

Title	[a,b]-factorization of a graph
Author(s)	Kano, Mikio
Citation	大阪大学, 1984, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/27765
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

[a,b]-factorization of a graph

Mikio KANO

Department of Mathematics

Akashi Technological College

Uozumi, Akashi 674

Japan

现44 /3 孫 6554

Abstract

Let a and b be integers such that $0 \le a \le b$. Then a graph G is called an [a,b]-graph if $a \le d_G(x) \le b$ for every $x \in V(G)$, and an [a,b]-factor of a graph is defined to be its spanning subgraph F such that $a \le d_F(x) \le b$ for every vertex x, where $d_G(x)$ and $d_F(x)$ denote the degrees of x in G and F, respectively. If the edges of a graph can be decomposed into [a,b]-factors, then we say that the graph is [a,b]-factorable. We prove the following two theorems: (i) a graph G is [2a,2b]-factorable if and only if G is a [2am,2bm]-graph for some integer m, and (ii) every [8m+2k,10m+2k]-graph is [1,2]-factorable.

1. Introduction

We deal with finite graphs which may have multiple edges but have no loops. A graph without multiple edges is called a <u>simple</u> graph. All notation and definitions not given here can be found in [4].

Let G be a graph with vertex set V(G) and edge set E(G), and H be a subgraph of G. For a vertex x of H, we denote the degree of x in H by $d_H(x)$, in partucular, the degree of a vertex y of G is denoted by $d_G(y)$. Let a and b be integers such that $0 \le a \le b$. Then a graph G is called an [a,b]-graph if $a \le d_G(x) \le b$ for every $x \in V(G)$, and an [a,b]-subgraph can be defined similarly. A spanning [a,b]-subgraph is called an [a,b]-factor. Then, if F is an [a,b]-factor of a graph G, then $a \le d_F(x) \le b$ for all $x \in V(G)$.

If the edges of a graph G can be decomposed into [a,b]-factors F_1, \ldots, F_n of G, then the union $F_1 \cup \ldots \cup F_n$ is called an [a,b]-factorization of G and G itself is said to be [a,b]-factorable.

We usually call an [r,r]-graph an r-regular graph. Similarly, an [r,r]-factor, an [r,r]-factorization and an [r,r]-factorable graph are called an r-factor, an r-factorization and an r-factorable graph, respectively.

In 1891 Petersen [13],[4,Theorem 8.8] obtained the following theorem.

 $\underline{\text{Theorem 1.1}}$ A graph G is 2-factorable if and only if G is a 2m-regular graph for some positive integer m.

Recently, Akiyama [1] proved that every r-regular graph is [2,3]-factorable, where $r \ge 2$. This is the first contribution toward [a,b]-factorization with a
b. Era [6] proved that if $r \ge 2k^2$, then every r-regular simple graph is [k,k+1]-factorable. We now give our theorems.

Theorem 1.2 Let $0 \le a \le b$. Then a graph G is [2a,2b]-factorable if and only if G is a [2am,2bm]-graph for some positive integer m.

This thoerem is an extension of Theorem 1.1.

Theorem 1.3 Let $m\ge 1$ and $k\ge 0$. Then every [8m+2k,10m+2k]-graph is [1,2]-factorable.

As a corollary of this theorem, we can obtain the next result. Corollary 1.4 (1) If $r \ge 8m$, then every [r,r+2m-1]-graph is [1,2]-factorable.

(2) Every connected [r,r+1]-graph is [1,2]-factorable, where $r \ge 1$.

Note that a [2am,2bm]-graph can be decomposed into m [2a,2b]-factors, and a [8m+2k,10m+2k]-graph can be decompsed into 6m+k [1,2]-factors. But the number of [a,b]-factors in an [a,b]-factorization of a graph is not uniquely determined. For example, a 4m-regular graph can be decomposed into k [1,2]-factors for every k, $2m \le k \le 3m$ (see Theorem 1.1 and Lemma 4.1). It is clear that the union of an odd cycle and a cubic graph, which is a [2,3]-graph with two components,

is not [1,2]-factorable. So the connectivity of a graph in (2) of Corollary 1.4 is necessary. Moreover, we show that there exists a [6,8]-graph which is not [1,2]-factorable (Remark 4.3).

We next mention two factor theorems on which our proof will heavily depend. One is Lovász's (g,f)-factor theorem (see Lemma 2.2), which plays an important role throughout this article, and the other is Theorem 2.1, which is proved by making use of Lovász's (g,f)-factor theorem. By Theorem 2.1, not only can we prove many known theorems on r-factors due to Baebler, Gallai, Petersen and others, but also we can obtain some new results on [a,b]-factors, for instance, Theorem 1.2 is an easy consequence of it.

Let us finally note a survey article [2], in which many results related to our theorems can be found.

2. Factor theorem

We begin by introducing some new notation and definitions. For a finite set X, we denote by |X| the number of elements in X. Let G be a graph, and g and f be two integer-valued functions defined on V(G) such that $g(x) \le f(x)$ for every $x \in V(G)$. Then, a (g,f)-factor of G is a spanning subgraph F of G satisfying

 $g(x) \le d_F(x) \le f(x)$ for all $x \in V(G)$. For a subset S of V(G), we write G-S for the subgraph of G obtained from G by deleting the vertices in S togehter with their incident edges. If S and T are disjoint subsets of V(G), then e(S,T) denotes the number of edges of G joining S and T.

In this section we shall prove the following theorem and give some its corollaries.

Theorem 2.1 Let G be an n-edge-connected graph (n>1), θ be a real number such that $0 \le \theta \le 1$, and g and f be two integervalued functions defined on V(G) such that $g(x) \le f(x)$ for all $x \in V(G)$. If one of $\{(1a),(1b)\}$, (2) and one of $\{(3a),(3b),(3c),(3d),(3e),(3f)\}$ hold, then G has a (g,f)-factor.

