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Abstract

Recent studies point out the virtues of a relatively new field of research
with regard to robotics: imitation. The idea is that a robot can acquire new
behaviors by just observing human demonstrations. In addition, building a
robot with such a competence might help us understand human intelligence
underlying the capability of imitation based on a constructivist approach. In
my work I concentrate on ”subjective robot imitation”, that means that the
robot imitates the demonstrator autonomously. The designer analyzes neither
the demonstration, the demonstrator, nor the robot itself. Subjective robot
imitation faces two main problems: How can demonstrations be identified even
if they are seen from different viewpoints, and how can a demonstration be
imitated if the embodiment of the demonstrator differs from the robot’s own
embodiment? In order to tackle these two problems this dissertation addresses
three issues by focusing on what types of invariance can be used by the robot.

In the first part of my work, the robot should learn to imitate the demon-
stration of another identical robot by observing it (1). The opt-geometric con-
straint between views that originates from the correspondence of body parts is
utilized to map the observed demonstration to its corresponding motion only
through mappings between its sensorimotor space. Then, how a robot can find
its body from its uninterpreted sensory data is addressed. This is a fundamen-
tal step for acquiring body representation to construct the mapping between
bodies (2). The invariance in self-body-observation is modeled as a statistical
distribution of the variance of its sensory data and is utilized to discriminate
its body from non-body. Finally, we cope with the issue how a vocalizing
robot can acquire human vowels that it cannot duplicate as they are (3). The
invariance in the interaction with a human caregiver who imitatively responds
to the robot’s behavior and the robot’s subjective criteria that consider the
toil involved in the articulation are utilized to find how to articulate sounds so
that the caregiver interprets them as vowels.
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Chapter 1

Introduction

1.1 Overview

Until recently, a robot has been seen as a hard-headed machine that was pro-
grammed to perform a number of repetitive tasks but was specialized to a
limited environment such as a factory. The main reason for such a limitation
seems caused by the way how its behavior is designed, that is programmed
based on the designer’s analysis of the constraints in the task. Consequently,
the adaptability of the robot was limited to what extent the designer had
supposed in advance. Alternatively, providing a robot with a competence of
learning by which it adapts to the changes in the task, the environment, and
its body by itself, is a promising approach. However, in the case of learning
by a robot with many sensors and degrees of freedom, we face with a problem
called “curse of dimension”, that is, increase in the number of sensory modal-
ities and degrees of freedom causes an exponential explosion of the searching
space for learning. Learning by imitation is supposed to be a promising ap-
proach to overcome the curse and has been one of the most interesting topics
in recent robotics (see a survey [1]) because the size of searching space needed
to be explored might be drastically reduced by starting from imitation [2].

Learning by imitation without the designer’s analysis It is suggested
that a robot can structure its own sensory input through the interaction with
the environment, and thereby induce regularities that significantly simplify
learning [3, 4]. However, it is usually difficult for the designer to realize such a
mechanism of the robot that causes reguralities suitable for learning since the
analysis of the interaction between the body and the environment (including
the demonstrator) is not trivial in general. Therefore, a robot is expected to
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CHAPTER 1. INTRODUCTION

find how to induce the reguralities from its own viewpoint since its sensorimotor
sequence reflects the reguralities. We believe that, with the competence of
imitation from its own viewpoint instead of relying on the designer’s analysis
of the behavior to be imitated, it can acquire behaviors in its own way by
utilizing such reguralities even though they are difficult for the designer to
analyze. As a result, even a näıve user about the robot would be able to
provide it with behaviors since he/she needs just to show the desired one.

In the previous work on robot imitation, however, the system of imitation
was usually constructed based on the designer’s analysis of the situations of
imitation. For example, the designer introduced the model of behavior by
analyzing what kinds of demonstrations shall be shown [5, 6, 7, 8], or the
transformation from the observed motion or behavior to the robot’s one by
analyzing the relationship between bodies of the demonstrator and the robot
[9, 10, 11, 12, 13].

Understanding the mechanism of imitation in human brain On the
other hand, mirror neuron found in the brain of a macaque monkey [14] has
motivated a lot of researchers in neuroscience, cognitive science, and so on,
which concern the system of imitation because of its interesting activation.
It is activated not only in the execution of a particular type of action but
also in the observation of the same action performed by other agents. It is
reported that the human brain also exhibits the similar phenomena [15, 16,
17, 18]. Interestingly, the “mirror” system in human brain involves the Broca’s
area that is thought to be a substrate for speech production [19]. Based on
these findings, the system of imitation is speculated to play important roles
in several aspects of human intelligence such as understanding the other’s
behavior [20], understanding other’s mental state [21], and language acquisition
[19]. However, the acquisition process of the system of imitation has not been
revealed yet due to the limitation in the methodology to study the development
of living system.

Synthetic study is expected to serve an alternative methodology to under-
stand the cognitive developmental process of biological agents [22, 23] since we
can refine our understanding through the iteration of evaluating, improving,
and reimplementing the hypothesized model. At the same time, experimental
data concerning the developmental process of a biological agent are expected
to give us some hints to build an intelligent robot. Therefore, as aimed in
“cognitive developmental robotics [22]”, we might be able to approach to both
understanding the cognitive developmental process of human beings and ob-
taining the design principle of an intelligent robot by building a robot that

2



1.2. THE PROBLEMS

reproduces the similar cognitive developmental process as human beings do.
Although there have been already constructivist studies on imitation, they usu-
ally rely on the designer’s analysis of the situation of imitation as mentioned
above.

Therefore, building a robot that performs subjective imitation is addressed
in this dissertation, which is determined as imitation by using only its sensory
data instead of relying on the designer’s analysis of the situation of imitation.
It is considered to not only be one of the fundamental problems to make robot
learn by imitation but also be one of the prerequisites to approach to reveal
the human developmental process of imitation through synthesizing.

1.2 The problems

We consider subjective robot imitation where a robot observes the demon-
stration by its own sensors and then imitates it. Unlike the previous studies
on robot imitation, we assume that the designer does not give any explicit
knowledge on either bodies of itself or the demonstrator, or the relationship
between them. To imitate the demonstration from subjective viewpoint can be
rephrased to find how to map the observed sensor data to its motor commands.
Learning the mapping is not trivial since this mapping could be intrinsically
many-to-many due to what we call different viewpoint problem and different
body problem.

Different viewpoint problem The different viewpoint problem is caused
since we assume that a robot can sense the world only through the observation
with the sensors embedded on its body, in other words, the states of the
demonstrator and of itself are only partially observable. For example, when it
uses visual sensors, it cannot see the state of the demonstrator but can obtain
appearances of demonstration that varies depending on its viewpoint. As well
as the auditory sensors differently receive the source sound depending on the
position from where it hears the sound. It should be able to cope with such
many-to-one correspondence. Therefore, the different viewpoint problem can
be reduced to a problem to identify different appearances of a demonstration
that varies depending on the viewpoint.

In the previous studies, to avoid the different viewpoint problem, the de-
signer usually introduced a mechanism to reconstruct the state. However,
both bodies of the demonstrator and itself were needed to be modeled in the
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CHAPTER 1. INTRODUCTION

designer’s coordinate system. Therefore, they and their relationship must be
calibrated by the designer since it cannot access the designer’s coordinate sys-
tems, in other words, the references to learn about them are not available from
its own viewpoint.

How can a robot solve the different viewpoint problem from its own view-
point? Since only the sensorimotor space can be accessible by a robot, the
references to learn the mappings between different sensorimotor sub-spaces is
expected to be found by the robot. For example, visual congruence of the
bodies both of the demonstrator and the robot or the contingency between
the motion and the sensory changes could be utilized as the references. There-
fore, we address the issues to map the observed demonstrations to its motor
command only through mappings between its sensorimotor space. We need to
consider how to construct the mapping based on such references and how to
construct the representation of the references themselves.

different body problem When the robot’s body is different from the demon-
strator’s one, different body problem occurs, that is, it cannot duplicate the
demonstration as it is. For example, in the case of imitation between 2-link
robots with different link parameters, an imitator cannot reproduce both tra-
jectories of the end-effector and joint angles of the other. What make the issue
more difficult is the difference in body structure. For example when a dog-like
robot tries to imitate the human behavior with his/her hand, it is difficult
even to define what kinds of aspect in demonstration should be reproduced.
To perform imitation in these cases, it needs to abstract observed behavior to
some extent. However, abstraction brings arbitrariness in the imitation pro-
cess. In other words, a demonstration can be matched with different behavior
depending on the way to abstract, that is the definition of imitation. There-
fore, the different body problem can be reduced as a problem to find a possible
definition.

However, to find the definition of imitation is a formidable issue since there
does not seem the universal definition of imitation. In this dissertation, there-
fore, we focus on what kinds of information can be utilized from the robot’s
own viewpoint as the constraints to define imitation. Although there will re-
main a formidable problem how to select or combine the constraints, it seems
to be considered first.

Since it is situated in the interaction with the demonstrator, a robot might
be able to utilize the invariance in the demonstrator’s tendency of reaction
to its behavior. In other words, if it can induce the imitative response of the
demonstrator to its behavior as observed in the interaction between humans
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1.3. ISSUES TO BE CONSIDERED

[24, 25, 26, 27] or non-human primates [28, 29], the sensorimotor experience
can be directly utilized as references. Utizling subjective criteria reflecting
the property of the robot’s body such as energy minimum or jerk minimum
[9] is also promising not only to reduce the arbitrariness of mapping but also
to optimize the acquired behavior under the constraint of its embodiment.
Therefore, we address the issues to build a prototype robot that learns to
imitate the behavior of demonstrator that has different body structure by
utilizing both the invariance in interaction and the subjective criteria.

1.3 Issues to be considered

To solve these problems, the invariance that originates from the correspondence
of the body and the interaction with the demonstrator could be utilized. In this
dissertation, we address three partial problems towards subjective imitation
(see Fig. 1.1). Fig. 1.2 illustrates what kinds of constraints are utilized in each
issue. The contents are following:

Chapter 2 To solve the different viewpoint problem, we introduce a paradigm
called the demonstrator’s view recovery to perform view-based imitation. It
is assumed that the learner has the same body structure as the demonstra-
tor. This assumption means that the parts of the bodies of the learner and
the demonstrator are visually identical to each other, therefore, only the scale
variation is allowed. In this paradigm, at first the learner recovers the demon-
stration observed in the demonstrator’s view to observe the demonstrator’s
self-body. Then, it reproduces the visually same motion by performing the
recovered trajectory of the demonstration in its own view to observe its self-
body. In the proposed method, the demonstrator’s view recovery is performed
by utilizing the opt-geometric constraint, that is epipolar geometry [30] of the
views that originates from the correspondence of the body parts.

Adaptive visual servoing method which involves online estimator of the pa-
rameters to control the quantity of the sensory features [31], is applied both to
estimate the parameter of view recovery and perform the recovered trajectory
of the demonstration. Experiments with two identical manipulator show the
validity of the proposed method.

Chapter 3 Then, we have another fundamental question how a robot can
acquire the representation of its body to consider the correspondence of the
body parts. Therefore, we introduce a method to find its body from its sensor
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CHAPTER 1. INTRODUCTION

Figure 1.1: A load-map to approach subjective robot imitation where issues
in the black boxes are addressed in this dissertation: The correspondence of
the bodies and the interaction with the demonstrator are considered to be
available to solve the different viewpoint problem and different body problem,
respectively. Finding the representation of the body and the correspondence
of bodies are assumed to be already acquired to cope with how to utilize body
correspondence. How to interact with the demonstrator, detect the demonstra-
tor’s response, and find important features in the interaction are also assumed
to be solved to focus on how to utilize the interaction.
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Figure 1.2: The constraints utilized to construct the mapping between the
observed sensory data and the robot’s motor command in each chapter. The
numbers associated with the filled arrows correspond to the chapter in which
the constraints are utilized. Visual congruence and sensorimotor contingency,
and imitative response are utilized to construct the mapping in chapter 2 and
4, respectively, while the invariance of the sensory data is used to find the
robot’s body in sensory data in chapter 3.
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CHAPTER 1. INTRODUCTION

data without a priori knowledge of the relationship between the sensor data
and its body since this process seems a first step towards body representation.
The basic idea of the proposed method is to utilize the invariance of sensor
data in self-body-observation. In other words, the robot regards what it always
observes as its body.

The sensory data might perturb for the changes in observing posture and
sensory noise both of which depend on the combination of sensory data and
the properties of the perceived body surface. Therefore, to discriminate its
body from non-body, a robot should complementarily utilize the invariance in
multiple sensory data. The proposed method is based on a conjecture about the
distribution of the variance of sensations in terms of each observing posture. It
can be approximated by a mixture of two Gaussian distributions for observing
the body and non-body, respectively. After estimating the distribution by
an EM algorithm, it can discriminate its body from non-body by judging
which distribution likely causes the variance of sensory data in the current
observing posture. Experiments with real robots show the validity of the
proposed method.

Chapter 4 To tackle the different body problem, we focus on the develop-
mental process of phonemes in a human infant. Inspired by the observation
that infants acquire phonemes common to adults without having the capability
to articulate, or having a priori knowledge about the relationship between the
sensorimotor system and phonemes, a constructivist approach toward building
a robot that reproduces a similar developmental process is conducted. Two
general issues are addressed: what are the interactive mechanisms involved
and what should be the behavior of the caregiver/teacher? Based on find-
ings in developmental psychology, it is conjectured that (a) the caregiver’s
vocalization in response to infants’ cooing reinforces the infant’s articulation
along the caregiver’s phonemic categories, and (b) the caregiver’s repetition
with adult phonemes helps to specify the correspondence between cooing and
the caregiver’s phonemes as well as determining the acoustic properties of the
phonemes.

