

Title	ON SOME DOUBLY TRANSITIVE PERHUTATION GROUP IN WHICH SOCLE(G α) IS NONSOLVABLE
Author(s)	Hiramine, Yutaka
Citation	大阪大学, 1979, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/27748
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

TENNOS OSAKA, 摩543, JAPAN

ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS

IN WHICH SOCLE (Ga) IS NONSOLVABLE

Yutaka Hiramine

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. In [8], O'Nan has proved that $socle(G_{\alpha}) = A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group. Here $socle(G_{\alpha})$ is the product of all minimal normal subgroups of G_{α} .

In the previous paper [4], we have studied doubly transitive permutation groups in which N is isomorphic to PSL(2,q), Sz(q) or PSU(3,q) with q even. In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set Ω with $|\Omega|$ even and let $\alpha \in \Omega$. If G_{α} has a normal simple subgroup N^{α} isomorphic to PSL(2,q), where q is odd, then one of the following holds.

- (i) GA has a regular normal subgroup.
- (ii) $G^{\Omega} \simeq A_6$ or S_6 , $N^{\alpha} \simeq PSL(2,5)$ and $|\Omega| = 6$.
- (iii) $G^{\Omega} \simeq M_{11}$, $N^{\alpha} \simeq PSL(2,11)$ and $|\Omega| = 12$.

In the case that G^{Ω} has a regular normal subgroup, by a result of Hering [3] we have $(|\Omega|,q) = (16,9)$, (16,5) or (8,7).

We introduce some notations:

F(X): the set of fixed points of a nonempty subset X of G

 $X(\Delta)$: the global stabilizer of a subset Δ ($\subseteq \Omega$) in X

 X_{Λ} : the pointwise stabilizer of Λ in X

 \textbf{X}^{Δ} : the restriction of X on Δ

DEPARTMENT OF MATHEMATICS

OSAKA KYOIKU UNIVERSITY

TENNOJI, OSAKA, \$\overline{\Pi}\$543, JAPAN

m n : an integer m divides an integer n

 \mathbf{X}^{H} : the set of H-conjugates of X

 $|X|_p$: maximal power of p dividing the order of X

I(X): the set of involutions in X

 $\mathbf{D}_{\mathbf{m}}$: dihedral group of order \mathbf{m}

In this paper all sets and groups are finite.

2. Preliminaries

Lemma 2.1. Let G be a transitive permutation group on Ω , $\alpha \in \Omega$ and N $^{\alpha}$ a normal subgroup of G_{α} such that $F(N^{\alpha}) = \{\alpha\}$. Let the subgroup $X \leq N^{\alpha}$ be conjugate in G_{α} to every group Y which lies in N^{α} and which is conjugate to X in G. Then $N_G(X)$ is transitive on $\Delta = \{ \chi \in \Omega \mid \chi \leq N^{\gamma} \}$.

Proof. Let $\beta \in \Delta$ and let $g \in G$ such that $\beta^g = \alpha$. Then, as $X \leq N^\beta$, $X^g \leq N^\beta = N^\alpha$. By assumption, $(X^g)^h = X$ for some $h \in G_\alpha$. Hence $gh \in N_G(X)$ and $\alpha^{(gh)^1} = \alpha^{g^{-1}} = \beta$. Obviously $N_G(X)$ stabilizes Δ . Thus Lemma 2.1 holds.

Lemma 2.2. Let G be a doubly transitive permutation group on Ω of even degree and N $^{\alpha}$ a nonabelian simple normal subgroup of G_{α} with $\alpha \in \Omega$. If $C_G(N^{\alpha}) \neq 1$, then $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_G(N^{\alpha})$ is semiregular on $\Omega = \{\alpha\}$.

Proof. See Lemma 2.1 of [4].

Lemma 2.3. Let G be a transitive permutation group on Ω , H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$|F(M)| = |N_G(M)| \times |M^G \cap H| / |H|.$$

Here $M^G \cap H = \{ g^{-1}Mg \mid g^{-1}Mg \subseteq H , g \in G \}$.

Proof. See Lemma 2.2 of [4].

TENNOS OSAKA, 〒543, JAPAN

Lemma 2.4. Let G be a doubly transitive permutation group on Ω and N $^{\alpha}$ a normal subgroup of G_{α} with $\alpha \in \Omega$. Assume that a subgroup X of N $^{\alpha}$ satisfies X $^{G_{\alpha}}$ = X $^{N_{\alpha}}$. Then the following hold.

- (i) $|F(X) \cap \beta^{N^{\alpha}}| = |F(X) \cap \beta^{N^{\alpha}}| \text{ for } \beta, \gamma \in \Omega \{\alpha\}.$
- (ii) $|F(X)| = 1 + |F(X) \cap \beta^N| \times r$, where r is the number of N^d-orbits on $\Omega \{ \alpha \}$.

Proof. Let $\Gamma = \{\Delta_1, \Delta_2, \cdots, \Delta_r\}$ be the set of \mathbb{N}^{α} -orbits on $\Omega = \{\alpha\}$. Since G_{α} is transitive on $\Omega = \{\alpha\}$ and $G_{\alpha} \trianglerighteq \mathbb{N}^{\alpha}$, we have $|\Delta_i| = |\Delta_j|$ for $1 \le i$, $j \le r$. By assumption, $G_{\alpha} = \mathbb{N}_{G_{\alpha}}(X)\mathbb{N}^{\alpha}$ and so $\mathbb{N}_{G_{\alpha}}(X)$ is transitive on Γ . Hence for each i with $1 \le i \le r$ there exists $g \in \mathbb{N}_{G_{\alpha}}(X)$ such that $(\Delta_1)^g = \Delta_i$. Therefore $|F(X) \cap \Delta_i| = |F(X^g) \cap (\Delta_1)^g| = |F(X) \cap \Delta_i|$. Thus (i) holds and (ii) follows immediately from (i).

Lemma 2.5. (Huppert [5]) Let G be a doubly transitive permutation group on Ω . Suppose that $O_2(G) \neq 1$ and G_{α} is solvable. Then for any involution z in G_{α} , $|F(z)|^2 = |\Omega|$.

We list now some properties of PSL(2,q) with q odd which will be required in the proof of our theorem.

Lemma 2.6. ([2], [6], [10]) Set N = PSL(2,q) and G = Aut(N), where $q = p^n$ and p is an odd prime. Let z be an involution in N. Then the following hold.

- (i) |N| = (q-1)q(q+1)/2, I(N) = z^N and $C_N(z) \simeq D_{q-\epsilon}$, where $q \equiv \xi \in \{\pm 1\}$ (mod 4).
- (ii) If $q \neq 3$, N is a nonabelian simple group and a Sylow r-subgroup of N is cyclic when $r \neq 2$, p.
- (iii) If X and Y are cyclic subgroups of N and $|X| = |Y| \neq 2$, p, then X is conjugate to Y in $\langle X, Y \rangle$ and $N_N(X) \simeq D_{q\pm E}$.
 - (iv) If $X \leq N$ and $X \simeq Z_2 * Z_2$, $N_N(X)$ is isomorphic to A_4 or S_4 .
 - (v) If $|N|_2 \ge 8$, N has two conjugate classes of four-groups in N.

TENNO I OSAKA, \$543, JAPAN

- (vi) There exist a field automorphism f of N of order n and a diagonal automorphism d of N of order 2 and if we identify N with its inner automorphism group, $\langle d \rangle N \simeq PGL(2,q)$, $\langle f \rangle \langle d \rangle N = G$ and $G/N \simeq Z_2^{\times Z}_n$.
 - (vii) $C_N(d) \simeq D_{q+\xi}$ and $C_{\langle d \rangle N}(z) \simeq D_{2(q-\xi)}$.
 - (viii) Suppose n = mk for some positive integers m, k. Then $C_N(f^m) \simeq PSL(2,p^m)$ if k is odd and $C_N(f^m) \simeq PGL(2,p^m)$ if k is even.
 - (ix) Assume n is even and let u be a field automorphism of order 2. Then $I(G) = I(N) \cup d^N \cup u^{(d)N}$. If n is odd, $I(G) = I(N) \cup d^N$.
- (x) If H is a subgroup of N of odd index, then one of the following holds:
 - (1) H is a subgroup of $C_{\mathbb{N}}(z)$ of odd index for some involution $z \in \mathbb{N}$.
 - (2) $H \simeq PGL(2,p^m)$, where n = 2mk and k is odd.
 - (3) $H \simeq PSL(2,p^m)$, where n = mk and k is odd.
 - (4) $H \simeq A_4$ and $q \equiv 3, 5 \pmod{8}$.
 - (5) $H \simeq S_A$ and $q \equiv 7$, 9 (mod 16).
 - (6) $H \simeq A_5$, $q \equiv 3$, 5 (mod 8) and 5 (q-1)q(q+1).

Lemma 2.7. Let G, N, d and f be as defined in Lemma 2.6 and H an $\langle f,d \rangle$ -invariant subgroup of N isomorphic to $D_{q-\epsilon}$. Let W be a cyclic subgroup of $\langle d \rangle$ H of index 2 (cf. (vii) of Lemma 2.6) and set Y = $O_2(W \cap H)$. Then $C_G(Y) = W \cdot C_{\langle f \rangle}(Y)$.

Proof. By (viii) of Lemma 2.6, we can take an involution t satisfying $\langle d \rangle H = \langle t \rangle W$ and [f,t] = 1. Since $N_G(Y) = \langle f, d \rangle N_N(Y) = \langle f, d \rangle H$, $C_G(Y) = C_{\langle f \rangle \langle d \rangle H}(Y) = W \cdot C_{\langle f \rangle \times \langle t \rangle}(Y)$. Suppose $ht \in C(Y)$ for some $h \in \langle f \rangle$. Since t inverts Y, h also inverts Y and so h^2 centralizes Y. Hence some nontrivial 2-element $g \in \langle h \rangle$ inverts Y, so that $C_H(g)$ contains no

TENNON OSAKA, 〒543 JAPAN

element of order 4, contrary to (viii) of Lemma 2.6.

Throughout the rest of the paper, G^{Λ} will always denote a doubly transitive permutation group satisfying the hypothesis of our theorem and we assume G^{Λ} has no regular normal subgroup.

Notation. $C^{\alpha}=C_G(N^{\alpha})$, which is semi-regular on $\Omega-\{\alpha\}$ by Lemma 2.2. Let r be the number of N^{α} -orbits on $\Omega-\{\alpha\}$.

Since $G_{\alpha} \geq N^{\alpha}$, $|\beta^{N^{\alpha}}| = |\gamma^{N^{\alpha}}|$ for $\beta, \gamma \in \Omega - \{\alpha\}$ and so $|\Omega| = 1 + r \cdot |\beta^{N^{\alpha}}|$. Hence r is odd and N_{β}^{α} is a subgroup of N^{α} of odd index.

Therefore N_{β}^{α} is isomorphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof of our theorem will be divided in six cases.

Lemma 2.8. Let Z be a cyclic subgroup of N_{β}^{α} with $|Z| \neq 1$, p. Then

- (i) If |Z| = 2, $|F(Z)| = 1 + (q-\epsilon)|I(N_{\beta}^{\alpha})|r/|N_{\beta}^{\alpha}|$.
- (ii) If $|Z| \neq 2$, $|F(Z)| = 1 + |N_{N\alpha}(Z)|r/|N_{N_{\theta}}(Z)|$.

Proof. It follows from Lemmas 2.3,2.4 and 2.6(i), (iii).

Lemma 2.9. If $N_{\beta}^{\alpha} \neq D_{q-\epsilon}$ and Z is a cyclic subgroup of N_{β}^{α} with $|Z| \neq 1$, p and $N_{G}(Z)^{F(Z)}$ is doubly transitive. Then $C^{\alpha} = 1$ and one of the following holds.

(i) $N_G(Z)^{F(Z)} \leq AFL(1,q_1)$ for some q_1 .

(ii) $C_G(Z)^{F(Z)} \ge PSL(2,p_1)$, r = 1 and $|F(Z)| - 1 = |N_{N\alpha}(Z)| : N_{N\beta}(Z)|$ = p_1 , where p_1 (≥ 5) is a prime.

(iii) $N_C(Z)^{F(Z)} = R(3)$, the smallest Ree group, |F(Z)| = 28.

Proof. Set $N_G(Z) = L$ and $F(Z) = \Delta$. By Lemma 2.6(iii), $L \cap N^{\alpha} \simeq D_{q \pm E}$ and $L \cap N^{\alpha} = \langle t \rangle Y \succeq Y \geq Z$, where o(t) = 2, $Y \simeq Z_{(q \pm E)/2}$.

If $(L \cap N^{\alpha})^{\Delta} = 1$, then $L \cap N^{\alpha} = N_{\beta}^{\alpha}$ because $L \cap N^{\alpha}$ is a maximal subgroup of N^{α} . Since $|N^{\alpha}| : N_{\beta}^{\alpha}|$ is odd, $L \cap N^{\alpha} = N_{\beta}^{\alpha} \simeq D_{\mathbf{q} - \mathbf{\epsilon}}$, contrary to the assumption. Hence $(L \cap N^{\alpha})^{\Delta} \neq 1$ and as $L_{\alpha} \trianglerighteq L_{\alpha} \cap N^{\alpha}$ and $L_{\alpha} \trianglerighteq Y$,

TENNOR, OSAKA, 〒543, JAPAN

 $(L_{\alpha})^{\Delta}$ has a nontrivial cyclic normal subgroup. By Theorem 3 of [1], one of the following occurs :

- (a) L^{Δ} has a regular normal subgroup
- (b) $L^{\Delta} \supseteq PSL(2,p_1)$, $|\Delta| = p_1 + 1$, where $p_1(\geq 5)$ is a prime
- (c) $L^{\Delta} \ge PSU(3,p_1), p_1 \ge 3, |\Delta| = (p_1)^3 + 1$
- (d) $L^{\Delta} = R(3)$, $|\Delta| = 28$.

