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1. Introduction and Summary of the Results

In the present work we study the structural properties of linear autono-
mous functional differential equations in Banach spaces within the framework
of linear operator theory. We shall explain our motivation of this study.

In a series of papers Bernier and Manitius [4], Manitius [29] and Delfour
and Manitius [15] they have developed an excellent state space theory for
linear retarded functional differential equations (FDE's) in the product space
R™ x Lp([-h, 0]; Rn), h > 0. The theory is based on certain relations bet-
ween semigroups associated with the FDE's and the socalled structural operators
F and G. The structural operators have enriched the qualitative theory of
linear FDE's and have provided various new and efficient techniques for the
study of control theory involving retarded FDE's. The power of the theory has
been shown and increased by a number of contributions (refer to Delfour [12],
Delfour. Lee and Manitius [14], Manitius [30,31], Salamon [39] and Vinter and
Kwong [47]). Recently Salamon has been extended the state space theory to the
controlled neutral FDE's and has used the theory to expand a system theory for
neutral systems in his book [40].

We now pose a question. Is it possible to construct an analogous theory
for partial FDE's ? For the question we shall give an affirmative answer for
certain class of partial FDE's. We study partial FDE's in the class consists
of abstract delay evolutional equations in Banach spaces similarly as in Travis
and Webb [44,45], Webb [48], Datko [9,10] and Kunisch and Schappacher [26,27].
Partial FDE's in this class are very general and are appropriate for system
theoretical study as shown in Curtain and Pritchard [8] and Fuhrmann [16], so
we take this class. Let X be a reflexive Banach space and consider the

evolution equation with delay
0

(E) -d—gﬁil = AX() +I dn(s)x(t+s), t > 0
t -h



on X, where A_ generates a Co-semigroup and n 1is a bounded Stieltjes

0
measure on Ih = [-h, 0]. We study the equation (E) on the state space Mp =

X X Lp(Ih; X). The structural operator F is concerned with the retarded

part of (E) and is defined through the measure n quite similarly as in [4].

In [33,34] the author has constructed the fundamental solution of (E) under

the natural condition on n and has shown its prominent role in the optimal
control theory involving (E). The intréduction of fundamental solution permits
us to define the structural operator G, and these G and F have made it
possible to develop the state space for (E).

The objective of this paper is to extend and give certain new contributions
to the state space theory for the equation (E) on a reflexive Banach Space.

Many results obtained here, which are useful in applications, are considered to
be possible generalizations of the results in [4,15,29] to infinite dimensions.
However it is also the objective of this paper to propose an approach for simp-
lifying the state space theory. Due to our approach heavily depending on func-
tional analysis method, many of the proofs can be improved. The author believes
that the results presented here will provide a useful tool in studying the
control theory for partial FDE's.

We enumerate the contents of this paper. Section 2 gives some preliminary
results on the equation (E). The notations and terminology to be used for (E)
are given in Subsection 2.1. In Subsection 2.2 various fundamental concepts
relating to (E) are introduced; e.g., the fundamental sdlution W(t), the retar-

ded resolvent R(}; Ao,n) which is a bounded inverse of A(A) = AI - AO -

0

[ eASdn(s), the three kinds of retarded, point spectrum op(Ao,n), continuous
-h

spectrum GC(AO,n), and the residual spectrum GR(AO,n), the mild solution; and
the basic fact that R(}; Ao,n) is given by the Laplace transform of W(t)

for Re A large is stated. Also, a variation of constants formula for the



mild solution in terms of W(t), which is essential in our treatment, is given.
In the remainder part of this subsection we introduce the transposed equation
(ET) on the adjoint space M; of Mp and give an elementary adjoint theory.
In Section 3 we define semigroups S(t) and ST(t) associated with (E) and
(ET) respectively, by the translation segments of mild solutions. The basic
properties of the semigroups like infinitesimal generator or compactness for
t>h are investigated as well as those for their adjoint semigroups S*(t) and
S%(t). Section 4 is devoted to study the properties of structural operators.
As in Bernier and Manitius [4] we define the structural operators F and Gt’
t > 0, then a key relation S(t) = GtF’ t 2 h in our theory follows from the
variation of constants formula. The representations of the adjoints F* and
G; are shown to be of same type as F and Gt’ so analogous decomposition
for ST(t) holds. As a consequence of such decompositions we can show that
the adjoint semigroup S*(t) is realized via a modified transposed equation
with non-zero forcing term by regarding the forcing term as the initial state
of the transposed equation. Other fundamental properties of F and G = Gh
shown in [4,15,29] are the intertwined property S(t)G = GS;(t) and FS(t) =
S;(t)F. These relations are extended to our Banach space case and their simple
proofs based on the new formula S(t)G = Gt+h are presented. It is also
proved in Section 4 that the null space Ker G of G is {0} and the image
ImG of G 1is dense in Mp' We know that similar conditions for F are
hopeful in establishing good qualitative properties of (E), but these are not
true in general. Thus, in Section 5 we examine conditions for F such that
Ker F = {0}, ImF = Mp or Cl(Im F) = Mp’ where Cl1 denotes the closure
operation. A number of necessary and/or sufficient conditions for these
criterion expressed by n are established by solving a Volterra integral
equation with délays induced by the operator F. Among those it is shown

that for differential difference equations with the retarded term



0 m
[ dn(s)x(t+s) = I A x(t-h ), O0<h < <. <h =h, an equivalent condition
-h r=1 T T 1 m

to Ker F = {0} is Ker A= {0}. Section 6 is devoted to studying the resol-
vent operators of infinitesimal generators which generates the semigroups given
above. According to [7,15,40] various spectral operators containing exponen-
tial function terms are introduced and the relations each other and connections
between F and/or A ()) are investigated. Using such relations we show, via
the characterizations of generators given in Section 3, that each resolvent is
described as a composition of F (or F*), retarded resolvent and other spectral
operators. Suéh representations for the resolvents play an important role in
the spectral analysis for (E). With the help of such forms a detailed and
somewhat complicated spectral theory than [15],[18] is developed in Section 7
and Section 8. Section 7 studies the spectral decomposition theory for (E).

In Subsection 7.1 the spectrum of the generator A of S(t) is determined.