The robot consists of an artificial articulatory system with a 5-DoF mechan-
ical system deforming a silicon vocal tract connected to an artificial larynx, an
extractor of formants, and a learning mechanism with self-organizing auditory
and articulatory layers. Starting off with random vocalizations, the system
uses the caregiver’s repetitive utterances to bootstrap its learning. In order to
resolve the arbitrariness in determining proper articulations, the torque to de-
form the tract and its resultant deformation are minimized. The experimental

8



1.3. ISSUES TO BE CONSIDERED

results, discussion, and future issues are given.

As listed above, what are tackled in this dissertation are partial problems
of imitation. However, they involve indispensable, fundamental issues to build
a robot that performs imitation from subjective viewpoint. we believe that
the implications from the work could be elements of the design principle of an
intelligent robot or understanding human intelligence. Therefore, in the final
part of this dissertation, we would like to argue the further extensions and the
integration of these elements.

9





Chapter 2

Imitation based on the
demonstrator’s View recovery

2.1 Introduction

In recent robotics, the capability of imitation has been focused as an impor-
tant element of an intelligent robot. Leaning by imitation seems an promising
approach to solve so-called “curse of dimension” problem where increase in
the number of sensory modalities and degrees of freedom causes an exponen-
tial explosion of the searching space for learning [1]. In the fields of studies
concerning human intelligence involving neuroscience, psychology, and so on,
the system underlying the competence to imitate is said to be a basis for sev-
eral aspects of human intelligence such as action execution and recognition
[20], estimating other’s mental state [21], and even language acquisition [19].
However, the developmental process of the system of imitation has not been
evident yet. Therefore, building a robot that performs imitation is an interest-
ing issue from both viewpoints of obtaining the design principle of intelligent
robot and understanding intelligence of humans [22, 32, 33].

The research of imitation has started from the studies on teaching by do-
ing in the industrial applications. Instead of time-consuming path planning,
the users could provide the desired motion by letting their robots memorize
the demonstrated one through teaching pendant. Although there still remain
important issues on imitation (ex. motion segmentation [34, 35]) after the mo-
tion is directly given by the designer, teaching by showing should be addressed
since we consider a robot that learns from subjective viewpoint.

Kuniyoshi et al. [5] and Ikeuchi and Suehiro [6] built robotic systems which
learn assembly tasks by watching a human demonstration. Based on the mod-
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RECOVERY

els of specific behaviors given by the designer in advance, it can recognize
assembly tasks demonstrated by the experimenter and then perform corre-
sponding behaviors. Apart from static behavior like assembly task, imitation
of dynamic movement such as dancing [7] or learning by imitation of dynamic
tasks such as air hokey and marble maze [8] have been also addressed based
on given primitives of behaviors. However, it seems difficult for the designer
to prepare the universal model or primitive that can be applied for general
behaviors. Since we assume that it does not have any explicit models of be-
haviors to be imitated, reproducing the motion seems the first step to imitate
the behaviors.

In the previous studies on imitating the motion without the explicit models
of behaviors given by the designer, it was not necessarily considered how can
a real robot reproduce the demonstration from its own viewpoint since they
focused on how it articulates or memorizes the demonstration. Therefore, it
was usually assumed that it can obtain the motor command or the joint angle
to reproduce the demonstration by using a motion capture system [13, 10,
11], or attaching a sensor-suit on the demonstrator [12]. In other words, the
designer must have paid much effort to let it know the demonstrator’s internal
state. Namely, the designer must have modeled the body of the learner and the
demonstrator to transform the joint angles from the observed data. To release
the designer from such a burden, how to perform imitation by a view-based
mechanism should be addressed.

As one of view-based studies, Miyamoto et al. [9] have proposed a method
based on 3-D geometric reconstruction. In their approach, the observed tra-
jectory of the demonstration in the image space is transformed into the three
dimensional coordinate system. However, the designer needs to calibrate the
transformations between the robot centered coordinate system and the world
coordinate one. Furthermore, the parameters calibrated by the designer prone
to be error sensitive and less adaptive to the changes in the robot’s body.

In other type of the view-based imitation mechanism [36, 37, 38], imita-
tion are emerged by maintaining the visual feature that indicates geometrical
relationship between the demonstrator and the learner. For example, locomo-
tion behavior is imitated by maintaining the distance between them [36, 37],
and head movement of the demonstrator is imitated by maintaining the angle
between the facial normal of the demonstrator and the learner’s view direc-
tions [38]. But, in these approaches, it can imitate limited types of behaviors
because it seems difficult to choose the suitable features to be maintained.

Kuniyoshi et al. [39] proposed the mechanism that models the neonatal
imitation [40]. In their model, the agent first learns to associate its motor
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2.1. INTRODUCTION

commands with an optical flow which is caused by its own pre-defined mo-
tions by using a Hopfield type neural network with non-monotonic activation
function. Then, when it observes an optical flow caused by demonstration,
it reflectively generates the motor commands associated with the perceived
optical flow. Based on the similar idea, Andry et al. [41] or Ogino et al. [42]
have addressed how to reproduce the mirrored motion. Note that the systems
work only when they face with the demonstrator in a mirroring manner and
the mirror image of the demonstration can be still considered to be the same
as the original one. It is not clear how to extend the mechanism from the
limitation of mirroring imitation.

In this chapter, to perform various demonstrations in a view-based manner,
we will introduce a mechanism based on a paradigm, what we call demonstra-
tor’s view recovery. In the paradigm, the robot that imitates the demonstration
(hereafter, the learner) recovers the demonstration observed in the demonstra-
tor’s view to observe the demonstrator’s self-body, then it reproduces the visu-
ally same motion by performing the recovered trajectory of the demonstration
in its own view to observe its self-body.

(1) To perform the demonstrator’s view recovery, we propose a basic mech-
anism based on “epipolar geometry [30]” between views. Here, we assume that
the learner’s body structure is the same as the demonstrator’s one, where only
scale variation is allowed, and that the initial postures of both are the same,
instead of assuming the designer’s calibration. Note that the assumption of ini-
tial posture will be released in the latter part of this chapter. First, it recovers
the observed trajectory of the demonstration in its own view, and then control
to follow the recovered trajectory by an adaptive visual servoing method [31]
that does not need the designer’s calibration or three dimensional reconstruc-
tion. As a result, it reproduces the demonstration from its own viewpoint.
The transformation is called “view transformation”. To know the parameters
of view transformation, it estimates a fundamental matrix of epipolar geome-
try.

(2) Then we introduce a method to perform imitation based on the demon-
strator’s view recovery even if the initial postures are different from each other.
In the proposed method, at first, the learner estimates the parameters of a view
transformation by regarding both postures as the same even though they are
actually different. Therefore, the estimated parameters causes errors in the
view transformation. Then, it controls its posture to minimize the errors, and
estimates them again at the new posture. Iterating these procedures, the pa-
rameters which cause no transforming errors are estimated. It is approximately
ensured that it can minimize the error by the control based on the gradient
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method when the demonstrator’s posture is not so different from the learner’s
one.

The rest of this chapter is organized as follow: after defining imitation
in this study, the basic mechanism of demonstrator’s view recovery based
on epipolar geometry and the experiments are given. Then, the method to
cope with the case that the demonstrator’s initial posture is different from the
learner’s one is proposed and examined. Discussion and summary are given in
the final part of this chapter.

2.2 A definition of Imitation

We assume that the learner has the same body structure and stereo cameras
as the demonstrator. This assumption enables us to avoid the different body
problem. For example, when they have different link parameters, the both
motions which are resultant from the same joint angle trajectories may have
different meanings [43]. In such a case and a further case that even degrees of
freedom is different, we must discuss what kind of aspect in imitation should
be supposed to be similar. However, there does not seem a clear definition
which is applicable to all the cases of imitation. Instead of stopping at the
different body problem, we assumes such similarity of bodies in order to study
the mechanism of imitation in a simple case. This assumption allows a simple
definition, such as

generating a motion so that the trajectory of own body observed in
own view is congruent with one of the demonstrator’s body observed
in the demonstrator’s view when the demonstrator is supposed to
observe itself in the same posture as the learner.

Denote a image plane of camera p as [p] and a view of an agent A that
observes an agent O as V O

A . In this case, A and O can be L or D that
indicates the learner or the demonstrator, respectively (see Fig. 2.1). Since
the agents possess two cameras, V O

A indicates two image planes. Suppose that
[LD] and [RD] denotes the demonstrator’s left and right views to observe itself,

respectively, and V D
D

4
= {[LD], [RD]} denotes both of them. In the same way,

V L
L

4
= {[L], [R]} denotes the learner’s views to observe itself and V D

L
4
= {[l], [r]}

denotes the learner’s views to observe the demonstrator. If the learner knows
V D

D , it can imitate by performing the trajectory of the demonstration observed
in V D

D as the desired one in V L
L .

14
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[R  ]D

[L  ]D

VD
D

[R]

[L]

L
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[r]

[l]

LVD

View direction
change

The learner’s views
at imitating.

The demonstrator’s views
at demonstrating.

The learner’s views
at observing.

Figure 2.1: An overview of imitation. The learner’s view at observing the
demonstration V D

L = {[l], [r]} and at imitating V L
L ={[L], [R]}, and the demon-

strator’s view V D
D ={[LD], [RD]} at demonstrating. The body structure and

the stereo cameras of the learner are the same as ones of the demonstrator.
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Since it cannot directly access to V D
D , it needs to recover the demonstration

supposed to be observed in V D
D from the observation in V D

L . We call the trans-
formation to recover unknown views form known views “view transformation”,
and the recovery of the demonstrator’s unknown views “demonstrator’s view
recovery”.

2.3 Demonstrator’s View Recovery based on

Epi-polar Geometry

The basic idea of the demonstrator’s view recovery is to utilize epipolar geome-
try between the learner’s views ([l] and [r]) and the demonstrator’s views ([LD]
and [RD]) both of which are to observe the demonstration. It is assumed that
the learner’s body structure and initial posture are the same as the demon-
strator’s one. By virtue of this assumption, it can estimate the parameters
of epipolar equation, and thereby construct the view transformation between
V D

L and V L
L . After recovering the trajectory of demonstration using the con-

structed view transformation, the learner performs imitation by reproducing
the recovered one with adaptive visual servoing [31]. In the rest of this section,
the detail mechanism of imitation based on the demonstrator’s view recovery
is introduced.

2.3.1 The mechanism of view transformation based on
epipolar geometry

Epipolar geometry

Suppose that two cameras watch the same point in the world. The point, its
projections points on the both image planes, and the centers of both cameras
are on the same plane (see Fig. 2.2). The plane is called epipolar plane and
such geometry between two cameras is called epipolar geometry. According
to epipolar geometry, each projected point is constrained onto a line which is
the intersection of epipolar plane and the image plane, and therefore is called
epipolar line.

Epipolar geometry between [p] and [q] for the i-th point is described as
following epipolar equation:

pm̃T
i

pqF qm̃i = 0, (2.1)

where pm̃i = [pmT
i , 1]T ∈ <3 and qm̃i = [qmT

i , 1]T ∈ <3 denote homogeneous
coordinates of the image coordinates of the i-th projected points, and pqF ∈
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attentional point

the projected 
point (       )mp

i

the projected 
point (       )m

q
i

epipolar 
  plane

[p]
the center of 
camera of [q]

the center of 
camera of 

[p]
the image 
plane of [q]

the image
plane of 

epipolar lines

Figure 2.2: An over view of epipolar geometry: when an attentional point is
projected on the image planes ([p] and [q]), the attentional point, the projected
points (pmi and qmi), and the center of cameras share the same plane (epipolar
plane). In other words, pmi or qmi is constrained onto a line (epipolar line)
which is the intersection of the epipolar plane and the image plane [p] or [q],
respectively.
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<3×3 is called fundamental matrix which depends on the internal parameters
of two cameras and the relative position and posture between them.

A fundamental matrix has 8 degrees of freedom when the camera is modeled
by a perspective camera, or 4 degrees of freedom when it is modeled by an
affine camera. In general, therefore, a minimum of 8 pairs of matched projected
points (pm̃i，qm̃i) are required to uniquely determine the fundamental matrix
of perspective cameras, as well as 4 pairs are required for affine cameras. They
can be determined by the minimizing residual of the epipolar equations [30].

When the cameras are modeled by an affine one, we have another method to
estimate a fundamental matrix. In the case of affine camera, the fundamental
matrix is simplified such as

pqF =




0 0 pqf13

0 0 pqf23
pqf31

pqf32
pqf33


 . (2.2)

Expanding eq. (2.1), we obtain

pqxi
pqf + pqf33 = 0 (2.3)

where

pqxi =
[ pmi

qmi

]
∈ <4, pqf =




pqf13
pqf23
pqf31
pqf32


 ∈ <

4. (2.4)

These elements of the fundamental matrix are determined by minimizing the
sum of distances of each vector pqxi to the hyper-plane in the 4-dimensional
space that is represented by eq. (2.3) [44]. Such a vector is determined as an
eigenvector associated with the minimal eigenvalue of pqW , where

pqW =
N∑

i=1

(
pqxi − pqx0

)(
pqxi − pqx0

)T

, (2.5)

where

pqx0 =
1

N

N∑

j=1

pqxj (2.6)

then, the rest element pqf33 is determined by

pqf33 = −pqxT
0

pqf . (2.7)
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A mechanism of view transformation

Suppose that there are three views in which two of them ([l] and [r]) are known
and the rest ([LD]) is unknown. In this section, the mechanism to determine
the image coordinate in [LD] of an attentional point from the image coordinates
in [l] and [r] of the corresponding point is introduced under the assumption
that fundamental matrices between these views has been already known. In
other words, the problem is to know LDmi from lmi and rmi by using lLDF
and rLDF .

