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ON p-RADICAL DESCENT * OF HIGHER EXPONENT
Kiyoshi BABA

§ 0. Introduction |

In the paper [8], P. Samuel has develd?ed_the theory of
p-radical descent of exponent one by makihg use,df logarithmic
dériVaﬁives. In this article we shall givé_a‘generalization
of hls theory to the case of p-radﬂcal descent of higher
exponent w1th the aid of a flnlte set of hlgher derivations -
of flnlte rank. - | |

| In the first sectlon some preparatory results are collected.

Lef A be a Krull domain of characterlst¢c P > O and K- be
its quotient field. Let D = (Q(l),_;.., p(r)) be an_r—tuple
of non-trivial higher derivations D{1)’s of ramk m; on K

which léave A invariaﬁt.» For simplicity we shall abuse the
NES)

notation to denote the ring homomorphism of K into

a truncated polyndmial ring of order m; oOver 'K, i.e.,
. m+l A .
-K[ti:’m 1:= K[T ]/T associated to the higher derivation

Q(i). Let K' be the intersection of the fields of Q(l)—

constants (1 £ 1< r) and let  A':= AN K'. Let T = (Ti,

..y T.) be an r-tuple of indeterminates and, let t;: be the |
| m,+1 - my +1 )

residue class of T; modulo Til - in  KLTy ]/T . We

shall set f:: (ts oees tr) and m:i= (my, cee, mr). “We

shall denote 'er K[ti: mi] by K[t : m]. Similarly we denote

y



r .
TTAlt: ml] by A[t:m] where Alt;: my] is a truncated
i=1 : o ,
polynomial ring of order m; Over A. Furthermor"e we shall define
a -ring_ homomorphism D of - K into K{t:m] by lD(z) = (D(l)(z)
ceesy p(r)(z))_(z' € K). Let LA and LA be the sets of
elements defined respectively by - | |
La
Ll
A

Let B Div(A')————>Div(A) be the homomorphlsm deflned by

{D(z)/z e K[t: m]lz e K, D(z)/z éA[t 'm]}

I

{ID(u)/u l u €A }.

i g,) e( g) )@ where; $ 1is a prime ideal of height one
in A', g) is the unique prlme ideal of height one in A W:Lth
S N A' = g and e( g) ) is the ramification index of §>
over ~ §. Then we can define the homomorphism 3 cr(a')
_.§Cl(A) induced by I | (ct. !:.8]). ‘Let D  be the subgroup
of Div(A') consisting of divisors E’s such that j(E) is

principal and let @ 0 : b ———>£,A/LA be the horn'omorphism'~

defined by @O(L) = D(x)/x modulo LA’ where E é.,Q and’
§(E) = alvA(X)» Let O : Ker(F) = LO/F (4’ )—-———?iA/of,A be

the homomorphism induced by O o where F(A') denotes the

subgroup of Divl’(A') generated by principal divisors. Fur_thermore

we put },Li=m1n{ng(l) o, lSJsm}and n; = min

{n “r'ﬂi < ,,Lipn} where Q_(l) { D(l) [ 0< j< m } (l £ i< r).

We denote the Jacobian det(D(l)( Okk))

M1

for ™o = (0(1, ceoy O(r) &aAY and 1 £ s < r. We shall use

s<i, k<&r

by J(D: X; s, T)

v el m



the notation J(D: oL) instead of J(D: ;i 1, r). Our main

result in § 1 is the following:

 Theorem (cf. 1.6) Assume that the follqﬁing two conditions
hold: - | | |
ORECEE G Tl
(2) For each prlme ideal g) of height one.in A, there
exists ok in AT such that the. Jacobian J(D =) is not
contained in gj. _ o
‘Then the "homomorphism @33 Ker(ﬂ)w———?i./ll is,aﬁ

isomorphism.

The property (2) in the above theorem will be referred
to as '"the height one property”.' Waen the helght one property
is not satisfied, §§ is not necessarlly surjectlve., Even 1f
i) is not surjective, we can defermine, in.some cases,‘the

cokernel. of Q§ (§ 2).  As a byproduct we get the following:

Theorem (cf. 2.7). Assume that A is a unigque facﬁerization

domain with J(D: A= { J(D : &) | évAr}‘% {0} and

P Ny+eootny,
[K : XK1 =0p . Let @ = cA be a prlnc1pal prlme

ideal of height one in A and let s(lj( @))'— min {s e N l
(Q(i)(c)/e)s e:A[ti;‘mi]} ‘for 1 é.i < r, and s O ):= max

{s(i)( @ ) [1.é.i < r}. Then the,fdllOWings are equivalent to

each other:



(1) @ : Ker(j)—> i—A/‘i—;; is an isomorphism.

(ii) For each prime ideal of height one in A, either
_J(D:A)gﬁ@ or e(p ) =s(p) occurs.. |

If A 'is a ﬁnique factoriiation domain, it turns out thét;
Ker(J) is isomorphic to C1(A'). Therefore, in order to determine
C1(A'), it suffices to know Xer(j). In the finai section some
examples of rings are presented'whose divisor class groups are
calculated by applying Theorem 1.6. |

‘The.author is very grateful to Professor Y. Nakal for many
valuable suggestions and encouragement during the preparationA
of this paper. | | |

Each ring appeared in this paper is commutative with idehtity.
Our terminology and notatioh are as follows:

et A Dbe a Krull domain.

P(A) : the set of prime ideals of height one in A.

Div(A) : the free abelian group generated by elements- of
P(A). An element of Div(A) 1is called a divisor.

We shall define the divisor div,(a) (a € A—{0]) by
divA(a) = Zlv@(a)§) wheré the sum is taken over all prime
'ideais. @)’s in P(A) and Vg is the normalized valuation
assdciated to the prime ideal @). Let K Dbe the quotieht

field of A and X be an element of K*. We define

divA(X)iz div,(a) — div,(b) where x = a/b (a, b & A; b # 0).

F(4A) : the subgroup of Div(A) generated by {divA(x) [xké K*}.

%e call an element of F(A) a principal divisor.



‘-Cl(A):: Div(A)/F(A)': the divisor class group of A.
¢1(E) : the divisor class of a divisor E. |
Supp(E) : the support of a divisor E, i.e., the set of

all prime ideals G}’s in P(A) such that E =‘2;n&@)

n@,v + 0.

| § 1. Fundamental theorem- 4

| " Let A and B be commutatlve rings with common 1dent1ty
such that A < B. A higher derivation D = { p; lo<ism }
-of renk m of A into B 1is a collection of additive |

homomorphisms of A into B satisfying the following conditions:

(1) 'Do(a) =.a for all a in A.
. n |
| (2) Dngab) = j;o Dj(a)Dn__j(b)

for 0<n< m and a, b €A (cf. [51, 61).

Let B[t : m] be a truncated polynomial ring of order m

over B, i.e., B[t : m] = B[T]/TM+1. We can define the ring

homomorphism ¢£) of A into B[t : m] associated to a higher
derivation D by the following manner:
¢D(a) = Z Dj(é_l)tJ for a & A.

For s1mnllc1ty we shall abuse the notation D to denote the

rlng homomorphisnm ¢I) when there is no fear of confusion.

If Q(a) = a, a 1is called a Q—constant. Tie say that D is

non—trivial if there exists an element in A which is not a



D-constant. For a non-trivial higher derivation D, the smallest

integer among those ] such that Dj £ 0 for 1£ j<m 1s

denoted by fL(Q). Let C Dbe a subset of A. We say that D

leaves C dinvariant if Dj(C)<C ¢ for 1% j<m. Let Q(l)
be a higher derivation of rank mj of A into B for 1<£ i s.i.
Let T = (Tl,'..., Tr) be an r-tuple of indeterm;ngtes -Tl,'

eeey T and let t:= (t1s sees tr) where' ty is the residue

m.‘+l m.+1

class of T; modulo 'I‘il - in B[Ti]/Til . We shall denote

r : ' v
Zj; Blt;: my]l by B[t : m] where m:= (mq, cees m.). Then

L : . 1
B[t : m] is a B-algebra in the usual way. Let D = (Q( ),

ceey Q(r)) be an r-tuple of higher derivations of rank m

of A into B. A ring homomorphism D of A into B[t : m]
is defined by B(a) = (0P (a), ..., D'F)(a)) (a€ ). The

intersection of Q(l)-constants for 14 i< r 1is called the

ring'of D—constants. First we shall prove two lemmas:

Lemma 1.1. Let A € B be integral domains of characteristic
p >0 eand let D= { Dj‘ 0 < j £ m} be a non-trivial highep
derivation of rank m of A into B. Set pM:= (D) and
d.:=D .. Then d/( ckpk) =0 if s < k and ds( o Py
, ) _ . v
= dg_y ( x )P if s >k ( X €4, fxps < m)..

Proof. The proof is easy, hence we omit it. Q.E.D.