- (1a) $g(x) \le \theta d_{G}(x) \le f(x)$ for all $x \in V(G)$.
- (1b) $\varepsilon = \sum_{\mathbf{x} \in V(G)} [\max\{0, g(\mathbf{x}) \theta d_{G}(\mathbf{x})\} + \max\{0, \theta d_{G}(\mathbf{x}) f(\mathbf{x})\}] < 1.$
- (2) G has at least one vertex v such that g(v) < f(v); or g(x) = f(x) for all $x \in V(G)$ and $\sum_{x \in V(G)} f(x) \equiv 0 \pmod{2}$.
 - (3a) $n\theta \ge 1$ and $n(1-\theta) \ge 1$.
- (3b) $\{d_{G}(x) \mid g(x)=f(x), x \in V(G)\}$ and $\{f(x) \mid g(x)=f(x), x \in V(G)\}$ both consist of even numbers.
- (3c) $\{d_{G}(x) \mid g(x)=f(x), x \in V(G)\}$ consists of even numbers, n is odd, $(n+1)\theta \ge 1$ and $(n+1)(1-\theta) \ge 1$.
- (3d) {f(x) | g(x)=f(x), x \in V(G)} consists of even numbers and m(1- θ) \geq 1, where m \in {n,n+1} and m=1 (mod 2).
 - (3e) $\{d_{G}(x) \mid g(x)=f(x), x \in V(G)\}\$ and $\{f(x) \mid g(x)=f(x), x \in V(G)\}\$

both consist of odd numbers and $m\theta \ge 1$, where $m \in \{n, n+1\}$ and $m \equiv 1 \pmod 2$. (3f) g(x) < f(x) for every $x \in V(G)$ (see [8]).

Note that similar necessary conditions for a graph to have a (g,f)-factor which contains p given edges but has no q given edges are obtained in [9]. In order to prove the above theorem we need the next (g,f)-factor theorem due to Lovász, to which Tutte [16] gave a short proof.

Lemma 2.2 (Lovász [12], [16, Theorem 7.2]) Let G be a graph and g and f be integer-valued functions defined on V(G) such that $g(x) \le f(x)$ for all $x \in V(G)$. Then G has a (g,f)-factor if and only if

$$\delta(S,T) = \sum_{t \in T} \{d_{G}(t) - g(t)\} + \sum_{s \in S} f(s) - e(S,T) - h(S,T) \ge 0$$
 (2.1)

for all disjoint subsets S and T of V(G), where h(S,T) denotes the number of components C of G-(SUT) such that g(x)=f(x) for all $x \in V(C)$ and $e(T,V(C))+\sum_{x \in V(G)} f(x) \equiv 1 \pmod{2}$.

Note that the condition $0 \le g(x) \le f(x) \le d_{G}(x)$ in [12] and [16] can be replaced by $g(x) \le f(x)$ as above ([10],[15]).

Proof of Theorem 2.1 We shall prove that two functions g and f in Theorem 2.1 satisfy the condition (2.1) in Lemma 2.2. It is obvious that (1a) implies (1b). Hence we may assume (1b) holds. Let S, $T \subset V(G)$ such that $S \cap T = \phi$. Assume first $S \cup T \neq \phi$. Let

 $\{C_1,\ldots,C_r\}$ be the set of components of $G-(S\cup T)$ which satisfy the conditions on h(S,T), where r=h(S,T). By (1b) of Theorem 2.1, we have

$$\delta(S,T) \geq (1-\theta) \sum_{t \in T} d_{G}(t) + \theta \sum_{s \in S} d_{G}(s) - \sum_{t \in T} \max\{0, g(t) - \theta d_{G}(t)\}$$

$$- \sum_{s \in S} \max\{0, \theta d_{G}(s) - f(s)\} - e(S,T) - r \qquad (2.2)$$

$$\geq (1-\theta)\{e(T,S) + \sum_{i=1}^{r} e(T,V(C_{i}))\} + \theta\{e(S,T) + \sum_{i=1}^{r} e(S,V(C_{i}))\}$$

$$- \varepsilon - e(S,T) - r$$

$$= \sum_{i} \{(1-\theta)e(T,V(C_{i})) + \theta e(S,V(C_{i})) - 1\} - \varepsilon. \qquad (2.3)$$

Since $\delta(S,T)$ is an integer and $\varepsilon<1$, it suffices to show that $\delta(S,T)\geq -\varepsilon$.

If (3f) holds, then r=0 and so $\delta(S,T) \ge -\varepsilon$. Hence we may assume that G satisfies (2) and one of $\{(3a),(3b),(3c),(3d),(3e)\}$. Take any $C \in \{C_1,\ldots,C_r\}$, and put

$$\Delta(C) = (1-\theta)e(T,V(C)) + \theta e(S,V(C)) -1.$$

We prove that $\Delta(C) \ge 0$. If $\{f(x) \mid g(x) = f(x), x \in V(G)\}$ consists of even numbers, then

$$1 \equiv e(T,V(C)) + \sum_{x \in V(C)} f(x) \equiv e(T,V(C)) \pmod{2},$$

in particular, $e(T,V(C)) \ge 1$. Similarly, if $\{f(x) \mid g(x) = f(x), x \in V(G)\}$ consists of odd numbers, then we have $1 \equiv e(T,V(C)) + |V(C)| \pmod 2$. Suppose $\{d_G(x) \mid g(x) = f(x), x \in V(G)\}$ consists of even numbers. Then $0 \equiv \sum_{x \in V(C)} d_G(x) = 2|E(C)| + e(V(C),S \cup T)$

$$\equiv e(SUT,V(C)) \pmod{2}$$
 (2.4)

Thus $e(SuT,V(C))\equiv 0 \pmod 2$. If $\{d_G(x)\mid g(x)=f(x), x\in V(G)\}$ consists of odd numbers, then we have $|V(C)|\equiv e(SuT,V(C)) \pmod 2$. We consider three cases.

<u>Case 1.</u> $e(T,V(C))\geq 1$ and $e(S,V(C))\geq 1$. It follows immediately from $0\leq 0\leq 1$ that $\Delta(C)\geq 0$.

<u>Case 2.</u> e(T,V(C))=0. We first note that $e(S,V(C))=e(S\cup T,V(C))$ ≥n since G is n-edge-connected. By the fact mentioned above, $\{f(x) \mid g(x)=f(x), x \in V(G)\}$ is not a set of even numbers, and so neither (3b) nor (3d) occurs. If G satisfies (3a), then $\Delta(C) \geq \theta n-1 \geq 0$ as $e(S,V(C)) \geq n$. Suppose G satisfies (3c). Then we have $e(S,V(C)) \geq n+1$. Hence $\Delta(C) \geq \theta(n+1)-1 \geq 0$. We finally assume that G satisfies (3e). Then it follows from the fact mentioned above that $1 \equiv e(S,V(C))$ (mod 2). If n is odd, then m=n and so $\Delta(C) \geq \theta n-1 = \theta m-1 \geq 0$. If n is even, then $e(S,V(C)) \geq n+1$ and m=n+1. Hence $\Delta(C) \geq \theta(n+1)-1 = \theta m-1 \geq 0$.