The spectrum of A coincides with the retarded spectrum completely. Strictly
speaking, it is shown that O'P(A) =0P(A0,n), oC(A) =0C(A0,n) and oR(A) =
gR(A0ﬂ1). In Subsection 7.2 a rather sophistcated spectral decomposition

is presented. A characterization of the null space Ker (AT - A)Z , L=
1,2,--- in terms of A(\) and its derivatives is established for X ¢ OP(A).
If )\ is a pole of R(u; Ao,n) of order kk’ then Mp can be decomposed as
the direct sum of the generalized eigenspace N&== Ker (AI - A)kk and its comp-
lementary space MA = Im (AT - A)kx. In view of the representation of the
resolvent R(A; A) of A given in Section 6, the cannonical spectral projec-
tion PA on MA is expressed as a composition of F and other operators con-
taining the retarded resolvent. Finally in this section we restrict a set A

c g(A) to a subset of discrete spectrum and establish the group property of

S(t) on the decomposed space MA = @ Mk (direct sum) with a clear picture of
Ae

the asymptotic behaviour of the mild solution of (E). In Section 8 we develop



the adjoint spectral decomposition theory by emphasizing the role of structural
operators F and G. The main concern in Subsection 8.1 is to clarify the
relation between the spectrums of the adjoint A* of A and the generator AT
of ST(t). Thus it is shown that three kinds of spectrums of A* and AT
coincide entirely and the generalized eigenspace M; of A*, X € op(A*) is
given by M; = F*MI, where MI denotes the generalized eigenspace of AT
corresponding to A. We now denote by Od(A*) the discrete spectrum of A¥*,

*
i.e., dim MA <o if Xe 0, (A*) < OP(A*). Then it is also.established that

a¢
. *
od(AT) and G*MA = M;. This implies, by the property of G*, that

0 4(A%)
dim M; = dim M{. The last result in Subsection 8.1 gives the Mp-adjoint result
for A, inwhich a fact that dim MA= dim M; is shown for a pole A of

R(u; Ao,n). In Subsection 8.2 we are concerned with the representations of
spectral projections. From the results in Subsection 8.1 we know that dim M;
= dim Mi <o for Ace od(A). Using this fact the spectral projection P,

for A € od(A) is expressed in terms of the bases of MA’ M{ and the operator
F. In Section 9 we study the problem of completeness of generalized eigenfunc-

tions, which means Cl1( U MA) =M. First a characterization of the null
Ao, (A)

space Ker PA for a pole A of R(u; Ao,n) is given. Then a number of nece-
ssary and sufficient conditions for the completeness are established by the use
of the representation of Ker PA’ In the final Section 10 we give some examples

of practical partial FDE's which illustrate the contents of this paper.



2. Linear Functional Differential Equations in Banach Spaces
2.1. Notation

The sets of real and complex numbers are denoted by R1 and Cl, respec-
tively. R denotes the set of non-negative numbers and R" denotes the n-
dimensional Euclidean space. Let X and Y be complex (separable) Banach
spaces with norms |-| and || - ”Y’ respectively. For Ec Y the closure
of E 1is denoted by Cl(E). The adjoint spaces of X, Y are denoted by X*,
Y* and their norms are denoted by |-|., || - “Y*’ respectively. For a closed
linear operator A on a dense domain D(A) ¢ X into Y, its adjoint operator
is denoted by A*. The symbols Im A and Ker A will denote the image and
the null space of A, respectively. The duality pairing between X and X*
is denoted by < , > and the pairing between Y and Y* by < , >y For
Ec Y the ofthogonal complement { y* € Y*: <y,y*>Y =0 for all ye E} of
E 1is denoted by E. B(X,Y) denotes the Banach space of bounded linear ope-
rators from Y into X. When X =Y, B(Y,X) is denoted by B(X). Every
operator norm simply is denoted by || - ||.

Given an interval 1 c Rl, LP(I; X) and C(I; X) will denote the usual
Banach space of X-valued measurable functions which are p-Bochner integrable
(1 £ p< ») or essentially bounded (p =) on I and the Banach space of
strongly continuous functions on I, respectively. The norm of LP(I; X) is

denoted by || - || w;l)(I; X) denotes the Sobolev space of X-valued

p,1°
functions x(s) on I such that x(s) and its distributional derivative x(s)

= égéél- belong to Lp(I; X). For each integer k 2 1, Ck(I; X) denotes the

Banach space of all k-times continuously differentiable functions from I into

X. C(R+; X) (resp. Lloc(R+; X)) will denote the Fréchet space of functions

which belong to C([0, t]; X) (resp. Lp([O, t]; X)) for any t > O. Let
Mp(I; X) denote the product space X X Lp(I; X). Given an element g ¢

Mp(I; X), gO e X, gl(-) € Lp(I; X) will denote the two coordinates of g,



ie., g-= (go,gl). Mp(I; X) 1is the Banach space with norm

IA

p<®

0 1 1 .
Qe+ 0 g I pMP af

||g|| =
M (I; X
p( )

]
8

0 1 .
el + 1l el if p
The symbol Xg denotes the characteristic function of the set E.

2.2. Fundamental Solution, Mild Solution and Retarded Resolvent
We shall review some basic results on linear functional differential equa-
tions (FDE's) in Banach spaces. Let h > 0 be fixed and Ih = [-h, 0].

Consider the following autonomous retarded FDE on a Banach space X:
0

dzit) = on(t) + J dn(s)x(t+s) + u(t) a.e. t=2 0 2.1)
(E) -h
x(0) =g, x(s) =g(s) a.e. se [-h, 0), (2.2)
loc +

where g = (go,gl) €e M =M(I; 0

generates a CO-semigroup T(t) on X. The Stieltjes measure n in (2.1) is

X), uce Lp (R;X), pe [1,°], and A

given by
0
m
n(s) = - Ix (s)A_ - I A_(€)dg, se I, (2.3)
r=1 (d”’—hr] r s 1 h

where 0 < h1 < sree < hm = h, Ar € BX) (r =1,:-+-, m) and AI € Ll(Ih;B(X)).

Let W(t) be the fundamental solution of (E), which is a unique solution

of
t 0
T(t) + J T(t—s)J dn(E)W(E+s)ds, t=20
W(t) = 0 -h
o, t < 0.

+ . s
Then W(t) is strongly continuous on R  and satisfies, for some M, YO > 0,

fwee) || < ™ exp(yyt), t= 0. (2.4)



If the condition
Ar(+) € Lp.(Ih; B(X)), 1/p+1/p' =1 (2.5)
is satisfied, theh for each t ¢ R the operator valued function Ut(o) given

by

S
m

T W(t-s-hr)Arx[_h 0](5) + J W(t-s+£)A (E)dE
r=1 r’ -h

u,(s)

s
J W(t-s+£)dn (&), a.e. S € Ih (2.6)
-h .

belongs to Lp,(Ih; B(X)). This follows from the Hausdorff-Young inequality.

Hence the function
0 ' t
W(t)gd + J Ut(s)gl(s)ds . J W(t-s)u(s)ds, t= 0
x(t; g,u) = -h 0 (2.7)
| gl(t) a.e. te [-h, 0)
is well defined and is an element of C(R+; X) n Lp(Ih; X). From (2.4)-(2.7)

we can derive the following estimate
. < . 2
| x(t; g,u)l (MOIIgIIMp + M {luc )Ilp,[o’ (PP, 20, (2.8)
where M. and M. are constants depending only on p, n and AO.

0 1

THEOREM 2.1. Let (2.5) be satisfied. Then the function x(t) = x(t; g,u)

in (2.7) is the unique solution of the following functional integral equation:

T(t)gO + I T(t—s)J dn(Z)x(s+£)ds + [ T(t-s)u(s)ds, t=20
0 -h 0

x(t) = (2.9)
gl(t) a.e. t € [-h, 0).