" Lemma 1.2. Let M = (aij)léi,_jsr be»a-non—81ngular matrix.

Then after a suitable change of columns we can bring M 1into

the one such that every M(k) (1 £ ¥ £ r) is a non-singular

e  mnmatrix where
‘ Apyc s Bpp
. 1
: . M(A) = oo .
8yk *** Gprr
Proof. Let O(ij be the cofactor of a5 §° Then det M

=gy Oy * oAy Xy F e T Ay &,.. Since det M does
not vanish, X4t # O for some J'. Interchanging the first

column with the j'-th column, we may assume X471 +# 0, i.e.,

(2, o,

det M Continuing this process we will arrive at the

desired situation. : : o ' Q.E.D.

Let D = (D(l) ooy Q(r)) be an r-tuple of non-trivial
higher derivations of rank m = (ml; enoy mr). ¥We shall set
i . n |
Mys= fL(D( )) and ny:= min {n e N lmi < M4P j} where N
denotes the set of positive integers. Furthermore we shall set
pl)
Hi

n(D) =nl + oo.o SR ¢ S Then

r » is a derivation. We denote

the Jacobian det(Dyl)( A )) by J(D : oL ) for ¢K =(Q*l’
cesy cxr) € AF. Let T = (Tl, cees Tr) be an r-tuple of

ylpJ J

indeterminates Ty, eee Tpe We shall demote (T3~ , -eep T.0 )



J ' '
by TP K where P = (}11, ey Hr) e 7.

Proposition 1.3. Let L € F be fields of characteristic

p >0 and let D = (_]Q(l), cess P(r)) be an r'-—tuple of higher

derivations of rank m = (my, ..., m,) of L into F. Let

L' be the field of D-constants. Suppose that there exists

an element ®& = (Xy, ..., X,.) in LY such that the Jacobian

J(D : ) does not vanish. Then we nave [L : L'] an(ﬂ)).

Furthermore if the equality holds, then L= _L'[9<1, sees o(r].

Proof. (I) First we shall prove the Proposition in the -

case ni= ny = ee. =1, Let ij be a subfield of L defined

| | 5
by {zel]|D(2 = (2, ..., z) mod P} for 1< j<n.

Then we have g 2Ly 2eee 2 L, where we put Lgy:= L and

L:= L'. It suffices to show that [-Lj~l : Lj]-z pr for 1<£j<n.

For si-mplicity we shall set dgl):: 'D(;Z?Dj. From the definition |
o i '
of Lj_'l, the restriction of ogj_'i to Lj—l is a derivation

of Lj, for 1<i<r. Let ri}_l'bethe intersection of the

P~ _
Lj_lj L..

kernels of these derivations. Then we have L. 4 2 i

j
| i1 i-1
By Lemma 1.1 we know J(D|Lj_; : P ) = a3 X)) o0

' j‘—,l : : .
and @_gp & Lg_'l. Hence these derivations are linearly

independent oirerA F. This implies that [Lj—l : Lj—l] Zpr,



hence U’j—l : Lj] > pr'. From our argument we get the following

sequence:
i-1 -1

' 2
| . p p
Lj_q 2 L= le}xl y eees X 1 DLy

for 1 < j <n. To prove the latter half, assume that [L : L']

_ .nr . . _.r . (1) # o

= p?Y'. Then we have [Lj~l Lyl =P - Since dj-lILj (1£ i< r)

are linearly independent over F, [L’J;' : Lj] > pt. 'Ifherefofe

we see that L, j = L‘? for 1< j<mn, hence L = L'E(xl’- eoes Xp]- )
\(II) .Next we shall prove the general case. Without loss

of generality we 'may assume that nj; £ n, < eee £ n.. Horeover

by Lemma 1.2 we may assume that JD : & ; k, _r) £ O for

1< k £ r. This implies that for every k there exists an

integer k' such that dék)(o(kx) £0 and k< k'<r. Let

—

nl< < ﬁf be ‘integérs with the property {nl, cees nr}
:{ﬁl,: cees ﬁf} and let ry i= #{i [ni =1n,, 1£1i% r} for
1< £ f . Then we know
ry + Iy + + rf = r,
rif; + rofi, + eee rj,ﬁf =1nq + Nyt oee. F Do
For convenience sake we put ryi= 0, ﬁozz_ »O and S?&:"' gt oeee * Iye
‘ Let K, Be the subfield of »L. defined bj

mh+l o :
Z mod Th ‘(lS hsg)_)a

(it

{zer lp(h)(é)

p(fz)(z) = z mod TVZV. (Wl = Hzpﬁl; S?\< < I‘)}

for 12A<P-1 (note that ny > Y > n,). Then we have
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- _. i7¢ > v . 1 .
Koo— L > l\l D L) D I}j’_l D I{F.— L -
Vie shali claim the following inequality for 1 SALP

[K, 1 : K1 p 52

Where Eqi= (r - 5/\_1)(?1;\—'?1)\_'_1). Let é(i) be the restriction
of _]}(i) to K, 3. Then for 1’{9\ <f, é(i.) is a higher
derivation of Kx—l into F of rank m; for SA—i < iX SK

and of rank w; — 1 for S;\ < i £ r respectively. For A =49,

'4(1), is a higher derivation of X, ; dinto F of rank m

A i

for 55,“1 < i £ r. The following five assertions are easily

verified: 4
r .
(1) X, = /\ (the field of é(i)-constants).
i= S,/\_l'l"l ) : : )

Dh-1

@ pa®) = (§poy < i< 7).

(3) For 1< ALP,

. ny_1*s - - |
mln{séﬁﬁlmu< L P }zn;\--n)\_1 (§p-1 < us Salde
For 1< AL P,
: n, n +5 A
: -1 - - i .
min {s &N l My P A L P A } =0, - 0,y ( 8)\ < v<4r)

where N denotes the set of positive integers.
N - Pa-1 e
() o €Xg where q:= p ( 8;\_1 <i<r).

(5) JCA: k%5 §, 1+ 1, r) =d@:o; 6, 4+ 1 r)?

£+ 0 where A = (é(l), cees é}(r)). Therefore we get [Kl—l : K}
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> peﬁ. Furthermore Ey= Ty * <o Dy = n(b).  Hence
A=

we have [L : L'] z_pn(D . In order to prove the latter half,

| o

S

it suffices to prove the following: Ka—l = KA where
N 3 - . v ‘v .. . .
K= KIxgs S <12 r] for 14A <P . Since [L:L']

I . » £
= p (D), we have EKA—l : KA] = p A

.  Applying the step (I)

. . ~ : :

to 'E;‘ and 4(14 Ka ( S)—i ' ; Lr), it is seen that

(%, : k,]2p% . sin X %, S K,, we h K, o =K,
A BRalz R e R Y ave Ky-1 = fa

' Q.E.D.

Remark l.4. The converse of the latter half of the
Proposition 1.3 does not hold.. Let k be ajfieid of characteristic

o> 0. Let x, y be indeterminates over k and let L:= k(x, y).
Let Q(l) (i = 1, 2) be higher derivations on L over k

of rank p — 1 and p2-— 1 defined respectively by

H

P(y)(x) x(1 + tq9), Q(l)(y) =¥+ tys

@) = x o+ oty p{®(y) = y(1 + tZ)A.

 Then =ny = 1, n, =2 and J : (x, y) =xy—1#0. By

2
a simple calculation we see that L' = k(xP , yp ). Therefore

n.+n
L = L'[x, y], while [L : L'l = PQ > P e,

(1.5) ‘Let A be a Krull domain of characteristic p>0

with the quotient field K. Let D = o, ..., 2 ve
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an r-tuple of non-trivial higher derivations of rank m = (ml,

coey -mr‘)' ' bn K which leave A invariant. Let K' be the
field of D-constants and A':= ANK'. Then A' is also a
Krull' domain. Since ahy element of K dis of the form a/b
‘wit_h a & A, b €A', K' is the quotient field of A'. For
any prime ideal g in P(A'), there exists only one prlme
ideal @ in P(A) such that 83 NA' = &. From this fact |
we define the homomorphislm j: i V(A')-———%Div(.ll.) by ¢ 3/)
= e g) )5) where e( O ) stands for the ramification 1ndex
of @) over ?— . Since A is in tegral over A', we can define
‘the canonical hOmomorphisrh 'j : CL(A')——>C1(A) dinduced by
the homomorphism § (cf. [81).

Let ‘LA and LA be sets of elements defined respectively

by

ﬁb .
Z.
1

{ D(z)/z é:K[t : m] lz e K*, D(z)/z € At : mj},

e

{ [D(u)/ulu e A }

where = denotes the set of :mveﬂtlble elements. Since we have
(D(z1)/21)(D(2,)/2,) = D(212,)/21%;
and

(0(z)/2)L = p(z"/27 (2 #0),

LA is an abelian group and LA is its subgroup.

