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1. Introduction

We consider a statistical prediction problem which is
invarlant under a certain group of transformations and
present three different methods to construct the best
invariant predictor; the first method uses the invariant
measure on the group, the second uses an adequate statistic
and the third goes via the best unbiased predictor.

In Section 2, we define the statistical prediction problem
and state some results which are used 1in subsequent sections.
In Section 3, we consider the problem treated by Hora
and Buehler [9], which gives a representation of the best
invariant predictor by using the right Haar measure on the
group. We extend the assumptions used by them and discuss
conditions required to satisfy the assumptions. Under the
conditions, we present an alternative expression of the
best invariant predictor which is more suitable for applications.
In Section U4, we express the best invariant predictor by
using an adequate statistic. Such a statistic is known to
play the similar important role in prediction problems as

a sufficient statistic does in ordinary statistical decision
problem (see e.g. Skibinsky [18] or Takeuchi and Akahira [27]).
We shdw that the ciass of invariant predictors based on the
adequate statistic is esséntially complete in the class of all
invariant predictors under some mild assumptions. This result

enables us to obtain the best invariant predictor based on



the adequate statistic.

In Section 5, we show that the best invariant predictor can
be expressed by a linear combination of the best unbiased
predictor and the uniformly minimum variance (U.M.V.) unbiased
estimator under several assumptions. This result may be useful
to obtain the best invariant predictor, provided that the best
unbiased predictor and U.M.V. unbiased estimator are easily
found.

Throughout this thesis, same examples are considered and the
best invariant predictor for each case is obtained by each of
three methods except for the combination of the second example
and the third method.

The contents of this thesis are extentions of those in [22],

[23] and [24].



2. Group invariant structure of the prediction problem

Let X be an observable random variable and Y a future
(therefore unobservable) random variable. Let (f, ) and
CB ,& ) be sample spaces of X and Y, respectively. Let
(F, )=(AxY, =€) ana P =(p,; 0c0} be a family of
probability measures on (§2,5i) such that Z=(X,Y) is
distributed according to Pe, 0e®, and 0O a parameter space.
Let (? be a group of one-to-one transformations acting on
the spaces %; Z‘and @, mapping each onto itself, and let

C] be a group of transformations on é
<

Assumption 1. G\ls invariant under C\ that 1is,

Poo(sh) = Py(h), Aesl, ge(, oeo

and g& satisfies that

(2.1) g(x,y) = (gx,lg:x]y), ge:@, xe ¥, ye'y ,

~

where [g;x]e Ca.
¢

After observing X=x, we want to predict the value of Y. A
non-negative loss function L(d,y,0) defined on(g X%}xe
represents the loss of erroneously predicting Y=y by the

value d under the true value 6.

Assumption 2. L is invariant under ga, that 1is,
(2.2) L(lg;x1d,[g;x]y,g6) = L(d,y,6)

for all 4, x, y, 6.

A randomized predictor § will be defined as follows:

for each X€}fa 5(,[x) is a probability measure on (%9,6/)



and for each Ce(, §(C|.) is [ -measurable. The risk function
of § is given by

(2.3) R(6,8) = Ee{fL(s,Y,S)S(dle)}, Be0.

Definition 1. A predictor § is said to be invariant under_{}
if for any xe¥f, ge(g and Ce (,

(2.54) s(Lgsx]Clgx) = 8(C|x).

On the other hand, a non-randomized predictor § is invariant
under ga if for any xeif and ge qg,

(2.5) §(gx) = [gsx]8(x).

A very important property of an invariant predictor is that
its risk function is constant on each orbit. More precisely,
we have the following lemma, which can be proved similarly

as Theorem 1 of Ferguson [5], p.190.

Lemma 1.([22]) If Assumptions 1 and 2 hold, thewn for any
invariant randomized predictor G,

R(6,8) = R(g0,8), 60, gej.

Definition 2. An invariant predictor is said to be best if
it minimizes (2.3) among all invariant randomized predictors

for each 6¢€0.
Assumption 3. 0 1s isomorphic to C}.

Let 690 be the point corresponding to the identity element
e of g}. The isomorphism is established by 6=g6, 1f 6€O0
corresponds to ge E). It will often be notationally convenient

to index C} by the corresponding point of 0. Thus in the
\S
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expression "e“ls", 6! stands for the point g for which

g0=0653, where 6 and 6, Jjust written have their ordinary
meaning. Which meaning is to be attached to a symbol will
be clear from the context.
Then from Lemma 1, the risk function of an invariant predictor
is counstant on O, that is, |

(2.6) R(6,8) = R(6,,8), 6e0.

Suppose ﬁ- is a group of transformations acting on some

space j; and let ho be the identity element of ﬂ\.

Definition 3. ﬁL is saild to act freely on j@ if h#he implies

hd#d for any de % and he #

~

Assumption 4. C} acts freely on/% .

L9

The following lemma states a basic property of the transformation

[g;x] introduced in (2.1).

Lemma 2.([24]) If Assumption U holds, then for g, g'sc Q} and

¥

(2.7) le'gs;x] = [g';ex]leg;x],
(2.8) [g3x]™ = [g7tsex].
Proof. By (2.1),

g'(g(x,y)) = g'(gx,[g;x]y)

= (g'gx,[g"s5ex]lgsx]y).
Since this is equal to (g'gx,[g'g;x]y), we have (2.7). Set

g'=g_l in (2.7). Then by using the fact that [e;x]=& where



€ denotes the identity element of ga , (2.8) is obtained.

In the subsequent sections we shall present three methods
to construct the best invariant predictor under Assumptions

1 to 4.



3. Construction method by Haar measure

In this section, we shall extend the assumptions used by
Hora and Buehler [9] so as to be able to treat such a structure
as (2.1) and express the best_invariant predictor by using
Haar measure on the group. We also discuss a set of sufficient
conditions for the assumptions and obtain an alternative

expression of the best invariant predictor.
3.1 Construction of the best invariant predictor

Assumption Al. (% is a locally compact topological group

with a o-field ./ .

Let p and v, respectively, denote the left and right Haar
measures on (g},l;) and A denote the modular function, which
is a continuous homomorphism of g]into the multiplicative

group of real numbers such that for all Beflj and ge Q},

i
1l

u(gB) u(B), v(Bg) v(B),

]
il

w(B™h,  alg)u(®)

(see e.g. Nachbin [171).

v(B) u(Bg)

Assumption A2. There exist a space}/{ and a one-to-one
bimeasurable map . m from f% onto g}xs/%'such that if w(x)=(h,a),

then w(gx)=(gh,a).

Usually, /W’is the sample space of the maximal invariant
statistic defined on f% with respect to gj.

To simplify the presentation, we shall put x=(h,a) and



gx=(gh,a) if w(x)=(h,a).

By (2.1) it is easy to see that the family of probability
distributions of X induced from 63 is invariant under CB 5
so that Assumptions 3 and A2 imply that the probability
measure on\}{ induced from X does not depend on 6£0. Hence

we shall denote i1t by A.

Assumption A3. There exists a relatively invariant measure
£ on (@1,5_) with modulus J, i.e.
£(EC) = J(B)E(C), Be (G, Ce ¢,

and for any ge(}, J([g;x]) does not depend on xe . .

Therefore for simplicity, we shall write J(g) instead of

J(lgs;x]).

Assumption A4. The density function of X with respect to

uUXA can be expressed in the form

(3.1) £ h,a), ne(j, ae M, oco,
whereas, given X=x, the conditional density function of Y

with respect to & can be expressed in the form

-1 -1 -
(3.2) ([0 xlylo T x)ace™h), ye'Y . xe¥, oco,
where fl(h,a) and f2(ylx) are the density function and

conditional density function under Peo, respectively.