Suppose $C^{\alpha} \neq 1$. Then there exists a subgroup D of C^{α} of prime order such that $(L_{\alpha})^{\Delta} \triangleright D^{\Delta}$. Since $[L_{\alpha}, D] \leq D \cdot L_{\Delta} \cap C^{\alpha} = D(L_{\Delta} \cap C^{\alpha}) = D$, D is a normal subgroup of L_{α} . By (i) and (iii) of Lemma 2.6, $G_{\alpha} = L_{\alpha} \cdot N^{\alpha}$ and so D is a normal subgroup of G_{α} . By Theorem 3 of [1], G^{Δ} has a regular normal subgroup, contrary to the hypothesis. Thus $C^{\alpha} = 1$.

If (a) occurs, L^{Δ} is solvable because $L_{\alpha}/L \cap N^{\alpha} \simeq L_{\alpha}N^{\alpha}/N^{\alpha} \leq \text{Out}(N^{\alpha})$ and $L \cap N^{\alpha} \simeq D_{\alpha \pm \epsilon}$. Hence by [5], (i) holds in this case.

If (b) occurs, we have $Y^{\Delta} \neq 1$, for otherwise $(L \cap N^{\alpha})^{\Delta} = 1$ and so $N_{B}^{\alpha} = L \cap N^{\alpha} \simeq D_{q-\epsilon}$, a contradiction. Hence $1 \neq C_{G}(Z)^{\Delta} \preceq L^{\Delta}$ and so $C_{G}(Z)^{\Delta} \succeq PSL(2,p_{1})$ and $Y^{\Delta} \simeq Z_{p_{1}}$. Therefore $|\Delta \cap B^{N^{\alpha}}| = p_{1}$ and r = 1 by Lemma 2.4(ii). Since $|\beta^{Y}| = p_{1}$, we have $|B^{L \cap N^{\alpha}}| = p_{1}$, so that $|L \cap N^{\alpha}| = p_{1}$. Thus (ii) holds in this case.

The case (c) does not occur, for otherwise, by the structure of PSU(3,p₁), a Sylow p₁-subgroup of $(L_{\alpha}^{\Delta})'$ is not cyclic, while $(L_{\alpha})' \leq L \cap N^{\alpha} \simeq D_{\text{g}\pm E}$, a contradiction.

3. Case (I)

In this section we assume that $N_{\beta}^{\alpha} \leq D_{q-\epsilon}$, where $\beta \neq \alpha$, $q = p^n$. (3.1) (i) If $N_{\beta}^{\alpha} \neq Z_2^{\times Z_2}$, $N_{N\alpha}(N_{\beta}^{\alpha}) = N_{\beta}^{\alpha}$ and $|F(N_{\beta}^{\alpha})| = r + 1$. (ii) If $N_{\beta}^{\alpha} \simeq Z_2^{\times Z_2}$, $N_{N\alpha}(N_{\beta}^{\alpha}) \simeq A_4$ and $|F(N_{\beta}^{\alpha})| = 3r + 1$.

TENNOMI OSAKA, 〒543, JAPAN

Proof. Put $X = N_{N} \propto (N_{\beta}^{\alpha})$. Let S be a Sylow 2-subgroup of N_{β}^{α} and Y a cyclic subgroup of N_{β}^{α} of index 2.

If $N_{\mathcal{B}}^{\alpha} \neq Z_2 \times Z_2$, then |Y| > 2 and so Y is characteristic in $N_{\mathcal{B}}^{\alpha}$. Hence $X \leq N_{N^{\alpha}}(Y) \simeq D_{q-\epsilon}$. From this $[N_X(S), S \cap Y] \leq S \cap Y$ and $O^2(N_X(S))$ stabilizes a normal series $S \trianglerighteq S \cap Y \trianglerighteq 1$, so that $O^2(N_X(S)) \leq C_{N^{\alpha}}(S)$ by Theorem 5.3.2 of [2]. By Lemma 2.6(i), $C_{N^{\alpha}}(S) \leq S$ and hence $N_X(S) = S$. On the other hand by a Frattini argument, $X = N_X(S)N_{\mathcal{B}}^{\alpha}$ and so $X = N_{\mathcal{B}}^{\alpha}$. By Lemma 2.6(i), $(N_{\mathcal{B}}^{\alpha})^{G^{\alpha}} = (N_{\mathcal{B}}^{\alpha})^{N^{\alpha}}$ and so by Lemmas 2.3 and 2.4(ii), $|F(N_{\mathcal{B}}^{\alpha})| = 1 + |F(N_{\mathcal{B}}^{\alpha}) \cap \mathcal{B}^{N^{\alpha}}| \times r = 1 + |N_{\mathcal{B}}^{\alpha}| r/|N_{\mathcal{B}}^{\alpha}| = r + 1$. Thus (i) holds. If $N_{\mathcal{B}}^{\alpha} \simeq Z_2 \times Z_2$, $N_{N^{\alpha}}(N_{\mathcal{B}}^{\alpha}) \simeq A_4$ by Lemma 2.6(iv). Similarly as in the case $N_{\mathcal{B}}^{\alpha} \not = Z_2 \times Z_2$, we have $|F(N_{\mathcal{B}}^{\alpha})| = 3r + 1$.

 $(3.2) N_{\beta}^{\alpha} / N_{\alpha}^{\alpha} N_{\beta} \leq Z_{2}^{\times Z_{2}}.$

Proof. By Lemma 2.2, it suffices to consider the case $C^{\alpha}=1$. Suppose $C^{\alpha}=1$. Then $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha}N^{\beta}/N^{\beta} \leq \text{Out}(N^{\alpha}) \simeq Z_2^{\times Z}n$ by Lemma 2.6(vi) and hence $(N_{\beta}^{\alpha})' \leq N^{\alpha} \cap N^{\beta}$. Since N_{β}^{α} is dihedral, $N_{\beta}^{\alpha}/(N_{\beta}^{\alpha})' \simeq Z_2^{\times Z_2}$, so that $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \leq Z_2^{\times Z_2}$.

(3.3) Suppose $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ and let U be a subgroup of N_{β}^{α} isomorphic to $Z_2 \times Z_2$. Then |F(U)| = 3r + 1 and $N_G(U)^{F(U)}$ is doubly transitive.

Proof. Set $X = N_G(N_\beta^\alpha)$, $\Delta = F(N_\beta^\alpha)$ and let $\{\Delta_1, \Delta_2, \dots, \Delta_r\}$ be the set of N^α -orbits on $\Omega - \{\alpha\}$. If $g^1N_\beta^\alpha g \leq G_{\alpha\beta}$, then $g^1N_\beta^\alpha g \leq N_\alpha^\gamma \cap N_\beta^\gamma = N_\alpha^\gamma \cap N_\beta^\gamma \cap N_\gamma^\gamma \cap N_\gamma^\gamma$

If U is a Sylow 2-subgroup of N_{β}^{α} , by a Witt's theorem, $N_{G}(U)^{F(U)}$ is doubly transitive. Moreover $N_{N^{\alpha}}(U) \simeq A_{4}$ and so by Lemmas 2.3 and 2.4(ii), $|F(U)| = 1 + |A_{4}| \times |N_{\beta}^{\alpha}| : N_{N_{\beta}^{\alpha}}(U)| \times r/|N_{\beta}^{\alpha}| = 3r + 1$.

If $\|N_{\beta}^{\alpha}\|_{2} > 4$, by Lemma 2.6(iv) and (v), $\|N_{N\alpha}(U)\| \simeq S_{4}$ and $\|N_{\beta}^{\alpha}\|$ has two conjugate classes of four-groups, say $\Pi = \{K_{1}, K_{2}\}$. Set $X_{\Pi} = M$. Then

TENNON, OSAKA, ₹543, JAPAN

M \trianglerighteq N $^{\alpha}_{\beta}$ and X/M \le Z $_2$. Clearly F(U) \cap \triangle_i \neq ϕ for each i and so | F(U) \cap \triangle_i | = 3 by Lemma 2.3. Hence | F(U) | = 3r + 1. Since N $_{N\beta}$ (U) \simeq S $_4$, we may assume r > 1. Hence by (3.1)(i) | \triangle | = $r + 1 \ge 4$, so that M $^{\Delta}$ is doubly transitive. Since M = N $^{\alpha}_{\beta}$ N $_{M}$ (U), N $_{M}$ (U) $^{\Delta}$ is also doubly transitive and so N $_{M\alpha}$ (U) is transitive on \triangle - $\{\alpha\}$. As | \triangle \cap \triangle $_{i}$ | = 1, \triangle \cap \triangle $_{i}$ \subseteq F(U) and N $_{N\alpha}$ (U) is transitive on F(U) \cap \triangle $_{i}$ for each i, N $_{G}$ (U) F (U) is doubly transitive.

(3.4) (i) $C^{\alpha} = 1$.

(ii) Let U be a subgroup of N_B^{α} isomorphic to $Z_2^{*Z}_2$. If N_B^{α} $\bullet = N^{\alpha} \cap N^{\beta}$, then $N_G^{(U)}^{F(U)}$ has a regular normal 2-subgroup. In particular $|F(U)| = 3r + 1 = 2^b$ for some positive integer b.

Proof. Since $N_{G_{\alpha}}(U)^{F(U)} \geq N_{N^{\alpha}}(U)^{F(U)} \simeq S_3$ or Z_3 , by (3.3) and Theorem 3 of [1], $N_G(U)^{F(U)}$ has a regular normal subgroup, $N_G(U)^{F(U)} \geq PSU(3,3)$ or $N_G(U)^{F(U)} = R(3)$.

Suppose $C^{\alpha} \neq 1$. Let D be a minimal characteristic subgroup of C^{α} . Clearly $G_{\alpha} \triangleright D$. If $N_{G}(U)^{F(U)} \neq R(3)$, D is cyclic. By Theorem 3 of [1], C^{Ω} has a regular normal subgroup, contrary to the hypothesis. Hence $N_{G}(U)^{F(U)} = R(3)$. Therefore $(N_{G_{\alpha}}(U)^{F(U)})'$ contains an element of order 9. Since $N_{G_{\alpha}}(U)/C^{\alpha}N_{N^{\alpha}}(U) \simeq N_{G_{\alpha}}(U)C^{\alpha}N^{\alpha}/C^{\alpha}N^{\alpha} \leq Out(N^{\alpha})$, by (vi) of Lemma 2.6 we have $(N_{G_{\alpha}}(U))' \leq C^{\alpha} \times N_{N^{\alpha}}(U)$. From this, C^{α} contains an element of order 9 and so $C^{\alpha} \simeq Z_{g}$ or $M_{3}(3)$. In both cases, C^{α} contains a caracteristic subgroup of order 3. Since $G_{\alpha} \triangleright D$, by Theorem 3 of [1] G^{Ω} has a regular normal subgroup, a contradiction. Thus $C^{\alpha} = 1$.

Let R be a Sylow 3-subgroup of $N_{G_{\alpha}}(U)$. Since $N_{G_{\alpha}}(U)/N_{N_{\alpha}}(U) \simeq N_{G_{\alpha}}(U)/N_{N_{\alpha}}(U) \simeq N_{G_{\alpha}}(U)/N_{N_{\alpha}}(U)$

Since N_{β}^{α} is dihedral, we set $N_{\beta}^{\alpha} = \langle t \rangle W$ and $Y = W \cap N^{\alpha} \cap N^{\beta}$, where W

DEPARTMENT OF MATHEMATICS OSAKA KYOIKU UNIVERSITY TENNO OSAKA W543 JAPAN

is a cyclic subgroup of N_{β}^{α} of index 2 and t is an involution in N_{β}^{α} which inverts W.

(3.5) (i) If $|Y| \ge 3$, $N_G(Y)^{F(Y)}$ is doubly transitive.

(ii) If |Y| < 3, $N_{\beta}^{\alpha} \simeq Z_2^{\times} Z_2$ or $N_{\beta}^{\alpha} \simeq D_8$ and $N^{\alpha} \cap N^{\beta} \leq Z_2^{\times} Z_2^{*}$.

Proof. Suppose $|Y| \geq 3$. If $Y^g \leq G_{\alpha\beta}$, $Y^g \leq N^{\gamma} \cap G_{\alpha\beta} \leq N_{\alpha}^{\gamma}$, where $\emptyset = \alpha^g$. If $\emptyset = \alpha$, obviously $Y^g \leq N^{\alpha}$. If $\emptyset \neq \alpha$, $N_{\alpha}^{\gamma} \simeq N_{\beta}^{\alpha}$. Therefore, as $|Y| \geq 3$, N_{α}^{γ} has a unique cyclic subgroup of order |Y|. Hence $Y^g \leq N^{\gamma} \cap N^{\alpha} \leq N^{\alpha}$, so that $Y^g \leq N^{\alpha}$. Similarly $Y^g \leq N^{\beta}$. Thus $Y^g \leq N^{\alpha} \cap N^{\beta}$ and so $Y^g = Y$. By a Witt's theorem, $N_G(Y)$ is doubly transitive on F(Y).

- Suppose IYI < 3. Since $|N^{\alpha} \cap N^{\beta}|$: Y| \leq 2, we have $|N^{\alpha} \cap N^{\beta}| \leq |Z_2|^{\kappa |Z_2|}$.

 On the other hand, as $|N^{\alpha}_{\beta}|$ is dihedral, $|N^{\alpha}_{\beta}|$ is cyclic. Hence (ii) follows immediately from (3.2).
 - (3.6) Set $\Delta = F(N_{\beta}^{\alpha})$, $L = G(\Delta)$, $K = G_{\Delta}$ and suppose $N_{\beta}^{\alpha} \neq Z_{2} \times Z_{2}$. Then $L_{\alpha} \geq N_{\beta}^{\alpha}$, $(L_{\alpha})' \leq N_{\beta}^{\alpha}$, $K' \leq N_{\alpha}^{\alpha} \cap N_{\beta}^{\beta}$ and $(L_{\alpha})^{\Delta} \simeq Z_{r}$. If $r \neq 1$, L^{Δ} is a doubly transitive Frobenius group of degree r + 1.

