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49‘,"/7 ON THE EQUIVALENCE PROBLEM TOR A CERTAIN CLASS
- ZG)F"‘y'l‘i‘? OF GENERALIZED SIE(TL DOMAINS, II
- W"“\/\ANV\/\/\,/\/WW

Akio KODAMA

Introduction. Let @ be a generalized Siegel domain in&f’ with
exponent 1/2 and @(@) the Lie algebra consisting of all cbmplete
holomorphic vector fields on S . In [3], Kaup, Matsushima and Ochiai studied
the structure of @@) and applied the resulrts to the equivalence problem
for Siegel domain of the second kind. They showed that every biholomorphic
isomorphism of a Siegel domain of the second kind onto another one is
.birational. Moreover, using this fact they showed also that two Siegel domains
of .the second kind are holomorphically equivalent onlvy if they are linearly
equivalent. Motivated by these results, in [5] we studied the equivalence
problem for a certain class of generalized Siepel domains.

The purpose of this note is to generalize our previous results-in [5].

After some preparations in section 1, we show the following theorems in section 2.

OX¢

;Deorem 1,- Every biholomorphic isomorphism between two generalized

| Siegel doﬁéiﬁs in (X C" witl onent 1/2 is birational.
»leg ,%'__m___mmj exponen ; is biratior
By means of this theorem and our result in [5], we obtain

Theorem 2. Let E and -9' be peneralized Siegel domains in C X c"
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with exponent 1/2. Then &) and &)’ are holomorphically equivalent only if

they are linearly equivalent, that is, there exists a non-singular linear

mapping L~C X (f“—————->'qu)£Cm‘ such that  P,(€)) = 9’

Throughout this note we use the same note\lt‘:{ons as in [4], unless otherwise
stated.
The auther would like to express his thanks to professer S. MuraKami for

i

his useful advices.

v 1. Preliminaries
AAS— A AAA AN

According to Kaup, Matsushima and Ochiai {3], we say that a domain S in

Cnr)(vamv is a generalized Siegel domain with exponent 1/2 if it satisfies the

o™
s

foliowing conditions : ~
(1 8 is holomorphically equivalent to a bounded domain in $+m and

S contains a point of the form (z,0) where 2z e&“« and 0 denotes the

origin of Cm
(2) S is invariant by the holomorphic transformations of Cn M of the

following types :

(a)  (z,W) ——>(z+a,w) - for all a e&n ;
b) (z,W) > (z, e‘/:‘n_:w) for all t e&, ;

() (z,W) —>( etz, e(l/z)tw ) for all t e&
Let Aut(@) be the group of all holomorphic transformations of 7 9 . Then it
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°
is known that Aut(%)) is a real Lie group and its Lie algebra is canonically
identified with the Lie algebra @(9) consisting of all complete holomorphic
vector fields on & . We know that the following holomorphic vector fields
on P are contained in @9) :
(@ 2 for k=1,2,...,n !
a EYR - = 1y, 5
azk .
o - m
) I= VI>_ wge ;
o=1 o
n m
3 1 3
© E= E-l st-z-i; + -5 > wam; .
= a—

where (zl,zz,.. 220 W5 e ,wm) is the natural coordinate system in Cn,rxv‘CLn.

Now, we have the following theorems on generalized Siegel domains with exponent 1/2

° Theorem A (Kaup, Matsushima and Ochiai [3]). Let @ be a generalized

Siegel domain in ;:: X ;:::, with exponent 1/2. Then we have
(1.1) @9)=@1+@1/2+ @+ @/2+@
[@5\,_ @] C @+u , y_}ﬁr_e__@ { X 6@9), [E,X] = AX}.

dimg 172 = 2k for some 0 <k < m.

A

(1.2)

Theorem I, (Kodama [4]). letj:) be a generalized Siegel domain in c X"

with exponent 1/2 and dir‘r:& @1 %2___=___2.1~<»2 i);k < m, lLet Aut&(-@) denote

the identity component of Aut($%)). Then there exists a non-singular linear




~
i : C ¢ C X c" such that the image = is also
mapping @ : C X W-—-')W Sy— ge D= PD) 2