In the sense of Theorem 2.1 we shall call this x(t) the mild solution of (E).
The formula (2.7) is well known as a variation of constants formula for retarded

FDE's in R" (cf. Hale [18,Chap.6]). Since we use the class of mild solutions
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(2.7) throughout this paper, the condition (2.5) is always assumed. A suffi-
cient condition for the existence of differentiable solution of (E) is given

by the next corollary (for the proof see [34]).

. 0 1
COROLLARY 2.1. Let X be reflexive. If g= (g ,g) and u satisfy

1 a,. . 1. 0
g € Wp (I X, g (0) =g ¢ D(AY,
(1) .
u ¢ Wp ([o, t]; X) for each t > 0,

then the function x(t) = x(t; g,u) given in (2.7) is a strong solution of
(E), i.e., x(t) satisfies (i) x e C(R+; X) n W;I)([O, t]; X) for all t > 0;
(ii) x(t) ¢ D(AO) for a.e. t >0, x(t) is strongly differentiable and satis-

fies the equation (2.1); (i) x(0) = go, x(s) = gl(s) a.e. s ¢ [-h, 0).

For each A € C1 we define the densely defined closed linear operator

AQ) = A0 Agn) by
0
AQ) =2l - AO - [ he)‘sdn(s), (2.10)

where 1 denotes the identity operator on X. The retarded resolvent set
p(Ao,n) we understand the set of all values A in C1 for which the operator
A()) has a bounded inverse with dense domain in X, In this case A()\)_1 is
denoted by R(A; Ao,n) and is called the retarded resolvent. The complement
of p(Ao,n) in the complex plane is called the retarded spectrum and is denoted
by O(Ao,n). The three different types of retarded spectrum can be defined as
in the following manner. The continuous retarded spectrum OC(AO,n) is the
set of values A for which A(A) has an unbounded inverse with dense domain
in X. The residual retarded spectrum GR(AO,n) is the set of values A for
which A(A) has an inverse whose domain is not dense in X. The point retar-
ded spectrum op(Ao,n) is the set of values XA for which no inverse of A(XA)

exists (cf. Hille and Phillip [21,p.54], Tanabe [43,Chap.8]).
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We know that the retarded resolvent set p(AO,n) is open in C1 and
contains right half plane and the retarded resolvent R(}; Ao,n) is holomor-

phic on p(AO,n). In fact, we have the following

THEOREM 2.2. Let

wo = inf { a: ” W(t) ” <M éxt, t> 0 for some M> 01}. (2.11)

If Re ) > w then A ¢ p(AO,n) and the retarded resolvent R(A; Ao,n) is

0,
given by the Laplace transform of W(t), i.e.,

o0

RO Agn) =J e M) dt. (2.12)
0
Next we give an elementary adjoint theory for (E) under the assumption that
X 1is reflexive and p # . Then the adjoint space M; of Mp is identified
with the product space X* x Lp,(Ih; X*), where 1/p + 1/p' =1. Let f =

(fo,fl) € M; and v e L;?C(R+; X*). The transposed equation (ET) on X* is

defined by
} 0

) _cZi{—tl = A%z (t) + J_hdn*(s)z(us) +v(t) a.e. t=0 (2.13)

2(0) = £2,  z(s) = £(s) a.e. se [-h, 0). ' (2.14)

Since X 1is reflexive, the adjoint operator Aa generates a Co-semigroup

T*(t) on X* which is given by the adjoint of T(t)(see [37]). Hence we
can construct the fundamental solution WT(t) of (ET) as the unique solution

of the equation
t 0

T* (t—S)J dan* ()W (E+s)ds, t
-h

v
o

T*(t) + J
WT(t) - 0

o, t < 0.

We denote by W*(t) the adjoint of W(t). Then we can show that WT(t) =

W(t), t e RL.
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This implies that W*(t) is strongly continuous on R+. Throughout this paper

the condition
. . * =
Ap() e L (15 BOM)), 1/p + 1/p' = 1

. . T, . . . .
is assumed whenever the transposed equation (E') is in consideration. Thus,

the (unique) mild solution z(t) of (ET) exists and is represented by

0 t

z(t) = z(t; f,v) = w*(t)f0 + J Vt(s)fl(s)ds + I W*(t-s)v(s)ds, t=0, (2.15)
-h 0
where
n s
Vt(s) = rZ:llw*(t—s-hr)A;x[_hr’O](s) + I—hw*(t-s+£)A§(£)d£, a.e. s¢ Ih’ (2.16)

For A € C1 define the operator
| 0

A
Br(A) = A(A; A%n*) = AL - A% - J_he Sdn*(s).

The retarded resolvent and three kinds of spectrum corresponding to AT(A) are

defined similarly as for A(A).

THEOREM 2.3. (i) A € p(AO,n) if and only if A(complex conjugate) e

p(Aa,n*) and
RO Apm)* = RO AfN*Y). (2.17)

(ii) Both retarded resolvent set p(AO,n) and p(AS,n*) contain the half

plane { e Cl: Re A > W }, where w is given in (2.11).

0

(=]

(i) RO A%,n%) = J
0

e—l
0

tW*(t)dt for Re A > Wy

Here in Theorem 2.3 (i) we remark that the duality pairing < , > between

X and X* satisfies
<X,0x*> = <ak,x*> for o € Cl, (x,x*) ¢ X X X*, (2.18)

Complete proofs of these results in this section can be found in [34,35].
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3. Semigroups associated with Functional Differential Equations
This section is devoted to studying basic properties of semigroups associated
with the equations (E)} and (ET). In what follows we assume that X is refle-

xive and 1 < p < =,

Let x(t; g) be the mild solution of (E) with u =0 and g € Mp‘ The

solution operator S(t) : Mp > Mp’ t 2 0 is defined by
S(t)g = (x(t; g),x (-5 g)) for ge Mo | (3.1)

where xt(s; g) = x(t+s; g) a.e. s € Ih. - The operator S(t) is bounded and

linear on Mp by (2.7) and has the following properties(for similar results,

see [2,4,5,6,44,46,48]).

PROPOSITION 3.1. (i) The family of operators {S(t): t =01} is a CO—semi-

Toup on M .
group D
(ii) If T(t) 1is compact for all t > 0, then S(t) is compact for t > h.

(iii) The infinitesimal generator A of S(t) is given by

) = (g= g e Mg e WP 0, =g’ cpip), G2

0 1
re = e s [ @l @0 for gs @) 0w, G
-h
and for g e D(A),
_45(t)g - as(t)g = S(t)Ag, t > O. (3.4)

dt

Proof. (i) The semigroup property S(t+s) = S(t)S(s), S(0) = I 1is obvious
from the definition (3.1). Strong continuity of S(t) on Mp follows from
that x(t; g) > go in X as t > 0+ by (2.9) and that xt(-; g) > g1 in
X) as t »> 0+ by the absolute continuity of Bochner integrable func-

Lp(Ih;

tions (cf. Ahmed and Teo [1,p.16]).
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(ii) First we introduce the operator Qt : Mp > X, t 20 defined by
t
t

Qg-= J T(t-s)k(s; g)ds, geM, (3.5)
0 p

where 0

k(s; g) = J dn(g)x(s+g; g), s 2 0. (3.6)
-h
Using Holder inequality and the estimate (2.8), we have

IRICHEN| sM )l glly (3.7)

[0, t
P, ] .

where

M) = CENA N+ Ay APy 1+ Mt Pexpry, 1))
2 T 1+ pr,1y 0 PLYp™) -

In order to prove the compactness of Qt for t > 0 under the compactness of
T(t), t > 0, we define the €-approximation QZ : Mp > X of Qt for €€ (0, t]
by t-€

t

Qg = T(e)J T(t-€-s)k(s; g)ds, geM (3.8)
0 p

. . t .
Since T(eg) is compact, Qs is also compact. The compactness of Qt follows

from
t

T(t-s)k(s; g)dsl < Ms(t)-el/p'.” g'|M s (3.9)
t-e P

@ - Yl = |

where M (t) = ( sup 1 T(s)||)M2(t).
se[0, t]

Now let t > h be fixed and let the operator Rt : Mp + C([t-h, t]}; X)
be defined by
t
(R'g)(s) = x(s; g), s € [t-h, t].

