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Abstract

Let a .and b be integexrs such that 0<a<b. Then a graph G is
called an [a,b]-graph if anG(x)Sb for every =xeV(G), and an
[a,b]-factor of a graph is defined to be its spanning subgraph F
such that ade(x)Sb for every vertex x, where dG(x) and dF(x)
denote the degrees of x in G and F, respectively. If the edges
of a graph can be decomposed into [a,b}-factors, then we say that
the graph is [a,b]-factorable. We prove the following two theofems:
(i) a graph G is [2a,2b]-factorable if and only if G is a
[2am,2bm]-graph for some integer m, and (ii) every [8m+2k,10m+2k]-

graph is [1,2]-factorable.



1. Introduction

We deal with finite graphs which may have multiple edges but
have no loops. A graph without multiple edges is called a siméle
graph. All notation and definitions not given here can be found in [4].
Let G be a graph with vertex set V(G) and edge set E(G), and
H be a subgraph of G. For a vertex x of H, we denote the degree

of x in H by dH(x), in partucular, the degree of a vertex y of

G 1is denoted by dG(y). Let a and b be integers such that 0<a<b.

Then a graph G 1is called an [é,b]fggégg if anG(x)sb for every
xeV(G), and an [a,b]-subgraph can be defined similarly. A spanning
[a,b]-subgraph is called an [a,b]-factor. Then, if F is an [a,b]-
factor of a graph G, then ade(x)sb for all xeV(G).

If the edges of a graph G can be decomposed into [a,b]-factors

F., ... , F of G, then the union F,u...uF_  is called an [a,b]-
1 n n
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factorization of G and € itself is said to be {a,b]-factorable.

We usually call an [r,r]-graph an r-regular graph. Similarly,

an [r,r]-factor, an [r,r]-factorization and an [r,r]-factorable

graph are called an r—factor, an r—factorization and an r-factorable

graph, respectively.

In 1891 Petersen [13],[4,Theorem 8.8] obtained the following

theorem.

Theorem 1.1 A graph G is 2-factorable if and only if G

is a 2m-regular graph for some positive integer m.



Recently, Akiyama [1] proved that every r-regular graph is

{2,3]-factorable, where r=2. This is the first contribution

toward [a,bl-factorization with a<b. Era [6] proved that if r22k2,

then every r-regular simple graph is [k,k+l]-factorable. We now

give our theorems.

Theorem 1.2 Let O0<a<b. Then a graph G 1is [2a,2b]-factorable

if and only if G is a [2am,2bm]-graph for some positive integer m.

This thoerem is an extension of Theorem 1.1.
Theorem 1.3 Let m21 and k>0. Then every [8Swmt2k,l0m+2ki-

graph is [1,2]-factorable.

As a corollary of this theorem, we can obtain the next result.

Corollary 1.4 (1) 1f r28m, then every [r,r+2m-1]-graph

is [1,2]-factorable.

(2) Every connected {r,r+1]-graph is [1,2]-factorable, where r>1.

Note that a [2am,2bm]-graph can be decomposed into m [2a,2b]~-
factors, and a [8m+2k,10m+2k]-graph can be decompsed into 6mtk
[1,2]~factors. But the number of [a,b]-factors in an [a,b]-factorization
of a graph is not uniquely determined. For example, a 4mregular
graph can be decomposed into k J[1,2]-factors for every bk, 2m<k<3m
(see Theorem 1.1 and Lemma 4.1). It is clear that the union of an

odd cycle and a cubic graph, which is a [2,3]-graph with two components,



is not [1,2]-factorable. So the connectivity.of a graph in (2) of
Corollary 1.4 is necessary. Moreover, we show that there exists a
[6,8]-graph which is not [1,2}-factorable (Remark 4.3).

We next mention two factor theorems on which our proof will
heavily depend. One is Lovasz's (g,f)-factor theorem (see Lemma.2.2),
which plays an important. role throughout this article, and the other
is Theorem 2.1, which is proved by making use of Lovész's (g,f)-
factor theorem. By Theorem 2.1, not only can we prove many known
theorems on r-factors dﬁe to Baebler, Gallai, Petersen and others,
but also we can obtain some new results on [a,b]-factors, for iﬁstance,
Theorem 1.2 is an easy consequence of it.

Let us finaily note a survey article [2], in which many results

‘related to our theorems can be found.

2. Factor theorem

We begin by introducing some new notation and definitions. For
a finite set X, we denote by |X| the number of elements in X.
Let G be a graph, and g and f be two integer-valued functions
defined on V(G) such that g(x)<f(x) for every =xeV(G). Then,

a (g,f)-factor of G 1is a spanning subgraph F of G satisfying



g(x)SdF(x)Sf(x) for all xeV(G). For a subset S of V(G), we write
G-S for the subgraph of G obtained from G by deleting the vertices
in S togehter with their incident edges. If S and T are disjbint
subsets of V(G), then e(S,T) denctes the number of edges of G
joining S and T.

In this section we shall prove the following theorem and give
some its corollaries.

Theprem 2.1 Let G be an n-edge-connected graph (nzl), ©
be a real number such that 0<6<l, and g and f be two integer-
valued functions defined on V(G) such that g(x)<f(x) for all =xeV(G).
If one.of {(la),(1b)}, (2) and one of {(3a),(3b),(3¢c),(34),(3e),(36)}
hold, then G has a (g,f)—factor.: '

(1a) g(x)sedG(x)sf(X) for all =xeV(G).