Case 3. e(S,V(C))=0. Note that $e(T,V(C))=e(S\cup T,V(C))\geq n$. If G satisfies (3a), then $\Delta(C)\geq (1-\theta)n-1\geq 0$. If $\{d_G(x)\mid g(x)=f(x), x\in V(G)\}$ consists of even numbers, then $e(T,V(C))\equiv 0\pmod 2$. On the other hand, if $\{f(x)\mid g(x)=f(x), x\in V(G)\}$ consists of even numbers, then $e(T,V(C))\equiv 1\pmod 2$. Hence (3b) does not occur. If (3c) holds, then $e(T,V(C))\geq n+1$ and so $\Delta(C)\geq (1-\theta)(n+1)-1\geq 0$. Suppose G satisfies (3d). It is easy to show that we may assume G is even. Since $e(T,V(C))\equiv 1\pmod 2$, we have $e(T,V(C))\geq n+1$, and thus $\Delta(C)\geq (1-\theta)(n+1)-1=(1-\theta)m-1\geq 0$. Finally we suppose that

G satisfies (3e). Then $1\equiv e(T,V(C))+|V(C)|\pmod 2$ and |V(C)| $\equiv e(T,V(C))\pmod 2$, a contradiction. Therefore, (3e) does not occur.

Let $S=T=\phi$ and assume $\delta(\phi,\phi)<0$. Then $h(\phi,\phi)>0$. Since G is connected, it follows from Lemma 2.2 that g(x)=f(x) for all $x\in V(G)$ and $\sum f(x)\equiv 1\pmod 2$, which contradicts (2). Therefore $\delta(\phi,\phi)=0$. Consequently, the proof of the theorem is complete.

We now give some results on factors which can be obtained by Theorem 2.1.

Corollary 2.3 Let $2 \le b$ and $1 \le a \le b \le 2a$. Then every 2-edge-connected [a,b]-graph G has a [1,2]-factor F such that $d_F(x)=2$ if $d_G(x)=b$. In particular, every 2-edge-connected r-regular graph has a 2-factor, where $r \ge 2$ (Baebler [3]).

<u>Proof</u> We may assume $b \ge 3$. Put $\theta = 2/b$ and define two functions g and f on V(G) by

$$g(x) = \begin{cases} 2 & \text{if } d_G(x) = b \\ 1 & \text{otherwise,} \end{cases}$$
 and $f(x) = 2$ for all $x \in V(G)$.

Then θ , g, f and n=2 satisfy (1a), (2) and (3d) of Theorem 2.1. Hence G has a (g,f)-factor, which is a desired [1,2]-factor.

Corollary 2.4 Let G be a (r-1)-edge-connected [r,2r]-graph with at least one vertex of degree greater than r, where r \geq 1. Then G has a [1,2]-factor F such that $d_F(x)=1$ if $d_G(x)=r$.

<u>Proof</u> Set $\theta=1/r$, and define two functions g and f on

V(G) as follows:

g(x)=1 for all $x \in V(G)$, and $f(x) =\begin{cases} 1 & \text{if } d_G(x)=r, \\ 2 & \text{otherwise.} \end{cases}$

Then θ , g, f and n=r-l satisfy (la), (2) and (3c) or (3e) of Theorem 2.1 according as the parity of r. Hence G has a (g,f)-factor, which is a desired [1,2]-factor.

<u>Proposition 2.5</u> ((1): Petersen [13](r=3) and Baebler [3](r \geq 4); and (2): Little, Grant and Holton [11]) Let G be an (r-1)-edge-connected r-regular graph. Then

- (1) if G has an even number of vertices, then G has a 1-factor; and
- (2) if G has an odd number of vertices, then G-v has a 1-factor for any vertex v of G.

Proof We prove only (2) since (1) can be proved similarly. Put $\theta=1/r$, and define two functions g and f on V(G) as g(x)=f(x)=1 for all $x\in V(G)\setminus \{v\}$, g(v)=0 and f(v)=1, where v is a given vertex of G. Then θ , g, f and n=r-1 satisfy (1a), (2) and (3c) or (3e) of Theorem 2.1. Therefore, G has a (g,f)-factor F. We can easily see that $d_F(v)=0$. Hence (2) follows.

<u>Proposition 2.6</u> ((1),(2):Gallai [7]; and (3): Bollobas, Saito and Wormald [5]) The following statements hold.

(1) An n-edge-connected 2r-regular graph with an even number of vertices has a (2k+1)-factor for every 2k+1, $2r/n \le 2k+1 \le 2r(n-1)/n$.

- (2) An n-edge-connected (2r+1)-regular graph G has a 2k-factor for every 2k, $0\le 2k\le (2r+1)(n-1)/n$. In particular, G has a (2m+1)-factor for every 2m+1, $(2r+1)/n\le 2m+1\le 2r+1$.
- (3) A 2n-edge-connected (2r+1)-regular graph G has a 2k-factor for every 2k, $0 \le 2k \le (2r+1)(2n)/(2n+1)$. In particular, G has a (2m+1)-factor for every 2m+1, $(2r+1)/(2n+1) \le 2m+1 \le 2r+1$.

Proof We prove only (3) since (1) and (2) can be proved similarly. Set $\theta=2k/(2r+1)$, and define two functions g and f on V(G) by g(x)=f(x)=2k for all $x\in V(G)$. Then θ , g, f and 2n satisfy (1a), (2) and (3d) of Theorem 2.1. Therefore G has a (g,f)-factor, which is a 2k-factor of G. Let F be a 2k-factor of G. Then G-E(F) is a (2r+1-2k)-factor of G, and so G has a (2m+1)-factor for every 2m+1, $(2r+1)/(2n+1) \le 2m+1 \le 2r+1$. Note that the latter can be proved independently by using (3e) of Theorem 2.1.

3. Proof of Theorem 1.2

We shall prove Theorem 1.2 by using Theorem 2.1.

Proof of Theorem 1.2 Let G be a [2a,2b]-factorable graph.

Then G can be decomposed into m [2a,2b]-factors for some positive integer m. It is clear that G is a [2am,2bm]-graph.

Conversely, suppose that G is a [2am,2bm]-graph. We prove that G can be decomposed into m [2a,2b]-factors by induction on m. Without loss of generality, we may assume G is connected. Put θ =1/m, and define two functions g and f on V(G) as follows:

f(x)=f(x)=2a if $d_G(x)=2am$,

$$\begin{split} &g(x) \leq \theta d_G(x) \leq f(x) \quad \text{with} \quad f(x) - g(x) = 1 \quad \text{if} \quad 2 \text{am} < d_G(x) < 2 \text{bm}, \text{ and} \\ &g(x) = f(x) = 2 \text{b} \quad \text{if} \quad d_G(x) = 2 \text{bm}. \end{split}$$

Then, θ , g, f and n=1 satisfy (la), (2) and (3b) of Theorem 2.1. Therefore, G has a (g,f)-factor F. For any vertex x of G with $2am < d_G(x) < 2bm$, we have

 $2a < \theta d_G(x) < 2b$ and $2a(m-1) < (1-\theta) d_G(x) < 2b(m-1)$.