Corresponding pairs, {lmi,
LDmi}, and {rmi,

LDmi} are satisfied with an
epipolar equation, respectively, such as

lm̃T lLDF LDm̃ = 0, (2.8)
rm̃T rLDF LDm̃ = 0. (2.9)

Expanding these equation, we obtain

A(lmi,
rmi;

lLDF , rLDF ) · LDmi = di(
lmi,

rmi;
lLDF , rLDF ), (2.10)

where

A(lmi,
rmi;

lLDF , rLDF ) =
[

a(lmi;
lLDF ) b(lmi;

lLDF )
a(rmi;

rLDF ) b(rmi;
rLDF )

]
,

di(
lmi,

rmi;
lLDF , rLDF ) =

[ −c(lmi;
lLDF )

−c(rmi;
rLDF )

]
, (2.11)

and where the functions a, b, and c are given by



a(pm; pqF )
b(pm; pqF )
c(pm; pqF )


 = (pm̃T pqF )T =




pqf11
lx + pqf21

ly + pqf31
pqf21

lx + pqf22
ly + pqf32

pqf31
lx + pqf32

ly + pqf33


 . (2.12)

Therefore, if A is full rank, LDmi can be determined by solving the simulta-
neous equations (2.10) such as,

LDmi(t) = A−1(lmi(t),
lmi(t);

lLDF , rLDF ) · d(lmi(t),
lmi(t);

lLDF , rLDF ).(2.13)

Since each row in eq. (2.10) represents an epipolar line, solving the simulta-
neous equations is equivalent to determine the intersection point between them
(see Fig. 2.3). When A is not full rank, we cannot avoid numerical sensitivity
in calculating eq. (2.13), in which epipolar lines are parallel.

However, we have two method to determine the intersection point more
stably. One is by adding more known views in which the matched image
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epipolar 
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epipolar 
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[L  ]
[L  ]

[L  ]D

D

D

D
intersection
point

Figure 2.3: The method to find a matched point (LDmi) in [LD] with ones (lmi

and rmi) in [l] and [r]. Solving simultaneous equations (2.10) is equivalent to
determine an intersection point of epipolar lines.

coordinates and a fundamental matrices between [LD] and them. By adding
such a known view, additional epipolar equation is introduced as a row of
simultaneous equation. If we use the affine camera model, another method is
available by adding one more unknown view [RD] in which only a fundamental
matrix LDRDF is known. When we try to find the intersection point in [LD],
i.e. LDm̃i, by solving the eq. (2.10) and one in [RD], i.e, RDm̃i by solving

lm̃T
i

lRDF RDm̃i = 0, (2.14)
rm̃T

i
rRDF RDm̃i = 0, (2.15)

we can use an additional epipolar equation between [LD] and [RD];

LDm̃T
i

LDRDF RDm̃i = 0. (2.16)

Therefore, we can determine unknown LDmi and RDmi by solving the simul-
taneous equations which consist of eq. (2.8), (2.9), (2.14), (2.15), and (2.16),
such as

[ LDmi
RDmi

]
= A′(lLDF , rLDF , lRDF , rRDF , LDRDF )+

·B′(lLDF , rLDF , lRDF , rRDF , LDRDF ) · d′i(lmi(t),
lmi(t)), (2.17)
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where

A′(lLDF , rLDF , lRDF , rRDF , LDRDF ) =




lLDf31
lLDf32 0 0

rLDf31
rLDf32 0 0

0 0 lRDf31
lRDf32

0 0 rRDf31
rRDf32

LDRDf31
LDRDf32

LDRDf13
LDRDf23




,

B′(lLDF , rLDF , lRDF , rRDF , LDRDF ) =




lLDf13
lLDf23 0 0 lLDf33

0 0 rLDf13
rLDf23

rLDf33
lRDf13

lRDf23 0 0 lRDf33

0 0 rRDf13
rRDf23

rRDf33

0 0 0 0 LDRDf33




,

d′i(
lmi(t),

lmi(t)) =




lmi(t)
rmi(t)

1


 , (2.18)

and A′+ denotes a pseudo-inverse matrix of A′.

2.3.2 Demonstrator’s view recovery

To perform the view transformation from known views V D
L (={[l], [r]}) to

unknown views V D
D (={[LD], [RD]}), the learner needs to estimate fundamental

matrices, lLDF，lLDF，lLDF， lLDF , and LDRDF . As mentioned in the section
2.3.1, sufficient number of matched pairs of the projected points is needed
to estimate the fundamental matrices. However, the learner does not know
directly the matched point in V D

D . The basic idea to estimate the fundamental
matrices is to utilize its own views to observe its self-body as an alternative to
the demonstrator’s ones.

Since it is assumed that the learner has the same body structure and the
camera parameters as the demonstrator does, and that the initial postures of
the both are also the same, the learner’s body projected on V L

L is congruent
with the demonstrator’s one in V D

D (see Fig. 2.4). Therefore, instead of using
unknown matched points in V D

D , fundamental matrixes can be estimated by
using points which is considered to be matched in V L

L .

When we re-define Lmi and Rmi as the i-th projected point on the learner’s
body in V L

L , and LDmi and RDmi as the corresponding one on the demonstra-
tor’s body in V D

D , they are satisfied with the following equations, such as

LDmi = Lmi,
RDmi = Rmi. (2.19)
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Figure 2.4: The key idea of the method of the parameter estimation. Because
it is assumed that the link parameter, camera parameters, and their postures
of the learner and the demonstrator are the same, the views observing itself
(V L

L and V D
D ) become congruent with each other. According to the congruence,

the image coordinates of matched body parts are the same (i. e. LDmi = Lmi,
and LDmi = Lmi).
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It means that the learner can alternate Lmi and Rmi with LDmi and RDmi, in
order to estimate the fundamental matrices by the method mentioned in the
section 2.3.1.

Recovery of the demonstration

Then, the method to recover the trajectory of the demonstration in unknown
views is shown. Suppose that the learner observes a trajectory of the demon-
strator’s end-effector lme(t) and rme(t) in V D

L , and fundamental matrices of
five epipolar equations, lLDF , rLDF , lRDF , rRDF , and LDRDF have been already
estimated. Utilizing view transformation mechanism mentioned in the pre-
vious section, the trajectory of the end-effector LDme(t),

RDme(t) in V D
D are

estimated such as,
[ Lme

Rme

]
= A′(lme(t),

lme(t),
lLDF , rLDF , lRDF , rRDF , LDRDF )+

·d′(lme(t),
lme(t),

lLDF , rLDF , lRDF , rRDF , LDRDF ), (2.20)

Recall that the demonstrator has the same body structure and the same
stereo cameras, and that V D

D are the demonstrator’s views when it observes
itself during demonstrating in the same posture as the learner observes itself.
Therefore, if the learner performs the same motion as the demonstration, the
trajectory of the learner’s end-effector in V L

L can be congruent with one of the
demonstrator’s in V D

D . Thus, the leaner can reproduce the demonstration by
following its end-effector to the recovered trajectory LDme(t),

RDme(t) as the
desired one in V L

L . We call this processes, that is recovering the demonstrator’s
trajectory in the demonstrator’s view, as demonstrator’s view recovery.

2.3.3 Performing the recovered trajectory by adaptive
visual servoing

The control system to perform the recovered trajectory in V L
L is constructed

based on adaptive visual servoing (AVS) [31]. In AVS a feature vector can be
controlled with online estimation of a Jacobian matrix of time-derivatives of
the quantities of image features with respect to joint angle velocities.

Suppose that θ ∈ <m denotes the learner’s joint angle, and LRxe = [LmT
e , RmT

e ]T ∈
<4 denotes the image feature vector of the learner’s end-effector. If the relation
between LRxi and θ is given by LRxe = LRxe(θ), differentiating it, we obtain a
velocity relation such as

˙LRxe = J(θ)θ̇, (2.21)
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where J(θ) = (∂LRxi/∂θ)T ∈ <4×m is a Jacobian matrix of time-derivatives
of the quantities of image features with respect to those of the joint angles.
Assuming that movement of the camera-manipulator system is slow enough to
consider the Jacobian matrix J to be constant during the sampling time, we
obtain

LRxe(k + 1) = LRxe(k) + J(k)u(k), (2.22)

as a discrete model of the system, where J(k) and u(k)(= θ̇∆T ) denote the
constant Jacobian matrix and a control input vector in the k-th step during
sampling rate ∆T , respectively.

From eq. (2.22), recurrence formula to estimate J can be derived such as,

ĵ
T

i (k + 1)− ĵ
T

i (k) =
{LRxe(k + 1)i − LRxe(k)i − ĵ(k)T

i u(k)}
ρ + uT (k)P (k)u(k)

P (k)u(k),(2.23)

where jT
i is the i-th row vector of J , ρ is a forgetting factor in the range

0 < ρ ≤ 1, and P is a covariance matrix which is also estimated in recurrence
formula such as

P (k) =
1

ρ

[
P (k − 1)− P (k − 1)u(k − 1)u(k − 1)T P (k − 1)

ρ + u(k − 1)T P (k − 1)u(k − 1)

]
. (2.24)

The recurrence formula to estimate J and P is a solution based on recursive
least-mean-square method which minimizes the weighted residual of eq. (2.22).

With online estimation of J(k) in eq. (2.23) and of P (k) in eq. (2.24), the
desired trajectory of feature points LRxed(t) is realized by the control law,

u(k) = Ĵ(k)+{LRxed(k + 1)− LRxed(k)}
+{Im − Ĵ(k)+Ĵ(k)}kr

+KĴ(k)T{LRxed(k + 1)− LRxe(k)}, (2.25)

where Ĵ(k)+, Im, kr and K denote a pseudo-inverse matrix of Ĵ(k), an m×
m identity matrix, an arbitrary vector, and a positive-definite gain matrix,
respectively.

2.3.4 An overview of process in imitation

Finally, an overview of the imitation process based on demonstrator’s view
recovery is shown in Fig. 2.5. The process consists of
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1. estimating the parameters of view transformation from the learner’s
views V D

L to the demonstrator’s views V D
D . The estimation is realized by

using image points in V L
L which are supposed to correspond to those in

V D
D ,

2. recovering the demonstrator’s trajectory of the end-effector in V D
D by the

view transformation in eq. (2.20), and

3. controlling the learner’s end-effector to follow the recovered trajectory of
the demonstration by adaptive visual servoing system in eq. (2.25).

2.4 Experiment

To consider the validity of the proposed method, real robot experiment was
conducted. Two identical manipulators were assumed to be bodies of the
learner and the demonstrator, respectively. The learner possess two cameras.
(see Fig. 2.6).

An experimental setup

Two identical manipulators (PA10, MHI) were used as the bodies of both
the learner and the demonstrator, each of which has 7 DoFs and 2 of them
were used in this experiment. The stereo cameras (CCB-EX37, SONY) on the
movable camera head located near the learner’s body, assuming they were the
learner’s head and eyes and the manipulator as the learner’s arm (see Fig. 2.6
and 2.7(a)).

It obtained two video images through the stereo cameras, and then, they
were combined to one (image size: 640[pixel] × 480[pixel]) by compressing
each images into the half along the vertical axis (640[pixel] × 240[pixel]) in
video mixing device [45], and then sent to a tracking module equipped with a
high-speed correlation processor utilizing SAD (Sum of Absolute Difference)
manufactured by Fujitsu. Before starting an experiment, we specified target
images to be tracked by the model. During the experiment, the module tracked
the target images, and it fed the image coordinates of the targets to CPU. The
CPU calculated a desired joints angle velocity of the manipulator and sent it to
the manipulator controller through real-time network (ARCNET, 5.0 Mbps).
Using this experimental equipment and writing programs using C language on
VxWorks (Wind River), the sampling ratio was 30[Hz]. Note that a different
set of the CPU and the manipulator controller was assigned to control the
demonstrator robot motion.
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Figure 2.5: An overview of the proposed mechanism of imitation based on
demonstrator’s view recovery.
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The demonstratorThe learner

manipulator manipulator

stereo
cameras

Figure 2.6: Assuming the learner and the demonstrator as two identical ma-
nipulators.

An trial of Imitation

Fig. 2.8 illustrates the process of an trial of imitation. After the parame-
ters of epipolar geometry were estimated, the demonstrator demonstrated the
motion that shaped a triangle by its end-effector. The demonstration was
performed by sending the series of joint angle velocities to the controller of
the demonstrator. At first, the learner detected the end-effector trajectory of
the demonstration in its view (V D

L ) by using the tracking module (see Fig.
2.9). Then, it generated the desired trajectory (dots) in its view (V L

L ) by the
proposed method of demonstrator’s view recovery (see Fig. 2.10), and finally
reproduced it by the adaptive visual servoing (see Fig. 2.11).

Fig. 2.10 also shows the true one (boxes) which is measured in advance by
sending the same series of those as the demonstrator’s one to the controller of
the learner. The proposed method of the view transformation works well since
the recovered one and the true one are almost the same.

To confirm whether the adaptive visual servoing system to follow the recov-
ered trajectory works well, Fig. 2.12 shows three trajectories of the end-effector
in the learner’s view (V L

L ), which are the performed one, the true one, and the
recovered one, respectively. It is confirmed that the learner performs imitation
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Figure 2.7: An overview of the experimental setup
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The stereo

 cameras
[l][r]

The learner's body
The demonstrator's 

body

The view directions

(a) The initial posture (b) During the demonstration (1)

(c) During the demonstration (2) (d) The final posture

Figure 2.8: Appearances of the demonstrator’s motion.

well since they are almost the same.