(Ib) ¢ = Z [max{O,g(x)—edG(x)}+max{0,6dG(X)—f(x)}] < 1.
xeV(G) ,

(2) G has at least one vertex v such that g(v)<£f(v); or

g(x)=f(x) for all =xeV(G) and ) £(x)=0 (mod 2).

xeV(G)

(3a) n62l and n(l—e)zl.'

(3b) {d,(x) | gG)=£(x), xeV(6)} and {£(x) | gx)=f(x), xeV(®)}
both consist of even numbers. |

(3e) {d,(x) | g(x)=f(x), xeV(G)} consists of even numbers, n is
odd, (n+1)é21 and (n+1) (1-6)=1.

(3d) {f(x) | gx)=f(x), xeV(G)} consists of even numbers and

m{1-8)21, where me{n;n+l} and m=1 (mod 2).’

(3e) {d () | g(x)=£(x), xeV(G)} and {£(x) | gx)=f(x), xeV(C)}



both consist of odd numbers and m621, where me{n,n+l} and m=1 (mod 2).

(3f) gx)<f(x) for every =xeV(G) (see [8]).

Note that similar necessary conditions for a graph to have a
(g,f)-factor which contains p given edges but has no q given edges
are obtained in [9]. In order to prove the above theorem we need
the next (g,f)-factor theorem due to Lovasz, to which Tutte [16].
gave a short proof.

Lemma 2.2 (Lovasz [12], {16, Theorem 7.2]) Let G be a graph
and g and f be integer-valued functions defined on V(G) such
that g(x)<f(x) for all =xeV(G). Then G has a (g,f)-factor if

and only if

8(s,1) = ] {d,(0)-g(0)} + ] £(s) - e(s,1) = h(s,1) 20  (2.1)
teT seS ’

for all disjoint subsets S and T of V(G), where h(S,T) denotes
the number of components C of G-(SuT) such that g(x)=f(x) for
all xeV(C) and e(T,V(C))+ZX€V(G') £(x) =1 (mod 2).

Note that the condition OSg(x)sf(x)sdG(x) in [12] and [16] can
be replaced by g(x)<f(x) as above ([10]1,[15]).

Proof of Theorem 2.1 We shall prove that two functions g

and f in Theorem 2.1 satisfy the‘condition (2.1) in Lemma 2.2.
It is obvious that (la) implies (1b). Hence we may assume (1b)

holds. Let S, TcV(G) such that SnT=¢. Assume first SuT#¢. Let



{Cl,...,Cr} be the set of compoments of G-(SuT) which satisfy

the conditions on h(S,T), where r=h(S,T). By (1b) of Theorem 2.1,

we ‘have |
§(s,T) 2 (1-8) } d,(t) + 8 ) d,(s) - ] max{0,g(t)-0d,(t)}
teT seS teT
- max{O,edG(s)-f(s)} - e(S,T) - r (2.2)
seS
Y r
2 (1-0){e(T,S) + ) e(T,V(C,))} + o{e(5,T) + § e(S,v(C.))}
i=1 ot i=1 i
- e - e(S,T) - ¢
= ] {(-0)e(T,V(c,)) + 0e(5,V(C,)) - 1} - e. (2.3)

i

Since §(S,T) is an integer and e<1, it suffices to show that §(S,T)2-e.
If (3f) holds, then r=0 and so S(S,T)Z—e. Hence we may
assume that G Satisfies (2) and one of {(3a),(3b),(3c),(3d),(3e)}.
Take any Ce{Cl,...,Cr}, and put
MO = (1-8)e(T,V(C)) + 0e(S,V(C)) -1.

We prove that A(C)=20. If. {f(x) { gX)=f(x), xeV(G)} consists of
even numbers, then

1= e(T,V(C)) + ) f(x) = e(T,V(C)) (mod 2),
xeV(C)

in particular, e(T,V(C))=21l. Similarly, if {f(x) [ g(X)=f(x), xeV(G)}
consists of odd numbers, then we have lEe(T,V(C))+!V(C)‘ (mod 2).
Suppose ‘{dG(x) | g(x)=f(x), xeV(G)} consists of even numbers. Then

0= ) dg (x) - 2|E(C)| + e(V(C),SuT)
xeV(C) :

= e(SuT,V(C)) (mod 2) (2.4)



Thus e(SuT,V(C))=0 (mod 2). If {dG(x) | gx)=f(x), xeV(G)}
consists of odd numbers, then we have IV(C)]Ee(SUT,V(C)) {(mod 2).
We consider three‘cases. |

Case 1. e(T,V(C))21 and e(S,V(C))=1. It follows immediately
from 0<6<1 that A(C)20.

Case 2. e(T,V(C))=0. We first note that e(S,V(C))=e(SuT,V(C))
>n since G 1s n-edge-connected. By the fact mentioned above,
{f(x) ] g(x)=f(x), xeV(G)} 1is not a éet of even numbers, and so
neither (3b) nor (3d) occurs. If G satisfies (3a), then A(C)=6n-1>0
as e(S,V(C))Zn.’ Suppose G satisfies (3¢). Then we have e(S,V(C))
v2n+l. Hence A(C)26(n+l)-120., We finally assume that G satisfies

(3e). Then it follows from the fact mentioned above that 1=e(S,V(C))

v(mod 2). If n is odd, theﬁ m=n and so A(C)=6n-1=6m-1>0. If

n 1is even, then e(S,V(C))2n+l and wm=n+l. Hence A(C)=68(n+l)-1
=8m~120.