Now we shall express the best invariant predictor by using

the Haar measure v. For this we need the following lemma.



Lemma 3.([24]) If Assumptions 1 to U and Al to AL hold and

1f § <8 an invariant predictor, then for any heqa R
R(80,6) = A(R)SSF{SL(s,y,0)8(ds|h,2)}r (87 h,a)

x£,([07 sh,2ly |07 h,2)J (87 1) A(da)v(de)g(dy) .

Proof. By setting 6=6, in (3.1) and (3.2), it follows from
(2.3) that
R(6v,8) = S/f{/L(s,y,080)8(ds|g,a)}f{(g,a)f,(y]g,a)
x A(daju(ag)e(dy)
(3.3) = A(h)fff{fL(s,y,Go)S(ds}g'h,a)}fl(g'h,a)
‘xfg(yig'h,a)k(da)u(dg')E(dY),
where the second equality follows from the transformation
g=g'h and the fact that p(dg)=A(h)u(dg').
The invariance of L and § (see (2.2) and (2.4)) implies that

SL(s,y,80)6(ds|g'h,a) = SL([g';h,als,y,0,)8(ds|h,a)

fL(s,Lg';h,a]_ly,g'_l)s(dsih,a),

1

so that after the transformation y’=[g';h,a]_1y, we have

from (3.3) that
R(84,8) = A<h)fff{fL(s,y',g"l)a(dslh,a>}fl(g'h,a)

xf,(Llg"'sh,aly'|g'h,2)J(g"')r(da)u(dg')E(dy ")

1

Then by the transformation 6=g' ~ and the fact that v(de)=p(dg'),

the theorem has been proved.

On the basis of Lemma 3, we shall prove the following result,

which is an extension of Theorem 2 of Hora and Buehler [9].



Theorem 1.([24]) If Assumptions 1 to U4 and Al to A4 hold
and 1f there exists a non-randomized predictor &*¥ such that
fof each x=(h,a), 8¥(x) is the unique value of d which
minimizes
-1 S R | -1
(3.4) ffL(d,y,O)fl(G h,a)f2([9 sxlyle "x)J(e ")v(de)e(ay),

then 8% is the best invariant predictor.

Proof. First we shall show that &% is an invariant predictor.
Substituting gx=(gh,a) in place of x=(h,a), and using the
transformation 6=g6' and the fact that v(de)=A(g"l)v(de'),

we can write (3.4) as

(3.5) Mg M) SL(s,y,801)T,(8 TTh,a) £, ([(g8") Tsgn,alyler " h,a)
<3 ((g8 ') yv(aer)e(ay).
Since by (2.7) and (2.8)
[(g6') *5gh,a] = [6' 1;n,21g  ;8h,a]
= (6" h,allg;h,a]"t
and J((ge')—l)=J(g—l)J(e'_l), after the transformation
Y'=[%;h,a]—ly, (3.5) becomes
- -1 _ - -
A(g_l)ffL<[g;h,aJ EEFRAPLADESRC L lh,a)fz([e' 1;h,a]y'|9' th,a)

x3 (81 1)v(de " )E(dy ),
where we used (2.2). Hence from the definition of &% we obtain
that 6¥(gx)=[g;x]8¥(x), which implies that &% is an invariant
predictor.
Now, we shall show that &% is the best invariant predictor.

From Lemma 3 and Fubini's theorem, it follows that for any

- 10 -



invariant predictor ¢,
R(80,6) = A()ST{SSL(s,y,8)7 (67 h,a)f,([67 sn,a]y]e  h,a)
x3(671)v(de)€(dy) }6(ds|h,a) IA(da)
> A(n)S[SSL(8*(n,a),y,0)f, (67 h,2)1,([67 3h,aly |67 h,a)

xJ (8™ 1)v(as)E(dy) In(da)
= R(e():a*)

Hence from (2.6) we have the result.

Remark 1. From this theorem it turns out that the best

invariant predictor ia non-randomized (cf. Kiefer [13], p.579).

3.2 Alternative expression of the best invariant predictor

The main difficulty in applying Theorem 1 to a specific
prediction problem is to verify Assumptions A2 and Al, so

that we shall present a set of sufficient conditlons for them,
assuming always Assumption A3. This enables us to rewrite the
best invariant predictor in a form which is more tractable

for some applications.

Condition 1. There exists a relatively invariant measure n
on (¥,0B) with modulus y and (;)is dominated by nx& and the

density function of Z=(X,Y) can be expressed by
(3.6) y(e~hseHp(etz), ze %, oco.

Then from (2.1) the density function of X with respect to n

- 11 -



is given by

(3.7) _Y(e_l)pl(G_lx), xe' X, 0€0,

where pl(x)=fp(X,Y)€(dy)-

Definition 4. Be @? is said to be a Borel cross-section if

it intersects each orbit Sg x={gx; gqu } precisely once.
Condition 2. There exists a Borel cross—section Be (R

Condition 3. 93 is a separable complete metrizable locally
compact space and <3 is a separable complete metrizable
locally compact topological group acting continuously onff

(i.e., the mapping (g,x)>gx is continuous on Q}Xff ).

Then the following lemma holds. For a proof, see Theorem 1

of Bondar [3].

Lemma 4. If CJ acts freely oni{ and Conditions 2 and 3 holds,
then Assumption A2 i1s satisfied with‘}( =B, and 1f £ is a real-
valued function which 18 integrable with respect to n, then

(3.8) fxf(x)n(dx) = fBoc(da)fgf(ha)y(h)u(dh)

for some o-finite measure o on B.
Using this result, we shall show Assumption AL,

Lemma 5.([24]) If Conditions 1 to 3 holds, then Assumption AQ
18 satisfied by taking B asv/{ » and

(3.9)  £,(67 n,a) = y(67 h)p; (67T x) /Sy (g)p, (ga)u(de)

- 12 -



and

(3.10) £,([07 xdy e x) = po™ (x,5))/p (6710,
where x=ha.

Proof. From (3.7) and (3.8), the density function of X with

respect to uxo is given by y(e—lh)pl(e—lha). Since
-1 -1
Jy(6""h)py (6 "ha)u(dn) = Sy(glp,(ga)u(de)
and this 1s the density function of A with respect to o, we

have (3.9). From (3.6) and (3.7), (3.10) is obtained.

Theorem 2. ([241) If Assumptions 1 to U, A3 and Conditions

1 to 3 hold and if there exists a nomn-randomized predictor &%
such that for each x, §¥(x) is the unique value of d which
minimizes

(3.11) FrLd,y, 0y (0™ ae ™ Hp(e T (x,y) ) v(ae)e(ay),

then 8% 1g the best invariant predictor.

Proof. From Lemmas 4 and 5, Assumptions in Theorem 1 are

satisfied. Therefore from (3.9) and (3.10), (3.4) is equal to
JIT(d,y,0)v(6 7 h)p(e ™ (x,5)) (67 v(ae)E(dy) /fy (2)p, (ga)u(dg)
= {y(n)/sy(2)py (gadu(dg) HIL(d,y,0)y(e ™) I(e™h)
xp (8™ (x,y))v(d6)E(dy),
since y(e'lh)=v(e"1)y(h). Therefore we have the result.

Condition 4. qg 1s p-dimentional Euclidean space and (a is

a group of affine transformations on qﬁ such that g=(b,B)

- 13 -



implies gy=b+By, ye?ﬂ, where b is a p-dimensional vector

and B is a pXp non-singular matrix.

