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§ 1. Introduction. Let K be a totally real algebraic number
field. In a positive definite quadratic space over K a lattice
En is called a unit lattice of rank n if Eh has an orthonormal
basis {81,..f,en}. The class number one problem is to find n
and K for which the class number of En is one. Dzewas ([13),
“Nebelung ([L31), Pfeuffer (L6]1,0L73) and Peters ([51]) have settled
this problem. The present state of this problem is : If n 23,
then the class number of En is one if and only if "K=4, n<8",.
1K =0(/2), m<4", "K=0(/5), n<4", "K=0(/T7), n=30, n=kl49)
n=3" or "K:=K(148), n=3", where Q@ 1is the rational number field

(49) ((148))

and resp. is the unique totally real cubic number
field with discriminant 49 (resp. 148). The class number two
problem has been studied by Pohst ([103), who gets a nearly complete
result for n2>4 : If n >4, then the class number of En is two
only if "K==K(49), n=4" or "K=0Q(/5), n=5,6,7", and the class
~number of E_ is two in the first two cases. Pfeuffer‘([SJ) has
~shown that the class number of En is three for K=Q(/5) and n =
6. In the special case that K 1s a real quadratic field, it
remains to consider the class number of E3 over K ( # Q(/?), Q(/5),
a(/17) ).

All former proofs of the "only if" assertions and nearly all
proofs of the class number one (or two) for special fields K and
special n use the Siegel Mass Formula. On the other hand we have
another methodfby' which Kneser ([2J]) has found the class numbe<
of E  for Q. Using this method Salamon (L1131) has found the

first result for Q(/3). In this paper we shall prove the following

theorem by using the Kneser method.
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Theorem, In the case of Teal quadratic fields with vn.z}, the .
class number of En is two if and only if

a(v2), n=5,

a(v/3), n=3,
Q(/%), n=35,

Q(v/73), n=3,
a(v33), n=3,
Q(v41), n=3.

The class number of En is a monotone increasing function of n
for a fixed field K ([43, 105:1). In' §2 we discuss some
properties of adjacent lattices. In §3 we find some special

adjacehf lattices to En and prove that the class number of En

is more than two unless K 1is one of the exceptional eight fields

-

(Cf. Prppositioh 8). In § 4 we treat. the above‘exceptional cases
and determine the class numbervby using Kneser method. The

notatioh used in_this paper will generally be those of [41.

§ 2. Adjacent lattices. ‘Let p be an odd prime number.  Put

[ ] n i
n _ . n 2 = :
Ap-—{(a1,j.,an)e 77 iz1 a;® = 0 mod p, (aw,..,an) £ (0,..,0) mod p}

where Z 1is the ring of rational integers. We define an equivalence

relation ~ on Ag : (a;,..,a.) v (by,..,b ) if and only if there

is a permutation {1',2'...,n'} of {1,2,..,n} and an integer ¢

prime to p such that bf ca;, mod p for all 1. In each
equivalence class we can choose a representative (a1,..,an) satis-

fying 0 faysas gt ga

n n
and ) a.? ) b for all (b,,..,b ) in the class.
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‘By :R; we denote the set of the above representatives. :'Let"

(a1,..,an) and (b1,.},bn) be in the same class and (é1,.;;an)€ Rpf

We define the norm and the type of (b1”°’bn) (or the class) :

( y=1 73
N(b,,..,b ) == a.?,
1. n P 21 1
- : n 2 - n M -
.T(b1,.,,bn) = min{ _Z c? s .Z c;b; = 0 mod p, (cqy.uype ) #(0,..,0)}.
_ i=1 i=1 , )
.3It is easy to-prove the following
Proposition 1. The number of the equivalence classes of the
| :
-specified type T in A; is as follows :
T = 1 T=2 | T=3 T4
p=3 0 1 0 , 0
° p= 1 mod 24 1 1 1 (p-25)/24
p= 5 mod 24 1 0 0 (p- 5)/24
p= 7 mod 24 0 0 1 (p- 7)/24
p=11 mod 24 0 1 0 (p-11)/24 -
p =13 mod 24 1 0 1 (p-13)/24
p =17 mod 24 1 1 0 (p-17)/24
p =19 mod 24 0 1 1 (p-19)/24
p =23 mod 24 0 0 0 (pt 1)/24
Moreover if the type is one or two, then the norm is“one.
" ‘
Let K=0(v/D) be a real quadratic field over @ with a square-
free rational integer D and O Dbe the ring of integers in K.
By genl we denote the genus containing a lattice L in a quadratic
space V over K, A lattice - L is said to be even if Q(L) C 20.
For vectors Xqr e Xy in V,.[x1,..,xm ] denotes the lattice
generated by {x1,..,xm} over O.
®
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Let oL be a non-zero ideal of O and L Dbe a unimodular
lattice in V. For x e m:1Lj such that Q(x) € 0, we put
L{x) = 0x+{zel ; B(X;Z)E 0},
which is called an Ol-adjacent lattice to L (Cf. [2]). The follow-

ing Lemmas 1 -4 are valid.

Lemma 1. Let L"be a unimodular lattice and L(x) be an ar-
adjacent lattice to L. Then L(x) is unimodular.  If OL is
prime to 20 or L(x)p = Lp for any dyadic spot $ » then an 6L-

adjacent lattice to L belongs to genlu

Lemma 2. Let L be a unimodular lattice in V, and L(x)
and L(x') (k8 two oL-adjacent lattices to L. If B(x,x')& 0

and x -yx' € L for some yYe&O prime to oL, then L(x) = L(x').

Lemma 3. Let L . be a unimodular lattice in V and L(x)
and L(x') be two OL-adjacent lattices to L. If x'=0x for

some o in O0(L), then L(x) = L(x").