Proof. By Corollary B1 of [7] and (i) of (3.1), L^{Δ} is doubly transitive and $|\Delta| = r + 1$. Since $N^{\alpha} \cap L \supseteq N^{\alpha} \cap K = N^{\alpha}_{\beta}$, by (i) of (3.1), we have $N^{\alpha} \cap L = N^{\alpha}_{\beta}$. Hence $L_{\alpha} \supseteq N^{\alpha}_{\beta}$. By (i) of (3.4), $L_{\alpha}/N^{\alpha}_{\beta} \simeq L_{\alpha}N^{\alpha}/N^{\alpha} \leq \operatorname{Out}(N^{\alpha})$ $\simeq Z_{2} \times Z_{n}$ and so $(L_{\alpha})' \leq N^{\alpha}_{\beta}$ and $(L_{\alpha})^{\Delta} \simeq Z_{r}$. If $r \neq 1$, then $(L_{\alpha})^{\Delta} \neq 1$. On the other hand $(L_{\alpha})^{\Delta} = 1$ as $(L_{\alpha})^{\Delta}$ is abelian. Hence L^{Δ} is a Frobenius group.

(3.7) Suppose $|Y| \ge 3$. Then there exists an involution z in $N_{\beta}^{\alpha} \cap Y$ such that $Z(N_{\beta}^{\alpha}) = \langle z \rangle$.

Proof. Since $N_{\beta}^{\infty} \neq Z_2 \times Z_2$, $|N_{\beta}^{\infty}|_2 \geq 2^2$ and N_{β}^{∞} is dihedral, we have $\langle I(W) \rangle = Z(N_{\beta}^{\infty}) \simeq Z_2$ and $N_{\beta}^{\infty}/(N_{\beta}^{\infty})' \simeq Z_2 \times Z_2$. Let $Z(N_{\beta}^{\infty}) = \langle z \rangle$ and suppose that z is not contained in Y. By (3.2), $(N_{\beta}^{\infty})' \leq N_{\beta}^{\infty} \cap N_{\beta}^{\beta} \cap W = Y$ and so $|(N_{\beta}^{\infty})'|$

TENNO - DSAKA, \$543. JAPAN

is odd. Hence $|N^{\alpha}_{\beta}|_2 = 4$ and $q \equiv p^n = 3$ or 5 (mod 8), so that n is odd. By (3.2) and (i) of (3.4), $N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \simeq N^{\alpha}_{\delta}N^{\beta}/N^{\delta} \simeq 1$ or Z_2 . If $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$, then W = Y and so $z \in Y$, contrary to the assumption. Therefore we have $N^{\alpha}_{\beta}/N^{\alpha} \cap N^{\beta} \simeq Z_2$ and $N^{\alpha}_{\beta} = \langle z \rangle \times (N^{\alpha} \cap N^{\beta})$. Since n is odd and $z \in N^{\alpha}_{\delta}N^{\beta} - N^{\beta}$, by Lemma 2.6(vi), (vii) and (ix), $N^{\alpha}_{\beta}N^{\beta} \simeq PGL(2,q)$ and $C_{N^{\beta}}(z) \simeq D_{q+\epsilon}$. But $N^{\alpha} \cap N^{\beta} \leq C_{N^{\beta}}(z)$ and besides it is isomorphic to a subgroup of $D_{q-\epsilon}$. Hence $N^{\alpha} \cap N^{\beta} \simeq Z_2$ and $N^{\alpha}_{\beta} \simeq Z_2 \times Z_2$, a contradiction.

(3.8) Suppose $|Y| \ge 3$. Then $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$.

Proof. Suppose $\mathbb{N}_{\beta}^{\alpha} \neq \mathbb{N}^{\alpha} \cap \mathbb{N}^{\beta}$ and let Δ , L, K be as defined in (3.6) and $\mathbf{x} \in \mathbb{L}_{\alpha}$ such that its order is odd and $\langle \mathbf{x} \rangle$ is transitive on $\Delta - \{\alpha\}$. As $\|\mathbf{Y}\| \cdot \geq 3$, W is characteristic in $\mathbb{N}_{\beta}^{\alpha}$ and hence by (3.6), x stabilizes a normal series $\mathbb{L}_{\alpha} \succeq \mathbb{N}_{\beta}^{\alpha} \cdot \succeq \mathbb{W} \succeq (\mathbb{N}_{\beta}^{\alpha})'$. By Theorem 5.3.2 of [2], $[\mathbf{x}, \mathbb{N}_{\alpha}^{\alpha}] \in \mathbb{N}_{\alpha}^{\alpha} \cdot \mathbb{N}_{\beta}^{\alpha} = \mathbb{N}_{\alpha}^{\alpha} \cdot \mathbb{N}_{\alpha}^{\alpha} = \mathbb$

Let z be as defined in (3.7) and put $k = (q-\epsilon)/|N_B^{\alpha}|$. By Lemma 2.8(i) we have $|F(z)| = 1 + (q-\epsilon)(|N_B^{\alpha}|/2 + 1)/|N_B^{\alpha}| = (q-\epsilon)/2 + k + 1$. Similarly |F(Y)| = k + 1. As $N_B^{\alpha} \neq N^{\alpha} \cap N^{\beta}$, there is an involution t in N_B^{α} which is not contained in N^{β} . By Lemma 2.6(i), $t^y = z$ for some $y \in N^{\alpha}$. Set $\delta = \delta^y$. Then $\delta \in F(z)$ and $z \notin N^{\delta}$. By Lemma 2.6(vii), (viii) and (ix), $C_N^{\alpha}(z) \simeq D_{q+\epsilon}$ or $PGL(2,\sqrt{q})$. Assume $C_N^{\alpha}(z) \simeq D_{q+\epsilon}$ and let R be a cyclic subgroup of $C_N^{\alpha}(z)$ of index 2. We note that R is semi-regular on $\Omega - \{\alpha\}$. Set $X = C_G(z)$. Since $2 \le k + 1 \le (q-\epsilon)/|q-\epsilon|_2 + 1$, we have $(q+\epsilon)/2 \nmid k + 1$ and so $|\alpha|^X > k + 1$. By (i) of (3.5) and (3.7), $N_G(Y) \le C_G(z) = X$ and

 $\alpha^X \geq F(Y)$. It follows from Lemma 2.1 that $\alpha^X = \{\mu \mid z \in \mathbb{N}^{\mu}\} \not\ni \emptyset$. Hence $|F(z)| > |\alpha^X| \geq |F(Y)| + (q+\epsilon)/2 = k + 1 + (q-\epsilon)/2 + \epsilon = |F(z)| + \epsilon$. Therefore $\epsilon = -1$ and $\delta^X = \{\delta\}$, so that $\delta \in F(Y)$, a contradiction. Thus $\mathbb{C}_{\mathbb{N}^{\delta}}(z) \simeq PGL(2, \sqrt{q})$, $\epsilon = 1$, $\mathbb{N}_{B}^{\alpha}/\mathbb{N}^{\alpha} \cap \mathbb{N}^{\beta} \simeq \mathbb{Z}_{2}$ and $|\langle z^G \cap G_{\alpha} \rangle : \mathbb{N}^{\alpha}| = 2$.

Set $\Delta_1=\alpha^X$ and $\Delta_2=F(z)-\Delta_1$. Let $\delta\in\Delta_2$ and g an element of G satisfying $\delta^g=\delta$. Then $z\in\mathbb{N}_\delta^x\mathbb{N}^\delta-\mathbb{N}^\delta$ and so $z^g\in\mathbb{N}_\delta^y\mathbb{N}^\delta-\mathbb{N}^\delta$, where $\gamma=\alpha^g$. Since $|\langle z^G\cap G_\delta\rangle: \mathbb{N}^\delta|=2$ and $z\in G_\delta-\mathbb{N}^\delta$, it follows from Lemma 2.6(ix) that $(z^g)^h=z$ for some $h\in G_\delta$. Hence $gh\in X$ and $\delta^gh=\delta$. Thus $\Delta_2=\delta^X$. Let $\delta\in\Delta_2$. Then $z\in\mathbb{N}_\delta^x$ and $z\notin Z(\mathbb{N}_\delta^x)$ by (3.7) and so $X\cap\mathbb{N}_\delta^x\simeq Z_2\times Z_2$, which implies $|\delta^C\mathbb{N}^{x}(z)|=(q-1)/4$. Hence $(|\Delta_1|,|\Delta_2|)=((q-1)/4+k+1,(q-1)/4)$ or (k+1,(q-1)/2). Let P be a subgroup of $C_\mathbb{N}^x$ (z) of order \sqrt{q} . Then $F(P)=\{\delta\}$ and P is semi-regular on $\Delta-\{\delta\}$. If $|\Delta_2|=(q-1)/4$, then $\sqrt{q}\mid (q-1)/4-1=(q-5)/4$ and $\sqrt{q}\mid (q-1)/4+k+1$. From this, $q=\delta^2$, $k=3,|\Delta_1|=10$ and $|\Delta_2|=6$. Since $(C_\mathbb{N}^x(z))^{\Delta_2}\simeq S_5$, $X^{\Delta_2}\simeq S_6$ and so $|X|_3\geq 3^2$. As X acts on Δ_1 and $|\Delta_1|\equiv 1\pmod 3$, $|G_\alpha|_3\geq |X\alpha|_3\geq 3^2$, contrary to $\mathbb{N}^x\simeq PSL(2,25)$. If $|\Delta_2|=(q-1)/2$, $\sqrt{q}\mid (q-1)/2-1=(q-3)/2$, so $q=3^2$, k=1, $\mathbb{N}_\delta^x\simeq D_8$ and $\Delta_1=\{\alpha,\beta\}$. Hence $C_\mathbb{N}^x(z)$ fixes α and β , so that $PGL(2,3)\simeq C_\mathbb{N}^x(z)\leq \mathbb{N}_\delta^x\simeq N_\delta^x\simeq D_8$, a contradiction.

(3.9) Suppose $|Y| \ge 3$. Then r = 1.

Proof. By (3.6), $r + 1 = 2^c$ for some integer $c \ge 0$. On the other hand $3r + 1 = 2^b$ by (3.8) and (ii) of (3.4). Hence $2r = 2^c(2^{b-c} - 1)$ and so c = 1 as r is odd. Thus r = 1.

(3.10) Put $k = (q-\epsilon)/|N_{\beta}^{\alpha}|$. If $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ and r = 1, then $q-\epsilon + 2k + 2 \left| 2((2k + 2 - \epsilon)(k + 1 - \epsilon)k + 1)(2k + 2 - \epsilon)(k + 1 - \epsilon).$

Proof. Set $S=\{(\chi,u)\mid \chi\in F(u),\,u\in z^G\}$, where z is an involution in $\mathbb{N}_{\mathcal{B}}^{\alpha}$. We now count the number of elements of S in two ways. Since

TENNOH, OSAKA, \$543, JAPAN

$$\begin{split} &\mathbb{N}_{\beta}^{\alpha} = \mathbb{N}^{\alpha} \cap \mathbb{N}^{\beta}, \ F(z) = \left\{ \mathbf{\tilde{y}} \mid z \in \mathbb{N}^{\delta} \right\} \ \text{and hence } \mathbb{C}_{G}(z) \ \text{is transitive on } F(z) \\ &\text{by Lemma 2.1. Therefore } \|\mathbf{S}\| = \|\mathbf{M}\|\|_{\mathbf{Z}^{G\alpha}}\| = \|z^{G}\|\|F(z)\|. \ \text{Since } r = 1, \\ &\|\mathbf{M}\| = 1 + \|\mathbf{N}^{\alpha} : \mathbb{N}_{\beta}^{\alpha}\| = \ker(q+\epsilon)/2 + 1 \ \text{and by Lemma 2.8} \ \|F(z)\| = (q-\epsilon)/2 \\ &+ k + 1. \ \text{Since } \mathbb{G}_{\alpha} \trianglerighteq \mathbb{N}^{\alpha}, \ z^{G\alpha} \ \text{is contained in } \mathbb{N}^{\alpha} \ \text{and so } \|\mathbb{G}_{\alpha} : \mathbb{C}_{\mathbb{G}_{\alpha}}(z)\| \\ &= \|\mathbb{N}^{\alpha} : \mathbb{C}_{\mathbb{N}^{\alpha}}(z)\| = q(q+\epsilon)/2. \ \text{Hence } (q-\epsilon)/2 + k + 1 \ \left| (\ker(q+\epsilon)/2 + 1)q(q+\epsilon)/2. \\ &\text{On the other hand } \|F(z)\|_{2} = \|\mathbb{C}_{\mathbb{G}}(z)\|_{2} / \|\mathbb{C}_{\mathbb{G}_{\alpha}}(z)\|_{2} \le \|\mathbb{G}\|_{2} / \|\mathbb{C}_{\mathbb{G}_{\alpha}}(z)\|_{2} \\ &= \|\mathbb{G}\|_{2} / \|\mathbb{G}_{\alpha}\|_{2} = \|\mathbb{M}\|_{2} \ \text{because } \|\mathbb{G}_{\alpha} : \mathbb{C}_{\mathbb{G}_{\alpha}}(z)\| = q(q+\epsilon)/2 \equiv 1 \ \text{(mod 2). Hence} \\ \|q-\epsilon + 2k + 2\|_{2} \le \|\ker(q+\epsilon) + 2\|_{2}. \ \text{Since } \ker(q+\epsilon) + 2 = \\ (\ker q + 2\ker(\epsilon - k - 1))(q-\epsilon + 2k + 2) + 2((2k + 2 - \epsilon)(k + 1 - \epsilon)k + 1) \ \text{and} \\ q(q+\epsilon) = (q+2\epsilon - 2k - 2)(q-\epsilon + 2k + 2) + 2(2k + 2 - \epsilon)(k + 1 - \epsilon), \\ \text{we have } (3.10). \end{split}$$

(3.11) Suppose $|Y| \ge 3$. Then one of the following holds.