Hence F is a [2a,2b]-factor, and G-E(F) is a [2a(m-1),2b(m-1)]-factor. Consequently, the theorem follows by induction.

4. Proof of Theorem 1.3

In this section we shall prove the following four statements:

(i) every [8m+2k,10m+2k]-graph is [1,2]-factorable (Theorem 1.3),

(ii) if r≥8m, then every [r,r+2m-1]-graph is [1,2]-factorable

(Corollary 1.4), (iii) every connected [r,r+1]-graph is [1,2]
factorable (Corollary 1.4), and (iv) there exists a [6,8]-graph which

is not [1,2]-factorable (Remark 4.3).

We first prove Theorem 1.3 under the assumption that the following lemma holds.

Lemma 4.1 Let G be a [4,6]-graph with at most one vertex of degree 6. Then G can be decomposed into three [1,2]-factors.

We begin with the next lemma.

Lemma 4.2 Every [8,10]-graph can be decomposed into six [1,2]-factors.

<u>Proof</u> Let G be a [8,10]-graph. Without loss of generality, we may assume G is connected. If G has vertices of degree 10, then choose any vertex w of degree 10. Set $\theta=1/2$, and define two functions g and f on V(G) by

$$g(x) = \begin{cases} 4 & \text{if } 8 \le d_{G}(x) \le 9 \\ 5 & \text{otherwise,} \end{cases} \quad \text{and} \quad f(x) = \begin{cases} 4 & \text{if } d_{G}(x) = 8 \\ 5 & \text{if } 9 \le d_{G}(x) \le 10 \text{ and } x \ne w \\ 6 & \text{if } x = w. \end{cases}$$

Then θ , g, f and n=1 satisfy (1a), (2) and (3c) of Theorem 2.1. Hence G has a (g,f)-factor F. It follows that F is a [4,6]-graph with at most one vertex of degree 6 and G-E(F) is a [4,5]-graph, and we conclude by Lemma 4.1 that G can be decomposed into six [1,2]-factors.

Proof of Theorem 1.3 It follows from Theorem 1.1 and Lemma 4.2 that every [8m,10m]-graph can be decomposed into 6m [1,2]-factors. We now prove by induction on k that every [8m+2k,10m+2k]-graph can be decomposed into 6m+k [1,2]-factors. Let G be a

[8m+2k,10m+2k]-graph with m≥1 and k≥1. We may assume G is connected. Put $\theta=2/(10m+2k)$ and define two functions g and f on V(G) by

$$g(x) = \begin{cases} 2 & \text{if } d_G(x) = 10m + 2k \\ & \text{and } f(x) = 2 \text{ for all } x \in V(G). \end{cases}$$

Then θ , g, f and n=1 satisfy (1a), (2) and (3b) of Theorem 2.1. Hence G has a (g,f)-factor F, which is a [1,2]-factor. Since G-E(F) is a [8m+2(k-1),10m+2(k-1)]-graph, we conclude by the induction hypothesis that G is decomposed into 6m+k [1,2]-factors.

Proof of Corollary 1.4 We first prove (1). Let H be an [r,r+2m-1]-graph with $r\geq 8m$. Then there exist integers k and t such that r=8m+2k+t, $0\leq k$ and $0\leq t\leq 1$. It is immediate that $8m+2k\leq r$ and $r+2m-1\leq 10m+2k$. Hence F is a [8m+2k,10m+2k]-graph, and so H is [1,2]-factorable by Theorem 1.3.

We next prove (2). We first show that every [2k-1,2k]-graph is [1,2]-factorable. Let G be a [2k-1,2k]-graph. Then it follows from Theorem 2.1 that G has a [1,2]-factor F such that $d_F(x)=2$ if $d_G(x)=2k$ (see Proof of Theorem 1.3). Since G-E(F) is a [2k-3,2k-2]-graph, we have by induction that G is [1,2]-factorable. By the statement (1) and the result given above, it suffices to show that if r=2, 4 or 6, then a connected [r,r+1]-graph is [1,2]-factorable. It follows from Lemma 4.5, which will given later, that every connected [2,3]-graph is [1,2]-factorable. By Lemma 4.1, every [4,5]-graph is [1,2]-factorable. Hence we may restrict ourselves to the case of r=6.

Let H be a connected [6,7]-graph. Since a 6-regular graph is 2-factorable, we may assume that H has at least one vertex of degree 7. We show that H can be decomposed into two [3,4]-factors, which implies that H can be decomposed into four [1,2]-factors. Put θ =1/2 and define two functions g and f on V(H) by

$$g(x)=3$$
 for all $x \in V(H)$, and $f(x)=\begin{cases} 3 & \text{if } d_H(x)=6\\ 4 & \text{otherwise.} \end{cases}$

Then θ , g, f and n=1 satisfy (1a), (2) and (3c) of Theorem 2.1. Hence H has a (g,f)-factor F'. It is clear that both F' and H-E(F') are [3,4]-factors of H. Therefore H is [1,2]-factorable.

It is convenient to introduce a new definiton. For a set {a,b, c,...} of integers, a graph G is called an {a,b,c,...}-graph if $d_G(x) \in \{a,b,c,...\}$ for every $x \in V(G)$. The <u>union</u> of graphs H and K is a graph G such that $V(G) = V(H) \cup V(K)$ and $E(G) = E(H) \cup E(K)$.

Remark 4.3 The following three statements hold:

- (1) A connected {6,8}-graph having exactly one vertex of degree6 cannot be decomposed into four [1,2]-factors.
- (2) The 6-regular graph with three vertices, in which every pair of vertices are joined by exactly three multiple edges, cannot be decomposed into five or more [1,2]-factors.
- (3) The union of a connected {6,8}-graph with one vertex of degree 6 and the 6-regular graph given in (2) is not [1,2]-factorable.

Proof We first prove (1). Suppose that a connected {6,8}-

graph G with one vertex v of degree 6 has a [1,2]-factorization $F_1 \cup F_2 \cup F_3 \cup F_4$. Then it follows for some F_i that $d_{F_i}(v)=1$ and $d_{F_i}(x)=1$ if $x\neq v$, a contradiction. Statement (2) is immediate. Statement (3) is an easy consequence of (1) and (2).

