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~Abstract

The inflationary Universe scenario is‘fegarded as a possibie
model of cosmology which can solve the fundamental probiems of
’.vthe'standard big beng model: The flatness, horizon‘and primordial

- monopole problems. After reviewing.tne inflationary cosmology, we
focus our attention onta'pertienlafl; promising model: The new
infletionary universe scenerio‘based'on the Coleman - Weinberg
notential among. many versions. In the main part of this thesis we
shsll clarify _the reheating mechanism of the new inflationary
‘Universe 5cenario; which unoergoes a gigantic order of
- supercooling by the exponential expansion of the Universe at the
‘time n 10734 sec. Precisely'speeking we shall investigate the
time development of the phese transition at. the infletionary
_stage} derivingvthe evolution equation of the order parameter and_
evaluating tne value of the friction'termvwhich arises in the
obtained equation.. This friction force eventually heats”up the
Supercooled Universe. . The abone-approaCh to .the inflationaryv
phase.transition'is aemonStreted in the minimal SU(5) grand
unified model. It is shown that the friction fotce in this model
is unfortunately too‘weak so that the’order parameter tfavels
many times around the minima of the SU(S)'IColeman - Weinberg
potential.' Thismwouid cause unwanted large scale inhomogeneities
Aof the Universe after the'phase transition. Our estimation of
}ffiction force may give an_inportant'criterion for the successful
inflationary soenario; in;tnture. Finally we also discuss the

possible thermal effects on the.friction.
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§1. introduction

The big bang Universevmgdéir[1,2,3], the éo called standard
model of cosmology,,has béen successful- to déséribé the evolution
of the UniVersévfrbm about-1052véec after "the bang" until"today.f‘
Especially this model giVes ﬁicévexplénations of the observed
2.7K. cosmié'microwave'background.radiatibn and the ébundances of
the light elements‘throughbnuéleosynthesis {(1,2,3,41. |

| Extending' our undgrstandiné further back, to earlier time
and higher temperatﬁre, réduifes knowiédge about thevfundamehtél
particles and-theif interactions at very high energy. The
interplay of the cosmology and the elementary particle physics,
i.e. grand unified theories (GUTs) IS], has led to an attractive
picturé which can explain the baryon excess in the present
' Universe [6]. In the étandard baryogenesié scehario the baryon
rnﬁmberv hoﬁ—cqnserving proCess fogethef‘with the Vtime -réversal
non-invariance in GUTs generate§'thé cosmalogical baryon
asymmetry. - Thus we can say that the interface between elementary
particle physics’and-cosmology is now a very actiVerareé of
 résearch and‘it will stimulate progress bf both fields.

| The standard'model; héwever, sﬁill has fundamental problems
to_bé solved, i.e. the flatness [7]'and horizon problems [1,8,9],
which cannot bé naﬁurally expléined within the framework of this
»model and appears asiunréasonable initial coﬁditions in the early
Universe. The first probiemiisbthat Qé have to make. an extremely

unnatural assﬁmption tﬁ&ﬁfthe initial valﬁe of the.Hubble
constant must be fihe—funed to an extraordinary accuracyvto

produce a flat Universe of which mass density is even now near



the crltiCal one (the flatness problem) The-second is the
horizon problem that the. early Unlverse is assumed to be highly
homogeneous, ‘in spite of the fact that separated reglons were
‘causally disconnected;

Moreover a  GUT phase tran51tlon which occurs at the tlme
St 10~ 34 sec¢, when the temperature of the Universe T~ 1014 GeV
- causes another dlfflculty of the overproduction of t' Hooft-
Polyakov monopole [10] (primOrdial monopole problem) [11 1213.
This would lead to a catastrophlc cosmologlcal consequence that
. the Universe would have - collapsed a long tlme ago due to the.
‘large mass den31ty_caused by the monopoles,
| The . interplay of elementary particle physics.and cosmOlogy_
again shed light upon these fundamental problems of the big bang
cosmology. “Guth [13] and Sato [14] independently proposed a very
attractive idea called the inflationary Unlverse scenario which
oyerCOmes these problems.. In the standard:scenario.we assume the
adlabatlc expan51on of the Unlverse whlch is the causev of - the
dlfflcultles. In the- 1nflatlonary Universe scenarlo, on . the
contrary, the time evolutlon of ‘the Unlverse’ becomes drastic.
Namely during the GUf phase transition, the Universe experiences
the large magnltude of exponential expan51on. vIn this stage the‘
energy den51ty 1s domlnated by the vacuum energy which works as
the cosmologlcal constant. The cosmologlcal term brings about
rthe exponential'expansion. In the final.stage of the phase
transition the release of latent heat generates a huge amount of

‘entropy. These huge expans1on and entropy production make it

poss1ble to obtaln the 51multaneous solution of  the previously

s



mentioned,fundamental-problems of the standard scenario.

However it turned.out that the original version of the
inflationafy Uni&erseiscenario, in which the GUT phaée transition
is assumed to be stfongly first-order, cannot completé the phase
transition and lcauses undesirable inhomogeneities of the
Universe. That is, the ﬁécessary bubble collisions for the
completidn do not efficiently occur dué to the rapid expansion of
Ehe Universe and the latent heat will never be thermalized
[15,16]. (More detailed explahation is given:in subsecfion 3-1.)

A new versién‘ of the inflationary Universe scenario was
promptly proposed by Linde [17,18] and Albrecht et al. {19] which
was free of the main difficulties of the original scenario. Thé
new scenario is based on the Coleman-Weinberg (C;W) typé symmetry’
breaking [20] in the SU(5) GUT. While the ofder»parameter of the
phase transition, i.e. 24—dimensional adjoint Higgs field, véry
slo&ly rolls down on the almost flat C-W potential (See Fig.4 in
'subsection 3-2), the scale of the Universe grows exponentially;
The phase transition seems'tofbe terminated by "gérticle
productions [21] due to é damped'oscilléfion of the Higgé field
around the bottom of thé C-W potential.

| Furthermore Ehe new scenafio-is the first theory which can
predict the initial spectrum of the density perturbation in the
early Universe [22,23]. This brings abéut the possibility to
solve the one of the oﬁtstanding pfoblems of the standard
cosmology : The exblanatiénbof'rich structure of the Universe at
pfesent (stars; galaxiéé‘aha:clusters of the galaxies). However
if was shown that the new inflationary_Universe scenario based on

the SU(5) C-W bofentialvprovides too large magnitude of the
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density fluctuation [22,23], which is a main difficulty of this
séenario. | | '

Moreover there i$ another problem in the néw senario [24,25]
which we shall be concerned with in the main part of this thesis.
As wé shall see in.§4, e;g.' see Fig.6, the local SU(4) x U(1)
minima of the C-W potential are more accessible for the order
parameter tﬁén the global and‘phyéical SU(3) x SU(2) x U(1)
minima. Thus it is likely that the order parameter settles aown
at the undesirable‘SU(4)vx U(Ti minima, then subseqguent strqngly
first-order phase transition to the globaleU(3).x SU(2) x U(l)
minima causes the.éame difficulty as the original inflationary
Universe scenario: incompletion of.the phase transition and
resultant inhomogeneities of the Universe.

In order to overcome thése difficulties, mbdel building
efforts has been contihued, and newer versions of the
inflationary Universe scenario haVe béen.proposed [181]: The
superéymmetric hew‘inflatién téG], primordial inflétion»“[27,28]
and chaotic inflétion [29,30], étc.} which are deviéed to reduce
the value of the density perturbation to the desirable amplitude
by a suitable choice of pafameters. However each of them suffers
from its specific difficulties and cannot yet be regarded as a
realistic mode1 of inflationarf cosmology. It seems. that further
investiéations are necéssary for the improvement of these‘models-

In this thesis we.éhéll consider thermalization mechanism of
latent heat in the new inflationary Universe Scenario, and
especially investigate the second probiem of this scenario which

is closely related to the reheating of the Universe. In order to




oomprehend the process of the inflationary‘phase transition, we
shall derive the evolution eqnation of the order parameter'of the
phase .transition and evaluate the value of the ftiction term
which arises in iﬂue_obtained equation‘and characterizes
ﬂdissipative prooesses, i.e. thermalization.of Universe [31;33].t
The above approach to the inflationary phase transition was
initiated by Albrecht.et al. [347. However they introduced the
friction term by hand. The present author and Hosoya {311, 'at'
‘fitst, formulated a systematlc method which makes it p0351ble to
- calculate the: strength of the frlctlon force from first
‘ principles at finite'temperature.' tFurthermore this method . was
developed to the zero temperature case by Sasaki and Morikawa
[32] (in the ae Sitter stage the temperature of the Universe is
effectiteiy zero). ' They took account of the particle prodﬁctions
. due tO»the time dependence of the Higgs field, which ref.31
ignores. | |
-~ We shail evaluate the Valuevof the‘friction term and
1nvestlgate the second problem of the new 1nflatlonary' Unlverse
scenarlo, specifically taking the mlnlmal SU(5) model as a
prototype. We know that this model leads to a too large
magnitude, of density perturhation. Nevertheless-we think 'that
this investigation is 'worthwhile.from the following reasons.
First, there is an unreliable point in the estimation- of ‘the
_density perturbation (seeﬂsubsection 3-3), so the new scenariov'
~should not entirely be ahandoned and therefore 'its elaboration
seems to make sense. _Second,_the minimal SU(5) model is simplest
and can serve as a good testing ground for the application of our

method to more sophisticated models of inflationary Universe.

)



As we shall see later, thé magnitude.of the friction term
which arises in the evolution equation of the order parameter haS- 
an>importan£ role to determine whether the.néw inflationaryr
Universe scenario works suécessfully or not [35]. If its wvalue
is foo large, this scenarib suffers from.the same pfbblem aé-fhe
original one. On the othef hand, if it is too small, the order
parameter travels arouha_many mihima of C-=W pétential before it
settles down at some minimum, and this causes the inhomogeneities
. of the Univérse._ -If and.only if ité value lies in an adequate
range, the order parameter can properly terminéte_at the
'bhysically favorable SU(3)'x SU(2) x U(1) minima and this
’scenafio can be free from the above difficulty.

‘Thus it is essential to evaluate the amplitude of the
friction term and understand the aspects of the time evolutioh of
the’Higgs field, which will be performed in this thesis.

Finally we find that the value of the friction term,v which
: wei calculate in the SU(5) mode; ét T = 0, is uhfortunately too
small_ so tﬁat the Universe beComes.inhdﬁogeneous [33]; ~ However
it iS likely that‘we cannot neglect finite temperature éffects to
the‘friction in the final stage of the phase transition. We will:
suggeét thé possibility of saving the new inflationary Universe
scenario based on the minimal SU(5) GUT from the above difficulty
by means of the thermal friction.

This thesis is oi‘tg‘a.riivzed as follows. 1In §2 we briefly
réview the stanaard scenarid of cosmology and discuss its
fundamental problems. ,'Thérhistory of the inflationary cosmology

is surveyed in §3. In §4 we investigate the reheating mechanism



of the new inflationary‘Universe s¢enario baéed on the C-w
~ potential. We eValuate‘the magnitude of the friCtion»term and
numerically solve the evolution equation of the order parameter
in the minimal SU(5) model. Section 5 is devoted to éummary and .

discussion.



