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1. !ntroduction

 We consider a statistical prediction problem which i$
                             '                                                    'invaeiant under a eeytain group of t?ansformations and
                                               'present three diffe?ent methods to construct the best
                             'inva-i•aiant predictor; the first method uses the invariant

mea$u]?e on the group, the seeond uses an adequate statistic

and the third goes via the best unbiased predlctor.

 In Seetion 2, we define the statlstieal prediction prob!em

and state some results which are used in sub$equent seetions.

 In Section 3, we eonsider the problem treated by Hora

and Buehle? [9], which gives a representation of the best
                                           'inva]?iant predietor by using the ]?ight Haar measure on the

group. IAIe extend the assumptions used by them and diseuss

conditions required to satisfy the assumptions. Under the

conditions, we present an alte?native expression of the

best invariant predicto? which is more suitable for applications.

 In Section 4, we express the best invariant predictor by

using an adequate statistic. Such a statistic is known to

play the similar important role in prediction problems as

a sufficient statistic does in ordinary statistical decision
                                              'problem (see e.g. Skibinsky [l8] or Takeuchi and Akahira [27]).
                   '      'We show that the class of invariant predictors based on the
                         'adequate statistie is essentially eomplete in the class of aU

inva]?iant predictoys under sorne mild assurnptions. This result
                                                      'enables us to obtain the best invariant predictor base.d on
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the adequate statistic.

 In Section 5, we show that the best invariant predictoy can

be expressed by a iineav eombination of the best unbiased

predietor and the unifoymly minimum variance (U.M.V.) unbiased

estimator under several assumptions. This yesult may be useful

to obtain the best invariant predictor, provided that the best

unbiased predictor and U.M.V. unbiased estimator are easily
                                           'found.

 Throughout this thesis, same examples are eonsidered and the

best invariant predictor for each ease is obtained by each oÅí

three methods exeept for the eombination of the second example

and the third method.

 The eontents of this thesis are extentions of those in [22],

[23] and [24].
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2. Group invariant structure of the prediction problem

 Let X be an observable randorn variable and Y a future

(therefore unobservable) randorn variable. Let (CE, d)) and
(Pn,t/S) be sample spaees of X and Y, respeetively. Let

(Z,.<. )=(`f.IÅ~td,ovxe) and Di ={.pe; eee} be a famiiy of

p?obab/ ility measures on (Z,.g4,) such that Z=(X,Y) is

distributed aecording to Pe, eeO, and O a parameter space.
Let 9 be a group of one-to-one transformations aeting on

the spaces .1li', 'E and e, mapping each onto itself, and let
t<j be a group of transformations on `Zti .

 Assumption 1. e} is invai?iant under 9/, that is,

         Pge(gA) = Pe(A), AESt, gE9, eee

and 9/ satisfies that

(2el) g(x,y) = (gx,[g;x]y), ge9, xE( , yE 'kbl ,

wher'e [g;X]E (if• ' •
 After observing X=x, we want to predict. the value of Y. A
non-negative loss function L(d,y,e) defined on ` lf) xrUdxe

represents the loss of erroneously predicting Y=y by the

value d under the true value e.
  ' Assumption 2. L is invariant undey 9j, that is,

(2.2) L([g;x]d,[g;x]y,ge) = L(d,y,e)

for all d, x, y, e. -
                                                      ' A randomized predictor 6 will be defined as follows:
                                                        '
for each xe CX , 6( . Ix) is a px' ob ab il ity measu r'e on ( f tzL) , (l )
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and for eaeh Cee, 6(CI.) is Dh -measurable. The risk function

of 6 is given by
                                                   '
(2.3) '  R(e,6) = Ee{fL(s,Y,e)6(dslX)}, eEe.

                               '                                                 ' Deflnition 1. A predictor 6 is said to be invariant under 9"

if for any xeec, ge CJ and CE e,

(2.4) 6([g;x]CIgx) - 6(Clx)•
On the other hand, a non-yandomized predictor 6 is invariant

under CJ if for any xeX and ge 9, '
(2•5) 6(gx) = [g;x]6(x).

 A very important property of an invariant predietor is that

its risk function is constant on each ovbit. More pyecisely,

we have the following lemma, which ean be proved similarly

as Theorem l of Ferguson [5], p.l90.

 Lemma 1.([22]) rf A$sumptions l and 2 hoZd. then fo" any

inva?iant ?andomiged pTedietor 6,
                 R(e,6) = R(ge ,6), eee, ge CJ .

 Definition 2. An invariant predietor is said to be best if

it minimizes (2.3) among all invariant yandomized predietors
                                                 'for each eee.
                        '
 Assumption 3. e is isomorphic to 9•

 Let eoeO be the point eorresponding to the identity element
e of 9. [rhe isomorphism is establis'hed by e=geo ii' eEe

corresponds to ge 9 . rt will often be notationally convenient

to 'index 9 by the corresponding point of o. Thus in the
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expression ttenylstt, e-l stands fo? the point g for which

ge=eo, where e and eo ju-st written have their ordinary

meaning. Which rneaning is to be attached to a symbol will

be e]ea.r from the context.

 Then from Lemma l, the risk funetion of an invariant predictor

is eonstant on e, that is,

(2.6) R(e,6) = R(eo,6), eeo.
 suppose kL is a group of transformations aeting on some
    'space .D and let ho be the identity element of i(t.

                                               ' Definition 3. igg- is said to act freely on S if hfho implies

hdSd for any de ,9 and he sc .

 Assumption 4. (i3 acts freely on Ag• .

 The following lemma states a basic property of the transformation
[g;x] introduced in (2.l).

 Lemma 2.([24]) ff Assumption 4 hoZds. then fo? g, g'e ({)j and

                                                     '                            '.EcllE .

(2.7) [g'g;x] = [g';gx][g;x],
(2.8) [g;x]-l = [g-l;gx].

 Proof. By (2.I),

             g'(g(x,y)) = g'(gx,[g;x]y)'

                       = (g'gx,[g';gx][g;x]y).

Since this is equal to (g'gx,[g'g;x]y), we have (2.7). Set
    -l .       m (2.7). Then by using the fact that [e;x]=5 wheregt=g
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5 denotes the identity element

 In the subsequent seetions we

to construet the best invariant

l to 4.

of <] , (2•8) is obtained.

shall present three methods

 predictor under Assumptions
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3. Construetion method by Haar measure
                                        '
 In tals section, we shall extend the assumptions used by

Hora and Buehler [9] so as to be able to treat such a sti?ueture

as (2.1) and express the best invariant predietor by using

Haar .r.n.easure on the group. IAIe also discuss a set of sufficient

conditions for the assumptions and obtain an alternative
                                                  'expression of the best invaviant pvedictor.

3.1 Construction of the best invariant predictor

 Assumption Ai. Qe is a ioeaiiy compact topologicai group

with a o-field ,.C.

 Let u and v, respectively, denote the left and right Haar
measures on (9,J,.C) and A denote the modular function, which

is a continuous homomorphism of 9 into the multiplicative

group of real numbers sueh that foi? aU Be {,C and gE (Zj,

             v(gB) = v(B), v(Bg) = v(B),
              v(B) = v(B-1), A(g)p(B) = p(Bg)
      '                      '(see e.g. Naehbin [l7]). '
                                           ' Assumption A2. There exist a spaee /('( and a one-to--one

bimeasurable map rr from .flEny onto (?1Å~./Ci such that if T(x)=(h,a),

                      'then T(gx)=(gh,a). '                                                         '
 UsuaUy, ./ef is the sample space of the maximal invariant

          'statistic defined on 'f)3" with respect to C7 •

 To simplify the presentation, we shall put x=(h,a) and
                        '
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gx=(gh,a) if rr(x)=(h,a). - '
 By (2.l) it is easy to see that the family of probability
distributions of X induced from O} is invariant under (?3) ,

so that Assumptions 3 and A2 imply that the probability
measu?e on JL( induced from X d.oes not depend on eEe. Hence'

we shall denote it by A.
                                           '
 Assumption A3. There exists a relatively invariant measure
g on (l7,6) with rnodulus J, i.e.

           g(gc) - J(g)g(c), ge Cl , ce 6 ,

and fo? any ge Ci, J([g;x]) does not depend on xe .?N . .