Case 3. e(S,V(C))=0. Note that e(T,V(C))=e(SUT,V(C))Zn.
If G satisfies (3a), then A(C)2(1~65n-120. If {dG(x) l g(x)=f(x),
xeV(G)} consists of even nuﬁbers; then e(T,V(C))z=0 (mod 2). On
the other hand, if {f(x) { g(x)=f(x), xcV(G)} consists of even
numbers, then e(T,V(C))=1l (mod 2). Hence (3b) does not occur.
If (3¢) holds, then e(T,V(C))2n+l and so. A(C)z=(1-8)(nt+l)-120.
Supposé G satisfies (éd). It is easy to show that we may gssume
n is even. Since e(T,V(C))El (mod 2}, we’have e(T,Y(C))2n+1,

and thus A(C)2(1~8) (n+1)-1=(1~9)m~120. Finally we suppose that



G satisfies (3e). Then 12e(T,V(C))+|V(C)| (mod 2) and [V(C)]
ze(T,V(C)) (mod 2), a contradiction. Therefore, (3e) does not occur.
Let S=T=¢ and assume §&(¢,$)<0. Then h($,¢$)>0. Since G
is connected, it follows from Lemma 2.2 that g(x)=f(x) for all
xeV{(G) and 2 £f(x)z1 {(mod 2), which contradicts (2). Therefore

§($,9)=0. Consequently, the proof of the theorem is complete. ®

We now give some results on factors which can be obtained by

Theorem 2.1.

Corollary 2.3 Let 2<b and 1<a<b<Za. Then every 2-edge-

connected {a,b]}-graph G has a [1,2]-factor F such that dF(x)=2
if dG(x)=b. In particular, every 2-edge-connected r-regular graph
has a 2-factor, where 122 (Baebler [3]).

Proof We may assume b>=3. Put 6=2/b and define two
functions g and f on V(G) by

{2 if dG(x)=b '
g(x) = and f(x)=2 for all xeV(G).
1 otherwise, '

Then 6, g, f and n=2 satisfy (la), (2) and (3d) of Theorem 2.1.

Hence G has a (g,f)-factor, which is a desired [1,2]-factor. B

Corollary 2.4 Let G be a (r-l)-edge-connected [r,2r]-graph

with at least one vertex of degree greater than v, where 1x2l.
Then G has a [1,2]-factor F such that dF(x)=l.if dG(x)=r.

Proof Set 6=1/r, and define two functions g and f on
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V(G) as follows :

1 if dG(x)=r,
g(x)=1 for all =xeV(G), and £f(x)

2 otherwise.
Then 6, g, £ and n=r-1 satisfy (la), (2) and (3¢c) or (3e) of
Theorem 2.1 according as the parity of r. Hence G has a (g;f)—

factor, which is a desired [1,2]-factor. ®

Proposition 2.5 ((1): Petersen [13](r=3) and Baebler [3](r=24);

and (2): Little, Grant and Holton [11]) Let G be an (r-1)-edge-
connected r-regular graph. Then
(1) if G has an even number of vertices, then G has a l-factor;and
(2) if G has an odd number of vertices, themn G-v has a
l-factor for any vertex v of G.
Proof We prove only (2) since (1) can be proved similarly.
Put 6=1/r, and define two functions g and f on V(G) as
g(x)=f(x)=1 for all =xeV(G)\{v}, g(v)=0 and f(v)=1,
where v 1is a given vertex of G. Then 6, g, £ and n=r-1
satisfy (la), (2) and (3c) or (3e) of Theorem 2.1. Therefore, G has

a (g,f)-factor F. We can easily see that dF(v)=O. Hence (2) follows. B

Proposition 2.6 ((1),(2):Gallai [7]; and(3): Bollobas, Saito and

Wormald [5]) The following statements hold.
(1) An n-edge-connected 2r-regular graph with an even number

of vertices has a (2k+l)-factor for every 2k+1, 2r/n<2k+1<2r(n-1)/n.
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(2) An n-edge-connected (2r+l)—regulér graph G has a 2k-
factor for every 2k, 0<2k<(2r+1)(n~1)/n. In particular, G has a
(2m+1)-factor for every 2mt+l, (2r+l)/n<2m+1<2r+l.

(3) A 2n-edge-connected (2r+l)-regular graph G has a 2k-
factor for every 2k, 0<2k<(2r+1)(2n)/(2n+l). In particular, G has
a (2mtl)~factor for every 2mt+l, (2r+1)/(2nt+1)<2m+1<2r+1.

Proof We prove only (3) since (1) and (2) can be proved
similarly. Set 6=2k/{(2r+l), and define two functions g and f on
V(G) by g(x)=f(x)=2k for all xeV(G). Then 6, g, £ and 2n
satisfy (la), (2) and (3d) of Theorem 2.1. Therefore G has a (g,f)-
factor, which is a 2k~factor of G. Let F be a 2k-factor of G.
Then G-E(F) is a (2r+1-2k)-factor of G, and so G has a (2mtl)-
factor for every 2mtl, (2r+1l)/(2n+1)<2m+l<2r+l. Note that the

latter can be proved indepéndetly by using (3e) of Theorem 2.1. W

3. Proof of Theorem 1.2

We shall prove Theorem 1.2 by using Theorem 2.1.