In order to prove Lemma 4.1, we shall give some lemmas.

Lemma 4.4 Every [0,4]-graph can be decomposed into two [0,2]-factors.

<u>Proof</u> Let G be a connected [0,4]-graph. Then G is a [1,4]-graph. We define $\theta=1/2$ and two functions g and f on V(G) by

$$g(x) = \begin{cases} 0 & \text{if } d_{G}(x)=1\\ 1 & \text{if } 2 \le d_{G}(x) \le 3\\ 2 & \text{if } d_{G}(x)=4, \end{cases} \quad \text{and} \quad f(x) = \begin{cases} 1 & \text{if } d_{G}(x)=1\\ 2 & \text{otherwise.} \end{cases}$$

Then θ , g, f and n=1 satisfy (1a), (2) and (3b) of Theorem 2.1. Hence G has a (g,f)-factor F, and thus the lemma holds since F and G-E(F) are both [0,2]-factors of G.

Lemma 4.5 Let G be a connected [2,4]-graph with at least one vertex of degree 3. Then G can be decomposed into two [1,2]-factors.

 \underline{Proof} Set $\theta=1/2$, and define two functions g and f on V(G) by

$$g(x) = \begin{cases} 1 & \text{if } 2 \le d_G(x) \le 3 \\ 2 & \text{otherwise.} \end{cases} \quad \text{and} \quad f(x) = \begin{cases} 1 & \text{if } d_G(x) = 2 \\ 2 & \text{otherwise.} \end{cases}$$

Then θ , g, f and n=1 satisfy (1a), (2) and (3c) of Theorem 2.1. Hence G has a (g,f)-factor F, and thus G is decomposed into two [1,2]-factors F and G-E(F).

The following lemma, which is a special case of Lemma 4.9, shows that Lemma 4.1 holds if the graph is 3-edge-connected. Recall that an $\{a,b,c,\ldots\}$ -graph satisfies $d_{\mathcal{C}}(x)\in\{a,b,c,\ldots\}$ for all $x\in V(G)$.

Lemma 4.6 Let G be a 3-edge-connected [3,6]-graph with at most one vertex of degree 6. Then G has a [0,2]-factorization $F_1 \cup F_2 \cup F_3$ such that if $d_G(x) \ge 4$, then $d_{F_i}(x) \ge 1$ for every F_i .

Proof We first assume that G has at least one vertex of degree 3 or 5, or G is a $\{4,6\}$ -graph with an even number of vertices of degree 4. Let $\theta=1/4$ and define two functions g_1 and f_1 on V(G) by

$$\mathbf{g}_{1}(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{d}_{G}(\mathbf{x}) = 3 \\ 1 & \text{if } 4 \leq \mathbf{d}_{G}(\mathbf{x}) \leq 5 \end{cases} \quad \text{and } \mathbf{f}_{1}(\mathbf{x}) = \begin{cases} 1 & \text{if } 3 \leq \mathbf{d}_{G}(\mathbf{x}) \leq 4 \\ 2 & \text{otherwise.} \end{cases}$$

Then θ , g_1 , f_1 and n=3 satisfy (1b; $\epsilon=0$ or 1/2), (2) and (3c) of Theorem 2.1. Hence G has a (g_1,f_1) -factor F_1 . It is obvious that $G-E(F_1)$ is a [2,4]-graph with the property that each vertex of degree 2 in $G-E(F_1)$ has degree 3 in G. By Lemma 4.4, $G-E(F_1)$ is decomposed into two [0,2]-factors F_2 and F_3 . Consequently, G is decomposed

into three [0,2]-factors F_1 , F_2 and F_3 , which possess the desired property.

We next assume that G is a {4,6}-graph with an odd number of vertices of degree 4. It suffices to show that G can be decomposed into three [1,2]-factors. Suppose G is a 4-regular graph. Then it follows from Proposition 2.5 that G-v has a 1-factor L_1 for a vertex v of G. Let F_1 be the [1,2]-factor of G obtained from L_1 by adding an edge of $G-E(L_1)$ incident with v. Since $H_1=G-E(F_1)$ is a [2,3]-graph having exactly one vertex of degree 2, we have by Lemma 4.5 that H_1 can be decomposed into two [1,2]-factors F_2 and F_3 . Therefore, we obtain a required [1,2]-factorization $F_1 \cup F_2 \cup F_3$ of G. Consequently, we may assume that G has exactly one vertex w of degree 6. Set $\theta=1/4$ and define two functions g_2 and f_2 on V(G) by $g_2(x)=f_2(x)=1$ for all $x \in V(G)$.

Then θ , g_2 , f_2 and n=3 satisfy (1b; $\varepsilon=1/2$), (2) and (3c) of Theorem 2.1. Thus G has a (g_2,f_2) -factor L_2 . Let F_1 be the [1,2]-factor of G obtained from L_2 by adding an edge of $G-E(L_2)$ incident with w. Since $H_2=G-E(F_1)$ is a [2,4]-graph having exactly one vertex of degree 4 and one vertex of degree 2, it follows from Lemma 4.5 that H_2 can be decomposed into two [1,2]-factors F_2 and F_3 . Therefore we obtain a desired [1,2]-factorization $F_1 \cup F_2 \cup F_3$ of G.

We denote by xy or yx an edge joining two vertices x and y. Let G be a graph and v and w be two distinct vertices of G.

Then G+vw denotes the graph obtained from G by adding a new edge vw to G, where G may have edges joining v and w. The following Lemmas 4.7 and 4.8 will be used in the proof of Lemma 4.9.

Lemma 4.7 Let G be a connected [2,6]-graph which has exactly one vertex w of degree 2 and at most one vertex of degree 6. Suppose that two distinct vertices \mathbf{u}_1 and \mathbf{u}_2 are adjacent to w and \mathbf{G} -w+ $\mathbf{u}_1\mathbf{u}_2$ is a 3-edge-connected graph. Then G has a [0,2]-factorization $\mathbf{F}_1\cup\mathbf{F}_2\cup\mathbf{F}_3$ with the property that if $\mathbf{d}_{\mathbf{G}}(\mathbf{x})\geq 4$, then $\mathbf{d}_{\mathbf{F}_1}(\mathbf{x})\geq 1$ for every \mathbf{F}_1 and $\mathbf{d}_{\mathbf{F}_1}(\mathbf{w})\leq 1$ for every \mathbf{F}_1 .

