ x:Ⅷξ≦C.(牌
S支

0■

~v喝
+‖ AS~4vⅢ p′ vは′

",c:は
わ:

where xg(n,t) tes,!,1 is homogeneous of order 0 (n2*l.12Z

I), Xg(n,t) = I on A^4pffiRp xoCl (A is the set in
%[]tibrqr r

Proposition 1.3) . I{e'inay adsume that the principal s}rm-

bols of Etsatisfy the inequatities (5.4) for every y,rrr:

(5.4)l,+Imoo(€t)(y,lrT)z6y,(y,n)en1xRL,.y>

Combining (5.4)' and Proposition L.2, we have

(5二

"Im(ASx.L~V′

ASxE→ =訓 x,V‖ ξ
2_.m(ASx'こ ~V′

ASx.→
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―議lmlI澤|ゝ:Rη l:
Take s1-mbols X1(n.,t), X2(n,t) (€3L homogeneous of order

0 (1:十 1キ 12 ≧ .) suCh tiat xl(η′T)+ x2(η′T)= ・  °n Suppズ

n supp (1-xl)′ 3nsupp x.(=Ξ
. 
〒 (△ al… △と

'∩

{γ =IIm て  ヽ1}

(d iS the constant in (5。 7))an4_SttnSupp x2 C(△よ1- 五Ъp r、

t' > :11・   壼h,n it fo■ 10書s that        ‐

I HASxヽ こ■ v′ ASx'→ |≦ C2(‖ A'ガ v‖:+‖ ASx.V‖ :

+は
'X2Ⅷ
:+Ⅲ AS~3vⅢ卜.

Therefore, we obtain (5.8) if the following estimates

(5.10) and (5.11) hold when y : -Im r is large enough:

“

0■ 0牌
Sx.Vlll:≦ C3(ば XOL=Ⅷ :+‖ A'~4vⅢP′

“

。■⊃ 肺
Sx2↓
‖:二 C4(肺

S~・
xoLTⅧ :す 胆

S~3v‖
∂
.

N9ting that_1~_=_2x_~ こ
~ 
ユS e■■iptic if (η′τ) iS

lё ar‐ |,upp x2 'nd that lm σO(こ
~)(y′
η′τ)iS negative there

tcf. (5:4)1)′  we See easi■y that the eStimate(5■ ⊃ hO■dSe

Let us derive (5.■ 0).  By the Tay■or exPansion we

write               ‐

l    σ。(ξ
~ )(y′
η′σ―lγ )〒 σO(こ

~)(y′
h′ ,)+ く。(y`η′σriγ )γ  ・

Then′  if (η′T)(1= = {(η ′T)=(llη・′llτ
.)=‐
ll > 0′  (η

.′τ・)CE・ }′

be・0,7t°
_Sω and i,respeC―

(,電£P h6mogeneous of order

文.(|′ T)= ■ On a conic

set

oo ( 6-) (y, n, o) and ro (Y, n, o-iY)

tively. Take a symbol i1(n,r)
0 and. satisfying supp irC f and

neighborhood. f of supp Xl, and



Then We have λ (y′ η′τ)CSλ ′ ユ (y′ η′T)CS:′  and fOr any p(ypη Л[)

J

■n the same way as ■n

‖(と +i口M‖ :
obtain

λ(y′η′τ)= {σ O(こ
~)(yJη
′σ)+ (こ

~(y′
η′τ)一 σ。(こ )(聴ηェ))}

。文.(η′τ)′

之(y′η′τ)= κ。(y′ η′τ)又.(η′τ)′

こ
~(y′
η′τ)= λ(y′η′T) + く(y′η′T)γ .