JiEi.:i?fe fOr SiMPiiCity) we shaii write J(g) instead of

 Assumption A4. The density function of X with respect to

pxA ean be expressed in the form

(3el) fL(e-lh,a), he 9 , aE /Ct , eeo,

whereas, given X=x, the eonditional density funetion of Y

with respeet to g can be expressed in the form

(3.2) f2([e-i;x]yle-ix)J(re-i), yet lsf, xe1]Ii, eee,

where fl(h,a) and f2(.ylx) are the density function and

conditional density funetion under Peo, yespeetively.

                                  '
 Now we shall express the best invariant predictor by using

the Haar measure v. For this we need the following lernma.

                       -8-



 IJemma 3.([24]) lf Assumptions l to 4 and Al to A4 hoZd and
                'ij'  6 is an invariant pTedicto?.. then for any he(5 ,

    R(eo,6) = A(h)fff{flJ(s,y,e)6<dslh,a)}fl(e--lh,a) ,

             Å~f2([e-i;h,a]yle'-ih,a)J(e-i)x(da)v(de)g(dy).

                             '
 Proo.'ft. By setting e=eo in (3.l) and (3.2), it follows fyom

(2.3) that

    R(e,,6) = fff{fL(s,y,eo)6(dslg,a)}fi(g,a)f2(ylg,a)

             Å~ X(da)p(dg)E(dy)

(3.3) = A(h)fff{fL(s,y,eo)6(dslg'h,a)}fl(g'h.a)
            '                  '             Å~f2(Ylg'h,a)X(da)v(dgT)g(ay),

where the seeond equality follows from the transformation

g=g'h and the faet that p(dg)=A(h)p(dg').

 The invarianee of L and 6 (see (2.2) and (2.4)) implies that

    fL(s,y,eo)6(dsig'h,a) = fL([g';h,a]s,y,eo)6(dslh,a)

                          : fL(s,Lg';h,a]'-'iy,g''1)6(dslh,a),

so that after the transforraation y'=[g';h,a]-'iy, we have

f?om (3.3) that
                     '                                -1                                  )6(dslh,a)}fl(g'h,a)    R(eo,6) = A(h)fff{fL(s,y',g'

             Xf2([g';h,a]y'ig'h,a)J(g')A(da)p(dg,)g(dy,)
       '
                                -l                                   and the fact that v(de)=p(dg'), Then by the transformation e=gr
                                                            'the theorem has been proved. . - .
                                            '                       '
 On the basis of Lemma 3, we shall prove the foUowing result,

whÅ}ch is an extension of Theorem 2 of Hora and Buehley [9]e

                        .- 9 -



 Theorem 1.([24]) ff Assumptions l to 4 and Al to A4 hoZd

and if theMe exists a non--uandomiged p?edieto? 6ee sueh that

fo" eaeh x=(h,a), 6ee(x) is the unique vaZue oJf d whieh

                                    '                     '(3.4) ffL(d,y,e)fi(e-ih,a)f2([e-i;x]yle'ix)J(e-i)v(de)c(dy),

                            '
then 6-i'  is the hest invaniant p?edicto?. . '
 Proof. First we shall show that 6ee is an invariant predicto]?.

Substituting gx=(gh,a) in place of x=(h,a), and using the
transformation e=ge' and the fact that v(de)=A(g-1)v(de,),

we ean write (3.4) as

(3.s) A('g-1)ffL(s,y,get)fi(e''ih,a)f2([(ge')-i;gh,a]yle''ih,a)

             xJ((get)-i)v(def)g(dy). '
Sinee by (2.7) and (2.8)

                                     -1               -1                             -1                                        ;gh,a]          [(ge') ;gh,a] = [e' ;h,a][g

                        = [et-'l;h,a][g;h.a]'1

and J((get)-i)=J(g-i)J(e'-i), after the transformation

y'=[g3h,a]-ly, (3.s) beeomes , '
                                  '                                    '                             '    A(g-i)ffL([g;h,a]'is,y',e')fi(e,-ih,a)f2([e,di'i;h,a]ytle'-"ih,a)

             -l     ' XJ(et               )v(de,)g(dy,),

where we used (2.2). Hence frorn the definition of 6ee we obtain

that 6ee(gx)=[g;x]6ee(x), whieh impZies that 6ce is an invariant

predictor.

 Now, we shall show that 6X is the best invariant predietor.

From Lemrna 3 and Fubini's theorem, it follows that fo]? any

      '
   '
                       - ]o -



invariant predietor 6,

     R(eo,6) = A(h)f[{ffL(s,y,e)fi(e-ih,a)f2([e-'i;h,a]yle-lh,a)

                 -1                   )v(de)g(dy)}6(dsih,a)]X(da)             xJ(e
                                                          '
            )A(h)f[ffL(6ce(h,a),y,e)fl(e-lh,a)f2([e'-l;h,a]yle-lh,a)

                            '                 -l                   )v(de)g(dy)]x(da)             xJ(e
                '            = R(eo,6ee ),

Hence from (2.6) we have the result.

 Remark 1. From this theorem it turns out that the best

invariant predictor ia non-randomized (cf. Kiefer [13], p.579).

     '

3.2 Alternative expression of the best invariant predictor

 The rnain diffieulty in applylng Theorem l to a specific

prediction problem is to verify Assurnptions A2 and A4, so

that we shall present a set of sufficient conditions for them,
                                             'assuralng always Assumption A3. This enables us to rewyite the

best invariant predictor in a form which is more tractable

for some applications.

 Condition 1. There exists a relatively invariant measure n
on (C.i(,Gi)) with modulus y and 6}:'> is dominated by nxg and the

density funetion of Z=(X,Y) can be expressed by

(3.6) '. y(e-i)J(e-i)p(e'-'iz), zeZ, eeo.

 Then from (2.l) the density function of X with respect to n

                       - ll -



                        '(3.7) y(e"i)pi(e-ix), xet)f, eee,
              '
                                   'where pl(x)=fp(x,y)g(dy).

 Definition 4. Be Ci? is said to be a Borel eross-section if

it intersects each orbit CJ x={gx; gE CJ } precisely once.

 Condition 2. There exists a Bo?el cross-section Bede .

 Condition 3. C{ is a separable complete metrizable locaUy

eompaet space and 9 is a separable complete metrizable

loeally cornpaet topological group aeting continuously on r l
(i.e., the mapping (g,x)ÅÄgx is continuous on (?J xSE )•

 Then the foUowing lemma holds. For a ppoof, see Theorem 1

of Bondar [3].

  Lemma 4. If 9/ aets fyeeZy onC}r and Conditions 2 and 3 holds.

then Assumption A2 is satisfied zuith -/C( =B. and if f is a ?eaZ-

vaZued funetion whieh is integTabZe z"ith ?espeet to n. then

(3-8) (/}l f(x)n(dx) = fBct(da)fg f(ha)y(h)v(dh)

fo? some u-finite measuye ct on B.

 Using this result, we shall show Assumption A4.

 Lemma 5.([24]) rf Conditions l to 3 hoZds. then Assumption A4

                                                   'is satisfied by taking B as v/C( . and '

                                                 '(3.g) fi(e'ih,a) = y(e"-ih)pi(e-ix)/fy(g)pl(ga)v(dg)

                 '                                                      '                                              '
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(3.io) f2([e-i;x]yle-ix) = p(e-i(x,y))/p.i(e-ix),

where x=ha.

 Proof. From (3.7) and (3.8), the density function of X with
respeet to vxct is given by y(e-ih)pÅ}(e'-iha). since

            fy(e-ih)pi(e-"iha)y(dh) = fy(g)pi(ga)p(dg)

and this is the density function of X wlth respect to or, we

have (3.9). From (3.6) and (3.7), (3.10) is obtained.

 Theorem 2. ([24]) lf Assumptions l to 4. A3 and Conditions

l to 3 hoZd and if the?e exasts a non-yandomiged predaetov 6ee

sueh that fo? eaeh x. 6ee(x) is the unique vaZue of d whteh

minimiges
(3.ii) ffL(d,y,e)y(e-i)J(e'-'i)p(e-i(x,y))v(de)g(dy).

then 6ee is the best inva"iant p?edietove.