(i) $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta} \simeq D_{q-\xi}$.

subgroup.

(ii) $N_B^{\alpha} = N^{\alpha} \cap N^{\beta} \neq D_{q-\epsilon}$ and $N_G(Y)^{F(Y)}$ has a regular normal

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, $N_G(Y)^{F(Y)}$ = R(3) or there exists a prime $P_1 \ge 5$ such that $C_G(Y)^{F(Y)} \ge PSL(2, P_1)$ and $V/Y \simeq Z_{P_1}$, where $V = C_{N} \subset Y$. By (i) of (3.1) and (3.9), $F(N_B^{\infty}) = \{\alpha, \beta\}$. On the other hand, $(N_B^{\infty})^{F(Y)} \simeq N_B^{\infty}/Y \simeq Z_2$. Hence $N_G(Y)^{F(Y)} \ne R(3)$ and $C_G(Y)^{F(Y)} \ge PSL(2, P_1)$.

By (i) of (3.4) and Lemma 2.7, we have $C_{G_{\alpha}}(Y) = V < f_1 >$, where f_1 is a field automorphism of N^{α} . Let t be the order of f_1 , n = tm and let $p^m \equiv \mathcal{E}_1 \in \{\pm 1\} \pmod 4$. Clearly $C_{G_{\alpha}}(Y)^{F(Y)} \trianglerighteq V^{F(Y)} \simeq Z_{p_1}$ and $|C_{G_{\alpha}\beta}(Y)^{F(Y)}| \mid t$, so that $(p_1-1)/2 \mid t$.

First we assume that t is even and set $t=2t_1$. Then $Y \leq C_{N\alpha}(f_1)$ $\simeq PGL(2,p^m)$ by Lemma 2.6(viii). As $|V/Y|=p_1$ and p_1 is a prime, Y is a cyclic subgroup of $C_{N\alpha}(f_1)$ of order p^m-E_1 and $(p^m-1)/2(p^m-E_1)=p_1$.

TENNOSI, OSAKA, \$543, JAPAN

Put $s = \sum_{i=0}^{t_1-1} (p^{2m})^i$. Then $(p^m + \varepsilon_1)s/2 = p_1$, so that we have either (i) $t_1 = 1$ and $p_1 = (p^m + \varepsilon_1)/2$ or (ii) $t_1 \ge 2$, $p^m = 3$ and $p_1 = s$. In the case (i), $2 \le (p_1-1)/2 = (p^m + \varepsilon_1 - 2)/4$ | $2t_1 = 2$. Hence (p_1, q) = $(5,3^4)$ or $(5,11^2)$. Let z be as in (3.7). As mentioned in the proof of (3.10), |F(z)| = (q-1)/2 + k + 1, $|\Omega| = kq(q+1)/2 + 1$ and $C_{C}(z)$ is transitive on F(z). If $q = 3^4$, then |F(z)| = 46 and $|\Omega| = 2 \cdot 19^2 \cdot 23$. Hence $|C_{G}(z)| = |F(z)| |C_{G\alpha}(z)| = |F(z)| |C_{G\alpha}(z)N^{\alpha}/N^{\alpha}| |C_{N\alpha}(z)|$ = $46 \cdot 2^{i} \cdot 80 = 2^{5+i} \cdot 5 \cdot 23$ with $0 \le i \le 3$. Let P be a Sylow 23-subgroup of $C_{\hat{G}}(z)$ and Q a Sylow 5-subgroup of $C_{\hat{G}}(z)$. It follows from a Sylow's theorem that P is a normal subgroup of $C_{G}(z)$ and so [P, Q] = 1. Therefore |F(Q)| \geq 23, contrary to $5 \mid |N_B^{\alpha}|$. If $q = 11^2$, then |F(z)| = 66 and $|\Omega| =$ 2.3.6151. Let P be a Sylow 11-subgroup of $C_G(z)$. Since $11 \not\mid \Omega \mid$, P is a subgroup of N $^{\chi}$ for some $\chi \in \Omega$ and $F(P) = \{\chi\}$. Hence $\chi \in F(z)$, so that $z \in N^{\delta}$, contrary to $C_{N\delta}(z) \simeq D_{120}$. In the case(ii), we have $(p_1-1)/2 = (\sum_{i=1}^{t_1-1} 9^i)/2$ $t = 2t_1$. From this, $9^{t_1-1} \le 4t_1$, hence $t_1 = 1$, a contradiction

Assume t is odd. Then $Y \leq C_{N\alpha}(f_1) \simeq PSL(2,p^m)$ by Lemma 2.6(viii). As $|V/Y| = p_1$ and p_1 is a prime, $Y \simeq Z_{(p^m - E_1)/2}$ and $(q-E)/(p^m - E_1) = p_1$. Hence $\sum_{i=0}^{t-1} (p^m)^i (E_1)^{t-1-i} = p_1$ and $(p_1-1)/2 = ((\sum_{i=1}^{t-1} (p^m)^i (E_1)^{t-1-i})-1)/2 t$. In particular $2t \geq (p^m)^{t-1} - (p^m)^{t-2} = (p^m-1)(p^m)^{t-2} \geq 2(p^m)^{t-2}$. From this t=3, m=1, $p_1=7$ and $q=3^3$, so that $N_B^\alpha \simeq Z_2^{\times Z_2}$, a contradiction.

(3.12) (i) of (3.11) does not occur.

Proof. Let G^{Ω} be a minimal counterexample to (3.12) and M a minimal normal subgroup of G. By the hypothesis, G has no regular normal subgroup and hence $M_{\alpha} \neq 1$. As M_{α} is a normal subgroup of G_{α} , by (i) of (3.4), M_{α} contains N^{α} . By (3.9), r = 1, hence M is doubly transitive on Ω .

Therefore G = M and G is a nonabelian simple group.

TENNOLI OSAKA, 〒543, JAPAN

Since $N_B^{\infty} \simeq D_{q-\epsilon}$, k = 1 and so $q-\epsilon+4$ 2((4- ϵ)(2- ϵ)+1)(4- ϵ)(2- ϵ) by (3.10). Hence we have q = 7, 9, 11, 19, 27 or 43.

Let x be an element of N_{β}^{α} . If |x| > 2, by Lemma 2.8, $|F(x)| = 1 + |N_{\beta}^{\alpha}| \times 1/|N_{\beta}^{\alpha}| = 2$ and if |x| = 2, similarly we have $|F(x)| = (q-\epsilon)/2 + 2$. Assume $q \neq 9$ and let d be an involution in $G_{\alpha} - N^{\alpha}$ such that $<d> N^{\alpha}$ is isomorphic to PGL(2,q). We may assume $d \in G_{\alpha\beta}$. Since $<d> N^{\alpha}$ is transitive on $\Delta L - \{a\}$, by Lemmas 2.3 and 2.6(vii),(ix),|F(d)| = 2(q-1)(q+1/2)/2(q+1) + 1 = (q+1)/2, while |F(x)| = (q+1)/2 + 2 for $x \in I(N^{\alpha})$. Hence d is an odd permutation, contrary to the simplicity of G. Thus $G_{\alpha} = N^{\alpha}$ if $q \neq 9,27$ and $|G_{\alpha}/N^{\alpha}| = 1$, 3 if q = 27.

If q = 9, $|\Omega| = 1 + |N^{\alpha}| : N_{\beta}^{\alpha}| = 1 + 9 \cdot 10/2 = 2 \cdot 23$ and $|G_{\alpha}| = 2^{1}$ $|PSL(2,9)| = 2^{3+1} \cdot 3^{2} \cdot 5$ with $0 \le i \le 2$. Let P be a Sylow 23-subgroup of G. Since $Aut(Z_{23}) \simeq Z_{2} \times Z_{11}$, $3 > |N_{G}(P)|$, for otherwise P centralizes a nontrivial 3-element x and so $F(P) \supseteq F(x)$ because |F(x)| = 1, contrary to |F(P)| = 0. Similarly $5 > |N_{G}(P)|$. Hence $|G:N_{G}(P)| = 2^{a} \cdot 3^{b} \cdot 5$ for some a with $0 \le a \le 6$. By a Sylow's theorem, $2^{a} \cdot 3^{2} \cdot 5 = -2^{a} = 1 \pmod{23}$, a contradiction.

If q=27, $|\Omega|=1+27\cdot26/2=2^5\cdot11$ and $|G_{\alpha}|=2^2\cdot3^{3+i}\cdot7\cdot13$ with $0 \le i \le 1$. Let P be a Sylow 11-subgroup of G. Since $P \simeq Z_{11}$ and $Aut(Z_{11}) \simeq Z_2 \times Z_5$, 3^{1+i} , 7, $13 \nmid |N_G(P)|$ by the similar argument as above. Hence $|G:N_G(P)|=2^a\cdot3^b\cdot7\cdot13$ with $0 \le a \le 7$ and $3 \le b \le 3+i$. By a Sylow's theorem, $2^a\cdot3^b\cdot7\cdot13=2^a\cdot3^{b-3}\cdot3^3\cdot7\cdot13\equiv 2^a\cdot3^{b-3}\cdot4\equiv 1\pmod{11}$. Hence a=0, b=4. Therefore $N_G(P)$ contains a Sylow 2-subgroup S of G. Let T be a Sylow 2-subgroup of N_B^{α} and g an element such that $T^g \le S$. Then $T^g \cap C_G(P) \ne 1$ as $N_S(P)/C_S(P) \le Z_2$. Let u be an involution in $T^g \cap C_G(P)$. Then |F(u)|=(27+1)/2+2=16, while |F(u)| because |F(u)|=1 and |F(P)|=0, a contradiction.

If q=7, 11, 19 or 43, then $G_{\alpha}=N^{\alpha}$ and $\epsilon=-1$. Set $\Gamma=\left\{\left\{ \chi,\delta\right\} \right\}$

TENISC DSAKA, \$542, JAPAN

 \emptyset , $\S \in \Omega$, $\S \neq \S$. We consider the action of G on Γ . Since G^{Ω} is doubly transitive, G^{Γ} is transitive and $G_{\Gamma} = 1$. Let z be an involution of $Z(N_{\beta}^{\alpha})$. There exists an involution t such that $t \in z^G$ and $\alpha^t = \beta$. Since $G_{\alpha\beta} = N_{\beta}^{\alpha}$ and $F(N_{\beta}^{\alpha}) = \{\alpha, \beta\}$ we have $G_{\{\alpha, \beta\}} = \langle t \rangle N_{\beta}^{\alpha}$. By Lemma 2.3, $|F(z^{\Gamma})| = |C_{G}(z)| \times |\langle t \rangle N_{\beta}^{\alpha} \cap z^{G}|/2|N_{\beta}^{\alpha}| = |F(z)| \times |C_{G_{\alpha}}(z)| \times |\langle t \rangle N_{\beta}^{\alpha} \cap z^{G}|/2|N_{\beta}^{\alpha}| = |F(z)| \times |\langle t \rangle N_{\beta}^{\alpha} \cap z^{G}|/2$. As $|F(z^{\Gamma})| = |F(z)| (|F(z)| - 1)/2 + (|\Omega| - |F(z)|)/2$, $|\langle t \rangle N_{\beta}^{\alpha} \cap z^{G}| = |F(z)| + |\Omega|/|F(z)| - 2$. In particular $|F(z)| = |\Omega|$. Since |F(z)| = (q+1)/2 + 2 = (q+5)/2 and $|\Omega| = 1 + q(q-1)/2 = (q^2-q+2)/2$, we have q = 11 and $|\langle t \rangle N_{\beta}^{\alpha} \cap z^{G}| = 13$. Moreover $|\Omega| = 56$, $|G_{\alpha}| = |PSL(2,11)| = 2^2 \cdot 3 \cdot 5 \cdot 11$ and $|G| = 2^5 \cdot 3 \cdot 5 \cdot 7 \cdot 11$.