satisfγing TT p FΞ ‐        :
〔xi′こ
‐
]|=[χ

.′こ「]p′ い′こ「]=い′こ
~]InOd

pヽp■ying lemma ■.■  (翌二= 1)tO λ(y′ η′τ) (Cf. Remark ■◆■

]|:ぅ:i′
:[1lFT[il:till ](::l:I: :1111i三 li:::::[:pti]il:l:

|モ 12≧.) (.et p i,(5。 1)b, sma■■ enough).  It iS easy to

seo that for ■argё 口 > 0

酬M賂 ≦‖ ζ五口M隔 ′↓商 と3● :

NOting that (fOr ■arge ll ) ・

fi re+irrN4e-1.rlllo S il r6,rlvlllo * vlll te ,rtvlllo

ギ

\-1 ,/
Im((6+ipAv)L v,

"縣
J0

* u lll r,N]f s-r .'[lo * cs ilN]4il'

s ce (r+vrN5 il t e +iuMrrillo ,

(5.9) we have

t-'t,/
( 6+ipAv) v)

珈Ⅲ鴨は町,¨趙%i●黒~ C6(・ +γリ

≧()―宍
Inductive■ y′ we



Im((ζ +illA ・
'4ASL'v′

(ζ+ivA~・ )4isv) 
´

|  ≧(:γ―と9)‖ (ζttivA~1)4AS'‖ :.
Therefore ■t fo■ゴOws that if γ ■s ■arge enough

冊ASx.v‖ :≦ CiO(‖ tCtivA~｀
44sL~VⅢ
:+‖ AS~3v‖ひ ′

which proves (5。 ■0).

From Lemma 5.■ and Proposition 5。 l it fO■■OWs that

l ltiXu‖
1111彗‖D:χuぽ jl・
≦と■■tY~・‖LuⅢ孟lγ

~・

ⅢガTcuⅢふ+:+Ⅲu鴫阜P′

where x"(ム′T) leヽ:)= ■ °n a neighbOrhOod of supp χ and supp x・
・

cC{(η ′T)= x.(η ′■)=■ }, NOting tiat P: = Bと  T (921ε )Ll and

uLilg (5.ё ) (set ● 二 L+七 )and PFOpositiOn ■.3′  we have

lllx"p.'lll' +g S crz ( lllx' r+u[ll,L*s * lller"lll;,*g + lll"lll**r)

S crg t llll**3xor,-r,+ullf o + [|le."lll,i.*g* ltllm-Ir,+ull1,

+ lllulll**t )

S cra t llll3rulll* + lllsr"lll,l*E * lll"lll**r)

Therefore Lemma 5.2 is obtained. The proof is complete.

Proof of Theorem 5.1. Let X(nrt) be the symbol in

Lemma 5.1. Then it follows that

m`・ ― x).‖轟1.≦ C.‖ (1 - x)Dyull轟

≦Ci{‖ゴ瞥しL詰 す(|ゞ
り21。
+ε。)‖Piu‖轟}

+ c2ll[o*"lll,i.,-r (oseceo) r

where C, does not depend on € or 9'. Therefore, by

Proposition 5.1 we have
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γ‖(■―xDu‖1+.1毬ⅢDトーガuⅢ∴_:+.
]=

≦C3(γ
tt・

‖LIplt.)u‖1+‖暴Ⅲ・1+‖u‖ml.)
* c4 (lflrizlo * rof111o*"111;2,

where Cn is independent of eO and p' . Fix p in r,Pl(t) ,

and make onl1r p' in g(P'land eo so small that ,1fltt'Plo *.0)'
1

S fr. Then, the following estimate holds:
^ m*l

vlll tr - x) "ilfi*r . F*ll1ol 
tr - x) "lll,i-3*r

s c, tv-llllftrufifr + il"$nl;2 * 1t"11|fi*r)* ] lil o*"111'z -

Combining this inequality with Lemma 5.2, we obtain

Theorem 5.1. The proof is complete.