Let {) be the subgroup of Div(A') consisting of
divisors E’s suéh that j(E) 1is principal. Then we get_
Ker(]) = D/Fa"). we shall define the homomorphism @O

of ) into'i',A/oﬂ,A by the foliowing manner: Let E be
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a divisor of J) and x Dbe an element of K* satisfying

i(E) :|divA(x). Then we set @}O(E)::'D(x)/x modulo i,A:

It is easily seen that i5o is well-defined. Moreover if

x' is in- k', é@o(divé,(x')) =-D(X')/X' =‘l where 1 = (1,
«e., 1) € AT, hence the homomorphism ) of. Ker(§) into
LA/LA induced by the homomorphism ®, is_aiso- well-—defined;

On the other hand, the relation D(x)/x-z D(u)/u (x € K*, u €A%)

-1

implies D(xu-l)/xu_l =L, i.e., xu - &K' and E = divAa(xu—l).

This implies that @ is injective (cf. [81, p.86). Set
= (HKhys eenes }kr) and n(D):= ngy + eee + N where

}Li:z f{(g(i)) and nj:= ﬁin{.n & N lmi < ’lipn } (1 £ il nr)..

Theorem 1.6.‘ Let A, K, XK', D and n(D) have the same
meaning as in 1.5. Assume the following two conditions hold:
(1) [k : k'] = 0.
(2) For each prime ideal o in P(4), thefe exists
an element ™ in AY  such that the Jacobian J(D : o)
is not Cohtained in .g). - | |
Then the homomorphism :.Ker(ﬁ)———e~i;A £'! is an

A
isomorphsm.

Proof. Since Q§ is injective, it suffices to prove
the following: If D(x)/x is in iLA (x € K*), then there

exists a divisor E in L such that J(E) = diVA(x). Set



Ly

ni= max {nl, cees nr} . Kote that for each prime ideal in

P(A') .there exists a unique prime ideal in P(A) which

.n
contracts to gl because AP < A'. Therefore the surjectivity

of O is seen by showing that if D(x)/x is in i:A (x € K*),

then e( p ) divides 7v@(x) for every prime ideal @) in
P(A)_ where v@(x) " denotes the normalized valuation of K

associated to the prime ideal @1.> Hence by localizing, we
may assume that A 1is a discrete valuation ring with the

maximal ideal @>. Thus we have only to show the following:

Proposition 1.7. Let A be a discrete valuation ring
with the maximal ideal g) and let K, K', D and n(D) have
" the same meaning as in 1.5, Assume that the following'two
conditions hold: ' |

(1) [K: k'] =p"P.

(2) There exists an element ©L in AY such that the
Jacobian J(D : ™ ) is not contained in @).' |

1f D(x)/x is in L, (x €K*), then e divides v(x)
where we put e:= el G)) and v is the normalized valuation

of K associated to A.

Proof. Our proof consists of several steps:

(I) First we shall consider the case my = 1 (hence

y e (1) (., ()1 -
}Li = ny = 1) for 1 £ i £ r. We shall set D _.«&1d, D } .



Then D(l)’s are derivations. We shall define the higher
derivation - é(l) = { id, A(l)} of rank 1 on X in the

following way:
i

~ .
b1 (), wew, D@, L, p{P ()
A (z) = 78t .. |
D) (), ey 0™ (2), ..., D)
for 7z <K (1< 4i<r) where J:= J(D : ®). Then we have
A(i?_(%k) = Sik where 'Sik denotes the Kronecker’s‘delta '
(14i, kx<r). Since J ismotin [, J is a unit of
A, hence A(i)'(A) C 4 for 1£i<Lr. Set A:= (4(1.),
...,Aéﬁr)). Since [X(i) is an A-linear combination of
D(k)’s and D(k> is also an A-linear combination of Afk)’é,
we have the following three assertions:
(1) KXK' is the field of A\ -constants.
(2) J(A k) = 1.
(3) Ax)/x e L.
Hence it suffices to prove the Proposition with respéct to
A instead of D. We shall prove that e divides v{x)
by induction on r. As is well known e takes no other
value thaﬁ some power of p. Hence in the.case r =1, it
suffices to prove the foiloﬁing: If p does not divide v(x);

then e = 1l.

15

Let ¢9gr. be a uniformisant of the discrete valuation ring'

4. Thnen we can write X = UJKY(X) for some u € A¥. Since
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AV Wy + v ARG/ = AP /x e n

and since p does not divide v(x), we have . A(l)('ﬂ;)/'ﬂ; < A,

o : U ¢ ¢ |
This implies that we can define the derivation A of
A/@ induced by A(l). Set R.:= A/@ and R':= A"/9
where ¢ := @ N A'. Since A(l)(c(l) = 1 implies A(l)
+ 0, we have [§& : £'1> 1. Therefore from the inequality
el[6: £'1<[K : K'] = p, it follows that e = 1.

Suppose r > 1 and the assertion holds for r — l.

Set K:= the field of é(l)éconstants and - A:= ANK. Since

[XK : K'T = p© and J(A|R : & ; 2, r) = 1, Proposition 1.3

implies that [K : K] = p and (XK : k'l = prfl.. Furthermore

~we have K = EE‘XI] cand K = K'[X,, ..., X, ]. Then the

s

restriction of A(i)_ to K is a derivation on K such

that AMV@D T for 2<1i <r. Let ey "be the ramification
index of g) over @ N h. Since [K : f];_ p and ) A(l)(O(]_)
=1, ey divides v(x) from the argument in the caée r=1.

Therefore we can write x = uy for some ub in A* and .y
in K*. It follows from A(x)/x = (A(/W(A(y)/y) that
A /y € (A/\K)tt :ml=40 : m]. 'Furtherﬁore J(A'T{_ :
X ; 2, r)=1e&el and &, .o, X, & I. Let e, be the
ramification index of & := e N A . over. £':= N A' and
¥ Dbe the normalized valuation of K associated to the prime
ideal ?. Apply the induction assumption to VAlT{‘,. then we

see that e, divides V(y). On the other hand vix) = v(y)
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L= ei?(y) and e = eje,. Hence e divides v(x).
(II) Suppose that mni= n; = ... = n,. We shall prove

the Proposition by induction on n. For the case n =1, let

I~

K = { z é-K‘ D(z) = (2, <0y z) mod ph* L }. Then K DK >K'

~—

and Proposition 1.3 implies that (K : X]>p". Since [K : K'}

= pY, we get % - K' and e divides v(x) by the previous

argument. Suppose that n > 1 and the Proposition is proved
for n - 1. Let Iy = {»z K [D(Z) = (2, «ee, z) mod TP Y }‘
and 'Aizz AN Ly. It is easily seen that | |
N (l) _
(1) (D [Ll) = 4P

(2) min {s & N lmi <_}lipl+s } =0y - l=n—-—1 (l'é.i,s.r).

(3) (DL, : ®P) = J(D : )P ¢ = PN AL
(1) P <. | |
Hence Proposition 1.3 implies that [K : Ll] = pr and [Li : K']

= p(n—l)r because ' [K : K'l= p"F. e shall prove that the
restriction of D to Ll is an r-tuple of non-trivial higher

derivations»of‘rank m on Ll which leave Ai invariant. We
know L, = K'[f, ceey %27 Dby Proposition 1.3. For any

element 2z in Ll’ 2z is of the form

. Pil P ir' . '7
z = )\ °1p el 1,00 renlo) TGy g € KD

il,...,iré_Z+
‘where Z_ denotes the set of non-negative integers. Therefore

wve get
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. pi pi

D(z) = 37 ey, DC) Loop(e) T
. . r : -

From Lemma 1.1 and the definition of Ly, it follows that

-

B(P) € Ly[t : m]. This implies that D(L;) < IyLt : m].
Since A]'_ = AN Li, D[Ll beéomes. an _kr—-tuple .of- non—t’riviai
h-igher_'deriva..tions of rAank m on Ll with the _desired property.
Let ey be the 'ramifica-tion .index o:f g) over § .. Let

: r}‘(/ be a subfield of K defined by { z & K ['{D(z) = (2, ceey Z)
“mod s } where L = (1, ..., 1). -Then we have K D'f{"j Ly
and Proposition 1.3 implies '[K : K1=p'. Since [X ‘Ll] = p%,
~we get r}{: Li and ey divides vix) by the argumen.t_ in (I).
Hence_we-can {xfrite x = uy for some u in A% Aa.nd y‘A in L;.
Therefore D(y)/y € ALt : rn] Let e, be the ramification
index of §, over g)f\ A" and v' De thé- hofmalized valuation
of L; associated to the prime ideal §1- By .indruc‘tionv

hypothesis, we know that es divides v'(y) ‘a.nd 'the_refore e
divides v(x). |

(I11) WYe shall prove the generé.l case. Without loss of
generality we may assume the following: -

(1)  ny £ 0, < cee L N
(2) I : oA ; Kk, r)%g) for 1 £k <£r.