We now argue that $\langle \mathbf{t} \rangle N_{\beta}^{\mathbf{x}} \simeq D_{24}$. Let R be the Sylow 3-subgroup of $N_{\beta}^{\mathbf{x}}$. If t centralizes R, R acts on F(t) and so $F(R) \subseteq F(t)$ as |F(t)| = 8 and |F(R)| = 2. Hence $\mathbf{x}^t = \mathbf{x}$, contrary to the choice of t. Therefore t inverts R and $\langle \mathbf{t} \rangle N_{\beta}^{\mathbf{x}}$ is isomorphic to $Z_2 \times D_{12}$ or D_{24} . Suppose $\langle \mathbf{t} \rangle N_{\beta}^{\mathbf{x}} \simeq Z_2 \times D_{12}$. Then $\langle \mathbf{t} \rangle N_{\beta}^{\mathbf{x}}$ contains fifteen involutions and so we can take $\mathbf{u} \in \mathbf{I}(\langle \mathbf{t} \rangle N_{\beta}^{\mathbf{x}})$ satisfying $|F(\mathbf{u})| = 0$ and $\langle \mathbf{t} \rangle N_{\beta}^{\mathbf{x}} = \langle \mathbf{u} \rangle \times N_{\beta}^{\mathbf{x}}$. As $|F(\mathbf{u})| = 0$, $|F(\mathbf{u}^{\Gamma})| = |AL|/2$ = 28. By Lemma 2.3, $28 = |C_{\mathbf{G}}(\mathbf{u})| \times |\mathbf{v} \times N_{\beta}^{\mathbf{x}} \cap \mathbf{u}^{\mathbf{G}}|/24$ and hence $|C_{\mathbf{G}}(\mathbf{u})| = 2^4 \cdot 3 \cdot 7$ or $2^5 \cdot 3 \cdot 7$. Since $\langle \mathbf{u} \rangle N_{\beta}^{\mathbf{x}} = N_{\mathbf{G}}(R)$, we have $|C_{\mathbf{G}}(\mathbf{u})| : C_{\mathbf{G}}(\mathbf{u}) \cap N_{\mathbf{G}}(R)| = 2 \cdot 7$ or $2^2 \cdot 7$. By a Sylow's theorem, $|C_{\mathbf{G}}(\mathbf{u})| : C_{\mathbf{G}}(\mathbf{u}) \cap N_{\mathbf{G}}(R)| = 2^2 \cdot 7$, so that $|C_{\mathbf{G}}(\mathbf{u})| = 2^5 \cdot 3 \cdot 7$. Let Q be a Sylow 7-subgroup of $|C_{\mathbf{G}}(\mathbf{u})| : |C_{\mathbf{G}}(\mathbf{u}) \cap N_{\mathbf{G}}(R)| = 2^2 \cdot 7$, so that $|C_{\mathbf{G}}(\mathbf{u})| = 2^5 \cdot 3 \cdot 7$ or $|C_{\mathbf{G}}(\mathbf{u})| : |C_{\mathbf{G}}(\mathbf{u})| : |C_{\mathbf{G$

Let U be a Sylow 2-subgroup of $\mathbb{N}_{\beta}^{\alpha}$ and set $L = \mathbb{N}_{G}(U)$. It follows from (3.3) and Lemma 2.6(iv) that $L \cap \mathbb{N}^{\alpha} \simeq \mathbb{A}_{4}$, $L^{F(U)} \simeq \mathbb{A}_{4}$ and $|L| = 2^{4} \cdot 3$. Let T, $\langle x \rangle$ be Sylow 2- and 3-subgroup of L, respectively. Obviously $L \trianglerighteq T$ and $C_{T}(x) = 1$. On the other hand $T \trianglerighteq L \cap \langle t \rangle \mathbb{N}_{\beta}^{\alpha} \simeq \mathbb{D}_{8}$ and so $T' \simeq \mathbb{Z}_{2}^{\times \mathbb{Z}_{2}}$

TENNOH OSAKA, \$543, JAPAN

because $C_T(x) = 1$. By Theorem 5.4.5 of [2], T is dihedral or semi-dihedral. Hence $N_G(T)/C_G(T)$ (\leq Aut(T)) is a 2-group, so that $C_T(x) = T$, a contradiction.

(3.13) (ii) of (3.11) does not occur.

Proof. Let G^{Ω} be a doubly transitive permutation group satisfying (ii) of (3.11). Let x be an involution in N_{β}^{α} with $x \notin Y$. Then $F(x^{F(Y)})$ = $F(\langle x \rangle Y) = F(N_{\beta}^{\alpha}) = \{\alpha, \beta\}$ by (i) of (3.1) and (3.9). Since $|F(Y)| = 1 + (q-\epsilon)/|N_{\beta}^{\alpha}| = 1 + k \ge 4$, $x^{F(Y)}$ is an involution. By Lemma 2.5, $1 + k = 2^2$ and so k = 3. By (3.11), $q-\epsilon+8$ 2((8-\epsilon)(4-\epsilon)\times 3 + 1)(8-\epsilon)(4-\epsilon). Hence $q + 7 = 2^7 \cdot 3 \cdot 7$ if e = 1 and $e + 9 = 2^4 \cdot 3^2 \cdot 5 \cdot 17$ if e = -1. Since e = 3 = -1. Therefore $e = 5^2$, $e = 7^2$, $e = 1^2$, $e = 1^2$ and $e = 1^2$.

Let p_1 be an odd prime such that p_1 $|\Omega|$ and p_1 $|G_{\alpha}|$ and let P be a Sylow p_1 -subgroup of G. Clearly P is semi-regular on Ω and so any element in $C_{G_{\alpha}}(P)$ has at least p_1 fixed points. If x is an element of N_{β}^{α} and its order is at least three, |F(x)| = |F(Y)| = 4 by Lemma 2.8. Since $|N_{\beta}^{\alpha}| = (q-\epsilon)/3$, we have $|\Omega| = 1 + |N_{\alpha}| = 1 + 3q(q+\epsilon)/2$.

If $q = 5^2$, then $|\Omega| = 2^4 \cdot 61$ and $|G_{\alpha}| = 2^{4+i} \cdot 3 \cdot 5^2 \cdot 13$ ($0 \le i \le 2$). Let P be a Sylow 61-subgroup of G. Then $P \simeq Z_{61}$. As mentioned above, 5, 13 $|C_G(P)|$ and so 5^2 , 13 $|N_G(P)|$. Hence $|G:N_G(P)| = 2^a \cdot 3^b \cdot 5^{c+1} \cdot 13$, where $0 \le a \le 10$ and $0 \le b$, $c \le 1$. But we can easily verify $|G:N_G(P)|$ $\not\equiv 1 \pmod{61}$, contrary to a Sylow's theorem.

If $q = 7^2$, then $|\Omega| = 2^2 \cdot 919$ and $|G_{\alpha}| = 2^{4+i} \cdot 3 \cdot 5^2 \cdot 7^2$ ($0 \le i \le 2$). Let P be a Sylow 919-subgroup of G. By the similar argument as above, we obtain 5, $7 \nmid |N_G(P)|$ and so $|G:N_G(P)| = 2^a \cdot 3^b \cdot 5^2 \cdot 7^2 \equiv 2^a \cdot 306$ or -2^a (mod 919), where $0 \le a \le 8$ and $0 \le b \le 1$. Hence $|G:N_G(P)| \ne 1$, a contradiction.

TENNON OSAKA, \$543, JAPAN

If $q = 11^2$, then $|\Omega| = 2^7 \cdot 173$ and $|G_{\alpha}| = 2^{3+1} \cdot 3 \cdot 5 \cdot 11^2 \cdot 61$ ($0 \le i \le 2$). Let P be a Sylow 173-subgroup of G. Similarly we have 3,5,11,61 $|N_G(P)|$ and so $|G:N_G(P)| = 2^a \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 = -5 \cdot 2^a$ (mod 173), where $0 \le a \le 12$. Hence $|G:N_G(P)| \ne 1$, a contradiction.

If q = 59, then $|\Omega| = 2 \cdot 17 \cdot 151$ and $|G_{\alpha}| = 2^{2+i} \cdot 3 \cdot 5 \cdot 29 \cdot 59$ ($0 \le i \le 1$). Let P be a Sylow 17-subgroup of G. Similarly we have $3, 5, 29, 59 \nmid |N_G(P)|$ and so $|G:N_G(P)| = 2^a \cdot 3 \cdot 5 \cdot 29 \cdot 59 \cdot 151^b = 10 \cdot 2^a$ or $12 \cdot 2^a$ (mod 17), where $0 \le a \le 4$ and $0 \le b \le 1$. From this, we have a contradiction.

If q = 71, then $|\Omega| = 2^5 \cdot 233$ and $|G_{\alpha}| = 2^{3+i} \cdot 3^2 \cdot 5 \cdot 7 \cdot 71$ (0 $\leq i \leq 1$). Let P be a Sylow 233-subgroup of G. Since 3,5,7,71 $\Big| |N_G(P)|$, $|G:N_G(P)| = 2^a \cdot 3^2 \cdot 5 \cdot 7 \cdot 71 \equiv -3 \cdot 2^a$ (mod 233), where $0 \leq a \leq 9$. Similarly we get a contradiction.

We now consider the case |Y| < 3. By (ii) of (3.5), $N_{\beta}^{\alpha} \simeq Z_2^{*}Z_2$ or $N_{\beta}^{\alpha} \simeq D_8$ and $N^{\alpha} \cap N^{\beta} \leq Z_2^{*}Z_2$.

(3.14) The case that $N_{\beta}^{\alpha} \simeq Z_2^{\times Z_2}$ does not occur.

Proof. Set $\Delta = F(N_{\beta}^{\alpha})$. Then $|\Delta| = 3r + 1$ and $\Delta = F(N_{\beta}^{\alpha}N_{\alpha}^{\beta})$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N^{\alpha}|_2 = 4$, we have $q = p^n \equiv 3$, 5 (mod 8) and so n is odd. Hence $|G_{\alpha}/N^{\alpha}|_2 \leq 2$ and $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha}N^{\beta}/N^{\beta} \simeq 1$ or Z_2 by (3.2). Suppose $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq Z_2$. Then $N_{\beta}^{\alpha}N_{\alpha}^{\beta}$ is a Sylow 2-subgroup of G_{α} , hence $N_{G}(N_{\beta}^{\alpha}N_{\alpha}^{\beta})^{\Delta}$ is doubly transitive by a Witt's theorem. Since $N_{\beta}^{\alpha}N_{\alpha}^{\beta} \simeq D_{\beta}$ and $|\Delta|$ is even, $C_{G}(N_{\beta}^{\alpha}N_{\alpha}^{\beta})^{\Delta}$ is also doubly transitive. Let g be an element of $C_{G}(N_{\beta}^{\alpha}N_{\alpha}^{\beta})$ such that $\alpha^g = \beta$ and $\beta^g = \alpha$. Then $N_{\beta}^{\alpha} = g^{-1}N_{\beta}^{\alpha}g = N_{\alpha}^{\beta}$ and hence $N_{\beta}^{\alpha} = N_{\alpha}^{\alpha} \cap N_{\beta}^{\beta}$, a contradiction. Thus $N_{\beta}^{\alpha} = N_{\alpha}^{\alpha} \cap N_{\beta}^{\beta} \simeq Z_{2}^{\times Z_{2}}$.

Let z be an involution in $\mathbb{N}_{\beta}^{\times}$ and $t \in z^{G}$ an involution such that $\alpha^{t} = \beta$. Set $\Gamma = \{\{\emptyset, \emptyset\} \mid \emptyset, \emptyset \in \Omega, \emptyset \neq \emptyset\}$. We consider the action of the element z on Γ . By the similar argument as in the proof of (3.12), $|F(z)|(|F(z)|-1)/2 + (|\Omega|-|F(z)|)/2 = |F(z^{\Gamma})| = |C_{G}(z)||z^{G} \wedge \langle t \rangle G_{\alpha\beta}|/|\langle t \rangle G_{\alpha\beta}|.$

TENNOIL OSAKA, 〒543, JAPAN

Since $\mathbb{N}_{\beta}^{\alpha} = \mathbb{N}^{\alpha} \cap \mathbb{N}^{\beta}$, by Lemma 2.6(i), $\mathbb{Z}^{G} \cap \mathbb{G}_{\alpha} = \mathbb{Z}^{G\alpha}$ and so $\mathbb{C}_{G}(\mathbb{Z}) = \mathbb{F}(\mathbb{Z}) \times \mathbb{C}_{G\alpha}(\mathbb{Z}) \times \mathbb{C}_{$

We argue that r = 1. Suppose false. Then $32s(3\mathcal{E}r-4)(3\mathcal{E}r-2) > 0$ and so $3r(q-\epsilon) < 864r^2s$. Therefore $288n + \epsilon > q = p^n \ge 3^n$ and so $288n > 3^n$. Hence $(n,r,p,\epsilon) = (5,5,3,-1)$, (3,3,3,-1) or (3,3,5,1), while none of these satisfy (*). Thus r = 1.

Hence $3q-3\varepsilon+4 = 64(5+9\varepsilon)n$ and $|F(z)| = 1 + 3(q-\varepsilon)/4$, $|\Delta| = 1 + q(q-\varepsilon)(q+\varepsilon)/8$. If $\varepsilon = -1$, then $3 \cdot 3^n < 3q+7 = 256n$. Hence n = 1 or (n,p) = (5,3), (3,3). Since $3 \cdot 3^5 + 7 \neq 256 \cdot 5$ and $3 \cdot 3^3 + 7 = 256 \cdot 3$, n = 1 and 3q + 7 = 256. From this, q = 19 or 83. If $\varepsilon = 1$, then $3 \cdot 5^n < 3q + 1 = 896n$ and so n = 1 or (n,p) = (3,5). Since $3 \cdot 5^3 + 1 \neq 896 \cdot 3$, we have n = 1 and 3q + 1 = 896. From this, q = 5, 37 or 149. As $PSL(2,5) \simeq PSL(2,4)$, $q \neq 5$ by [4]. Thus q = 19, 37, 83 or 149.

Set $m = |z^G \cap \langle t \rangle G_{\alpha\beta}|$. As we mentioned above, $|G_{\alpha\beta}|(|F(z)|(|F(z)|-1) + |\Omega|-|F(z)|) = |F(z)| |C_{G_{\alpha}}(z)|m$. Since $|G_{\alpha}/N^{\alpha}| = 1$ or 2, $|C_{G_{\alpha}}(z)|/|G_{\alpha\beta}| = (q-\epsilon)/4$. Therefore $m = (2q^2 + (2\epsilon+9)q - 9\epsilon)/(3q-3\epsilon+4)$. It follows that (q,m) = (19, 27/2), (37, 28), (83, 449/8) or (149, 411/4). Since m is an integer, we have (q,m) = (37, 28). But $m \leq |\langle t \rangle G_{\alpha\beta}| \leq 16$, a contradiction. Thus (3.14) holds.

(3.15) The case that $N_{\beta}^{\alpha} \simeq D_{8}$ and $N_{\alpha}^{\alpha} \cap N_{\beta}^{\beta} \leq Z_{2}^{*}Z_{2}^{*}$ does not occur.