 Proof. From Lemmas 4 and 5, Assumptions in Theorem l are

satisfied. Therefoye frorn (3.9) and (3.10), (3.4) is equal to

    ffL(d,y,e)y(e--ih)p(e-i(x,y))J(e'i)v(de)g(dy)/fy(g)pi(ga)v(dg)

                                                 -l                                                       -1             = {y(h)/fy(g)pl(ga)p(dg)}ffL(d,y,e)y(e )J(e )

             xp(e-i(x,y))v(de)g(dy), ' ''
since y(e-ih)=y(e-i)y(h). Therefore we have the resuit.

                                                  '                                                          '                                                    '                                                        ' condition 4. (lfj is p-dimentionai Euclidean space and <l) 'is

a group of affine transformations on (' }(1 such that g=(b,B)

   '
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implies gy=b+By, yerY, where b is a p-dimensional veetor

and B is a pxp non-singular rnatrix.

 The g?oup operation of (l) is defined by

(3el2) (bl,Bl)(b2,B2) = (bl+Blb2,BIB2),
                    (b,B)--l . (-B--lb,B-l).

 condition s. For any ge 9 and xe.GI't ,

(3.l3) [g;x] = (l(g,x),k(g))
and for any d, ysW and eee,

(3•i4) L(d,y,e) = l1k(e-i)(y.-d)H2,

where Iltl12=t,t. '
 IJemma 6. UndeT Conditions 4 and 5. it hoZds that
(3•ls) k(gg') = k(g)k(g'), g, g'e 9.
and that L defineci by (3.14) $atisfies (2.2).

 Proof. From (2.7) and (3.l3) it follows that

              [gg';x] = [g;g'x][g';x]
                                      '
                      = (1(g,g'x),k(g))(l(g',x),k(g'))
                                                     ,
                 . = (l(g,g'x)+k(g)l(g',x),k(g)k(g')).

where the last equality follows from (3.12). Since this is

equal to (l(gg',x),k(gg')), we have (3.15). Fyom (3.13),

(3.I4) and (3.15),
        L([g;x]d,[g;x]y,ge) = lik((ge)-1){k(g)(y-d)}Il2

                            = lIk(e'-i)(y-d) il 2.

Therefore L satisfies (2.2).

                        - 14 "



 Theorem 3. rf Assumptions l to 4. A3 and Conditions 1 to 5
                                                     '
hoZd. then the best invaTiant por}edietoor, 6X is given by
                                '(3.i6) 6ee(x) = {ff(k(e)k(e),)"iy(e-i)J(e-i)p(e-i(x,y))v(de)g(dy)}-i

                                  '               xff(k(e)K(e)T)ptiyy(emi)J(e-i)p(e-i(x,y))v(de)g(dy).

                                                  '        '                                                     '                          -1                 -l                    )=k(e)                             by (3.15), the result is easily Prooi. Since k(e

obtaÅ}ned from (3.14) and Theorem 2.

3.3 Examples

3.3.1 The location-scale model

 Let Rk denote k-dimensional Euclidean space. suppose Sf =Rn

and 45. =RM, and that the probability density function of Z=(x,Y)

            ' n+m.with respect to Lebesgue Tneasure on R is
                                                  '          -(n+m)         U f{(Xl'P)/a,•••,(X.-P)/U,(Yl-P)/U,••e,(Ym-U)/U}
                                                 '
for some known funetion f, where (p,6) is an unknown location-

scale parameter with the parameter space e={e=(p,u);u>O}.
                                 ' (l)j is the group consisting of iinear transformations g=(b,e),

                                         'e>O, on Rn+M such that J
                                           '(3•l7) g(xl}•••,xn,yl,•••,ym) = (b+exl,•••,b+cxn,b+cyl,•••,b+cym)•

 We adopt the loss function defined by
                                      '(3.l8) L(d,y,e) = a-2Mlly-dil2.

 Then it is easy to verify Assurfiptions l to 4 and A3 and also

Coditions l, 3 and 4. Condition 2 is satisfied by taking

                      .- 15 -



(3.l8) 6 (x)
               ff.-(n+m+2)f( Xg-P,...,X2-P,Yg-P,...,Yg-U )v(de)dy

with v(de)=dudu/o (see Fraser [6], p.63).

 Remark 2. It is easy to show that an analogous result holds

when there is a location parameter only or seale parameter only.
                                                          '
 Example l. Denote by Xl<X2<...<Xn the order statistics of size

n from the exponential distribution with the density function,

(1/u)exp{-(x-p)/u}, x>u, u>O. We consider the problem of

predicting Xm after observing only Xl,...,Xr, where ISr<mEn.

 Let X"(Xl,•••,Xr) and Y=Xm. Then the joint probability density

funetion of X and Y is given by
,

( 3 • 2 o ) ( . - ." -! : i :, i X lk) ! ex p{ - [i :t s x i - p ) + ( n -- m + i) ( y - u ) ] / a }

                Å~{exp[-(x.-p)/o]-exp[-(y-v)/u]}M-"-l

                                           '

                        -l6-

               xl-x xn-x                 s ,"'', s ) ;(Xl,''•,Xn)},         B= {(

                                         'where x"= i2tixi/n and s2= i:ti(xi-x-)2•

                                     'From. (3.17), [g;x]=(blrn,clm), where lm=(l,...,1)' and

the identity matrix. Then by (' 3.18) Condition 5 holds

Therefore all assumptions and conditions in Theorem 3

satisfied. From (3.16), the best invariant predictor

                             'by
                             XrP Xn-U YrP                  -(n+m+2)         ee ffYG f( o ,''''o 'U '''''
            =               '

 Im is

.

 are

i$ given

ym-p
     )v(de)dy
 U



for u<xl<-.e<xr<y and zero otherwise. Then the straightforward

ealeulation shows that the best invariant predictor is given by
                                           '                               'm
(3•21) 6X(X) " Xr+(S/r) ii.+ll/(n-i+1)' '. .

wheye ,
(3.22) S = if/2(XiiXl)+(n-r)(Xr-Xl)•

See Appendix for a proof.

3.3.2 The progixssion model
              e
                                   ' Let Xl,••e,Xn,Xn+l be independently and identically distributed

(p+q)-dirnensional random vectors- with the probability density
                                                             'function with respect to Lebesgue measure on RP+q,

(3•23) lAl--lf(lIA"l(x-y)H2),
             ..
where f is some known funetion, A is a lower triangular matyix

of order p+q with positive diagonal elements and IAI denotes

                           'the determinant.

 Suppose that e=(v,A) is unkown. We shall denote by G(m) the

set of all lower triangular matrices of order m with positive
diagonal elements. Then O={e=(p,A); veRP+q, AeG(p+q)}.

 The following partitions are used in the sequel:
                                 'g3.24) xi= (Xx/i.) , i-i,•••,p+i, y=(ii2),.A= (AAi21 R22)'

                                '              '                                               'whe?e Xl. and pl are pxl and AlleG(p).

 We eonsider the problem of predicting XZ+1 after observing

                           - 17 -



Xl,•e•,Xn,Xk+l• Let X=(Xl,•••,Xn,Xk+l) and Y=Xft+l• Define the

ÅíolloT,Jing tyansÅíormationgonZ, - .
(3'25) g(Xls•••,Xn,Xn+1) " (b+CXI,•••,b+CXn,b+CXh+l), g"(b,C),

                                                          'where beRP+q and CeG(p+q). ' '
 We shall view (5 as the Cartgsian produet RP+qxG(p+q) with

such g.]?oup operations as (3.12). Then it is well known that
 9) is a locally eompaet topologieal group and that the right

Haar measure is given by
(3.26) v(de) = :.i2(xii)-(p+q+i-i)dvdA,

wheye Xii (i=l,...,p+q) aye diagonal elements of A, dy and dA

denote Lebesgue measures on RP+q and G(p+q), respectively (see

Fyaser [6], p.148).
 By viewing C) as the group defined in Condition 4, from (3.25)

we have for g=(b,C),
(3.27) [g;X] = (C21XX+l+b2)C22)

and

(3.28) gx " (b+CXI,'e',b+CXn,bl+CllXk+1),

where the same partitions as (3.24) are used for (b,C).

 We shall adopt the following loss funetion for this problem:

(3•29) '  L(d,y,e) - llA51(d-y)H2.
        '
 By using (3.l2) and (3.27) we can easily show that Conditions

4 and 5 are satisfied, and therefore Assumption 2 is satisfied.