Let E be a bounded set in Mp. Since T(s) and QS are compact for s > 0,
from the equation (2.9) it follows that for each s ¢ [t-h, t], the set

{(Rtg)(s) e X: g e E} is precompact in X. Next we shall prove that



15

{ Rtg : g€ E} is an equi-continuous family of C([t-h, t]; X). Let 0 < a <

t-h, ge E and t-h < s' < s < t, Then we obtain from (3,5) and (3.9) that

| R (s) - R (s")]
S

7 - 76 1418%) + | [ 7650 ll-Ixces @ ae

A

S'
s'-a St
+J | T(s-1)-T(s'-1) || - [k (rs g)]dr J | T(s-1)-T(s*-1) || -[k(r; g)|dr
0 s'-a
s ey - Tes - 18% + Ml g ]Iy, G-y P
P
+ (supl [IT(-Te) | 11,7 € [a,t], [t |=]s-s* e /P M o [l g I,
p
1/p! :
+ Mg ()l g lly -2 - (3.10)
P

For each fixed a > 0, it is verified via Hille and Phillips [21,p.304] that
T(s) 1is uniformly continuous on [a, t] in the operator norm topology of B(X).
Taking a > 0 sufficiently small and applying the uniform continuity to (3.10),
we have the desired equi-continuity. Therefore by Royden [38,p.155], Rt is

compact. Now we introduce the immersion it : C([t-h, t]; X) » Mp by

Itx(-) = (x(t),xt(-)) for x € C({t-h, t]; X). Clearly It is bounded.

Since S(t) can be decomposed as S(t) = Ith for t > h, S(t) 1is compact
for t > h.

(iii) We denote by A and D(K) the infinitesimal generator of S(t) and its
domain, respectively. Let g ¢ D(K) and

~ 0 1

Ag = (v ,y"). (3.11)

Since the second coordinate of S(t)g is the t-shift x(t+-; g), it follows

immediately that
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+
.. . 1), . d ... sl 1 .
x(-; g) =g ¢ wp (Ih, X) and IS x(+; 2 g =y in Lp(Ih, X), (3.12)

+

where %; denotes the right hand derivative. By redefining on the set of

measure O we can suppose that x(s; g) = gl(s) is absolutely continuous from

Ih to X (cf. Barbu [3,p.19,Theorem 2.2]). Since x(0; g) = go, this implies

gl(O) = go and x(-; g) € C([-h,®); X). Then the function k(s; g) in (3.6)

0
is continuous in s 2 0 and satisfies 1lim k(t; g) = J dn(s)gl(s). So that
t>0+ -h
t 0
lim %—J T(t-s)k(s; g)ds = J dn(s)gl(s). (3.13)
t>0+ 0 -

Applying (2.9) and (3.13) to the first coordinate of (3.11), we obtain that

0 . 1 0
y = lim + (x(t; g) - g)
t>0+
t
0 1 0
y = lim E‘(T(t)g + j T(t-s)k(s; g)ds - gO)
t>0+ 0
0
. 1 0 0 1 . .
= 1lim E-(T(t)g -g)+ dn(s)g (s) exists in X. (3.14)
t>0+ -h
0 0 0 0 0

Hence 1lim t—l(T(t)g
t>0+

0
J dn(s)gl(s). This shows
-h

- g) exists in X, i.e., g e D(AO) and y = Aog +

D(A) c D(A) and Ag = Ag for g e D(A).

Next we show the reverse inclusion. Let g € D(A). According to Corollary
2.1 we have x(-; g) ¢ wél)([-h, al]; X) for any a > 0, from which (3.13)

follows. Combining this with gO € D(AO) we see that

0

.1 0 0
Hm ~(x(t; g) - g7) = Ag + f dn(s)g’ (s).
t>+0 -h
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Noting
T (€ ) - g E) - B ®
t

= %(X(thi;g) - x(&; g)) - x(&; g) = % IO(X(s*ﬂE; g) - x(&; g))ds, (3.15)

for & e [-h, 0], we obtain with the aid od Holder inequality that
t 0

| £, C5 2)-gY - & Ilg,lhs {—IO[J hlxcs+£; g) - x(&; g)|Pdelas.  (3.16)

This implies that 1lim t-l(x (-5 8) - gl) exists in L_(I,; X) and equals
>0+ t ph
1

g . Thus , we prove D(A) < D(R) and Ag = Kg for g € D(A), and hence

(3.2),(3.3) are shown. The remaining equality (3.4) is obvious.

Concerning the transposed equation (ET) we define the semigroup ST(t)

on M; in an analogous manner. Thus we have :

PROPOSITION 3.2. (i) The family of operators {ST(t): t20} is a C,-semi-

Toup on M¥*.
group P
(ii) If T(t) is compact for t > 0, then ST(t) is compact for t > h.

(ii) The infinitesimal generator AT of ST(t) is given by

DAy = { £= (0,81 e e £l . wé})(rh; x*), £(0) = £ « DN},

0
AE = (Axe s J_hdn*(s)flts),ﬁf(-)) for £= (£,£) ¢ D(AY,
where 1/p + 1/p' = 1.

Since Mp is reflexive, we know that the adjoint S*(t) of S(t) generates
a Co—semigroup on M;. Probably it was Vinter [46] who first characterized
the infinitesimal generator of the semigroup S*(t) in the case X = Rn and

p = 2. His article seems hardly to available, however, we shall give a comp-

lete proof of the result in our Banach space case.
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PROPOSITION 3.3. The infinitesimal generator A* of S*(t) 1is given by

D(A*) = { f = (fo,fl)e M;: w(f) € wé})(rh; X*), w(f)(-h) = 0, ¢ D(As)}
(3.17)
0 1 . 0 .1
A*f = (AXf + £7(0),%(f)) for f = (f,f) ¢ D(AY), (3.18)
where s
w(f)(s) = J dn*(s)f0 - fl(s), se . (3.19)