Let Ny, e« n, and K, have the same meaning as in the step -

(I1) of the proof of Proposition 1.3. We shall' use 'the indu'ctio'n
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oﬁ "f£ . The case £ =1 1is treated in (II). Suppose that

f > 1 and the Proposition is proved for f — 1. Proposition

1.3 and its proof shows EKA—]. : Kﬁ]zpel. Since [K : K']

rn ‘
= pn(D), we have [K : Ky] = p b and Ky = K'1 =0

n(D)-rny
Let 'Al:: AN Kl and, ey be the ramification index of g)
over 5’1: g) N Al. Then the step (II) implies,tha't ey
divides v(x). Hence we can wr.ite x = uy for some u in.
A* and y in K_fl‘_. Then D(y)/y & Al[t.: m]. For ry<igr,
we have the followings: |
N () _m
1 @ rp) =

. n.+s
. 1¥s - .
_(2) min {s e N !mi < pyp } :‘ ng = ny.

(3) Ik, : o5+ 1, 1) = J0D: o 3 ry + 1, )

& AY  wi = opd
] where q:i=p ".

(L&) #{nl— ﬁl‘rl< iSr}<.f .

Let e, Dbe the ramification index of ﬁl over @ N A"

and vVv' be the normalized valuation of Kl associated to the
© prime ideal 3’,1. Then induction hypothesis implies that es

divides v'(y), hence e divides v(x). _ A Q.E.D. -
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§, 2. Cokernel of D)
lie shall retain the same notations and assumptions used

in 81, (1.5).

Propositioﬁ 2.1. Let S be a multiplicativély ciosed _’
subset of A' consisting of prime elements in A. Let H
be the subgroup of Div(A') generated by & € P(a") such.
that g N S # ¢ and L be the subgroup of i’A ‘ge.nerated
by the set {D(a)/a & f,A ‘a & A N AS} Letv LV LA denot‘e
the -subgroup of I«A generated by L and Jﬁ,z\. Let f Dbe
the restriction of $ to (4 + F(A")/F(A")) N Ker(F). Let
the homomorphisms Fg : CL(AJ—>Cl(Ag), Pg @ Ker(fg)
———%LAS/LAS be defined in a similar way as‘ 'j‘ and @
r.esp_ectively. Then we have the following commutative diagram

of exact rows and columns:

0 e .0
T | A ' /
0 —s coker(f) > coker( $ ) —— coker( @s)
_ . v

v L/ Ly— £A/£A~—>iAS/£AS
A N ,

1] ¢ g
0—> (8 + F(&")/F(A")) N Ker(3)—>Ker(J) ———>Ker(Jg) —>0
: : T /‘\ A

o - : 0 ' 0

where iA/vf,A—-——}fwA /I_AS is the homomorphism induced by
: ' S :
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the ‘inclusion LA———%LA and Zr';er(:ﬁ)——é-Ker(ES) is the
- S

natural homomorphism CL(A")—— Cl(Aé) .

Proof. The homomorphism Ker(j)——}Ker(jS) is well-defined

since we have a commutative diagram:

C1(A) —%—%CL(AS)

5 ' . jsT

61(A')———-——'———>01(Aé)

The middle sequence forms evidently a complex. For any element

D(x)/x & LA{\ L‘Z\‘S (x & K*), we can write

b(x)/x = D(a/s)/(a/s) = D(a)/a

bfor some afs & Ag (a €4, s €8). Since afs is a unit of

Ag, a isin AE. Hence D(a)/a is in LVi‘}‘ and the

middle row is exact. The exactness of the third row 1s seen

as follows:

0 —~——>"H + F(a')/F(A") ——> CL(A") ————> 01(Ag) —0

|

> Ker(J) ——>Ker(lg)

(O 0

0 —>

O —> 0 —>

is commutative where G = (H + F(A')/F(A')) n Ker(T). Since

S is generated by prime elements of A, we have CL(A) = Cl(AS)

([xl, cor. 7.3, [71). Therefore Ker(ﬁ)—%Ker(ﬁs) is

curiective. Furthermore Im(f) € L v £})/f ). The rest is
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immediate from the Snake lemma ({21, Chap. 1, 81. Prop. 2).

Q‘..E.D.

proposition 2.2. Let D ={ Dy |o £ ¢ m 7} bea higher
derivation of rank m on A and let é) be a principal prime |

ideal in P(A), say, @ = cA. Let

sgpi= min {s é.CN [ (l_gl(c)/c)S e Alt : ul }

S \
| ro:= win {Yé i l D((c) ¢ @ ]
(if .Dy(c) & @ for all 1 S_Y £ m, we put rgi= m + 1.
Then the following three assertions hold: ’

(1) s, is a power of p.
0

I o) . o ‘
‘(2) Write sg =D then o<o=m1n{ogez+ rop szl}

shere %, denotes the set of non-negative integers.

(%) (_]_)_(c)/c)hé At : m] if and only if sy divides h.

Proof. (1) Write sg = s'p%, pts'. Then it suffices to

prove that s' = 1. In the relation

: , « T pqx
(2(e/0)%0 = (14 wew s (g (W/@FEC 4 LT

('
rop

the coefficient of ¢t is of the form s'(Dr (c)/c)p + a

. : u ) )
(a € A). If rgp~ > m, then (D(c)/c)? < Alt = n], i.e.,

s' = 1 because of the minimality of sj. Hence if s'> 1,

; ns s Tap -
we must have rop"";, m. Then the coefficient of t 0 is



. oA ] o*
in A and Dr (c)P is in ¢-

A. This implies that D (c)
O .

To
is in cA = P, which contradicts to the definition of 1y
(note that ry< m).

(2) Set oA := min{b(ez+|rop°‘z_m+l}. Then we
o - . |
have (_I}(c:)/c)p & A[t : m], hence by the minimality of s,
. . " . | qo . -
we have sy < p> . On the other hand rpp "> m + 1 Dbecause
| %0 |
otherwise (D(c)/c)® & Aft : ml. Hence X4 2 '. Combining
these, g = ' .

(3) It suffices to prove the "only if" part. Write

h = Spa * h', 0 £h' < S5 Suppose that .(_D_(c)/c)h e Alt : ml.
o | o v o A
Since (D(c)/c) ~ < ALt : ml and (D(c)/c) is a unit of

v " . | » "
ATt : nl, we see that (D(c)/c) e At : ml. Hence (D(c)/c)

& Alt : m] and n' = 0 Dby the minimalitonf Sge Q.E.D. -

Corollary 2.3. In the above notations, sy divides e

where e:= e g)).

Proof. Notice that e is a power of D because @p

- @ N A' ‘for some n. Hence it remains only to prove that
(I_}(c)/c)e & Alt : m]. For every prime ideal ‘5& in P(4A),

. * ] .
we can write _Ce = ux for some u & A% and x & K. Then

we know that (D(c)/¢)® = D(u)/u "éA?Lt : m]. Since A = /M\Agh,
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we have (__]f?(c:)/c)e e Alt ¢ m]. g.E.D.

Lemma 2.4. Let A Dbe a Krull domain and let aj, ..., &,
(v 2'2) be elements of A, such that Supp(diyA(ak)) N Supp(divA(ai))
=¢ for lﬁk,ls\),k;ﬁ'l. Let fk(X) (LL k<VY) |
be polynomials in one variable X der the quotient' field of
A defined by

'fk'(X) =1 + (b((k).& + ... + g(r(rik>xm)/ak

with {8, L., u“‘) & A. If the product f£q(t)«--fp(t)

is in ATt : m], then all fk(t)’s are in ATt : m1 (L4 k<£Y).

Proof. Ye shall use the induction on Y . Let Yk be .
the smallest integer amoﬁg those - .,j such that o(g.k)/akgé A
(if b(gk)./ék e A for 21l 1< j £ m, we put \/k = m + ‘l).
In the case Y = 2, we may assume that Yl L Ya. If Yl
| : m+ 1, then Y,=m+ 1 and £,(t), 12(1:) are alreaqy
in A[t : m], hence theA Lemma is proved. Suppose that X

Y1

<4 m. The coefficient of t of f(£)f,(t) 1is
<<><(l)/al) - (g e (B ay) + e+ (x(P/ay).

"Hence d(l)/al) + (o((a)/aa) is in A. Th_is-means' that

aZQ(Yl + alb(),l is in ala2A~’ hence aao(srl) is in aja,
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"~ Since Supp(divA(al))/\ Supp(divA(az)) = qﬁ,' cx&i) is in

-alA. This is absurd..”Suppose.that )j > 2 and the assertion
holds for Y - '1. Notice that Suép(divA(al)) N Supp(divA(aZ..‘.ab))‘_
= @$. By oﬁr argument in the case P = 2, fl(t). is in
ATt : m] and fz(t)oy-fp(t) is in .A[t : ml. From the

induction hypothesis, it follows that fZ(t), ...; fu(t) is
in A[t : m]. o o o Q.E.D.