§2. Standard Hot Universe Scenario

2-1 A Brief Review of the Big Bang Cosmology

The big.bang model is based on the "Cosmological Pfinciple"
which is the hypofhesis that the Universe is spatially
homogeneous and isotropic. The above hypothesis is supported by
the 2.7K cosmic microwave background radiation and fhe universal
(Hubble) expansion of the Universe. On the large scale (>> 100
Mpc), the Universe can accurately be described by the Robertson-

Walker metric

2
ds? = at? - R(t)2 (_d£_ + r2(as? + sin26d<P2)} (2.1)
1-kr?2
14
where k = +1, -1 or 0 for a closed, open or flat Universe,
respectively and R(t) is the cosmic scale factor. For k = +1 the

spatial Universe is finite in extent and can be regarded as the
surface of a sphere of radius R(t) in four-dimensional Euclidean
space. So R(t) can be justly called the "radius of the
Universe". For k = -1 and k = 0 it is infinite in extent and no
such interpretétion is possible, but R(t) still sets the scale of
the geometry of spacé:

The evolution of the cosmic scale factor R(t) is determined

by the Friedmann equations

R = - g—“ G(p + 3p)R (2.2)
4
2 k - [ R )? k 81
H + = + —= = — Gp (2.3)
R2 R R2 3 ’ 4
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where o  in the energy density, p is the pressure and the dot
denotes the derivative with respect to t. The Hubble parameter
H = ﬁ/R characterizes the time evolution of R(t) and G is the

) gravitational‘ éonstant, G = M‘2 (where M. = 1.22 x 1019 GeV - is

p P
‘the Planck'mass). In the derivation of the'Friedmann equation

A = 0 and employed the energy-momentum tensor for ideal fluid in
the Einstein equation. in addition we have the equation of

energy conservation:

4 g3

a 3 '

~( PR = = 2.4

dt(p ) P 3 ] ( )
or equivalently-.

p + 3H(p.+’p) = 0 ' ' | (2.5)

Here we note that the equatioh of energy conservation can be
- derived from the Friedmann equation. In the standard scenario it
is usually assumed also that the expansibn is adiabatic, in which

- case

4 ; _ _
=—(sR”) =0 - (2.6)
- dt A | ‘ -
where s is the ehtropy dehSity. This assumption'is equivalent'to
adopting the energy-momentum tensor for ideal fluid.
'According to the big bang model, the Universe has been

expanding and gradually'COOling from a state.with very high
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temperaturé kand density.:' The 2.7K background radiation is a
relic of the above hot and dense .radiation dominant stage.
Furthermore that picture of  the evolutiqﬁ_of the Universe
successfully accoﬁnts for the abundances of the light elements, D
and'4He, etc.,. through primordial nucledsynfhesis [1,2,3;4]..In
order to determine_the evélution of fhe Universe,‘we mustlspecify
an‘equation of state for the matter. ~In the asymptotically free
‘%heories, one méy négleét interactions amohg particles in the 
lowest ordef, when the Universe is at high temperature and high
density. It foilows that the equatibn of state is .to a good
‘approximation that of an ideal gas of massléss_particles;
Provided that the temperature T is not near any mass thresholds,

thévvalues of p, p and s are given by

, o : | |
= 3p = 2 n(T) T4 S | 2.7
o= 3p = Iow(m) (2.

2T 3 :
~—— N(T)T : : 2.
At (T) . ; | (2.8)

where N(T) is the effective number of pafticle Speciés
N(T) = Np(T) + Lowg(m) o O (2.9)

_Hére Ng (Np) dénotes_fhe number of fermionic (bqsonic) spin
degrees of freedom which are effectively.maésless at‘témperaturé
T_(e.g., the photon contributes two units. to Ny, and electrons and
pbsitron four units for Nf). Fromveqs.-(2.6) and (2.8), we

obtain
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RT = const. , (2.10)

wﬁere the constant.is determined by.the toﬁél entropy in‘é volume
specifiéd by.thejscale factor R(t). |

| ' Itican be shown.that, in the very eafly stage of evolutioﬁ
of the Universe‘in the standard scggario, the Universe was very
flat  and one may neglect the term k/R2 in eq.(2.3). " Thus, in
'tﬁaf‘}case, from egs. (2.3)>ana_(2.10) we find that the scale

factor evolves as
R(T) « t1/2 o - (2.11)
-~ and the age of the Universe_is‘given by

1/2 M ' :
t = l_{éé) /2 My S , (2.12)

= P
g Mé/N nv 1092 gen™3.  When T > Tp or p >}pp '

This reSuit~is reliable onlyvaf- T < T A Mp//ﬁ ~ 1018 Gev, and
the density o = pp |
'effecfs of gquantum gravity become ,important. Furthermore it
- should be noted that the thermal equilibrium in the expanding |
Universe is established only at T §,101§ GeV [36]. | |
The hot big bang model seems‘to provide aﬁ accufate
'.‘acgounting of the Universe from about 1Of4'$ec after 'the bang'
vwhen the temperature was’ébéut 10 MeV,'untii today. In order td
extend our understandingrfdrfhef back tb earlier times and higher

temperatures, we need to know about the fundamental particles

‘(e.g, quarks and leptons) and their interactions at very high

- 13 -



energies (e.g. GUT). va seehs that the most §uCCessfu1 resuit of
the interpléy between elementary particle physics and cosmology
is compreheﬁsion'of a mechanism of baryogenesis [61]. The
B(baryoﬁ"number), »C(chérge conjﬁgation) and CP(time reversal)
violating interaction  in GUTs provides a dynamical explanation
'for the predominance of métter over antimatter.

Thermai history og‘the Univeréé'based on GUTs is shown in
Fig.1. - At t ~ 10-35 sec éfter the big bang, when the temperature
draps down to T 1014 —,1015 GeV, ﬁhe first phase transition
occurs inkGUTs." For’example, in the SU(5) theory, this may be a
transition SU(5) . SU(3) x SU(é) 'x U(1). After the phase
transition‘decay'proéesses of the superheavy X,Y bosons and
suﬁerheavy 'Higgs bosons lead to the'baryon asymmetry generation.
The phase transition which separates Qeak- and electromagnétic,
interactions (SU(3) x SU(2) x SU(1) +.SU(3) x -8SU(1)) takes place
when thé temperature drops downuto T n 102 Gev. It corresponds
to. t '\510_10 sec after the big'bang. At T ~ 102 Mev two phase
transitions occur;successively.” “6ne is'a._éonfining;deébnfining
transition of QCD. Thé other is a_pﬁaSeutransitibn withvbreaking
iof‘chiral-symmetry.r 'HoWever'we do ﬁot know for sure which phase
Eraﬁsitioﬁ takes_p}ace earlier. The subsequentsevolution>of the
-Universe is nicely described by the standard écenario of

cosmology.

~-2-2 Problems of the Standard Scenario
Although the hot big bang scenario has succeeded in
describing the evolution of the Universe especially from about

10”2 sec after the big bang until today, there are fundamental
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problemé‘which cannot be solved within the framework of the
staﬁdard scenario. Here, among then, we‘will briefly present the
problems closely -related to the motivation of the inflationary
Universe.scenario;‘which we shall be cOﬁcerned with in the
subSequenﬁ seétions. | |

1. Flatness Problem.

Since the standard scenario.assumes the adiabatic expansion
vof the'Uhiverse eg. (2.6), we have the relation (2.10),
RT = conét. From the fact that the present ‘'radius' of the
Universe R(to) excéeds 1028 cm, we can estiméte the radius of the

. Universe at the Planck time't

p
R(t.) = -2 R(t.) > 1022 g | (2 13»)
p 0 P "
p : ’
‘where 2p is the Planck length. A naive discussion from

vdimensibnal ground woﬁld suggest that R(tp) yY Qp.' Here from eq.
(2.13) we can say that our Universe:is actually 1029 :g;mes as
'fldt as the one which woulé be'exbected from the naive
discussion. In terms of entropy Sop v (RT)3 this meané_ that
Sop 1087 , where Sob is total entrbpy of present observable
part of the Universe. In the standard scenario it is impossible
to account for the flatness and the enormous amount of entropy of
the observable Universe.

For the energy'deﬂsity of the Universe, we know only that
0.01 < p/pcr < 10 from thé Observafion at present, vwhere
Per =3H2/8ﬂG which is a_critical density corresponding to the

flat case for a given H. We cannot determine whether the
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Universe is open or close at present. From egs. (2.3) and (2.8)

it follows that

o M2 - '
,|p ocrl' ) 0.21~N(T)"’1/3S_2/3[-T—E] (2.14)
ocr | - |

Eguation (2,14) means that in the very early Universe the value

of |(p-por)/Per| was extremely small due to the huge amount of
éntropy's. At the Planck time, we obtain
- P -

(2.15)
Per . o

We see that the flatness of thé'present Universe can be
guaranteed only if the energy density at Planck time is fine-
tuned to 10722, .If if was slightly greafer than bcr ;y say
p =z pcr(1+10‘59); the Universe would have collapsed millions
years ago. Oh the other hand, if p = pcr(1—10'59) at the Planck
‘time, »the'present Universé would be curvature dominatéd;i i.e.,
-.energy dehsity at present would‘be neg}igibly smail. " That isb
another expressiOn 6f tﬁe flatness problem.

2. Horizoﬁ Problem

The observable Universe (d = 1028 cm = 3000 Mpc) is .to a
high degree of precision isotropid and homogeneous‘on the largest
scales ( >> 100 Mpc). The best evidénce for this is provided>byi
the unifdrmity of ‘the cpsmic'background :adiation. Sinée
a = 1028 cnm ié the maximﬁhISize of the currently observed region
of the Universe, let us-cail ét the present size of the Universe.

The size of the Universe in the past or future is proportional to

the cosmic scale factor. This means that the size of the.
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Universe‘varies as t1/2 for a radiation dominated era, £2/3 fof ab
matter dominated era. |

In‘the standard scenario,. we know the existence of particle
horizon‘which is the size of a region'caﬁsally related at time t.
This is equivalént to the distance that a light signal éouid‘haQe

~

propagated since the bang,
B . t lv ]
dgy(t) = R(t) 0dt 1/R(t")
= t/(1 -n) , for R(t) « th, n <1 . (2.16)

When we go back to the”past, the particle horizon shrinks more
rapidly than the siig of the Universe. This means that the
observable Universe which is homogeneous and isotropic was not
causally connécted in'thé past. At t = 1012 sec when the
radiation was decoupled, the distribution of cosmic baékground
radiation should already be uniform over the scale of 1p times
that of the horizon. : | o

3. Galaxy Fofmétiqn Problem

The Univerée ‘is fairly hombgeneous and isotropic. on the
_largé séale. However, onvthe small scale ( <'160 Mpc), it has'
. rich structures és stars, galaxies.and clusters of qalaxies.
According  to the investigation of Zel'dovich for gravitational
instability and. gélaxy formation [37], small density
perturbations §p withian élmost scale~independent spectrum
Splp 10™4 in the véry'eafly Universe is required to account fdr

‘the small-scale inhomogeneities which is observed today. However
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it to date remains unénswered to expiaiﬁ.the origin of the
- fluctuations with such a specific spéctfum,

4, Primordial Monopole Problem

Although tﬁe interplay bétweén GUTs and the;standérd
cosmology giQes aﬁ attractive'explanation for predominahcé- of
-matter over antimatter, it also causes a difficulty of the
overproduction of t'Hopft—Polyakonthopole during the phase
transitions in GUTs at T ~ 10'% - 1075 gev [11,12]. When
spontaneous symmetry breaking oécurs, the Higgs field can only be
smoothly oriented onA scales smaller than some characteristic
: correlétion__length . On scales-largef than.g the Higgs field
must‘be uncorrelated, and thus we expect of order 1 monopole per
correlation volume ( = £3) to be produced as a topological’defect
when the ﬁiggs field freezes out ({[11]. Since the particle
horizon sets an absoiute upper bound on &, ‘we_can estihate the

lower bound of the value of monopole-to-baryon number

M, 1012[39]2 | _‘ : , T 2.7)

ny, ‘ Mp ' . : o ,
As shbwn by Preskill '[12],‘ monopole—antimonbpole annihilation
does not effeqtively work to reduce the monopole abuﬁdance due to
GUTs phase tr&nsitidn, unless ny/ng > 1. It follows that. at
preseht number density of monopole in.the Universe is of the samé
ofder as that of protbns; Since the density of matter in our
Universe would be approximately 1015 times greater than the
critical density due to monopoles, if that was the case, the
Universe would have collapsed a loﬁg time ago.

In this subsection we have briefly explained several
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fuﬁdamental difficulties in the big bang cosmology wﬁich are
especiaily related to.the inflationary Universe scenario.
However we know that there are other fundamental pfoblems in the
standard coSmology. Here we'shail enumerate those problems.

1) The RObertson—Walker_metric which describes the Universe
on the large scale is singular at t = 0. One might think that
this singhlarity is caused by the symmetric properties of the
metric to a high degree. Hewever Hewking and-Penrose have proven
»that the existence of sucﬁ én initial singularity is unavoidable
in more general‘easee. This is the initial singularity pfoblem
[38]. |
2) At preeeht Universe the cosmological constant in the Einstein
equation ie apparently negiigiblyvsmall.v.With the possiele-
exception of supersymmetry and supergravity theories, the
absolute scale of the'effective potential V(¢) in not determinea.
‘Sinee, ‘at low temperafure, V(¢) is equiéeleﬁt to e cosmological
terms, we should fine-tune fhe‘scele of V(¢) in order that the
value of V(¢) at the true vacuum is zero to 1046 GeV4. 3) The
scenario of baryogenesis can nicely account for the mechanism to
éive baryon.asymmetry.A However it has nof yet succeeded to
explain the value of the baryoh—to—photon ratio quantitativeiy.
4) It is likely that N = 1 supergravity coupled to mattef can
solve .the gauge-hierarchy problem (39]. One of the important
feature of the proposed eelqtion of the gauge hierarchy problem
.is“the existence ef the_gravitino'with mass m3/o v mW 102 Gev
[40]. However it gives undesirable iﬁfluences:for the baryon-to-

photon ratio or the mass density of the present Universe [41,42].
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§3. Inflationary Universe Scenario

3-1 Origihal_Infiationary Universe Scenario

In this subsection we will describe the inflationary
'UniVersé scenario in its original form t13,14] which was intended
,to-361ve sohe fundamental problems of the standard cosmology that
were>explained in the previous section; Then some difficulties
of the original scenario will be also discussed.