The group operation of (% is defined by

(3.12) (by,By)(b,,B,) = (by+Byb,,B;B,),
(0,8)"% = (=B tp,B71).

Condition 5. For any ge Q} and xeF ,

(3.13) [g:x] = (1(g,x),k(g))

and for any d, y € and 8e0,

(3.14) L(d,y,8) = ||k(6™Y) (y-a)] |2,

where ||t||2=t't.

Lemma 6. Under Conditions 4 and 5, it holds that
(3.15) k(ge') = k(e)k(g), & 8'c (.

and that L[ defined by (3.14) satisfies (2.2).

Proof. From (2.7) and (3.13) it follows that

[g;8'x][g"5x]
(1(g,g'x),k(g))(1(g",x),k(g"))

(1(g,e'x)+k(2)1(g",x),k(z)k(g")),

[gg'sx]

where the last equality follows from (3.12). Since this is
equal to (1(gg',x),k(gg')), we have (3.15). From (3.13),
(3.14) and (3.15),

L([g;x1d,[gsxly,eg8) = ||k((g8) 1) {k(g) (y-a)}||°

I

| [k(e™b) (y=a) ] | 2.

il

Therefore I, satisfies (2.2).

- 14 -



Theorem 3. If Assumptions 1 to U, A3 and Conditions 1 to 5

hold, then the best invariant predictor §¥* is given by
(3.16)  6%(x) = {/r(k(0)k(8) ") Ty(e e ™ Hpo™ (x,y))v(dae)g(ay)i L
x5 (k(8)k(0) ) T Lyy (673 (6T p (87 (x,y) ) v(a8)E(ay) .

Proof. Since k(e—l)=k(6)_l by (3.15), the result is easily

obtained from (3.14) and Theorem 2.

3.3 Examples

3.3.1 The location-scale model

Let Rk denote k-dimensional Euclidean space. Supposetf =Rr"

and ﬂqum, and that the probability density function of Z=(x,Y)
with respect to Lebesgue measure on Rn+m is

o~ (n¥m) f{(xy-uw)/o,...,(x -w)/o,(y-u)/o,...,(y —u)/o}

for some known function t, where (u,c) is an unknown location-
scale parameter with the parameter space 0={6=(u,0);0>0}.
QJ is the group consisting of linear transformations g=(b,c),

¢>0, on Rn+m such that

(3.17) g(xl,...,xn,yl,...,ym) = (b+cx1,...,b+cxn,b+cyl,...,b+cym).
We adopt the loss function defined by

-2
(3.18) L(d,y,0) = ¢~ |y-a] | 2.
Then it is easy to verify Assumptions 1 to 4 and A3 and also

Coditions 1, 3 and 4. Condition 2 is satisfied by taking

- 15 -



X, =X X _-X
B={( lS g0 e ey nS) ;(Xl,-°-,xn)}3

where X=

n
x./n and 52= X (x.—i)z.
5 i i

1 i=1

[ e

From (3.17), [g;x]=(blm,cIm), where lm=(l,...,1)' and Im is

the identity matrix. Then by (3.18) Condition 5 holds.
Therefore all assumptions and conditions in Theorem 3 are

satisfied. From (3.16), the best invariant predictor is given

by
X, -} X_~H y,-H v ~H
—(n+m+
. pryomtm) e L LT )v(ae)ay
(3.18) &% (x)= ,
_ X, -H X_~U y,-H y_ -
fro-(nim+2) o 71 n L., % )v(de)dy

Ie] 3""0- .’O- 3

with v(d6)=dudo/c (see Fraser [6], p.63).

Remark 2. It is easy to show that an analogous result holds

when there 1s a location parameter only or scale parameter only.

Example 1. Denote by X.<X <...<Xn the order statistics of size

172
n from the exponential distribution with the density function,
(1/0)exp{-(x-p)/o}, x>u, o>0. We consider the problem of

predicting Xm after observing only X .5 X where 1<r<m<n.

l," r;.’
Let X=(X1""’Xr) and Y=Xm. Then the joint probability density

function of X and Y is given by

+

(3.20)

n!c_(r+1)

r
exp{-[ Z(xi—u)+(n—m+1)(y—u)]/0}
(m-r-1)!(n-m)! i=1

x{expl-(x_-1)/o]-expl-(y-u) /o137

- 16 -



for u<xl<...<xr<y and zero otherwise. Then the straightforward

calculation shows that the best invariant predictor 1is given by

m
(3.21) §%(X) = X_+(s/r) = 1/(n-i+1),
i=r+l
where
P .
(3.22) S = iEz(xi—xl)ﬂn-r)(xr—xl).

See Appendix for a proof.

3.3.2 The progrssion model
€

Let X Xn’X be indepéndently and identically distributed

12°°"2 n+l
(p+q)~dimensional random Vectors with the probability density

function with respect to Lebesgue measure on Rp+q,

(3.23) a7 te ) - 12,
where f is some known function, A is a lower triangular matrix
of order p+q with positive diagonal elements and |A| denotes
the determinant.

Suppose that 6=(u,A) is unkown. We shall denote by G(m) the
set of all lower triangular matrices of order m with positive
diagonal elements. Then 0={6=(u,A); ust+q, AeG(p+qg)}. |

The following partitions are used in the sequel:

o Ao O
s 1=1,...,n+l, u=(Al>, A= ( 11 ),
| Mo Aoy Byo

' X
€3.24) Xi=
X

R

1
where Xi and u, are px1l and AlleG(p).

We consider the problem of predicting Xi+l after observing

- 17 -



1

LSRRG S syiip

1
1 Let X=(Xp,...,X ,X

2 .
n+1) and Y—Xn+l. Define the
following transformation g on 2:,

(3.25) 8(XysennsX 5X 4

) = (b+Cxl,...,b+an,b+an+l), g=(b,C),
where beRp+q and CeG(p+q). ‘
. . p+q .
We shall view (5 as the Cartesian product R xG(p+qg) with
such group operations as (3.12). Then it is well known that

gj 1s a locally compact topological group and that the right

Haar measure is given by

p+q — s
(3.26) v(de) = 1 (a,.y~(prarl-1) g qp
i=1 **
where Aii (i=1,...,p+q) are diagonal elements of A, dp and dA

denote Lebesgue measures on RP*d ang G(ptq), respectively (see
FPraser [6], p.148).
By viewing Cj as the group defined in Condition 4, from (3.25)

we have for g=(b,C),
1

(3.27) [g5x] = (Chyx 4 1+0,55C,5)
and

_ 1
(3.28) gx = (b+CX1""’b+cxn’bl+cllxn+l)’

where the same partitions as (3.24) are used for (b,C).

We shall adopt the following loss function for this problem:
' _ -1 2
(3-29) L(dsy3e) - IIA22(d"y)|| .

By using (3.12) and (3.27) we can easily show that Conditions
4 and 5 are satisfied, and therefore Assumption 2 is satisfied.

From (3.27), J(g)=[022|, which implies Assumption A3. It is

- 18 =



clear that Conditions 1 and 3 hold. Therefore we have only
to check Condition 2 to apply Theorem 3 fo this ?roblem.
Let GEl be the sample space of (Xl,...,Xn) and the action
of (a on ?fl be

g(Xl,...,xn) = (b+Cxl,...,b+an), g=(b,C).

For this transformation group, the Borel cross-section for
the orbits in{}fl exists (see Fraser [6], p.145). Then using
Proposition 2 of Bondar [3], from (3.28) there exists a Borel
cross—-section for the orbits ian: . Hence Condition 2 is
satisfied.