Proof of Lemma 5.1. We shall prove this lemma by

the same procedure as in the author t15l (cf. Lemma 3.2

of [■ 5]).  =f C and p (of Btpl)are STa■・
 enOugh fOr d' > Q

Pc 
〒 Di t(7(朝: 

十 c)ξ
~ iS e■

■
lptiC 

°n (A♂ C (△
d′
iS defined

in (5.5)).  Therefore′  in view of Proposition ■.■ we have

On■y to deriVe the fo■ ■owing estimatё when γ is ■arge

enOugh=

(5:12)‖ x(Dy′τ)|‖ζ
2≦
cγ
―■‖Pc(χVi‖ξキ:′ v(y)C P8:  :

The first step is to show that the estimate

(111鋤 `‖ ?x↓Ⅲζ+1+cⅢ xV‖ξtti≦ C.γ
~1(‖
Pc(わ Ⅲζ+:
+Ⅲ xv‖ξ

2)′
 v(y)こ J

ho■ds if γ is ■arge enoughe  Let 文(η′T) (C,1, be hOmoge―

neguξ of ordё r O (η
2+IT12 
≧ .)′  又(η′τ)= ■ On a conic

neighborhood 1 6fisupp x and Supp 又く■△dt′ and set
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臨
|→ |    

れ
|′

ⅢηⅢlⅢⅢ口TTT
Then we have     .

‐α(y:η′■)「、ねイ こ+(y′η′τ)と ,1,
(Ь .i4)  `n:+(y′ η′■) =  α(y′ η′τ)η   ′

(5.■ 5)   ξ古(y′η,T)==五 (y)η  十 こ
+(y′
η′τ)

{5●■6) Im こ
+(y′
h′ |)´ ≧ 6γ  if (η′τ)c

if (■ ′τ)CI ′

Π .

By (5.15) we may assume (without loss of generality) that

ootE+) (yrnrt) =-a(y) n + 8*(y,rt,r) for every (yrnrr) ' set

2t(") = tl - (?(v) 2te)u(vl }s2f then it follows that

'tg{r" h(Y) : 2N 
(' o) '

rm;XX, v)'i rm t&1*.t,^N,v)'- 2\(1il"0(+ 
"ll|"llff

rherefore, usins Proposition L.2and. i." "otliSffi
(5.16)), we have

/
(s 1z)'*"'nl 

;ff; rlff"rg;?':''::;Wl*-K
暉′訂 :よ五d

[?′導 =&六す:′ 陥‐ 熱 +盛
where‐ q′  :C¥and iL_.′  6s_iCメ凝訴せて  Therё fore′  no,ing

t,ま
I P, T Pと  , (92+こ

)「1' Wさ
 Ob,,in

l 臓ε貯′細縛 6喝 昴 εぬ‰ ＼ +胸cM当卸6
1    ≦C4(‖DyXV‖とす‖XV‖ζ)

From (5.14) and 0 A = FKN it'is seen that

r?,iqYf are or il"'r"'*^

≦ C5(HPc(xV'‖ こ 十 ‖T(卜
V)り
と11、1 

こ
‖
χ
帰

+ 
‖XV‖ξ):



| (e. [Pe,As+l] xr, A=+lxrr)'I

S e | (0. [t+,As*t]Xv,A"+tx.t)'l * | (y' t E} nt*t I xr, 'At* 
lx.t)' 

I

+l(Ft?,Aittll Eln,As+l1v;'l + I ( tf,At*tl9El",As+rxt)'l

≦ C5(‖ PcXV‖ζ
2+脂
xⅧ 占阜.+C版 Ⅷ ζi.十 ‖χ

V‖・3。

Combining these inequalities vrith (5.17) ' we have

| (erAs+lP.xv, A=+11rr)'l z (6;v-cul (lll?xv[ll?r * e]llxvlli;frr

* ct( lllx"lll12 + lllnrxvlll!2) ,

which yields the estimate (5.13).

The second step is to derive

(3.■ 8)|‖v‖ :≦ C(‖PcV‖こ+‖9V‖占+.+ε‖V‖ζ+■ +‖ V‖ξ,.)′
v(y) , A.