The original Qersion of the inflationary Universe écenario
requires  that the GUTIphése transition is strongly first-order
[43]. | The effective potential for a_Higgs field of én adjoint
representétion 1@ has é form shown schematically in Fig.2. At
zero temperature, a symmetric minimum (¢ = 0) is a iocal minimum
(a faise vaéuum) of the effective potential and a global ‘minimum
(a true vacuum) lies at & = o, 1013 GeV. A phase transition
from the faise vacuum to the true vacuum proceeds through' the
hucleation of bubbles[44]. |

We note thét the energy density p(T) in the standard
scenafio (2.7) must now be mddified. | When a temperature-of_the
Universe is very high compared_to a critical temperatﬁfe
Te v 1014 GeV, the symmetric phase ¢ = 0 is.stable. As we have
assumed that the phase transition is strongly first-order, a rate
of the phase transition to the true vacuum through the nucleation
of bubbles of the new phase is small in comparison with an
expansion rate of the Universé. SQ the Universe supercools below

T, and the energy density is dominated by P, +which is an energy
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density of the false vacuum, at that time. Therefore the energy
density p(T) is:approximately given by
72 4 ' '

p(T) = 30 N(T)T® + p, _ o (3.1)
Since the false vacuum is completely Lorentzlinvariant, its
energy-momentum tensor must have the form

Tuv = Po9uv . , (3.2)
The energy of the false vacuum behaves as a cosmological constant
A = 8m1Gp, in the Einstein equation at the supercooling stage. It
leads to a rapid_exponential expansion of the Universe. It shouid
be noted that we have set the value of the effective potential at
the true vacuum to vanish, Veff(étrue) = 0, since we know
empirically that A of the present Universe is very small’
( [a] < 10746 gev? ).

in,thé very hot Universe, it is likely that there are local
regions which are sufficiently homogeneous and isotropic to be
approximated by the Robeftson—Walker metric (2.1). When these

regions supercool below Teoor they stért to expand expohentially

as
R(t) = exp(Ht)  , . | (3.3)

where
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: .1/2 :
H = [5—71 Gpo] v 1010 Gev o C o (3.4)

for pOIN (1014 GeV)4. The scale factor R(t) quickly becomes so
large that the Robertson-Walker metric (2.1) can’ be approximated
by its k-=‘0 form.‘ The resulting Space is called the de .Sitter.
space [45]. . |

Let us now make a‘working assumption that the expdnential
expansion continues for‘a time interval At, and that the phase
tranSition‘throughvbubble formation fhen occurs with rapid
thermaliéation of the latent heat. (It turns out,however,that the
assumption of rapid thérmalization isvvery unrealiétic ; we will
later discuss what would actually happen.} During the exponential

expansion, the wvalue of R(t) increases by a factor -
% = exp(HAt) . | “ o - - (3.5)

In order to solve the cosmblogical problems, it is necessary that
2 > 1029, It has been shown that reasonable'parameters can 1ead
to vélues of Z as large as 101010 in the SU(5) model [46]f
When the phase‘transitién takes place, theienergy density 0,

of the félse»vacuum will be released as latent heat. If this
.thermalizationpof the Universe is sufficiéntly rapid, the
température will again rise ‘to the order of'101.4 GeV, 'which is
compafabievin ordef of'magnitude to its value before the

exponential expansion. From here on, the inflationary Universe
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scenario rejoins the standard scenario #1+'#2_ gince R(t)
increases by-a'factof of Z, it follows that.the ehtropy S =z R3s
increases by a factor of order z3. Thus if S wete initially of
" order of unity, it wou1d be greéter'than 1087 after the phase
transition. These gigantic order of the exponential éxpansion énd
entropy generation solve the flatness problem.

The horizon pfobIem also disappears owihg to the huge
magnitude‘of the exponential‘expansion. After the reheating, the
region which evolves‘to become ourlobservable Universe has a size
'of order of 10 cm. Beforeiinflation its size was lesé than
10-28 cm, - and .this mis of order of.104 timeé smaller than the

horizon length at that time.

o o e — — — —— — o —— — S — T — — — — = ait e M e Em e R R S m ek S e e M et e T e et i T S e A m =t T ——

#1) It is essential that baryogenesis occurs after the
exponential expansion and themalization of the Univérsehhso that

the baryon-to-entropy ratio is not diluted.

#2) Iﬁ the Casé of the Weinberg—salam' phase transition, if
inflation takes place, the baryon—to—entropy ratio is reduceé.
‘thus, in the context of current'understanding of baryogenesis, if
is necessary that the phase transition proceedswso rapidly that
" the magnifude of inflafidn does not exceed 102. This constraint
giVes'Ia lower bound of the mass of Hiégs doubleﬁ as my > 9 GeV

. [471].
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As for the mdnopole problem, the mechanism which leads. to‘
the ovérproductionvof monopoles in the standard scenario dose not
obviously work in the inflationary scenario. However it is not
a clear how many ménopoles ére produced in the phase transition. In

‘order to find an answer to this question, it is needed to
.invéstigate the detailed mephahism.of nucleation of bubbles.
| So far we have assumed that the phase transition occureé
with‘rapid'thermalization of the latent. heat. However
unfortunately. that is not the case. Here we will discuss what
actually happens when a slow first order phase transitions . takes
place in‘an expoﬁentially expanding space.

The process ofvbubble nucleation and growth in a false
Qacuum haé beenvanalyzea by Coleman et al,‘[44]. The hucleation

- rate ) (the expected number of nucleation per physical volume per

time) is given by

A = A exp(-B) ’ ‘ | | (3.6)
where Bbis the classical action of a bubble solution‘and A is in
order of the fourth power of the mass scaie which characterizes
the phase transition: A & (1014 GeV)4. The bubble wall expands

at a speed which rapidly approaches that of 1light. Since the
| energy of the false vacuum is first transferred to the kinetic
energy of the bubble wall, the thermalizatidn of  the Universe
proceeds by collisions of the bubbles as illustrated in‘Fig.3.

We can calculate the probability P(t) that an. érbitrary
point remains in the old phase at time t in the expoﬁentially

expanding space [48],
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P(t) = exp[- 4T enge-ty)] . , | (3.7)
- where
e = A/H4 | - - (3.8)

~and t, is a time at which bﬁbble formation begins. In_order to
have an exponential expahsién‘by a factor Z N 1029_ before the
phase transition is completed, i.e.;»P(t) §<’1, one heeas
€ = 10‘2. | According to the numerical calculation of the
.probability P(t) [15], it is easy to obtain the value é < 102
‘which gives sufficient amouhﬁs ofvéxpansioﬁ and reasonable
parameters lead to values like e = 107100 or even smallér.

However, in the case of a slow phése‘transitiionv(e << 1),
it is’shown thaf, due to the fapid expansion of outside of
bubbles, it is difficult to ferminate the phase transition
“through thermalization of the latent Heat by means of bubble
collision and coalescence [15]. It can be proven rigorously that
if g <« 10”6, then the bubble will form finite size clusters only,
no matter how long one waits, even though P(t) > 0. Thisvmeans
‘that the bubbles will never merge to form an infinite éonnected
region; i.e., the system dqes ﬁot percolate. .

Furthermore, Hawking, Mdss'and Stewart {16] have shown that,
with € n 1/200, about T/3gbf'all bubbles will grow to a size
which will evolve to.g;lactic proportions in the present

Universe, before undergoing their first collisions. The energy
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released by these wall collisions could not thermalize nor
distribute itself more or less uniformly over ai region until
.1ight héd'time'to cross the region. In standarad model, it
‘corresponds to t ~ 108 sec, when T ~ 108 K. Thus one canhot have
the usual explanations of the baryon and helium abundances.

Moreover;A thermaiizafion would .not be completed at this iate
époch and so the microwave background radiation would be
distorted. The scenario is unworkable, unless one finds a more

graceful end of the phase transition.

3-2 New Inflationary Universe Scenario

Although, as was shown in the previous subsection, the
original scenario of the inflationary Universe leads -to some
unacceptable cosmolégicél‘consequences, _its basic idea is very
attractive. Fortunately, a new version of the ihflationary
Uni?erse scenario was¥suggested [17,18,19], which kept the virtue
of the original one 6f solving some fundamental problems of the
standard cbsmology, and which couldvovércome the maiﬁ
difficulties of the originél scenario.

The new scenario is based on the Coleman-Weinberg type (C-W
type) symmetry breaking [20]. ‘For simplicity, we éhall considér
‘here a particular pattern of symmetry breaking SU(5) =

SU(3) x SU(2) X U(1) due to the appearance of the classical Higgs
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field & of the adjoint representation,#)

¢ = /15/2%¢diag(1,1,1,-3/2,-3/2) . C(3.9)

The effective potential in the SU(S) C-W theory at T >> M, , mg

has a form of

Veggl®,T) = e 4 %mZ(T)ﬁP2

| |  oud
e 4 oM

+ 239t (1n(9?/9?) - 1/2) + =X (3.10)
25672 | ’ 3272 -

where M2 = (25/8)g%02,%_ = v/2/150, g% ~ 0.3, o ~ 4.5 x 1014 gev,

C is some constant, C =*O(10)} and m2(T) is given by

2 _ d%Veff 5 42m2 S -
me(T) = === = 2 g4T (3.11)

At high»temperaturevT >>‘0, the C-W pétential has Qniy mihimum at
¢ = 0. This means.that, at T >> o, the symmetry is restored.
. Even'for thevtemperaturé T <<‘o, the equation (3.10) is reliable
near the origiﬁ<P = 0, so that the poiﬁt<P = 0 remains a 1local
minimﬁm of Vggg for ahy T # 0. The shape of the C-W potential
Verg(®,T) for T << o is illustrated in Fig.4.

#) Obviously the dégreéssdf freedom of the Higgs field is more
"than unity. We will diééﬁss the C-W potential for the multi-
component Higgs fieid.rather than the one restricted in the

SU(3) x.80(2) x U(1) direction in the subsections 3-3 and 4-1.
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We note that the“effective potential (3.f0) contaiﬁs ohly
the 1-loop correction due‘to the vector boson. The neglect of
contribution of the Higgs field can.be a consistent approximation
| of the C—W‘potentialvat T,iP LV} [20]. However it ié likely that
thef’scalar field 'contribution_bécomes'largeHand important_ atv
T,% << 0© [49].‘ We will férget abéutvthis effect fof a while for
simplicity, but will discuss this point later.

The phase trénéition from the local minimum of the C-W
potentiél at @ = 0 to the global minimum at © =<y proéeéds by
the formation and subsequent’expansién of the bubbles of . A
detailedbstudy of the bubble formafion [50] has shown that at the
'moment of the bubble formation its size is of order T51,kand the

‘maximal value of the field ® inside the bubble is approximately

1217, 1 )1/2

, - <o (3.12)
! g USxln(M,/T.) |

'
‘where the point @1 is defined by the condition Veggl(0,T,) =
VeffﬁPl,Tc) (see Fig.4). ﬂere To ié a critical temperatufé of the
phase transition through the nucleation of the,bﬁbbles at ‘which
this process proéeeas very quickly. | The value of T seemé to be
of order of 1086 - 108 Gev#).