Proof. Note first that the infinitesimal generator of S*(t) 1is given by
the adjoint A* of A, Let (go,gl) € D(A) and (fo,fl)‘e M;. Assume

that there exists a (kO,kl) € M; such that for all (go,gl) e D(A),

ai,gh, @t = <@’eh, 60Ky,
p p
or, equivalently by Proposition 3.1,
0 0 0
<A0g0 + I hdn(s)gl(s),f0> + I h<g1(s),f1(s)>ds = <g0,k0> + I ;gl(s),kl(s)>ds
(3.20)

s

Set M(s) = I kl(E)dE, S € Ih. M(-h) = 0 is evident. It is easy to see
-h

that, by using integration by parts,

0 0
f <g’ (s),k" (s)>ds = <g! (0),M(0)> - J <g (s),M(s)>ds. (3.21)

Next we set hO = 0 and
S S
o 1T 0 0
N(s) = | dW*(s)f" = Z A% 1 (S)E + | AX(E)E dE.
-h r=1 ¥ [- T’ ] -h I

Again, using integration by parts on each [—hr, —hr_l], r=1,---, m it is

not difficult to show that
0 0

f <t (s),N(s)>ds = <g°,N(0)> - <J dn(s) g’ (s),£%. (3.22)
-h -h



19

0 1

Then by (3.20)-(3.22), we see for (g ,g ) € D(A),
0
f <&' (), £1 (5)-N(s M(s)>ds + <a e’ £% = <g” k- (0)M(0)>. (3.23)
“h

. 0 1 .
For go € D(AO) and gl(s) = go, jt is obvious that (g ,g ) € D(A) and g =

0 1
0. Hence applying such (g ,8 ) to (3.23), we have

<A0g0,fo> = <g0,k0-N(0)+M(0)> for all g0 € D(AO). (3.24)

This proves that fo € D(Aa) and
0

0
K = Aafo " I dn* () £° - f 1! (s)ds. (3.25)
-h

. 0 1 . . .
Since { glz (g ,g ) € D(A) } is dense in Lp(Ih, X), from (3.23) and (3.24)
it follows that

fl(s) - N(s) + M(s) =0 a.e. s € Ih. (3.26)

If we put w(f)(s) = N(s) - fl(s), S € Ih’ then by (3.26) w(f) satisfies

w(f) € wé})(xh; X*), Ww(f) =M=k in L, (Ip5 X9 (3.27)
and

w(f)(-h) =0, w(£)(0) = f kl(s)ds = J dn*(s)f0 - fl(O). (3.28)
-h

Therefore, by (3.25),(3.27) and (3.28) we conclude that D(A*) 1is given by
(3.17) and A*f, f € D(A*) 1is represented by A*f = (ko,kl) =
(A6f0+f1(0),W(f)), which is (3.18). Conversely it is not difficult to show
that any element of the right hand side of (3.17) belongs to D(A*). Thus the

proof is complete.



20

4. Structural QOperators F, G and Their Adjoint Operators
In this section we extend the structural operator F and Gt introduced
in [4] for the case X = R" to our Banach space case and study their basic

properties including the decomposition formula as well as their adjoint operators.

Define the operator F, : Lp(Ih; X) > Lp(Ih; X) by

S

j an(€)g! (€-s)
-h

[Fg'1(s)

S
m

ElArx[_hr,O](s)gl(ahr-s) . I—hAI(E)gl(E—s)dE ae. sel . (4.1)

T

By direct calculations using Holder inequality it is verified that F., 1is into,

1

linear and bounded.
First we give an equivalent representation formula of the mild solution

x(t; g) to (2.7) in terms of W(t) and F., which is given by another compli-

1’

cated form in [4,p.902]. The following one is explicit.

LEMMA 4.1. The mild solution x(t; g) is represented by
0

x(t; g) = W(t)g" + J W(t+s)[F1g1](S)ds, t
h

v

0. (4.2)

Proof. In view of (2.7) we are left to prove the equality
0 0

J U (s)g'(s)ds = J W(t+s)[F1g1](s)ds. (4.3)
_ht -h

With the aid of suitable changes of variables and Fubini's theorem we obtain
m 0
f U (s)gl(s)ds = = f W(t-s-h_)A g (s)ds
t r.Tr
-h r=1"-h
T
0 s
+ [ (f W(t-s+€)AI(€)d€)gl(S)ds
h “-h
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0
I W(t+s){
-h

m
1

z -h -

r=1ArX[—hr,0](s)g ( hr s) }ds

0 [
+ I W(t+5){f AI(E)gl(E-S)dE}ds
-h -h

0
I hW(t+s)[F1g1](s)ds.

I 0
The first structural operator F : Mp'+ Mp is defined by F = ,
0 F
i.e,, 1
0 0 1 1 0 1
[Fel =g, [Fg]” = F g for g=(g,g) eM. (4.4)
By (2.7), (4.4) and Lemma 4.1, we have
0
W(t+s)g0 + I W(t+s+€)[Fg]1(£)d€, t+s 2 0
x(t+s; g) = ~h (4.5)
gl(t+5), t+s < 0.

The equality (4.5) suggests us to introduce the operator Gt : Mp +*M, t20

P
defined by
0
1
(C.gl"(s) = W(tss)g® + I W(trs+E)g! (E)dE, s eI, (4.6)
-h
0 1 0 1
[G.g]l" = [G.g]"(0), g=(g.,8) eM. 4.7)
P
Clearly Gt is linear and bounded. Notice that the right hand side of (4.6)
vanishes if t+s < 0. Especially we define the second structural operator
G: M M b
P p Y
G =G,_. (4.8)

We remark here that Gtg € C(Ih; X} for t2h and g € Mp.



22

The following proposition is obvious from (4.5) and the definitions of F,

Gt’ G and «k(t).

PROPOSITION 4.1. The semigroup S(t) 1is represented by

S(t) = G.F +x(t), t=z0, (4.9)
where «(t) : Mp -+ Mp is given by
[K(t)g]0 =0 [K(t)g]l(s) = gl(t+s)x (s) a.e. sel (4.19)
’ [—h’dt) - - h. .
In particular, S(h)- is decomposed as
S(h) = GF. (4.11)

To obtain a similar representation formula for the transposed semigroup
ST(t), we have to compute the adjoints of Gt and F (cf.(2.15),(2.16)).

The following proposition can be established by a direct calculation.

PROPOSITION 4.2. The adjoint F* : M; > M; of F is given by

where FI : Lp'(I

represented by

1

h; X*) > Lp,(Ih; X*) denotes the adjoint of F. and is

S

J dn* (£) £1 (E-s)
-h

[F2£1] (s)

. S (4.12)

* 1 -

_hA;(E)fl(E—s)dE a.e. s €I

The following proposition is also easily proved.
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PROPOSITION 4.3. The adjoint G; : M* > M* of Gt’ t 2 0 1is represented

p p
by 0
1 - 0 1 -
{G;f] (s) = W*(t+s)f + W* (t+s+E)f (E)dE, s € Lo
-h
0 1 0 .1
* - * = *
[th] [th] (0, f=(f,f) ¢ Mp.
Consider the transposed equation (ET). By (2.15) and Proposition 4.2, we

see that the mild solution z(t; f) = z(t; £,0) of (ET) is written as
0 .