 \underline{Proof} Let us defint two functions g and f on V(G) by

$$g(x) = \begin{cases} 0 & \text{if } 2 \le d_G(x) \le 3 \\ 1 & \text{if } 4 \le d_G(x) \le 5 \end{cases} \quad \text{and } f(x) = \begin{cases} 1 & \text{if } 2 \le d_G(x) \le 4 \\ 2 & \text{otherwise.} \end{cases}$$

We shall show that G has a (g,f)-factor by Lemma 2.2. We denote the vertex of degree 6, if any, by v. Let S, $T \subset V(G)$ such that $S \cap T = \emptyset$ and $S \cup T \neq \emptyset$. We write $\{C_1, \ldots, C_r\}$ for the set of components of $G - (S \cup T)$ which satisfy the conditions on h(S,T) in Lemma 2.2, where r = h(S,T). Then each C_i does not contain w, and so $e(S \cup T, V(C_i)) \ge 3$. Moreover, we have $e(S \cup T, V(C_i)) \ge 4$ since $e(S \cup T, V(C_i)) \equiv 0 \pmod{2}$ (see (2.4) in the proof of Theorem 2.1). We obtain the following inequality by setting $\theta = 1/4$ in (2.3) in the proof of Theorem 2.1 (Note that (2.3) holds for every graph.).

$$\delta(S,T) \ge \sum_{i=1}^{r} \left\{ \frac{3}{4} e(T,V(C_i)) + \frac{1}{4} e(S,V(C_i)) - 1 \right\} - \epsilon,$$

where $\varepsilon=0$ or 1/2 according as $v\notin V(G)$ or $v\in V(G)$. Then $\delta(S,T) \geq \sum_{\mathbf{i}} \left\{ \frac{1}{4} \ e(S\cup T,V(C_{\mathbf{i}})) -1 \right\} - \varepsilon \geq -\varepsilon > -1.$

Since $\delta(S,T)$ is an integer, we conclude that $\delta(S,T) \ge 0$. It is clear that $\delta(\phi,\phi)=0$ as g(w)< f(w). Consequently, G has a (g,f)-factor F. Put H=G-E(F). We consider two cases.

Case 1. $d_F(w)=1$. By Lemma 4.4, H can be decomposed into two [0,2]-factors F_2 and F_3 , and it is easy to see that $(F_1=F)\cup F_2\cup F_3$ is a [0,2]-factorization of G with the required property.

Case 2. $d_F(w)=0$. In this case H is a [2,4]-graph. Let C be any component of H. If C does not contain w, then we decompose C into two [0,2]-factors. Suppose C contains w. Then C contains u_1 and u_2 . If $d_C(u_1)=d_G(u_2)=4$, then we may assume $d_G(u_1)=5$, and so $F+wu_1$, where $wu_1\in E(C)$, is also a (g,f)-factor of G. Hence Case 1 occurs, and thus we may assume $d_C(u_1)\le 3$ or $d_C(u_2)\le 3$. Set $\theta=1/2$ and define two functions g_1 and g_1 on g_2 0 by

$$g_1(x) = \begin{cases} 1 & \text{if } d_C(x) \le 3 \\ 2 & \text{otherwise,} \end{cases} \quad \text{and} \quad f_1(x) = \begin{cases} 1 & \text{if } x = w \\ 2 & \text{otherwise.} \end{cases}$$

Then θ , g_1 , f_1 and n=1 satisfy (1a), (2) (since $g_1(u_1) < f_1(u_1)$ or $g_1(u_2) < f_1(u_2)$.) and (3c) of Theorem 2.1. Hence C has a (g_1, f_1) -factor, and thus C is decomposed into two [1,2]-factors, in each factor of which the degree of w is 1. Therefore, G can be decomposed into three [0,2]-factors with the required property.

Lemma 4.8 Let G be a 3-edge-connected [3,5]-graph having a vertex w of degree 3. Then G has a [0,2]-factorization $F_1 \cup F_2 \cup F_3$ with the property that if $d_G(x) \ge 4$, then $d_{F_i}(x) \ge 1$ for every F_i and that $d_{F_i}(w) = 0$ for some F_i .

<u>Proof</u> Let g and f be functions on V(G) defined by

$$g(x) = \begin{cases} 0 & \text{if } d_G(x) = 3 \\ 1 & \text{otherwise,} \end{cases} \quad \text{and} \quad f(x) = \begin{cases} 0 & \text{if } x = w \\ 1 & \text{if } 3 \le d_G(x) \le 4 \text{ and } x \ne w \\ 2 & \text{otherwise.} \end{cases}$$

We shall show that G has a (g,f)-factor. Let S, T \subset V(G) such that $S\cap T=\phi$ and $S\cup T\neq \phi$, and let $\{C_1,\ldots,C_r\}$ be the components of G-(S \cup T) which satisfy the conditions on h(S,T), where r=h(S,T). Then we have the following inequality by setting $\theta=1/4$ in (2.2).

$$\delta(S,T) \ge (1-\frac{1}{4}) \sum_{t \in T} d_{G}(t) + \frac{1}{4} \sum_{s \in S} d_{G}(s) - \varepsilon - e(S,T) - r,$$

where $\varepsilon=0$ or 3/4 according as $w\notin S$ or $w\in S$. Hence

$$\delta(S,T) \ge \sum_{i=1}^{r} \{ \frac{3}{4} e(T,V(C_{i})) + \frac{1}{4} e(S,V(C_{i})) -1 \} - \epsilon$$

$$\ge \sum_{i} \{ \frac{1}{4} e(T \cup S,V(C_{i})) - 1 \} - \epsilon.$$

If C_i does not contain w, then $e(T \cup S, V(C_i)) \equiv 0 \pmod{2}$ (see (2.4)), and so $e(T \cup S, V(C_i)) \geq 4$. Therefore

$$\frac{1}{4} e(T \cup S, V(C_i)) - 1 \ge 0.$$

If C contains w, then $\varepsilon=0$ and $e(T\cup S,V(C_i))\geq 3$, and so $\frac{1}{4}\ e(T\cup S,V(C_i))\ -1\ \geq\ -\frac{1}{4}\ .$

Consequently, we obtain $\delta(S,T) \ge -3/4$, which implies $\delta(S,T) \ge 0$.

Furthermore, we can show that $\delta(\phi,\phi)=0$ by the fact that G has at least one vertex x with odd degree except w, for which g(x)< f(x). Consequently, G has a (g,f)-factor F_1 . By Lemma 4.4, G-E(F_1) can be decomposed into two [0,2]-factors F_2 and F_3 . Therefore we obtain a desired [0,2]-factorization $F_1 \cup F_2 \cup F_3$ of G.