‘Proposition 2.5. Let D be a higher dérivation of rank

' . 'jl jp % R .
mon A and let a = ucy «..Cy (e &%, Jqs eeer Iy €%

and Cjy, ee.y Cy are distinct prime elements of A). Let

S i= min {s e i | (Q(ck)/ck)sé ATt ¢ m]} .

Then D(a)/a € ALt : m] 1if and only if s, divides Jy
for 1<k <V |

Proof. The "if" part of the Proposition is obvious.
We shall prove the "only if' part. Assume that Q(a)/a
: v . jl . v jp '
is in ATt : mI. Then we have (D(cq)/cy) e+« (D(cy)/cy)

is in Alt : m]. Since ¢y, ..., Cpy are distinct prime

elements of FA, the assumptions of Lemma 2.4 are satisfied.

, J L
Hence by Lemma 2.4, (D(c,)/cy) K isin At : m] for 1< k< V.

Therefore Prdposition 2.2, (3) implies that sy divides jk
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1

for 1 £ k<Y, ' ' Q.E.D.

; Lét D = (Q(l), ceay Q(r)) be an r-tuple of non-trivial
higher derivations of rank m = (my, ..., mr)- on A. Let ¢
be a prime element of A. Set

s{1) 1o nin {’s e | (1_)(1)(c)/c)87é Alt;: m] }_(1s i<r)

and

sgpi= max {s(l)l 1«1 §.r‘}.
Then sy is a power of p by Proposition 2.2, (1) and sq

divides the ramification index of c¢A over cAN A' Dby

Corollary 2.3.
Let (D : A)i= {J(D : ®) | &= (X, wuu, o) €47 1.
Ir J(0: a) # (0}, {§ € P |J®: n) < P] is a rinite

set because A is a Krull domain.

. Theorem 2.6. Let A, A', K, K', D and n(D) be as

before. Assume that J(D : A) # {O} and let '@31, cens ?g'
be all of g>’s in P(A) such that J(D : A) C g). Furthermore
assume that [K : K'] = pn(D) and @k’s (L€ k<P) are

principal. Set g)k = ¢, A,

t

sl({i): min {.s e | (Q(i)(ck)/ck)f € aley: mi]} (1< 1i<r)

and,

max_{sﬁi)l 1< i £ rA}.

9]
-
I
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Let e, be the ramification index of ?k over f?kﬂ A'

Kk
for 1 T<. k<Y .. Then we get the following exact sequence:
P
@ ﬁ t 7”“
0 —> Ker(3) —> L /L) —> Z/(ek/sk)z~—> 0.
k=1

Proof. Let ni= max{nl, cees nr} and S be the

n

multiplicatively closed subset of A’ generated by C{ s

n ' . _ : »
vee. c2 ., Then we get an isomorphism ®.: Ker(Fo)—>
» Cyp - S S
i‘A /_i,,'\ from ‘Theorem 1.6. Therefore Propotion 2.1 implies
s s - o

that Coker(f) = Coker(® ). Hence it suffices to prove
Coker(f) E k? 71 #/(e /s )0. Set § ,:= .@kf\vA' (1< kgg).

Then fg.l, cees ?p are all prime ideals in P(A') with
S_kns,c¢ For each k (1% kg))), we have .‘i(@k)

e ?,{ = dlvA(Ck ) by the definition. Hence f(CW(g-k))

1

. ex
(D(c; )/cy )~ and

R

. e . '
In(f) = { (D(ey)/cy) kl 1wy vE/L.
Next we shall prove the following: |
L \/LA/J?—A <(D(ck)/ck) ll$k$D>V£,A/of,A.
Suppose that D(a)/a €L (a <€ AN Ag), then it is seen that

Supp(divA(a)) - {@l’ ceos @p_}.

j Jp
.. *
"Hence we can write a = ucqy cesCy for some u &€ A" and
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eeey Jy € 4. Notice that Q(i)(a)/a & A[ti: mil for
(1) .

1 < i < r. Then Proposition 2.5 implies that sy divides

j]_:'

j for 1£ 1 £ r and 1£kgV, Therefore s, divides Jp-
for 1< k.é.D. Conversely, it is easily seen ﬁhét  (D(ck)/ck)Sk
isin L (1 £ k:éLl); So we have the_requiféd resuit.
'Conseqently we know | |

1&k$ﬁ>Vﬁi!

1<k OV L)

. S
{(D(c,)/e) ©
—
{D(e)/ey) ©

Coker(f) =

We shall define the homomorphism b by the following

manrner: _
P .
g : TT #/(e /s,)% —> Coker(f),
' k=1 ,
4 (the residue class of (Jj, <« Jp))

P e
- J
- the residue class of é / (D(Ck)/ck) k k.

Then it is easily seen that @ is well-defined and surjective.
lie shall show that () is injective. Suppose that
G (the residue class of (Jy, eee, ip)) = koo

Then there eXist elements 1y, e.e, iv,é z and X e A* such
that |

> Skjk» T - il
(D( %)/ ) }ZZ (D(e))/cy) = kT_T]L (D)) /ey = <.

d;, ’
put x:= /[ - K whe; Cdpe = . — i Tt
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-1 and x € K'. Let v, be the normalized valuation of

K associated to the prime ideal ?h and A}'( be the localization

of A' with respect to §,. Let u,. be a uniformisant of

Ay for 1L k< Y. Since x -is in XK', there exist elements
0(k & _Al/'{* an@ _ fk & 7% such that x = ,qkukk for 1< k< )5.. _
Then we have d; = v (%) = vy (ol ) = v (u, ) = fie,. Hence

ey divides sy Jy, i.€-, e /s, divides J, for 1< k<Y,

This implies that & is injective. | Q.E.D.

Let @ - cA be a principal prime ideal in P(4) and

let s(i)(@):z min{s e I

P (e)/e)® e aleg: mI} (1< 1<,

and s(@):: faax{s(i)(g)) { 1< i< r}.

A

T’neorem 2.7. Assume that A 1is a unique fac_torization
' domain and let D = (_Q(l), oo, _D_(r)) be an r-tuple of non-trivial
hiéher derivations on A satisfying the conditions J(D : A)
£+ {0} ana [K : K'l = pn(D). Then the followings afe eqﬁivalerii:
to each other:_ |

(L) @ : Ker(j)—> .f,A/Qf_,;L is an isdmb_rphism.

(ii) For each prime ideal g) in P(A), either J(D A)
¢ g) or e(_@) = s(@)) occurs where e(pj. stands for_the

. . . . ]
ramification index of &D over g) N A .

Proof. Immediate from Theoren 2.6.° | Q.E.D.
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K 3. Calculus of divisor class groups
In this section we shali determine divisor class groups
of certaiﬁ fings as.applications of the preceding results.
As before k will be a field of characteristic p > O unless

otherwise specified.

Proposition 3.1. Let A = k[x, yl be a two-dimensional
polynomial ring over k with the quotient field K. Let
A, (3 ‘be integers such that 0 < ¥, (6 < pt*. Let D be

the higher derivation of rank pn__ 1 on K over k defined

by
D(x) = x(1 + ), D(y) = y(1 + £)8

and let K' be the field of Q—constants; Let pY be the
maximal p-th power which divides GCD( &, p ). Set o = ‘N'P(,
and § = ﬁ'p{. Then we have the following assertions:

(1) [K :K‘1=pn'*{..-

@) Ly/L) = a0

(3) Assume that p does not.dividé éither X 'or (6 .

ANK', and A' is the

Then CL(A') £ Z/p"% where A':
: n n N1
normalization of k[x¥ , y® , %P 8 y 1.

Proof. (I) We may assume that p does not divide ',

’ S S At
Set F := k(xP, y¥, x ¢ y

oy
s

for 0 £ s <4<n. Then we have



31

5 ' 5L
Hence 'GCD(=', p°) = 1 dimplies that F_ . 4 = F(x™ ) and

3] o | . . -~ ‘ ' 7 )
X éFS-—l_ F . Therefore [F,_q & Fgl= P for 13}5 ﬁn.:

' s . : . ,
Set syi=min{s|xP €K', 1<s< n}. We shall show that

: n-Y n-Y o n-Y
Sg = n - Y. From Q(xp ) = xP , 1t follows that xP

: SAY-1 n-¥Y-1 "~
& K' and sy <n — Y. On the other hand D(x! ) # %P

because p does not divide of'. This implies that sy

=n — Y. Since },{(Q) = p{, we_know that [K : KXK'l 2pn'{
by Proposition 1.3. Then we get K' = F,  Dbecause F < K'
: o . 0]
. s S
- 0 ) — — 0
< .K = Fy and [FO : FSO] =P = pp Y. Hence [K : .5']——-p
-Y
= pn .

