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QUASI-CO-PRIME AUTOMORPHISMS AND THE GLAUBERMAN CORRESPONDENCE

OF FINITE GROUPS
HIROSHI MATSUYAMA
1. Introduction and notation

In this paper, G denotes a finite group and ¢ denotes an
automorphism of G of order n. Put H=CG(0). Let Irr(G) and Irr(H) .
be the set of irreducible complex characters of G and H respectively.

If x is a character of G, ilhen we definé the character XO
of G by x°(g%)=x(g) for each element g of G. Set Irro(G)={X|
x€ Irr(G) and XO=X}- Assuming ¢ to be co-prime (that is, n and
IGJ are relatively prime), Glauberman [1J showed the existence
of a natural bijection of Irro(G) onto Irr(H) and extended the
result to finite groups admitting solvable operator groups with
relatively prime order., Since then, generalizations and variations
of Glauberman’s result were obtained by several authors, see for
example H.Nagao [6]. Furthermore, more general character corres-
pondences (through ‘norm mappings’) were considered by N.Kawanaka
(4], (5], T.Shintani [7) and others.

The purpose of this paper is to study quasi-co-prime
automorphisms (see Definition (1.2)) and to extend Glauberman’s
character correspondence to a finite group admitting a quasi-co-prime
automorphism. (Indeed we shall characterize an automorphism which

yields the Glauberman correspondence.)




Bg?bre stating our Theorems, we introduce the following

notation:

'=G<o> ; the semi-direct product of G by <o>.
t=|G:H|.

hy=1,h2,:--,h ; the representatives of the conjugacy

a

classes of H.
X(hy)=( g"'h;e® | g€t }, i=1,2,-,0.
X=X(h1).

II‘I‘(G):{ X1=1,x2, ........ ’XY }‘
II‘I‘O_(G)Z{ xlz'],xz,‘....’XB }.

II‘I‘(H)={ @1:1792"""@(x }.

Hom(T/G, Cx)={u1=1,uz,~~,un}= the set of linear characters
of T whose kernels contain G.

ni=xi(1)’ i:1,2,..--"Y.

ei=ni/|G| Z Xi(g_1)g’ i=1,2,,y.
geaG

C[b].C[f] ; the group algebras of G and I' respectively
over the field of complex numbers C.

§= Y x (ec[r] ) for any subset S of T.
XES -

EA1.A2JG= 1/IG| gEeG/\l(g)l\z(g), where A, and A, are

class functions on G.



Remark (1.1). Let x be a character of G and let R be a
representation of G. Then, by linear extension, we may assume
that both x and R are defined on C[G]. Similarly, we may assume

that characters and representations of ' are defined on C[F].
«
Definition (1.2). If G=U.X(h,), then o is called a

quasi-co-prime automorphism of G.

Remark (1.3). Some (but not all) of properties of co-prime
automorphisms hold for quasi-co-prime automorphisms. Especially
we can show a=B for a finite group G admitting a quasi-co-prime

automorphism (see (2.8)).

Definition (1.4). Let xE:IrrO(G) and let x* be an extension

of x to I' (see(2.1)). Let o™ be a generator of <o>. Then we define

a class function ¢(x*,0™) on H as follows;

V(x*,0") (h)=x*(ho™) for each element h of H.

Note that the definition of Y(x*,o™) depends on the choice

of x* and o".

Definition (1.5). Suppose a=8. A bijection m of Irro(G) onto
Irr(H) is called the Glauberman correspondence with respect to o

if the following condition is satisfied;

Let x € Irr (G). Then for any extension x¥* of x to T,

v(x*,0) is a non-zero scalar multiple of w(y).



Remark (1.6). If there exists the Glauberman correspondeﬁce
m with respect to o. Then there exists a non-zero complex number
A such that ¥(x*,0)=An(x). Indeed X is a 2n-th root of unity if
n is odd and a n-th root of unity if n is even (see (4.1)(ii)).
Furthermore_w(x*.om) is also a non-zero scalar multiple of w(x)

for any generator o of <o> (see (5.4)).