From (3.27), J(g)=IC22l, whieh implies Assumption A3. It is
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clea]? that Conditions l and 3 hold. Therefore we have only

to eheck Condition 2 to apply Theorem 3 to this problern.
 Let C.i)l be the $ample space of (Xl,...,Xn) and the actiop

                              'of <[l) on (v]{ibe -' '''
        g(Xl,•e•,Xn) " (b+CX?•••,b+CXn), g=(b,C)•

For this transfoymation group, the Borel cross-section for
the orbits in {IEI exists (see Fraser [6], p.l45). Then using

Proposition 2 of Bondar [3], from (3.28) there exists a Borel

eross-seetion for the orbits in [I . Hence CondÅ}tion 2 is

                                          'satisfied.

                by (3.l6) and (3.23) the best invariant Sinee k(e)=A            22,

predietor is given by -                                  '                                                         '(3•3o) 6x(x) = {ff(A22Ai2)-ilAl-(n'i)II.lilf(liA-i(xi-v) " 2)v(de)dy}"-i

              '
                                     n+l               xff(A22A52)--iylAl-<""i)ilif(I1A-i(xi-p) " 2)v(de)dy,

where x=(xl,•••,xk+1), y=xft+l and v is defined in (3.26). '' '

                                            '
 Exarr}ple 2e Let Xl,...,Xn,Xn+l be independently normally

distyibuted (p+q)-dimenslonal random veetors with unknown

rnean u and unknown non-singular covariance matrix Z. Let •

n>p+q and e=(p,Z). The same partition as in (3.24) is used

 We want to predict Y=X:+1 afte? observing X"(Xl,•••,Xn,XX+l)e

This problem was eonsidered in rshii [U], p.482. He proposed

                                           '
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a predictor of Y given by

(3.3o 6(x) = X2 + s21sil(xk.1-Xl),

               -•where x .(xX.;) .;tlxi/h, s =(gll. sS121) =i,:tl(xi-X)(xi-X)'

and iCl ls pxl and Su is pxp. But any justification of (3.31)

has not appeared in literature as far as the author knows. We

shall show that (3.31) is the best invayiant predictor with

respect to the loss funetion
( 3 . 3 2 ) L ( d , y , e ) = ( y -- d ) ' ( z 2 2 - Z 2 i Z i ii Z i 2 ) - i ( y - d )

unde? the transformation group 91 defined by (3.25)e

 !t is well known that Z=AA' with AEG(p+q). [ehei?efo]?e the

density function is written in the form of (3.23) and (3.32)
becomes 1IA51(d-y)H2s sinee A22A52"Z22-Z21ZilZl2e Hence the

best invariant predictor is obtained from (3.30), which will

be shown to be identieal with (3.31) in Appendix. .
                                                  '
 Remark 3. When q=l, it is weU known that (3.31) is inadmissible

if p>3. This fact was first proved by Stein [19]. They ean be

improved by using the estimators given in Baranchik [l] and

Takada [21].
                                        '
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4. Construetion method based on an adequate statistic
                                         '                                              ' It is well known that the class of invariant rules based

on a sufficient statistic is essentially complete among

the elass of all invariant ?ules under several assumptions.

For example, see Theorern 5.4.4 and 5.4.5 in Nabeya [l6], p.l92.

We shall show that the same result holds for the pyediction

problem, using an adequate statistic in place of a sufficient

statistie. Then, arnong the class of all invariant predictors
               'based on the adequate statistie, we seek the optimal predictor,

which is aetually the best invariant predietor.

4.1 Adequate statistic

 In this section we postulate Assumptions 1 and 2 introdueed

in Section 2. Let t be a measurable mapping from (C){,(B) onto

(f.],'i,C) and let [V=t(X).

 Definition 4. A statistic T is said to be adequate for X with

respect to (w.r.t.) Y if T is suffieient for X and, given T,
                                      'X and Y are conditionally independent.

                      ' Sugiura and Morimoto [20] provided a simple eriterion which
                          'characterizes an adequate statistie as follows.

                            ' Lemma 7. rf Oi is dominated by X=AlxA2 whe?e Xl and X2 aMe

probabiZity measupaes on (C(,(P) ) and ("ve ,(S ). re$peetiveZy. then

[P is adeguate fo? X tu.T.t. Y if and only if

               dPe/dX = h(X)fe(t(X),Y))
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where h(x) is 0b -measuyahZe and fe(t,y) is 1" xe -mea$urabZe.

 suppose the spaee CE is decomposed so that (C)E,(B )=(StixEE2s(gixG2)•

Write X=(Xl,X2) and X=(Xl,X2)• '  .
 Assumption Bl. 9 is a group of one-to-one transformations '

acting- on both ([)E' l and (}E2, mapping each space onto itself, and

(4.l) g(xpx2,y) = (gxi,gx2,[g;x2]y), ge9,
so that [g;x] defined in (2.l) depends on x th?ough x2•

 Let tee be a measurable mapping from (.f)11,6)l) onto a measurable

space (Cr ee,ILee) and t(x)=(tee(xl),x2) fo]f' x=(xl,x2)• Let (Y,2,{.)

-( 9 eeÅ~er ,, 1<Xxnb ,)• '

 Assumption B2. Xl and X2 are independent, Tve=tee(Xl) is sufficient

                                               'fov Xl and T=t(X) is adequate for X w.r.t. Y.

 Remark 4. If the transformation [g;x] on `Vti does not depend

on x, then there is no need to eonside? (}E2 and Assumption B2

means J'ust that Tee is adequate for X w.r.t. Y.

                                            ' As,sumption B3. There exists a real-valued function Q on (R 1Å~ L(IE l

                                                    'sueh that •
 (i) for any xle C}t{1, Q(.Ixl) is a probability measure on (Ofl)dyl);

.iig)gleg.agtYti:{Ott:4%?lelxii:}i. version of condition.ai pr.b.bility

 (iii) for any xlECEI, B6ov1 and geCJ, ''
               Q(gBlgxi) = Q(Blxi)• '
   '

                     - 22 -



 Definition 5. A predietor 6 is said to be bas,ed on T if fo?

any ce C , 6(ci.) is (Bt-measurabie .where (Rt={,t"iCu>sueZL},'

                                         '
 Now, we shall show the essential completeness of the class

of all invariant predietors based on an adequate statistie
                                       '                                                        'among the class of all invarlaht predietors.

 Theorem 4. ([22]) ff Assumptions l, 2 and Bl to B3 hoZd. then
                                                         '
for any inva?iant p?edietopm 6, theye exists an anvariant pyedieto"
                                                         '6o hased onTsueh that '
(4.2) R(e,6) = R(e,6o), eee.
 Proof. Define for Ce C and xe(}E,

(4.3) 6o(Clx) = f6(Cls,x2)Q(dslxi)•
Then by Theorem l of Takeuehi and Akahira [27], we have (4.2).

Therefore the proof is cornplete if 6o is shown to satisfy (2.4).
Fvorn Assumptions Bl and B3, for any ge(?j, xef.I' and Ce(',

           6o([g;x2]C1gxi,gx2) = f6([g;x2]C1s,gx2)Q(dslgxi)

                              = f6([g;x2]Clgs,gx2)Q<.gdsIgxP

                              = f6(cls,x2)Q(dslxl)

                              = 6o(clx)

where the third equality follows from the inva?iance of 6.

                                                  '           ' Assurnption B3 is not easy to verify. The foUowing lemma
                                 '                                     'which was obtained by Hall et. al. [8], Theorem 7.1, may be
                                                   '                                  '                       'useful to verify it. ,•
    '                                          '              '                                                            ' Lemmi 8. {l(71 is a BoreZ suhset of Rn and R})1 the BoreZ u-fieZd

                                                             '                                               '
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of (}fl• Let fe be the density fzanetion of Xl w.ve.t. Lebesgue

measblpme on Rn sueh that
                                             '           fe(Xl) " h(xl)ge(tX(xl)), xle:Xl, eeO,
                                                          '                 'whe?2 tee is a mea$u?abZe funetion' f?om Gil into Rk (k<n)ntth
                                                 'the -xange CTee, h and ge are positive reaZ-vaZued measu"abZe
fu ne ti ons on fs )C l and 'IJ ee. ?e speetive Zy . Let <B t ee ={t ee -l (u) ;ue Z<. ee }

whe?e -' LLee is the Boi,eZ u-fieZd of lf)" ee. Suppo$e that theor,e i$

an inva"iant open set Be(E)tee of Ol)- -measu"e l sueh that on B

 (i) for eaeh ge 9 , gxl is eontinuousZy diffe?entiabZe and

the gacobian depends onZy on tee(xl);
 (ii) fo? each gE (?l , t ce (xl) =t ee (x2) imp Zies t ee ( gXl) =t ee (gX2) ;

 (iii) tee(xl) is eontinzaousZy diffeventiabZe and the mat?ix

ll[DteeJ•(Xl)/axli]; j-=l,e•e,k, i=1,•••.nlI is of rank k, whe2ee

Xl"(Xll,•••,Xln) and tee(Xl)=(tf(Xl),...,tft(Xl));

 (iv) fove eaeh ge C/ , h(gxl)/h(xl) depends onZy on tl(Xl)•

 Then Assumption B3 hoZds.