(2) Since A = k*, we have i,}t = {l} We shall show

that JiA = {(l + t)ds < k[t @ nm] [s <% } where d:= GCD(X,

B) and mi= p’ — 1. HNotice that

L, = { n(e)/f < KLt : m] |£ €a={0}, D(£)/f<alt : mj},
because D(f1/f5)/(f1/f,) = Q(flfg‘)/flfg (1, £,(# 0) €4).
For every polynomial f €A — {O}, the total degree of the

coefficient of tJ in D(f) is not more than that of. f

for O %4 j < m by the definition of D. Hence D(£)/f

& ATt : m] implies that D(f)/f< kIt : ml Set
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t= Z ale y (aij < k¥) and _D_(f)/f = h(t) where h(T)

& k[T_:_[. Then ve see
5 ey 3w 0P TIE Zala y3n(e).
Sin.ce' x, y and T are élgebraically independent over Kk,

we get (1 + t)iu +j1_8 = h(t). Hence i™ + j@' is constant
‘modulo p" for any i, j with aj; £ 0. On the other hand

1 + j§ isamultiple of d = GeD(X , B ). Therefore

we know Q(f)/f = (l+ t)ds’. V]here S' = (io( +jp )/d’

This means that <., is contained in { (1 + 0%t : m[s < 7).
Since GCD(XK , (8 ) = d, there exist integers a, b such

" that a X + b(ﬁ = d.. Then we have D(X y )/x =_(1 + t)d.

This implies that (1 + t)d is in 'LA’ Hence i—A

= {(1 T )95 e k[t : fa] ls e Z }. Let @ : Z’/pn—YZ?’ ———_}"Z’A

be the homomorphism defined by £ (the residue class of s)

= (1 + £)45,  Then we see casily that £ is well-defined

and surjective. Ve shall prove the injectivity of 6 .
‘ L. 1 . v. _;_ . ) fae) dS
Assume that f;(the residue class of s) = 1. Then (L + t)

- 1 4in a truncated polynomial ring kit : ml. Write d = d'_p(
and s = s'p? (pfd' and pls'). Since 1+ )9 = (1 + tP ya's?

‘ _ (+§ .
and D +d's',' the coefficient of tF~ does not vanish.
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. A Y . : . . .
Hence p'+ z_pn and S=n — Y. This implies that s

é;pn*YZ and & is injective. Finaily we have =ﬁﬂ/JiA

(3) Since p does nof divide either & or v@ , we .
see that the height one property for D 1is satisfied. Tt
follws from (1) that [K : K'] = p° (note that ¥ - 0).
Therefore Theorem 1.6 implies that Ker(%) E'<f1/ilA;_ Since
4 is a unique factorizatibn domain, we have c1(A") = Ker(3),
nence CL(A') = %Z/p"%. The rest is obvious from the féct At

n n

n o1 '
is normal and integral over k%P , ¥¥ , xP B y* T (note

that K' = F). | | -  Q.E.D.
By making use of Proposition 3.1 we get the following:

Proposition 3.2. The divisor class group of a surface

n .
g + 7P = XY is a cyclic group of order pn.

Proof, Let x, y be independent variables over k.
Then the coordinate ring of the surface S  1is isomorphic

v noogt - n |
to .Ai:: kExp s VT s xyl. Set ™A:= 1 and @:: p.— 1

in Proposition 3.1, then we have ci(A') = Z/p"% where A'

- ANnK' is a Krull domain in Proposition 3.,1. Ve shall show

\ 1 yer t - - ' )
that A5 = A'. Uie see that Al is normal because the surface

W NI TR s A B R A R RS
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S has only isolated singular point (cf. [43, Th. 4.1). Since

n n
A' is the normalization of 'k{gp , vy, xyl by Proposition

3,1, (3), we get Ai = A'. . o | ' Q.E.D.

Remark 3.3. Let & be a prime ideal in P(A')‘?generated
n o -
by xY and xy. Since i(8) = divA(x) and since @?(cl(g.))

= D(x)/x, c1(§L) generates CL(A') E’ZVan.

In order to generalize Proposition 3.2, we shall prove
. i r )
Cl(Ry ® -+* ® R) = T{ CL(R;) 1in a certain restricted case
1 kT i= * '

as an application of Theorem 1l.6.

~ Proposition 3.4. Let Ai be a polynomial ring inva'finite

set of variables over k and set K;:= Q(Ai) (1L i é_r).

1

i s . . .
Let Q( ) be a non-trivial higher derivation of rank m; On

Ki over k leaving Ay invariant. Let Ki "be the field

of Q(1)~constants and set ‘Ai:= Aifﬁ Ki (1< i £r). Assume

that the height one property holds for Q(l) and [Ki : Ki]

= (1) | ,
= p =~ where nj:= n(p*~’) for 1% i r. Set A:= A @
k-

. @ A, and A'i= A{ @ ... @ Al with L:= (&) and

:
k ¥ k k ¥

r
L':= g(A'). Then we have S CcL(Al) = 1T Cl(Ai).
i=1 o



"~ Proof. We have only to prove tﬁe Proposition in the case
r=2 wbecguse we can get the general-éase by inductidn on Tre.
Set Ay = kfxl, cees %51 and A, = klyq, «eey Y1 whére
Xys eves Xd. and Yy, e--» Yo 2TE independent variables over
k. Then A £ K[Xp, -eep Xgs Y1 =oo» Yol Wé'shallv.extend
Q(;) to. L by the folléwing way: |

DM (yp) = yys ooes D) = v |
Similarly we shall extend 2(2) to L. Then BD:= (Q(l), 9(2))
is a Z—tuplezéf non-tfiviallhigher derivations of rank m:= (mj;,
ma) on L over k leaving A invariant.
We shall show that A' = An L'. Since K (i=1, 2)

are regular extensions of Kk, K.

5 (i = 1, 2) are also regular

extensions of k. Besides, Ai (i =1, 2) are integrally
closed integrél domains. Therefore  A' = Ai g.Aé is an
integrallj closed integral domain ([2], Chap. 5, §1, Cor. of
Prop. 19). -Fufthermore ANL' is an integral extensioh of
A' with the sate quoﬁ_ient field L' = QAN L") = qa").
- Hence we have A" =ANnL'.

Next we shall prove that L' is ‘the field of D—éonstants._
it ié easily‘seen that Ai i A2 = Ai[yl, - yel is the riné'

of D(l)—constants in A. Similarly Al Q Aé is the ring of
bt _ k



(2) S : A ara v that ' v % '
D ~constants in A. We know that A; @ AZ _.(Al R AZ) N (Al ® AZ)
. — k k k
([2], Chapter 1, §2, Proposition 7). Therefore A" = -L:'L @ Aé'
. k

is the ring of D-constants in A. It is clear that L' = Q(A")

" is contained in the field of D-constants. Since A 1s the

integral closure of A' in L, any element of L 1is of the .
form a/b (a < 4, b &A'). Suppose thatv D(a/b) = a/b (a € A,
b €A'). Theﬁ we have D(a) = D((a/b)b) = H)(a/b)‘.D(‘é) = (a/b)b
= a, hence a is in A'. This implies tﬁat a/b‘ is in L'.
Finally L' is the field of [D-constant‘s.

#e shall show that the height one property holds for b.
Since A4 is A;-flat, we know that nt( o N Ai).:é. 1(1i=1, 2)
for all @_é P(a) ([4], Proposition 6.4_). Set g)izz O NaA;.
Then there exists an element oX; in Ay such that the Jacobian
J(Q(i) : ©4) is not contained in @i because fhe height .one
‘property holds for. P(i>' On the other hand. wé have J(D :v( A
D(Z)) = J(Q(l) : O(l)J(_'I_)(Z) : °<2)' Suppose that _J(D ( °‘1’°<2))
€ £ , then either'J(Q(l) : Ql) or J(Q(.Z) : &) is in
@, say, J(Q(l) : O(l)é @ This méans thét J(Q(l) :.0.(1)

& @n Al = @l’ which contradicts. to the héight one prqperty

(1)

-~

for

We shall show that

)
t—-l
o
J S}
!
Ho]
=
=
]
. So”
wn
o)
r*-
lan
I
=
=
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then.we have L 2 le L'. e know that L :L'] > pn(ﬁ))

tecause of Proposition 1.3. Since (L :1'] =11 : 0405 ¢ L'],

: n n
it suffices to prove that [L : Ly;1 <p L ana [Ll :L'1<Lp 2,

n _
We shall prove that L : L1 <£0p l. It is easily verified

. . ¥, _ . 1 ; l _ ] ) ‘
that L = Q(Xy EKZ), Ly = Qg ﬁ X,) and K i’ Ky = Llr\(Kl iy K5).