2.5 Estimation of Fundamental Matrixes by

Conflict Resolution with Epipolar Geom-

etry

To recover the demonstrator’s view, we need the true fundamental matrices
between the views. However, when the learner’s posture is different from
the demonstrator’s one, we cannot estimate them by the proposed method in
section 2.3.1. In this section, the method to release the assumption of the same
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(a) [l] (b) [r]

Figure 2.9: The trajectories of the demonstration in the learner’s views ob-
serving the demonstrator (V D

L ).

(a) [L] (b) [R]

Figure 2.10: The recovered trajectories (dots) and true trajectories (boxes) in
the learner’s views observing itself (V L

L ).
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The view directions observing itself 

(a) The initial posture (b) During the imitation (1)

(c) During the imitation (2) (d) The final posture

Figure 2.11: Appearances of the learner’s imitation behavior.
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Figure 2.12: The trajectories in imitation. The performed one, the true one
measured in advance, and the recovered one.
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posture is given.

If the fundamental matrices are correctly estimated, the recovered points of
the demonstrator’s body parts are coincident with the corresponding learner’s
body parts. Else, the corresponding points are shifted from each other on
the image plane since the estimated fundamental matrices conflict with true
epipolar geometry. In this section, we derive the evaluation function of this
conflict, analyze its behavior based on the affine camera model, and propose
the method to resolve the conflict by the control to minimize the evaluation
function.

2.5.1 An evaluation function

Suppose that the learner observes the demonstrator’s posture and knows N
image coordinates of the feature points on the demonstrator’s body lmi and
rmi, (i = 1, · · · , N) in its stereo views V D

L . N should be more than 4 which
is minimum number to estimate a fundamental matrix of the affine cameras.
Then, the learner changes the gaze direction and watches at its own body to
know the image coordinate of body part those correspond to Lmi and Rmi.

Confliction of the estimated fundamental matrices with epipolar ge-
ometry The fundamental matrices estimated by the method in the previous
section are no longer true since both initial postures are different and conse-
quently eq. (2.19) is not satisfied. Therefore, if we use the false fundamental
matrices for view transformation, the recovered views are shifted from the true
ones of the demonstrator. In other words, image coordinates of the recovered
points on the demonstrator’s body parts (LDm̂i and RDm̂i) are shifted from
the true ones (LDmi and RDmi).

Furthermore, they are also shifted from the projected points of the learner’s
body parts (Lmi and Rmi) which correspond to demonstrator’s ones (LDmi

and RDmi). It might be felt strange because the estimation minimizes the sum
of residuals of epipolar equations between {lmi or rmi} and {Lmi or Rmi}.
However, it is true because the sum of redisuals cannot become zero in this
case since we assume that the number of points (N) which is used for estimation
is more than the minimum number (4) for it. Therefore, the transformations
using the estimated parameters with non-zero residuals are not consistent with
data used for estimation (see Fig. 2.13).

The evaluation function of the transforming error caused by the inaccuracy
of the estimated fundamental matrices when the learner’s posture is different
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Figure 2.13: An overview of confliction.

from the demonstrator’s one is defined as

E =
1

N

N∑

i=1

LReT
i

LRei, (2.26)

where

LRei =
[ Lmi

Rmi

]
−

[ LDm̂i
RDm̂i

]
(2.27)

denotes a vector from a recovered point to the corresponding body part of the
learner (see Fig. 2.13). Note that this evaluation function can be calculated
from the learner’s own viewpoint.

2.5.2 Analyzing the evaluation function

Since the projected points LRxi of the learner’s body parts are the functions
in terms of the learner’s posture (θ ∈ <m), they can be represented by LRxi =
LRxi(θ). Supposing that the learner’s posture is given by θ = θD + δθ, where
θD is the posture of the demonstrator, the projected point LRxi is given by the
following equation including the perturbation LRδxi,

LRxi = LRxDi + LRδxi, (2.28)

where LRxDi = LRxi(θD) = [LmT
Di,

RmT
Di]

T .
As long as LRδxi is small, the relationship between θ and LRxi can be

approximated by

LRδxi = Jxiδθ, (2.29)
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where Jxi = (∂LRxi/∂θ)T ∈ <4×m is a Jacobian matrix of time-derivatives of
the projected point vector with respect to the joint angle.

Based on the perturbation theory for eigenvalue, the estimated fundamental
matrix pqf is given by the following equation including a function of perturba-
tion pqδf in terms of LRδxi(i = 1, · · · , n),

pqf = pqf true + pqδf(LRδx1, · · · , LRδxN), (2.30)

where pqf true is the true fundamental matrix. From eq. (2.29), the second term
of right-hand side in eq. (2.30) is given by a function in terms of δθ, such as
pqg(δθ). Therefore pqf is approximated by including it,

pqf = pqf true + pqg(δθ) (2.31)

Substituting eq. (2.31) to eq. (2.17), and developing the above formulation
algebraically in focusing on the dominant term, we obtain

E = δθT Qδθ, (2.32)

where Q ∈ <m×m is a positive-semidefinite matrix.
The positive-semidefinite matrix Q can be regarded as a positive-definite

matrix because the evaluation function usually becomes zero only when the
learner’s posture corresponds to the demonstrator’s one. Thus, the proposed
evaluation function is expected to be a convex function and have a local min-
imum at which the learner’s posture corresponds to the demonstrator’s one.

2.5.3 Control to resolve the confliction of the estimation

In this section, a control system to resolve the confliction of estimation by
minimizing the evaluation function is proposed. Since it can be regarded as a
convex function in terms of joint angles, it is expected to be able to minimize
the proposed evaluation function by a gradient method. In order to use the
gradient method, we need the gradient vector, which is unknown in our case.
Then again, adaptive visual servoing method (AVS) [31] is applied to estimate
the gradient vector of the unknown system.

The relation between the learner’s joint angle θ and the evaluation function
E is given by E = E(θ) from eq. (2.32). Differentiating it, we obtain a velocity
relation,

Ė = JEθ̇, (2.33)
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where JE is a Jacobian matrix of time-derivatives of the evaluation function
with respect to joint angle velocity. Using AVS, the Jacobian matrix ĴE can be
estimated based on the recursive weighted least square method as introduced
in section 2.3.3.

In order to minimize E, we can determine the control input vector uinput ∈
<m in the following equation,

uinput = −KĴ
T

EE (2.34)

where K ∈ <m×m is a positive-definite gain matrix.

2.5.4 Overview of process in imitation

In this section, an overview of the imitation process based on the demonstra-
tor’s view recovery in the situation when the learner’s posture is different from
the demonstrator’s one is shown (see Fig. 2.14). Note that only estimating
process is different from previous method (see Fig. 2.5). In the process, the
learner

1. estimates the parameters of view transformation by iterating the follow-
ing processes;

(a) estimating them by regarding the learner’s initial posture is the
same as the demonstrator’s even though they are actually different
and by applying the method in the section 2.3.2,

(b) recovering the demonstrator’s body parts in V D
D by the view trans-

formation in eq. (2.20) with the estimated parameters and calculat-
ing the evaluation function in eq. (2.26),

(c) controlling the learner’s joint angles to minimize the evaluation
function by the control law in eq. (2.34) with online estimation
of Jacobian matrix,

(d) judging the termination of the control by checking whether the eval-
uation function is converged to smaller value than a threshold de-
termined in advance, if not, return to (1a),

2. after the evaluation function is converged, recovers the demonstrator’s
trajectory of the end-effector in V D

D by the view transformation in eq.
(2.20), and then,

3. controls the learner’s end-effector to follow the recovered trajectory of
the demonstration by adaptive visual servoing system in eq. (2.34).

36



2.5. ESTIMATION OF FUNDAMENTAL MATRIXES BY CONFLICT
RESOLUTION WITH EPIPOLAR GEOMETRY

mr iml i

mL
i m i

R

F matrix
estimation

View
transform 
ationme(t)r

me(t)l

the parameters

=

u(t)

J matrix estimation
Robot
system

me(t)R
e(t)Lm Adaptive visual servoing

View
transform 
ation

Evaluation
function
eq. (4.1)

Robot system

u(t)

J matrix
estimation

Adaptive visual servoing

JE

F
lLD

rRD

lRD

rLD

F

F F

me(t)RD

me(t)
LD

the desired
 trajectory

2. Recovering the desired trajectory

3. Realizing the desired trajectory

(a)

(b)

(d)

(b)

(c)

no

return to (a)

V
D

L

V
D

L

VL
L

V
D

D

alternate

unknown

     if 
E << 1

m i
RmL

i

V
D

D

VL
L

x (t)eLD

control law (eq. (3.25))

eq. (3.19)

control law
eq. (4.9)

1. Parameter estimating

eq. (3.17)

Figure 2.14: An overview of the mechanism of the imitation in the situation
where the demonstrator’s initial posture is different from the learner’s one.
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2.6 Experiments

To show the validity of the proposed method, some experimental results are
given in this section. As well as in the previous experiments (section 2.4), two
identical manipulators are assumed as bodies of the learner and the demon-
strator, respectively. A pair of focal points of the stereo cameras are assumed
as learner’s view points (see Fig. 2.6).

2.6.1 Behaviors of the evaluation function by computer
simulation

To examine the behavior of the evaluation function, the computer simulation
is performed. A manipulator, which has the same link parameters as the one
used in the real robot experiments mentioned later, is simulated as the bodies
of the learner and the demonstrator. The camera projection is modeled by a
pin hole camera. The pair of stereo cameras locates near the learner’s body,
assuming it is its head and the manipulator as its arm (see Fig. 2.6 and 2.15).
An overview of the simulation is shown (see Fig. 2.15)

(a) Observing the demon-
strator

(b) Observing its own body

Figure 2.15: An overview of the computer simulation. The position and ori-
entation of the learner’s stereo cameras relative to the demonstrator’s body,
when it observes the demonstration (a), and when it imitates (b).
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When the demonstrator’s joint angle are (θ2, θ4) = (45◦,−90◦), the learner
observes the demonstrator’s posture and detects the ten feature points (N =
10) on the demonstrator’s body in its stereo views (see Fig. 2.15(a)). Then
the learner changes the gaze direction and watches its own matched feature
points (see Fig. 2.15(b)). Fig. 2.16 shows the calculated evaluation function
when moving its joint angles, θ2 = 0◦ ∼ 90◦, and θ4 = 0◦ ∼ −180◦.

The calculated evaluation function seems almost a convex one which has
a local minimum at (θ2, θ4) = (41◦,−90◦). The local minimum is close to the
point which the learner’s posture corresponds to demonstrator’s one.

2.6.2 Experiments using a real robot

To examine the behavior of the evaluation function and to show a validity of
proposed control system, the results in the real experiments are shown in this
section. They are examined in the same experimental setup as used in section
2.4 (see Fig. 2.7).

(a) Behaviors of the evaluation function in a real experiment

Fig. 2.17 shows the calculated evaluation function in the same manner as in
the computer simulation. In the real experiment, the learner moves its joint
angles, θ2 = 25◦, 35◦, 45◦, 55◦, 65◦ and 75◦, and θ4 = −25◦ ∼ −135◦. Similar to
the computer simulation, the calculated evaluation function can be regarded
as a convex one which has a local minimum at (θ2, θ4) = (45◦,−86◦).

From the results of the computer simulation and the real experiment, we
may conclude that the proposed evaluation function is a convex one and has a
local minimum at which the learner’s posture corresponds to the demonstra-
tor’s one.

(b) Posture imitation by resolving conflict

To show the validity of the method to resolve the conflict of the estimated affine
fundamental matrix with epipolar geometry, the experimental result with real
robots is shown in this section. Adaptive visual servoing is applied as one of a
gradient method to estimate the true epipolar geometry and then to perform
the imitation. The control input is determined by eq. (2.34). The initial values
of the Jacobian matrix to be estimated are arbitrarily chosen as

ĴE = [−1.0 1.0 ] , (2.35)
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Figure 2.16: Evaluation function in the computer simulation; global view (left)
and close up (right) of the evaluation function. It can be regard that it is almost
a convex function which has a local minimum at (θ2, θ4) = (41◦,−90◦).
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Figure 2.17: An evaluation function in the real experiment; a global view (left)
and its close up (right) of the evaluation function. It can be regard that it is
almost a convex function which has a local minimum at (θ2, θ4) = (45◦,−86◦).
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and forgetting factor ρ and the positive-definite gain matrix K are 0.95, and
diag(0.5× 10−2, 0.5× 10−2), respectively.

After observing ten feature points on the demonstrator’s body, the learner
minimizes the evaluation function by using AVS. Fig. 2.18 (a) shows the tra-
jectories of two joint angles θ2 and θ4, respectively, during the control. They
are evidently converged to the demonstrator’s posture (broken lines). Fig. 2.18
(b) shows that the evaluation function also converges to zero by the method.

(c) Trajectory imitation based on estimated epipolar geometry

To test the estimated affine fundamental matrix through minimization process
in the real experiment, the learner imitates the demonstration by using the
estimated parameters. The learner stores the trajectory of the demonstrator’s
end-effector. Then, it recovers the observed trajectory on its view of monitoring
the self motion using the method described in section 2.3, and the learner
imitates by reproducing the recovered trajectory based on feedback control
using AVS.