We need some notation and definitions in order to prove Lemma 4.1. A graph having exactly two vertices and one or more edges is called a $\underline{\text{bond}}$, and we denote the bond with n edges by B_n (Fig. 1). Let v be a vertex of a graph G and w be a vertex of the bond B_n . Then $G+vw+B_n$ denotes the graph obtained from G and B_n by joining v and w by a new edge vw (Fig. 2).

We shall prove the next lemma instead of Lemma 4.1, which includes Lemma 4.1 as a special case.

Figure 1. The bond B₄. Figure 2. G+vw+B₃.

Lemma 4.9 Let G be a connected [3,6]-graph with at most one vertex of degree 6. Then G has a [0,2]-factorization $F_1 \cup F_2 \cup F_3$ with the property that

if
$$d_{G}(x) \ge 4$$
, then $d_{F_{i}}(x) \ge 1$ for every F_{i} . (4.1)

<u>Proof</u> We prove the lemma by induction on the number of vertices of a graph. Let G be a connected [3,6]-graph with at most one vertex of degree 6. By Lemma 4.6, we may assume that G is not 3-edge-connected.

Figure 3. G and H+vu+B3.

Figure 4. G and H-v+xy.

|V(G)|=2 or 3, then G must be 3-edge-connected, which is contrary to the assumption. Hence we may assume $|V(G)| \ge 4$.

First suppose that G is not 2-edge-connected. Then G has a bridge e=vw, where $e \in E(G)$ and v, $w \in V(G)$ (Fig. 3). Let H and K be the components of G-e such that $v \in V(H)$ and $w \in V(K)$ (Fig. 3). If $|V(H)| \ge 3$ and $|V(K)| \ge 3$, then $H' = H + vu + B_3$ and $K' = K + wu + B_3$ are both [3,6]-graphs, where u is a vertex of B_3 (Fig. 3). By the induction hypothesis, H' and K' can be decomposed into three [0,2]-factors with the property (4.1), respectively. It is easy to obtain a desired [0,2]-factorization of G from them. Therefore, we may assume |V(K)|=2. Then K is B_3 , B_4 or B_5 .

If $d_{H}(v) \ge 3$, then H has a [0,2]-factorization with the property (4.1) by induction, and it is easy to obtain a desired [0,2]-factorization of G from it. Hence we may assume $d_{\mu}(v)=2$. If two distinct vertices x and y of H are adjacent to v, then H-v+xy can be decomposed into three [0,2]-factors with the property (4.1) by induction (Fig. 4). So we can obtain a desired [0,2]-factorization of G from it. We next suppose that one vertex x and v are joined by two edges in H (Fig. 5). Let $H+B_3$ be the graph obtained from H by identifying

v and one of the vertices of B_3 (Fig. 5). Then, by the induction hypothesis, $H+B_3$ has a [0,2]-factorization with the property (4.1), and it is immediate to obtain a desired [0,2]-factorization of G from it. Consequently, the proof is complete if G is not 2-edge-connected.

We now deal with the case that G is 2-edge-connected. Since G is not 3-edge-connected, G has a <u>cutset</u> (i.e. a minimal cut) with two edges. We consider three cases.

Case 1. G has a cutset $\{e_1, e_2\}$ such that the ends of e_1 and those of e_2 are all distinct, where $e_1, e_2 \in E(G)$.

Let H and K be the components of $G-\{e_1,e_2\}$, and let $e_1=u_1w_1$ and $e_2=u_2w_2$, where $u_1,u_2\in V(H)$, $u_1\neq u_2$, $w_1,w_2\in V(K)$ and $w_1\neq w_2$. Then $H+u_1u_2$ and $K+w_1w_2$ have [0,2]-factorization with property (4.1) by induction. It is easy to obtain a desired [0,2]-factorization of G from them.

Case 2. G has a cutset $\{e_1, e_2\}$ such that the ends of e_1 and those of e_2 are the same (Fig. 6).

Let H be an arbitrary component of $G-\{e_1,e_2\}$, and v be the end of e_1 and e_2 contained in H (Fig. 6). We shall show that H has a [0,2]-factorization $F_1 \cup F_2 \cup F_3$ with the property that

 e_1 and e_2 together with their common end not contained in H. If this statement follows, then we can easily obtain a [0,2]-factorization of G with the property (4.1) from a [0,2]-factorization with the property (4.2) of each component of $G-\{e_1,e_2\}$. We now prove the statement.

If $d_G(v) \ge 5$, then $d_H(v) \ge 3$ and so H has a [0,2]-factorization $\mathbb{F}_1 \cup \mathbb{F}_2 \cup \mathbb{F}_3$ with the property (4.1) by induction. Since we may assume $d_{\mathbb{F}_1}(v) \le 1$ and $d_{\mathbb{F}_2}(v) \le 1$, these factors satisfy the required condition (4.2). If $d_G(v) = 3$, then G has a bridge, and so Case 1 occurs. Hence we may assume $d_G(v) = 4$, and thus $d_H(v) = 2$. If two distinct vertices x and y of H are adjacent to v, then H-v+xy can be decomposed into three [0,2]-factors with the property (4.1) by induction. It is easy to obtain a desired [0,2]-factorization of H from them. We next assume that one vertex x of H and v are joined by two edges (Fig. 7). Let H+B_3 be the graph obtained from H and B_3 by identifying v and a vertex of B_3 (Fig. 7). Then H+B_3 has a [0,2]-factorization with the property (4.1) by induction, and so we can obtain a desired [0,2]-factorization of H from it. Consequently, each component of G- $\{e_1,e_2\}$ has a [0,2]-factorization satisfying the conditions (4.2), and we conclude that the proof of Case 2 is complete.

Figure 7. G and H+B3.

Case 3. For every cutset $\{e_1, e_2\}$ of G, e_1 and e_2 have exactly one common end (Fig. 8).

Let $\{e_1,e_2\}$ be any cutset of G. Then we can write $e_1=vw_1$ and $e_2=vw_2$, where $v,w_1,w_2\in V(G)$ and $w_1\neq w_2$. Let H and K be the components of $G-\{e_1,e_2\}$ such that $v\in V(H)$ and $w_1,w_2\in V(K)$. Note that $d_H(v)\geq 2$ as G has no bridges. We first prove that if $\{e_1,e_2\}$ satisfies one of the following two conditions, then G has a [0,2]- factorization with the property (4.1):

- (i) $K+w_1w_2$ is 3-edge-connected (Fig. 8).
- (ii) $d_{H}(v)=3$ and H is a 3-edge-connected graph without vertices of degree 6.