Now our Theorems are the following:

Theorem A. An automorphism ¢ is a quasi-co-prime automorphism

if and only if there exists the Glauberman correspondence with

respect to o.

Theorem B. Let o be a quasi-co-prime automorphism of G.
Let m be the Glauberman correspondence with respect to ¢ and

let w(x,)=0,, i=1,..-,a. Then the following hold;
X3 i _

(i) There exists a unique extension x; of x;.to I' such that
xg(om)=eiei(1) for any generator o of <o>, where eie;{t1} if n

is odd and ei=1 if n is even, i=1,...,qa.

(In the sequel, the uniquely determined extension x; is called
the canonical extension of Xy i=1, «-..,a. Furthermore, let €5 be

as is determined above.)

(ii) w is independent of the choice of a generator of <o>.
(iii) If n is a power of a prime p, then
= mod {3
[Xi'Htej]H- Gljel ( p)' 1é113éa'

where Gij is the Kronecker’s symbol.



(iv) n; divides tOi(1), i=1,2,000,0.
(v) Let xI be the canonical extension of x, to I' and let
R; be the representation of I' which affords the character x;,

i=1,2,..,a. Put Ri=R;IG. Then:
Ri(i) = eitei(1)/ni R;(c), consequently xi(i) is a

positive rational integer,i=1,2,...,a.

Remark (1.7). Let o be a co-prime automorphism of G. Then
o is a quasi-co-prime automorphism (see (3.3)). If n is odd,
then the canonical extensions defined in Theorem B (i) coincide
with the canonical extensions in the sense of Giauberman [1]
(see (5.9)). If n is even, then they do not always coincide

with each other (see Remark (5.10)).

Corollary C. Let o be a quasi-co-prime automorphism of G.

Then xi(i)#o if and only if xiG'Irro(G).

The author is much indebted to Prof. H.Nagao for his kind
guidance and helpful suggestions. Also he would like to thank

Prof. N.Kawanaka who acquainted him with the result of [7]..

Other notation is standard , see [2],[3] and [8].



2. Preliminaries

(2.1). Let xie;Irro(G). Then we have the following.
(i) There exists an extension x; of X3 to I'. Furthermore

[ujx*|j=1,~~.n} is the full set of the extensions of ¥;.

i
(11) 57 xMexF@-lal.
g€ Go

(iii) Let j#i.and let xg be an extension of XJEIrro(G).
Then 2_ x;(g)x;(g)=0.
g € Go J

Proof. See [3] (6.17),(8.14),(11.22).

(2.2). <The number of o-invariant conjugacy classes of G

coincides with B.
Proof. See [3] (6.32).

(2.3). Let GxG be the direct product of G and G. Defining

the action of an element (x,y) of GxG on the set G by
g(x,y) = x—1gy for g€&€G

we can regard the set G as a GxG-set (see [8] Chap.1,§7).

(2.4). Let ¢(g)=(g,g°) for each element g&€G. Then ¢ is a

monomorphism of G into GXG. Through the homomorphism ¢, we can

regard the GxG-set G ds a G-set.



(2.5). Regard C[G] as a (right) GxG-module (through the
action defined in (2.3)). Then C[G]ei is an irreducible

GxG-submodule which affords the character—fix xi,-i=1,2,uu,y.

Proof. Since CfG]ei is a minimal two-sided ideal of C[G],
C[G]ei is an irreducible GxG-submodule. Thus C[G]ei affords the
character x x x » 14m,s<vy. Let G1=((1.g)lgeG} and let G,=
{(g,1)]lge G} . Regarding C[G]ei as a Gp-moduley C[G]ei“affords,the
character Xi(1)xi of G,. Hence we have X=Xy * On the other hand,
regarding C[G]ei as a (right) G,-module, C[G]ei affords the

character xi(1)§; of G,. Hence we have szii‘ This proves (2.5).