Fig. 2.19 shows the trajectories in the learner’s view. Each figure contains
two trajectories; one is reproduced by the learner’s and the other is the true
one. Since two trajectories are almost overlapped with each other, we might
conclude that the estimation of affine epipolar geometry is sufficient to imitate
the demonstrator’s motion.

2.7 Summary and discussion

In this chapter, the methods based on the paradigm what we call demon-
strator’s view recovery were introduced to perfrorm imitation from subjec-
tive viewpoint. By the proposed methods, the learner robot could reproduce
the demonstration of another robot that has the same body structure as the
learner. In this section, we discuss the future works on demonstrator’s view
reovery.

Abstracting and segmenting the reproduced motion By the proposed
method, the learner could just reproduce the demonstration. However, the
reproduced motion should be abstracted or segmented into some primitive
motions as addressed in some previous work (ex. [8, 12, 34, 35]). Such pro-
cess might help to optimize the acquired behavior. Furthermore, the acquired
representation of motion in this process might be utilized to recognize other
demonstration by using it as primitive of recognition.
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Figure 2.18: An experimental results: [left] the changes of the learner joint
angles (solid line) and the desired one (broken line); [right] the change of the
evaluation function.
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Figure 2.19: The trajectories of imitated motion (solid lines) and those (broken
lines) of desired in the learner’s view obtained by the same control input as
the demonstrator.
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Figure 2.20: Epipoloar geometry in the rotation invariant cameras

Extending the visible region We assumed that both bodies of the learner
and the demonstrator which are used to estimate the parameters of view trans-
formation and/or to control are visible for the learner in the experiments.
However, they could go out of the visible region if the cameras of the learner
are close to its body as usual in a humanoid robot. In such a case, it should be
able to swing its cameras to keep tracking its end-effector or to find sufficient
number of points to estimate the parameter of view transformation. There-
fore, the proposed methods should be extended to cope with such swinging.
We think that it can be realized by using rotation invariant cameras which can
rotate without changing the position of their focal points (see Fig. 2.20(a)).
Due to the invariance of the focal points, the rotation of the cameras does not
changes epipolar geometry between spherical image coordinate system (see
Fig. 2.20(b)). Such coordinate system can be accessed from the robot’s own
viewpoint by alternately using the joint angle for the camera rotation as the
image coordinate.
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Development of spatial perception By the proposed method, the learner
performed the demonstrator’s view recovery based on epipolar geometry. How-
ever, it is also a formidable issue to consider how the learner can realize the
existence of such geometrical constraint. The demonstrator’s view recovery
can be regard as the mental processes to imagine that it locomotes to stand
at the demonstrator’s position and obtains the view from the position. We
think that the capability of the demonstrator’s view recovery can be acquired
through the experiences of self locomotion. This idea might correspond to
the idea in a psychological study that experiences of locomotion and visually
tracking are important factor for child’s development of spatial knowledge [46].
Therefore, how can a robot learn to perfrom such mental locomotion through
the experiences of locomotion might be the first step of this issue. Further-
more, it must have some representations about its body to mentaly operate in
the virtual locomotion. Concerning the acquisition of the body representation
is addressed in the next chapter.

46



Chapter 3

Body finding based on the
invariance in the multiple sensor
data

3.1 Introduction

In the previous robotics, since the task of the robot is usually given in the
coordinate system that is introduced from the viewpoint of external observer,
the representation of the body needed for its task should be defined and cali-
brated in the same coordinate system (ex.[47, 48]). However, in such approach
to define the body in the coordinate system introduced from the designer’s
viewpoint, the robot’s adaptability to the changes in the environment and
robot body itself is limited to what extent the designer has supposed in ad-
vance. On the other hand, it is suggested that a robot can structure its own
sensory input through the interaction with the environment, and thereby in-
duce regularities that simplify learning [3, 4]. According to these backgrounds,
I believe that we might be able to build a highly adaptive robot based on the
approach where it learns how to perform its task defined in its own sensory
space instead of using the coordinate system introduced by the designer. When
we follow this approach, how to construct the body representation needed to
solve the task in the robot’s own sensory space.

On the other hands, the representation of the body in human beings, that
is so-called body scheme or body image, has been focused as a basis of the
mechanism of motion and cognition in human beings such as tool-use [49, 50],
imitation [51], and sense of self [52]. It seems adaptive as reported that a
human can adapt the body representation in his/her brain to the changes in
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his/her body, for example amputation [53]. However, the process to acquire
the body representation has not been revealed yet. Therefore, building a robot
that acquires its body representation from its own viewpoint is an interesting
issue from a viewpoint of cognitive developmental robotics [22] that aims at
both establishing the design principle of an intelligent robot and understanding
intelligence of human beings.

The previous studies on the acquisition of the body representation in robotics
can be classified in following three groups according to the assumptions of
them.

(1) methods to find body

In the previous work on motor learning [54, 55, 56, 57, 58, 59, 60] or to
what extent its body occupies [61, 62], it was usually assumed that the
method to extract its body from the sensory data is given. However, it
had better autonomously find its body from its own sensory data since
it is difficult for the designer to prepare the universal method that can
be applied for various kinds of body and environment.

(2) a priori knowledge on body structure

It has been proposed that a robot can autonomously find its body based
on the correlation between its motion and the changes in sensory data
since its motion induces the correlated optical flow with the motor com-
mands [63, 64, 65, 66]. Based on this idea, it can find its body in its view
by estimating the correlation coefficient of visual sensory data with its
motor commands [63, 64, 65] or by identifying the state transition model
[66]. However, in these methods, its visual sensor should be fixed to
the environment since the movement of the visual sensor induces optical
flow in all over the view. In other words, it was tacitly assumed that it
had known which degrees of freedom contributed on the motion of the
visual sensor. However, to perform finding body independently of the
implementation of the body, it should be able to find the body without
such a priori knowledge on the body structure.

(3) the constraint of body in sensation

Since the sensory data of a robot reflect the constraints of body, the robot
is expected to find its body by utilizing the statistics of the sensory
data instead of a priori knowledge of the body structure. Based on
the statistics of sensory data, there already exist some previous work
concerning how to construct the topography of the sensors distributed on
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the body [67, 68] or how to find the concept of space where its body exists
[69]. Although they are considered to be bases of body representation,
it has not been evident to find which part of the sensory data indicates
its body.

In this chapter, I address an issue to find which part of the sensory data
indicates the robot’s body based on the constraints of body in its sensation
instead of assuming a priori knowledge on body structure. According to a
conjecture that the sensations about its self body are independent of environ-
ment, it is supposed that the body can be defined by judging whether the
sensory data is invariant in terms of the observing posture. The sensory data
might perturb for the changes in observing posture and sensory noise both of
which depend on the combination of sensory data and the properties of the
perceived body surface. Therefore, I introduce a mixture of Gaussian distribu-
tions to model such invariance in multiple sensory data. It can discriminate the
body from non-body by judging which distribution likely causes the variance
of sensory data in the current observing posture.

In the rest of this chapter, first I describe the problem to be tackled and
the basic idea to find the body based on the invariance of sensory data. Then,
introduce the method to discriminate the robot’s body from non-body based
on the invariance. To confirm the validity of the proposed method, the exper-
imental results with real robots are shown. Finally, I would like to discuss the
limitation of the proposed method and the future work on this topic.

3.2 Body finding based on the invariance

The problem Suppose that the robot has a body structure in which it can
observe also its own body by the sensor to observe the external world such
as cameras or touch sensors, and that it can distinguish its proprioception
to measure its posture from several kinds of sensor data those are obtained
through the processes of feature extraction (see Fig. 3.1). Note that the way
to extract its body from the sensor data is assumed to be unknown. For
example, the designer does not teach what kinds of color or what kinds of
texture its body has. Under such assumptions, the task of the robot is to
judge whether the sensation in the current posture is caused by observing the
self-body or the environment.

The invariance of the sensory data in observing self-body The sen-
sory data in observing self-body is considered to be invariant in terms of ob-
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external sensor
     (vision)

proprioceptive
sensor
 (posture)
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 (image)

features
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(edge)

(color)

Figure 3.1: Assumptions: The robot can observe both its body and environ-
ment, thereby obtain several kinds of sensor data from the external sensor,
and know the current posture from the proprioceptive sensor.

serving posture. For example, when a robot observes the environment in a
certain posture, its sensation depends on environment even if it takes the
same posture (see Fig. 3.2(a) and (b)). On the other hand, when it observes
the self-body, it can observe the same part of the body independently of the
environment as long as it takes the same posture (see Fig. 3.2(c) and (d)). As
well as in the case of using touch sensor, the sensory data in touching its own
body is invariant unlike in touching the external objects is not (see Fig. 3.3).
Therefore, it is considered to be able to judge whether the sensory data in the
current posture causes observing the self-body or the environment by judging
whether the sensory data is invariant.

Furthermore, even when it observes the self-body, it cannot necessarily
find out the invariance because of the perturbation of the sensory data for the
changes in observing posture and sensory noise both of which depend on the
combination of sensory data and the properties of the perceived body surface.
Therefore, if it relies on sensory data only of one kind of sensory attributes,
it might regard only a part of the body as its body or mis-regard a part of
the environment as its body. For example, consider about disparity and lumi-
nance pattern as sensory data. When it observes the object that continuously
occupies a certain region of space, such as the body, disparity is not sensitive
for the changes in observing posture while it is usually difficult to measure
disparity of coarse texture. On the other hand, although luminance pattern
can be measured independently of the texture of the object, it is sensitive for
the changes in observing posture when it observes the body part with fine
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(a) (b)

(c) (d)

Figure 3.2: The invariance/variance of the view in terms of postures: when
it observes the environment ((a) and (b)), what it observes depends on the
environment. When it observes its body ((c) and (d)), it can observe the same
part of the body independently of the environment.

51



CHAPTER 3. BODY FINDING BASED ON THE INVARIANCE IN THE
MULTIPLE SENSOR DATA

(I)

(II)

(a) a posture with the invariant touch

(I)

(II)

(b) a posture with the variant touch

Figure 3.3: The invariance/variance of the tactile sensations in terms of pos-
tures: when it touches its own body (a), it can always touch the same parts
of the body. When it touches the environment (b), what it touches depend on
the environment.

texture. Therefore, to discriminate the body from non-body independently of
the texture it is expected to utilize the multiple sensory data, that is apply-
ing disparity for the body parts with fine texture and luminance pattern for
one with coarse texture. In other words, the multiple sensory data should be
complementarily utilized to find the body.

3.3 Body-nonbody discrimination based on a

statistical model of invariance

3.3.1 Mixture of Gaussian distribution model

To perform finding body by complimentarily utilizing the multiple sensory
data, mixture of Gaussian distribution is introduced to model the invariance
in the sensory data in observing self-body. Suppose that the robot can observe
the fixated object with D types of the sensory data such as disparity, luminance
patterns, color, and so on. Denote the i-th sensory data in observing posture
θ ∈ <N as xi(θ) ∈ <Mi , (i = 1, · · · , D) where N is the degrees of freedom of
the robot’s posture and Mi is the dimensionality of the i-th sensory data. The
variance of the i-th sensory data σ2

i (θ) is defined as the trace of the covariance
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matrix C(θ) ∈ <Mi of xi(θ), that is

σ2
i (θ)

4
= tr{C(θ)}. (3.1)

A vector that consists of D number of variance,

z(θ) = [σ̃1(θ)2, · · · , σ̃D(θ)2]T ∈ <D, (3.2)

is called observing variance vector where σ̃2
i (θ) is the normalized value of σ2

i (θ)
in this case the logarithm of σ2

i (θ) is shifted so that

0 ≤ σ̃2
i (θ) < 1 (3.3)

is satisfied.
Since sensation can be caused by observing the body or the external world

while the sensations of the body involves less variance than one of the external
world, it is conjectured that the distribution of observing variance vectors can
be regard as a mixture of two Gaussian distributions for observing the body
and the nonbody, respectively (see Fig. 3.4). In other words, the distribution
of z is given by

p(z; α) = wbN (z; µb,Σb) + weN (z; µe,Σe) (3.4)

where N (z; µ,Σ) denote a normalized Gaussian distribution of z with the
average µ and the covariance matrix Σ and suffices b and e indicate the body
and the environment, respectively. The weights wb and we satisfies

wb + we = 1,
0 ≤ wb, we ≤ 1. (3.5)

3.3.2 Estimation of the distribution

Since the robot can measure z(θ) but does not know which of two distributions
generates the measured z(θ), it must estimate the distribution (eq. 3.4) from
the incomplete data, that is Z = {z(θ1), · · · , z(θqθ

)}. Therefore, we apply an
EM algorithm [70] to this problem, which is a theoretical paradigm to estimate
the maximum likelihood parameters from an incomplete data.

According to the EM algorithm, to obtain the parameters that maximize
the logarithmic likelihood function such as

L = log p(Z|α), (3.6)

53



CHAPTER 3. BODY FINDING BASED ON THE INVARIANCE IN THE
MULTIPLE SENSOR DATA

Body

Environment

σ
2
1

σ
2
2

probability density

~
~

Figure 3.4: Mixture of Gaussian distribution model of observing variace vector

the expectation process and the maximization process are iterately performed
until they converge for given initial parameters. In the expectation process,
the expectation of the logarithmic likelihood function of the complete data in
a given condition of Z and α(t),

Q(α|α(t)) = EZ{log p(Z,H|α)|Z, α(t)} (3.7)

where α = {wb,µb, Σb, we,µe, Σe}, is calculated where α(t) is the estimated
parameter set until the t-step and H is a set of hidden parameters that identify
which of two distributions generates z(θ). In the maximization process, α is
updated so that the new α maximize Q(α|α(t)). It is guaranteed that each
iteration of the expectation and maximization process of the EM algorithm
increases the logarithm likelihood function [70].