 Next we shall show that the elass of all non-randomized

invayiant predicto?s is essentially complete among the class

of all invayiant predictors.
   '
   ' Assumpt'ion B4. (1(1 is RP and L(d,y,e) is a convex function of

d for each yerlU' and eee and L(d,y,e)+co as lldll->oo. '

 Assumption B5. (2j contains only linear transformations, that is,

transformations of the form gd=Bd+c where B is a pxp non-singular

matr-ix and ceRP. '. -                                                           '                    '                        tt                                                         '
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 Assumption B6. There exists a non--randomized invariant

predictor based on T.

 Theorem 5. ([22]) rf Assumptions l, 2 and Bl to B6 hoZd,
                                                     'then Jftor any inva"iant predietoT 6 the?e exists a non-

"andomniged inva?iant predieto?'6ee based on T sueh that

  ' R(e,6) > R(e,6ee), eee.
                    p
                             ' Proof. Define 6ee by

(4.4) 6X(x) = fs6o(dslx) if fHsll6o(dslx)<co
                    = ip(x), otherwise,

where 6o is given by (4.3), e is a non-randomized invariant

predictor based on T which exists by Assumption B6 and

            fs6o(dslx) = (fs16o(dsix),....,fsp6o(dslx)).

 Suppose first R(e,6o)<co. Then from (2.3)

            fL(s,Y,e)6o(dslX) < co a.e. [(,P- ]•

Therefore frorn reheorem 1 and Remark in Ferguson [5], p.78

and Assumption B4, we have

            flisll6o(dslx) < co a.b. [6 ],

and hence by Jensen's inequality .
           L(6ee(x),y,e) < fL(s,y,e)6o(dslx) a.e. [ Dr ],

which implies that

(4.5) R(e,6ee) E R(e,6o), eee.
 On the contrary, if R(e,6o)=oo, it is clear that (4.5) holds.

Hence from (4.2) the proof is eomplete if 6ce is invariant, that

is, 6ee(gx)=[g;x2]6X(x) for all ge91 and x=(xl,x2)etE• '

   '
 From Assumption B5 and the invariance of 6o, we have
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(4.6) fs6o(dslgxl,gx2) = f[g;x2]$6o([g;x2].dsigxl,gx2)
                                '                          '                             = [g;x2]fs6o(dslx),

whieh implies that fllsll6o(dslgx)<co if and only if flls1l6o(dslx)

<oo. MVnen from (4.4) and (4.6) it foÅ}lows easily that 6ee is

invariant. '                              '

 Remark 5. Theorem 5 implies that if a non-randomÅ}zed invaTiant

predictor based on T is best among the class of aU non-randornized

invariant predictors based on T, then it is the best invariant

predietor.

4.2 Construction of the best inva]riant predictor

 ln this section we shaU eonstruet the best inva?iant predictor

based on an adequate statistic.
                           t Let t be a measurable mapping from (:E,nJS) onto (Cr,"LO and

suppose that T=t(X) is an adequate statistic and that Assumptions

1 to 4 in Section 2 hold.
                                         '
 Assumption B7. For any ge<;/, t(gx)=t(gx') whenever t(x)=t(x').

 Then we ean define the aetion of CJ on Cr by

        '                  gt' = t(gx)
      'for t'e L7 and x satisfying t'=t(x). .
 Assumptio.n B8. For each gE ([?j, [g;x] depends on x through t(x).

 Therefoye in this section we shaU write [g;t] instead of [g;x].
                                              'Then under Assumptions B7 and B8, a predictor based on T is
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invariant if and only if
(4.7) 6([g;t]clgt) = 6(clt), ce(, te2r, gE(l)/ .

 Suppose that t is decomposed so that t(x)=(tl<X),t2(x))• Let

( J 1,`L(l) and ( CT2, 'L<.2) be the sample spaces of Tl=tl(X)

and T2=t2(X), respeetively.

 Assumption Bg. The action of 9 on both C71 and CT2 can be

defined so that
(4.s) gt = (gti,gt2), t=(ti,t2)eCT, ge CJ •

 Assurnption Blo. t171 is isomorphic to 9.

 Mx toe rl and we shall denote by gtle CJ the action such that

gtito=ti for tie f.li•

    ' Setting g=gt-ll in (4.7), we have from (.4.8) that for any

invariant predietor 6 based on T,

                6([g{l;t]clto,gllt2) = 6(clt),

so that after the rtransformation s'=[gll;t]s we have

(4.g) fL(s,y,eo)6(dslt) = fL(s',[gEl;t]y,gt-l)6(ds'lto,gt-lt2),

whe?e we used the invariance of L (see (2.2)). '
(1?:,gi be the ma::::? irz:.l,lll,to ,:.r-:,:r,ch,)ihat

and let w2 be the mapping from Zrx 'VU to "VO such that

                                             '
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                           -l(4.ll). W2(t,Y) = [gtlSt]Y•

Then by (2.8), we have
                                    -l(4.l2) W2(t,Y) = [gtl;tO,Wl] Y'
             'and from (4.9) we obtain that

                              '(4.i3) fL(s,y,eo)6(dslt) = fL(s,w2,gtV l.)6(dsIto,wi)•

 Assurnption Bll. The mappings, wl and w2, are measurablee
    '
 Let Wl=Wl(T) and W2"w2(T,Y). Then from (2.5) and (4.13) we

have that for any invariant predictor 6 based on T,

(4.14) R(eo,6) = Ee,{fL(s,W2,gil)6(dslto,Wl)}•

                                             '
 Now, we have the following result.

 Theorem 6. ff Assumptions 1 to 4 and Bl to B3. B7 to Bll hoZd

and if the?e exists a mdpp'lng h fx7om ' l72 to "L3 sueh that h(wl)

is the vaZue of d whieh minimiges

     , Ee,{L(d,W2,gil)IWi},

wheor2e Eee{.IWP denotes the eonditionaZ expeetation given WL.
                                        '
then the p?edietoT 6ce defined by

        '(4.ls) 6ee(T) = [gTi;to,Wl]h(Wl)

is the hest invayiant pveedieto?. '

 Proof. From (4.l4) and Fubini's theorern, we have

         R(eo,6) = Ee,[fEe,{L(s,W2,gill)iWl}6,(dSlto,Wl)]

                                      '
                                                       '
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                                   -l            ) Ee,[fEe,{L(h(IAII),W2,gTl) lWl}6 (ds1to,IAi])]

                              -- 1            ;. .Ee , {L (.h CiATi) ,W2 , g[ri) } '

eombining the invarianee of L with (4.l2) and (4.l5),

. . '  . . L(h(Wl),W2,gffl' ) = .L(6ee(T),y,eo),
                       bl
so that we have R(eo,6) ) R(eo,6ee). Therefore from (2.6) and

Theorem 4, the proof is eomplete if it ean be shown that 6ee

                                             '

 Using the fact that gg,tl=g'gtl and wl(g't)=wl(t) for g'e9,

we have

               6ee(.gtt) = [g'gtl;to,Wl]h(.Wl>

                       = [g';t][gtl;to,Wl]hCWI)

                       = [g';t]6ee(t),

where the second equality follows from (2.7), wh.ich proves

                                         '                            '                     '
 Corollary. undeT assumpti6ns in Theo"em 6 and conditions 4

and 5 in Seetion 3.2. the best inva?iant pTedletoT ls given hy

     ' 6ee (-T) " k(.gTl)hCWI) + 1(rgTl,to,IAII)
              '
         '
(4•i6) h(Wi) ='[Ee,{k(-g[vi)'k(g[rl)lWi}]"iEs,{}C(-g[pi)'k<gi?IL)W2lWi},

           '
wheve Wl and W2 are given by (4.IO) and (4.ll), respeetively.