Proof of Theorem 1.2 Let G be a [2a,2b]-factorable graph.

Then G can be decomposéd into m [2a,2b]-factors for some positive

integer m. It is clear that G is a [2am,2bm]-graph.
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Conversely, suppose that G -is a [Zam,me]—graph. We prove
that G can be decomposed into @ [2a,2b]-factors by induction on
m. Without loss of generality, we may assume G is connected. Put
8=1/m, and define two functions g and £ on V(G) as follows

f(x)=f (x)=2a if dG(X)=Zam,

g(X)SedG(x)sf(x) with f£(x)-gx)=1 if 23m<dG(x)<2bm, and

g(x)=f(x)=2b if dG(x)=2bm..

Then, 6, g, £ and n=1 satisfy (la), (2) and (3b) of Theorem 2.1.
Therefore, G has a (g,f)-factor F. For any vertex x of G with
Zam<dG(x)<2bm, we have

2a<edG(x)<2b and 2a(m~1)<(l—6)dG(x)<2b(m—l).

Hence F is a [2a,2b]-factor, and G-E(F) is a [2a(m-1),2b(m-1)]-

factor. Consequently, the theorem follows by induction. #

4. Proof of Theorem 1.3

In thié section we shall prove the following four statements
(1) every [8m+2k,10mt2k]-graph is [1,2]-factorable (Theorem 1.3),
(ii) if 1r28m, then every [r,r+2m-1]-graph is [1,2]-factorable
(Corollary 1.4), (iii) every connected [r,r+l]-graph is [1,2]-

factorable (Coroilary 1.4), and (iv) there exists a [6,8]-graph which
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is not [1,2]-factorable (Remark 4.3).

We first prove Theorem 1.3 under the assumption that the
following lemma holds.
Lemma 4.1 Let G be a [4,6]-graph with at most one vertex

of degree 6. Then G can be decomposed into three [1,2]-factors.

We begin with the next lemma.

Lemma 4.2 Every {8,10]-graph can be decomposed into six
[1,2]—factors.

Proof Let G be a [8,10]-graph. Without loss of generality,
we may assume G 1is connected. If G has vertices of degree 10,
then choose any vertex w of degree 10. Set 6=1/2, and define
two functions g and f on V(G) by
4 if dG(x)=8

4 if 8sdG(x)59: ,
g(x) = and f(x) ={ 5 if QSdG(x)le and x¥w

5 otherwise,
6 if =x=w.

Then 6, g, £ and n=1 satisfy (la), (2) and (3c) of Theorem 2.1.
Hence G has a (g,f)—factor F. It follows that F is a [4,6]-graph
with at most one vertex of degree 6 and G-E(F) is a [4,5]-graph,
and we conclude by Lemma 4.1 that G can be decomposed into six

[1,2]-factors. W

Proof of Theorem 1.3 It follows from Theorem 1.1 and

Lemma 4.2 that every [8m,10m]-graph can be decomposed into 6m [1,2]-
factors. We now prove by induction on k that every [8mt2k,10m+2k]-

graph can be decomposed into 6m+k [1,2]-factors. Let G be a
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[8m+2k,10m+2k]—graph with m=1 and k21. We may assume G dis connected.
Put 6=2/(10mt+2k) and define two functions g andv f on V(G) by
2 if 4 (0)=10m2k
g(x) ={j ' and f(x)=2 for all =xeV(G).
1 otherwise,
Then 6, g, £ and n=1 satisfy (la), (2) and (3b) of Theorem 2.1.
Hence G has a (g,f)-factor F, which is a [1,2]-factor. Since

G-E(F) 1is a [8m+2(k-1),10m+2(k-1)]-graph, we conclude by the induction

hypothesis that G is decomposed into 6mtk [1,2]-factors. B

Proof of Corollary 1.4 We first prove (L). Let H be an

[r,r+2m~1]-graph with r28m. Then there exist integers %k and t
such that r=8m+2k+t, Osk and O0<t<l. It is immediate that 8mt+2k
<r and r+2m~-1<10mt+2k. Hence F is a [8mt2k,10m+2k]-graph, and so
H is [1,2]-factorable by Theorem 1.3.

We next prove (2). We first show that every [2kf1,2k]—graph is
[l,2]—factofable. Let G be a [2k-1,2k]~graph. Then it follows
from Theorem 2.1 that G has a [l,2]—factor F such that 'dF(X)=2
if dG(x)=2k (see Proof of Theorem 1.3). Since G-E(F) is a
{2k-3,2k-2]-graph, we have by induction that G is [1,2]-factorable.
By the statement (1) and the result given above, it suffices to show
that if r=é, 4 or 6, then a connected [r,r+l]—graph‘is [1,2]-factorable.
It follows from Lemma 4.5, which will given later, that evefy connected
2,3]-graph is [1,2]-factorable. By Lemma 4.1, every [4,5]-graph is

[1,2]-factorable. Hence we may restrict ourselves to the case of r=6.
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Let H be a connected [6,7]-graph. Since a 6-regular graph is
2-factorable, we may assume that H has at least one vertex of degree
7. We show that H can be decomposed into two [3;4]—factors, which
implies‘that H can be decomposed into four [1,2]-factors. Put 6=1/2
and define two functions g and f on V(H) by
‘{3 if 4 (x)=6
g(x)=3 for all xeV(H), and f(x) =
o 4 otherwise.
Then 8, g, £ and n=1 satisfy (la), (2) and (3c) of Theorem 2.1.