(2.6). Regard C[G] as a (right) G-module (through the action
defined in (2.4)). Then C[G]Je, is a G-submodule which affords the

—_— o"
-character X; X4 of G, i=1,:,Y.

Proof. By (2.5), C[G]ei affords the character ;;x X3 of

GxG. Hence (2.6) is immediate.

(2.7). Ri(i)=0 for i>B, where Ri is a representation of G

which affords the character X

Proof. It suffices to show that iei=0.>Suppose iei#O.
N et}
Since Xe, is a G-invariant element of C[G]ei, Y}X? contains a
4 v
principal character. Therefore fiixg,1]G=[xg,xi]G #0. This

contradicts the choice of y;. Thus (2.7) is proved.



"(2.8). The number of orbits of the G-set G coincides with B.

Proof. Let x be the character afforded by G-module CfG].

DI . — -‘ .
‘Bi%‘?.é)- x=§§a xixg. Hence we have [x.1]G=B.'0n the other hand,

[x.1JG coincides with the number of orbits of the G-set G (eee
[3] (5.15)). This proved (2.8).

v h;the'remeinderuof this section, let Q be the field of
' ratibhel numbers and let E=Q(z), where ¢ is -a primitive m-th root

ity.

(2.9). Let A be an algebraic integer in E.. Suppose AA=1.

Then:the following hold.
(1) 2*"=1, if m is odd.

vlm=1.»if m is even.

=1. Then there exists some j such that A5X3¥1'andgki=0

for all i distinct from j,

Proof. See [7], 405-406.
(2.11). Let r, be a rational integer relatively prime to

m and let s be any integer. Then there exists an integer ra

;relativeiy prime to s with ri:r,  (mod m),

(@his ‘is wellpknown




3. On quasi-co-prime automorphisms

(3.1). Let 01=0,02,+,0; be the conjugates of g in T,
Then the following conditibns are equivalent:

(1) o is a quasi-co-prime automorphism of G.

t
(i1) G°=§:ﬁCG(oi)oi'

t :
(i11) U C4z(o5)o; is a disjoint sum.
151 |

Proof. ((i)+(ii)) Take an element g of G. Then g~ '=x°
for some hi and some element x of G. It follows that go=

xh;.'_1(5c'1)o g = xhi1ox 1, which implies. go&,L)CG(ci)o Since the

converse inclusion is obvious, we get (ii).

'(11)713'86§ioﬁ3Q_..;*

((11)*(1)) Take an element g of G}fThen

i'j and some element

L,X(hi) Hence

i S -
(xn3' (x™")° )'1-~x hjx ex(h ), which yields csi J

we have (i). This completes the proof of (3.1).

(3.2). Let o be a quasi-co-prime automorphism of G.




Then :we have the following.

a
(1) G=U X(hy) is a disjoint sum.
i=1

(ii) For any generator o" of <o>, where m is an integer
relatively prime to n, o" is also a quasi-co-prime automorphism
of G.

(iii) H controls fusion in H with respect to G (that is
for any two elements x and y of H, they are conjugate in G if and
only if they are conjugate in H).

(iv) Let. x be in the center of H. Then ox is élso'a
quasi-coéprime automorphism of G.(where the automorphism ox is

the restriction of the inner automorphism of T by ox to G).

Proof. (i) Let K,={g€ Glg”'h;g%=h;}, i=1,---,a. Then K, is
a subgroup of G which contains CH(hi)’ Hence IKilglcn(hi)l.-dﬁd it

’ Qa Q
follows |X(hy)|gt|H:Cy(hy)|. But then IGIgz:.IX(hi)lgtz:.IH:CH(hi)I
i=1 i=1

=|G]. ihié implies~IX(hi)1=t|H:CH(hi)l and thé sum.géiX(hi)}ié
disjoint. | | J

(ii) Since m is relatively prime to n, there exists an integer
r such that rmz1 (mod n). Then by (Z.jj),.thefe exists an integer
s relgﬁively prime: to |ﬁr such ﬁhat-éér (mod n). Define a @§ppiﬁg; 
f of Gam in£o-G6 by £(x)=x® for each element x of Go". Let ho™

be an element of Ho™. Then f(hom)=hsoms=hsc. Hence we conclude

that f maps Ho" onto Ho. Similarly we have £(Cq(o;)0y)=Cq(o;)0,i=1,.,t

Therefore CG(ol)oT, CG(oz)o?,nu,CG(ot)oz are mutually disjoint.