#) As for Té, Albrecht and Sﬁéinhérdt [19] chose thé value
To " 108 Gev, at which a steepest descent approximation for
‘calculation- of the.rate of'the bubble formation breaks down,
wﬁile Linde [17] used the value of.Tc v 106 GeV, as it wasi
claimed in Ref.[51], at which the SU(S)Igauge coupling constant

becomes of order of uhity.
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After the nucleation of the bubble, the value of the field®
is almost homogeneous inside the bubble and it obeys the equation

of motion,
ié‘+ 3H¢>+’m2"= o -, - ' . . '(3.13)

where the second term of eqg. (3.13) apﬁeérs due to the expansioin
of the Universe. At the moment Qf the nucléation of the bubble,
the value of ¢ inside the bubble is very small in comparison with
o and the (neéative)_mass squafed of the field ¥ is

Im2| =

d2Veff e 2m2 2 ' ‘
dVeLf] s 75¢°1Z v 2512, , o (3.14)

so6 that ¢ grows very slowly and stays in the region ¢® < H during

the time interval At,
2 . . S . .
At ~v 3H/|m] -, , (3.15)

which is the most part of time spent by the travel of ¢ from the
origin to the botfom of the C-W potential. In this interval the
vacuum ‘ehergy Veff(%)bremaiﬁs almost equal to Vg ge(0), so that
the part of the Universe inside the bubble expands exponentially
just as it expanded before the bubble création. This is the main
diffeience between thié new scenario and thé original scenario,
in which it was assumed that the exponential expansion finished

immediately aftef bubble formation.
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The amount of expansion which the Universe undergoes in the

inflationary stage is given by

]
1t

exp(HAt) ~ exp(3HZ/|m|2)

v

exp(1200) ~ 10500 , | . (3.16)

where we have used the values, H n 1070 Gev and To v 108 gev.
.Since a typical size of the bubble at the moment>of its fgrmation
is‘O(TE1) v 10“22 cm, after the period of exponential expansion
this bubble grows into the oné whose size. is of order of
10990 ¢, Therefore the whole'observable part of.the Universe is
contained inside one bubblé.

When.the field grows sufficiently large, ?> H, it begins
to evolve very répidiy and rolls down to the minimum éf the C-W
potential. The thermalization of the vacuum energy in the form
of'Veff(O) proceeds through a production of Higgs bosons and X, Y
bosons caused by rapid osdillation'of,the field @ around the
bottom of Véff [21], The Universe is reheated up to the
temperature Tp v Véé%(O) v 1014 GeV. | In the new. inflationaiy
Universe the vacuum energy can be converted into the radiation
energy inside the bubble without bubble wall.COllisions which led
some difficulties in the ofiginal scenario. Thié means that in
vnew _scenafio thé-GUT'phase transitionbcan~be completed and does

not cause inhomogeneitiesbof the Universe which conflicts with
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present observation#).

The'hew inflationary Universe scenafio'leads to a sufficieﬁt
magnitude of expansion of the Universe and homogeneous.radiation
of the latent heat; so that it can solve the flatness and horizon
ﬁproblemé_in the standard{Cosmology. - Furthermore, since tﬁe
primordial monopoles in GUTs are created only in the points, in
thch bubbles with different types of Higgs field ¢ collide, in
this new scenario no monopole'afe prbduced in the observable part
of the Universe, which solves the primdrdial monopole problem.

The process of thé baryogenesis in the new scenario is also.
considerably différeﬁt from the usuval one [52]. vIn this séenario
the baryon asymmetry is generated by the decay of the superheavy
particles, X, Y—bosoﬁs or ¥ -bosons which aré created by the
oscillation of the classical ¢ field. It was shown that the
value of the.baryon—to—entropy ratio is about two order of
magnitude‘largef than that obtained in the standard.scenario [6].
It is also important that any initial baryon asymmetry of the
Universe vanishes after the inflation even in the thedry which

conserves B-L.
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#)  The thermalization processes can be expresséd by a friction

term which appears in the evolution equation of the field ®, and
which , at first, has beeﬁ introduced by Albrecht, et al. [34]1 by
hand. We will discuss’how that term arises in the equation in

the § 4.

- 31 -




eSo far we have neglected Ehe one-loop contribution of Higgs
fields to the effective'potential, since Higgs ceupling constants“
are assumed to be of order ef g4 in the C-W theory {20].
Although that is the case at T or>w 3y o; we should take into
account the ecalar,field contribution at T, ¥ << ¢, which changes

the curvature of Veff(Q,T) near Y = 0 [49]:

mZ(T) '= %ZVeff l

_ s

= —_ +

‘ [4 9 30
where a and b is the Higgs coupling constant in the interaction

Lagréngian of the Higgs field ¢ in the SU(S)‘theory,
Ligt = - % a(Tr$?)? - % b Trod | (3.18)

The analysie of the renormalization group equation for the
effective coupling constants'e(T),ib(T) at @ = 0 suggests that at
smaller values of T the coupling constants a(T) and b(T) become
negative and rapidly grows in magnitude, so that mz(T)” becomes
negative at some critical tempefature TC'[49]. This critical
temperature is crucially model-dependent. _ Since.in the theory
T, > H the sufficient infiation does not occur, we will coﬁsider'
only those theories in Which T, << H. However, in suchbtheories
all high temperature effects are_irrelevant for ﬁhe phase
transitioh and effects connected with the non-vanishing space-
time cufvature and the exponential expansion of the Universe are

important.

Hawking and Moss showed that gravitational effect plays a
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very important role in the early stage of the phase transition

[53]. Théy claimed that in the case of gi%?gi < 2H2, the
: o Y=o : : .

tunneling proceeds from the minimum of Vogg at ¥ = 0 to the

nearby maximum of Vg ¢¢ at ¢ =P1, with the probability.
a2veff 2, | -
P A |[EXE2L exp(fB) ) (3.19)

da ®2 g0

per unit four-volume. Here the exponent B is givenvby

B =1l [ i - ] | . (3.20)
8 Ver£(0)  Verg(®)) -

14

~which is the differénce betweén the combined gravitational and
scalar field actions of the @ = ®i:, and the < =0 .solutions.
This  result should be interpretedn as the probability of
tunnelling which is not absolutely homogeheous but 1looks
homogeﬁeous iﬁ the domains of the Universe of size § 2z H™| [54].

. 2
.. On the contrary for Q—X§££|
a 2 G-

O> 212 + the effects of gravity
and the curvature of the Universe does not seribuSly change the
aspect éf.the phase transition. Thus, in this casé, bthe phase
transition proceeds aé the scenario prbposed by Lindé, 6r

Albrecht and Steinhardt.

.3—3 Difficulties of thé New Inflationaiy Universe Scenario

As we Haﬁe seen,ih the-previdus subsection the new
‘iﬁflationary Universe sceqério has a graceful termination of‘the
period of inflation, preserving the virtue of the original one

A

which solves the flatness, horizon and primordial monopole
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problems. However the new scenario turned out not to be free
from difficulties.. In thlS subsection we shall crltlcally
discuss two main problems of the new inflationary Universe
'soenarlo based on the SU(S) C-W type symmetry breaklng.

The first one is concerned with the galaxy formatlon
[22,23]. During the evolution of the energy- den31ty perturbatlon
the Hubble radius H—j,( = partlcle horizon in the standard
cosmology) represents'an important scale [22].: Consider a
density perturbation Wthh is described by its wavelength )X or
its wavenumber k ( = 2n/X ), and its amplitude. When the
perturbation’is lnside the horizon, A g.H‘1, microphysical
‘ processes can affect the amplitude of the perturbation. However
when )\ > 2-1 the perturbation is just a wrinkle in the space-~time
which are evolving kinematioally, since microphysics can only
operate coherently on proper length scales less than a1, | This
means that the development of ép/p is determined solely by
vgrav1tatlonal effects#)

Since the evolution of perturbations is crucially determined
by the relative sizes of its wavelength l and the horizon H“1, it
is convenient to specify the amplitude of density perturbations
by the wvalue (Gp/p)H at the epoch when it crosses the vhorison,

i.e. A = 1.

#). Since the quantity 6p/p is not gauge invariant, its
evolution depend on the choice of gauge conditions. Fortunately,
Bardeen [55] has developed an elegant gauge invariant formalism

to handle density perturbations in a gauge invariant way.
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In order to explain the structure of the ﬁniverSe at
present, it is knowﬁ that one must assume that the density
perturbations is such that they have an amplitude of 0(10-%) on a
scale which corresponds to a size ofte galaxy. The perturbation
‘may be‘smoothly ContinUed with the same amplitude to larger .and

smaller scales:
(6p/p)g = 0(107%) - (3.21)

whieh is so—called Zel'dovich Spectrum [37] and has an attractive
feature that.all ecales cross the horizon with the same
amplitude._ Such .a spectrum is not‘neceSSarily required by the
observations. However many people believe that it leads to an
acceptable picture of galaxy formation.

Invthe standard cosmology the effective horizon il grows
monotoﬁically; H"1 «< t. Se ‘the size of the perturbed region
crosses the horizon only once (see Fig.5). Since the microphysics
only operates on‘scales < H"1, adiabatictpertutbations were
either thetev eb initio or they are.not present in the big'.bang
cosmology. | | |

On the contrary, in the new inflationary Universe scenario ;
the features ofithe evolution of the density perturbation‘change
dramatically. Since in the exponentially expahding stage the
horizon is constant,.aJperturbation can crges the horizon
(x = B°') twice. The evqlutidn of two scales (Ag; = galaxy and
Ay = presently observable Universe) is shown in Fig.5. .In

earlier times that ti1 microphysics can affect the evolution of
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perturbations on the scale of a galaxy. Thus in the new
ihflafionary Universe scenario microscépiC»processes are poésible
to cause the initiél'density’perturbations in the epoch when
Ag ¢ Hf1,. which eventually show“up as galaxies. When t = t,
microphysics freezés out on this‘scale} the densit&bpertufbation
which exists on this scéle then evolves kihematically»until it
,-reenter§ the horizon at t = ty.

The theory Qf.generation éf the density perturbations after
inflation has been déveloped by mahy author§ [22,23]. The
Specfrum _of_the density perturbation aE the time when one scale

reenters the horizon has been derived as
(8p/ply = 4HST ' . (3.22)

where 5T'is a position dependent time delay of the rolling  down

motion of the order parameter,
st v sele . .\ T (3.23)
which can be caused by the fluctuation of the field ®. The

amplitude of the fluctuation §9 has been estimated by means of

the gquantum fluctuation of massless scalar fields in the de

Sitter space [56,57],
(sp)2 ~ HZ/1673 | | (3.24)

although this evaluation seems quite questiohable and is under

the criticism.
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In the new inflationary Universe scenario based on the SU(5)

C-w potential (3.10) which can be approximated for ¢ = H as

.\"ef_f(‘P)_‘: Veff(o)_ -

N[>

@ | o (3.25)

with X ~ 1/2. We refer‘the method of the evaluation of the time
delay to referenées [22,23] which is too involved to present
here. We finally obtain the almost.scale-independent spectrum of

the density perturbation
(8p/p)yg = (4x/37H) /2 1n3/2(gk-1y (3.26)

where k is the wavelength‘of the perturbation. ‘Although  the
spectrum is roughly scale invariant as_desired, its magnitude is
unfortunately of the order of 50 for a galactic scale, which is
about fOS timas too_large to explain the structure bf the
observable Universe at present.

_>In order to overcoma thisbproblem, several scenarios aré 
proposed, whicﬁ realize flatter potential with smaller value of A
than- the new inflationary Universe scenario based on the. SU(5}):
C-W theory. We will discuss these scenarios in the next
subsection. |

The problem of the galaxy formation looks quite serious for
the new inflationary Universa scenario. However the estimation
of_ the fluctuation of the classical Higgs field 8P does not séém
. completely justified, which assumed that quantum fluctuations can

~be directly reaiizéd as classical fluétuations. Thus this first
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difficulty.may not be fatal and may be overcome somehow.
Therefore in the author's opinion the ﬁew inflationary Universe
-scenario still seems to survive as one of the poésible scenario
which can solve the fundamental difficﬁlties of the standara ‘
cosmolqu;> |

" Here we discuss another problem of the new inflationary
Universe scenario [24,25]. When tﬁié'scenario was explained in
vthe previous.subsection, the evblution of the adjoint Higgs field
¢ was restricted only in the SU(3) x SU(2) x U(1) direction.
However, the order parameter $ obviously has the degrees of
freedom bf more than one. Thus we must investigate the evolutibn
of ¢ in the full 24-dimensional space of the adjoint
repreéehtation ofvSU(S).

Taking into account of the many degrees of freedom of ¢, it
turns out that the SU(5) C-W potential possesses additional local
SU(4) x U(1) minima besides the global SU(3) x SU(2) x U(1)
minima. Furthermore these SU(4)‘X U(1) minima are more
accessible for the-.order parameter ¢ rathér fgénv the‘
'SU(3) x 8U(2) x U(1)'minima. Thus the Higgs field probably
settles down to the SU(4) X U(1) minima first and a succeedingv
strongly firsteorderv phasé transition to the global
vSU(3) X SU(2) x U(1) minima causes the same difficulties as the
original scenario.

In the § 4 we will investigatevthe second problem of the new

~inflationary Universe scenario in detail.
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3-4 Other Versions of the Inflationary Universe:Scenario

Nowi many authors Who concern themselves with +the
inflationary cosmology are looking for'new models which can
~overcome the‘difficuitiesiof the newhinflationaryrUniverSe
scenario explained in the,preﬁious snbsection. ‘Here we Qili
’briefly'report the status of some of the modeis'which'have»
recently received major.attention in a“critical way.'