2(t; £) = WH(t)£d + J Wt (tes) [F*£] L (s)ds, t 2 0.
-h

Hence by Proposition 4.3, we obtain the following

PROPOSITION 4.4. The semigroup ST(t) is represented by

ST(t) = G;F*+ K(t), t =0,
where K(t) : M; > M; is same as given in (4.10). In particular,

ST(h) = G*F*, ’ (4.13)

We can verify by standard manupulation involving the pairing < , M

p
that the adjoint «k*(t) : M; > M; of k(t) in (4.10) is given by

[ (©)€]° = 0, IO () = X[p gy (DE (-0, Fe M (4.24)

Since the same operator as in (4.14) can be defined on Mp’ we denote this
operator by the same symbol «*(t). Then taking adjoints of S(t) and ST(t),

we have the following result.

COROLLARY 4.1. The adjoint semigroups S*(t) and S%(t) are represented by

S*(t) = F*Gy + K*(t), Sp(t) = FG_ + k*(t), t =20, (4.15)
respectively. In particular,

S*(h) = F*G*, Sk (h) = FG. (4.16)
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It is well known that the adjoint semigroup S*(t) plays an important
role in the study of linear quadratic optimal control problem associated with
FDE's including their numerical computations (cf. [11,12,14,17,47]).

The structure of S*(t) is not straightforward compared with ST(t), since
a functional differential equation which realizes S*(t) has not been unknown.
The advantage of the use of transposed semigroup ST(t) depends on this fact
and that S*(t) and ST(t) are connected by the operators F* and G* in an

appropriate way (see Theorems 4.1,4.2 below).

A somewhat simple property of G and G* is the following

PROPOSITION 4.5. (i) Cl(Im G) = M_, Ker G = {0};

P
{o}.

(ii) Ci(Im G*) = M;, Ker G*

Proof. First we shall show Ker G = {0}. Assume Gg = 0 in Mp. Then

by (4.6) and (4.8 , 0 = [Gg]l(-h) W(O)gO = go. Using this and changing

variables & »+ -£ and h+s >+ s in (4.6), we have

s
[Gg]l(s-h) = J W(S—E)gl(-g)dg = 0 for all s e [0, h]. (4.17)
0

Now we can use a convolution type result on the fundamental solution in Nakagiri
[34,Lemma 5.1] to obtain from (4.17) that gl(—g) =0 a.e. & ¢ [0, h], i.e.,

g1 =0 in Lp(Ih; X). Hence g = (go,gl) =0 in Mp’ which proves Ker G =
{o}. Similarly, by Proposition 4.3 Ker G* = {0} holds. Since Mp is ref-
lexive, it follows from the duality theorem (cf. Kato [25,p.234], Tanabe [43,
Chapter II]) that Ker G = {0} (resp. Ker G* = {0}) is equivalent to C1(Im G*)

= M; (resp. C1(Im G) = Mp). This proves (i) and (ii).

In the special case where AO is bounded, we have the following sharper

result for G than Proposition 4.5.
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PROPOSITION 4.6. Let A. be bounded. Then

0
(1) Im G = D(A) and G : Mp + D(A) 1is bijective;
i) 6! : pea) » M is given by
0
[G-lg]l(s) = él(—s—h) - Aogl(-s—h) - J dn(E)gl(E—s-h) a.e. s € Ih
: s (4.18)

(6 'g1° = g (-h), g € D(A);

(iii) Im S(t) < D(A) for t 2 h. (4.19)

Proof. Since A0 is bounded, we see from Delfour [13,Theorems 1.1,1.2] that

the function
t

W(t)k0 + J W(t-s)kl(s)ds, t € [0, h], (4.20)
0

where k0 e X, k1 € Lp([o, h]; X), gives a unique strong solution of (E) with

g =k, g =0 and u = kl. For g = (go,gl) € Mp the function y(t) =

0 and kl(s) = gl(-s).

c+

[Gg]l(t-h), € [0, h] is given by (4.20) with k0 =g

Then [Gg](-)

y(-+h) € Wél)(lh; X), and hence by [Gg]l(O) = [Gg]o, Gg ¢
D(A), i.e., Im G < D(A). To prove the reverse inclusion let g = (gl(O),gl) €
D(A) and define ¢ = (wo,wl) by the right hand side of (4.18). It is clear
that yeM . Put y(t) - g (t-h), te [0, h] and y(0) = g (-h), y(s) =

0 a.e. s ¢ Ih. Then from (4.18) it follows immediately that y(t) is a
strong solution of (E) with kO = wo and kl(s) = wl(-s). Hence by unique-
ness, y(t) = [Gw]l(t-h) = gl(t-h), t ¢ [0, h] and especially y(h) = pw]l(O)

= [Gd)]0 = gl(O). So that Gy =g, or VY = G-Ig. This shows (i) and (ii)

simultaneously. Since S(t) = S(h)S(t-h) GFS(t-h) by (4.11) and Im G =

D(A), we have (iii). In other words, S(t) is a differentiable for t 2= h.

We note that S*(t) also satisfies Im S*(t) < D(A*) for t 2 h. Next

we establish a simple and fundamental relation between S(t) and Gt which
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can not be found in any literatures studying state space theory for (E).

PROPOSITION 4.7. (i) S(t)G =G ST(t)G* G t 20;

1]

*
t+h’ t+h’

s 3 *Qk - (% * = >
(ii) G*S*(t) Gt+h’ GST(t) Gt+h’ t 0.

1
Proof. (i) With the aid of (2.7),(4.6),(4.8), we have for g = (go,g ) e M,

p
0 0
1
[sce)cglles) = (W(t+s)W(h)+J Ut+s(£)W(h+€)dE)g° + J hW(t+s)W(h+€)g (8)dg
-h -
0 0
1
+ J-hj-hut+s(E)W(h+£+a)g ()dad€E = I1 + 12 + 13. (4.21)
As is easily seen
0
I, + 13 = J h(W(t+S)W(h+€) + j hUt+S(a)W(h+E+a)da)gl(€)d€. (4.22)

We now recall the following quasi-semigroup property of W(t) given in [35,Eq.

W(t1+t2) = W(tl)W(tz) + J Utl(E)W(t2+£)dE, tl, t2 > 0. (4.23)

-h
Applying (4.23) to I1 in (4.21) and the integrand in (4.22), we obtain that
0

[5(006e1 () = Wieessng” v | Wersenen)gl €16 = (6,879 (4.20)

-h
. . . 0 0
Substituting s = 0 in (4.24), we have [S(t)Gg] = [Gt+hg] . Therefore,

S(t)G = G is proved. Similarly ST(t)G* = is true.

*
t+h G+h

(ii) Take adjoints of the equalities in (i).

We are now ready to give the main theorem which is one of the key results
in the state space theory. A similar result for X = R" is already proved by
Manitius [29,Theorem 3.3], however his proof is much complicated and can not be
carried to our Banach space case (W(t) 1is not differentiable!). Here we shall

give a very simple proof based on Proposition 4.7.



THEOREM 4.1. (i)

(i1) GD(AF) < D(A)

G*D(A*) < D(A[)

Proof. The part (i)

part (ii) follows from

The next is the second key result related to

Bernier and Manitius [4
Theorem 3.1] for more

proof.