Thus (ii) follows from (3.1).

-10-




(1ii) By (2.2) and (2.8), the number of o-invariant conjugacy

classes of G is a. Hence it suffices to show that KM H#¢ for any

o-invariant conjugacy class K of G. Let K be a o-invariant conjugacy

class of G. Then there exists an element g of K w1th C (g)B ho
for some h € H. Hence ho=hfo8. But then, since Go= U CG(Oi)o is
a disjoint sum, we conclude h=h€® and o0=08. Therefire g & H. Hence
we have KN\ Hfd. Thus (iii) is verified. ‘
(iv) Let x be in the center of H. Put o’=ox. Let 01=0,03,--

o, be the conjugates of o in I and let oi=o’.o;,»u.o£ be the
conjﬁgétes of ¢’ in I'. Rearranging the subindices.if necessary,
we may assume that 05051 is contained in the center of CG(Gi)’
i=1,2,+,t. Then it is easily checked that C (0!)0!=C (0.)0.,i=1,2,

«,t. Hence we conclude that Go'-Gc—(VJC (o,)0 —(j CH )o’
: 151

.Thus (iv) is obtained from (3.1). This completes the proof of (3.2).

'(3 3). Suppose n and |H| are relatively prime. Then o is
»_a quasi co-prime automorphism of G. Consequently, a co- prlme

automorphism is a quasi-co-prime automorphism. -

P%obf- Let 01’02,"u,ot be the conjugates of.q in I'. Suppose

CG(oi i(}CG(oj)oj £ ¢. Take an element g of CG(oi)oi(\CG(cj)oj.

o e = ’
Then g—hoi—hoj for some h(&CG(oi) and some h’E CG(oj)‘ By the
assumption, n and the order of h are relatively prime, the same

holds for n and the order of h’. Since such a. decomposition of g

is unique, we conclude oi=oj. Hence, L}CG(ok)ck is a disjoint sum.

-11-




Therefore (3.3) follows from (3.1).

(3.4). Let o be a quasi-co-prime automorphism of G. Suppose
0 is an inner automorphism of G. Then o=1. Consequently, a non-trivial

quasi-co-prime automorphism is an outer automorphism.

Proof. Let K,=(g€Glg”'hg%h,}, i=1,2,.,a. Then by the
argument in the proof of (3.2)(i), KiéCH(hi), i=1,2,.,a. Suppose
0 coincides with the inner automorphism by an element x of G.
Since x is contained in the center of H, x=hj for éome j. Then

g “Th, g =g “Th, x 1gx = x for each element g of G. Hence we have

J J
X(hj)={x}. Therefore G=Kj=CH(x). Thus (3.4) is proved.

Remark (3.5). (ii) of (3.2) is not valid for all integers.
Let 0, be a co-prime automorphism of G. Suppose G has a trivial
center and CG(ol) is nilpotent (indeed there ex1sts such an example)
Let x be an element of the center of C (01) dlstlnct from the
1dent1ty. Set 0=0;x. Then by (3.2)(1v),and (3.3), o0 is a qua51;
co-prime automorphism of G. Take an integer m such that o"=x.

By (3.4), o™ is not a quasi-co-prime automorphism of G.

-12-



4. Proof of Theorem A

(4.1). 'Suppose 0 is a quasi-co-prime automorphism of-G.
Then we have the following. |
(i) There exists the Glauberman correspondence 7 with
respect to o.
(ii) Let x* be an extension of xe&Irro(G) to I'. Set
v(x*,0)=An(x). Then X is a 2n-th root of unity if n is odd and a

n-th root of unity if n is even.