Hencer H has a (g,f)-factor F'. It is clear that both F' and

H-E(F') are [3,4]-factors of H. Therefore H is [1,2]-factorable. H

It is convenient to introduce a new definiton. For a set {a,b,
Cye..) of integers, a graph G is called an {a,b,é,...}ﬁggggg if
dG(x)e{a,b,c,...} for e&ery xeV(G). The union of graphs H and
K is a graph G such that V(G)=V(H)uV(K) and E(G)=E(H)uE(XK).

Remarkv4.3k The following three statements hold :

(1) A connected {6,8}-graph having exactly one vertex of degree
6 cannot be‘decomposed into four [1,2]-factors.

(2) The 6-regular graph with three vertices, in which every
pair of vertices are joined by exactly three multiplé edges, cannot
be decomposed into five or more [1,2]-factors.

(3) The union of a connected {6,8}-graph with one vertex of
degree 6 and the 6-regular graph given in (2) is not [1,2]-factorable.

Proof We first prove (1). Suppose that a connected {6,8}-
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graph G with one vertex v of degree 6 has a [1,2]-factorization

FlUFZUF3uF4. Then it follows for some F} that dFi(v)=l and dFi(X)

=2 if x#v, a contradiction. Statement (2) is immediate. Statement

(3) is an easy consequence of (1) and (2).. %

In order to prove Lemma 4.1, we shall give some lemmas.

Lemma 4.4 Every [0,4]-graph can be decomposed into two
{0,2]-factors.

Proof Let G be a connected [0,4]-graph. Then G 1is a
[1,4]-graph. We define 6=1/2 and two functions g and f on
V(G) by

0 if dG(x)=l
1 if dG(x)=l
g(x) = 1 if 2=d (x)<3 and f (%) =={
G .
2 otherwise.
2 if dG(X)=4,
Then 6, g, £ and n=1 satisfy (la), (2) and (3b) of Theorem 2.1.

Hence G has a (g,f)-factor F, and thus the lemma holds since F

and G-E(F) are both [0,2]-factors of G.

Lemma 4.5 Let G be a connected [2,4]-graph with at least
one vertex of degree 3. Then G can be decomposed into two [1,2]-
factors. .

Proof Set 6=1/2, and define two functions g and f on

V(G) by



1 if 25d,(x)<3 1 if 4, (x)=2
g(x) =

2 otherwise,

and f(x) ={

2 otherwise.
Then 9, g, f and n=1 satisfy (la), (2) and (3c) of Theorem 2.1.
Hence G has a (g,f)-factor F, and thus .G is decomposed into

two [1,2]-factors F and G-E(F). H

The following lemma, which is a special case of Lemma 4.9, shows
that Lemma 4.1 holds if the graph is 3-edge-connected. Recall that
an {a,b,c,...}—graph satisfies dG(x)e{a,b,c,...} for all =xeV(G).

Lemma 4.6 Let G be a 3-edge-connected [3,6]—graph with at
most one Vertex of degree 6ﬂ Then G has a [0,2]-factorization

»FlquuFB such that if dG(x)Zﬁ, then dFi(x)Zl for every Fi.

Proof We first assume that G has at least one vertex of
degree 3 or 5, or G is a {4,6}-graph with an even number of vertices
of degree 4. Let 6=1/4 and define two functions 8y and fl on
V(G) by

0 if dG(X)=3
_ 1 if 3$dG(x)54
g . (x) = 1 if 4=<d . (x)<5 and f_ (x) =
1 G 1 .
2 otherwise.
2 otherwise,
Then 8, gy» fl and n=3 satisfy (Ib;e=0 or 1/2), (2) and (3c) of

Theorem 2.1. Hence G has a (gl,fl)—factor F It is obvious that

1
G—E(Fl) is a [2,4]-graph with the property that each vertex of degree
2 in G—E(Fl) has degree 3 in G. By Lemma 4.4, G—E(Fl) is decomposed

into two [0,2]-factors F2 and F3. Consequently, G is decomposed
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into three {0,2]-factors Fl’ F2 and F3, which possess the desired
property.

We next. assume that G is a {4,6}-graph with an odd number of
vertices of degree 4. It suffices to show that G can bekdecomposed
into three [1,2]-factors. Suppose G 1is a 4-regular graph. Then

it follows from Proposition 2.5 that G-v has a l-factor Ll for a

vertex v of G. Let Fl be the [1,2)-factor of G obtained from

Ll by adding an edge of G—E(Ll) incident with wv. 'Since H1=G—E(Fl)

is a [2,3]-graph having exactly one vertex of degree 2, we have by

Lemma 4.5 that Hl can be decomposed into two [1,2]-factors F2 and F3.

Therefore, we obtain a required [1,2]-factorization FlUFZUFB of G.