The task of the robot is judging whether the current sensation in θ is caused
by observing the self body or the environment. It can be performed by judging
which estimated distribution likely causes the variance of sensory data in the
current observing posture.

3.4 Experiments

In this section, I will introduce experimental results with real robots. To show
to what extent the proposed method work, we use two robots which have
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different body appearance from each other. One has very robotic body surface
(see Fig. 3.5), while the other has infant-like body surface (see Fig. 3.14).

In the first experiments, to test whether the proposed method works in-
dependently of the robot’s embodiment, we paste different textures, one is
fine and the other is coarse, on the different parts of the arm as shown in an
egocentric view of the robot (see Fig. 3.6). It consists of two cameras on the
camera head which can rotate in the pan and tilt axes, the 4-DoF arms, and
the mobile base. It obtains four kinds of visual sensory data at the center
region of the left camera, namely, disparity, luminance pattern, chroma, and
direction of edges. In the following experiments, however, we only show the
case where the arm is fixed in a certain posture as shown in Fig. 3.5 to make
result easy to understand.

Through the exploration by randomly changing its posture both of its cam-
era head, it corrects the sensory data to obtain the averages and the variances
of them in terms of each posture quantum. During the exploring process, we
let the robot move around to make the external world varies. Fig. 3.7 schemat-
ically illustrates the exploring process. Note that the correction image in Fig.
3.7 is slightly different from an egocentric view in Fig. 3.6 since the latter is
a entire image of the camera while the former is a correction of a part of the
image in various postures of the camera head. The task of the robot is extract-
ing the part of the sensory data that is caused by observing its body. Fig. 3.8
is the desired extraction performed by the experimenter. Note that although
we, external observer, can easily distinguish the body and the environment by
looking at the correction image in Fig. 3.7 and therefore correctly extract the
body like in Fig. 3.8, it is formidable for a robot since it is not given any a
priori knowledge about what its body is.

3.4.1 Body-nonbody discrimination with luminance pat-
tern (D = 1)

First we test the proposed method only with luminance pattern of the image
elements at the center region (8 × 8 [pixel]) of the left camera as the sensory
data. Fig. 3.9(a) shows the distribution of variances of the luminance pattern
in terms of each posture (histogram) and the estimated mixture of Gaussian
distributions (solid curve). The distribution at lower variance is considered to
correspond to the one in observing self body while the other is considered to
correspond to the one in observing the external world. Fig. 3.9(b) illustrates
the averaged luminance pattern of the extracted body where the variance is
regarded to be caused by the distribution of self-observation.
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Figure 3.5: Appearance of the robotic test-bed

56



3.4. EXPERIMENTS

fine 

texture

coarse 

texture

focus of 

attntion

Figure 3.6: An egocentric of the robotic test-bed
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Figure 3.7: An schematic explanation of the learning process: the robot cor-
rects the average and variance of the sensory data for each observing posture.
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Figure 3.8: The desired extraction of the body

By comparing Fig. 3.8(b) and Fig. 3.9(b), we can see that the body part
with coarse texture is correctly extracted while one with fine texture is not. It
seems because the observed luminance pattern of the fine texture sensitively
varies with the slight changes of observing posture.

3.4.2 Body-nonbody discrimination with disparity (D =
1)

Fig. 3.10(a) shows the distribution of observing variances of the disparity (his-
togram) and the estimated mixture of Gaussian distributions (solid curve). As
well as in the previous case, the distribution at lower variance is considered to
correspond to the one in observing self body while the other is considered to
correspond to the one in observing the external world. Fig. 3.10(b) illustrates
the average luminance of the extracted body in the posture where the observing
variance is regarded to be caused by the distribution of self-observation.

By comparing Fig. 3.8(b) and Fig. 3.10(b), we can see that the body part
with fine texture is correctly extracted while one with coarse texture is not. It
seems because the robot tends to fail in stereo matching needed to detect the
disparity at the coarse texture.
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Figure 3.9: Body-nonbody discrimination with luminance pattern
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Figure 3.10: Body-nonbody discrimination with disparity
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3.4.3 Body-nonbody discrimination with luminance pat-
tern and disparity (D = 2)

In the former experiments, we saw that the parts of the body which is correctly
extracted by the proposed method depended on what type of sensory data are
used. Then, we test whether the performance of body-nonbody discrimination
is improved by complementarily utilizing both of these two kinds of sensory
data.

Fig. 3.11 illustrates the experimental result with luminance pattern and
the disparity at the center region of the left camera. Fig. 3.11(a) shows the
distribution of observing variance vectors each of which consists of the variance
of disparity and one of luminance pattern for a certain posture. Fig. 3.11(b)
is the estimated mixture of Gaussian distributions. As well as in the case of
using single sensory data, we can see that the distribution at lower observing
variance corresponds to the one for self-observation while the other corresponds
to the one for observing the external world. Fig. 3.11(c) illustrates the average
luminance pattern of the extracted body where observing variance is regarded
to be caused by the distribution of self-observation.

From Fig. 3.11(c), we can see that the body parts both with coarse and
fine textures are almost extracted. The extracted body is closer to the desired
one (Fig. 3.8) compared to the results with single sensory data (Fig. 3.9(b)
and 3.10 (b)). Therefore, it is considered that two kinds of sensory data
complementarily contribute to discriminate body from non-body.

3.4.4 Body-nonbody discrimination with luminance, dis-
parity, color and edge direction (D = 4)

Furthermore, we conduct another experiment by adding two kinds of sensory
data, namely color and edge direction. Fig. 3.12(a) shows the result of body-
nonbody discrimination by using color and Fig. 3.12(b) shows one by using edge
direction. We can see that it mis-regard the environment as its body in more
observing postures than one in the previous experiment with single sensory
data (Fig. 3.9(b) and Fig. 3.10(b)). By the body-nonbody discrimination with
four kinds of sensory data including these sensory data, that is luminance,
disparity, color, edge direction, it succeeded in discriminating body from non-
body at least in the same extent (Fig. 3.13) as, or slightly wider region than,
in the previous result with two kinds of sensory data, that is luminance and
disparity (Fig. 3.11(b)).

Therefore, we may conclude that the proposed method works even if the
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Figure 3.11: Body-nonbody discrimination with luminance and disparity
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Figure 3.12: Body-nonbody discrimination with additional sensory data

robot use some inappropriate sensory data with which incorrect extraction of
the body is caused.

3.4.5 Discriminating body from non-body by a robot
with infant-like body appearance (D = 2)

To confirm that the proposed method can apply to other robot with different
body surface, we conducted another experiment by using a robot with com-
pletely different appearance from the previous one (Fig. 3.5). Fig. 3.14 shows
an overview of the test-bed robot that has infant-like body appearance while
only the head is replaced with a camera. It obtains two kinds of sensory data
(D = 2), namely luminance pattern and color of the center of the view (Fig.
3.15). The camera can rotate in both pan and tilt axes which corresponds to
its DoFs. Therefore N = 2 in this experiment. It corrects the sensory data
by randomly changing the posture of the camera and calculate their average
and variance. The environment varies during the learning process since the
experimenter randomly move the robot.

Fig. 3.16(a) is the result of extracting the body by the proposed method
with both luminance and disparity. We can see that it almost succeed in
extracting the body although there exist regions where it mis-regard the envi-
ronment as its body. Fig. 3.16(b) and (c) shows the distribution of the variance
of luminance and color, and the estimated mixture of Gaussian distribution,

62



3.4. EXPERIMENTS

pan [deg]

ti
lt

 [
d

eg
]

2
5

5
5

040

Figure 3.13: Body-nonbody discrimination with four kinds of sensory data,
luminance, disparity, color, and direction of edge

respectively. From the landscape in each axis, it can be seen that there are
some overlaps between two distributions that seem to cause the failure when
it tries to discriminate its body from non-body with each of them. However,
from the landscape in the combined axes, they look being located separately.
Therefore, we may conclude that the proposed method work well by comple-
mentarily utilizing the multiple sensory data even in the robot with infant-like
body surface.

63



CHAPTER 3. BODY FINDING BASED ON THE INVARIANCE IN THE
MULTIPLE SENSOR DATA

camera

body

Figure 3.14: An appearance of the body of a test-bed robot with an infant-like
body surface

Figure 3.15: An example of egocentric view of the test-bed robot
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Figure 3.16: Body-nonbody discrimination by an infant-like robot with lumi-
nance and color
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3.5 Summary and discussion

In this chapter, I introduced the method to discriminate the robot’s body based
on an idea that the body can be defined by the invariance of the sensory data.
In the proposed method, the distribution of the variance of sensory data in
terms of observing posture were approximated by the mixture of two Gaussian
distributions each of which corresponds to the observation of the body and
the environment, respectively. It can discriminate its body from non-body by
judging which distribution likely causes the variance of the sensory data in the
current observing posture.

By the experiments with real robots, it was considered that the proposed
method could work well independently of the properties of body surface by
complementarily utilizing the multiple sensory data. Although some combina-
tion of sensory data causes the overlap of two distributions, it is expected to be
able to make them separate by adding different type of sensory data. However,
note that increase of the dimension of sensor data causes the increase of the
search space to estimate the mixture of Gaussian distributions.

Multimodal representation of body Since what the robot become to
perform by the proposed method is just judging whether it observes its body
or environment in the current observing posture, and therefore, is not sufficient
for the body representation to attain the its task. To approach it, the issue on
how to acquire the body representation in the multi modalities is one of our
future work. When a robot tries to integrate the sensation in multi modalities,
it faces with the problem where different modalities often receive different
objects since the receptive fields of them are limited. we think that the the
invariance in self-perception can be also utilize for this problem and has already
propose a method to match the sensations in touching and watching [61, 71]．

Biological plausibility It is reported that a human neonate can distinguish
double-touching from being touched by the other in the study on rooting reflex
[72]. It might be explained by the proposed method as double-touching is
invariant in terms of touching posture unlike being touched. Infants seem to
learn the invariance through touching their mouth with their hand in the womb
as reported in a clinical study [73].

As mentioned in the introduction, the method to find the body based on
the sensory correlation with its motion [63, 64, 65, 66] needs a priori knowl-
edge on body structure. Furthermore, it cannot be applied to find the link
in-between the visual sensor and the environment such as the trunk or the
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legs since the visual sensor should be fixed. However, from the viewpoint of
the modeling the cognitive developmental process of human being, this ap-
proach might be more plausible. For example, it is reported that infants can
discriminate self-produced motion based on visual-proprioceptive contingency
[52, 74, 75] or that even a neonate seems interested in the relationship be-
tween its hand motion and changes in its view [76]. Although the basic idea
of the proposed method in this chapter is different from one in the correlation
based approach, I think they do not conflict each other but can complemen-
tarily work. Therefore, I would explore the possible extension to involve the
information of motion in the proposed method. Furthermore, verifying the
proposed model from the viewpoint of a constructivist approach to model the
human cognitive developmental process should be also considered.
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Chapter 4

Vowel acquisition through
interaction with human
caregiver

4.1 Introduction

Vocalization, making sound through modulating a source sound, is one of
the most promising means of human-robot communication because humans
rely on speech in their daily life. To communicate through vocalizations, an
agent should share with its interlocutor common phonemes, which are elemen-
tal units of vocal communication. Human infants acquire phonemes of their
mother tongue and finally their mother tongue itself through interactions with
their caregivers without having the capability to articulate, nor having a pri-
ori knowledge about the relationship between the sensorimotor system and
phonemes. In this study, we aim to build a robot that learns to vocalize with
a human caregiver in the conditions similar to those of human infants. As
Asada et al. have suggested in their discussion of a constructivist approach to
cognitive developmental robotics [22], building this kind of a robot may help
us to model the human developmental process of phoneme acquisition.

We assume that a robot can acquire phonemes without any knowledge
about the relations between phonemes and its sensorimotor system. Thus, it
must obtain information for learning them through interactions with its envi-
ronment, namely its caregiver. Previous studies showed that a population of
computer simulated agents with a vocal tract and cochlea can acquire shared
vowels by self-organization through interactions with each other [77, 78]. Al-
though they did not assume a priori knowledge about vowels, there was an
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assumption that the agents can reproduce sounds similar to those of other
agents so that “imitation game [77]” or “magnet effect [78]” leads to share
vowels in population. However, we should take infant immaturity into account
for modeling the vowel acquisition process since infants cannot reproduce the
caregiver’s utterances as they are.

To build a robot that has different capability of vocalizing from its care-
giver and acquires phonemes through interactions with the caregiver, we have
to cope with two main design issues: what are the interactive mechanisms
involved and what should be the behavior of the caregiver/teacher? We ob-
serve that maternal imitation effectively reinforces infant vocalization [24, 25]
and that its speech-like cooing tends to lead utterances of its mother [79].
Therefore, we hypothesize that imitation by the caregiver, which is repeti-
tion of infant’s vocalization with adult phonemes, plays an important role in
phoneme acquisition through interactions. The purpose of this study is to
build a robot that acquires phonemes through random vocal articulations and
interactions with a caregiver who repeats the robot’s vocalizations.