Suppose (i) hold. Then K+ $\langle e_1,e_2 \rangle$ (Fig. 8) can be decomposed into three [0,2]-factors which satisfy the conditions in Lemma 4.7. On the other hand, if $d_H(v) \ge 3$, then H has a [0,2]-factorization with the property (4.1) by induction, and so we can get a desired [0,2]-factorization of G. If $d_H(v)=2$, then two distinct vertices x and y of H are adjacent to v, and so H-v+xy has a [0,2]-factorization with the property (4.1). It is easy to obtain a desired [0,2]-factorization of G.

We next suppose that (ii) holds. Then H can be decomposed into three [0,2]-factors which satisfy the conditions in Lemma 4.8. It follows that $K+w_1w_2$ has a [0,2]-factorization with the property (4.1) by induction, and thus G has a desired [0,2]-factorization.

We shall show that G has a cutset $\{e_1,e_2\}$ which satisfies one

of the above conditions (i) and (ii). We can choose a cutset $\{e_1,e_2\}$ so that H or $K+w_1w_2$ is 3-edge-connected. If $d_H(v)=2$, then we may assume without loss of generality that $K+w_1w_2$ is 3-edge-connected. Hence (i) follows.

Suppose $d_{H}(v)=3$. In this case we may assume that $K+w_1w_2$ is not 3-edge-connected and H contains a unique vertex of G with degree 6; (otherwise, $\{e_1,e_2\}$ satisfies (i) or (ii)). Let $\{f_1,f_2\}$ be any cutset of $K+w_1w_2$. If the ends of f_1 and those of f_2 are all distinct, then G has such a cutset, which contradicts the assumption of Case 3. If the ends of f_1 and those of f_2 are the same, then f_1 or f_2 , say f_1 , must be $w_1 w_2$. So it follows that both $\{e_1, f_2\}$ and $\{e_2, f_2\}$ are cutsets of G and f_2 joins w_1 and w_2 . Let T be the component of $G-\{e_1,f_2\}$ containing w_1 . If $d_T(w_1) \ge 3$, then T has a [0,2]factorization with the property (4.1) by induction. If $d_T(w_1)=2$, then two distinct vertices t_1 and t_2 are adjacent to w_1 in T, and thus $T-w_1+t_1t_2$ has a [0,2]-factorization with the property (4.1) by induction. Obviously, the component of $G-\{e_2,f_2\}$ containing w_2 has the same property mentioned above. Furthermore, H also has a [0,2]-factorization with the property (4.1). Therefore, we can obtain a desired [0,2]-factorization of G from them. Consequently, we may assume that for every cutset $\{f_1, f_2\}$ of $K+w_1w_2$, f_1 and f_2 have exactly one common end. Hence we can write $f_1 = xy_1$ and $f_2 = xy_2$, where $x, y_1, y_2 \in V(K+w_1w_2)$.

Choose a cutset $\{f_1=xy_1, f_2=xy_2\}$ of $K+w_1w_2$ so that the component

of K+w₁w₂-{f₁,f₂} containing x is 3-edge-connected or the graph obtained from the component of K+w₁w₂-{f₁,f₂} containing y₁ and y₂ by adding a new edge y₁y₂ is 3-edge-connected. Since H contains the vertex of degree 6, we can choose such a cutset {f₁,f₂} so that the 3-edge-connected component (or graph) has no vertices of degree 6. If w₁w₂ \neq {f₁,f₂}, then {f₁,f₂} is a cutset of G which satisfies one of (i) and (ii). Hence we may assume f₁=w₁w₂ and f₂=w₁y₂, where w₂ \neq y₂. Then {e₂,y₂} is a cutset of G which satisfies the condition of Case 1, a contradiction.

We finally assume $d_H(v)=4$ (i.e. v is the vertex of G with degree 6.). If $K+w_1w_2$ is 3-edge-connected, then we can obtain a [0,2]-factorization of G with the property (4.1) by applying Lemma 4.8 to $K+e_1,e_2>$. Hence we may assume that $K+w_1w_2$ is not 3-edge-connected. In this case we can prove that G has a desired [0,2]-factorization by the same argument in the case of $d_H(v)=3$. Consequently, Case 3 is proved.

Acknowledgments

The author would like to express his appreciation to the referees for their suggestions.

References

- [1] J. Akiyama, Factorization and linear arboricity of graphs, Doctor thesis, Science University of Tokyo, February (1982).
- [2] J. Akiyama and M. Kano, Factors and factorizations of graphs —
 A survey, submitted.
- [3] F. Baebler, Uber die Zerlegung Regulären Strechemkoplexe ungerader Ordnung, Comment Math. Helvetici 10 (1938) 275-287.
- [4] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs & Digraphs, Prindle, Weber & Schmidt, Massachusetts (1979).
- [5] B. Bollobás, A. Saito and N. C. Wormald, Regular factors of graphs, to appear (J. of Graph Theory).
- [6] H. Era, Semi-regular factorization of regular graphs, Graphs and Applications (Proc. of the first Colorado symp. of graph theory, F. Harary and J. Maybee, ed.) John Wiely and Sons, to appear.
- [7] T. Gallai, On factorisation of graphs, Acta Math. Acad. Sci. Hugar Hungar. 1 (1950) 133-153.
- [8] M. Kano and A. Saito, [a,b]-factors of graphs, Discrete Math. 47 (1983) 113-116.
- [9] M. Kano, Graph factors with given properties, Lecture Notes in Mathematics (Proc. of the first southeast Asian colloq. on graph theory)

 Springer, to appear.
- [10] M. Las Vergnas, An extension of Tutte's 1-factor theorem, Discrete Math. 23 (1978) 241-255.
- [11] C. H. C. Little, D. D. Grant and D. A. Holton, On defect d-matchings

in graphs, Discrete Math. 13 (1975) 41-54. Erratum 14 (1976) 203.

- [12] L. Lovász, Subgraphs with proscribed valencies, J. of Combinatorial Theory 8 (1970) 391-416.
- [13] J. Petersen, Die Theorie der Regulären Graphs, Acta Math. 15 (1891) 193-220.
- [14] J. Plesnik, Connectivity of regular graphs and the existence of 1-factors, Matematický časopis 22 (1972) 310-318.
- [15] A. Saito and M. Kano, Some results on factors, Technical Report 82-10, Department of Information Science, Tokyo University (1982).
- [16] W. T. Tutte, Graph factors, Combinatorica 1 (1981) 79-97.