Lemma 4. Let L be a unimodular lattice in V and L(x) be
an Ol -adjacent lattice to L. If there is a vector w in L

such that 2/Q(x-w) and (Q(x)-Q(w))/Q(x-w) are in ol, then L(x)

= L.
Lemma 5. Let p be an odd prime number dividing D and b a
prime ideal dividing p. Then a p -adjacent lattice to En is
: n
isometric to some E _(x) with ><==ZE a.e. and (a,,..,a )&
n P 24 173 1 n

nU -
Rp {(0,..,0)}.



Proof. Note that pO=§$> and 0/p = Z/pZ. Take an element 1z =

N~

- : /
e € p 1En with Q(z) € 0. We can find a; el such thap

i=1
- D _
/ﬁai-. 535 mod §
D /D ©
since vDa.€0 and = is prime to § . Put x='= | a.e,. Then
| i D P 4o, Tifi
-1 n
x € p E, and z-x €E . We have 121 af = 0 mod p since Q(z) €
: n . .
0. Hence Q(x)€ 0 and _(a1,..,an)e Ap if x é& E - Since

-2B(x,z) =Q(z-x) -Q(x)-Q(z)§ 0 and B(x,z) € @-2, we have
B(x,z) € 0. By Lemma 2 we have e (2) =€ (x). Considering the

va) GREU{(Ov-"O)} by

structure of 0(E_ ), we may have (a1,.. n

Lemmas 2 and 3.

§ 3. Special adjacent lattices to £ -

Proposition 2. Let b , b be positive rational integers

177°°7"n

n : _
satisfying ) biz=-D. “Assume n 2 3. Consider the lattice A =

=1

. ;0

En(z) ={zJ4LA with =z = 5 i§1 b.e;.  Then
1) A e gen €k
2) A is even if =n = b1 T eee = bn = 1 mod2,
3) A € gen E,_; unless n = b1 Z ee. = bn = 1 mod 2,

4) A = E, if n=3, D =1 wmod 4 and bi:bj for some i < j,

5) 1 € Q(A) wunless n=3,D = 1 mod 4 and b, ébj for some 1 < j.

Proof. (1) Suppose that D is odd. By Lemma 1 we have A € gen E_
Let § be a dyadic spot on K. We can assume that b, 1is odd.
Put vy =b1ei -bie1 for 1i=2,3,..,n. Then Ab:=EV2""Vn]P with

B(ui,uj)e Z and det(B(Vi,Vj))='bﬁ(nf2)D = 1 mod 2. The assertion

(2) is clear. We shall show (3). Consider a lattice m==[u2,..,vn‘]



over Z. Then M2 2 <I> L eesd <1> L <D> or m2 > 1> Loees L<1> L

<D> L <D> L <D>  since M ié ﬁ&E é?gﬁhahd‘thé/Haséé symbol of M2 takes

> 1is the Z%Z-completion of M. So Ap = En-1?

since 0Op D Z, and VD € K. By Lemma 1 we have the assertion (3).

the value +1, where M

(ii) Suppose that D is even. We can assume that b1 and b2 are

odd. Let § be dyadic. Then A@=[_sz— /581, V3""Un]& with
det(B(v,,v.)) =b2{1"3) (D _2) = 1 mod 4. Thus A, = (v v T L
i’7j 1 2~ ' b 3" n-¢%

<D-b3>. By a similar argument as in (i) we have  Ag= Fh-1be BY

Lemma 1 we have A& gen En-1’ and so A € gen B -
(iii) Suppose that n=3, D = 1 mod 4 and by =by. Thus by =1

mod 2. Take f and g in Z such that. 2b2

+5(1+g/D) e, +3(-1+g/D) e

f-byg=1. Put

wy =e(b3f'+b2g)z4-f/ﬁe

3 2
and Wy =wy - ey te,. "Then A==[w1]J.Ew23 =.52.
(iv) We shall show the assertion (5). Any non-zero vector ue€ A
' n n
can be written as wu=-az+ | (c, +d./D)e. with a= ] b.d.e Z,
PE=CRRE S i . j2, 17d

n .
} b.c. =0, |al < 3D, c, € 57, d; € 47 and ci-die‘Z for all i. Thus

n n
c.2+D ) d.2-a2?+2/D ) c.d
1 . 1 P 1

i=1 i=1 _

Q(u)

'_J.
eSS e~ 3
—_
}_I-

—

.+ Z(b.d.-b.di)2+2D
i<y 40 i

I~

éidi.
1

’._l-

If the number of the pairs(i,j) such that bidj—bjdi #0 and i<
is less than n-1, then bidj-bjdi =0 for all i and j. Hence
d1/b1 = .. =dn/bn =c¢c for some ceq. Since the g.c.d. of b.'s

is one, we have ce€3Z or ceZ according as D = 1 mod 4 or not.

n n
Thus a= j b.d.,=c J b2 =cD. This implies <¢=0 and a=d, =

n

eee=d_ =0, Hence c.ez for all i and so ) cf > 2. This
is1 1S

shows Q(yu) #1. Suppose that the number of the pairs (i,j) such

that bidj-bjdi #0 and 1 < j is not less than n-1. If all di's



are in Z, then ) (bidj—bjdi)z >n-122, so. Q(u) #1. Thus we may
: i< | , j
assume that D = 1 mod 4 and d,, &z for some i'. Thus ci,é.i Z.
. n " ]
2 51 s
Then 121 c,? 23 since b,b, brl £0. Hepce

e~

c.2+ ¥ (b.d.-bjdi)zz%+é(n.-‘l) = z(n+1) > 1

i=1 b i<y bt

n

and the equality holds only when n=3 and ] c.2=4. This case
' n

occurs only when n=3 and bi:bj for some 1i<j since - ) bici
i=1

=0. But this is excluded.
The following Lemma can be;@roved easily.

Lemma 6. Let D be a square-free positive integer. In order

_l 2 2 2 2 TR L
that D= b1 + b2 +b3 + b4 f,or» some positive integers b1,b2,b3 and

bA’ it is necessary and sufficient that D#1,2,3,5,6,11,14,17,29,41.