THEOREM 4.2. (i)

(ii) FD(A) < D(A})

F*D (AT) < D(A*)
Proof.

(4.11),

G(S*(t)F)

Since Ker G = {0}, it

second equality in (i)

COROLLARY 4.2. (i)
(ii) Ker F* = { f
Proof. Since S(t)

we see easily that

Since (ii) follows from (i), we prove only (i}.
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S(t)G = GS;(t), G*S*(t) = ST(t)G*; t 2 0; (4.25)
and AG = GA% on D(A%); (4.26)
and G*A* = ATG* on D(A*). (4.27)

is a direct consequence from Proposition 4.7 and the

(i) and the definition of infinitesimal generator.

F, which is first proved by
,Theorem 5.4] and later by Delfour and Manitius [i5,

general measure 0, Compare their proofs and our simple

FS(t) = S5(t)F, S*(t)F* = F*S.(t),  t 20; (4.28)
and FA = A%F on D(A); (4.29)
and A*F* = F*AT on D(AT). (4.30)

By (4.25) and

(GS%(t))F = S(t)GF = S(t)S(h) = S(h)S(t)

GFS(t) = G(FS(t)), t > 0. (4.31)
follows from (4.31) that S*(t)F = FS(t), t = 0. The
is proved analogously.
KM'F={g€Mp:xﬁ;g)= 0 for t € [0, h]}; (4.32)
z(t; £f) =0 for t e [0, h]}. (4.33)

e M* :
P

is a semigroup defined by (3.1) and (E) 1is autonomous,
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S(th)g =0 if and only if S(t+h)g

0 for all t 2 0,

if and only if x(t; g) 0 for all t 2 0,

0 for all t

m

[0, h]. (4.34)

if and only if x(t; g)

From (4.11) and Ker G = {0}, we have Ker F = Ker S(h). Hence (4.34) implies

(4.32). Similarly (4.33) is proved by (4.13) and Propositon 4.5 (ii).

Lastly in this section we introduce a bilinear form « , » between Mp

and ME defined by

g, f» = <Fg,f>M = <g,F*f>M . (4.35)
p P
The form <« , » is considered a time reversing one of the Hale's bilinear
form (see [18,p.173]) and appears in the representation of basis for genera-
lized eigenspaces associated with (E) (which will be given in Section 8 below).

The following corollary is obvious from Theorem 4.2 and the definition (4.35).

COROLLARY 4.3. (i) <«Ag,f» = <g,A f», (g,f) € D(A) x D(A[).

(ii) «S(t)g,f» = «g,5.(t)f», t=20, (g9 € M X M.
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5. Characterizations of Ker F and Im F

In this section we shall give a number of necessary and/or sufficient
conditions for Ker F = {0}, ImF = Mp and C1(Im F) = Mp in terms of the
coefficient operators appearing in the measure 0.

By definition it is clear that

Ker F = {0} % Ker F» ImF = X X Im F,. (5.1)

Further, we know by the duality theorem that

(Im Fl)l = (C1(Im Fl))l = Ker F¥.

Since FI is an operator of the same type as F1 (Proposition 4.2), we mainly

investigate the structure of Ker F From the definition (4.1) of Fl, we

1
see that the condition g1 € Ker F1 is equivalent to that g1 satisfies

- | 1 ’ 1

rilArX['hr’O](S)g (-h_-s) + J_hAI(E)g (8-5)d€ = 0 a.e. seI. (5.2)

The equation (5.2) can be written by the following homogeneous Volterra integral
equation with delays:
m;1 t
AW + X AX; py@¥E-T) + J A;(E-h)y(t-E)dE = 0 a.e. t € [0, h]
r=1 r 0
(5.3)
where Y(t) = gl(-t), t € [0, h] and Tr = h-hr >0, r=1,"+, m-1.

Hence by the first equality in (5.1), Ker F = {0} is equivalent to that the
equation (5.3) admits a unique trivial solution ¥Y(t) = 0 a.e. t e [0, h].
In order to give conditions for Ker F = {0} we introduce the following null

space N(AI; a), o ¢ Ih associated with the kernel AI(g):

N(A;; @) = { x e Xt A(E)x = 0 for a.e. € ¢ [-h, al}.

PROPOSITION 5.1. A necessary condition for Ker F = {0} is

Ker A n N(A;; o) = {0} for each o e (-h, -h_ .]. (5.4)
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Proof. Suppose (5.4) does not hold. Then there exist GO € (-h, —hm_l]

and X # 0 such that x. € Ker Am n N(AI; ao), i.e.,

0
Amx0 =0 and AI(g)x0 =0 a.e. & e [-h, ao]. (5.5)
Define
0, t € [0, —ao]
Y(t) = (5.6)
Xy t € (-ay, h],

where Y(-) # 0 in Lp([O, h]; X). Making use of (5.5) we can verify strai-
ghtforwardly that (t) in (5.6) satisfies (5.3). Hence y(--) € Ker Fl’ so

that Ker F # {0}. This proves the proposition.

THEOREM 5.1. Assume that AI(S) 0 in a neighbourhood of -h. A necessary

and sufficient condition for Ker F = {0}, or equivalently CI1(Im F*) = M;, is

Ker A = {0}. (5.7)

Proof. Since the condition (5.7) is necessary by Proposition 5.1 and assump-
tion, it sufficies to prove that Ker A = {0} implies Ker F, = {0}. Let g1
€ Ker F1 and  be given in (5.3). SuPpose AI(s)= Oa.e.s ¢ [-h, -h+t] for
some T ¢ (0, h—hm_l] by assumption. Then by (5.3),

m-1
Am¢(t) + § Arx[r ,h](t)w(t—Tr) =0 (5.8)
r=1 T
for a.e. t e [0, T]; in particular Amw(t) =0 a.e. te [O, min(T,Tm_l)].
So that y(t) = 0 a.e. t e [0, min(T,Tm_l)] by (5.7). Using this, via step
by step argument, we obtain from (5.8) that ¢(t) = 0 a.e. t e [0, T]. Let
k 21 and suppose ((t) =0 a.e. t e [0, kT]. Then for t e [kt, (k+1)1],

we have
t t-kTt

f Ap(E-h)P(t-E)dE = f AL (E-R)Y(t-E)dE = 0.
0 0
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Thus, Y(t) satisfies (5.8) for a.e. t € [0, (k+1)T]. Consequently we have
Y(t) =0 a.e. t € [0,(k+1)T] similarly as above. Then by mathematical

induction ¥ = 0, or g1 =0 in Lp(Ih; X) follows. This shows Ker F = {0}.

PROPOSITION 5.2. If O € D(Am), then

InF =M Im F* = M*, (5.9)
P o

Proof. Since 0 € p(Am), the inverse A;l exists and is bounded. Let ¢
€ Lp([O, h]; X) be given. Consider the following inhomogeneous Volterra inte-
gral equation with delays
m-1 t -1
b(e) + I CXpp ) (BIV(E-T ) + J Cr(E-MU(t-E)dE = A "d(¢), (5.10)
r=1 T 0
S ) _ 1 .
where Cr = Am Ar € B(X), r=1,---, m-lk and CI(-) = Am AI(-) € Lp,(Ih, B(X)).