eralized Sie-el domain with e onent 1/2 and, by choosing a suitable coordinate

system (zZ,Wq,..,W_) in C)S(‘ml 0

~JS

nt ~ns
(1.3) the orbit &), of Aut (%)) containing the point ( y=1,0,..,0) € H

is the elementary Siegel domain

: 2
® %o = {(z,wl,..,wk,o ,0) € Cme ’ Im.z — Em;] Wl >0 }

- i

(1.4) if we put

QJ_I = {(h’k+l,..,W) (=3 lg::{_k \(\I-:"T)O,-“;:O,wk‘..ly"’wm) € 9}{“

then Sr“r is a circular domain in Cm containing the origin o of Cm K,
'VV\

(1.5) Let @9) E_-@ be the decomposition of @9) as in

Theorem A. Then we have

k
® - ' 9 P
@1/2 B { WNELFGW? O3z Za=1 Caaw

where w' = (wy,..,w,) and F ¢ Ckx Ck —> (C,is a hermitian form gi;ren by
£ 2 16 WA ———— v/

~m

= (M eck}

X
Fu,v) = > uWT%  for u= (UM, v= (v®) & Cl\
a=1

Y T N R T B W

: J
Let (z;,..,2Zy) be a coordinate system in CI\ and D a domain in CN

For a holomorphic mapping f = (_f.l,.. ) :L—%&N, we denote by _{ig)_)

the Jacobi matrix (a_fi/azj) of f_ at apoint pel.

Theorem C, Let D be a domain in CN which is holomorphically equivalent
AAAAMNY nw




to a bounded domain in _CN and f a holomorphic mapping of D into itself.

L 4 AAd

Suppose that there exists a point pe€D such that f(p) =p and J.(p)

='W.

Then f is the identity transformation of D.

Proof. This is immediate from Théorsme VII, Chap.II in [1]. gq.e.d.”’

doeorem By let D and D' be two circular domains inlgr:],with’ centers o,

vy

the origin of CN < e suppose that at least one of these domains is holomorphically
b Al

equivalent to a bounded domain in Cl\j let f : D-——>D' be a biholomorphic

LAAAY

dsomorphism such that f(o) = o, Then f is linear,

Proof. By using Theorem C we can prove this theorem in the same way as

in Théoréme VI, Chap.II in [1]. : q.e.d.

2. Proof of Theorems

NS

To prove Theorem 1 we need few preparations. Let 8 and (z,wl,.. ,wm)

be a generalized Siegel domain 1n'£}(“(z‘: with exponent 1/2, d”f;g@l/z = 2k
and a coordinate system in ‘&I‘ X qun as in Theorem B. We consider a mapping

Y

¢ : Sz€C, | Im.z >0 me____)Cmﬂ defined by
2 ol reel ww

21 2= -vDe VDT, s DT

"
for j = 2,3,..,m1, Then, as is shown in the proof of Theorem 2 in [4], ¢ defines
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}-“4‘7 l‘\i‘;’%’
v 4 ~/
a biholomorphic isomorphism of 8 onto the image domain L = _}'_(9 ) in Cm+1.
Under these notations we have the following
-~ G . . +1 . .
RICUURY The domain B is a circular domain in C"~ with center o which

WAL

v

is holomorphically equivalent to a bounded domain in c _1__ 7

~s

' 7
Proof. Since (¥=1,0)€ ) and ?5(\/51,0) = 0, it is clear that o€ B.

Put
t

: 1, ¢
U(k+1,1) = {g € GL(k+2,0) ’ 'z _li“_l,_:_(Z, g = -]f+_1-‘,.[).-
| 0 ;- o ;=
and ‘ ! 3[
UG = UG, A SL(k2,0). |
Y € SU(k+1,1)

Then from Remark 3 of section 4, [4], we know that Aut (B) —{"’_Y. K

Xe X } where KT is the identity component of the isotropy subgroup

. . N ‘
of Aut( S\F—I) at the origin oe :DF-I’ and moreover Auto(ﬁ) operates on §

el

2

i

as follows. For _y = (—A—@> € SU(k+1,1) and K € KJqy & GL(m-k,C

_@.Cl

_‘ﬁl,l(_ ?Cts on 7R by the holomorphic transformation @ C bo B
-1
s O 0@ v ©ic
oY ) —> -1 Dz s
G——21@ @ <1z s
where @ (21’ 2 1) d (@ - t(Z](‘Lz,..,z"‘)fl). If we set now, for ©
any 6 €R
— v | N
;Mo 0
. i O
Y = i
= O e‘/q‘_e_ : &€ SL(k+2 ,/&:2,
e e e —
- k+1
O « o o o :e ﬂ( )ﬂJ
D }




and J=18 0
kn := T, € CL(nk,C)
- O . \/—Tl-_ﬂ vww

€

then g € SU(k+1,1) and _1(__6_6 1(3—_-_[, since g\/:'l is a circular domain in

F
Ag“w-k with center o by Theorem B. Thus, by (2.2) we see that

' V=L (k+2)8
) B — e )
-\_yx X - , 6&R
S —
@ —— T
) _ ~ ~
is a one-parameter subgroup of Auto(ﬁ ). This implies that 3 is a circular

domain with center o. Since 5 is holomorphically equivalent to a bounded

domain inN(iﬂml; so is ﬁ . q.e.d.