Proposition 3. Let D # 1 mod .4. Let p be an odd prime
D3

i=1

a.e.

dividing D. Consider the lattice B =E3(y) with vy 185

and (a1,a2,a3)6 Rg. Then
(1) 8 € genkEg,
(2) B = E,+B' .and 1 € Q(B') if D=p-=

i

2

ai or if T(a1;a.293-3) = 1‘9

I o~

1

' 3
(3) 1-¢ Q(B) if T(a1,a2,a3)z2 and unless D=p= ) a.?.

Proof. By Lemma 1 we have B e gen E3. Suppose that ’l’(a1 ,a2,a3)
' 3
>2 and Q(u) =1 for some ueB. We can write u=ay+ y (Ci+
; i=1
d;/D)e; where aez, c,eZ, d;€ 2z, ] a;c; 20 mod p and |al <p. |

i=1

.- - — g S om0 B T e



Then

3 3 = 3
1=0lw) - i§1 °5 +%% 121 (aai+pdi)z+ﬂi=1 c;(aa;+pd, ).
3 3 ,
Hence we have i§1c; =0 and D=p= izq(aai+pdi)2 since T(a1,a2,a3) > 2.
3
Thus the assertion (3) holds. Now let D=p=.z1 a;. Then B=Cyl4i
l:

B' and Q(B') #1 by (5) of the Proposition 2. If T(a1,a2,33) =1,

then a, =0, D#p and B=[e,1LB'. Similarly we have 1 € Q(B').

Proposition 4. Let D = 1 mod 4 and p be a prime dividing D.
v/D

n
Consider the lattice 8= En(y) with Y= .21 a; e, and (a1,..,an)

n

€ R.  Assume that n23. Put T=T(a,,..,a ) and N=N(a,,..,a).

(1) B &genkE ,

-.(2)B‘=E1J.B‘.with 1 ¢€Q(B') if n=3, D#p and T=1,
(3) 1 ¢ Q(B) and 2 € Q(B) if D#p and T-=2,

(4) 1 # Q(B) and 2 ¢ Q(B) if D#p and T3,

(5) 8 =€, if n=3, D=p and Ts<2,

3
(6) B ~ E,LB' with 1 ¢#Q(8') if D=p, N=1 and T23,
(7) 1 €Q(8) if D=p, N=2 and T>3,
(8) 1 ¢ Q(B) if D=p, N>3 and T22,

(9) 2 £Q(B) if n=3, D=p, N23 and T23,
(10) 2 e Q(B) if D:=p . with N=2 or if T =2.

Proof. By Lemma 1 we have (1). (10) holds trivially. Take a

non-zero vector u in B and write

0 A
u=ay+ ) (ci-+di/5)

€1
i=1

. n
with aez, |a| <3p, c, € i7, d; € 37, c;-d; € 7 and 2 Z a. c.

i
e

e mod p. Then

n
E c.(aai+pdi),




n.
where X= ] cf and Y =
121 1

0, then a =

glo
o

n
2
121(aai+pdi) . If ¥

d. =0 for all i, so cié Z for all 1. Thus X>T. If X=0

1

nv

and Y#0, then c, =0 for all i and Y2DN/p. -If X#0 and

i
Y#0, then X+7¥3 % + g%} Thus (3),(7),(8) and the half of (4)
¢ hold. Now suppose that D#p and T23 or that D=p, T3, N>3
and = 3. Thus X> 3/4 and Y'z3/4. S If X=3/4 with Y=5/4
: n
or X=5/4 with Y =3/4, then we have 2 = 4X-4Y = [ (Rec.)2-"
" i=1  *
Y (2d;)% = 0 mod 4, which is a contradiction. If X=Y=1, then
i=1 -
n
D=p and z cf =1. Thus D=p and n >4, which is a contradiction.
i=1 o e
Hence (9) and the rest of (4) hold. fIf n=3,D#p and T=1, then
o 21 =0 and B =[e1]J;B' with B! =[82,'951(y). Hence ‘we have 1¢
Q(B') by a direct calculation. So the assertion (2) holds.
Assume that n=3, D=p and Tg<2., Then N=1. If T=1, then
. y oo A _
B :[81]_L[y]J_[y'J ~ E3 with y'._jE(aBsza2e3). If T=2, then
B =x E3 by k#d Proposition 2,(4). Thus (5) holds. Finally  (6)
follows from #id Proposition 2 (5).
Proposition 5. Let D-= 3 mod 4. Consider the lattice C =
®

EB(x)=[83].LC' with x = 3(e +/§82). Then
(1) Ce gen E3’
(2) 1 €Q(c') if D> 3,

(3) C' is even if and only if D = 7 mod 8.

7. (H0x1) /B,

- xr :
Proof. We have C [x, Re /D A Let j? be dyadic.

2
If D =3 mod 8, then C' is not even and Cl = <3 (D+1)> L <} (D+1)>

= EZé since 3¢ Kg.‘ If D = 7 mod 8, then C! .is even and C} >

t? 8), SO Cp= <1>.L(? 8
o

are proved by Lemma 1. It is easy to show (2) directly.

) ~ 53& since -1 € Kg. Thus (1) and (3)



PrOpositidn 6. Let D = 5 mod-12. Consider the lattice G

=53(x)'=[e331_c" with x=3(e, +D/De,). Then

N W

(1) G e genE3 and G'e genE
(2) 1 ¢ Q(G') and 2 € Q(G') if D> 29.

Proof. (1) follows from Lemma 1. We have G' =[x, 3e,]. It is

easy to show (2) by a direct calculation.

Proposition 7. Let D be a prime p = 1 mod 12. Then the

number of the classes in Ag whose type is six is one or zero

according as p = 1T mod 24 or p = 13 mod 24. Let (51,a2,a3)

3 _ _
'3 Rp with T = T(a1,a2,a3) >3 and N(aj,az,aB) = 2. Put x =

( +a282-+a ) If there are two vectors Uﬁ and Uy in

then T=3 or

i »chl—‘

2184
( ) such that Q(u1)l=Q(u2) =28(u1,u2) =2’,

E
6.