                         '
        '
 Remark 6. For the pvoblem of predietion regiQn, Ishii [l2]
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obtained the expression of the best invariant predietion
 '

region based on an adequate statistic, But his final result

(Theorem 1 in [12]) is not eorreet without an additional .

assumption. Therefore in [25] we have,given the corrected

resulr.' and also shown the essentiai completeness of the elass

of invariant predietion regions based on an adequate statistic

among the class of all invariant prediction regions.

                '

4.3 Examples

 In this section we shaU consider again Exarnples l and 2 in

Seetion 3.3 and construct the best invayiant predictor for eaeh

case by using the coyollary. ''.
 'il'xample 3. We consider Example l ln Section 3.3. Using Lemrna 7
                                               'and (3.20), an adequate statistic is given by

              rp = (Xl,S,X]?)

where S is defined in (3.22).

 We shall fi]?st verify Assumptions Bl to B3 and B7 to Bll. In
this case C}E2 is not needed since the transfovmation on ` Y

does not depend on x. Therefore Assumptions Bl, B2 and B8 are
   'trivial. We shall prove Assumption B3 by using Lemma 8.

 Let C]( ={Xi Xl< •••<xr}• Then the probability density function

Of X=(Xl,•••,Xr) is given for xe ec by
                 '
                              r              (:i.)!U-reXP[-(i4Åíxi-u)+(n-y)(x.-u))/a]

fove p<xl and zero otherwise. Aceording to Lemma 8, let h(x)=l

                                           '
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and
                                '                                         '
         ge(t) = ltl.}IFir)! a-rip(xi)exp[-(s+n(xi-v))/o],

           '                                           'where Iy(xl)=l if p' <x l and zero otherwise. Then by defining

(tl,t2,t3)"(Xl,S,Xr)) it fOllOWS easiliy that the matrix

D(x)= lI[ati(x)/axj] ;i=1,2,3, j--l,...,rlI is of rank 3 and

other conditions in Lemma 8 also hold. Therefore Assumption B3

is satisfied.

 Define t(x)=(xl,s,xr). Then Assumption B7 holds and the
action CJ on f.r becomes

       g(xl,S,xr) = (b+cxl,es,b+exr), g=(b,e).

 Taking Tl=(Xr,S) and T2=Xl in Assumption B9, it follows
easny that Assumption BIO is satisfied With gtl=(Xr,S)e (?Ki

and to=(O,l). By (4.10) and (4.ll)

               Wl = (Xl-X.)/S

and

               W2 = (Xm-Xr)/S,

so that Assumption Bll holds. Therefore the best invariant

predietor can be obtained frorn Corollary of Theorem 6.

 It is well known that for 1<i<n the set of random variables

(4.l7) Zi =,(n-i+l)(Xi-Xi.l), i=l,••-,n

(where Xo=p) are mutually independent with pdf, (1/a)exp(-x/u),

x>O (see Lemma 3 in Epstein and Sobel [4]).

 Using the Zi's,

              yr         Wl = I.l2Zi/(n-i+1)S, .S = ii2Zi•

                         '

                         - 31 -



It is easily seen that S is eomplete and sufficlent for

(Z2,•••,Zr), So that Wl and S are independent by Theorem

of Basu [2]. Since
                    m        •• X.-Xic=i4+Zi/(n"+1), ' .
TXMhg.Xr.f/i;.i:d.elle?S?:t6)Oi.gWi:Zl;)isO,that Wi and w2 are independent.

           h(Wl) " {Ee,(S2IWI)}-IEe,{S2W2IWI}

                 = {Ee,s2}-"IEe,s2w2•

Simple ealeulation at eo=(O,1) shows that
            Ee,s2 = r(r-i)

and
          Ee,S2W2 " (r'-l)ilti.+ll/(nnyi+l),

so that we have
            h(wi) = rMiiSt.+l/(n'i+i)"

Hence from Coveollary of Theorern 6, the best invariant predicto?

is given by
                              m             6ee(X) = X. + (S/r);-.+l/("-i+l)"

sinee k(gTl)=S and l(gTl,to,Wl)=Xr•

        '                                        '
 Example 4. We consider Example 2 in Section 3.3. From Lemma 7,

it is easily seen that '
(4.18) T= (X,S,Xit+l)
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is an adequate statistie. First we shall verify Assumptions

Bl to B3.
                          '
 Let i2El and C){2 be sample spaces of (Xl,i..,Xn) and Xk+l,

                    '                                                       '                               'respectively in Assumption Bl. Then frorn (3.25), (3.27) and

(3.28), Assumption Bl holds. Define Tee=(i(,S). Then (4.18)

implies Assumption B2. "all et.al. ([8], p.611) showed that

the eonditions of Lemma 8 are satisfied, which irnplies

Assumption B3.

 Now, we shall verify Assumptions B7 to Bll. By setting
"if(X,S) and T2=Xk+l, it ean be easily shown that Assumptions

B7 to B9 are satÅ}sfied and
                                    '                                      l(4.l9) ' gt = (b+Cx- ,CsC',bl+CllXn+1), g=(b,C)e

Assumption BIO holds and

               gTl= (X,A), [Vl=(X,S)

where S=AA' with AeG(p+q) and to=(O,I). By (3.l2),

                gEIi = (-A-ix,A-i),
                  i
,.  that  usi"g  A-l - (iltlt!A21AIII AI! )

with the same partition as in (3.24) for A, we obtain that

from (4' .IO) and (4.I9)

                  w, - Ail(xk.,-se,)

and from (3.27) and (4.ll)
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            w2 " A5!{xit+l-X2-A21AilCxX+1-Xl)}• • •

Therefore Assumption Bll holds. Hence by applying CoroUary

of Theorem 6, the best invariant predictor can be obtained.

(ii:Coe) k(g[Pill:i)i.i'. {Ee,(As2A22Ewi)}-iEe,(A52A22W2lWi)' '

It is well known that (X, XX+1,Y), S22-S21SilSl2 and (S21,Sll)

are mutually independent and unde? eo=(O,I) the conditional
means of Xfi+l-X2 given (Xl,Xfi+z) and that of S21Sil given

Sn are both zero (e.g. see Theorem 6.4.l ln Giri [7]). Since

SiiAuAh, S22-S2iSilSi2=A22A52 and s2islii=A2iAiii,

   Ee,{Ai2A22I"r21Xl,XX+l)An} = (Ee,Ai2)Ee,{Xfi+l-5(2-'A21Ail

                             Å~(xk.l-Xl)l5(1,XX.1,Ail}

                            =o,

es2•.iM.;ilgS,igi ilie.fi:!,ii,i?X,"e"ce the best inva-ant

                                           '       ' = X2+s21sil(xk.l-x?,
                                        -lSinCe 1(g[el,to,iAII)=A21Wl+X2 and A21WiS21Sll. Thls result

comcides of eourse with (3 31). , '  .

                                  '
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5. Construction method via the best unbiased predictor
              '                                                       '
 In this section we ex'plore the relation of the best invariant

predictor and the best unbiased predietor. By using this

relation, we ean construet the best ipyariant predictor.

 Assum.e here Assumptions 1 to 4 in Seetion 2 and Conditions
4 and s with '( ve =Rl, that is,

    '(5.1) [g;x]y = k(g)y+1(g;x),
(5e2) L(d,y,e) = (y-d)2/k(e)2.

 Since the loss funetion is convex, it is easily shown by a

similar argument as, iB the proof of Theorem 5 that the class

of non-randomized invariant pyedictors is essentially eomplete
              '
among the class of all invariant predictors. Therefore we

shall confine our attentions to non--randomized predictors.

5.1 Best unbiased predictor

 Definition 5. A statistic 6(X) is said to be an unbiased

predietor of Y if

                 Ee6(X) ' EeY, for' all eee.

 Definition 6. An unbiased predictor is said to be best if
                        2it minirnizes Ee(Y-6(X)) for all eeO among the class of all
                               'unbiased predietors.

 The following lemma due to Takeuchi ([26], p.l3) is useful

in obtaining the best unbiased pvedietor.
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 Lemrna 9. ff a statistie T(X) as eompZete and suffieient j'ox,

X and
                  '
             Ee(YI.X) = h(X) + v(e,T),

h being independent of e. and if an unbiased pMedietor 6 of

Y ex";$t$. then 6ee=E(61T) as the best unbiased p?edietoT.