Since k(6)=A22, by (3.16) and (3.23) the best invariant

predictor is given by

— _ n+l _ _
(3.30)  8%(x) = {Sf(A 5005 |4 SR il Y mu) |12 v(ae)ayd Tt
i=1
1 — —_ n+1 —
xS (Ay50,5) lylA] (1) £(}|A l(xi-u)llz)v(de)dy
1=1 >
where x=(xl,...,xi+l), y=xi+l and v is defined in (3.26).

Example 2. Let X Xn’X be independently normally

1202 n+l

distributed (p+g)-dimensional random vectors with unknown
mean y and unknown non-singular covafianoe matrix L. Let
n>p+q and 6=(p,I). The same partition as in (3.24) is used

for %.

2

We want to predict Y=X_, 1

n+1)'

1 after observing X:(Xl,...,Xn,X

This problem was considered in Ishii [11], p.482. He proposed

- 19 -



a predictor of Y given by

= ~1,.1 =
(3.31)  8(X) = %, + 5,,877(X01-%1),

where _ X
x=(

n , S S n - 1
N =z x./n, s=[1 1235 (x.-0)(x,-%)
X i=1 i=1

, i S, S0s i i
and Xl is pxl and S;; is pxp. But any justification of (3.31)
has not appeared in literature as far as the author knows. We
shall show that (3.31) is the best invariant predictor with

respect to the loss function

(3.32)  L(d,y,0) = (y-0)"(E,,=T, I771Z1,)  (y-d)

under the transformation group Qa defined by (3.25).
1
It is well known that I=AA with AeG(p+q). Therefore the
density function is written in the form of (3.23) and (3.32)

-1 2 . v -1
becomes ||A22(d—y)!| , since Ay,Ay5=E,5-E592778,,. Hence the

best invariant predictor is obtained from (3.30), which will

be shown to be identical with (3.31) in Appendix.

Remark 3. When g=1, it is well known that (3.31) is inadmissible
if p>3. This fact was first proved by Stein [19]. They can be
improved by using the estimators given in Baranchik [1] and

Takada [21].
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4. Construction method based on an adequate statistic

It is well known that the class of invariant rules based
on a sufficient statistic is essentially complete among

the class of all invariant rules under several assumptions.
For example, see Theorem 5.4.4 and 5.4.5 in Nabeya [16], p.192.
We shall show that the same result holds for the prediction
problem, using an adequate statistic in place of a sufficient
statistic. Then, among the class of all invariant predictors
based on the adequate statistic, we seek the optimal predictor,

which 1s actually the best invariant predictor.

4.1 Adequate statistic

In this section we postulate Assumptions 1 and 2 introduced
in Section 2. Let t be a measurable mapping from (ff,dg) onto

(7,U) and let T=t(X).

Definition 4. A statistic T is said to be adequate for X with
respect to (w.r.t.) Y if T is sufficient for X and, given T,

X and Y are conditionally independent.

Sugiura and Morimoto [20] provided a simple criterion which

characterizes an adequate statistic as follows.

Lemma 7. If 63 18 dominated by-A=AlXA2 where Al and A, are
probability measures on (Y, ) and (@ ,é’), respectively, then
T Zs adequate for X w.r.t. Y 2f and only <f

dPy/dX = h(x)f4(t(x),¥),
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where h(x) is (B -measurable and fe(t,y) is U x& -measurable.

Suppose the space 2{ is decomposed so that (f{,63)=(33xaé,@h§@ﬁ).

Write X=(X1,X2) and x=(xl,x2).

Assumption Bl. gﬁ is a group of one-to-one transformations
acting on both C{l and ng, mapping each space onto itself, and
(4.1) g(xy,%5,¥) = (8x,8%5,[85%x,1y), gsg,

so that [g;x] defined in'(2.1) depends on x through x,.

Let t¥ be a measurable mapping from (f{l,ﬂ?l) onto a measurable

space (T*,1*¥) and t(x)=(t*(x;),x,) for x=(xy,x,). Let (7 ,Y)
=( g*x}2,(\&*x@2).

Assumption B2. X, and X, are independent, T*=t*(Xl) is sufficient

1 2

for X; and T=t(X) is adequate for X w.r.t. Y.

1

Remark 4. If the transformation [g;x] onrg does not depend
on x, then there is no need to consider:f2 and Assumption B2

means just that T¥ is adequate for X w.r.t. Y.

Assumption B3. There exists a real-valued function Q on 69]f<ff 1
such that

(1) for any Xq€ G{l’ Q(.le) is a probability measure on <Z¥1’Q91);
(i1) for any BeQ}l, Q(B|.) is a version of conditional probability
of B given Q}t*={t*_1(U);U€1L*};

(1ii) for any Xlg%l’ Bs@l and geg,

UeBlexy) = Q(Blxy).
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Definition 5. A predictor § is said to be based on T if for

any Ce ¢, §(C|.) is (Rt-measurable .where @%=ft71(U);U€lL};

Now, we shall show the essential completeness of the class
of all invariant predictors based on an adequate statistic

among the class of all invariant predictors.

Theorem 4. ([22]) If Assumptions 1, 2 and Bl to B3 hold, then
for any invariant predictor §, there exists an invariant predictor
8o based on T such that

(4.2) R(8,8) = R(8,80), 8€0.

Proof. Define for Ce C and Xe:f,
(4.3) So(Clx) = IG(CIS,XZ)Q(ds[Xl).
Then by Theorem 1 of Takeuchi and Akahira [27], we have (4.2).
Therefore the proof is complete if §¢ is shown to satisfy (2.4).
From Assumptions Bl and B3, for any ge(ﬁ, X€f¥ and Ce(f,
§o([g;x,]C g%, ,8%,) = f6([g3x,1C]s,ex,)Q(ds |gx;)

= /8([g3x,1C|gs,8%,)Q(gds |gx)

= fS(Cls,XZ)Q(dslxl)

= SQ(C!X)

where the third equality follows from the invariance of §.

Assumption B3 is not easy to verify. The following lemma
which was obtained by Hall et. al. [8], Theorem 7.1, may be

useful to verify it.

Lemma 8. ?El is a Borel subset of R" and Q;l the Borel o-field
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of Gfl. Let fe be the density function of Xl w.r.t. Lebesgue
measure on R such that

fo(xy) = hix)gy(t*¥(xq)), xleifl, 6e0,

where t¥* is a measurable function from 351 into Rk (k<n)with
the range fj*, h and gg are positive real-valued measurable
funetions on ffl and ¥, respectively. Let G}t*={t*_l(U);U€1L*}
where ﬂ&* 18 the Borel o-field of 7’*. Suppose that there is
an invariant open set Baﬁ?t* of(y)—measure 1l suceh that on B

(i) for each ge Q}, gx, s continuously differentiable and
the Jacobian depends only on t*(xl);

(11) for each ge({, t¥(xq)=t¥(x,) implies t¥(gxy)=t¥(gx,);
(1id) t*(xl) 1s continuously differentiable and the matrix
ll[at*j(xl)/axli]; j=1,...,k, i=1,...,n|| is of rank k, where

— * = ¥ ¥ .
Xy (Xll""’xln) and t (Xl) (tl(xl),...,tk(xl)),
(iv) for each ge(ﬁ , h(gxl)/h(xl) depends only on tl(xl).

~.

Then Assumption B3 holds.

Next we shall show that the class of all non-randomized
invariant predictors is essentially complete among the class

of all invariant predictors.