Proof. Let (b1, 2,b ) e Ag whose type is six. Thus we may assume

that D

3 =2by + Db, Hence 0 = 1Z1b 2

(%?) =1, i.e., p = 1 mod 24%. If p =

2(by+by) %+ 3 b2 mod p. So

1
-

mod 24, then there is an

integer c¢ such that c¢? = -6 mod p. Hence *c(b +52) = 3b, mod p.

’
Thus (b1 b2,b3) ~ (c¢,3-c,3+c), i.e., there is one and only one
class whose type is six. We shall show T=3 or T=6. Suppose
that T#3 and T#6. Thus T=5 or T> 7. Take a vector u

in B with Q(u) =2 and write

3
u =ax+ ) (c +d. /E)e
i
i=1 3
with aez, |al <3p, c, & 3z, d; €3z, c,-d; €27, 21-2-1 a;c; = 0 mod p.

. 2 2
Then Q(U):X+Y+7ﬁ Z

I\




% Yy (a a; * pdi)z. Hence we have one of the following:
s i=1 ) . '
(i) X=0 and Y=2, (ii) X=5/4 and Y =3/4,.
(1ii) X =3/2 and Y=1/2. ' :
' 3 3 3 :

In the case (ii) we have 1= ) (2¢c.)2 = ¥ (2d4.)2 = 7§ (Raa.+2pd,)?
L i L i . i i
i=1 i=1 i=1 _ :

=3p = 3 mod 4. This is a contradiction. In the case (iii) we

have (a1.a2,a3) ~ (¢, 3-c, 3tc) for an integer c with c¢?+6 = 0

mod p- by the argumén't used above since X =6/4. Si_n‘ce _T-. must

be five we have ¢ = 1, £2, #3, #6 or *9 mod p, which is a contra-

diction to the fact that p divides c¢2+6. In the case (i) we

~have Cy =0 and d.,€ Z for all 1i. Hence we can write u1-> =

ax +v/p
i

d. e, =

3
1
R 75 Zf.e. and.u2=a‘x+/§.z df e; =

[ e L]

3 ; t 1 ' 1 Py = | - i
with a,a ,di,di,fi,fié Z, Thus fi = aay mod p and fi = a'a

mod p.. Hence. fif3 —fjf:{
3

3 3
Loes Lot

1 . i

0 mod p. Since 3p? = (2p)2? - p? =

ry2 o [ 1 l2 o _
1fifi)‘ igj(fifj fj £1)%, we have £y fJ'. fj f£!

= hijp=ip whenever i #j. Since O=f1(f2fé-f3fé) +f2(f3f1'—

1 1_ 1 L =v .
f1f3) +'f3(f‘1f2 f2f1)’ we have O f1h23+f2h31+f3h12, i.e., a1h23+
a.2h31+33.h12 Z 0 mod p. This implies that T < 3. ‘E‘his is a

contradiction.

. Proposition 8. Let =n2> 3. Then the class number of En is
more than two unless D 1is one of the following: 2, 3, 5, 13, 17,

29, 33, 41.

~proof. It is enough to find two lattices L and M in gen E3

such that L # Eg, M # E; and L £ m.



(i) Let D = 2 mod 4. For L we take the lattice A in the
fProposition 2 if D =10. If D#10, then there is an odd prime q
(#5) dividing D. By the Proposition 1 there is an element

(a1,a2,a3)6 Rg whose type is more than one, for which we consider
e the lattice B in EH@ Proposition 3.  Then put L =8 if D#10.

Next take an odd prime p dividing D. If p = 1 mod 4, then there

-~

is an elemen# (a1.a2,a3)€‘Rg whose type is one, for which we consider
the lattice B in EK& Proposition 3. If p £ 3 mod 4, then we can
consider the lattice .iiin'&ﬁa Proposition 2. Then‘put M:;é'or

m;:ﬁ according as p = 1.mod 4 or p = 3 ﬁod\A. Note that 1¢&
Q(L) and M = E Lmt with 1 ¢ Q(m').

(ii) Let D'z 3 mod 8. For L we take a lattice A = E,L A with

an even lattice A in the Proposition 2. © For M we take the lattice

C = E1J;E' with an odd lattice Ct' and 1 & é(C*) in t4r@ Proposition
.5". - - l ’
(1i1) Let D = 7 mod 8. TFor L we take a lattice A with 1 & Q(A)

in bk Proposition 2 and for M we take the lattice C = £, 1C'

with 1€ Q(c') in % Proposition 5.
(iv) Let D = 1 mod 4 and not.a prime. If no prime divisor of D
is congruent to 7 mod 8, then by i#@ Proposition 1 we have two
3 .4 1 a1 g1 3 : '

elements (a1,a2,a3)6 Rp and (a1,a2,a3)€ Rq for some
prime divisors p and q of D (possibly p=gq) such that T(a1,a2,a3)‘
= ‘! 1 At : .

1 and T(a1,a2,a3) >2 or such that T(a1,a2,a3)
T(a{,aé,aé) > 3. For L and M we take the lattice B for (a1,a2,33)

=2 and

and the lattice B for (a%,aé,aé) in ¥ Proposition 4. If D
has a prime divisor p = 7 mod 8, then there is an element
_(a1,a2.a3)€ Rg whose type is more than two, for which we can

‘consider the lattice B with Q(B)3 1 in'tkﬁ Proposition 4. Put



‘ =B, There are positive integers b1,b‘2 and b3 such that b-Tz+

béz +b32= D-since D =1 mod 4 and p = 3 mod 4. - We have bi#bj

whenever i # j since (:i)g) = -1, Hence we can consider a lattice

A-=E1

® (v) Let D be a .prime p = 1 mod 12. Since 'p=3a2+ b2 for some

LA with 1é€Q(A). Put mM=7n.

positive integers a and b, we can consider the lattice A for

e ~

i(a,a,a,b) in the Proposition 2. Put L =A. Then 1-é'Q(L) and
‘there are two vectors ui and Gé in L such that Q(;;s_;Q(J2)=
Al?B(u1,ﬁé)'=2. Firét suppose p = 1 mod 24. Then there are at

: o . 3
least two elements (a1.a2,a3) and (a%,aé,aé) in Rp whose_types

. e

are more than three by Proposition 1. Hence we can assume that T(é1,
a2,a3) #6 Dby Proposition 7. We put M=8 for- (a1,a2,a3) in Prop-
osition 4. Hence M#EB. And M%L if N(a1,a2,a3)%2. - If m=L
and N(a1,a2,a3) =2, then (noting the e.xvistenée of the pair {Q1~,u2})

we have T(a1,a2,a3) =3 or 6 by Proposition 7. This is a contradiction.