Proof. (i) Let xgIrr (G) and let x* be an extension of x

= 2 exa

to I'. Set x* where Ay is a character of <o>

le<o>

o€Irr(n) @
for each € Irr(H). Then W(x*,0) = 2 Ay (0)0. By (2.1)(ii)
, 0€ Irr(H)
and (3.1), we have [¥(x*,0),u(x*,0)] =1. Hence 2> Mg (0) hg(0)=1.

O€Irr(H)

Since A (o) is an algebraic integer in Q(z) for each © € Irr(H),
where r is a primltlve n-th root of unity, we conclude from (2 10)
-Vthat AG(O)A (o) 1 for some unlquely determlned GGEIrr(H) and
O,(o)=0 for any 0’ € Irr(H) distinct from 0. Take another extension
ujx* of X+ Then w(ujx*,o)=uj(0)Ao(o)@. Thus 0 is determined
independently ¥ofr the choice of an extension of y to I'. Therefore
we can define a mapping m of Irro(G) into Irr(H) by w(x)=0. Now

we shall show that w is the Glauberman correspondence with respect

to o. By the above argument, it suffices to prove that w is a

bijection. Let x.#x., 1<i,j<a. Set w(x.)=0, and n(x.)=@”.
X3#X50 153,55 x4)=6, j

-13-



Letix; and x; be extensions of X1 and xj respectively. Then there

exist non-zero scalars A; and Aj such that w(xz,o)=li@i and
#* 4 e s * »* .
b(x¥,0)=r.07. By (2.1)(iii), 2_ x*(g)x*(g)=0, it follows that
J Jd . G i J
gelo
¥ — p ) ,
'[Aiei,AJG']H=AiAj[Oi,e’]H=0. Hence we have ei#eff Sincg'qaﬁ.
we conclude w is a bijection of Irro(G) onto Irr(H), which -
proves (1). '
(11) Set w(x*,0)=10. Then by the above argument, A is an
algebraic integer in Q(z) with AX=1. Hence by (2.9); (1i) is
immediate. This completes the proof of (4.1).

(4.2). Suppose there exists the Glauberman correspondence

-1, Then o is a quasi-co-prime automorphism.

‘my -with respect to o
Proﬁf. By the assumption, 1t follows that a=B. Then by (2.8),
it suffices to show that X(h;),X(h,),eee- ,X(ha) are mutually distinct
subSets of G. Suppose to the contrary.ﬁﬁatix(hi)=x(h“) for some
distinct i and j. Then we can choose some GEIrr(H) such that
e(hi)#e(h ). Let X€Irr (G) be such that n1(x) 0. Let x* be an
extension of x and let R¥ be a representation of T which affords
xf; Set w(x*,0'1) =10, where ) is a non-zero’scalar. Put IX(h )=
lX(h )I-s. Considering R*(g hig o= =R#* (g~ .hio g). we get.
x*(X(h Yo T)=sx*(h,0"1)=s20(h,). Similarly, x*(X(h Yo~ 1)= =s20(h;).
Since O(h )#O(h ), we obtain x*(f?h o~ 1)# x*(X(h )o ). This
contradicts the choice of X(hi) and X(hj). Hence we proved (4.2).

RO TN T YA 1 ey
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(4.3). Suppose there exists the Glauberman correspondence
with respect to 0. Then o is a quasi-co-prime automorphism.

1

Proof. By (4.2), o is a quasi-co-prime automorphism. Then

by (3.2)(ii), o is a quasi-co-prime automorphism..which.prqyéé,(4.3).
By (4.1) and (4.3), the proof of Theorem A is completed.
5. Proof of Theorem B

In this section 0 is a quasi-co-prime automorphism of G and
7 is the Glauberman correspondence with respect to o. Arranging

the subindices, we may assume "(Xi)=ei' i=1,0e0,a.