In this chapter, we address the issue to build a robot that acquires vowels
through interactions with its caregiver. The robot can vocalize by a vocal ap-
paratus similar to the one used in Higashimoto and Sawada [80]. We assume
that the robot has the capability of extracting formants which are well-known
sound features to distinguish vowels [81]. Detecting formants seems a basic
element of perception since many species show an ability to use formant as
a perceptual cue [82]. The learning mechanism consists of interconnected au-
ditory and articulation layers which clusters the input, formants and its own
articulation parameters, respectively, by self-organization [83]. The connection
weights between them are updated by means of simple Hebbian learning during
interactions with the caregiver. The caregiver’s repetitive utterances enables
the robot to acquire vowels by matching its articulations with the caregiver’s
vowels. To resolve the arbitrariness in selecting the proper articulations, we
introduce “subjective criteria” into the learning rule that considers the toil
involved in the articulation, in this case the torque to deform the tract and its
resultant deformation, based on the specific parameters to the individual.

The rest of this chapter is organized as follows: First, we explain how to
design interactions to enable the learning of vowels. Then, we describe how
learning works. After showing the configuration of the experimental robot and
reporting a preliminary experiment to verify its acoustic properties, we discuss
how the proposed method works.
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?

(a) (b)

Figure 4.1: Conceptual figures of mother-infant interaction: (a) the in-
fant/robot coos randomly, (b) if the caregiver is able to understand the sounds
as being vowels then the caregiver repeats them with his or her own vowel
categories.

4.2 The environmental design for interaction

For a robot to learn to vocalize vowels without a priori knowledge about the
relationship between the vowels and its sensorimotor system, it should interact
with a caregiver. Our approach is to set up a situation in which the robot and
the caregiver interact in a way that promotes the robot’s learning.

Based on a study of mother-infant interaction [24, 25, 79], we conjecture
that maternal imitation of an infant’s vocalizations plays a key role in the
vowel acquisition of an infant. To build a robot that reproduces the observed
interaction in the developmental studies, we embed in the robot a mechanism
for producing random cooing. At the same time, the caregiver utters the
matched vowel if the robot’s vowel can be regarded as a human vowel, but
does not otherwise (see Fig. 4.1). Note that the caregiver utters his or her own
vowels.

By designing the experimental situation in this way, the robot obtains the
invariant pairs of its articulation and the corresponding vowel so that vowel
acquisition can succeed based on a simple learning rule despite the difference
in the articulation parameters.
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Figure 4.2: The learning mechanism that consists of interconnected auditory
and articulation layers: the auditory layer receives formant vector of the care-
giver’s utterances while the articulation layer receives the articulation vector
to deform its vocal tract.

4.3 Learning mechanism

The robot’s learning mechanism consists of two layers and connection between
them (see Fig. 4.2). After describing the processing in these two layers, we
give two learning rules to connect between them.

4.3.1 Auditory layer

Frequency peaks in the soundwaves are effective to distinguish vowels; the
peaks are called formants [81]. The auditory layer receives formant vectors
from the formant extractor. Each vector consists of the frequencies corre-
sponding to the lowest four peaks of the caregivers’ utterances; the auditory
layer clusters them in a self-organizing manner, using a Kohonen map [83].

The auditory layer consists of Nf units. The i-th unit has a codebook
vector f i ∈ <4 and a position vector ri ∈ <2 that indicates the position in the
layer. When the auditory layer receives a formant vector f ∈ <4, units with
closer codebook vectors activate more, and the most active unit suppresses the
other units. Finally, an activation af

i of the i-th unit is calculated by

af
i =

{
g(fT

i f − h) if i = argj max fT
j f ,

0 otherwise,
(4.1)

where g(x) and h are a step function of scalar x and a scalar threshold, re-
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spectively. The most active unit is called the winner and labeled winf .
In the Kohonen map algorithm, codebook vectors of some units near the

winner are modified to be closer to the input vector. The updating rule is
defined as,

f i(t) = f i(t− 1) + α(t)·
Φ(rf

i , r
f
winf )(f(t)− f i(t− 1)), (4.2)

where α(t) is the time dependent scalar learning rate and the neighborhood
function Φ(x,y) is a monotonically decreasing function with respect to the
distance between vector x and y that is calculated by

Φ(x,y) = exp

(
−|x− y|

2σ2(t)

)
, (4.3)

where σ(t) is a time dependent scalar that determines how much nearby units
learn according to a distance metric. At the start of learning, σ(t) is set to
such a high value that Φ(x,y) is high in a wide region of the auditory layer and
gradually decreases so that Φ(x,y) of nearby units only have high values at the
end of learning. This learning rule clusters codebook vectors close to frequently
observed input vectors in the auditory layer — in this case, frequently heard
vowels.

4.3.2 Articulation layer

The articulation layer receives an articulation vector m ∈ <5 from the random
articulation mechanism. The vector consists of five motor commands to deform
the vocal tract. The articulation layer clusters the vectors by the same method
used in the auditory layer.

The articulation layer consists of Nf units. The i-th unit has a codebook
vector mi ∈ <5 and a position vector ri ∈ <2. For each i-th unit, the calcula-
tion of the activation am

i and update of the codebook vector are performed in
the same manner as the auditory layer.

4.3.3 How to learn weights connecting two layers

The connecting weights between the auditory and the articulation layers are
updated by the Hebbian learning rule. Therefore, connections between simul-
taneously active neurons in the auditory and articulation layers are strength-
ened while others are weakened. Let wij be a connecting weight between the
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Figure 4.3: Descriptions of the variables: the activation of the i-th unit in the
auditory layer af

i , that of the j-th units in the articulation layer am
j , and a

connection weight between them wij

i-th unit in the auditory layer and j-th unit in the articulation one. The
learning rule is defined as

τẇij = −wij + αaf
i a

m
j , (4.4)

where τ is a time constant of learning and α is the learning rate. Based on
eq. (4.4), wij will converge to

wij = αE{af
i a

m
j }, (4.5)

where E{af
i a

m
j } is the average of af

i a
m
j [84]. We use the discrete version of the

updating rule (eq. (4.4)) such that,

wij(t + 1) = wij(t) +
1

τ
(αaf

i (t)a
m
j (t)− wij(t)), (4.6)

where t denotes the time step.
Employing the initially random articulation mechanism causes invariant

pairs of units to activate in both layers simultaneously since the caregiver
is engaged in repetitive utterances. Therefore, through the learning process,
clusters of articulation vectors are matched with corresponding vowels as con-
nections between both layers.
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However, interactions may connect multiple articulation units with a cor-
responding vowel since the caregiver may interpret some vocalizations caused
by different articulations as the same vowel. To match a heard vowel with
a unique articulation in order to vocalize it, we introduce subjective criteria
into the learning rule so that the articulation involving less toil is selected —
that is, the articulation vectors involving less toil obtains stronger connection
from the auditory layer and vice versa. Therefore, the learning rule for the
connections is slightly modified:

wij(t + 1) = wij(t) +
1

τ
(cη(m)af

i (t)a
m
j (t)− wij(t)), (4.7)

where η(m) is a function that evaluates the toil involved in the articulation
calculated by

η(m) = exp
(
−Ctrq(m)

σ2
trq

)
· exp

(
−Cdfm(m)

σ2
dfm

)
, (4.8)

where σtrq and σdfm are scalar constants that are the specific parameters to the
individual, and Ctrq and Cdfm are the cost functions of the torque to deform
the tract and its resultant deformation, respectively. σtrq and σdfm are chosen
by trial and error. The cost functions are defined as

Ctrq(x) = xT x, and

Cdfm(x) =
4∑

k=1

(xk − xk+1)
2, (4.9)

where xk is the k-th element of the vector x.

4.4 A robotic test bed

Vocalization is generally well-known as an outcome from a modulation of a
source of sound energy by a filter function determined by the shape of the vocal
tract; this is often referred to as the “source-filter theory of speech production”
[85]. We implement the source-filter theory by using a vibrator as a sound
source and silicon rubber tube as a vocal tract whose shape is deformed by
five electric motors. This implementation is similar to that of Higashimoto
and Sawada [80] except that they use an artificial vocal cord while we use a
membrane that a vibrator oscillates at a fundamental frequency.
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Figure 4.4: An appearance of the robotic test bed

Figures 4.4 and 4.5 depict the robot hardware. Five electric motors are
bound to their respective attachments by wires. The motors pull at the at-
tachments to deform the tract. They are controlled by motor controllers (us-
bMC01, iXs Research Corp.) according to control commands from the host
computer. An artificial larynx (Myvoice, Secom Medical System Co. Ltd.)
is used as a sound source that generates a soundwave with the fixed prop-
erty of frequency (see Fig. 4.6). The host computer receives signals through a
microphone and calculates their formants.

4.4.1 Preliminary experiment

We conducted a preliminary experiment to confirm the acoustic property of
the silicon vocal tract in the robot. We let the robot vocalize by sending
various articulation vectors and measured formants of the vocalized sound if
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Figure 4.6: The soundwave frequency of the sound source

a Japanese experimenter (hereafter, caregiver) could interpret as vowels. For
comparison, formants of the caregiver’s vowels were also measured. Figure 4.7
shows two distributions of the calculated formants of the robot’s vocalization
and the caregiver’s. The lowest three formants were sufficient to describe the
distributions. Figure 4.8 shows averages for a few hundred samples of (a) the
robot’s and (b) the caregiver’s vowels.

Formant distribution of the robot tends to be higher than that of the care-
giver. We can see that the robot cannot reproduce human formants since there
is no overlap between both distributions. They are clustered in the formants
space. It means that formants are available for recognizing the vowels of the
robot in addition to those of human beings. We confirmed that the robot can
vocalize four Japanese vowels but not /o/. The robot cannot vocalize /o/
because its vocal tract does not have sufficient degrees of freedom as we deter-
mined through some preliminary tests. Therefore, the vowels in the following
experiments exclude /o/.

4.5 Experiment

We conducted two learning experiment with and without the toil criterion to
test whether the proposed method works. The auditory layer consists of 15×15
units while the articulation layer consists of 10×10 ones. Each element of an
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Figure 4.9: Experimental setup: the robot interacts with a human caregiver.

articulation vector is quantized into five levels; these elements are the motor
commands of the random articulation mechanism. If the robot’s vocalization
sounds like a vowel, the caregiver utters the corresponding vowel (see Fig. 4.9),
then the robot calculates formants of the caregiver’s utterance and updates the
codebook vectors and connections. In the following experiments, the caregiver
repeated 39 vocalizations. The 39 training examples were used for learning,
iterately 50 times for each.

4.5.1 Learning without the toil criterion

To examine how the robot acquired vowels by the learning rule without the
toil criterion, that is based on eq. (4.6), we observe which units in the artic-
ulation layer are activated by the propagation from the auditory layer after
learning. At first, the caregiver utters one of the four vowels. Then, activa-
tions occur in the auditory layer and are propagated to the articulation layer
through the connections. We observed which units in the articulation layer are
activated by the propagation because the activated units can be regarded as
vowels matching those of the caregiver. Fig. 4.10(a) shows distribution of the
articulation vectors of the most strongly activated units by 30 input, which are
the caregiver’s utterances, for each vowel. They are compressed onto a two di-
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mensional plane by principal component analysis (PCA). For comparison, the
distribution of all articulation vectors that cause vowel-like sounds is shown in
Fig. 4.10(b).

We can see that the distribution of the activated articulation vectors are
parts of the region in which articulation vectors causes vowel-like sounds. Fur-
thermore, the propagation for the input vowels in the same category activates
the articulation vectors in a cluster that causes corresponding sounds. It means
that the robot succeed in learning to match its articulations with the caregiver’s
vowels. However, we can see that there is arbitrariness in selecting the matched
articulation with the caregiver’s utterances since a unit in the auditory layer
has multiple connections.

4.5.2 Learning with the toil criterion

We next examine how the robot acquires vowels by the learning rule with
the toil criterion that is based on eq.(4.7). As in the previous experiment,
we observe which units in the articulation layer are activated by the auditory
layer through the learned connections. Fig. 4.11 shows the articulation vectors
of the most strongly activated units by 30 inputs for each vowel. They are
compressed onto a two dimensional plane by PCA.

We can see that fewer articulation vectors are selected than in Fig. 4.10(a)
while the articulation vectors that causes corresponding vowel-like sounds are
selected. Therefore, we confirmed that the robot can match its articulations
with the caregiver’s vowels by the learning rule with the toil criterion and,
furthermore, that the toil criteria decrease the arbitrariness. The selected
articulation vectors involving less toil. The acquired articulations are shown
in Fig. 4.12.

4.6 Summary and discussion

In this chapter, we have proposed a learning model of vowel acquisition im-
plemented by a robot with different articulation parameters but without a
priori knowledge about the relationship between the sensorimotor system and
phonemes. There are some related studies concerning vocalization in robotics.
Nishikawa et al. built a series of anthropomorphic robots which can produce
Japanese phonemes including consonant sounds [86, 87]. However, the ar-
ticulations were tuned manually by the human designer since they have not
addressed the issue of acquisition. Higashimoto and Sawada built a system
which learns to vocalize human vowels [80]. It consists of a vibrator that
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(a) Activated articulation vectors by listening to the care-
giver’s utterances.
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Figure 4.10: Distribution of the articulation vectors in the two major principal
component space: (a) that of the activated (selected) units by the propagation
of heard caregiver’s utterances through the connection learned without the toil
criterion, and (b) that of all articulation vectors that causes vowel-like sounds
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Figure 4.11: Distribution of the activated (selected) articulation vectors in
the two major principal component space by the propagation of the heard
caregiver’s utterances through the connection learned with the toil criterion

generates a source sound and a deformable silicone rubber tube to modulate
the source sound. It can vocalize vowels similar to a human’s by learning
the inverse model of articulation parameters with respect to a spectrum en-
velop of human utterances. In other words, it performs a imitation based
on the similarity of raw soundwave since they assume that the robot can re-
produce the sound with the same spectrum envelop as the human utterance.
Nishikawa’s group has also done the optimization of the parameters of articu-
lation to mimic based on similarity of raw soundwave [88]. Vocalization based
on recording/playback systems, for example [89], could be also regarded as
imitation in the same vein. However, imitation based on the similarity of raw
soundwave cannot be equated with the vowel acquisition processes of infants
since they cannot reproduce the caregiver’s physical soundwave form as they
are because of their immaturity. Unlike the previous studies, we have proposed
a more cognitively plausible alternative implemented by a robot that acquires
vowels without the capability of reproducing the human physical soundwave
forms.