Secondly suppose that p = 13 mod 24. There is an element

(a1,§2.a3)e Rg. whose type is more fhan.ihfee“by thé_Propoéitggn 1;
"For M we take the lattice 5_ for (a1,a2,a3) in ?h@ Proposition 4.
e If N(a1,a2,a3)=1, then B=E,1B' with 1¢ Q(8'). If
_N(a1,a2,a3) ;?; then 1 €Q(8) .and 2¢Q(B), If N(a1,a2,33) = 2,
then 1€ Q(B) and B # L by &g Proposition 7.

(vi) Let D be a prime p = 5 mod 12. For L we take the lattice
A with 1¢ g(a) in lnd Propositioﬁ 2. For m we take the lattice

C=E,1G' with 1€Q(c') in bird Proposition 6.




§ 4. Special values of D. For the explicit value of the class

number of _En we use the Kneser Method. Following [ 4] we state

the method. By J we denote the group of ideles of the field K.

For a finite spot P on K we put
SLIER (é%) ed ; ig is a unit in 0%,fdr all finite spot q. # {1}.
Put V=K E, and P==6(O+(U)), where 8 is the spinor norm and O+(U)
is the proper orthogonal group of V. Consider P as the image of
P under the natufal isomorphism K¥%* =+ J,. Recall &#d Theorem 104:9
in [4]: |
Lemma 7. Let n> 3, Vg be isotropic and J =pJ¥, Then for

—

any L egenkt ~there is a lattice M 1isometric to L such that

Mg = En%’ for all f1n1t§ spot g.# p. .

By the Proposition 101:8 in [ 47 we have

Lemma 8. Let n.gB and the ideal class number of K be one.
Assume that the norm of the fqndamental unit in K 1is -1 or that
- the norm of a generator of p 1is negative. Then J=pJ%.

Lemma 9. Let n>3, § be a spot dividing D and M e genEn
with Me = En% for all finite spot G}% f£. Assume that n is odd
and D=2 if § is dyadic. Then there is a chain of lattices

En =LO, L1,..., Lt:=M

in gen En with L f -adjacent to L.

i+1

Proof. Following the proof of 106:4 in [ 4], we can prove

1

this assertion. It is enough to find a chain of lattices E 6 Léé)
» n
(f) (&) . :
L1 ,..,Lt87 =Mk in Vg with Lif% @-adjacent to Li&) and LF&)

= En&:' - Put Lo =En. ~ Then Me = OLO& for some o« O(V@). By



expressing o as a product of symmetries on Vg  we see that it is
enough if we assume that ¢ 1is a symmetry. Then o=71,with u a
maximal anisotropic vector in .LO@‘ Then tﬁere is eithér a 1- or
2-dimensional unimodular sublattice K of Log which contains u.

If the rank of K is one, then Lop=T, 0= Mp» s0 Mg 1is f-adjacent
to LOé . If the rank of K 1is two, then we take the splitting LO¢=

KLK', Then K =TUK'C Mg and so we have a splitting Mg=K"LK'.

Write K= {:r x+0qy and K" =0gx+ &r y with a non-negative integer

r. Hence we may put Lé‘i’) :LO& s L1(P) = (Pr»-1 xtPy)LK' = Lé&:)(ﬂr-1x),

.oy LI(‘&,) =Mp=K"LK! = (,06,x+§>ry ) K! =_L(&>)(x), where P=1m0p. We must

né’
L k™ with Q(z) =¢ a unit in Op. It is enough to show that

: r-1
show that ng_g,) :En@ It is trivial when i=0 or i=r. "Assume that
1gigr-1. If §{ 1is non-dyadic, then E;r—lx+ g:ly = <1>1L<-1> = K, so
L§&) = KLK!' = E If p is dyadic, then n 1is odd, hence K' =[z])

(garx+0£,y)_!_0&.,z = (&r-ix +6>iy)_!_ Oé,z for 1<igr-1. We qaﬂ assume

1A

that a’rB(x,y)=O&,. Sinée yeKCLO&Z En and 4”=/-2‘0‘»,, we have

f
0 or 1 mod 2 and ¢ =1 mod 2.

0 1 - i
(7 o) L<e> = (7 x+pty)
1 mod 2 and ner(x) = 0 mod 8, then -(g:rx+06,y).l_

06,2 * <Q(y)>h <-Q(y)>L<e> = <e>Ll <-g>L<e> = ((1) (1)).|-<€> = (&’r-iX‘L&iy)

Q(y) =0 or 1 mod 2. Similarly Q(x)

If Q(y) = 0 mod 2, then (§'x+0py)L Op

N

J_Oé,z. If Q(y)

J;Oé,z. If Q(x) =2 Q(y) = 1 mod 2, r=2 and i=1, then (§%x+0py) L

1

DL <e> = (px+py)L

- N

O@Z x <Q(y)>1<3Q(y)>1 <e> <g>L <3e>t <e> = (

O&Z.‘

Proposition 9. Let D=2. Then the class number of Er; is °

one if n%4, two if n=5 and more than two if n>6,




. 1 )
Proof. There are three lattices .Eé, E6(7§(e1+ +84)) and

(e t+++eg)) in genE,, any two of which are not isometric.