 Let So={y3 Eey(X)"O, Eey2(X)<co for all eee}. TheR the following

lemma is well known (e.g. see Theorem 3.3.l of Zacks [28]).

                                            '
 Lemma 10. An unhiased estamato" gee(X) is a unifoymZy minamum

varianee rU.M.V.) unhiased estimator of k(O) if and onZy if

                                 'for any eee and yESo, .

(5•3) Ee{oee (X)y(X)} = O.
       '
 For the prediction problem, Ishii [ll] obtained the following

                                     '
 Lemma 11. An unbiased p"edietoT 6ee as best if and onZy if

fo? any eEO and yeSo,

(5•4) Ee{(Y-6X(X))Y(X)} = O•

   '
5.2 Construction of the best invariant predictor

 In this section, we shall extend slightly the definition of

the invariant predictor, that is, we say that a predietor 6
is invariant if for any gE (?)

                           '        '   '
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(5•5) 6(-gx) = [g;x]6(.x) a,e. [0],
wheye the exeeptional set may depends ori g.

 It is easy to see that (2.6) holds under this extension.

i!h9.:r.eM. Z.hvi;i.iil I;.ii..Zt'g:he best "nbi"sed p?edieto?. then

 proof. Define 6g(x)=[g;x]-l6X(gx) for ge9 . Then from (2.8)

        -l6g(X)"[g          ;gx]6ee(gX), so that
                Ee6g(X) " Ege{[g-1;X]6ee(X)}

                                -l                    . = Ege{[g                                  ;x]y}

                               "l                        . Eo{[g                                 ;gX][g;X]Y}

                        "EeY, .
where the second and last equalities foUow f?om (5.l) and (2.8),

respeetively, and the third follows from the faet that the

distribution of g(X,Y)=(gX,[g;X]Y) under Pe is same as that

of ( X, Y) under P                    Th- erefore 6                                 is an unbiased predictor of                gee g
Y. By the same way we have that . '
(5'6) R(e,6g) = k(e)--2Ee(Y-6g(X))2

   ' . " k(ge)-2Ee([g;x]y-6ce(gx))2

- . -- R(ge,6ve).             '
Since 6ee is the best unbiased predictor, R(e,6ee)ER(e,6g)i

whteh implies f]?om (5.6) that R(e,6ee)ER(ge,6ee) foB any gE9

                      - 37 -



and eeO. This shows R(.e,6ee) does not depend on ,eee by Assumption

3. Henee from (-5.6) we have that 6g is the best unbiased

predictor, so that from LeTnma 11,
                                                       '      Ee(6g(X)'-6ee(X))2 = Ee[{(6g(X)'Y)-(6X(X)-Y)}(6g(X)d6ee(X))]

                                                        '            '                             '              ' =o                   ,)                            'which implies that
                                   '
                   6ee(x) = 6g(x) a.e. [G ].

Hence we obtain that

                   6xCgx) = [g;x]6ee(x) a.e. [D} ]•

 Remark 7. From this result it turns out that the best invariant

predictor is better than or equally good as the best unbiased

predictor (cf. Lehmann [14], p.23).

 we say that y(x) is scaie invariant if for any ge9,

                   y(gx) = k(g)y(x) a.e. [(P],

where the exceptional set may depend on g.
 Let sf{y; y is scaie invai?iant and Eeoy2(x)<oo}•

 Theorem 8.([23]) An invaTiant p"edieto? 6ee is best if and onZy

                                        'if foT any yeSI,

(5'7) Ee,{(Y-6 ee (X) )Y(X)} = O•

 Proof. By (2.6) it is enough to eompare the risk function of

invariant predictors only at e=eo.

 Assume that 6X is the best invariant p?edictor• For any yeSI,

                       - 38 -



let 6(X)=6X(X)+Ay(.X) with. a eonstant A, [rhen from (5.5)

               6Cgx) = 6eeCgx)+Xy(gx)

                     = [g;x]6ee(x)+Xk(g)y(x) a.e. [Ol ]

                     = [g;x](6ee(x)+Zy(x)) a.e. [O]
                                     '                     = [g;x]6•(x) a.e. [DY ],
                                         '
where the third equality follows from (5.1), so that 6 is

an invariant predietor. From the equality that

          Ee,(Y-6(X))2 = Ee,(Y-6ee(X))2'2XEe,{(Y-6ee(X))y(X)}

                        +X2Ee,y2(X)

and the fact that 6ee is the best invayiant predictor, we

must have that

                Ee,{(Y-6ee(X))Y(X)} " O•

                   ' Converse].y, for any invariant p?edictor 6, let y(X)=6(X)--6ee(X)

where 6ee is the invariant predietor which satisfies (5.7).

Then it is easy to see from (5.l) that yeSI, and therefore

           EeQ(Y-6(X))2 = Ee,(Yd6ee(X)),2 + Ee,y2(X)

                                 '                                     2'                       ) Ee,(Y-6ac(X)) .

Henee 6ce is the best invariant predictor.

 Now we consider the relation of the best invariant predictor
                                                         'and the best unbiased predictor. For this we need the following
                                                            '                                                        '                       '                    '
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•Lemrna 12,• (-[23]). ff ,uee(X) as the U,M;V, unbiased estimator

of k(e.>. then creeCX)eSr '

 Proof. Fov any ge 9 , define cfg(X)=GveCgX)/kCg) and

, - T(e,a) = Ee{ (:8(x)-k(e))2/k,ce)2},
                                             '
Then by a similar aTgument as in ehe proof of Theorem 7, we

can show that ti is an unbiased estimator of kCe) and
               g
                 TCe,ag) = TCge,aee) for any eee and ge9 .

From this o is an U.M.V. unbiased estimaton of kCe)J. Therefore
           g
by Lemma 10, we obtain that
      ' Eo(.ug(LX)--crec(x))2 = o for all eee,

whieh implies that

      - • aee (gx) =k(.g)oX(x) a.e. [Ol ],

 Theorem 9. (.[23]) Let 6ee be the best unbiased pTedieto? of Y

and uce be tke U.M.V. unhiased estCmato? of kCe). Let

                 Cl = Ee ,{ (.Y '-6 ee (X) )6 ee (X) }

and
                                  '                 C2 = Ee,uee2(x).

Put
        '
(s.8) 61(.X) = 6ee (X) + (e;/c2)uee(X)3

Then 61 is the best invaTiant pr7edieto2e of Y.

 Proof. F]?om Theorem 7 and Lemma 12, 6f is an invariant predietor.

Now we show that 6i satisfies the eonditions oC Theorem 8.
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!f YeSI, then .
                             '
           EeyCX) = Ee,yCeX> = .k(e)Ee,yCX>•

Therefore y must be of the form

(5•9) y(X) = eG(X)
for some constant e, where u(.X) is an unbiased estimator of

k(e). It follows frorn Lemmas IO and ll that

            Ee ,{(Y-6X (X) ) ( cf (x) -cr ee (x) )} = o

                                 '

               {Gee Cx) (a (.x) -u ee cx) ) } = o.            E             eo

Therefore from (5.9) and the definition of cl and c2, we

have that

            Ee,{(Y'-6f(X))Y(X)} = Ee,[{Y'-6ee(X)-(Cl/C2)aee(X)}

                                                '
                                 Å~{c(u(X)--aee(X))+coee(X)}]

                                = eEe, [{Y-6 ee (X)-(cl/c2)uX (X) }o ee (X) ]

                                =o                                   ,
whieh proves the theorem.

                                               '
 Remark 8. For the estimation problem, Mann [15] obtained

the,relation of the U.M.V. unbiased estimator and the best

invariant estimator. But his method is different from ours.
                                                          'If X and Y a?e independent, let ip(e)=EeY. Then the best
                                      '
unbiased predietor and the best invariant predictor beeomes

the U.M.V. unbiased estimator and the best invariant estimator
                                   'of th(e), respectively, and Theorem 9 eoineides with Theorem l
                                     '
   '                   '
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of Mann Ll5],.

                                                '                                               '
 Remark 9. Frorn th.is result it turns out that the best invariant

predictor coincides with the best unbiased predictor if and only

if el=O. For example, if kCe) is constant on e, then two

predictors eoincide, provided that the best unbiased predietor

              '

o'.3 Example

 In this section we shall consider only Example 1 in Section 3.3

because Takeuchi C[26], p.l8) showed that a best unbiased

predictor does not exist for Example 2 in Section 3.3.