Proof. Let Δ , L and K be as defined in (3.6). By (3.6), there exists an element x in L $_{\alpha}$ such that its order is odd and $< x^{\Delta} >$ is regular on $\Delta - \{\alpha\}$. Since $(L_{\alpha})' \leq N_{\beta}^{\alpha}$ by (3.6) and $N_{\beta}^{\alpha} \simeq D_{8}$, x stabilizes a normal series $N_{\alpha}^{\beta}N_{\beta}^{\alpha} \geq N_{\alpha}^{\beta} \geq 1$. Hence x centralizes $N_{\alpha}^{\beta}N_{\beta}^{\alpha}$ by Theorem 5.3.2 of [2] and so $x^{-1}N_{\alpha}^{\beta}x = N_{\alpha}^{\beta}$. Put $\delta = \beta^{X}$. If $r \neq 1$, then $\beta \neq \delta$, so that $N_{\alpha}^{\delta} = N_{\alpha}^{\beta}$. From this, $N_{\beta}^{\delta} = N_{\delta}^{\beta}$. By the doubly transitivity of G, $N_{\beta}^{\alpha} = N_{\alpha}^{\beta}$, hence $N_{\beta}^{\alpha} = N_{\alpha}^{\beta}$, a contradiction. Therefore r = 1 and $\Delta = \{\alpha, \beta\}$.

Set $\langle z \rangle = Z(N_{\beta}^{\alpha})$, $\Delta_1 = \alpha^{C_G(z)}$ and let $\left\{ \Delta_1 , \Delta_2 \cdots \Delta_k \right\}$ be the set of $C_G(z)$ -orbits on F(z). Since $L \supseteq N^{\alpha} \cap N^{\beta}$ and by (3.2), $N^{\alpha} \cap N^{\beta} \neq 1$, z is contained in $N^{\alpha} \cap N^{\beta}$. Hence, by Lemma 2.1, $\beta \in \Delta_1$ and k is at least two. By Lemma 2.8, $|F(z)| = 1 + (q-\epsilon)5/|N_{\beta}^{\alpha}| = 1 + 5(q-\epsilon)/8$. Clearly $|C_{N\alpha}(z)| : N_{\beta}^{\alpha}| = (q-\epsilon)/8$ and so $|\Delta_1| \ge 1 + (q-\epsilon)/8$. If $\emptyset \in F(z) - \Delta_1$, then $C_{N_{\beta}^{\alpha}}(z) \simeq Z_2^{\times Z_2}$, for otherwise $\langle z \rangle = Z(N_{\delta}^{\alpha}) \le N^{\alpha} \cap N^{\delta}$ and by Lemma 2.1 $\emptyset \in \Delta_1$, a contradiction. Hence one of the following holds.

- (i) k = 3 and $|\Delta_1| = 1 + (q-\epsilon)/8$, $|\Delta_2| = |\Delta_3| = (q-\epsilon)/4$.
- (ii) k = 2 and $|\Delta_1| = 1 + (q-\epsilon)/8$, $|\Delta_2| = (q-\epsilon)/2$.
- (iii) k = 2 and $|\Delta_1| = 1 + 3(q-\epsilon)/8$, $|\Delta_2| = (q-\epsilon)/4$.

Let $\mathfrak{f}\in F(z)-\Delta_1$. Then, $z\in G\mathfrak{f}-N^{\gamma}$ and so $C_N\mathfrak{f}(z)\simeq D_{q+\epsilon}$ or $PGL(2,\sqrt{q})$ by Lemma 2.6(vii),(viii),(ix). If $C_N\mathfrak{f}(z)\simeq D_{q+\epsilon}$, then $(q+\epsilon)/2$ $|\Delta_1|$ and so q=7 and (iii) occurs. But $(q+\epsilon)/2=3$ $|\Delta_2|-1=1$, a contradiction. If $C_N\mathfrak{f}(z)\simeq PGL(2,\sqrt{q})$, then (i) does not occur because \sqrt{q} $|q-\epsilon|$. Hence \sqrt{q} $|\Delta_1|$ and \sqrt{q} $|\Delta_2|-1$. From this, q=25 and (iii) occurs. In this case, we have $|\Delta_1|=10$, so that an element of $C_N\mathfrak{f}(z)$ of order 3 is contained in N_{δ}^{γ} for some $\delta\in\Delta_1$, contrary to $N_{\delta}^{\gamma}\simeq N_{\delta}^{\alpha}\simeq D_{\delta}$.

4. Case (II)

In this section we assume that $N_{\mathcal{B}}^{\alpha} \simeq PGL(2,p^m)$, where n = 2mk and k is odd. Since n is even, $q = p^n \equiv 1 \pmod{4}$. We set $p^m \equiv \mathcal{E} \in \{\pm 1\} \pmod{4}$. In section 7 we shall consider the case that $N_{\mathcal{B}}^{\alpha} \simeq S_{4}$. Therefore we assume $(p,m) \neq (3,1)$ in this section.

(4.1) The following hold.

- (i) $N_{B}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq 1$ or Z_{2} and $N^{\alpha} \cap N^{\beta} \geq (N_{B}^{\alpha})' \simeq PSL(2,p^{m})$.
- (ii) If (p,m) \neq (5,1), there exists a cyclic subgroup Y of (Ng) such that NN α (Y) \simeq Dq- ϵ and NG(Y) $^{F(Y)}$ is doubly transitive.

Proof. As $N_{\beta}^{\alpha} \geq N^{\alpha} \cap N^{\beta}$, either $N_{\delta}^{\alpha}/N^{\alpha} \cap N^{\beta} \leq Z_{2}$ or $N^{\alpha} \cap N^{\beta} = 1$.

If $N^{\alpha} \cap N^{\beta} = 1$, by Lemmas 2.2 and 2.6(vi), $N_{\beta}^{\alpha} \simeq N_{\delta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_{\delta}^{\alpha}N^{\beta}/N^{\beta}$ $\simeq Z_{2} \times Z_{n}, \text{ a contradiction. Therefore } N_{\delta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq 1 \text{ or } Z_{2} \text{ and } N^{\alpha} \cap N^{\beta}$ $\geq (N_{\delta}^{\alpha})' \simeq PSL(2, p^{m}).$

Now we assume that $(p,m) \neq (5,1)$ and let z be an involution in $(N_{\beta}^{\alpha})'$. Then $C_{N_{\beta}^{\alpha}}(z) \simeq D_{2(p^m - \epsilon)}$ by Lemma 2.6(vii). Suppose $C_{N_{\beta}^{\alpha}}(z)$ is not a 2-subgroup and put $Y = O(C_{N_{\beta}^{\alpha}}(z))$. Then, if $Y^g \leq G_{\alpha\beta}$ for some $g \in G$, we have $Y^g \leq N_{\alpha}^{\gamma}$ and $Y^g \leq N_{\beta}^{\delta}$, where $\gamma = \alpha^g$ and $\gamma = \beta^g$. By (i) $\gamma = \gamma^g \leq N_{\alpha}^{\gamma} \wedge N_{\beta}^{\gamma}$ and so $\gamma = \gamma^g$ for some $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$. Thus $\gamma_{\alpha}(\gamma) = \gamma^g \wedge N_{\beta}^{\gamma}$ is doubly transitive. Assume that $\gamma_{\alpha}(\gamma) = \gamma^g \wedge N_{\beta}^{\gamma}$ is a 2-subgroup and set $\gamma_{\alpha}(\gamma) = \gamma^g \wedge N_{\beta}^{\gamma}$. We may assume that $\gamma \in (N_{\beta}^{\alpha})'$ and $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$ and $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$. Since $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$ and $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$ and $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$ and $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$. Since $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$ is at least four. On the other hand there is no element of order $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$ is necessarily an element of order $\gamma = \gamma^g \wedge N_{\beta}^{\gamma}$. By the similar argument as above, $\gamma_{\alpha}(\gamma)^{\gamma} = \gamma^g \wedge N_{\beta}^{\gamma}$ is doubly transitive.

(4.2) Let notations be as in (4.1). Suppose $(p,m) \neq (3,1)$, (5,1) and set $\Delta = F(Y)$ and $X = N_G(Y)$. Then $|\Delta| = rs(p^m + \mathcal{E})/2 + 1$, where $s = \sum_{i=0}^{k-1} p^{2mi}$, $C_G(N^{\alpha}) = 1$ and one of the following holds.

(i) $X^{\Delta} \leq AFL(1,2^{c})$ for some integer c.

(ii) $X^{\Delta} \simeq PSL(2,p_1)$ or $PGL(2,p_1)$, r = 1, k = 1 and $2p_1 = p^m + \xi$.

Proof. By Lemma 2.8(ii), $|\Delta| = 1 + |N^{\alpha} \cap X| r/|N^{\alpha}_{\beta} \cap X| = 1 + (p^{2mk}-1)r/2(p^m-\epsilon) = rs(p^m+\epsilon)/2 + 1$. By (4.1) and Lemma 2.9, we have (i), (ii) or $X^{\Delta} = R(3)$.

Assume that $X^{\Delta}=R(3)$. Then $rs(p^m+\epsilon)/2+1=28$, hence k=1 and $r(p^m+\epsilon)/2=27$. Since r is odd and r 2m=n, we have r=m=1 and $q=53^2$. But a Sylow 3-subgroup of X_{α} is cyclic because $N^{\alpha} \cap X \simeq D_{q-\epsilon}$ and $X_{\alpha}/X \cap N^{\alpha} \simeq X_{\alpha}N^{\alpha}/N^{\alpha} \leq Z_2 \times Z_2$, a contradiction. Thus (i) or (ii) holds.

(4.3) (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^{\Delta} \leq A\Gamma L(1,2^{c})$ and put $W = C_{N\alpha}(Y)$. Then $Y \leq W \simeq Z_{p^{m}-\epsilon}$. Since $C_{N\alpha}(Y)$ is cyclic, W is a characteristic subgroup of $C_{N\alpha}(Y)$ and so W is a normal subgroup of X_{α} . Hence $W \leq X_{\Delta}$ and $(X \cap N_{B}^{\alpha})^{\Delta} \simeq 1$ or Z_{2} . By Lemmas 2.4 and 2.6, $F(X \cap N_{B}^{\alpha})$ $= 1 + |X \cap N_{B}^{\alpha}| |N_{B}^{\alpha}| |X \cap N_{B}^{\alpha}| |X^{m}| |N_{B}^{\alpha}| = 1 + r$. Since $1 + r < |\Delta|$, $(X \cap N_{B}^{\alpha})^{\Delta}$ $\simeq Z_{2}$ and hence $(1+r)^{2} = rs(p^{m}+\epsilon)/2 + 1$ by Lemma 2.5. From this, $r = s(p^{m}+\epsilon)/2 - 2$ mk and so $p^{2m(k-1)} + mk \leq 2$. Hence m = k = r = 1 and $q = 7^{2}$.

Let R be a Sylow 3-subgroup of N_{β}^{α} . Since $N_{\beta}^{\alpha} \simeq PGL(2,7)$, we have $R \simeq Z_3$. By Lemmas 2.4 and 2.6, $|F(R)| = 1 + (7^2 - 1)|N_{\beta}^{\alpha} : N_{N_{\beta}^{\alpha}}(R)|/|N_{\beta}^{\alpha}|$ = 4. Hence $N_{G}(R)^{F(R)} \simeq A_4$ or S_4 . But R is a Sylow 3-subgroup of $N_{G_{\alpha}}(R)$ because $N^{\alpha} \simeq PSL(2,7^2)$, contrary to $N_{G_{\alpha}}(R)^{F(R)} \simeq A_3$ or S_3 .

(4.4) (ii) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^{\Delta} \supseteq PSL(2,p_1)$. By the similar argument as in (4.3), $C_{NS}(Y) \le X_{\Delta}$ and so $C_{NN}(Y)^{\Delta} \simeq Z_{p_1}$, and $N_{NN}(Y)^{\Delta} \simeq D_{2p_1}$. Hence $|(X_{N})^{\Delta}| |2p_1 \cdot 2n$. Since $X^{\Delta} \supseteq PSL(2,p_1)$, $p_1(p_1-1)/2 ||(X_{N})^{\Delta}|$, hence p_1-1 |8n. As k=1 and $2p_1=p^m+\epsilon$, we have $p^m+\epsilon-2$ | 32m. From this, $(p,m,p_1)=(11,1,5)$, (3,2,5) or (3,3,13).

Let R be a cyclic subgroup of N_{β}^{α} such that $R \simeq \mathbb{Z}_{(p^m + \mathcal{E})/2}$.

By Lemma 2.6, $N_{G}(R)^{F(R)}$ is doubly transitive and by Lemma 2.8(ii), $|F(R)| = 1 + |N_{N\alpha}(R)|/|N_{N\beta}(R)| = 1 + (p^{2m}-1)/2(p^m + \mathcal{E}) = (p^m - \mathcal{E})/2 + 1$.

If $(p,m,p_1) = (11,1,5)$, |F(R)| = 7 and so by $[9]|N_{G}(R)^{F(R)}| = 42$.

and $N_{G_{\alpha}}(R)^{F(R)} \simeq Z_{6}$. Since $|N_{N_{\alpha}}(R)| : N_{N_{\alpha}}(R)| = 6$, $N_{N_{\alpha}}(R)^{F(R)}$ $= N_{G_{\alpha}}(R)^{F(R)}$. Hence $N_{N_{\alpha}}(R)/K \simeq Z_{6}$, where $K = (N_{N_{\alpha}}(R))_{F(R)}$. But $N_{N_{\alpha}}(R)/(N_{N_{\alpha}}(R)) \simeq Z_{2} \times Z_{2}$, a contradiction.

If $(p,m,p_1) = (3,2,5)$, |F(R)| = 5 and so by [9], $|N_G(R)^{F(R)}| = 20$ and $N_{G_K}(R)^{F(R)} \simeq Z_4$. Since $|N_{N_K}(R)| = 4$, $N_{N_K}(R) \simeq Z_4$, contrary to $N_{N_K}(R)/(N_{N_K}(R))' \simeq Z_2 \times Z_2$.