1
Let n=5, Take §$=(/2) and a f -adjacent lattice E5(x) in
' 5

gen E.. Write @ e .. Note that O(ES) contains all

_ 1
. x—‘/ﬁl 1
permutations of {e1,..,e5}. And note that Q(x) = 0 or 1 mod 2

since Es(x)e gen E5. By Lemmas 2 and 3 we have only to consider

the following three cases: (i) 0y =ay =0y =a, s 0L5:O. Then E5(X)

= ES' (ii) @, =a,=1 and oa3=oc4=a5=0. Then E5(x) = E5.
i3] = = = .= = = o] .
(iidi) o, _‘OLZ ay=a, 1 and oy 0. Then E5(x) EA_L[eS'_],lthere
o] . 1 . .
= = e— +oo+ . -

EA EA(U) with u /5(91 84) Hence a p -adjacent lattice _tc?

i . . { = O ‘
E5 in gen E5 is isometric to E5 or E5 EA"LEESJ-' Next take -a
f - adjacent lattice Eé(y) to Ef in genf, and write /2y =
G eg with o€ 0 and we E(Z. Since Q(y)€ 0 and Ez is even, we

1 = l —

have os&f. By Lemma 2 we have-‘ E5(y) 5(/_m) EA(/—UJ)-LEESJ.

Hence we may write vVZy=au+ | a; e; where o, €0, 2€{0,1} and-

: i=1

4 o

) a;, =0 mod\lz. Note that Q(y) = 0 or 1 mod 2 since Eé(y)e
i=1- :

gen ES' If a=0, then we have the following four cases by Lemmas

3_=a4=o. Then Eé(y)=Eé. (ii) a1=/§

and 0!.2=(!3=Ol.4:0. Then Ev'(y)=E5. (iidi) @, =a,=1 and

2 and 3: (i) @y =a,=a

*3
@, =0.  Then E'(y)—E (y)_L[esj—E2(‘/_( +82))_|_52(/_( 3+84)).L[95]

= E.. (iv) a1=a2=1,a3=/§ and o, =0. Then Eé(y) = El. Next

5 4 5
consider the case of a=1. Since T, € O(E'S) , we have /2 yT, =
: S ' 1 g 1
ut (- aq-/i) ] g ase, + +++., Hence we may assume that oy = 0 mod 2
or a; = 1.mod 2. Thus we have only to consider the following cases ‘

by Lemmas 2 and 3: (v) a =a2=a3=a4=0 or a =1,

1
Then Eé(y) = Eg. (vi) @, =-1, a

pTey=ag=a,
2=1-and 0L3=0L4=O.' Apply -
o

Lemma 4 to this case taking u=u—/§e1. Then. E'S(y) :EA _{_[esj

I



= Eé. Thus a § -adjacént lattice to Eé_ is isometric to E5 or
Eé. ‘Hence {Eé ’ES} is a set of ailvrepresentatives of classes in
gen.E5 by Lemmas 7,8 and 9. By kk@ Theorem 105:71 in [4] this implies

that the class number is one if n <4.
From [117) we have

Proposition 10. Let D=3. Then the class number of E_ 1is

one if n<2, two if n=3 and more than two if n2 4.

Proposition 11. Let D=5. Then the class number of E_  1is

one if n <4, two if n=5 and more than two if n>6.

1

= e .. =L : -
Proof. Put x-—/g(e1+ +85)’ y1~—/§(e1+e2+ 2e3+v2e4)» and xq =
;L(e te te,t2e,t2e.t2e,). Consider the lattice ELl=E.(x) =
/5 71 72 73 4 5 6 _ 5 5
[x]i.EZ. Then EZ is even. If n=6, then we have three lattices
Egs Eé(x) and Eé=:E6(x1) in genE. By Proposition 4,(8) we

have 1 ¢ Q(Eé). Thus the class number of E6 is more than two.

Let £ =(/5) and n=5. Take a P-adjacent lattice ES(Y) to Eg.

By Lemma 5 we may consider vy =jL ) a; e; with (aq,..,a5) € Rg.

Hence vy e {0, x, j%(e1+2 92), y1}. Thus E5(O) = E ES(X) =Eé and

5’
5(/_(e + 2e2)).z Eg. By the Lemma 4 Ej(y;) :_ES taking w =

2(1+/_)(e3+e €E.. Take a § -adjacent lattice _Eé(z) to E!
5

4) 5 5°

By Lemma 2 we may assume that /5z=ax+t ) a; e; where a=0 or 1,
i=1

oy =a.-+b./fe Z[/—] and Z a; z 0 mod 5. If a=0, then we have

only to .consider the follow1ng three cases by Lemmas 2 and 3

5
(i) a; =+++=a,=0. Then z-= ) b.e., so EMz)=E! or Eé(z)=v

ag

E b. = 0 mod 5 or not.

1 1

11 ~1\n

5 according as
i



‘ 5 . 5
(ij_") aT:.” =a5=1. Thus -Z:x+j_21 bi €5 with iz b.l = O mod 5,

E%(z) = Eé.