Let {,(V)eCf;tnl1 and rf (y) = I near y = 0. Then it follows

that

‖V‖ 6 ≦C■ (ⅢψV‖ 6 + ‖(■ ~ ψ)V‖ 6)

s cztfio"vlll6 + l[to"rl)vlll5 + lll(1 - u)"lll6)

s cstllle.vlll6 + llltf2+'lE+.r'lll6 + lll?"lll6l -

From this inequality we have

lll'llll lcdtllle,vlll; + lll?'llll+r * elllvlll;*r+ lll"llll-r
+ lll tp, , nst v1116 + Wryz, E*A=t "lll6) '

which yield.s (S.18).

It is easy to derive (5.12) from (5-I3) and (S.fe) '

the proof is complete.

Proof of Theorem 2. I'rom i) of Proposition 2.1 it

suffices to show that the mixed problem (2;1) with the
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inu**,(n|)forany(f,g)€Hm+3tn|lxH**,(n1)ande>
(if y is large enough). Furthermore, bY Theorem 5-1,

this solution u, satisfies

γ‖uc‖二i.≦ 9γ「l(牌
3f‖

二十脂‖轟13'′
wh■ ch imp■ ies that {uc}0く

cくと

fixed (f′ g)):  ThereFOre′  uc

{,j(X′ y)}j=。 ′.′ ..。

that O < α. < ■ and
~ ]=

boundary

posed.

erate if

operator

since the

C > 0′  Oy

D +92o (or oylxy
boundary condition

Ikawa i31 we have

|tr*) is c- well-
of (5.I) is non degen-

a solution uuof (5.1)

is bounded in H轟 +.(Rこ ) (fOr

converges t9 some uO(Hmttf墨 1)

weakly as g + *0. Then uO satisfies L(t)o' = f and BOuO

= 9. Hence, using the Laptace transformation in tr we

see that (if , is large enough) for any (f (x,Y,t), g(yrt))

t二k単三:γ iRttXR・
)XHml三

:γ
(R・ XRl) (Hm,y(M) = {u, e-Ytu.H*(M)})

there exists a unique solution u(xry't)eHm*r,, (nl"el) of

the equation

in Rこ XR・ ′

1 :llillil:i::): :(il[ly:七
|

on R・ XRl′

and that if supp (f,g) C{t : 0i then supp uC{t > O}.

Therefore we obtain the uniqueness and existence of the

solution of (2.1) in the Sobolev sPace. .

Combining Lhis fact, and the investigation in 53 con*

cerningr domains of dependence (cf. Remark 3.1) r w€ see

that the problem (2.1) is C- well-posed.. fn fact: Let

be a partitiOn 6f unュ t' On 晨こ Such
supp αjこ {(x′γ)=j~・ ≦|「 X′ y)|≦

j+■ }′
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N

ald ,et βN(X′ y)= コαj(X′ y)・   let u b? a lu■・
 S°
lYti91

of (2.■ ) (ioeo f=0′ 7=0′  uO=u.=0).  Theri βNu Sati,ギ les
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The data of this equation have support in {N-1 : (x'+y'l'

S N+11 and belong to the Sobolev space, From Theorem 3.I
c zL

(see Remark 3.1) it follows that BNo = 0 on {(x'+y'l't

C(N)], where C(N)+ @ as N + oo. Hence the solution of (2.T,

is unique in C-(*?" t0,t0l ) . Let us show the existence of

the solution in c-(il?- lO,t't I . We may assume that f:0,

lln=ur=0 and OiSlt=*O = 0 (j=0,1r...). By the solvability
u r /i'l

in the sobolev space we have a solution ll \ J r of (2.L) for

the data (0ro+9r0,0). From Theorem 3-1 (Remark 3.1), it
;l co

is seen that u = X rrtsl 1= the required solution- The
j=o

proof is comPlete.
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