Therefore any element of L is of the form N/ﬁ— with X
' : _ ' ny
< Ky ® K, and §eKi®K2. Let aj, «e») a, (Y:=1p7)

Tk . .

be Ki—-basis of Kl’ Then Kl % K2 is generated by aq @ 1,

vee, &, ® 1 over K; ®K,. Since any element of L is of

the form N/@ ( X &Ky @ Kss ﬁéKi'@) Ka_), 1L is generated
k -k . :

. n
oy a] @ 1, ooy ap@ 1 over Ll’ hence __[L : Ll]s'p =P l.

’ n
Similarly we have [L; : L'1<D 2,
Let

£, = {D(i)(zi)/zi l z, €Ki, D(i)(zi)/zié ATty ml] },

i i i

L

and,
Ll

where ¢ = (tl, ,t'a).‘ Since we know that Cl(AJ!_) = f,l/i,]'_

R {p(iv)(ui)/uil u, €& A% } for i =1, 2,

i

{ID(Z)/Z i 7z &« L¥, D(z)/z e ATt : mJ }

I

(bcwa |u e )

(121, 2), cuay = £/7L ana pl= g’ = {1l 1t
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~

remains only to prove that ill x 112 :l:. Let £ be the
nomomorphism of Jil x:fz into £ définea by

(Q(l)v(al)/ap 08 (a,)/a,) = D(aya;)/aya,, (a3 € KD)s
Tt is easily seen that (& is injective. We shall show that |
8 is éurjecfive. Suppose that D(f)/f éril (f €A — {O}),
Then there exist polynomials g;(T;) in AlT;3 (£ =.l, 2)
such that D(£)/f = .(gl(ti), g2<t2>>. Comparing the £ota1
degrée'with rgspeqt to ¥ys eees Yo OF Q(l)(f) " with that
of fgl(tl), we see that gl(tl) is in vAlttl: mlj.“‘Wriﬁe
£ = EZ»aYbY (ay €Ay, by & 4, and ‘{b(}.’is linearly'independentv
over 2('k), then we have

Y. .o e - &
. x .
This implies that Q(l)(ar) = gy(tylay for all Y. Therefore

(tl)a()b‘( = O. .

-
A

Q(l)(a)/a.: gy(ty)  for some a é-Al. Similarly Q(Z)(b)/b

1

gz(ta) for some b < A,. Hence 69(9(1)(a)/a, 9(2)(§)/b)

= D(£)/f. Furthermore we know that £ = {D(f)/f ‘f < a — {0},

- the desired result. ' : Q.L.D.

Remark 3.5. By the similar method as the proof of
Proposition 3.4, we can get the following fact using units

theorem ([10], Corollary 1.8). But the proof is more coumplicated,
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so we omit it:

"Let Aj:= SV, (Ai)s (1 £ i £ r) be graded unique
: s &4,
+ _

factorization domains with (4;)5 = k and let K; be its
quotient field. Assume that K; (1L <1 <'r) are regular

extensions of k. Let Q(l) be a non-trivial higher derivation .

of rank m; on Ki over k leaving Ai invariant for 1 £ i

< r. Let Ki be the field of ,Q(l)~constants and set

Ai:: AN Ki (1< i <7r). Assume that the height one property
' . ' ' n; . , | Sy
“holds for Q(l) and '[Ki : Ki] =7p *  where n;:= n(p(l)) for
1 4£4i<£r. Set A:= A, ® ... ® A, and A':= A' @ e.. @ A
_ 1 I k T o 1 % x T

with L:= Q(A) and L':= Q(A'). Furthermore assume that

Al ® «.. @ Ay (L £1 1) are unique factorization domains.
k k

_ .
1t
Then we have CL(A') = 7] Cl(Ai).
i=1 '
The following Proposition is immediate from Proposition 3.4.

roposition 3.6. The divisor class group of an affine
o . 3r . . DU & | ' .
variety in A defined by the equations 4;7 = XYy (L« 1

£ r) is isomorphic to 777 Z/in where qiiz P .
' i=1 :

Remark 3.7. The coordinate ring of this variety 1s



45 q; q. ' G,

iSOIﬂQI‘phiC to A':= K[XlJ-: Y1 0 X3¥ys e Xp s Ip oo Xryrl‘

And if ,we denote by §-; a prime ideal in P(A') . generated
45 | | . i

by x;, X3y; for 11 < r, then ¢1(&;) (1 =1< r)

- generate c1(a').

As another generalizaﬁion of Proposition 3.2 we have the

following:

Proposition 3.8. The divisor class group of a hypersurface
n ' : ' _ o
s . zP = Ry Xy o X, (r > 2) is isomorphic to (z/o"Z)* 1,
The coordinate ring of thisvhypersurface S is isomorphic
L 'pn B '.pn ' |
to A := k[xl s X5 5 eees Xp o XlXZf"Xr]- whgre Xys Xo
eeey X 'are'independent variables over k. - If we denote by
$; & prime ideal in P(A') generated by XE and XyX,eeeX,

~for 1< i<r—1, then cl(§;) A £isr - 1)  generate

c1(a').

Proof. We see easily that A' is the coordinate ring
of the hypersurface S. Ve shall set A = k[xy, Xpy eees %yl
and K:= Q(4a). Let Q(i) be the highéy derivation of rank
p? - 1 on K‘ over k satisfying

Q(i)(xi) = x; (1 + £5),
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R R i),

(i) _ Ly L
D (x,) = x (1 o+ ty)
for 1< i< r — 1. Then we have
o0 ey Xr)) = ( - l)?+le.‘.XS...X

v A
IO : (Xy, a0y X

s? T

for 1 £ s < r where cvey and the Symbolx

A over a letter means that the letter is missing. Let K'

be the field of D-constants. Then Proposition 1.3'implies that

[K : K'] = pn(" 1), e shall set
n n .
K= k(x§ , xg y eessy xg s Xj41s eees Xpo Xl"'xr)
_ , Dn n : .
for 14 idLr—1 and Kr:: k(xi s eeey xg 5 Xl"‘Xr)' Then .
" _ _
K=Ky, K =K;3(x5,9) and };‘Ll = Kl*l for 1<i<r -1

Besides, K D K' > Kr. This implies that [K : K ] £p n(r l)
hence [X : K . Since the hypersurface S has no
singularity of codimension one, we see that A' is‘hormal.
Then we get A' = AN K'. Therefore we have -Cl(A') = cﬁﬂ/liA
oy Theorem 1.6. Let £ Dbe the homomorphism of (Z/an)r’l
into iiA defined by

g (the residue class of (Jy, eee, jr_l))

.—_ID(a)/a
Ja -
e T e, ) o1y
1 Jr-1 X o)

where a:i= Xy eeeXp )" - Then & is well-defined and bijective



y2

by the similar device to the proof of Proposition %.1l. Consequently

(A" = LA/ 1= f,A = (/o T . Since D(x;)/%; (1< i

& v — 1) generate oL, cl{(y) (1L ik~ 1) sgenerate

ci(a'). ' - ' | Q.E.D.

For future reference we shgll recollecf the known results
concerning Galois.de3cent and semigroup rings. Let G be a
finite group.pf automofphisms of a Krull domain A: and.let
Al be the.invariaﬁt subring of A with-respect to G. Since
A is intégral over A', we can define thé homoﬁérbhism
7 Cl(i')————>Cl(A) by T(cl(g)) = clk( z: e(@ )@)) Wheré
the sum is taken over all prime ideal &3 in P(A) such
. that &5/ﬂ A' = §. If every prime idéal &5 in P(a) is
unramified over @)f\ a', A 1is called‘divisoriélly>unramified.

PO |
over. 4L .

Lemma %.9. If A 1s divisorially unramified ovér AT,
there is an isomorphisum Ker(J) = Hl(G,.A*) (cf. [4], Theorem

16.1).

Lemma 3.10. Let l}(A/A'j be' the Dedekind different

of A over A'. Then we have the following; a prime ideal

gD in P(A) is unramlfied over glf\A' if and only if
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0 (A/_A’)gt @ ([4], Proposition 16.3).

Lét f(X) be the minimal polynomial for a primitive
élement oL of Q(a) over Q(A'). Let f'(X) denote the
deriVétive of f£(X) -with respect to X. Then we have f£'(X)"
& D (a/A'). Heuce each prime ideal @ "in P(A) such that
Fr(xX) 74; &) is unra‘rﬁified over @ N A' by Lemma’ 3,10,

Furthermore we need the following fact 6oncerning

semigroup rings.

Lemma 3.11. Let Ki[[7] be a sémigroup ring over a field
i R
K; generated by a semigroup [[< 7 (i=1, 2). Assume
that K;[['] (i = 1, 2) are Krull domains. Then we have

Cl(Kl[F_'[) = CL(K,[[71) (ef. [11, Proposition 7.3).

By making use of Proposition 3.8 and Galois descent we

get the following:

Proposition 3.12. Let k be a field of arbitrary
characteristic. Then the divisor class group of a hypersurface

g5 . 79 - &) SUTRS SN ¢ > 2) over k is isomorphic to (z/am* L.