(iii) a1=1, a2=-1, a3=2, a,
{0,1}. If b5 0, then ze E!, so E5(?) 5 b5
have Eé(z)=[zo,z1,...,zA]=E5, where ZO:Z+C83+{;64.-8,5’ zq =

so z EEé. Hence

=-2, a5=b,‘=”°=b4=0 and b5&

1}
m
4
Hy

=1, then we

z Le, - = Ze,- - =z -2x+ +
z+><+Ce1 +¢;93 €5y Zp z-l~.2><+2;e1 /393 §e5, z3=12 2x ce,
-7 = - + + - = 3 +/— .
/ge4 Zes and z,=z-x*tteytze, - ez, where ¢ =34(1+/5)
If a=1, then we have only to consider the following six cases

by Lemma 2 (note that O(Eé) contains all permutationé of {91,

(iv) a1=~“=a4=0 and a5=2/§. Thus E' z)“[22-—595, 22'—_81-

4—85) 2z -be2'4857 22"93"485’ 22'?4_485]: E5'

0, @, =2 and a,=3+3/5. Thus ‘E'é(z)ﬁtz#zx-

17 %27 %37 4 5
ze, - (3+/§)e5, z - 2x - 5(81' te,t 83) - (3+;)e5, z-eq-cte; - (3+C)e5,

(v) a, = a

2-ep-tey - Btt)eg, 2-eg-te, - (Bro)es I~ &y

(vi) o, = a =0, a,=1 and «a

17 %27 %3 4 5
[22 + 2x - C(81+82+83+84) - (3+2/§)e5, 2z - 2x - i(e1+e

= 4L+/5. Thus we have E‘5(z) =
2+é3) —84+
(3@—4)85, 2z - (e te,) - ze, - (3C+1)e5, 2z - (82+e3) - te, - (3C+1)e5,.
2z - ('e.1+93) - I;eA- (3C+1)e5 ]: E5°

(vii) ay = a, =1, 0L3=OLA='—1 and a5=0. Thus we have Eé(z) =

[z+x+ZeT—;e2, z+x+iez—ge1, z—x+»;83-294, ;—x+ceA-593,zJ.

= Eg.

(viii) @y = e, =2, a3=a4:-2 aﬁd oz5=—5. By Lemma 4 we have
E'5(z) = EL Dby taking w=3x—6(93+94+85).

(ix) 0L'1=2, @y =1, ag3=-1, o, =-2 and oy = 2/5. ‘Then we have
Eé [2z+x-/"e —Cez-(;el&.-é,ey 2z - 2x - ge, + /Ge +/‘e4
(,12;—5)85, 22+2x-/_e /—e 4—_(c+4)e5, 2z - x - gey -2;83+\/_‘5—e4-
heg, 22-/531 -cez-ce3+/—e4-4e5]= Es.

Hence gen E-5 contains just two classes by Lemmas 7,8 and 9. {E5,

5

Eé} is a set of all representativevs of classes in gent

(9



Proposition 12. Let D =13. Then the class number of En is

one if n <2, two if n=3 and more than two.-if n > 4.

Proof. Let n=4. Then there are three lattices EA’ EA(Y1) and

EA(YZ) in gen EA wilt‘h 1/13y1=e1+2e2+3e +5e and 1/13y2:e1+382+

3 774
bez. By Lird Proposition 4 QE,(yy)) #1, Q(E5(y,)) # 1 and

EA(Y2) =E3(y2)J_EeA]. Thus the class number of E4 is more than 2.

e
[0}
ct
o
1l

3 and P =(/T3). Take a é’—adjacent lattice ‘Eé =E3(x) to

E3. By Lemma 5 aﬁd trd Proposition 4(5) we may consider v73x =e,t

_ 2 0 1
3e,the.,. Thus Q(EL) $ 1 and E! =[x, vy, z Z(O j3/T§> , where
2t es e ; TR AT

y=e,tey-e; and z= bx - ¢13(e2+293). Next consider a f -adjacent
: 3 n - 1 ) 1 3 - + + T _ l. 3
lattice EY EB(U) to €} with /T3u = ax+By Yz €E} -pEL If Bef
then we may assume that B8 =0 and a=1. by Lemma 2. Thus we may

assume that y=2 or y=-5 since Q(u)e 0 by Lemma 4. If y=2,

then E'3'=[‘u,y, mzlz[u-y,4u+2y-ﬂ‘3_z,3u+2y—/1‘3z]= Eg. If y-=

-5, then Eg=[u, Y /ﬁz]=[u+2y, 3uty+v/13z, Lut2y+/13z2] = E Let

3¢
B 5?&. Then by Lemma 2 we may assume that o and B € Z such that
|| §6 and lyl <6 and that B8 = 2 mod /713. Since Tx+/T§y—32’

Tox+/T3y-32 7 Ty € O(Eé), we may assume that V13u=x+(:2+2/73)y-62z.

Hence EY ={u, i(Su—9y)+x+(i2/T§—2)z,4u12x-4y-(i2-/T§)z] = Eé. By

Lemmas 7,8 and 9 we have the assertion.

Proposition 13. Let D=17. Then the class number of Eh is

one 1if 1153 and more than two if rlgA.

Proof. Let n=4. Then there are three lattices £, EA(y1) and
A in genEA, where /17y, :e1+3e2+483+594, 1Ty, =e1+2(82+e3+94+e5)
and E5(y2) =Ly,JLA. By bhe Proposition 4 Q(EA(y1)) % 1,2. By
the Proposition 2 Q(A) 1 and Q(A)>2. Hence the class number
of EA is more than two. Let n =3, Then by Lemma 5 and the

Proposition 4 a (V/77)-adjacent lattice to E3 is isometric to E3.

20



Proposition 14. Let D =29. Then the class number of En is

more than two.if =n > 3.

Proof. There are three latticés EB’ E3(y) and E3(y') in gen .E3,

where @y=2e1+3e2+483 and 2y'=e1 $(1+/29)e 2(1 f—_)e Then
Ex(y) =Cy3aLm with 1 & Q(m). Clearly Q(E3(y ))591 since E3(y')

A 1 0
= y', 2e ,me ~e,te :(1 A 2/—2—§ .
[ 1 17%2te3 ] 0 2/29 31

Proposition 15. ' Let D=:33.‘ Then the class number of En is

one if n

HA

2, two if n=3 and more than two if n 4.