When an agent tries to imitate the behavior of other agent with a different
body structure, it needs to abstract observed behavior to some extent since
it cannot duplicate it as it is. However, abstraction brings arbitrariness into
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(a) /a/ (b) /i/

(c) /u/ (d) /e/

Figure 4.12: Appearances of the acquired articulations
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the imitation process — even if the agent acquires pairs describing its own
behavior and that of the caregiver. We proposed a method to cope with this
arbitrariness by introducing subjective criteria, that is how much toil does the
articulation involve. As we showed in the second experiment, the toil criteria
reduced the arbitrariness of the matched articulations. This kind of subjective
criteria could play an important role in imitation, understanding the behavior
of others, and communicative processes between agents that have different
bodies since there are arbitrariness to be resolved in these situations.

In the following, we first discuss why we use a real robot approach instead
of a synthesizer. Then, to show the directions of our future work, we discuss
the validity of the proposed model concerning the internal mechanism of the
robot and the behavior of the caregiver.

A real robot approach In this study, we implemented a mechanical sys-
tem as the mechanism to vocalize vowels because it cannot reproduce human
physical soundwave form. Furthermore, such a robotic approach may draw at-
tention to the fact that the robot and the caregiver have different bodies. Even
if infants can reproduce the utterances of the caregiver as they are, infants per-
ceive their own reproduced soundwaves differently from the caregiver’s original
one. Because, these two soundwaves travel different pathways: the caregiver’s
soundwave travels only through the air while the infant’s travels through both
the air and his or her bodies (See figure 4.13). As a result, soundwaves at
the infant’s auditory sensors are different from each other. This fact makes
imitation based on the similarity of raw soundwaves difficult. However, the
current robot is not designed to address this issue. Making a new robot with
a microphone inside its body is a topic for our future work.

An Internal mechanism In the proposed model, we adopt a mechanism
for producing random articulations. However, we should consider the mo-
tivation of the robot since infants seem to develop owing to their desire to
communication. In other words, we cannot ignore the aspect of cooing as a
communication media. What kind of motivational force can be applied to the
robot that acquires vowels towards communication? Masataka [90] reported
that, after vocalizing spontaneously, three- to four-month-old infants tend to
pause as if they anticipate the response from their caregivers and vocalize re-
peatedly in the absence of a response. He also speculated that an infant can
adjust the frequency of its sound in reaction to its mother’s responses. There-
fore, anticipation seems to be an important element of motivational force to
explore. Addressing how to implement the anticipation mechanism that drives
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Figure 4.13: Conceptual figure indicating the difference between the path-
way of the caregiver’s soundwave to the infant’s ear and that of the infant’s
soundwave to his or her own ear. The arrows indicate the soundwaves.

exploration is a topic for our future work. As Kaplan and Oudeyer [91] argued
the importance of a non-task-specific value system to last developing, address-
ing how to modulate a motivational force may be also important. Furthermore,
from the computational viewpoint, the strategy of exploration by the random
mechanism is not suitable if the system has many degrees of freedom. Issues
on reducing the computational cost for exploration are related to issues of mo-
tivational force since a specific motivational force can be regarded as a sort of
bias for exploration.

The caregiver’s behavior In the proposed model, the robot-caregiver in-
teraction is simplified: the caregiver always utters the vowel that matches the
cooing of the robot if the cooing can be regarded as a vowel. However, the
proposed learning method does not always require the caregiver’s repetition
since it extracts clusters utilizing the statistical consistency in the data. That
is, the method works only if the caregiver tends to be engaged in the repet-
itive utterances. Furthermore, this simplification is unrealistic because the
human caregivers usually talk to infants with adult language, that is words or
sentences.

Coping with words is important also from the viewpoint of lip-reading.
Since mother-infant interaction occurs face-to-face, the visual information of
the caregiver’s lip can be matched with vowels based on the proposed learning
architecture that learns the invariant abstraction. However, since the vowel
sounds are determined by the partially invisible shape of the tract, there may
be no visual features that are invariant with specific vowels. In order to resolve
the ambiguity of the one-shot vision, it seems a promising way to learn together
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the sequence of vowels. Therefore, extending the proposed architecture so that
it can cope with sequential vowels is one area for our future work.
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Chapter 5

Conclusion and future work

In the previous chapters, we have addressed following three issues concerning
a robot that can imitate the demonstration from a subjective viewpoint:

• The question in chapter 2 is how a robot can map observation of the
demonstration to its corresponding motion only through mappings be-
tween its sensorimotor space. By virtue of the assumption of the similar-
ity of the both bodies and the opt-geometric constraint between views,
the demonstrator’s view is recovered from the learner’s view to observe
the demonstration onto the learner’s view to observe its self-body. To es-
timate the parameters to recover, the learner’s self-view is utilized as an
alternative to the demonstrator’s one. Then, the recovered demonstra-
tion is reproduced by estimating the relationship between motor com-
mand and optical flow in the view.

• The question in chapter 3 is how a robot can find its body from its sensory
data without any a priori knowledge about its body. The invariance
of sensation in self body observation is modeled by using a mixture of
two Gaussian distributions, and then, is utilized to judge whether it
observes its own body in the current posture. Multiple sensory data can
be complementarily utilized in the proposed method.

• The question in chapter 4 is how a robot can acquire behaviors, that
is vocalization in this case, common to the partner of interaction with-
out any a priori knowledge on the relationship between the behavior
and its sensorimotor system or the capability to duplicate the partner’s
behavior. The robot acquired the mapping of the acoustic feature of
interlocutor’s vowel onto its articulation parameters by utilizing the in-
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terlocutor’s imitative response and its subjective criteria of the toil to
articulate.

Although the proposed mechanisms cannot be equated with the universal
one to imitate a variety of behaviors from a subjective viewpoint, we suppose
that these studies are early steps toward it. Therefore, we discuss possible
future directions on this topic.

5.1 Body mapping between different bodies

Building a robot that can imitate the demonstration through the observation
with visual sensors seems an important issue. It is partially because such kind
of capability enables users to provide the robot with behaviors by just showing
how to do as usual in teaching other persons, or partially because of synthetic
understanding of the brain mechanism of view-based imitation in humans.
The method proposed in chapter 2 is limited to the case when the robot has
the same body structure as the demonstrator. On the other hand, although
it concerns imitation between dissimilar bodies, one proposed in chapter 4 is
limited to the case of vowel. How can we extend them to perform view-based
imitation between dissimilar bodies? In other words, what kinds of constraints
can be utilized to obtain the references to learn mapping between dissimilar
bodies in visual space?

Utilizing the imitative response of human beings Deducing from fol-
lowing evidences in the studies of psychology, we speculate that the interaction
with a caregiver who imitatively responds to the robot’s behavior could provide
it with the references to learn mapping. Additional to the evidence of imitative
response introduced in chapter 4 (e.g., maternal imitation of cooing [24, 25]),
there are other evidences that support the existence of imitative response in
the interaction. In psychology, it is well known that there is contagious fa-
cial expression [26, 27] or yawing [92] in interaction of humans. Furthermore,
even chimpanzees also exhibit contagious yawing [28]. Apart from the facial
movement, human beings [27] and even monkeys [29] are said to exhibit conta-
gious postural movement. These evidences might indicate that when an infant
interacts with an adult caregiver, the infant receives the matched behavior
more frequently than mis-matched ones, and thereby, can utilize the matched
experience to learn the mapping between bodies.

Furthermore, this process might be reciprocal, and thereby become more
frequent as an infant develops to imitate the caregiver’s behavior. Such recipro-
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cal enhancement of imitative response, if true, is considered to bootstrap from
the well-known neonatal imitation [40, 93]. To utilize the imitative responses,
a robot should be able to induce human-directed responses from human be-
ings. For that purpose, it is supposed that a robot should have sufficient close
appearance [94] and expression [95, 96] to humans. Furthermore, the behavior
and the appearance [94] might be necessary to be balanced [94] or matched
with the robot’s task [97].

Utilizing object affordance It is observed that infant show the capability
to imitate the demonstration directed to object in early stage of his/her de-
velopment [98, 99]. Object affordance might cause such experiences of sharing
the behavior with other person since the constraint of the object help to reduce
the candidate behaviors to be performed [100, 101]. If two agents possess sim-
ilar capability to contact with the object, the possibility of sharing behavior
increases compared to the case when they behave without contact. To utilized
object affordance to cause the shared behavior between the robot and humans,
it had better have human-like body structure that causes equivalent constraint
for objects.

Utilizing joint attention Joint attention that can be defined as looking
where someone else is looking [102], is usually supposed to be play an important
role in communication. However, it also seems to play an important role in
constructing the mapping between bodies since it causes the experience of not
only sharing attention but also sharing the behavior of attention. Interestingly,
a recent study on primate reported that Japanese monkeys which usually do
not perform imitation start to imitate after training of joint attention [103].
To utilize joint attention as a constraint to learn the mapping of bodies, a
robot should be able to perform joint attention with humans. It has been
already proposed that it can acquire joint attention from subjective viewpoint
by finding the contingency between the caregiver’s face image and the position
where the salient object exists instead of relying on explicit supervision by the
designer [104, 105, 106].

Learning to map bodies from the constrains Even though an infant can
experience to share the behavior with the caregiver through the reciprocal im-
itative response, object affordance, or joint attention, this does not guarantee
the success in learning of the mapping between bodies. To perform learning, an
infant must realize that he/she engages in sharing behavior with the caregiver
since the experience of sharing does not always occur. It is said that older
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than 14-month-old infant is sensitive and prefer to be imitated his/her action
to objects [107, 108]. Furthermore, it has been reported that even six-week-
old infant has acquired the sensitivity to be imitated his/her facial movement
[107]. However, in the proposed method in chapter 4 or in the previous work
that utilize the postural, imitative responses to learn the mapping [109], it
was assumed that the human experimenter always imitatively responded to
the robot’s behavior or posture during the learning process. We should con-
sider how a robot can pick up only the experiences of matched behaviors and
ignore those of mis-matched behaviors in its learning process.

5.2 Multimodal representation of body parts

Some of the shared behaviors argued in the previous section concern the body
parts such as a face or a head. This fact makes mapping difficult since these
parts of the learner cannot be seen. Therefore, to consider how to construct
the mapping involving these parts, the representation of the body should be
composed of multi modalities. The multimodal representation of the body is
also important from the viewpoint of constructing the representation of body
parts, in other words how to group the sensation that originates from receiving
the same part of the body. Although sensory features of close region are similar
to each other [67], clustering based only on the visual similarity is considered
to be problematic because an appearance of a body part would drastically
change depending on its posture.

Binding problem in constructing body representation Therefore, con-
structing the body representation is deeply related to one of the most funda-
mental cognitive functions called binding, that is to find the correspondence
of sensations between different modalities such as vision and touch. Although
binding problem has been addressed in the field of brain science (see a sur-
vey [110]) and constructivist studies (ex. [111, 112]), they have usually focus
how to integrate different attributes in the same modality such as color and
shape in vision. However, when it tries to integrate the sensation in different
modalities, it faces with the following problem: generally, receptive fields for
touch and vision are simultaneously stimulated, but often respond to different
physical phenomena since the foci of attention in these modalities are often
different. For example, the robot does not always watch its touching region.
Therefore, to bind different modalities, the robot should correctly match the
foci of attention in different modalities that may have multiple correspondences
each other. However, the previous work escaped from this kind of problem by
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assuming that it can observe only matched sensations in different modalities
(ex. [62, 60]).

We suppose that learning the multimodal representation of body should be
the first step toward binding since the morphological constraints in self-body
observation would be a key information to solve the binding problem as utilized
in the chapter 3. In other words, the multimodal sensations are expected to be
constrained in perceiving own body so as to configurate the unique parts of the
multiple correspondence reflecting its morphology. We have already proposed a
method to match the foci of attention in different modalities, touch and vision,
based on the fact that self-occlusion, that is the occlusion caused by covering
its body with its own body part in its view, always occurs at the double-
touching part [61, 71]. Although how to extrapolate the acquired mapping to
unseen region should be considered, infants might be engaged in developing
their body representation from early stage in their lives since neonate [113] or
even fetus [73] have already exhibited double-touching.

Subjective criteria to make mapping one-to-one The method called
cross-anchoring learning proposed in our previous work [71] is an extended type
of Hebbian learning. The learning process is directed to be one-to-one map-
ping to reduce the many-to-many correspondence involved in the relationship
between the occurrences of self-occlusion and of double-touching, and there-
fore, can be converged to exclusively connect possible pairs of self-occlusion
and double-touching. The pressure to be one-to-one mapping is considered
as one of the subjective criteria that concerns the simplicity of the system in
the informational point of view and might also be utilized for learning the
mapping between different bodies. As argued in the previous section, even if
the robot can share behaviors with humans, the experience of sharing would
not occur in every interaction since the humans would behave as they like.
Therefore, it must pick up only the sharing experiences to use them to con-
struct the mapping. Cross-anchoring learning is expected to find the correct
one-to-one correspondence of behaviors involved in many-to-many concurrence
of behaviors.
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