Assumption B4. qg is RP and L(d,y,8) is a convex function of

d for each yqu and 0e¢0 and L(d,y,8)»>= as ||d|]|>=.

Assumption Bb. C}contains only linear transformations, that is,
[N
transformations of the form gd=Bd+c where B 1s a pxp non-singular

matrlix and ceRp.
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Assumption B6. There exists a non-randomized invariant

predictor based on T.

Theorem 5. ([22]) If Assumptions 1, 2 and Bl to B6 hold,
then for any invariant predictor § there exists a non-
randomized invariant predictor 8§* based on T such that

R(6,8) > R(8,8%), 6e0.

Proof. Define 6% by

(4.4) §¥(x)

Il

[s80(ds|x) it fl]s]|]|8e(ds|x)<=

P(x), otherwise,
where 6, is given by (4.3), ¢ is a non-randomized invariant
predictor based on T which exists by Assumption B6 and

[s8,(ds|x) = (fslﬁo(dslx),...,fspdo(dslx)).

‘Suppose first R(8,8p)<«. Then from (2.3)
SL(s,Y,0)8,(ds|X) < = a.e. [(P].
Therefore from Theorem 1 and Remark in Ferguson [5], p.78
and Assumption Bl, we have
Slls]]80(ds|x) < o a.e. [D1,
and hence by Jensen's inequality
L(8*¥(X),Y,0) < SL(s,Y,08)80(ds|X) a.e. [ {1,
which implies that
(4.5) R(6,8%) < R(6,80), 6e0.
On the contrary, if R(6,8y)=x, it is clear that (4.5) holds.
Hence from (4.2) the proof is complete if &% is invariant, that

is, 6*(gx)=[g;x2]6*(x) for all geCj and x=(Xl,X2)eSf.

From Assumption B5 and the invariance of &§,, we have
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(4.6) sto(ds]gxl,gxz) = f[g;X2]SSG([8;X2]@S|gX1>gX2)
[g;x2]fséo(ds|x),

which implies that J||s||8c(ds|gx)<= if and only if [||s]|]|8e(ds|x)
<o, Then from (4.4) and (4.6) it follows easily that &% is

invariant.

Remark 5. Theorem 5 implies that if a non-randomized invariant
predictor based on T 1s best among the class of all non-randomized
invariant predictors based on T, then it is the best invariant

predictor.

4.2 Construction of the best invariant predictor

In this section we shall construct the best invariant predictor
based on an adequate statistic.

Let t be a measurable mapping from (¥ ,B) onto (7 ,UW) and
suppose that T=t(X) is an adequate statistic and that Assumptions

1 to 4 in Section 2 hold.
Assumption B7. For any ge(}, t(gx)=t(gx') whenever t(x)=t(x').

Then we can define the action of g} on :T by
gt' = t(gx)

for t'e i] and x satisfying t'=t(x).
Assumption B8. For each ge C%, [g3;x] depends on x through t(x).
Y

Therefore in this section we shall write [g;t] instead of [g;x].

Then under Assumptions B7 and B8, a predictor based on T is

- 26 -



invariant if and only if
(4.7) s(lestlclat) = s(cle), cel, te], gely .
Suppose that t is decomposed so that t(x)=(t1(x),t2(x)). Let

(ki’l’Qil) and ( TTZ’ ILz) be the sample spaces of T1=tl(X)

and T2=t2(X), respectively.

Assumption B9. The action of C} on both i]l and ijg can be

defined so that

(4.8) gt = (gty,8t,), t=(t,t,0e ], g(§ .
Assumption B1O. tji is isomorphic to g}.

Fix toeijl and we shall denote by 8 € g; the action such that
1

gtlto=tl for tle tfl'

Setting g=g;1 in (4.7), we have from (4.8) that for any
1

invariant predictor ¢ based on T,

_.l. -1 _ .

so that after the transformation S'=[g€i§t]s we have

i _ ' -1, -1 ' -1

(4.9) SL(s,y,00)8(ds|t) = JL(s',[g "5tly,g )d(ds' [to,g  t5),
1 1 1

where we used the invariance of L (see (2.2)).

Let Wy be the mapping from fj to CIZ such that

- -1 _
(4.10) wl(t) =gty t—(tl,tz),

b1
be the mapplng from.f]x %j to Qd such that

and let w c

2
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(4.11) Wz(t:y) = [gt Jt]y
1
Then by (2.8), we have
-1
(u-12) W2(t:y) = [gt:L;tO:Wl] Yo

and from (4.9) we obtain that

(4.13) fL(s,y,eo)S(ds]t) = [L(s,w 1)6(dSlto,W
1

23gt l).

Assumption Bll. The mappings, Wy and W, are measurable.

Let Wl=wl(T) and W2

have that for ahy invariant predictor § based on T,

=w2(T,Y). Then from (2.5) and (4.13) we

(4.14) R(6,,8) = E O{IL(S,W

)

g,géi)S(dsito,wl)}.

Now, we have the following result.

Theorem 6. If Assumptions 1 to U4 and Bl to B3, B7 to Bll hold
and i1f there exists a mapping h from tjg to qg such that h(wl)

18 the value of d which minimizes

-1
EeU{L(d,wz,ng)lwl},

where E {.[Wl} denotes the conditional expectation given W,,
0

0
then the predictor §* defined by

(4.15) §¥(T) = [ng;to,wllh(wl)

is the best invariant predictor.
Proof. From (4.14) and Fubini's theorem, we have

R(8,,8) = E

eo[fEeo{L(S’WZ’gT

Dyl Ys(as|to,up)]
1
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v

_ , . . -
EeoLIEeo{L&h(le,Wa,ng)IWl}d(dslto,wl)J

; : ~1
Combining the invariance of L with (4.12) and (4.15),

.

l)

L(h(wl),wz,ggl = L(8*(T),Y,80),

so that we have R(8,,8) > R(6,,6%). Therefore from (2.6) and
Theorem U4, the proof is complete if it can be shown that &%
is invariant.

* = 1 ' =
Using the fact that gg'tl g gtl and wl(g t) wl(t) for gvegi,

we have

W

s¥(g't) [g'gtl;to,wllh(wl)

[l

[g';t][gtl;to,wl]h(wl)

i

[g';t18%(t),
where the second equality follows from (2.7), which proves

the theorem.

Corollary. Under assumptiéns in Theorem 6 and Conditions 4
and 5 in Section 3.2, the best invariant predictor is given by

S¥(1) = kg (i) + Lgg »bo,Wy)

and

, L SN e ~1 : ! .
(4.16) h(W,) =:[Eeo{k(gT1) k(ng}lwl}] By, {k(gp ) kgng)welwl},

1

where W, and W

1 , are given by (4.10) and (4.11), respectively.

Remark 6. For the problem of prediction region, Ishii [12]
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obtained the expression of the best invariant prediction
region based on an adequate statistic. But his final result
(Theorem 1 in [12]) is not correct without an additional
assumption. Therefore in [25] we have given the corrected
result and also shown the essential completeness of the class
of invariant prediction regions based on an adequate statistic

among the class of all invariant prediction regions.

4.3 Examples

In this sectlon we shall consider again Examples 1 and 2 in
Section 3.3 and construct the best invariant predictor for each

case by using the corollary.

Example 3. We consider Example 1 in Section 3.3. Using Lemma 7
and (3.20), an adequate statistic is given by

T = (X,8,%.)

where S 1s defined in (3.22).