If $(p,m,p_1)=(3,3,13)$, |F(R)|=15. By [9], $N_{G\alpha}(R)^{F(R)}$ is not solvable, a contradiction.

 $(4.5) p^{m} \neq 5.$

Proof. Assume that $p^{m}=5$. Then n=2k with k odd and $N_{\beta}^{\alpha} \simeq PGL(2,5)$ $\simeq S_{5}$. First we argue that $N_{\beta}^{\alpha}=N^{\alpha} \cap N^{\beta}$. Suppose false. Then $C_{G}(N^{\alpha})=1$ by Lemma 2.2, and $N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq Z_{2}$ by (4.1). Since $N_{\alpha}^{\beta}N_{\beta}^{\alpha}/N_{\beta}^{\alpha} \simeq N_{\alpha}^{\beta}/N^{\alpha} \cap N^{\beta} \simeq Z_{2}$ and the outer automorphism group of S_{5} is trivial, we have $Z(N_{\beta}^{\alpha}N_{\alpha}^{\beta}) \simeq Z_{2}$. Let w_{1} be the involution of $Z(N_{\beta}^{\alpha}N_{\alpha}^{\beta})$ and let $w \in I(N_{\alpha}^{\beta})-I(N^{\alpha})$. Since $C_{N^{\alpha}}(w_{1}) \geq N_{\beta}^{\alpha}$, by Lemma 2.6(viii) and (ix), wasts on N^{α} as a field automorphism of order 2 and $C_{N^{\alpha}}(w) \simeq PGL(2,5^{k})$.

TENNOJI, OSAKA, ₹543, JAPAN

By Lemma 2.8 $|F(w)| = 1 + r(q-\epsilon)|I(N_{8}^{\alpha})|/|N_{8}^{\alpha}| = 1 + 5r(5^{2k}-1)/24$. Let P be a Sylow 5-subgroup of $C_{N\alpha}(w)$. Then $|P| = 5^k$ and $|\gamma^P| = 5^{k-1}$ or 5^k for $\emptyset \in \Omega - \{\alpha\}$. Since P acts on $F(w) - \{\alpha\}$, we have $5^{k-1} | 5r(5^{2k}-1)/24$, so that k = 1 and |F(w)| = 6 as r | k. Hence $C_{N\alpha}(w)^{F(w)} \simeq S_{5}$ and so $C_{G}(w)^{F(w)} \simeq S_{6}$. But clearly $w \in N^{\alpha} \cap N^{\beta}$ by Lemma 2.1, a contradiction Thus $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$.

Let V be a cyclic subgroup of N_{β}^{α} of order 4. Since $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta} \simeq S_5$, $N_{G}(V)^{F(V)}$ is doubly transitive and by Lemma 2.8, $|F(V)| = 1 \div |N_{N_{\beta}}(V)| = 1 + (5^{2k}-1)r/8 = 3rs + 1$, where $s = \sum_{i=0}^{k-1} 25^{i}$. By Lemma 2.9, $C_{G}(N^{\alpha}) = 1$ and (a) $N_{G}(V)^{F(V)} \leq A\Gamma L(1,2^{c})$ or (b) $N_{G}(V)^{F(V)} = R(3)$.

Put $P = N_{N_g^{\kappa}}(V)$. Then $P \simeq D_g$, $|F(P)| = 1 + |N_{N_g^{\kappa}}(P)| |N_g^{\kappa}| : N_{N_g^{\kappa}}(P)|r/|N_g^{\kappa}|$ $= r + 1 \text{ and } P^{F(V)} \simeq Z_2 . \text{ If (b) occurs, } k = 1 \text{ and } r = 9, \text{ hence } |F(P)|$ = 10, a contradiction. Therefore (a) holds.

By Lemma 2.5, $(r+1)^2=3rs+1$ and so r=3s-2 | k. Hence k=r=1 and $G_{\alpha}/N^{\alpha} \leq Z_2 \times Z_2$. Let z be an involution in N_{β}^{α} . Then $|F(z)|=1+24\cdot25/120=6$ by Lemma 2.8 and $|\Delta L|=1+|N^{\alpha}:N_{\beta}^{\alpha}|=66$ as r=1. By the similar argument as in the proof of (3.12), $|F(z)|(|F(z)|-1)/2+(|\Delta L|-|F(z)|)/2=|C_G(z)||z^G\wedge < t > G_{\alpha\beta}|/|< t > G_{\alpha\beta}|$, where t is an involution such that $\alpha^t=\beta$. Hence $|z^G\wedge < t > G_{\alpha\beta}|=15|G_{\alpha\beta}|/|C_{G_{\alpha}}(z)|$. Set $H=\langle t > G_{\alpha\beta}$ and let R be a Sylow 3-subgroup of N_{β}^{α} . By Lemma 2.8, $|F(R)|=1+24\cdot10/120=3$. Set $F(R)=\{\alpha,\beta,\gamma\}$. On the other hand, as $N_{\beta}^{\alpha}\simeq S_5$ and $Out(S_5)=1$, we have $H=Z(H)\times N_{\beta}^{\alpha}$ and |Z(H)|=2, 4 or $H=C_H(N_{\beta}^{\alpha})\times N_{\beta}^{\alpha}$ and $C_H(N_{\beta}^{\alpha})\simeq D_{\beta}$. In the latter case $G_{\alpha\beta}=Z(G_{\alpha\beta})\times N_{\beta}^{\alpha}$ and $Z(G_{\alpha\beta})\simeq Z_2\times Z_2$, contrary to Lemma 2.6(ix). In the former case, we have |Z(H)|=2. For otherwise $Z(H)\leq G_{\beta}$ and $Z(H)\cap z^G\neq \emptyset$ and so letting $u\in Z(H)\cap z^G$, we have |R|=3 |F(u)|-1=5, a contradiction. Therefore $Z(H)\simeq Z_2$ and so $|z^G\cap H|\leq 25+25=50$, while $|z^G\cap H|=15|G_{\alpha\beta}|/C_{G_{\alpha}}(z)=15\cdot120/24=75$, a contradiction.

5. Case (III)

In this section we assume that $N_{\beta}^{\alpha} \simeq PSL(2,p^m)$, where n = mk and k is odd. Set $p^m \equiv \mathcal{E} \in \{\pm 1\}$ (mod 4). Then $q \equiv \mathcal{E} \pmod{4}$ as k is odd. In section 6 we shall consider the case that $N_{\beta}^{\alpha} \simeq A_4$, so we assume (p,m) $\neq (3,1)$ in this section. From this N_{β}^{α} is a nonabelian simple group and so $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ or $N^{\alpha} \cap N^{\beta} = 1$. If $N^{\alpha} \cap N^{\beta} = 1$, then $C_{\mathbf{G}}(N^{\alpha}) = 1$ by Lemma 2.2 and $N_{\beta}^{\alpha} \simeq N_{\beta}^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_{\beta}^{\alpha}N^{\beta}/N^{\beta} \simeq Z_{2}^{\times Z_{n}}$, a contradiction. Hence $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$.

Let z be an involution of N_{β}^{α} . Suppose $z^g \in G_{\alpha\beta}$ for some $g \in G$ and set $Y = \alpha^g$, $S = \beta^g$. Then $z^g \in N_{\delta}^{\gamma} \cap G_{\alpha\beta} \leq N_{\alpha}^{\gamma} \cap N_{\beta}^{\delta} \leq N^{\alpha} \cap N^{\beta}$ and so $z^g \in z^{N_{\delta}^{\alpha}}$.

Hence $C_G(z)^{F(z)}$ is doubly transitive and by Lemma 2.8(i), |F(z)| $= (q-\epsilon)r/(p^m-\epsilon) + 1$. In particular |F(z)| > 3r + 1 as $(p^n-\epsilon)/(p^m-\epsilon)$ $\geq p^{2m} + \epsilon p^m + 1 > 3$.

By Lemma 2.9, $C_G(N^{\alpha}) = 1$ and one of the following holds.

(a) $C_{G}(z)^{F(z)} \leq APL(1,2^{c})$.

(b) $C_{G}(z)^{F(z)} \ge PSL(2,p_{1})$ $(p_{1} \ge 5)$, r = 1 and $|C_{N\alpha}(z) : C_{N\alpha}(z)|$

 $= p_1$.

(c) $C_{G}(z)^{F(z)} = R(3)$.

Let Y be a cyclic subgroup of $C_{N_{\mathbf{g}}^{\mathbf{x}}}(z) \simeq D_{p^{\mathbf{m}}-\mathbf{g}}$ of index 2. Since $C_{\mathbf{G}_{\mathbf{x}}}(z) \succeq Y$, $z \in Y$ and $C_{\mathbf{G}}(z)^{\mathbf{F}(z)}$ is doubly transitive, we have $\mathbf{F}(Y) = \mathbf{F}(z)$. By the similar argument as in (3.1), $\mathbf{N}^{\mathbf{x}} \cap \mathbf{N}(C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)) = C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)$ or $\mathbf{N}^{\mathbf{x}} \cap \mathbf{N}(C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)) \simeq A_4$. Hence by Lemmas 2.3 and 2.4 $|\mathbf{F}(C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z))| = 1 + |C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)| |\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}| = C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)|\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}|$ or $1 + |A_4| |\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}| = C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)|\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}|$. Therefore $|\mathbf{F}(C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z))| = r + 1$ or 3r + 1. From this $C_{\mathbf{N}_{\mathbf{g}}^{\mathbf{x}}}(z)^{\mathbf{F}(z)} \simeq Z_2$.

In the case (a), $(r+1)^2 = 1 + (p^n - \epsilon)r/(p^m - \epsilon)$ by Lemma 2.5 and hence $r = (p^n - \epsilon)/(p^m - \epsilon) - 2$ mk. Since $(p^n - \epsilon)/(p^m - \epsilon) \ge ((p^m)^k + 1)/(p^m + 1)$ = $\sum_{i=0}^{k-1} (-p^m)^i$ and $k \ge 3$, we have $p^{m(k-1)}(p^{2m} - p^m + 1) \le mk$, hence $(p^m)^{k-3}/k$

TENNOJI, OSAKA, 〒513, JAPAN

 $m/(p^{2m}-p^{m}+1) < 1$. Thus k = 3, m = 1 and p = 3, cotrary to $(p,m) \neq (3,1)$.

In the case (b), r = 1, $p_1 = (p^n - \epsilon)/(p^m - \epsilon)$, $p_1(p_1 - 1)/2$ s and $p_1 = p_1 + p_2 = p_1 + p_2 = p_2$

In the case (c), r+1=4 and $1+(p^n-\epsilon)r/(p^m-\epsilon)=28$ and so r=3 and $(p^n-\epsilon)/(p^m-\epsilon)=9$. Hence $9\geq (p^{mk}+1)/(p^m+1)\geq p^{2m}-p^m+1$, so that $p^m=3$, a contradiction.

6. Case (IV)

In this section we assume that $N_B^{\alpha} \simeq A_A$ and $q=3,5 \pmod 8$. If $N^{\alpha} \cap N^{\beta}=1$, by Lemma 2.2, $C_G(N^{\alpha})=1$ and so $N_B^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_B^{\alpha}N^{\beta}/N^{\beta} \leq Z_2^{\alpha}Z_n$. Hence $N_B^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq 1$ or Z_3 , so that $Z_3^{\alpha} \cap G_{\alpha\beta} = Z_3^{\alpha} \cap N_B^{\alpha} = Z_3^{\alpha}$ for an involution $Z \in N_B^{\alpha}$. Therefore $C_G(Z)^{F(Z)}$ is doubly transitive. By Lemma 2.9, $C_G(N^{\alpha})=1$ and one of the following holds.

- (a) $C_c(z)^{F(z)} \le AFL(1,2^c)$ for some integer $c \ge 1$.
- (b) $C_G(z)^{F(z)} \ge PSL(2,p_1)$ $(p_1 \ge 5)$, r = 1 and $|C_{N^{\alpha}}(z) : C_{N^{\alpha}_{\beta}}(z)| = p_1$.
- (c) $C_C(z)^{F(z)} = R(3)$.

Let T be a Sylow 2-subgroup of N_{β}^{α} . Then $z \in T$ and by Lemmas 2.3 and 2.4, $|F(T)| = 1 + |N_{N^{\alpha}}(T)| r/|N_{\beta}^{\alpha}| = r + 1$. By Lemma 2.8(i), $|F(z)| = (q-\epsilon)r/4 + 1$. Hence $T^{F(z)} \simeq Z_2$ if $q \neq 5$. If q = 5, as $PSL(2,5) \simeq PSL(2,4)$, (ii) of our theorem holds by [4]. Therefore we may assume $q \neq 5$.

In the case (a), $(r+1)^2 = 1 + (q-\epsilon)r/4$ by Lemma 2.5. Hence $r = (q-\epsilon-8)/4$ and $r \mid n$, so that q = 11 or 13 and r = 1. Let R be a Sylow

3-subgroup of $G_{\alpha\beta}$. Then $R \simeq Z_3$ and $R \leq N_{\beta}^{\alpha}$ because $G_{\alpha\beta}/N_{\beta}^{\alpha} \simeq G_{\alpha\beta}N^{\alpha}/N^{\alpha}$ $\simeq 1$ or Z_2 and $N_{\beta}^{\alpha} \simeq A_4$. By Lemma 2.8(ii), |F(R)| = 1 + 12/3 = 5 and $N_{C}(R)^{F(R)}$ is doubly transitive. Since $N_{C}(R) \simeq D_{12}$ or D_{24} and |F(R)| = 5, we have $|N_{C}(R)|_{5} = 5$. Let S be a Sylow 5-subgroup of $N_{C}(R)$. Then [S, R] = 1 as $N_{C}(R)/C_{C}(R) \leq Z_2$. Since $S \neq |G_{\alpha\beta}|$, |F(S)| = 0 or 1. If |F(S)| = 1, $|F(S)| \subseteq F(R)$ and so $S \neq |F(R)| = 1 + |N^{\alpha}| = 56$ or 92. This is a contradiction.