As we have seen in the previous subsection it might be. a
fatai defect of the newvinflationary Universe based.on the-SU(S)
C-W  type symmetry breaking to givelhtoo large density
pertnrbation,- (Gp/p)H m'50, although the estimation,of‘(ép/p)H
has a qhestionable point. ‘In order to reduce the magnitude of
the density perturbation, itvis'the simoiest way to adopt
'supersymmetric versions of the C-w potential. In‘supersymmetric
theories (partial) .canceliation of the contributions between
_ bosons and fermions leads.to a very small Qalue of the parameter
X in eq.(3.26) which describes a slope of an effective potentiai
near an origin as eq.(3.25). _Thus we can obtain"muchMQSmaller
'valne of the density“perturbation in.those theories.‘ This
possibility was explicitly demonstrated by Albrecht et al. [26]
in the context of the Witten-Dimopoulos—Raby in&erted hierarchy
model [58]. However it was shown that we cannot obtain efficient;
reheating and Jbaryon asymmetry after inflation inrithis model
-[26,59,60]. So the first attempt of supercosmology failed;

' These problems of reheating and baryon asymmetry seems to be
~solved if the inflationfscale is moved’up towards the Pianck’

mass, M. v 1019 GeV (primordial inflation). This possibility was

P

first suggested in the context of a globally superstmetric
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'théofy by Eilis et al. [27]. Later Nanopoulos et ai. considered
primordial inflatioﬁ' in N .= 1 supergravity -coupled to mattef
{281. In this model of the priﬁordial inflation; the effective
 potential HV(z,z*) of_a scalar component of a chiral superfield X

coupléd to N =1 supergravity is giVen by [61]

sz,z*)

i

exp(zz*/2) {Z‘QQ -1 z*g‘ = 3|gl2] (3.27)
v dz 2 .
where g(z) is some arbitrary function called superpotential,
glz) = u3f(z) . | T © (3.28)

Here 1y 1is some mass parameter and }(z) is some dimensionless

function of the field z. .In this subsection we use the systemvof

units in which Mp//gﬁ 1 [61]. We write the function f(z) as

o \ - |
fz) =] 227 | o L o~ (3.29)

n

g

’

and assume lo 2 0, Ar n O. Then the effective potential of ¢

which is a real part of the field z is expressed as

V(e) = ub(a + Be + v + 895 + ... ) (3.30)
where a, B, y and § are some functions of An._ This is the basic
form for the potential we consider for inflation.

Similarly to the original and new inflatibnaty Universe

scenario,. it is expected that due to high temperature effects,
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the field is initiallyizero, and the Universe undergoes the
inflationary Stage, While 8 proceéds from the origin to the
absolute minimum of V(®) at P =Py [28,62].: Thus we assume that
theveffective‘potential has an absolute minimum at ® =CPo.= 1 of
a vanishing 'Qalue ‘of the potential, .VUPo) = 0, since the
cosmological constant is apparently negligibly small at present.
Furthermore it is also demandod that:g(@o) = 0. The reason that
we . require ‘the ébove condition is as follows. In the theory
'undef considération the mass of the,gravitino is proportional to
g(@o) and is usually aséumed to be‘small, m3/p v 102Ger [40].
This is necessary to obtain the proposed solution of the Qauge
vhierarchy problem in the context of sﬁpergravity [39].>

However it can be proved that there is'a deeper minimum
V(%) at some point & between KP=.O‘and @ =W, if we demand that
g(®e) = 0 [30,60]. Therefore the above usual picture of the
'inflatioﬁary phase transition is impossible to realize if We take
the gauge hierarchy problem in particle physics Seriously.

There> is a possibility, however, that the'gauge hierarchy
problém should be sol&ed_in other unknown mechanism in particle
physics - rather.than éupergravity. Let usvconsider this
possibility for a momeht:and disconnect supergravity from the
hierarchy problem. Anyway, from thé astrophysical point of view,
the gravitino with mass m3/p v 102 GeV may <cause the serious
difficulty of the cosmology based on supergravity as was
explained in subseotion 2:2-(gravitino-problem) [41;42].'

If we did not assu@éjthat g(®po) ; 0, it was shown that we
.could 'construot-a modél which realizes the primordial inflation

- in the context of supergravity [63].
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- We consider the simplest effective potential which can be
obtained from eq.(3.27) by a proper choice of g(Z) [63],
. 61 _ 2.2 . a%. | | =
V(P) = 3p°(1 - g%p® + -4—<P ) _ - (3.31)
The minimum of V(¥p) liés‘at @ =Y, = /2/q. In this model we can
showbthat the density perturbation at the galactic scale has the

magnitude

§p/p ~ u3exp(102a2)/20a ' | E (3.32)
_and»the duration of the inflgtionary stage is given‘by

At 5u—3a52 o o | | | (3.335

Thus a-reasonabie choice of paréméters, éfg; o v 10—1; u3’m 10‘4;
gives the desirable_valﬁe of the density berturbation ap/p n 10-4
and the sufficient aﬁplitude of inflation, At ~..600 -1
v (3 x 1011YGeV)“1, Tﬁerefore we can say that the second attempt
of primordial inflation based on supergravity-éan solve the
problem of density perturbatioﬁ, sacrificing the solution to the
gauge hierarchy problem.b

- Now let us consider the primordial monopole problem in this
" scenario. In the first papers on primordial.inflation [27,28] it
was assumed that the monopole production due to‘thevSU(S)
syhmetry bréaking occurs after primofdiai inflatioh, and

therefore one should find some other method to solve the
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primordial monopole problem in Ehis scenario. However we note
that the temperature of the Universe during the primordial
inflation is much smaller than the critiéal température of the
8U(5) phase transition, and a typical' fime T v (1015 GeV)"1,
Which is necessaiy fof the SU(S) symmetry breaking to occﬁr, isv.
mucﬁ shorter thén the time of inflation At m.(1011 Gev)—1.
Therefore ‘the SU(5) phase transitién‘with mondpole production
takes place not after inflation,‘but long befdre the end of
inflation [63].. Furthermore, since the field ¥ is very weakly
coupled to each other and to all bther matter fields, the
reheating temperature Ty in this scenario.is typically of the
ofder of 10'" Gev [62,631, which is much sméller than the
critical temperature,of the SU(S) phase traﬁsition. Thus we can
also sblve the primofdial monopqle problem in this scenario
[63]. | |
So far we have‘just.assumed that the Universe was initially
in the: symmetric state corresponding to a loqal minimum of the
.effective potentiél V(@;T). However it waé pointed out fhat the
above assumption is not wvalid in the _primordial iﬁflationary
scenario in the context of supergrévity [29].
.‘A typical.curvature of the effective potential in.the high

temperature limit is given by

where C is some combination of coupling constants: C = u6a2 for
the model (3.31). The-chéracteristic time which is necessary for

the field ® to roll down to the minimum of V(®) exceeds the time
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T v m_1(T) v C‘1/2T”1. On the other hand the age of the Universe

is given by eg.(2.12) for the case that N ~ 200

M .
—B_ . . (3.35)

5072 .,

t

A

By comparison of T and t it follows that the‘field(P can be

influenced by high temperature effects only at
T s " 1072 2, | (3.36)

Thus we conclude that‘the usual picture of the inflationary phése
transition " which assumes that the field ¢ initially‘lies in the
symmetric state‘due to the high temperature effects, breaks down
in thé primordial ihflationary scenario based on supergravity.
Therefore the second attempt of supercosmplogy.finally failed.
Recentlyb Linde suggested a new iéeé of _the inflationary
Universe, supposing-Quite'different picture of the phase
transition from the usual one (chadtic inflation) [29]. At the
Planck time t I M“1'the value of the effective potential seems

p p

to be defined only' with an accuracy of 0(M4) due to the

p
uncertainty principle. Therefore one may expect that in the hot
Universe at t n tp any field cohfiguration P(x) such that
V(Y) = Mg, (Bﬁp)z < Mé-can appear in aﬁy point x with an almost
-independent probability.
Let considér&a.model which has a very flat effective
potential, e.g. V(¥) = kqﬂ/4; A << 1. We assuﬁe that there were

domains in which. the field P was initially 'sufficiently
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homogeneous at a scale of £ 2 51 and sufficiently large ¢ z Mp.
Since the field ¢ inside the domains varies very slowly and the
temperature rapidly falls, the space-time ihside the domains

enters into the de Sitter stage with the Hubble constant

(o172 02
H = [2%&]. %}. (3.37)
. p - : . .
Furthermore we can show that these parts of the Universe expand

more than exp(70) times if WY z 5M In this case each domain

p*
becomes a mini-Universe in which life may exist.  This is the
chaotic inflationary’Universe scenario.era

Using the conception of thé chaotic inflation, we can
construct a model [30]vwhich :ealiéeé the inflationary Universé
scenario in the COhtext of subergravity'and, furthermore;
satisfies the condition g(%o) = 0, whicﬁ is necessary to 'solve
the gauge hierarchy problem. In this model, although we.do ﬁoﬁ
éxplain here,>we also obtain the.desiragle magnitude of the
~density perturbétion for a reaéonable Choicé‘ofbpéfgmeters._
‘However in order to solve the gravitino problem, it is neceséary:
to have a reheating temperature TR asbsmall as 109 GeV [64],
- which can suppress the gravitino. production éftér inflation.
This seems a rather stringent constraint on the model. Although
it is still péssible to generate the baryon asymmetry of .the>
-Universe at Tr ’\:4109 Gev, it seéms not té be'very easy and it
would be much better toamake the gravitino heavy and harmléss,
my/, 210% Gev [42]. ':_," | '
‘Furfhermore the lafge‘average value of the kinétic energy

(3“$)2_§ Mg suggests that the sufficiently hombgeneous regidns
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which can inflate are in fact extremely rare. Thus it is
possible thét these regions are sufficiently suppressed and would
not be significant even after inflation.

In this subsection we have briefly surveyed the current
status of model building éfforts in the inflatiohary cdsmology.
. Although the supersymmetric new inflatinary scenario and
primordial inflationary scenario could lead to desirable
magnitude of the density perturbation for the galaxy formation,
it was pointed out that each of them suffered from specific
serious difficulties. In the context of the chaotic inflation in
supergravity we might be able to construct a realistic scenario
of the infiationary cosmology. However this model still has
unconvincing points to be clarified. Fufther investigation is

needéd to elaborate this scenario.
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§4. Fate of the Order Parameter in the New Inflationary Universe

Scenario

4-1 Diffic_:uity in the SU(5) Phase Transition

So >far we‘have sﬁrveyedbthe curreﬁt éfatus‘of thé
ihfiatioﬁary Eosmology, which is expected to overcome some
fundamental problems of the standard'big bang cosmology. In this
section, which is the main part of this theSis,‘we shall clarify
thé, feheating mechanism @f the new inflationafy‘ Universe 
scenario, taking account of a dissipative‘procesé, i.e. frictibn.v
Specifically we shall apply our method for inflationary phase
transition to the new inflationary Universe scenario baéed on the
SU(5) C-W potential in order to investigate the second difficulty
of the model, which is concefned to many degrees_of freedom 'of
24-dimensional adjoint Higgs field (sée subsection-3—3).

One might consider that the new inflationary Universe
scenario is no longer a candidate of realistic models. for the
.inflétionary cosmology, since this séenario giVes the_ﬁégnitudé
of the density perturbation which is about 10°  times too large
for galaxy formation. However, as was mentioned_in the
subSéction 3-3, the evaluation of the amplitude of the dénsity
perturbation does‘not seem to be reliable as fo the source of the_
perturbation in the early Universé,’i.e; qudntum fluctuation in
the de Sitter space. Furthér investigations must be performed on
this problem. .Théreforé ﬁhe new inflationary Universe scenario
based on the minimal SU(S).C—W potential is still aiiVe .as the
simplest model whichﬁ may realize the‘ inflationary cosmology.

Thus it 1is meaningful to elaborate this model by solviﬁg its
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another difficulty.