As in the case of bounded Reinhardt domains [6][7], we can show the following

lenma.

o .
/\W/%V let ) be a generalized Siegel domain in C XC™ with exponent

1/2 and put dim, 177 = 2k as before. Then we have
w r

dim ( Aut, (X000 ) < dim ( Aut () Mz,w) ) B

for any (z,w)e€ @/ not belonging to the orbit Auto(ﬁ)-(\l:l',O).

Proof. First we remark that if k = m, Auto(fz‘)/).(‘/:I,O) = f{‘)’ by Theorem B.

So we'assume in the following that k < m. By using the concrete expression



l
of _\1'7 xk € Auto(ﬁ) as in section 2 of [4], we can show that for any (z,w) € j:)
as

~I
there exists a point (wv]2+1,. . ,wr?l) € ®Fi such that

~/
r Auto(g) Wz,w) = Auto(ﬁ ¥(¥1,0,.. ,0,w§+1,.. ,wl?l).
On the other hand, we know from Theorem B that a point (Fi,O,..,O,wk+1,.. ,'\’&m)

~ - ~ -
of €) does not belong to the orbit AutO(QD »(N=1,0) only if (wk+1,..,wm)

# (0,..,0). Thus, to prove Lemma 2 it is enough to show that
. ~ . Ja ¥
dim ( Aut (D »(,0) ) < dim ( Aut (D »(T,0,..,0,W 1505w ) )

for any (wk+1,..,wm) # (0,..,0). For this, 1et§_be the one-parameter subgroup = =

Y .
{ _'ls]f.ﬁ

and kg e_I_(‘?:I as in the proof of lemma 1. For a given point (z,w) € ﬁ we

/.
6 eR I} of Auto(i) ) defined by the identity element 1 of SU(k+1,1)

. v
denote by K[z,w) the isotropy subgroup of Auto(:D ) at (z,w). Now, take a
point (V—l,O,..,0,wk+1,..,wm) € D with (wk+1,..,wm) # (0,..,0). Then it is

easy to check by using Theorem 2 in [4] that ;—K'(,/:——l',O) > _lgw:i,o’. ’O’Wk+1""wm)

and the one-parameter subgroup G is contained in _K_( /=T,0) but not in
- Ly

-E(FI,O,. . ’0’wk+1" . ’Wm)-’ since (wk'+1,. . ,wm) # (0,..,0). This implies that
dlm_Igw-_—l’O) > dim K(\/:[,O, 0 wk+1""wm)’ and hence we haveasa result that

din ( aue (BIWT0 ) = dim Caue (@) /K0y )

= dimAuto(ﬁ) - dim.’S(FI,O)



< dimAuto(ﬁ) - dim.K.N:I,o,,,,0;wk+1,..,wm)

= dim (At (D) / Xey1,0,..,0

’ ’wk"‘l 9 ,wm)

= dim (Autocij)-(V—'T,o,..,o,wk+1,..,wm) ).  q.e.d.

N4

Rrogﬁ 2 Theorem 1 : Let fD (resp. go’ ) be a generalized Siegel
. . . _ . !
domain in &Xﬁ with exponent 1/2 and dmil*@l/z = 2k (resp. dl’"&@-l/z

=2k' ). Let & :@—)@' be a given biholomorphic isomorphism. From

.Theorem B there exists a non-singular linear mapping ,50 :’&XwCﬁ ——-—->~('}'XVC£‘V
. ~ —-— ~‘ -—

(resp. ﬁp' h(a‘z(gw"——ﬁxv(i") such that ) = PO ) (resp. P'= L (@').