We shall first verify Assumptions Bl to B3 and BY to Bll. In
this case E¥:2 is not needed since the transformation on'g

does not depend on x. Therefore Assumptions Bl, B2 and B8 are
trivial. We shall prove Assumption B3 by using Lemma 8.

Let ¥ ={x; X7< ...<x_}. Then the probability density function
of X=(Xl,..;,Xr) is given for xe ‘¥ by

r

1 -
o o Texpl—( Z(Xi—u)+(n—r)(xr—u))/0]
(n-r)! i=1
for H<xy and zero otherwise. According to Lemma 8, let h(x)=1
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and

n!

hor) ! c‘rIu(Xl)exp[-(s+n(x1_u))/g],

ge'(.t) =
where Iu(x1)=l if ﬁ<xl and zero otherwise. Then by defining
(tl’tZ’t3)=(x1’S’Xr>’ it follows easiliy that the matrix
D(x)= ]I[ati(x)/axj] ;i=l,2,3,»j=l,...,r|| is of rank 3 and
other conditions in Lemma 8 also hold. Therefore Assumption B3
is satisfied.
Define t(x)=(xl,s,xr). Then Assumption B7 holds and the
action Ca on :T becomes

g(xl,s,xr) = (b+cxl,cs,b+cxr), g=(b,c).

Taking Tl=(Xr’S) and T2=X1 in Assumption B9, it follows
easily that Assumption B1l0 is satisfied with 8 =(x_,s8)e (3
1 T <

and t,=(0,1). By (4.10) and (4.11)
Wy o= (Xl—Xr)/S

and

W2 (Xm—Xr)/S’
so that Assumption Bll holds. Therefore the best invariant
predictor can be obtained from Corollary of Theorem 6.

It is well known that for lfifn the set of random variables

(4.17) Zi ='(n—i+l)(Xi_Xi—l)’ i1=1,...,n

(where Xp=p) are mutually independent with pdf, (1/c)exp(-x/0),
x>0 (see Lemma 3 in Epstein and Sobel [4]).

Using the Zi's,

r r
Wl = - Z./(n-1i+1)8, S = I Z

A | .

i=2 i=
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It is easily seen that S is complete and sufficient for

(22""’Zr)’ so that W. and S are independent by Theorem

1
of Basu [2]. Since
’ m
X -X. = % Z./(n-i+1)
mor i=p+17t ’
X -X, is independent of (wl,s), so that Wl and W2 are independent.

Therefore from (4.16) and k(gT )=3,
1

1

h(W,) {Eeo<s2|wl)}“1~5

2
eo{s Wy Wyl

2
0S W2.

1

2,=1
{EGUS } Eg

Simple calculation at 6,=(0,1) shows that

E S2 = r(r-1)
Bo
and
5 m
Eg S7W, = (r-1) £z 1/(n-i+1),
0 i=r+l
so that we have
-1 =
h(wl) = r r 1/(n-i+1).
i=r+1

Hence from Corollary of Theorem 6, the best invariant predictor

is given by
m
§*¥(X) = X_ + (S/r) z 1/(n-1i+1),
r .
i=r+l

since k(gT )=3 and 1(gT ’t°’wl)=Xr'
1 1

Example 4. We consider Example 2 in Section 3.3. From Lemma 7,

it 1s easily seen that
L)

(H.18) T = (X,S,Xn+l
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is an adequate statistic. First we shall verify Assumptions

Bl to B3.

1

Let Ckfl and Sf2 be sample spaces of (X b1

1”"’Xn) and X

respectively in Assumption Bl. Then from (3.25), (3.27)‘and
(3.28), Assumption Bl holds. Define T¥=(X,S). Then (4.18)
implies Assumption B2. Hall et.al. ([8], p.611) showed that
the conditions of Lemma 8 are satisfiéd, which implies
Assumption B3.

Now, we shall verify Assumptions B7 to Bll. By setting

1

Tl=(2,S) and T2=Xn+l’ it can be easily shown that Assumptions

B7 to B9 are satisfied and

- 1
(4.19) gt = (b+Cx,CsC',bl+Cllxn+l), g=(b,C).

Assumption B10 holds and

gp = (LA, Tp=(T8)

where S=AA' with AeG(p+qg) and t,=(0,I). By (3.12),

- 1y -1
en. = (-ATX,ATh),
1
so that using -1
-1 A1 0
A =
ATt a7l a7t

22721711 22
with the same partition as in (3.24) for A, we obtain that
from (4.10) and (4.19)

1 ~
n+l—Xl)

w. = a7l

1 11X

and from (3.27) and (4.11)
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To-A ATT(xY %)},

“lixe -
n+l "2 21711 "n+l 1

Wy = Ass

Therefore Assumption Bll holds. Hence by applying Corollary

of Theorem 6, the best invariant predictor can be obtained.

Since k(gT )=A22,
1

' -1
(4.20) h(w,) = {Eeo(A22A22[W1)} Eg. (A22 5ol W)
. - 1 l
It is well known that (X, Xn+l’Y)’ 822 821811 12 and (821,811)

are mutually independent and under 6,=(0,I) the conditional

2 = . = 1 -1 .
means of Xn+1-—X2 given (Xl,Xn+l) and that of 8,3 given

21°11
Sll are both zero (e.g. see Theorem 6.4.1 in Giri [7]1). Since
S..=A__A.., S..-S..S”Ys. _=A__A . and S..STt=p a7l
1178118112 0075018115107 00h00 21711780111
E. {A. 1%, ,xt A} = (E, A.)E, {X° . -X -A_ ATT
0, AoohooWol X X 4q58qy 0,000 By 1 X1 %o Bo A7
1 S .1
X(Xp 1K) [ Xy 5% g 5Rq, )
:O,

which implies h(wl)=0 from (4.20). Hence the best invariant

predictor 1is given by

6*(X) = l(gT :tOJWl)
1
o “1,.1 =
= Xp+8,98 7 (X%
. _ < -1 .
since l(ng,to,Wl)—A2lW1+X2 and A2 w 821811 This result

coincides of course with (3.31).
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5. Construction method via the best unbiased predictor

In this section we explore the relation of the best invariant
predictor and the best ﬁnbiased predictor. By using this
relation, we can construct the best invariant predictor.

Assume here Assumptions 1 to U4 in Section 2 and Conditions
4 and 5 with 4 =R', that is,

(5.1) Le;x]y

(5.2) L(d,y,0)

k(g)y+l(g;x),

(y-a)2/x(a)?.

i

Since the loss function is convex, 1t 1s easily shown by a
similar argument as. in the proof of Theorem 5 that the class
of non-randomized invariant predictors is essentially complete
among the class of all invariant predictors. Therefore we

shall confine our attentlions to non-randomized predictors.

5.1 Best unbiased predictor

Definition 5. A statistic 8§(X) is said to be an unbiased
predictor of Y if

Eg8(X) = E Y, for all 0e0.

Definition 6. An unbiased predictor is said to be best if
it minimizes Ee(Y-S(X))2 for all 60 among the class of all

unbiased predictors.

The following lemma due to Takeuchi ([26], p.13) is useful

in obtaining the best unbiased predictor.



Lemma 9. If a statistic T(X) is complete and sufficient for

X and

Eq(Y]|X) = h(X) + u(e,T),
h being independent of 6, and <1f an unbiased predictor § of
Y exists, then 8¥=E(S8|T) is the best unbiased predictor.
Let So={v; Eey(X)=O, EGYZ(X)<w for all 6€0}. Then the following
lemma is well known (e.g. see Theorem 3.3.1 of Zacks [28]).
Lemma 10. An unbiased estimator o¥(X) Zs a uniformly minimum
variance (U.M.V.) unbiased estimator of k(0) if and only Zif

for any 0€0 and <yeSy,
(5.3) Eglo*(X)y(X)} = 0.