At the first stage of the in?estigation. 6f the new.
inflationary Universe Scenario, we assumed that the evolution»of
the order parameter & goes along only in the SU(3) x SU(2) x U(1)
'»direction. However the ordef pérameter 0] caﬁ actually take
values in the full 24-dimensional space of the adjoint
representation of SU(5). Taking account of the above degrees of
freedom, we encounter one of the serious difficulties of the new
inflatidnary Universe scenario based on the SU(5) C-W type
symmetry breaking.due to the existence of additional local minima
in the SU(4) x Uu(1) direction in the wa potential [24,25]. Since
the SU(4) x U(1) minima are more‘accessible for the order
pafameter ¢ than the global SU(3) x SU(2) x U(1) minima} it seems
likely that the orderAparameter 9 settles down at the
SU(4) X U(1) minimum and the bubble succeedingly goes to the
SU(3) x SU(2) XIU(1) minimum by a strongly first-order phase
tranéition;_ - |

We do not have to consiaér-the évolution of the full 24-
dimensional Higgs field [24]. It is sufficient to consider the
diagonal.elements at the 24-dimensional Higgs field. TheAreason
is as follows. At‘the instant that the bubble of nonzero ¢ forms
we assume that é = 0 and the iniﬁial value of ¢ can bé any
arbitrary 5 X 5 Hermitian traceless matrix. It is possiblé to
diagonalize § by means of a global gauge transformation Which
pféserves é_= 0. Theievoluti6n>equation for the full matrix )

does not change the diagonél form of ¢. The C-W potential for

the adjoint Higgs field is then given by
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_ . - g
4
Voee(d) = 39 [C{ e o1 (7922
ff :
€ 256'"’2 i=1 t 30 i=1 * :
> 4 ;12
* Z (q)i_@j) (ln(fbi—@j/u) - 1/2)}
i,j=1
56254 o4 | | ‘
+ g o~ : (4.1)
102472 2 -, ,
where
o = diag(©1.¢2,¢3:¢bqp@5) » ' (4-2)

with a constraint 121 ¢; =0, C is a dimensionless »arbitrary 
parameter, g is the gauge coupling constant and u = 5q/2;
(o v 4,5 x 1014 GeV). Wé heed'the parameter C to be 0(1) in order
that the C-W potential be a consistent abproximatioh [20].

| For the convenience of numerical cqmputation which we shall

carry out later, we introduce a linearly independent combination

of $ [35],
1 ¢ :
1+/5 j=1 o
A contour map of the C-W potential oh a plane (5 =3 =393

1 2 3

1. The

= X/v3, §, = 7Y) is shown in Fig.6 for the case that C

physically» favorablé SU(3) X SU(2) X U(1) minima lie on this
plane. From simple analysiS'of the C-W potential (4.1) it turns .
out that lines from origiﬁito the SU(3) x SU(2) x U(1) minima are
ridges of the potential. Furthermére local minima appear in'the

SU(4) x U(1) direcﬁion for C ¢ 15 and these become’global‘ minima
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for C < -151In1.5 . Since the slope of the potential is steepest
in the SU(4) x U(1) direction, the SU(4) X U(1) minima are more
accessible for order. parameter ¢ than the physical
SU(3) x SU(2) x U(1) minima. Thus the bubble first rolls down‘in
the SU(4) x Uki) difection. If the bubble settlesdeWnbto'one of
the local SU(4) x U(1) minima for a While, a succeeding first-
order phase transition to the true SU(3) x SU(2) x U(1) minimum
causes similarvinhomogeneities of the Universe as habpened in the
old séenaﬁio [15,16].

The time evolution of the order parameter has been
numerically analysed by Sato and Kodama [35] in the multi-
rcomponent case. The equation of motion for the order parameter ¢

is given by

e

$. + 3H + Vé%%,i + nla.

¢, =0 O (4.4)
where Vé%%,i is the first derivative of the C-W potential (4.1)
with respect to &, and a friction term n|3;|%; is introduced in
order to convert the energy of the order parameter into radiation
‘energy. The second term appears due to the expansion of the
Universe and the Hubble parameter H is given by
1/2 » : _ 4
H = [§T3T—G (o, + pq,_)] | | | (4.5)
where we have assumed that the Universe is spatially flat, which
is adequate in the early Universe even if it is not flat exactly.

The radiation energy density P, and the energy density of the
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Higgs field P chahge with time according to equations
L] 4 i .2 ‘
-a‘ndv

1 ‘ *

[ e Y-8

i

As was mentioned before, the eq.(4.6) means that the vacuum
enefgy which is stored as the energy of the order parametef 51 is
liberated to the fadiation‘energy_through the friction term which
characterizes dissipative effects. An unsatisfactory point'iin.
Eq.(4.6) is that the dissipative term has. been introduced by
vhand. We shall see later how it comes arise frem the fifst
principle.

The initial condltlons for numerical computatlon are as
follows. At the flrst stage of GUT phase tran51t10n, the bubble
in 'which the Higgs field takes a_value 51 forms by means of a
tunneling. We parametrize the Higge field 51 using four
quantities: one is the norm of the Higgs field |8| =/ ¥ 5% =
J ) @% and fhe others are angles o, 6, P of the 'veetor
(51,52,53,5“ )ﬂin the four dimeﬁsional 51 space. Here a
represents theedeviation angle from the SU(4) x U(1) direction
51 = 52 = 53 ='5“ > 0 on the plane @ = 52 = 53 on which the
physically favorable SU(3) X SU(Z) X U(1) minimum lies, and 06 and
{p represent the dev1atlenrangles from this plane. We assume that
‘the initial magnitude of the order parameter l5{0 = 0.2H

= 1.5 X 109 GeV, 51' = 0 and restrict e'anch in the very narrow
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"range |8] < 10™% anda [®| < 10~?% for a conveniehce of the
nuherical eomputation.

Some typical resuits of the numerical analysis are shown in:
Fig.7 for the case that C = 1. For any choice of the initial
angle o (-0.297m < o < 0.217) and the magnitude of the frictioh
coefficient, theé order parameter rolls down fo the SU(4) x U(1)
minimum at first. The evolution of the order parameter after the
arrival to thatvminimum is crucially determined by the magnitude
of the friction n. In the case that the friction coefficient is
too large, eccording to Sato and Kodama n > 10“2, the order
parameter settles down to the SU(4)'x U(1) minimum as illustrated
in'Fig.?(a). Thus the new inflatienary Universe scenario has the
seme serious difficulty as the old one due to the first-order
phase transition from the SU(4) x U(1) minimum to the
SU(3) x SU(2) x U(1) minimum. On the other'hand if the friction
is too small, n < 2 x'10‘3,' the order parameter travels arouna
the'minime of C-W potential many times;_ For a very small
de§iation of the initial angle d, 0 andCP, the order parameterv
Qill finally get a different minimum. A typical result of
numerical computation is shown in Fig.7(b$. This result means
that a cohefent region, which is formed b? nucleation of bubbles
or spinodal decomposition in the early sfage |5! < H, iev
fragmented into many SU(3) x SU(2) X U(1) and SU(4) X U(1) minima
by the fluctuation of the order parameter associated with the
initial state. It follows that the large'scale inhomogeneities
of the Universe appear. In order to avoid these difficulties the

magnitude of the friction coefficient must lie in a suitable
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range, 2 X 10“3 <n <_10“2. In this case, as shown in Fig;7(c),
the order parameter can goes through the SU(4) x U(1) ﬁinimum and
can‘terminate at the SU(3) x SU(2) x U(1) minimum without a
tunnelling for some range of initial angles.

Thus the,evaiuation of the magnitude Qf the friction
coefficient is essential in order to decide weather the new

inflationary Universe scenario does work or not.

4-2 Evaluation of the Friction Term : A Simple Model
As explained in the pfevious subsection, the magnitude- of
the friction n, which appears in the equation of motion for the
Higgs field 51, is crucial for the fate of the Higgs field 51.
The friction'waé firét phenomenologically introduced by Albrecht
et al.- {34] in order to realiée'the thermalization of the latent
heat and show that the GUT phase transition can complete itself
in the new inflationary Universe scenario. Then some authors
used it to analyse the time evolution of the Higgs field [24,35].
Since, howéver, they have ihtroduced it by hand, they could not
tell the strength of the friction ffom the grand unified theory.
Although Abbot. et al. .[2f] have discussed the particle
productidnband reheating of the Uhiverse due to. the damped
- oscillation of the order paraheter around a minimum of C-W
potential, uhfbrtunately their method‘could not prédict the
magnitude of the friction.
It is a wofk of the bresent author and Hosoya [311 that has
dealt with the derivation Qf.the evolution equation for the ofder
parameter including the friction'term at finite temperature for

the first time. They considered a small deviation from the

- 53 -



~thermal equilibrium caused by the rolling down motion of thé
" Higgs field and évalﬁated the friction coefficient by means of
linear response theories [65,66]. However that formalism cannot
be straightforwardly applied to the’early stage of.'the
»thermalization process, éihce' at that time, the Universe was
nearly at zero temperature due to the de Sitter expansion so that
the thermal friction vanishes out. Even‘if we take account of
the Hawking radiation which is intrinsic fo the de Sitter space
[57,67;68], the HaWking temperature is fairly low compared to the
GUT mass scale so that its effect is negligible. Thué wé‘should
consider the zero temperaturé’éituation.

Recently  Morikawa and Sasaki [32] have estihated the value
of the friction coefficient for the-A¢4 theory at zero
temperatufe.- We explain their method here. Consider aVSiﬁple

model of scaiar‘field.¢ with Lagrangian’

L =1
-2

(3,0)2 - v(e) , | (4.8

wheré the ’potential V(¢) is supposed to_be convex 'everywhere.
Aithough we diScuss only the simplest‘case here, the extension to
othef models,.-e.q. su(5) GuT, 1is straightforward and will be
‘considered in>the‘next subsection.  Furthermore weléonsider' thé
cése in flat spacetime,»sincé grévitatidnai’effect does not
qualitatively change'the:féature of dissipative processes. We

'sélit the séalar field ¢ as
o=@ + < ’ _ ‘ » ' (4.9)
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where ® is a quantum fluctuation around the time dependent
c—number part ¢ which walks about in the C-W potential.
Performing a canonical transformation to change a dynamical

variable»from ¢ tow, we obtain transformed Hamiltonian [31],

H = Hy + H, +_H<P+.JCP‘ o, . (4.10)
where
Hy = .;_ $2 4 % (3,8)2 + v(o) | (4.11a)
H =32 + v(1)(e)) , | (4.11b)
_1.2 1 2 .1 (2 2
Hp = 212 + 2 (3,002 + 2 v )(Q,W
*%W”m@+%ﬂﬂm¢ SR (4.11c)

Here Hg and H, are the c-number part and the quantumparg.of the
Hamiltonién and_J%’is a source term. We keep the linear term
(4.11b) in the fluctuation field, since ¢ is chosen as the order
parameter rather than a claésical solution. ' The term H, + J¢
= F%’Cancels the tadpole contribution as shown in Fig.8. So we
can uniquely determine the éource term F (or J). |

| Dissipative éfféct; as we shall see, arises from the
explicit time;dependence of mass and coupling. of quanta ¢ .due to
the time development of the Higgs field ¢. The order parameter ¢

is defined as an expectation value of ¢,
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o = <> ] | ' | | (4.12)

We note that the bracket <...> contains not only usual quantum
. effects but also effect caused by explicit time dependence of ¢.

Taking the_expectation value‘of the field equation for ¢,
8%+ viDe) =0, (4.13)
we obtain the equation for the order parameter
3 + v(1)§¢5.+ % &‘3)(¢)g¢2> + %T &‘4)(§)<qﬁ> =0 | , (4.14)

where the potential term has been expanded around @. Here we
evaluate thé second term <¢2> in eq.(4.14), since thisvterm gives
a dominant contribution in the perturbative expansion. That is,
this is the lowest order term in the coupling constant which is
contained in the potential V(¢).

Let us split the Hamiltonian (4.10)‘into two parts;

H(t) = H, + H(t) . - . (4.15)

where

H, = H(£)|t=to (4.16)

The argument t denotes the'explcit time dependence due to the time
evolution of 0. The former part H, is the Hamiltonian which we
would obtain if the time dévelopment of ¢ were frozen at t = to,

and the latter part H is the rest of H. We can evaluate the
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effects of the explicit time dependence of H(t) by means of the
same method és the usual perturbative calculation in the

interaction picture, regarding H(t) as the interaction

Hamiltonian,

<;92(t)> = <U’r(t,t-0).(?,2(.1:)'U(t,to)v>0 ' | (‘4'._17) |
where

Q(t,to) =T exp[—ijzdt'Jd3x' ﬁ(@(t'))) i | (4.18)

0

Here & is the field operator whose dynamics is determined by H
and brackets <...>0o denote an expectation value by means of H .
In the lowest order with respect to H,i.e. a linear response

approximation, we obtain
<@ (t)> = <@P(t)>,
[ Fae [a3xr («22(6)82(t")> <“2(t')‘2(£)> )
B I xU<e b 0o ~ SRR o’
0 .