(5.1). There exists a unique extension x; of X; to T such
that x;(o)=ei01(1), where eié{ﬂ} if n is odd and e4=1 if n is

even, i=1,2,"“,(!.

e i e st s e [P P —— i e s it e i i e i+

Proof. Let x* be an extension of x;. Then by (4.1)(ii1),

w(x*,0)=20,, where A is a 2n-th root of unity if n is odd and a

n-th root of unity if n is even, Agssume n is odd, then there.exists
some ujeﬁom(I‘/G. ¢*) with uj.(o)le{ﬂ}. Set x;=ujx*. Then*x;_‘(o)
=eiei(1). where ei=uj(o)>\€{.+.1}.. Assume n is even, -then there

exists some ukeEHom(P/G,Cx) with uk(o)x=1. Set x;;pkx*. Then
x;(0)=61(1). Thus there exists an extension x; of X3 which satisfies
the condition of (5.1), i=1,2,...,a. Since usx;(o)=us(0)x;(o)=
us(o)eiei(1), it can be eaaily‘éhecked that the above x¥ is




uniquely determined. This proves (5.1).

In the rest of this section let x; be the canonical extension

of x; to T (see Theorem B (i)) and set x§(0)=eiei(1), i=1,2,.,0.,

(5.2). Let m be a rational integer relatively prime to n.

Then x;(om)=xz(o), $21,2, 0,0,

Proof. Let z be a primitive n-th root of unity and let
E=Q(z). Then there exists some t€ Gal(E/Q) with z'=z™. Hence
xi(o)T=x§(om). But then, since x;(o)é(Q, we have x;(om)=x;(o)r=

X§(0)~ Thus (5.2) is proved.

Remark (5.3). Let m be a rational integer relatively prime
to n. By (3.2)(ii), o™ is a quasi-co-prime automorphism of G.
Hence by Theorem A, there exists the Glauberman correspondence
7w’ with respect to o". By (5.2), the canonical extensions and
:mﬁiéﬂwﬂfemiﬂdepeﬂéeﬂthQﬁ&;the“choicewoﬁﬁamgeneratarwof <O0>.._.

Furthermore, w’ coincides with n (see the following assertion).
(5.4). Let m’ be as above. Then u’=w.

Proof. Let s=n|H|. Let ¢, be a primitive s-th root of unity
and let ¢, be a primitive n-th root of unity. Set E=Q(Zz:) and
m

F=Q(z,). Let T, € Gal(F/Q) be such that g, %=, Then there exists

T, € Gal(E/Q) whose restriction to F coincides with T,. Set gy ‘=g;"

Then r and s are relatively prime and r=m (mod n).

-16-



. T1_ Ti1_ * T1= 3* r.r " r m
Since ei(ei(h)) —(eiei(h)) ~(xi(ho)) Xi(h o) Xi(h )
=Ein'(xi)(hr)=€i(n’(xi)(h))Tl, we have ei(h)=ﬂ'(xi)(h) for each
element h of H. It follows that 6i=w’(xi), i=1,2,---,a. Hence

we obtain w’=m, which proves (5.4).

Note that (i) and (ii) of Theorem B are proved by (5.1),
(5.2) and (5.4).

(5.5). Suppose n is a power of a prime p. Then

[XilH ’ej]HEGijgi (mod p), 1<i,jgo.

‘ a
Proof. Let xile<0> = %_1 kaAek , where Aek is a character

of <0>. Assume j#i. Since I\e (om)=0 for any ome <o>-—<op>, we
J

get A8 (1)=0 (mod p) from Problem 2.16 of [3]. Considering

J
o
. * —
'X;'H=k§___1 1\61{(1)9k , it follows that [x:ly ,ej]H:o (mod p) for

e " e e e e et

any j distinct from i. Therefore, to prove (5.5), it suffices to

show that [Xng .ei]HEei (mod p), i=1,2,--,a. By (5.2), hg takes
. i

the constant value €; on <o>f-<op>. Thus g _'€i1<o> vanishes
i B

on <o>—<oP>., Hence again from Problem 2.16 of [3], we have

Ae.(1)—-eiEO (mod p), which implies Ag (1)Esi (mod p). This

i i
proved (5.5).