For the prediction problem, Ishii [11] obtained the following

result.

Lemma 11. An unbiased predictor 8% is best if and only if
for any 6€0 and yeSy,

5.2 Construction of the best invariant predictor

In this section, we shall extend slightly the definition of
the invariant predictor, that 1s, we say that a predictor ¢

is invariant if for any ge Qa
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(5.5) §(gx) = [g;x]8(x) a.e. [P1],
where the exceptional set may depends on g.

It 1s easy to see that (2.6) holds under this extension.
Theorem 7. ([23]) If 8% is the best unbiased predictor, then
it is an imnvariant predictor.

Proof. Define 6g(X)=[g;X]_16*(gX) for gegi. Then from (2.8)

8g(X)=[g—l;gX]6*(gX), so that

1l

-1 5
Bgdy(X) = B g ([ 5X16%(X))

...1.
B o ([ 3X17)

EB{[g'l;gX][g;X]Y}

EgY,

where the second and last equalities follow from (5.1) and (2.8),
respectively, and the third follows from the fact that the

distribution of g(X,Y)=(gX,[g;X]Y) under P, is same as that

§]
of (X,Y) under Pge’ Therefore Gg is an unbiased predictor of

Y. By the same way we have that

-2 2
(5.6) R(e,sg) k(8) Ee(Y-ag(X))

k(g0) By ([g;XI¥-8%(gX))°

R(gb6,8%).

Since 6% is the best unbiased predictor, R(S,S*)iR(e,Gg),

which implies from (5.6) that R(8,8%)<R(g8,8*) for any gsgg
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and 6e0, This shows R(6,8%) does not depend on 9He0 by Assumption
3. Hence from (5.6) we have that Gg is the best unbiased

predictor, so that from Lemma il,
Eg (8, (X)=8%(X))% = EgL{(8 (X)-Y)=(§¥(X)=¥) } (6 (X)=6*(X))]
= vO)
which implies that
s¥(x) = 8,(x) a.e. (1.
Hence we obtain that

S*¥(gx) = [g;x]16%(x) a.e. [PI.

Remark 7. From this result it turns out that the best invariant
predictor is better than or equally good as the best unbiased

predictor (c¢f. Lehmann [14], p.23).

We say that y(X) is scale invariant if for any ge(a s
v(gx) = k(g)y(x) a.e. [T,
where the exceptional set may depend on g.

Let SI={Y; v is scale invariant and E 0YZ(X)<°°}.

0

Theorem 8.([23]) 4An invariant predictor &% is best <1f and only
if for any YSSI,
(5.7) By, [ (Y-6¥(X))y (X0} = 0.

Proof. By (2.6) it is enough to compare the risk function of

invariant predictors only at 6=0y.

Assume that 6¥ is the best invariant predictor. For any yeSI,
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let §(X)=8*(X)+Ay(X) with a constant A. Then from (5.5)

§(ex)

i

6% (gx)+Ay(gx)

]

[gsx]8¥(x)+Ak(g)v(x) a.e. [P]
Lg;x](8*¥(x)+ry(x)) a.e. [P ]
[g;x]18(x) a.e. [P1,

where the third equality follows from (5.1), so that § is

i

an invariant predictor. From the equality that

E 0(Y—a(x))2 - E

0 O(Y—a*(X))2—2AE

0{(Y—?ﬁ*(X))Y(X)}

0 S

+x2Ee Y2 (%)
0

and the fact that §¥ is the best invariant predictor, we
must have that

Eeo{(Y—ﬁ*(X))Y(X)} = 0.

Conversely, for any invariant predictor §, let y(X)=8(X)-8¥(X)
where §%* is the invariant predictor which satisfies (5.7).

Then it is easy to see from (5.1) that yeSy, and therefore

E 0(Y—6<X))2

2
5 Eeo(Y—G*(X)) + E

2
6,Y (X)

E

v

o, (T-6%())°.

Hence 6% is the best invariant predictor.

Now we consider the relation of the best invariant predictor
and the best unbiased predictor. For this we need the following

lemma.
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Lemma 12. ([23]1) If o¥(X) Zis the U.M.V. unbiased estimator

of k(8), then o*(X)eS|.

Proof. For any ge Ci, define og(X)=o*(gX)/K(g) and

.

©(0,8) = Eg{(8(X)-k(6))%/k(8)7}.
Then by a similar argument as in the proof of Theorem 7, we

can show that og is an unbiased estimator of k(8) and

T(e,og) = 1(gb,o¥*) for any 0e0 and ge(g .

From this Og is an U.M.V. unbiased estimator of k(8). Therefore
by Lemma 10, we obtain that

Ee(OU(X)—G*(X))Z = 0 for all 6e0,
g

which implies that
o¥(gx) = k(g)o*(x) a.e. [(P].

Theorem 9. ([23]) Let 8% be the best unbiased predictor of Y

and o* be the U.M.V. unbiased estimator of k(8). Let

1

c E O{QY-S*(X))G*(X)}

1 6
and
¢, = Eeoo*2(X).
Put
(5.8) 8R(X) = 8¥(X) + (cq/cy)o¥(X),

Then 6% 18 the best invariant predictor of Y.

Proof. From Theorem 7 and Lemma 12, 6% is an invariant predictor.

Now we show that 6% satisfies the conditions of Theorem 8.
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If vyeS then

1°
EeyﬁX) =_EeoyC6X) =,k(6)E60Y(X).

Therefore y must be of the form

(5.9) y(X) = co(X)

for some constant ¢, where G(X) is an unbiased estimator of

k(8). It follows from Lemmas 10 and 11 that

E

90{(Y—6*(X))(c(X)—c*(X))} = 0

and

Eeo{o*(X)(O(X)—o*(X))} = 0.

Therefore from (5.9) and the definition of ¢y and c,, we
have that
By ((Y=-83(0))vy(X)} = Eeo[{Y—a*(x>—§c1/c2)o*(x)}
x{c(o(X)-0¥(X))+co*(X)}]

cEeo[{Y—S*(X)—(cl/cg)c*(X)}o*(X)]

=O’

which proves the theorem.

Remark 8. For the estimation problem, Mann [15] obtained

the relation of the U.M.V. unbiased estimator and the best
invariant estimator. But his method is different from ours.

If X and Y are independent, let w(6)=EeY. Then the best
unbiased predictor and the best invariant predictor becomes
the U.M.V. unbiased estimator and the best invariant estimator

of P(8), respectively, and Theorem 9 coincides with Theorem 1
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of Mann [15].

Remark 9. From this reéult it turns out that the best invariant
predictbr coincides with the best unbiased predictor if and only
if cl=0. For example, if k(6) is constant on 0, then two
predictors coincide, provided that the best unbiased predictor

exists.

5.3 Example

In this section we shall consider only Example 1 in Section 3.3
because Takeuchi ([26], p.18) showed that a best unbiased

predictor does not exist for Example 2 in Section 3.3.

Example 5. We shall obtain the best invariant predictor for

Example 1 by using Theorem 9.

Using (4.17), we have that for X:(Xl,..,,Xr),
' m
E,(X_|X) = X_ + o 1/(n-i+1).
" m r 1=r+1

From Theorem 3 of Epstein and Sobel [4], (Xl,S) is complete
and sufficient for X where S is defined in (3.22). Then by
Lemma 9 it is easy to see that the best unbiased predictor
of X 1is
-1 3
§¥(X) = X_ + S(r-1) r 1/(n-i+1)
r i=r+l

and the U.M.V. unbiased estimator of o (=k(6)) is

o¥(X) = 3/(r-1).