Consequently, we may assume that G has exactly one vertex w of degree

6. Set 0=1/4 and define two functions g, and £, on V(G) by

gz(x)=f2(x)=l -for all xeV(G).
Then 6, gy> f2 and n=3 satisfy (1b;e=1/2), (2) and (3c) of Theorem

2.1. Thus G has a (gz,f2)~factor L Let F be the [1,2]~factor

2° 1
of G obtained from L2 by adding an edge of G—E(Lz) incident with

w. Since H2=G—E(Fl) is a [2,4]-graph having exactly one vertex of

degree 4 and one vertex of degree 2, it follows from Lemma 4.5 that
H2 can be decomposed into two [1,2]-factors F2 and Fé. Therefore

we obtain a desired [1,2]-factorization FlUquF3 of G. B

We denote by xy or yx an edge joining two vertices x and .

let G be a graph and v and w be two distinct vertices of G.
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Then G+vw denotes the graph obtained from G by adding a new edge
vw to G, where G may have edges joining v and w. The following
Lemmas 4.7 and 4.8 will be used in the proof of Lemma 4.9.

Lemma 4.7 Let G be a connected [2,6]-graph which has exactly
one vertex w of degfee 2 and at most one vertex of degree 6. Suppose

that two distinct vertices ul and u, are adjacent to w and

G—w+ulu2 is a 3-edge-connected graph. Then G has a [0,2]-factorization

FlquuF3 with the property that if dG(x)24, then dF (x)21 for every
i

Fi and dFi(w)Sl for every Fi.

Proof Let us defint two functions g and f on V(G) by
0 if 2<d,(x)<3

1 if zsdG(x)s4

g(x) = 1 if ASdG(x)SS and f(x) =
2 otherwise.

2 otherwise,
We shall show that G has a (g,f)-factor by Lemma 2.2. We denote the
vertex of degree 6, if any, by v. Let S, T<V(G) such that SnT=¢

and SuT#¢. We write {C Cr} for the set of components of G-(SuT)

IERREE
which satisfy the conditions on h(S,T) in Lemma 2.2, where r=h(S,T).
Then each Ci does not contain w, and so e(SUT,V(Ci))23. Moreovér,
we have e(SUT,V(Ci))24 since e(SUT,V(Ci))éO (mod 2) (see (2.4) in
the proof of Theorem 2.1). We obtain the following inequality by setting
6=1/4 in (2.3) in the proof of Theorem 2.1 (Note that (2.3) holds for
every graph.). |

r
3 1
§(S,T) 2 izl {Z e(T,V(Ci)) + 7 e(S,V(Ci)) -1} -,
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where €=0 or 1/2 according as v¢V(G) or veV(G). Then

§(S,T) > z {% e(SUT,V(C,)) =1} = € 2 - ¢ > -L.

Since &6(S,T) is an integer, we conclude that &(S,T)=0. It is clear
that 6(¢,¢)=0 as g(w)<f(w). Consequently, G has a (g,f)-factor F.
Put H=G-E(F). We considér two cases.

Case 1. dF(w)=1. By Lemma 4.4, H can be decomposed into two

[0,2]-factors F2 and F3, and it is easy to see that (F1=F)UF2uF

3
is a [0,2]-factorization of G with the required property.

Case 2. dF(W)=O. In this case H is a [2,4)}-graph. Let C
be any component of H. If C does not contain w, then we decompose
C into two [0,2]-factors. Suppose C contains w. Then C contains
uy and u,- If dc(ul)=dG(u2)=4, then we may assume dG(ul)=5, and so
F+wu1, where wuleE(C), is also a (g,f)-factor of G. Hence Case 1

occurs, and thus we may assume dC(ul)s3 or dc(u2)53. Set 6=1/2

and define two functions gl and fl on V(C) by

1 if dC(x)S3 1 if x=w
gl(x) = and fl(x) ={’

2 otherwise, 2 otherwise.
Then 8, 8> fl and n=1 satisfy (la), (2) (since gl(ul)<fl(ul) or
gl(u2)<fl(u2).) and (3c¢) of Theorem 2.1. Hence C has a (gl,fl)—factor,
and thus C is decomposed into two [1,2]-factors, in each factor of
which the degree of w is 1. Therefore, G can be decomposed into

three [0,2]-factors with the required property. B
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a vertex w of degree 3. Then G

with the property that if dG(x)24,

that dFi(W)=Q for some Fi'

Proof Let g

. 0 if d (=3
g(x) = and

1 otherwise,

We shall show that

SnT=¢ and SuT#¢$, and let {Cl,..

which satisfy the conditions on h(S,T), where

the following inequality by setting

G has a (g,f)-factor. Let
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Let G be a 3-edge—connected [3,5]-graph having

has a [0,2]-factorization FlUFZUFB

then dF (x)21 for every Fi and
i

and £ Dbe functions on V{(G) defined by

0 if x=w

f(x) =¢ 1 if 3SdG(x)S4 and x#w

2 otherwise.

S, TcV(G) such that
’Cr} be the components of G-(SuT)
r=h(S8,T). Then we have

8=1/4 in (2.2).

§(S,T) > (1-%) I (o) + % [ dy(e) - - e, -1,

teT seS

where e=0 or 3/4

T .3 1
§(S,T) = .2 { 7 e(T,V(C)) + 3
i=1
> [ % e(Tus,v(C,)) -
T & 4 ? i
i
If Ci does not contain w, then

and so e(TUS,V(Ci))24. Therefore

according as w¢S

or weS. Hence

e(S,V(Ci)) -1} - ¢
1} - .

e(TUS,V(Ci))EO (mod 2) (see (2.4)),

1 v
7 e(TuS,V(Ci)) -1 >0.