Therefore, in order to prove Theorem 1 it is sufficient to show that the

~s

~n/
biholomorphic isomorphism _’<\)';:= 9 .2.3,—-1 of L onto D' is birational.
' o~
First we: suppose that k < m, We claim now that _?'Q_( Auto(Q) ¥ (VT,0) ) =

Auto(be')-(Fl',O), and so it follows in particular that k = k'. Indeed, by
Lemma 2 the orbit 35_( Auto(ﬁ)-(Ff,O) ) is of lowest dimension, it must
coinside with the orbit Auto(ﬁ')-(ﬁ,O). Thus we can choose an element
g e Auto(“;\D/) in such a way that @og)v(ﬁ,()) = (y=1,0). Put 3= _%i-g_.

i€

- ~ N 3 3 »
Once it is shown that @ : —> J)' is birational, our proof can be completed,

~
since 8" ﬁ — {) is birational by Theorem 2 in [4]. To show this we consider

again the biholomorphic isomorphism ¢: ) —>Q defined in (2.1). Let §'
@J'__> R' be the corresponding isomorphism of ‘i‘)/' onto the image domain
75 '. Then by Lemma 1 § and @l' are both circular domains in Cm+1 with
R ’ W



the origin o of ,gvm 1 as their centers. Moreover, putting E: i 3. g
.. . = ~/ s .-
get a biholomorphic isomorphism ¢ : 'B__>B' satisfying the condition that

9(0) = o. llence it follows from Theorem D that :73_ fé——éﬁ' is linear.

Noting that d) and ¢>' are birational from (2.1), we conclude that <I> is also
birational. It remains the case where k = m. But, in this case the domaln D

( and so g)' ) is necessarily a Siegel domain of the second kind by Corqliary 1

in [4]. Thus our theorem follows from [3]. q.e.d.

The proof of Theorem 2 is now an immediate consequence of Theorem 1 and
our previous result [5], but we give a proof here for completeness. /
/ Proof of Theorem 2 :  Since it is trivial that D and @_ t\
MArnAANAANAY

are holomorphically equivalent if they are linearly equivalent, we have only

to show the converse. Let @J)) = z@ (resp. @ D)= Z@) @.pi

be the decomposition of @(@) (resp. of @ D') ) due to Kai:p, Matsushima

. - . . . r,
L4 and Ochiai as in Theorem A. Put d1mR @1/2 = 2k and d1mR @172 = 2k'.
o : w
Suppose that there exists a biholomorphic isomorphism ¢ : ) —_— b’

Then, by Theorem 1 ¢ is a birational holomorphic mapping, and moreover

k = k' as we showed in the proof of Theorem 1. In the following, for the domain';
gD' we employ the notation A' for denoting the object corresponding to an !

object A for the domain @ Let \T &)(Cm——)c )(Cm be a non-singular 11nea1;

mapping as in Theorem B such that 2) 9(@) We c1a1m :
(*) there exists a non-singular linear mapping L CXQ"-—)&%“ ‘

of the form

W

Lo (M- e

) 0
w! —_
"‘J \
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, ~ »
such that [ (D) = J)'s vhere a €R and A (resp. B) is a kxk
(resp. (m-k) X (m-k) ) matrix.
~s
If (*) is valid, we obtain our proof by putting z= 3,——1"&.39 . We
N

shall show that (*) is really true. let_¢ be a biholomorphic isomorphism of
~/ ~S . ") -1 n
D onto )" definedby &= 2P . Put ¥= <I> . Since @ﬁ)

(and also @ 3)')) has the graded structure as in Theorem A and since <I>

is birational, it can be shown in the same way as the proof of Theorem 11 in

. N aw Y, NGy .
[3] that we may assume the mappings & : {)—>Q' and ¥ : ' —> L are

both affine transformations of the forms

F N (1! 1 1 Y(Y (.a)
' |
SRR 1 || 2 ¢
T T T T T ST 2
1 \4
N il |0 % Oe1l ™ C .
2.3) & : =l | ‘1 1+ , 9 € R,
I
! +1 +1 1
w! 0 w Cm+
; \ ™ \ ;d; -@;l /\m \ P,
and
¢y (1! 1 1 Y)Y (a1
|
z 1\1 | A2 Am+1 z' D \
S
P2 2 2
n w 0, A /\m+ w! D
. 1|1 __ 2 1 1 1
(2.4) ¥: = ! . + » )y € ,Re
| .
' . .
f
W 0 : Am+l m+1 W' Dm+1
L™ L ! 2 +1) o L /
We consider now the vector field E 3_ 1 Y d f N
e e 25~ 72 Vol O D). by

9%
>
Thv

A



direct computations we see

v 1,3
LI = (oS
m
+ E ( O
u=1
+ (
v
where &, :