Proof. it is easily seen that the coordinate ring of
the hypersurface S ‘is isomorphic to A':= k[?%: ;..,_xg,_xl-..xr]
where X, ..., X, are independent variables over k. 'Since'b
A' 1is generated by monomials, we may assume that k is

algebraically closed by Lemma 3,11, Let ©p denote the
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characteristic of k. In the case p = 0, we can conclude

. the result simply through Galois descent. So -we omit the

proof. Assume that p >0 and write d = apn, p%a. “We shall

e

n n
set B = kP, ..., xg , %y++-x.], then we have B > A'. Let

W be a primitive a-th root of unity and ¢ ; be the

automorphism of B defined by the following manner:

p" p" p" o 1. |
Cr"j_(xi ) = WX ‘T&(xj ) = X3 (1L« jg«r -1, J# i),
’ n n

p — _.lp 0—— ( PP ary - L )
Gi(xr ) =W K and, 1 {xq Xr) = Xqe-rX,

for -1 5 1 4 r ; 1. Then <4 is well-defined. Let G be
the subgroup of Aut B generated by T4 (l.s i< r—1).
Then we get B‘G - A'. In order to use Galois descent, we must
prove that B >is.divisorially unramified over A'. We shallA
set

K= k(x%, cees xg, Xgil, ooy xﬁn, xl...xr)'
for 1 £ 1i<&r - 1. Then 'FS(T) = 7% — ng is the minimél

1

polynomial for a primitive element xg of Ks—l‘ over KS
‘ n
: a-1 . ' -
and Fé(xg ) = a(xg ) for 1< s<r wvhere Kj:= Q(B)»
and K :i= Q(A'). Therefore every prime ideal §> in P(B)

except gls = (xgn, Xy o¥p) (1< s« r) is unramified over
@ N A'. By a diredt,calculation the ramification index of
O over @E;F\A} is one. Hence B is divisorially

unramified over A'.‘ By Galois descent we get the follbwing

exact seguence:

0 ——> ul(a, B*) ——> c1(8%) ——> cL(B).
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Since ¢ acts trivially on B* = k¥, we know that at(a, B*)
= Hom, (G, k*). Furthermore it is easily verified that

Homy(G, k*) = (2/a7)F %

because ¢« is in k. On the other
hand, Proposition 3.8 shows that CL(B) év(Z/an)rdl. Let |
§; be a prime ideal in P(A") genérated by xg and Xqee-X,
for 14 1i<r —1. Then we have"§5ilﬁ A' = §Li and ﬁ(é%i)

= A@i where § Div(A')————éDiv(B). Besides, 'cl(@i) (1 < i
Lr — 1) generate ‘Cl(B)'E’(Z/an)r'l._ Finally we get the

following exact sequence:

O ——> (2/aZ)T L ——> c1(a") szt —— 0.
Since a and p~ are relatively prime, Ext%((z/pnz)r—l,
(7/a%)F 1) vanishes and the above sequence splits ([3], p. 290,

Theorem 1.1). This implies that CL(&') = (z/az)T L. Q.E.D.

Remark 3.13. In the notations of the proof of Proposition

3.12, ptcl(gy) (1L i<y —1) generate Ker(j) because
n ' ‘ _
JpPg ) = divg(xd ) and Ker() = Homy (@, k%) = (4/28)" i,

Furthermore it follows fromn Proposition 3.8 that cl(gli) (1« 1
L r - 1) generate. cl(A') modulo . Ker(j). Hence cl(gli)' ,

(L< i<r—1) sgenerate CL(A').

Pfoposition 3.14; Let k be a field of arbitrary

characteristic. Then the divisor class group of the homogeneous

coordinate ring of a Veronese transform vd(Pr) of a projective

space P over k (d > 2) is a cyclic group of order d.
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Proof. Let Xgs X13 cee> %X, Doe independent variables

over k. We shall set A:= k[xo, X1, .ensy xf]. Let A be

the suoring of A generated by monomials with degree d.

Then A' is.isomorphic'to the howmogeneous coord nate ring

of vd(Pr).v Ve may'assume that k 1is algebraically closed

by Lemme 3.11. Let D denote the cheracterlstlc of k.

In the case p = O, we have c1(a') € z/a% by Lsl, p. 85,

(1). Assume that p > O and d 1s a power of p, say,

d = pn. Let D Dbe the higher derivation on Q(A) over k

of rank d — 1 defined by D(x;) = %;(L +t) (021L r).

Then we see easily that L' 1is the ring of D-constants and .

[K: K'] =d where K:= G(3) and K':=.Q(A'). Since J(D & x;)
(O L i S.r), ‘the height one property ;s.satisfied. Hence

N

by Theorem L. 6, ol(A ) = Ker(3) = Ji /\'A —f‘A' Let &  be
the homomorphism of Z/dz 1into li& satisfying (J(the residue

- class of J) = (Q(XO)/XO)j. It is easily seen that (9 is
well-defined and bijective. Hence we have Cl(" = %/d%.
If & 1is not a power of 1o, write 4d = ap’, D{a and let

B be the subring of A generated by monomials with degree
pn. Let w  be a primitive a-th root of unity and let

g be the automorphism of B defined by (M) =wM for

every monomial M with degree pn. Let - G be the subgroup

of Aut B generated by o . Then we have A' = B9, since

n
X

g

is a primitive element of G(B) over Q(A') for O

IN

i £ r, it is easlly seen that B is divisorially unramified

over A'. By the similar device to the proof of Proposition
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3,12, we get Cl{A') = Z/d%Z. . G.E.D.

All rings appeared in the above Propositions are generated
by monomials. The coordinate ring of the following surface

is not generated by monomials:

Proposition. 3.15. Let n be a positive integer and s
be a non-negative integer with O £ s £ n. Then the divisor
class group of a surface 5 : 2P =xPyYP — ¥ is isomorphic

to Z/p" %%.

Proof. Let ¥, y Dbe independent variables over k.

Then it is easily seen that the affine coordinate ring of

_ n n s .n
the surface S 1s given by A':= k[xP N yp ’ xP yp -yl

Set A:= k[x, y] and let D Dbe the higher derivation of

rank m:= p- — 1 on Q(A) over k defined by D(x) = x + t,

Q(y) =y + y? tP .  Then it is easily checked that the assumptions
in Theorem 1.6 are satisfied. Define the homomorphism

of Z/p"7%% into iiA by G(the residue c¢lass of i)

= (Q(y)/y)l. Then & is well-defined and injective., We

shall show that ( is surjective. Suppose that D(f)/f

e A[t : mJ(f& A —-{O}), then there exists an element

z(T) of A[T1 such that D(£)/f = g(t). Since the degree

with respect to x of the coefficient of td din D(f) 1is

not more than that of f for O £ j < m, we have s(t)

& kIyllt @ om]. write
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-~

£ agly) + ay(mx ¢ e+ A,
ap(y) & kIy] (0£ Y £ h) and ‘ah(y) t 0.

From é(f) = fg(t), we get
D(ag(y)) + Dlag(y)(x + &) + wev + Dlap))(x + O
- ag(E(E) + ay(a(tdx + -ee + a(¥)EEIx"

Comparing the coefficients of xh on both sides, we have

Q(ah(y)) :;ah(y)g(t) because x, y and T are algebraically
independent over k. By Lemma . %3.17, there exists an integer

i suck that g(t) = (Q(Y)/y)l. Hence '9_ is surjective

and CLl(A') = z/p" 7 °7. o ‘ Q.E.D.

Remark %.16. Let 5 Dbe the prime ideal in P(A")

n S

: n
generated. by yP  and xP yP

— y. Then cl(§) generates

C1(A'). The g-th Symbolic power §L(q) of § is a principal.

: n-s _
‘ideal generated by y® where q:i= P o.

Lemma 3.17. Let A = klyl be a'bne—dimeﬁsional polynomial
ring over k. Let n be a positive integer and s be a
non-nesative integer with 0 £ s £ n. Let D be the higher
derivation of rank m:= pt -1 on GQ(A) over k defined by
s ' : :
D(y) =y + yP t¥ . If DUH/f (f €4~ {o}) is in AL : ml,

there exists an integer i such that D(£)/ £ = (Q(y)/Y)lo

n-s , .
Proof. .Set A := k[y? 1, then we have A' = ANK'
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wnere K' s the field of D-constsnts. Notice that @ := yA
is the only prime ideal in P(A) such 'that Dq(A) <:-6b

(g:= p°). Then we have 9(@’),2 =% and s(@)) = 1, Hence
we get the following exact sequence oy Theorem 2.6.

o 7 s
Notice that 7 (the residue class of (p(y)/y)Y) = the residue
class of j. Furthermore Ker(j) = €1(4') = 0 and J:A = {1}.

30 we have the desired result. o ' Q.E.D.

AKiyoshi Baba

Department of Mathematics
Oszka University
Téyonaka, Osaka 560

Japan
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