If Ci contains w, then =0 and

1
4

Consequently, we obtain 6&(S,T)>-3/4, which implies

e(TUS,V(Ci))23, and so
1

7 e(Tus,v(c)) -1 2 - 7.

4
§(S,T)=0.
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Furthermore, we can show that &(¢,$)=0 by the fact that G has
at least one vertex x with odd degree except w, for which g(x)<f(x).

Consequently, G has a {(g,f)-factor F

e By Lemma 4.4, G—E(Fl) can be

decomposed into two [0,2]-factors F, and Fj. Therefore we obtain

a desired [0,2]-factorization FlUquF3 of G. B

We need some. notation and definitions in order to prove Lemma 4.1.
A graph having exactly two vertices and one or more edges is called a
bond,; and we denote the bond with n vedges by Bn (Fig. 1). Let v
be a vertex of a graph G and w be a vertex of the bond Bn' Then
G+vw+Bn denotes the graph obtained from G and Bn by joining v
and w by a new edge ww (Fig. 2).

We shall prove the next lemma instead of Lemma 4.1, which includes

Lemma 4.1 as a special case.

ST

‘Figure 1. The bond B4. Figure 2. G+Vw+B3.
Lemma 4.9 Let G be a connected [3,6]-graph with at most one

vertex of degree 6. Then G has a [0,2]-factorization F1UF2UF3

with the property that

if dG(x)24, then dF (x)z1 for every Fi. (4.1)
i

Proof We prove the lemma by induction on the number of vertices
of a graph. Let G be a connected [3,6]-graph with at most one vertex

of degree 6. By Lemma 4.6, we may assume that G is not 3-edge-connected.
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Figure 3. G and H+vu+B3 Figure 4. G and H-vixy.

If ]V(G)]=2 or 3, then G must be 3-edge-connected, which is contrary
to the assumption. Hence we may assume IV(G)|24.
First suppose that G 1is not 2-edge-connected. Then G has a
bridge e=vw, where ecE(G) and v, weV(G) (Fig. 3). Let H and K
be the components of G-e such that veV(H) and weV(K) (Fig. 3). If
[V(#) |23 and |v(1<)[;3, then H'=Htvu+B, and K'=K+wu+B, are both
.{3,6]-graphs, where u is a vertex of B3 (Fig. 3). By the induction
hypothesis, H' and K' «can be décomposed into three [0,2]-factors
with the property (4.1), respectively. It is easy to obtain a desired
[0,2]-factorization of G from them. Therefore, we may assume IV(K),
=2. Then K is B3, B4 or B5.
1f dH(v)23, thep H has a [0,2]-factorization with the property
(4.1) by induction, and it is easy to obtain a desired [0,2]-factorization
of G from it. Hencé:we may assume dH(v)=2. If two distinct vertices
X and y of H are adjacent to v, then H-v+xy can be decomposed
into three [0,2]-factors with the property (4.1) by induction (Fig. 4).
So we can obtain a desired [0,2]-factorization of G from it. We next

suppose that one vertex x and Vv are joined by two edges in H

(Fig. 5). Let H+B be the graph obtained from H by identifying

Gt G

Figure 5. G and H+33.
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v and one of the vertices of B3_(Fig. 5). Then, by the induction

hypothesis, H+B has a {0,2]-factorization with the property (4.1), and

3
it is immediate to obtain a desired [0,2]-factorization of G from it.
Consequently, the proof is complete if G is not 2-edge-connected.

We now deal with the case that G is 2-edge-connected. Since

G 1is not 3-edge-connected, G has a cutset (i.e. a minimal cut) with

two edges. We consider three cases.

Case 1. G has a cutset {el,ez} such that the ends of ey

and those of e, are all distinct, where el,ezeE(G).

Let H and K be the components of G—{el,ez}, and let e =u wy
and e,=u,w,, where ul,uzeV(H), ul%uz, wl,wzeV(K) and wl#wz. Then

H.-l-ulu2 and K+wlw2 have [0,2]-factorization with property (4.1) by

induction. It is easy to obtain a desired [0,2]-factorization of G

from them.

Case 2. G has a cutset {el,ez} such that the ends of el and

those of e are the same (Fig. 6).

2

e,
€
Figure 6.

Let H be an arbitrary component of G—{el,ez}, and v be the

end of e, and e, contained in H (Fig. 6). We shall show that H

1 2
has a [0,2]-factorization FlUFZUF3 with the property that
Fl+el’ F2+e2 and F3 are [0,2]-factors of H+<e1,e2>

(4.2)

and satisfy the condition (4.1) in H+<el,e2>

where H+<el,e > dis the subgraph of G obtained from H by adding

2
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ey and e, together with their common end not céntained in H. If
this statement follows, then we can easily obtain a [0,2]-factorization
of G with the property (4.1) from a [0,2]-factorization with the
property (4.2) of each component of G—{el,ez}. We now prove the statement.
If dG(V)ZS, then dH(v)ZB and so H has a [0,2]-factorization
FlUFZUFB with the property (4.1) by induction. Since we may assume

dF (v)<1l and dF (v)<l, these factors satisfy the required conditiom
1 2

(4.2). 1If dG(v)=3, then G has a bridge, and so Case 1 occurs.