(The present form of the proof of (5.5) is due to H.Nagao,

which is simplier than the original version.)

-17-



(5.6). The degree n, divides t6,(1), i=1,2,-,0q.

Proof. Since II‘:CI.(O)I)q(O)/ni is an algebraic integer

and X;(°)=€iei(1). i=1,2,«,0, we conclude (5.6).

(5.7). Let R§ be a representation of I' which affords the
* i= ceee ¥ = ¥ = *
character X3 1—1,2,. ,0. Set RiIG R;. Then Ri(X) eitei(1)/ni Ri(o).

Consequently, Xi(i) is a positive rational integer, i=1,2,:-,aqa.

" t
Proof. Let G=Hg + Hg,+ - + Hgt. Since X0-1 = 2 g51g§ 0_1
. ' j=1
= g31 o'1gj, %6-1 is contained in the center of C[FJ. Hence

j=1
there exist complex numbers Vs i=1,2,---,a, such that Ri(io-1)
=viR§(1). But then tx§(0-1)=vini. It féllows that vi=€it6i(1)/ni.
Therefore we have Ri(§)=viR;(o)=eit6i(1)/ni R;(o), i=1,2,,q,
Moreover, x.(X)=e,t6,(1)/n; x}(o)=t(6,(1))?/n, , which is a positive

rational integer by (5.6). Thus (5.7) is verified.

By (5.5),(5.6) and (5.7), (iii),(iv) and (v) of Theorem B

are proved. Thus the proof of Theorem B is completed.
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Remark (5.8). Q(Oi)=Q(xi), i=t1,..,a, can be proved similarly

as in Theorem 5 (c) of [1].

(5.9). Suppose one of the following conditions holds;
(i) nlis relativeiy prime to |[HJ.
(ii) n is a prime.

Then <02%> is contained in the kernel of det xi, i=1,,a.

Consequently, if n is odd, then det x;(o)=1, i=1,,0a.

Proof. First assume (i). Then it is easy to show that

det X?(o)=t1 by Remark (5.8), which implies (5.9). Next assume (ii).
i

3

- |

Let ¢ be a primitive n-th root of unity. Set Xi

<G> =m) )\1+....+mn>\n'

where A, is an irreducible character with )\i(d)=c1'1 , i=1,.,n,

*

and m;’s are non-negative rational integers. By (5.2), Xi|<o> is

rational valued. Hence we have mp=---=m . Then det x;(o):(gczuncn‘1)m2
=+1 (-1 occurs only in the case n=2.and m, is odd), which implies

(5.9). Furthermore, if n is odd, then <o2>=<g>. This proved (5.9).

Remark (5.10). Let V be a two dimensional vector space over
GF(5) and N<o> be a subgroup of GL(2,5) isomorphic to I3 (the
symmetric group on three letters), where N is a cyclic group of
order 3 and o?=1, Set G=VN be a semi-direct product of V by N with
respect to the natural action. Then <o> acts on G in the natural
manner. Let x & Irr (G) be such that x(1)=3 and let x* be the

canonical extension of x. Since x*(o)=1, X*l<o> = 2uitus ,
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where p,(c)=-1. Hence we have det x*(o)=-1. In this case, the
canonical extension x** of x in the sense of Glauberman [1]

satisfies x*%*(o)=-1.

Finally we shall prove Corollary C. If i>a, then by (2.7),

x; (X)=0. If iga, then by (5.7), x; (X)#0. Hence Corollary C is obtained.

Appendix. After finishing this work, the author was acquainted
with T.Shintani’s paper [7] by Prof. N.Kawanaka. Indeed the same
argument as in the proof of (4.1) can be found in [7],405—406.

Also the similar result to (2.8) was verified in theiproof of

Lemma 2-7 of [7].
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