X

% [v‘Z)(¢<t')) - V(Z)(®(to)))

A2 en e
v(gP (t))o

+

o |
[V ee) - w2 e )]t [adx e in1aP e,
0

. |
- Jtdt'Jd3x'[V(2)(t) - V(Z)(t'))x1m<Tq2(t)¢?(tf)>o (4.19)

0 .
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‘The second and third terms do not appear in the ucual
perturbation theory and the second term is divergent. If we
adopt the idea of time—dependeht:mass renormalization and assume
the mass squared of quanta & at time t is V(Z)(é(t)) rather than
V(z)(Q(to)), tthe divergence of the first and»secoﬁd terms can be
'ccmpletely absorbed by appropriate couptcr terms. The net effect
of these'terms on the right-hand-side of eq.(4.19) is the gquantum
correction ' to the potential V{(¢). It is the last term on the
right—hand—side of eq.(4.19) that gives dissipative effects;

We ascume'thgt the order parameter . varies slowly in
comparison with thc characteristic time scale of the correlation
function. If and only if the above assumption is satisfied, the
lowest order approximation with respect to the explicit time
dependence of the Hamiltonian is wvalid. Furthermore we

approximate a potential term in the last term of eq.(4.19) as
viZ (o)) - vi2)(aery) ~ v3)(a(e))d(t) (t-t") .
and replace'the lower - limit of the time integral by -«, since the

guantum correlation vanishes sufficiently fast. Then the last

term of eg.(4.19) is given by

G?>q = - v3)(a(e))d ()
t 3.0 YT Ta2 (1182 (+ 1
X j dt'Jd x'(t-t')Im<Te™ () po (L") > (4.20)

oo -
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Inserting eqgs.(4.19) -and (4.20) to eq.(4.14), we obtain the

equation of motion for the order parameter 9,
5 + vill(o) PSY S | .T | - t4e2n)
where
iRk = vy
+ % V(s)(q,,[<¢92> + (v(2) (£)-v(2) (¢ )

X J dt’jd3x'1m<T¢2(t)@2(t')>0)

- 00

and R (4.22)

t
n@) = -1 (v‘3)(¢))zj dt'Jd3x'(t-t')1m<TQ?(t)¢2(t')>o (4.23)
. . Zco .

We do not evaluate the effective potential and the friction
coefficient n. That will be performed in the next subsection in

the case of SU(5) GUT.

4-3 Evaluation of the Friction Term: SU(5) GUT

In this subsection by applying the method explained in the
previous subsection we shall derive the evolution equation for 51
which is the order parameter of the SU(S) GUT phase transition,
and evaluate the friction term which appears in the obtained

equation [33]. Let us consider the minimal SU(5) Lagrangian,
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=
1l

{
j—=

3 .
Lorr Pt s T AT 7R (10) + iTR(5) TR (5))
k=1 o

N =

; e | :
Tr Vyovie + VyHIVRH - V(0/H) + Lyygaus  (4.24)

wherel ¢ and H are 24-dimensional and S—dimehsionai Higgs fields,
P(10) and V(5) are 10—dimensional and_S—dimensional fermions,‘ k
is a generatioh index and Y is the covariant derivative. We
choose‘the unitary gauge for convenience of calculation, in which
the . adjoint Higgs field becomes diagonal. Sincel dissipative
effects arise due to.the‘time dependence of mass éf 'quanta, as
explained in the previoﬁs subsection, massless gauge bosons which
correspond to unbroken gauge symmetry do not contribute to the
friétion term.v‘Thus_these degrees Of freedom heed not be
considered. | |

| We split the diagonal part of the adjoint Higgs field into
c-number and fluctuating parts, h

it

where wavy line over the field indicates the linearly independent
combination defined in eqg.(4.3). The canonically transformed

Hamiltonian is given by

H = Hyayge * Hp + H; + Hyp + Hy + Hegrpion + Hyukawa , (4-26)
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where

Hoauge = % Qa(¢+@);1 fakpak + gcabe pbk ack)2

+ (pak,z ; % (Fil)2'+ % Qa(®+¢)(Aak)2 ' ; '(4,27a).
Hy < % (éi).+ % (3k5;)2 + V(@)H- , k4.26b)
H, = $,(3%%; +>V(§fH)) . o (4.27c)
f =% ﬁg)? NN R LR R OLRS

1 v(3) (0)13.0.5. 4 1 v(4) Ty |
Hy = nhmg + ViHTVH + V(O,H) + V(H) + % viz)l(e,m$;%; .
| (4.27e)

Here the Higgs potential has been divided into three parts.
V(o,H) = V(¢) + V(¢,H) + V(H) . B | (4.28)
and

. 2 /
Qa((b) =% I(bi - ¢j‘2 , a:(a'i’j) ’ u_—_'['z .

i,5=1...4 . (4.29)

The lower indices i ... after comma represent the derivatives
with respect to 51 i.s , a is a group index and g is the SU(S)

gauge-coupling‘constant.
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Evolution equation for the order parameter 51 can bé derived

by taking the expectation value of equatibn of motion for 51,
2. _ 1 (yay2, arauy, _ 1 ay2 . % . pdpau
9903 — = (W) 74 (2) <ARA™T> 5 (9745 (2) yaRaths

<l 1 (3 5 1 4 e
+ <0l o,m)> + 1 Vfi%k‘¢?<@j¢k> + 1 yl4) 1(2) <@3&381> = 0

3! 'ljk r
{4.30)
where (ua(cb))2 is a mass squared of gauge boson,
(13(9))2 = Q3(9) ='92|¢. R
) 2 1 J ,
a=(a,i,j) , a=1,2 , di,j=1...4 . o (4.31)

Ih order to evaluate the expectatioﬁ values of field operators in
eq.(4.30), we split the Hamiltonian for the éU(S) GUT in unitary
gauge (4.26) into two parts as already prescribed in eqg.(4.15)
and (4.16). Then we can calculate thém which contain the effects
‘due to fhe expliéit time dependence of the Hamiltonian ﬁ(t) byv
means of the perturbative expansion; regarding H(t) as the
interaction Hamiltonian. = We obtéin-the evolution equation ‘for

‘the order parameter 51 in the lowest order with respect to H,

$; + 3HG, + vé}%'i(é) + N35(8)85 = 0 (4.32)

r

where Vé%% is the C-W potential for the adjoint Higgs field in

the SU(5) GUT whose explicit form expressed in eqg.(4.1), and
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nii(®) is a friction matrix,
nij(é)

. | |
= - %(ua) (Ub)zjjwdt'1d3x'(t—t')Im(T(Aﬁ(%,t))z(Ag(x't'))2)0

. e .
- 1 V(3i V(J nI dt'Jd3x'(t—t')Im<T-<Pl<pk(x,t)<pmcph(x‘,t')>0

. |
- 2nf 5 mf 4 I at’ Jd3x (t-t')ImeT Byhy (x, £)H Hy (x° RASES

(4. 33)
Here mi is a mass sqﬁared of 5-dimensional Higgs field,
m H H = V(®,H) , ) | (4.34)

and the second term in eqg.(4.32) appears due‘to the expanSion of
the Universe. The first term in eq.(4.33) is the contribution 6f
the massive gauge bosons, the second and third terms are that of
24-dimensional and 5-dimensional Higgs, respectively. Since the
Higgs coupling constants are genérally of the order of g~4 in
‘order for the consistency of the CfW potential}[ZO], the dominant
‘contribution to the ffiction matrix (4.33) comes from the gauge
bosons and we can neglect the second and third terms in
eq.(4.33). |

In order to evaluate the correlation function in eq.(4.33),
we have to use.the full propagator for the gauge boson [69]

(Figvg)l
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4 k. k
ab ' _sab d“k Y 1
Duv(x—x ) = =68 J [[gUV S J

(2m)4 k2 J k2 (p?)2;iq@
: [1 _ k2 ] kuky 1 )e—ik(x—x')
(n)2 k2 kz—(ua)2+i€

(4.35)

where NI? is a vacuum polarization (Fig.10). Integration over k°

gives

o~i(w-iT?) [t-t*|

3 ' k.k
Db (x-x') = 1§3P j—d k [[guv - -H V]

(2m)3 k2 2(w-ir2)
k =w-il'@ :
0 :
. [ k2 ) kK, e-lwlt—t'|J LR
()2 k2 2(w-ie) '
k =w
0

(4.36)

where w = |K| and width I'? is given by .

‘ 2 a2

Fa‘ = 1— Im Ha :vg—. LE__)—. . (4.37)

2 4w w . : _

The wicAith.l"""I is an imaginary part of the vacuum polarization @2
and the decay rate of heavy géuge boson to light fermion pairs.
On the other hand, the inverse-décay is forbidden dué to the
enormous temperature dféprby the de Sitter expansion of the
Uﬂiversé. This time—irreversibility is essential for dissipative
process [33]. As explainéd in the previous subsection, one of

the neceSsary conditions for the dissipation is the heavy
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.particle production due to the explicit time dependence of its
ﬁass. . However that is not enough to cause dissipetive effecte.
Decay of produced particles which is out of equilibrium is also
~necessary for eppearance of the friction aﬁd generation of
entropy at zero temperature Situation#2 Since decay brocesses
are . contained ‘in the imaginary part of wvacuum polériéafion I,
i.e. T, we nust employ full propagators for evaluation of the
friction coefficients in order to include such' processes
sufficiently. Furthermore we may neglect the finite part of the
real part of I.
Using the full propagator for the gauge boson (4.36), we

finally obtain an expression for the friction matrix,

ay2 a2,
) 3g2  (U9) 75 (W)

2972 u@ ;o id=1...8 (4.38)

niy(@)

where the group index a is summed up.
For example the value of Nij at the SU(3) x SU(2) X U(1) minimum,

¢ = 0 x diag(1,1,1,-3/2,-3/2) is given by

ngy = |8 x o x 1074 (4.39)
1.4 1.4 4.4 -0.6
-0.6 -0.6 -0.6 5.0
\ /
#i At finite temperature; scattering processes with quanta

which are produced by thermal effecte can work for that purpoSe

in place of decay processes [31,69].
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and foﬁr eigenvalues of the matrixiis

(7.6, 4.5, 3.0, 3.0) x |§| x 1074, where |§| = Y3% = /15/2 o.
Here we have.used the gauge coupling constant at GUT mass scale,
g2 ~ 0.3, since .each couplidg comes from the gauge boson mass
term - or the decay rate of the gauge boson. We»note that the
,magnitude of the ccmponents of the friction matrix i ddes not
change very much and all the eigenvalues are positive at any

point of the four dimensional §; space.

4-4 Time Evolution of the Order Parameter and Thermalization of
thé Universe |
Since the form»of the friction term which we have obtained
is different from that assumed by Sato and Kodama [35)], an
appropriate range of the friction coefficient which they have
found can not}directly applyvto our results. We .numérically

solve the differential equations [33]

§; + 3H3; + VIl j(e) + nys(0)8; =0, (4.40)
Py + 4Hpp = nj5(0)8;3, , (4.41)
where
1/2
- |8xm
H = {T (pr + pq))) , (4.42)
4, . |
pp = = I 8 + Vegelo) . : | (4.43)
2 521
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Here nij(é) is the ffiqtion matrix (4.38) whicﬁ has been obtained
in previous subsection, and the precise form of the C-W potential
Vegg(?®) is expressed in eq.(4.1). |

We adopt the same initial conditions as the ones which have
been used iﬁ fhe numerical computation in subsection 4-1. The
initial magnitude of the -order parameter is taken to be
|®|0-= 0.2H = 1.5 x 109 GeV." 1In the first couse of numerical
calculation, we take 8 =® = 0 and -0.297 < a < 0.21wr as the
initialianglé in Ordér that the order parameterléi kee@é lying on
the (X,Y)-plane oh which 3 =93, =3, in the four dimensional 3,
space. | | -

One of the results of numerical computation is shown in
Fig.11. The obtainedvmagnitude of the friction éoefficient is too
small so that the order parameter & travels aroand the minima of
the C-W potential many times. Thus the order paraméter 3,
‘settles doﬁn to a different minimum for a very small deviation of
‘initial angle oa. Furthermore if we lift‘the order parameter 51
slightly off the (X,Y)-plane, e.q. we take |0] ~107% or
] ~ 1072 as initial angle, it gets out of the plane after
visiting several minima of Céw ‘potential and finally it
terminates at a thsically,unfavorable minimﬁm which does not lie
on the (X,Y) plane.