By (4.17) we have

- by _



m m
Ey 12 (X =X, 1)-0*(X)Z 1/(n-1+1)}o*(X)]

E, {(X -6¥(X))o*(X)}
8¢ m Qo.i=r+l i=p+l

1l

1]

m ~1.. .
-z (_l’i—,i'l'l) Ve (o¥%) Py
i=r+l 0

where V, (o¥) denotes the variance of o¥(X). Therefore we have

Do
that
m
c, = ~-( X 1/(n-1i+1))/(r-1)
i=r+l
and
c, = r/(r-1).

Hence it follows from (5.8) that the best invariant predictor
becomes
m
5§(X) = X+ (S/r)  1/(n-1+1),
r .-
i=r+l

which coincides with (3.21).
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6. Appendix
6.1 Proof of (3.21)
From (3.20) we can write the density function as

- -(r+1) s+n(x,-w)+(n-r)(y-x_) y—-X m-r-1
(6.1) nlo exp{- = L }lexpl 5 Ty-1]
(m-r-1)!(n-m)!

o
for u<xl<...<xr<y and zero otherwise,

where s is given by (3.22).

Since by the transformation u=(y—xr)/o
X n(xl—u)+(n—r)(y—xr) y-x, m-r-1

[0S yexpi- Fexp(——F)-1)  dyldu
=k r

o o)

-r-1

X n(xq-u) (n-r)(y-x_) y—xr) 1)m 5
- y

[wlexp{— }dufz yexp{- S }(exp( S
r

¢

- _O hd
= fo(xr+0u)h(u)du

and

-+ (n-r)(y-x_) y-X -r-1

1 3} (exp( r)—l)m dy Jap
(o} (0}

X1 e n(x
S, U/, expl-
r

2
_ G [0
= —H—foh(u)du,

where

—u)n—r(eu_l)m—r—l

2

h(u) = (e
from (3.19) and (6.1) we have

~(r+2) wc—(r+2)

$¥(X) = {fzc exp(—S/c)dcfgh(u)du}—l[fo exp(-5/0)

~- by -



x{xrfgh(u)du+of§uh(u)du}dc]

= X%+(S/r)fguh(u)du/fgh(u)du.
Now, we have only to show that

: m
(6.2) fguh(u)du/fgh(u)du = ¥ 1/(n-i+1).
i=r+1

This may be proved purely analytically but we give a probabilistic
proof based on the random variables in (4.17).
Let X <...<Xn be order statistics of sample size n from the

1
exponential distribution, e—X, x>0. Then the density function

of (Xr’Xm) (r<m) is given by

nt o~ (Xpt(n-m+l)x ) g =X 3=l =X, =X ym-r-1

(r-1)!'"(m-r-1)!(n-m)!

for O<xr<xm and zZero otherwise.

Hence the density function of Z=Xm—Xr becomes

1
nt © —(n-r+l)x_-(n-r)z -X
=) T (e T (n=m T 7 0° r (1-e™®r) (e

e-(n—r)z(ez_l)m—r—l

= »

where ¢ 1s some constant.

Therefore the right hand side of (6.2) is the expectation of

_ v m »

z=X _-X,, which is equal to .Z 2 1/(n-1i+1) by using (4.17). This
i=r+l1

shows (6.2).
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6.2 Proof of (3.31)

In the sequel we shall use symbols ci(i=l,...,6) to denote

constants which do not depend on 8.

Since
- 2 - _ 2 - 2 oz
A7 Gegm |1 = 1IATGegmu) |+ TS5 (x5 =up=Ap ATy (eimng D) |-
we have
_ - . 2
[y e (AT Gy g=id 1)
T b Yo L exp(—] 10T (22 oy 1 /)
= ¢4 11‘ Wy A21A11( nepMp ) dexp (= 1Ay (g -1y >
so that
n+1 2
(6.3) 11(n 00 2y [A17 ) e () a e w0 1] dv(ae)ay
1=1
-1

-1 1,1
0ol (oahng) T (pthoy AT O g =1y D[R] [y, |

n+l 1, 1 -1
xexpl-{ T ||A77(xy ul)ll + ZIIA 2(x Ho=hoq Ay7 (x5 ul))ll }

i=1 i=1
/2]v(dse).
Using the equality that
n ’ -1
~1,.2
I [ A55(x5-up=Ryy A 12 (x5 “‘1))H
i=1
n -1, .2 - ~1,.1 = 2 -1 - -1
=, B T Hpa(xi=Xp=ho Ay (g =Xy D || ] [Ag5 (uy=Xp=Ryp Ay ]

_ 2
X(Ul-‘xl))ll 5

the integration (6.3) by u, ylelds
-1,- -1 1 _ . —(n+l)_ —(n—‘l)
(6.4) 3/l (Ay50 22)" (KR Ay (g =% ) ) 1A | 1457

- g -



n+1
xexp{-( Z |]A

i=1
p+tq -(p+g+l-i)

x II A, du,dA.
i=1 ii 1

—l( 1
11

Since

A 22(X X5=h

™3

i=1

-1

i

1
tr(Ayohss)

Il

tr(Ay,h0 22)

-1

+ S S,,5,7S

by transforming (All’A2l’

(the Jacobian of this transformation is |S

becomes

l_.
22 22) (x,+WS, 3

ey fIII (A
n+l

xexp[-{ = |]A
i=1

—1( 1
11

-S..871s

+ 5 21°11 81001721

I A
22 i=1

Noticing that

-1/2

-1
(W-8575.7

tr(Ay, A 22)

= tr{A (w S

and

—1/2

; -1

~ 47 -

ul)ll + Z IIA -X

(S5,

Lia

22" "21711"12

A22) to (A

-1/2
(Xn+l

ul)ll +tP(A

J(W-3,,8

21 11

)}{Agz(w S

2 -1, 1 = 2
z 2~A21All(xi—xl))|| )/2}

-1, 1 = z
21817 (X=X D[ |

Ao AT s s oAl

11
2181181278078 Ay HA5 AT A

A o1 11 1181

21 Ayq)

181/2 g g~ ~-1/2

21 11711 21711

—l 1/2

-1/21
)(A2l ll 11 =515 )

21°11
b,

g1/2
) with W= AglAll 1

(6.4)

ll’

-1/2 D
11 A5

1 - ~(n- -(n-
B0 gy [T g, 7

g-1/2 ~1/2
21511 ) (W-5,48

-1
((w-3 21511 )

22 22)

p+q —(p+q+l—i)

du ldAlldAZZdw

21711

—1/2 1/2)}

) HAG 5 (=85, 87)

—1/2

515717} /2]aw



= c IpS _1/2

5| 21 11 2

we obtain

n+1 2
1) TRy AT e (AT e - [ ) v(a0)ay

1=1
-1 : - 1,1 =
= {JJS (0500 22) g(x,e)duldAlldA22}(X2+821811( l-xl)),
where N ( 1) .
se) = cgliygl Tl expf‘fil”f\ﬁ<x3z—u1>uz
* tr’("\22’\é2)—1(322‘321311512)}/2] n A;§p+q+l P

i=1
In a similar way we obtain

(n+l) H f(llA (Xi~U)|l2)V(d8)dy

INAQ ) ]A]
22 22 1=1

-1
= fff(A22 22) g(x,e)duldAlldA22.

Therefore we have (3.31).
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