 Example 5. W.e shall obtain the best invariant predictor for

Example l by using Theorem 9.

 Using (4.I7), we have that fOr X=(.Xl,••t,Xr>)

                              m
             Ee(XmlX) = Xr + Oil.+ll/('n-i+1)'

From Theorern 3 of Epstein and Sobel [4], (.Xl,S) is complete

and sufficient for X where S is defined in (3.22). Then by

Lemma 9 it is easy to see that the best unbiased predictor

         'Of X iS  '  , 6.(.x) . x,7 +scy-l)-li:r+l/(-nnyi+1) ' ''

and the U•M•V• o:?bxiaEveg/?;t-l?etor of u (=kCe)) is

By (4.17) we have

      '
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 Ee o { ( Xm"6 ee (TX) ) O ee ('X ) } " Ee o [ S. Itlr +CXi i-Xi -Ri ) -'U ee ('Xi ltl] rl< C"'i+i ) }O ee (X) ]

                         m                     = ll.$'"i-i'i)-iVe6. (6ee), ' . ,

where Vee(aee) denotes the variance of oee(X). Therefore we have

that

           Cl = -( Z l/(n-i+1))/(r-l)
                  i=r+l

and

           C2 = r/(r-1).

Hence it follows from (5.8) that the best invariant p?edictor

becomes
                              m
            6eei(X) = Xr ' (S/r)i4.l<("nyi'i)'

whieh eoincides with (3.21).
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6. Appendix

6.1 Proof of (3.21)
                                     '         '
 From (3.20) we can write the density function as
                                                  '                                                        '              '(6i) (:i;iillii-.)! exp{- P+n(Xi-P)g(""')(y'xr)}[..p{ygx.}-i]m--r--i

fO? P<Xl<••.<xr<y and zero otherwise,

where s is given by (3.22).

 Since by the transformation u=(y-Xr)/O

lafX.l[f: y..p{ "(Xi-U)g(n-')(Y-'Xr)}(..p(YiXy)-i)M'-V'-idy]dv

--  ': r
  . -fX.i..p{.-"(Xg-U)}dyf: y.xp{-("-"g(Y"'Xr)}(..p(Yu-Xr)-DM-"-idy

                      r
     2  = g f8(xr+ou)h(u)du

and

                                                 'tggl[f: ..p{-n(Xl'V)g(n'r)(Y-Xr)}(..p(YgXr)-l)M'r-ldy]dp

     r
                         '                        tt     2  = X f:h(u)du,

where •
    h(u) . (emU)n-r(eU.l)M-r-1,

                '
frorn (3.l9) and (6.l) we have
                                  '                            '                      '    6ee(XL) = {f8u-(T+2.)exp(-s/o)dof8h(u)du}-i[f:u-(r+2)exp(.s/o)

                                             '                                                        '                                       '
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          Å~{X.f8h(u)du+af8uh(u)du}du]

        = Å~"+(s/r)f8uh(u)du/f8h(u)du.

 Now, we have only to show that

(6.2) fÅéuh(u)du/f8h(u)du = Y l/(n-i+1).
                              i=r+l

This may be proved purely analytically but we give a probabilistie

proof based on the random variables in (4.l7). '
 Let Xl<•••<Xn be order statistics of sample size n f?om the
                          -x                            , x>O. Then the density functionexponential distribution, e

Of (Xr,Xm) (r<m) is given by .
            n! e-(Xr+(n-M+l)Xm)(1.e-Xr)r-l(e-Xr"e-Xm)M-r"1
     r-l)! m-r-l)! n--m)!

for O<x <x and zero otherwise.      .r m
 Hence the density function of Z=Xm-Xr becomes

                                                   r-l m-r-l     r..i !(m-}k ! n.m ! f8e--(n-r+i)Xr-(n-r)Z(i-e-'Xr) (eZ-i) dxr

        . ce-(n--r)Z(eZ-l)m-r-1,

wheTe c is some constant. -
 Therefore the right hand si;Ze of (6.2) is the expectation of

Z=Xm-Xr, whieh is equal to i4ril/(n-i+l) by using (4•l7). This

shQws (6,2).
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 rn the sequel we shall use symbols ei(i=1,...,6) to denote

eonstants which do not depend on e.

       '
 '- , H A'-i(xi-y) " 2 = 1lAII(xl. --pi)ll2+IlA5!(xi• -p2-A2iAil (' xl• -"pi))l 1' Z

we have
     lAl '-lfyf( " A-l( x..• ii, i'[7 '-i ti ) l l?)

         = ci l Aii l "-i(v2+A2iAII(xk+i-vi) ) exp (- i l Ai ii (xft+i -- ia p l l 2/2 ) .

so that
(6•3) ff(A22A52)-iylAI-(n"i) ll.lilf(HA-i(xi-p)"2)v(de)dy

                                        -n' -1        = c2f(A22A52)-l(p2+A21AII(xk.l-pl))lAl lAllI

         xexp[-{Il. :tlt l AIii (xl• -pi) i 1 2+iltlvAii!(x2i --p2-A2iAil(xii --vi)) l t 2}

                            '                    '        /2]v(de).
                                      '
 Using the equality that

      i2i1lA5!(xi• '-u'2-A2iAII(xii --vi))lt2

                         '
         = i ltl i l l A 5 1 ( x i• - X 2 - A 2 i A i l ( x- l• - iE i )) l l 2 + n l I A 5 ! ( v 2 - x- 2 - A 2 i A i l

                      '
         Å~(ul--El))ll, . .
the integration (6.3) by v2 yields '
(6•4) c3ff(A22Ai2)-l(X2+A21AII(xik+1:x--1))iAllI-("'l)iA22l'-(n-l)
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    xexp{-(ll. :tll'I AII(xl• --pi)ll2+lltlillA5:(x;• -x"2--A2iAi//(xl• -x-i))ll2)/2}

                '     p+q -(p+q+l-i) '    Xil!ii dvidA• •
                        'Since - '     ,llli l l A5Å}(x2i -'E2-•A2iAmil(xi, -x'"-,) ) H 2

                                                                '                              '             = tr(A22A52)'-i(s22-A2iAilsi2-s2iAhlAEi+A2iAiiisuAiiiA5i)

             = tr(A22A52)-i{(A2iAIIsl!(2-s2isil/2)(A2iAilslE[2--s2isil/2S

              + s22-s21silsl2},

by transfo]?ming (All,A21,A22) to (All,W,A22) with w=AaAillsl<2

(the Jaeobian of this transformation is lsil/2AulP), (6.4)

becomes
   e4ffff(A22A52)-l(x-2+wsll/2(xk.l-x?)IAIIlny(n"P"l)lA221-(n-l)

   xexp[-{ ll.i/Ll l l Ail(xl• -ui) H 2+tr(A22Ai?)'i•( (w-s2isll/2) (w-s2isil/2) '

                      p+q -(p+q+l-i)   + S22-S?iSIii-Si2)}/2]i-fi.iXii dvidAndA22dw•

                                           '
 Noticing that

   t]? ( A2 2Ai2 ) -i (w-s2isI l- /2 ) ( iAT --s2isil/2 ) '

                          '
               = tr{A5Å}(w-s2islii/2)}{As:(w-s2isil/2)}'

and
          '   fwexp[-tr{A52i(w-s2isil/2)}{A5':(w-s2isil/2)}"/2]dw

                                                 '
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         = cslA221Ps21sil/2,

                                 'we obtain
   ff(A22A52)hlylAl-(n+l)l.liif( H A-l(xi-v) H 2).(de)dy

   = {•fff(A22A52)-ig(x,e)dyidAiidA22}(E2+S2iSil(xik+i'-Xi)),

where
   g(x,e) - c6iAiil-(n-P"i)iA221-(nTP'i)exp[-{Il. :tl H Ail(xl. -ui)l}2

                                       '           + tr'(A22A52)P'i(s22-s2isllsi.2)}/2]i /L2x;. S. p'q'i-i) .

 In a similar way we obtain
   ff(A22A52) --ilAl"("+i) l.lllf( l i A-!(xi•-v) H 2)v(de)dy

           = fff(A22A52)-lg(x,e)dpidAlldA22•

Therefore we have (3e31)e
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