Due .to the chaotic behavior of the time evolution.of. the
order parameter, a coherent region, which is formed by nucleation .
of bubbleé or spinodal deéombosition in the early stage of GUT
. phase transition, is fragmented iinto many minima by the

fluctuation of the order parameter associated with the initial

state. We conclude that'the large scale inhomogeneities appear,
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which conflict with pfesent observation.

Here we discuss the thermalizétion of thé Universe during
the time evolution of the order parameter $Aardund bottoms of the
C-W potential. ‘The gauge bosons, which are produced‘by the -
explicit. time dependencé of the Hamiltonian, decay ihto_ light
fermion pairs. If reaction rates among the lighﬁ particles (i.e.
massless gauge boson, Higgs doublet_aﬁd fermions) are larger than
the expansion rate‘of the Uﬁiverse, these particles form a plasmé
of massless particles which is in (near) .thermal equilibrium.
Furthermore if interactions between heavy particles (i.e. massive
Agauge boson, ¢ , Hi1/3) is sufficiently rapid, these heavy
particles would come into the thermal equilibrium. The above
processes would put forward the liberation of tﬁe vacuum energy
originally-in the form of the C-W potential energy into the
radiatidn energy and also generate entfopy. \

Let us define the effective-temperatufe Teff by the fraction
€ of the radiation energy density p, to the vacuum energy V, at

the beginning of the GUT phase transition:

| a0 (Tepg)?2
e = 2r_ 9.5 x 103 { eff)
VO

or
Tegr = 0.16 x e /4w (4.44)

We have said this temperature as an "effective" ohe, since the

temperature has a meaning only if the radiation is in thermal
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~equilibrium. It should be noted that the effective temperaturé
increases to 0.16 M, at most due to the smallnéss of the Higgs
coupiing'constants. A typical value of the fractions & obtained
by our numerical cbmputation is shown in Fig.11 at several
_representative points along the trajectory of 3. At the first
~ stage for example, |3 '\: 1010 GeV, the fraction € ~ 10”12 and the
effective temperature T ee Vv 3 X 106 Mx; When § first gets to
the SU(4) x U(1) minimum, € ~ 1072 and Toep v 5 x 1072 M,. After
a few oscillatidns around the SU(4)-X_U(1) minimum, & goes to the
neighboring SU(3) x SU(Z) X U(1) minimum in most cases. At that
time, & o 10~' and Tegg © 0.9 x 10”1 M. In the last two cases
in which the order parameter is near a minimum of the C-W
potential, thermal effects may not be negligibly small.

So far we have investigated'the time evolution of the GUT
phase transition in the SU(5) new inflationary Universe;
Unfortunately it has been.shown that the value_§f the friction
term is too small so that the time developﬁent of the order
parameter becomes chaotic, and this leads to large scale
inhomogeneities of the Universe. However it should be noted that
the effective temperature of the Universe increases up to T eg W
(5 x 1072 = 0.9 x 10™1) M_ in the final stage of the inflationary
phase transition. So finally'we shall discuss possible thermal
effects on thé'friction, which may lead to the successful
termination of the GUT phase transition in the new inflationary
Universe. | |

First let us épnsiderwthe equilibrium cbnditiqn ih the final
stage of the’rolling?down phase transition.v We assume that the

(guasi) thermal equilibrium is realized, if a reaction rate vy is
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larger Ehan the éxpansion rate of the Universe H(= 0.8 x 1010 gev
for the SU(5) inflationary scenario). 1In the case of light
particles, i.e. massless gauge bosons,'fermions, etc., the

reaction rate is approximately given by
Yog N TgengVv Vv 10a%T ﬂ ' (4.45)

on the dimensional ground. Here ) is a typical cross section
for their cdllisiqns with ng and v being their number density and
relative velocity, we‘take the couplihg constant to be o = g2/4w
~ 1/41. Hence if yg, > H, i.e. if T > 1.3 x 1012 Gev for light
vparticles, the systém of light particles is in the thermél
eqﬁilibrium.- Fromieq. (4.44) we find that the equilibrium
condition for light particles is g > €eq = 1.3 x 10~ 7. The
numerical computation shows that this condition has already been
met before.the first arrival of the Higgs field at,.the
SU(4) x U(1) minima. | |

Héavy particles, i.e. massive gauge bosohs and 5-dimensional
Higgs, are thermalized through the scattering on the light
particles by the exchange of masslessrgauge bosons. Thus.-the
equiiibriumb condition for the heavy particles seems to be the
-séme as that for the light particles.

These facts mean that it makes sense to consider possible
effects on the friction due to excited particles in (near)
thérmal equilibrium. We.note that it is difficult to thermalize
-the -particle, which-does not couple to the light particles and

thus this does not participate in this game.
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The friction coefficient at finite temperature n(®) was

obtained by the present author and Hosoya [31] for a scalar

particle:
2 3 .
n(e) v [mei?l) 8 J d”p 1 n (1+n,)
a ¢ (2m)3 2w(p)3y o, (4.46)
-where
n 1

o T Bw(p) - 1

wip) = (32 + m2(9))1/2

~Here B 1is inverse temperature, B = 1/T and vy is a reaction rate
of the scalar barticle in the scattering to the light par#icles.
‘Equation (4.46) implies that the thermal friction
coefficient 1is proportional to an inverse poWer of a coupling
constant [31,69], since Yy is essentially scattering amplitude 6f
the scalar partidie to the light particles. Therefore it follows
that the magnitude of the thermal friction is much larger than
that of the friction at T = 0. Here wé should note thé mass
threshold effects on the thérhél friction. Generally the
magnitude of the thermal friction rapidly varies with the
temperature near the mass of the'parfible which causes the
‘frictioﬁ. When T z m, its valﬁe is much larger than that of the
friction at T = 0. However as the temperature goes down below
the mass threshoid,- it rapidly decreases and becomes negligible.
This . temperature dependence of the friction seems very important

for the time evolution of the order parametér in the inflationary
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phase transition.

In the minimal SU(5) inflationary Universe scenario, the
massive gauge boson and 5-dimensional Higgs ootentially'cause the
thermal friction. However since the reheatinq temperature is at
moatnone order of magnitude smaller.than M, , contributions from
the massive Qauge boson is négligibly small. Thus we.can
concentrate our attention'onvthe effects which come from
5-dimensional Higgs H.

Taking account of rapid change of the thermal friction near
the mass threShold, we can suggest the possibility which might
saventhe SU(5) new inflationary Universe scenario from the
difficulty: When the order parameter & approaches to the
~SU(35 x SU(2) x U(i) minimum after a few oscillations around the
SU(4) x U(1) minimum, the strength of the thermal friction force
rapidly increases and ¢ settles down to the SU(3) x suU(2) x U(1)
minimum without trayeling around Ehe minima many times. It seems
that the value of thé,S—dimensional Higgs mass crucially
determines whether the abové scenario successfully works oxr not.'b

The proposed solution for the difficulty of the SU(5) new
inflationary Universe scenario is still tentative. Further
quantitative investigation should be carried out for the

elaboration of this scenario by means of the proposed‘solution.

- 72 -



§5. Summary and Discussion

After reviewing the inflationary cosmology we have
investigated the reheating problem at the final_stage of the new
inflationary Universe scenario. |

We have derived the evolution equatioﬁ of the order
parametér 3 and»evaluaﬁed the magnitude of fhe friction térm'
which‘appears in the obtained equation for &. Numerical
calculation has shown that the value of the friétion term is too
small so that the order parameter 3 tra&els around many minima of .
the C-W potential as shown in Fig.11. 'This>resulf heans that the
.Universé; would be fragmented into many SU(3) x SU(2) x U(1) .and
SU(4) x U(1) symmetric walds by the tiny fluctuation of .the
order parameﬁer associated with the initial state. It follows
that large scale inhomogeneities appear. |

However thermal effects on the.friction may be significant,'
since it is also shown by numerical éalculatidn that the
effective temperature ,Of the Universe Teff 9grows up to; Teff v
(5 x 10'2 - 10'1) M, in the final stage of the rolling down phase
transition of the Universe. Therefore it may be bossible that
wheﬁ‘thé order‘paraméter 3 approaches to the physical
SU(3) x SU(Z)_X U(1) minimum the strength of the friction force
significantly increases and § settles down to this minimum
Without traveling around the minima many times.

It seems that dominagf contribufions to the thermal friction
comes from.the 5—dimensioﬁéivHiggs field which is probably easy
to be thermally excited. Therefore the.value ofv:fts mass

crucially determines whether the thermal friction can make the
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 order parameter terminate at the SU(3) x SU(2} x U(1) mihimum
without traveling»around the minima many times or not. Further
quantitativé investigation is needed to obtain a definite
-‘cbnclusion about the success or the>failure of the _SU(S) new
vinflatidnafy modél,’though the analysis ofithe intérmediate
region _ffom zZero temperature to the finite témperature wduld be
complicated. |

We have'-considered the specific model of  the new
‘inflationafy Universe scenario based on the minimal S8SU(5) C-W-
potential. However our method can also be applied to the
reheating problems'of other versions of the ’ihflationary
Universe. Especially it is important to estimate the reheating ,
temperature Ty in the Chaotié inflationary Universe scenario in
the context of N = 1 supergravity, since Tr sﬁbuld be
sufficiently low so that the gravitino probiem is solved‘by
suppreésion of.thefmal gravitino productions [64].

One may wonder why~we did not discuss anomalous behavior,of
quantum fluctuations of scalar field <¢2> in the aemsittef space
which succeedingiy émerges after the initial'Friedmann Universé'
stage‘in the inflationary Universe scenario [54,68,70].' Seve#él_
'authorsvdiécussed its consequences to inflationar? Universe
scenario [71]. However their arguments do not seem to be
convincing from the similar reason as the one which we.previously
mentioned in the case of the sourcé of the density perfurbation.:'
Thus we have notrtouchedvupon this subject in order to évoid the
possible confusion.

In this thesis we have diséussed the effects of the friction
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only in casés_which are concerned with the thermalization of
Universe. However there is another processes in which the
friction may p;ay an important role, e.g. tunneling processes. It
is shown that in ordinary cése in flat space-time "a tunneling
amplitude is reduced by the friction [72]. Thus_we might have to
take account of. this effects in the discussion of the bubblé
formation at the early stage of the inflationary phase
transition. }Furtherﬁore the effects of the friction (or particle
creation) seem to enhance é probability of évtuﬁneling in
gravitational cases t73]. Therefore these effect might become
significant in Quantum cosmology [74].

As shown in this'thesis, the inflationary cosmology is still
far from a completion. However its basic idea is Very attractive
and seems to be aéproved as a probable scenario which solves the
fundamental préblems of the standard cosmology. The research
efforts are now going on in order to elaborate the inflationary
Universe scenarios. In the author's opinion it is sure that the
methods which we have developed in this thesis will have an

important role for that purpose.
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Fig.1

Fig.2

Fig.3.

Fig.4

Fig.5

- Fig.6

~Figure Captions

Some‘important stages of evolution of the Universe. The

~ temperature of the Universe is T and t denotes the age

of the Universe after the bang.

A schematic description of the Higgs effective potential

which leads to a strongly first-order phase transition.

An illustration of bubble collisions at the final stage
of phase transition. The hatched reqions represent

trapped false vacuum regions.

(a) Schematic description of the C-W potential Vogg at

T << o, and (b) its shape near the origin. The arrow

~ represents a tunnelling with the bubble formation.

The eVolution of the horiion (zH‘1) and the physical size
of perturbationé on.the scale of a galaxy (XG) and on the
scale of  the present observable Universe (AH) in  the
inflationary Universe. The broken line shows ’thé.

evolution of H‘1 in the standard cosmology.

A contour map of the SU(5) C-W potential for the case of
c =1 onithe (X}Y)-plane. Four * énd.two [0 represent

SU(4) x U(1) and SU(3) X SU(2) x U(1) minima
respectively. The angle 0 indicates deviation from bthe

SU(4) % U(1) direction.

- 82 -



- Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

Time eVolution of the order parameter -is displayéd for
three typical cases; (a) for the case C = 1, n = 0.01
and ¢ = 0.2n, (b) for the case C = 1, n = 0.001 and o =

0.2n, (c) for the case C =1, n = 0.005 and ¢ = -0.17. -

Canqellation of the»tad'poleAgontribution by the source.

-

term.

Skelton expansion for the full propagator Dy

Feynman diagram for the wvacuum polarization Huv'

Typical casé of time evolution of the order parameter is

displayed on the (X,Y) plane. The values of the fraction

€ is also shown for three stages; at |§]| ~ 1010 GeV, at

the SU(4) X U(1) minimum and at the SU(3) x SU(2) x U(1)

minimum.
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