In the case (b), $p_1(p_1-1)/2$ s and s $2n(q-\epsilon)/2 = 4np_1$, where s is the order of $C_{G\alpha}(z)^{F(z)}$. Hence p_1-1 8n. Since $p_1=(q-\epsilon)/4$, $p^n-\epsilon-4$ 32n and so we have q=11,13,19,27 or 37. If $q\neq 27$, by Lemma 2.6, $C_{G\alpha}(z)$ $\simeq D_{q-\epsilon}$ or $D_{2(q-\epsilon)}$ and so $C_{G\alpha\beta}(z)^{F(z)}\simeq Z_2$. Hence $(p_1-1)/2=2$. From this q=19. Let R be a Sylow 3-subgroup of $G_{\alpha\beta}$. By the similar argument as in the case (a), $N_G(R)^{F(R)}$ is doubly transitive and |F(R)|=1+18/3=7. Hence 7|G|. On the other hand $|G|=|\Omega||G_{\alpha}|=(1+|N^{\alpha}:N_{\beta}^{\alpha}|)|G_{\alpha}|=(1+18\cdot19\cdot20/2\cdot12)\cdot2^{\frac{1}{2}}\cdot18\cdot19\cdot20/2=2^{3+\frac{1}{2}}\cdot3^2\cdot5\cdot11\cdot13\cdot19$ with $0\leq i\leq 1$, a contradiction. If q=27, then $|C_G(z)|_2=|F(z)|_2 \times |C_{G\alpha}(z)|_2=8\times |G_{\alpha}|_2$, while $|\Omega|=1+|N^{\alpha}:N_{\beta}^{\alpha}|=1+26\cdot27\cdot28/2\cdot12=820=2^2\cdot5\cdot41$ and so $|G|_2=4|G_{\alpha}|_2$. Therefore $|C_G(z)|$ 4 |G|, a contradiction.

In the case (c), r + 1 = 4 and $1 + (q-\epsilon)r/4 = 28$. Hence r = 3 and q = 37, contrary to $r \mid n$.

7. Case (V)

In this section we assume that $N_{\beta}^{\infty} \simeq S_{4}$ and $q \equiv 7,9 \pmod{16}$. We note that $4 \nmid n$.

First we argue that $N_B^{\alpha} = N^{\alpha} \cap N^{\beta}$. Suppose $N_B^{\alpha} \neq N^{\alpha} \cap N^{\beta}$. Then $C_G(N^{\alpha})$ = 1 by Lemma 2.2. Since $N_B^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_B^{\alpha}N^{\beta}/N^{\beta} \leq Z_2 \times Z_n$, we have $N^{\alpha} \cap N^{\beta} \simeq N_A^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq N_A^{\alpha}/N^{\alpha} \cap N^{\beta} \simeq Z_2$. Hence as

TENNOJI, OSAKA, ₩543, JAPAN

Out $(S_A) = 1$, $Z(N_B^{\alpha}N_{\alpha}^{\beta}) \simeq Z_2$. Set $\langle t_1 \rangle = Z(N_B^{\alpha}N_{\alpha}^{\beta})$ and let $t \in I(N_{\alpha}^{\beta}) - I(N_{\alpha}^{\alpha})$. Since $C_{N\alpha}(t_1) \ge N_{\beta}^{\alpha} \simeq S_4$ and $\langle t \rangle N^{\alpha} = N_{\alpha}^{\beta} N^{\alpha}$, by Lemma 2.6, we have $C_{M} \propto (t) \simeq PGL(2, \sqrt{q})$ and $|F(t)| = 1 + 3(q-\epsilon)r/8$ by Lemma 2.8.

Let P be a Sylow p-subgroup of $C_{N^{\alpha}}(t)$. Then $|P| = \sqrt{q}$. If $p \neq 3$, P acts semi-regularly on $F(t)-\{\alpha\}$ and so \sqrt{q} | $3(q-\epsilon)r/8$. Therefore \sqrt{q} | r and so $5^n \le n^2$ as $p \ge 5$ and r | n. But obviously $5^n > n^2$ for any positive integer n. This is a contradiction. If p = 3, |P|: Py = $\sqrt{q}/3$ or \sqrt{q} for each $\ell \in \Omega - \{\alpha\}$. Hence $\sqrt{q}/3 \mid 3(q-\epsilon)r/8$ and so q $81r^2$. In particular, $3^n = q = 81n^2$. From this, $n \le 7$. Since $q = 3^n$ \equiv 7 or 9 (mod 16), we have $q = 3^2$ or 3^6 . If $q = 3^2$, $|\Omega| = 1 + |N^{\alpha}| : N_8^{\alpha}|$ = 1 + 8.9.10/2.24 = 16, a contradiction by [9]. If $q = 3^6$, |F(t)| = 1 + 273r and $|F(t) - \{\alpha\}| \ge |C_{N\alpha}(t)| : C_{N\alpha}(t)|$

 $\geq |PGL(2,3^3)|/8 = 2457$, contrary to r | 3. Thus $N_B^{\alpha} = N^{\alpha} \cap N^{\beta}$.

Let V be a cyclic subgroup of $\mathbb{N}_{\mathcal{B}}^{\bowtie}$ of order 4 and let U be a Sylow 2- subgroup of N_{β}^{α} containing V. Then $U = N_{N_{\alpha}^{\alpha}}(V)$, $|F(V)| = 1 + (q-\epsilon)r/8$ by Lemma 2.8 and |F(U)| = 1 + 8.3r/24 = r + 1 by Lemmas 2.3 and 2.4. If q \neq 7,9 , then |F(U)| < |F(V)| and hence $\textbf{U}^{F(V)} \simeq \textbf{Z}_2$. Suppose q = 7 or 9. Then r = 1 as $r \mid n$. Hence $|\Omega| = 1 + |N^{\alpha}| = 8$ or 16. By [10], we have a contradiction. Therefore $U^{F(V)} \simeq Z_2$.

Suppose $V^g \leq G_{\alpha\beta}$ for some $g \in G$ and set $Y = \alpha^g$. Then $V^g \leq g^{-1}N^{\alpha}g \cap G_{\alpha\beta}$ $\leq \ \text{N}^{\chi} \cap G_{\alpha\beta} \leq \ \text{N}^{\chi} \cap \text{N}^{\chi}_{\beta} \leq \ \text{N}^{\alpha} \cap \text{N}^{\beta} = \ \text{N}^{\alpha}_{\beta}. \text{ As N}^{\alpha}_{\beta} \simeq S_{4} \text{ , } V^{g} = V^{h} \text{ for some } h \in \mathbb{N}^{\alpha}_{\beta}.$ Hence $N_G(V)^{F(V)}$ is doubly transitive. By Lemma 2.9, $C_G(N^{\alpha}) = 1$ and one of the following holds.

TENNO CSAKA, \$543 JAPAN

- (a) $N_G(V)^{F(V)} \leq A\Gamma L(1, 2^c)$.
- (b) $N_{C}(V)^{F(V)} \ge PSL(2,p_{1}), p_{1} = (q-\epsilon)/8 \ge 5.$
- (c) $N_{G}(V)^{F(V)} = R(3)$.

In the case (a), $(r+1)^2 = 1 + (q-E)r/8$ by Lemma 2.5 and so r = (q-E-16)/8 and $r \mid n$. From this q = 23 or 25 and r = 1. Since $|\Omega| = 1 + ||N^{\alpha}|| \cdot ||N^{\alpha}|| = 2 \cdot 127$ or $2 \cdot 163$, we have $|G|_2 = 2|G_{\alpha}|_2$, while $|N_G(V)|_2 = ||F(V)||_2 ||N_{G_{\alpha}}(V)||_2 = 4|G_{\alpha}||_2$, contrary to $||N_G(V)||_2$ ||G|.

In the case (b), $p_1(p_1-1)/2$ s and s $2n(q-\epsilon)/4 = 4np_1$, where s is the order of $N_{G\alpha}(V)^{F(V)}$. Hence p_1-1 8n. From this, $p^n-\epsilon-8$ 64n and so q=23,41, 71 or 73. Since p_1 is a prime and $p_1=(q-\epsilon)/8\geq 5$, $q\neq 23,71,73$. Therefore q=41 and $|\Omega|=1+|N^{\alpha}|:N^{\alpha}_{B}|=1+40\cdot 41\cdot 42/2\cdot 24=2^2\cdot 359$, so that $|G|_2=4|G_{\alpha}|_2$. Since $N^{\alpha}_{B}=N^{\alpha}\cap N^{\beta}$, $C_{G}(z)^{F(z)}$ is transitive by Lemma 2.1. On the other hand $|F(z)|=1+40\cdot 9/24=16$ by Lemma 2.8(i) and so $|C_{G}(z)|_2=16|C_{G\alpha}(z)|_2=16|G_{\alpha}|_2$, contrary to $|C_{G}(z)|$ |G|.

In the case (c), r + 1 = 4 and $1 + (q-\epsilon)r/8 = 28$. Hence r = 3 and q = 71 or 73, contrary to $r \mid n$.

8. Case (VI)

In this section we assume that $N_{\beta}^{\alpha} \simeq A_5$ and $q \equiv 3,5 \pmod{8}$. In particular, n is odd. If $N_{\beta}^{\alpha} \neq N^{\alpha} \cap N^{\beta}$, then $N^{\alpha} \cap N^{\beta} = 1$, $C_{G}(N^{\alpha}) = 1$ and so $N_{\beta}^{\alpha} \simeq N_{\beta}^{\alpha} N^{\beta} / N^{\beta} \leq \operatorname{Out}(N^{\beta}) \simeq Z_{2} \times Z_{n}$, a contradiction. Hence $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$. Let z be an involution in N_{β}^{α} and T a Sylow 2-subgroup of N_{β}^{α} containing z. Then, by Lemma 2.8 $|F(z)| = 1 + (q-\epsilon) 15r/60 = 1 + (q-\epsilon)r/4$ and by Lemmas 2.3 and 2.4 $|F(T)| = 1 + 12 \cdot 5r/60 = 1 + r$. Since $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$, $Z^{G} \cap G_{\alpha\beta} = Z^{G} \cap N_{\beta}^{\alpha} = Z^{N_{\beta}^{\alpha}}$ and so $C_{G}(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_{G}(N^{\alpha}) = 1$ and one of the following holds.

DEPARTMENT OF MATHEMATICS

OSAKA KYOKU UNIVERSITY

TENNICE OSAKA, \$543, JAPAN

- (a) $C_{c}(z)^{F(z)} \leq APL(1,2^{c})$.
- (b) $C_G(z)^{F(z)} \ge PSL(2,p_1), p_1 = (q-\epsilon)/4 \ge 5.$
- (c) $C_G(z)^{F(z)} = R(3)$.
- In the case (a), by Lemma 2.5, $(q-\epsilon)/4 = 1$ or $(r+1)^2 = 1 + (q-\epsilon)r/4$. Hence q = 5 or $r = (q-\epsilon-8)/4$ n. If q = 5, then $N_{\beta}^{\alpha} = N^{\alpha}$, a contradiction. Therefore $p^n \epsilon 8$ 4n and so n = 1 and q = 11 or 13. If q = 13, we have $|G_{\alpha}|$, a contradiction. Hence q = 11 and $|\Omega| = 1 + |N^{\alpha}|$: $|N_{\beta}^{\alpha}| = 1 + 10 \cdot 11 \cdot 12/2 \cdot 60 = 12$. By [9], $|G_{\alpha}| = 12$ and so (iii) of our theorem holds.

In the case (b), we have $p_1(p_1-1)/2$ s and s $2n(q-\epsilon)/2 = 4np_1$, where s is the order of $C_{G_{\alpha}}(z)^{F(z)}$. Hence p_1-1 8n and so $p^n-\epsilon-4$ 32n. From this q=19,27 or 37. Since 5 $|G_{\alpha}|$, $q\neq 27,37$. Hence q=19 and $|A_1|=1+|N^{\alpha}:N_{\beta}^{\alpha}|=1+18\cdot19\cdot20/2\cdot60=2\cdot29$. Since $G_{\alpha}\simeq PSL(2,19)$ or PGL(2,19), $|G_1|=|A_1||G_{\alpha}|=2\cdot29\cdot2^{\frac{1}{2}}\cdot18\cdot19\cdot20/2=2^{\frac{3+1}{2}}\cdot3^2\cdot5\cdot19\cdot29$ with $0\leq i\leq 1$. Let P be a Sylow 29-subgroup of G. Then P is semi-regular on A_1 and A_2 , A_3 , A_4 , A_4 , while A_4 A_4 A_4 A_5 A_4 A_5 A_5 A_5 A_6 A_6

If $C_G(z)^{F(z)} = R(3)$, r + 1 = 4 and $1 + (q-\epsilon)r/4 = 28$ and hence r = 3, q = 37, contrary to $r \mid n$.

Osaka Kyoiku University

References

- [1] M. Aschbacher: \mathcal{F} -set and permutation groups, J. Algebra 30 (1974), 400-416.
- [2] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
- [3] C. Hering: Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometriae

Dedicata 2 (1974) 425-460.

- [4] Y. Hiramine: On doubly transitive permutation groups, Osaka J. Math. to appear.
- [5] B. Huppert: Zeifach transitive auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
- [6] B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
- [7] M. O'Nan: A characterization of $L_n(q)$ as a permutation groups, Math. Z. 127 (1972), 301-314.
- [8] M. O'Nan: Normal structure of the one-point stabilizer of a doubly transitive permutation group II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
- [9] C. C. Sims: Computional methods in the study of permutation groups, (in Computional Problem in Abstract Algebra), Pergamon Press, London, 1970, 169-183.
- [10] R. Steinburg: Automorphism of finite linear groups, Canad. J. Math. 12 (1960) 606-615.