* 3 2
(0 =

@(ﬁ)—;@

AR
(@k)-(A;) =~%m'_1, we have

m
1 1 o+l. 9
_2-;;-60#11) )Bz'

‘0P

( 1,1 _
m m
= by - Sl
ﬁ T u A o=1 a
1.1 1 at+l
\ O1A 41 %Ooﬁl[\wl = 0
1,1 12’" 1 ,ot1 _ 1 1,1
m
v ? = 'a i '3_.
2E 230 Y 72 Yoy
=1 a

+

u=

1~ R ey I )
b B ol ]
plyad L1 I oM lpat1d
u+ 2; o+l u+1 WiazT 2 :LATI atl”. aw)\'
s

is the differential of §. Since

. As a result we get

LIS ol i, Zc:e“lna*ly—
2 T 1 u+1 W az! I 8w5\

)
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1h1 1 1 o+l 3
+ (oD + & > o1 )37
a=1
Put
. _ 1.1 12’“ 1 o+l (3
X = (GID t 3 <1 eCH'lD )Bz' and #
m
1,1 2 A+l o+l 9
Y=(-Er OJA W )= + El (E 0.,3D" D=s.
1 17u+17w 5z =T =1 a+rl ow}
m
. v ) 1 3 A% 1
Since g*li and E' = z'a—z—r + TOLE— wc'xaw' belong to @:D'), X +-2—Y
‘belongs also to ﬁ'). Then, from the concrete expression of holomorphic =

vector fields belonging to @ﬁ') (see [3], (3.1) and (3.2)), we have

]
X e@_‘l and Y 4@1 /2+ Recall that
' - 3 1 8 - k
(2.5) @_1/2 = {N—ll‘(w ’C)az' E c® aw& C=(M ecC }

where w' = (wi,.. ,w1'<). By comparing the components of Y with (2.5) we see

that

(2.6) E @2‘;% a+l = 0 for k+l1 <A <m;
1,1
(2.7) OlAwl 0 for k*tl1 <pu<m;
m P k‘l'a’
(2.8) G)iAllJ+1 = 2y=T Owtil for 1<u<k
a‘:

On the other hand, since }i?_ is the identity mapping, it follows from (2.3)
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and (2.4) that

m
(2.9) E OZ‘L:%DOLH + oMl = 0 for 1< X <m,
a=1 '

Then, from (2.6) and (2.9) we get

C>‘+1 = 0 for k+1;>\;m.

: N
Thus we have shown that 2 is of the form

( 1 n_ 1 1
z' = Olz + E_ G)leA + C
A=1
3w = > rwy + 1 for 1<ac<k
m i
"o B+1
L wB EA= ele)\ for k+1 < B <m

~N
Since the group Aut( f)') contains the affine transformations

_&1 (z' ,Ww , W' ) p—> (z'+a , w' , w') (a€R)
and .
pe ¢ (2" W W) > (2'+ 2R ,0)+ VIF(C,0),W'+C,uw") (€ €CX)
N
where w' = (wi,.. ,wf() and w" = (wl’(+1,. . ,wl;‘), changing ¢ by a suitable affine

" "
transformation £ P @ if necessary, we may assume that ¢ is of the form

1 o 1 1 1
! = N —1R
z Olz + }\%1 ®>\+1w>\ + C, 01 € R, and C e -1

?ﬁ. . O

m
- otl
W = ;\§= Ole;\ for 1

A
R
1A
5
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m
Now, for I' = J-I ;l W&Wg , we have
- - 0t+1 1 s

m
3 9
— - 2’\1 137 Y J"lgwaawa ’

n m
because A +1 + 2 Aaﬂei‘:% = 0 for X > 1. Since ¥,I' and I = \[—321 W

\ ~
‘belong to @@), so does Z := — =1 ? /\1 >\+1u)\a . We have then

J:TZ = [I,Z] € @ﬁ) By H. Cartan’s principle for bounded domains, we

see Z = 0, This shows that

. 0 = or <A <nm,
(2.10) o= 0 for 1< A<

since Ai # 0. It remains to show that c! - 0, but. this can be proved with

the same arguments as in the proof of Theorem 11 in [3]. Finally we have shown

v
that _¢ is a linear mapping. Moreover, as is shown in the proof of Theorem 1

we have
i(ﬁo) = E(AUto(i\)/ )‘( ‘/:T,O)) = Auto( ﬁ'),(ﬁ,()) = 66 .

Obviously these facts imply that (*) is valid. We have thus completed the .

proof of Theorem 2. q.e.d.

Akita University
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