Proof. There are three lattices E

L 4(x1) and E4(x2) in genEA
V33 /33

‘with Xq =75 (e1+e +3e3) and X5 =—1—1—(e1+_82+283_+4e4). Then EA(X,])

E3(x1) ;[eAJ .witb -1 é«Q(EB(x1))Y and 1 & Q(EA(XZ))-'by tkq Pro-
position 4."‘Thus the class number of EZ is more than two. Put
m=1142/33 and w=6+/33. Let n=3 and §=(n). Then a -

adjacent lattice to g is isometric to E5 or E3(x1) by Proposi-

tion 1 and Lemma 5. Note that E3(x1) =Ee1~e2, x1—e1—292 30 5x1+

(1-v33) (e +ez)-F(3-/§§)e3]: 1 9 3/33). Putting «x =—§—(e1+e2+e3),
0-3/33 35 '

then Eé =E3(x) =[e1—82, x+%(3-/ﬁ)e1+%(1—/§)92+e3, Ax-2(e1+ez)+4e3]

~ EB(XT). To find a p -adjacent lattice to EB(XT) we have only

to find a §-adjacent lattice €3 to E4. Tet E§=Ei(y) with

y € &;1Eé -Eé. By Lemma 2 we can assume that y==i§32 with =z

e E' @E’. Thus ¢y C‘ﬂEé C E3. Since x€EL and B(x,y) =

3
B(e te +83,Z)EB(Eé,E§)CO we. have. x+yeE'3'. For a vector mQE3

such that B(uw,xty) € 0 we have 7B(w,x) =B(u,n(x+y)) - B(u,my) € 0.

also wB(uw,x) c0. Hence B(u,x) €0, so uyeEé. And hence B(w,y)

= B(w,x*ty) - Blu,x)e0, so eEé(y) =E3. Hence EB(x*y)C:EB - Since

21




y = 2w(x+y) - (2ux+my) with 2wx+nye-E3 and B(y,2wx+my) € 0, we have
yE E3(x+y). For a vector u;eEB’ such that B(w,x)€ 0 and B(u,y)

€ 0, we have B(uw,xty)e 0. Thus EU CEB(x+y). Hence E% =E3(u)

3
. 1 1
with u=xty =——(11e,+11e,+11e,+32z) &€ —E.. Clearl V33u € AE,
y 3 ; 2 3 33 3 y _ ff‘ 3
wEy.  Write V33u= ] a e, with o;¢ 0. By Lemma 2 and consider-
i=1

ing the structure of O(EB)’ we have only to consider the following
three cases:

(1) ay=ay=4 and ay=1. Then EY=[u, 4uts(1-/33)e;-2(1+/33)e,,
hu-3(14/33) e +5(1-V33)e, 1= Es. | |
(ii) @y =a,=2 and a3==5. Hence E§==£u, 7u+%(1—/§§)81-%(1+/§§)e2,
“/3_393) 7U—%(1+/§—3-')81+%(1—/3—3—)82— 339332 E3-

(1ii) @y =1, ay=4 and ag=7. Thus E%={u, 4u-v33e,, e1+5e2-3'e3']
= Eé.]

Hence we have the assertion by Lemmas 7,8 and 9.

Proposition 16. Let D =41, Then the class number of En is

one if n=1, two if n=2,3 and more than two if n ;44

Proof. By th4 Proposition 6 there is a lattice G' in genk, such

that 1 & Q(G'). Hence there are three lattices G'LE and

E
4’ 2
G'LG'! in genIEA. Thus the class number of E4 is more than two.

Let n=3 and &==(¢41).‘ A f-adjacent lattice to E3 is isometric

to Ej or E3(x) with x = (e1+282+6e3) by ptd Propositins 1 and

]
25
4, and Lemma 3. Thus £} =E3(x) =[x, y,z1= <1>-L(2;%72€5T > with

y = 2e,-e, and z==V41(e1¥e3) - 7x. Take a p-adjacent lattice EY =
Eé(u) tp Eé such that u é.Eé. Write V4Tu=oax+Bytyz with a,
B,yeO. If aep, then we may assume that «=0 and vy=20 by

Lemma 2. Since Q(u)€ 0, we may assume that = +5-8v/41 by Lemma 2.

22



Thus E4=[x] 1 0-u, £10u+(2/3780)y - (8:5/%7)z ) = ES. If Bef,
‘then we may assume that o=7,8=0 and vy=1. Hence u==e,1+e3 and
Eg=E3. If Y»(—‘é?, we may assume that a =6, B=1 and vy=0. Thus

EY =[u]LL‘!ALEZ/ZTX-#]J.[_’fu-f[?l‘x—/ﬂy-l-Zz] = E5.  If oy € § , then
we may assume that y=1 and Be&Z by Lemma 2.  Note that O(Eé)
contains the isometries "x > *x, y +>2/4A1y-5z, z+>33y-2/4Tz ", "x » #x,
y >3 (17-VIT) y43 (3-VIT) 2, z >4 (WET-13)y-3(17-VZT)z " and "x » £x,
y > 2(17+/TT)y-3 (3+/TT)z, y > $(13+7/FT)y-3(17+/ZT)z ".  Hence by
Lemmas 2 and 3 we have only to consider the following two cases:
(1) VETu=-~(-243vZT)x 3y +z and (i1) vZTu= (10264TT) %730y + z. In
the case of (i) we have Eg=[u,/ZTx, y13x J= L'v].LLV1,V2] = E4,
where | |

2v = (=19/4T)u - (93V/4T)ViTx + (55/47) (yx13x),

2uy = (11#/T)u + (1523/TT)VETx = (7/TT) (y£13x)
and vy = 2(224/2T)u + (£19+2/FT) V2T x - (+6+/IT) (y+13x) .
Then Q(v) =1. In the case of (ii) we have ey = Lu,/ATx, yx15x]=
Cvlalvl, vil= Eé, where |

2u' = (-9/4T)u -~ (=101 £11V/ET)VETx - (-33x7/47) (y%15x),
= (212/4T)u - (2361 1WVT)VETx + (21£15/47) (y+15x)

v

and 2v

= (25517 ) u - (273%191/FT)VITx + (501%11VZT) (y*15%) .

N~

Then Q(v') =1. Hence the class number of E3i is two,4and that of

E is also two, by Lemmas 7,8 and 9.

2
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