Hence we may assume dG(v)=4, and thus dH(v)=2. If two distinct vertices
x and y of H are adjacent to v, then H-v+xy can be decomposed

into three [0,2]-factors with the property (4.1) by induction. It is

easy to obtain a desired [0,2]-factorization of H from them. We next
assume that one vertex x of H and v are joined by two edges (Fig. 7).

Let H+B3 be the graph obtained from H and B3 by identifying v

B

and a vertex of B3 (Fig. 7). Then H+B3 has a [0,2]-factorization

with the property (4.1) by induction, and so we can obtain a desired
{0,2]-factorization of H from it. Consequently, each component of
G—{el,ez} has a [0,2]—factoriiation satisfying the conditions (4.2),

and we conclude that the proof of Case 2 is complete.

&
Figure 7. G and H+B

37

Case 3. For every cutset {el,ez} of G, e and e, have

exactly one common end (Fig. 8).
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=VW and

Let {el,ez} be any cutset of G. Then we can write e =vw,

e,=VW, , where v,wl,wzeV(G) and wl#wz. Let H and K be the
components of G—{el,ez} such that wveV(H) and wl,wzeV(K). Note
that dH(v)22 as G has no bridges. We first prove that if.{el,ez}
satisfies one of the following two conditions, then G has a [0,2]-
factorization with the property (4.1) :

(i) K+wlw2 is 3-edge-connected (Fig. 8).

(ii) dH(V)=3 and H 1is a 3-edge-connected graph without vertices
of degree 6.

Suppose - (1) hold. Then K+<el,e > (Fig. 8) can be decomposed

2
into three [0,2]-factors which satisfy the conditions in Lemma 4.7. On
the other hand, if dH(v)ZB, then H has a [0,2]-factorization with
vthe property (4.1) by induction, and so we can get a desired [0,2]-
factorization of G. If dH(V)=2, then two distinct vertices x and vy
of H are adjacent to v, and so H-v+xy has a [0,2]-factorization
with the property (4.1). It is easy to obtain a desired [0,2]-
factorization of = G.

We next suppose that (ii) holds. Then H can be decomposed into
three‘[O,Z]—factors which satisfy the conditions in Lemma 4.8. It follows
that K+Wlw2 has a [0,2]~factorization with the property (4.1) by

induction, and thus. G has a desired [0,2]-factorization.

We shall show that G has a cutset {el,ez} which satisfies one
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}

of the above conditions (i) and (ii). We can choose a cutset {el,e2
so that H or K+W1W2 is 3-edge-connected. If dH(v)=2, then we

may assume without loss of generality that K+W1W2 is 3-edge-connected.

Hence (i) follows.

Suppose dH(V)=3. In this case we may assume that K+wl 5 is not

3—edge—cohnected and H contains a unique vertex of G with degree 6 ;

(otherwise, {el,e } satisfies (i) or (11) ). Let {fl,fz} be any

cutset of K+wlw2 If the ends of fl and those of f2 are all distinct,

then G has such a cutset, which contradicts the assumption of Case 3.

If the ends of fl and those of f2 are the same, then fl or fz,

say fl’ mpst be w So it follows that both {el,fz} and {ez,fz}

V2"

are cutsets of G and f2 joins vy and Wy Let T be the component

of G~{el,f2} containing w,. If dT(wl)23, then T has a [0,2]-

1
factorization with the property (4.1) by induction. If d (wl) =2,

then two distinct vertices tl and t2 are adjacent to Wy in T,

and thus T Wl+t1t2 has a [0,2]-factorization with the property (4.1)

by induction. Obviously, the component of G—{ez,fz} containing v,

has the same property mentioned above. Furthermore, H also has a
[0,2]~factorization with the property (4.1). Therefore, we can obtain
a desired [0,2]-factorization of G from them. Consequently, we may

assume that for every cutset {fl,fz} -of K+le2, f1 and f2 have

exactly one common end. Hence we can write f =Xy, and £

1 =XY, s where

2
,Yl,YZGV(K+w )

Choose a cutset {fl=xyl, f2=xy2} of K+wlw2 so that the component
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of K&wlwz—{fl,fz} containing x dis 3—edge-connected or the graph

obtained from the component of K+wlw2—{fl,f2} containing y, and Y,
by adding a new edge yly2 is 3—edge~connected. Since H contains
the vertex of degree 6, we can choose such a cutset {fl,fz} so that
the 3~edge-connected component (or graph) has no vertices of degree 6.
If wlwzé{fl,fz}, then {fl’fz} is a cutset of G which satisfies
one of (i) and (ii). Hence we may assume fl=wlw2 and f2=wly2,
where wz#yz. Then {ez,yz} is a cutset of G which satisfies the
condition of Case 1, a contradiction.

We‘finaliy assume dH(v)=4 (i.e. v is the vertex of G with
degree 6.). If K+wlw2 is 3~edge-connected, then we can obtain a
[0,2]-factorization of G with the property (4.1) by applying Lemma 4.8

to Ki<e >. Hence we may assume that Ktw is not 3-edge-connected.

1°%2 172
In this case we can prove that G has a desired [0,2]-factorization
by the same argument in the case of dH(v)=3. Consequently, Case 3

is proved.
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