For t € [0, T, _;]the equation (5.10) becomes a Volterra integral equation
t

y(t) + JOCI(t-h-E)w(E)dE = A;1¢(t) a.e. te [0, Ty ). (5.11)

Since the term A;1¢(t) belongs to Lp([O’anl]; X), the equation (5.11) admits
a unique solution VP € Lp([O,Tm_l];X).' This can be proved in the usual manner
using the contraction mapping principle in Lp-space (see e.g. Miller [32] or
Hgnig [22]). Then (5.10) is solvable on [0,T, ;]. Suppose that Y solves
(5.1) a.e. in [O, kTm_l], k21. Then for a.e. t € [kt _1.(k#*1)7 ], the

equation (5.10) is written by the equivalent form as

t
Y(t) + J CI(t-h—E)w(ﬁ)dE
kT
m-1
(5.12)
B kTm_l n-1
= A_¢(t) - Io C; (t-h-£)y(g)dE - rEICrx[Tr,h](t)w(t-Tr)-

Because t-T < t—Tm_lskqm_l, r=1,---,m-1, the last term in the right hand side

of (5.12) is a known function, and hence the right hand side denotes a known
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function in Lp([kTm_l,(k+1)Tm_1];X).We then have that the equation (5.12) is a
Volterra integral equation which can be solved in the space LﬂIkﬁml’(k+1}En—1];X)'
This concludes that (5.10) is solvable on [O,(k+1)Tm_1]. Hence by induction,
(5.10) is solvable on whole [0, h]. By a change of variables t » -s and an
application of Am to (5.10), we derive Im F1 = Lp(Ih; X), and this implies

Im F = Mp' It is well known (cf. Kato [25,p.184]) that O € D(Am) is equiva-
lent to 0 € p(Aﬁ). Thus we have the second equality in (5.9) similarly as

above.

The following corollaries are obvious from Theorem 5.1 and Proposition 5.2.

COROLLARY 5.1. For the differential difference equation

m
= on(t) + rEIArx(t—hr),

dx(t)
dt

a necessary and sufficient condition for Ker F = {0} (resp. Ker F* = {0})

is Ker Am = {0} (resp. Ker A; = {0}).

COROLLARY 5.2. Assume that AI(S) = 0 in a neighbourhood of -h.

If 0 ¢ p(Am), then 0 € p(F) and 0 € p(F*), in other words, F and F*

are boundedly invertible.

The above results are infinite dimensional analogue of those given in
Delfour and Manitius [15,Section 2.1], in which the proofs are more complicated
than those given here, because they have intended to include a very general
Stieltjes measure n on R® of bounded variation. Our proofs are simple

and easy because of the restricted form of n given in (2.3).
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6. Representations of Resolvent Operators

This section is devoted to give convenient forms

A, AT’ A* and A%.

According to Delfour and Manitius [15], Burns and Herdman [7]

of the resolvents of

In order to give such forms we require some definitions.

and Salamon [40]

we introduce the following linear operators EA’ TA’ KA’ and HA' Let X ¢ C1
and an ordered pair of spaces (Y, Zp) be the pair (X, M ) or (X*, M*).
Define EA D g Zp, TA : Zp > Zp, KA : Zp > Z and HX : Z + Y by
[E,21° =
< 1 As for z €Y, (6.1)
[EAZ] (s) =e "z, sc¢ Ih
0
[yl = 01
) 1 A(s-E) 1 for y=(y,y) e Zp’ (6.2)
[T,y]"(s) = J y (8)dg, s e Iy
. s
0
[(Kyyl” =0, 0 1
1 A(E-s) 1 for y = (y ,y) ¢ ZP, (6.3)
[K,y1" (s) j ¢ y €)E, s I
-h
0o (% s 0.1
Hy=y + J e "y (s)ds for y = (y,y) € 2y (6.4)
-h
respectively. The operator EA is often called the exponential map. All

above are operator valued entire functions in A.

In whét follows we denote

k
——E-f(k) of f(A) by f(k)(k), or simply f(k) for

the k-th derivative
dx
k =0,1,2,--"
PROPOSITION 6.1. For each A ¢ C1 and integer k > O,
. k k k k .
(i) FT, = KF, F*T) = K\F* ; (6.5)
k

. ke _ (1) (k) |
(ii) TAEA = Tl EA ; (6.6)
(i) (FEA)(k) - FE(k) (F*EA)(k) - F*Eik) ; 6.7)

. k (—1) (k+1) k (- 1) (k+1)
(iv) HAFTAEA kD)1 A A, HAF*TAEA D)1 A). (6.8)
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k 0 1
Proof. (i) First we shall show FTy = KfF for k=1. Let g= (g ,g ) €
Mp. Since [FT)\g]0 = [KAFg]0 = 0, in order to prove FT, = KyF we have to

prove, by (6.2) and (6.3), that

0
dn(r)J eA(T-S—B)gl

T-s

s £ s
J e"(g‘s)J an(t) gl (t-£)dE =I
-h -h _h

(B)dB, s € Ih' (6.9
Since the relation can be shown with the aid of the Fubini theorem, the detailed
proof is omitted. The equality FT& = KiF for k 2 2 follows easily
by induction. Since F* has the same form as F (Proposition 4.2), we can
verify F*Ti = K§F* similarly as above.

(ii), (i) These parts are proved easily by straightforward calculations
using the definitions (4.1),(6.1),(6.2) of F, EA’ Ty -

(iv). We prove only the first equality in (6.8). By virtue of (6.4) and

(6.6), the eiement HAFTiEAx, x € X 1s written by

k
k (-1)
HAFTAEAX

(k)
K1 HFEy " x

k
Gk,Ox + (-l)kf eAEJ_hdn(s)Léi%l—-el(s—g)xds. (6.10)

-h
: . 1 1 k As .
Thus, the equations (6.10) and (6.9) with g (s)= “xT S € X imply that
0 0 K
| S k As (s-£)
HXFTAEAX = 6k,0x + (-1) ! dn(s)J e x dg
-h s
0
k+1
_ k+1 As s
= Gk,Ox + (-1 J_hdn(s)e 'szfffx

0
k k+1
-1) d As
=6, X - ( . J e “dn(s)x
k,0 (k+1) ! dAk+1 -h

K
- Téi%%T-A(k+l)(A)x.

This completes the proof.
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Now we can give explicit representations of the resolvents of A and AT
in terms of the retarded resolvent, structural operator F and other operators

introduced in this section.

THEOREM 6.1. (i) p(A) = p(Ao,n) and the resolvent R()}; A) of A is

given by
R(A; A) = EXR(A; Ao,n)HAF + Ty, A e p(A). (6.11)
(ii) p(AT) = p(A*,n*) and the resolvent R(A; AT) of AT is given by

R(A; AD = EyR(A; ASNHF* + Ty, A€ p(A). O (6.12)

Proof. For a given ¢= (¢0,¢1) € Mp’ we construct a g = (g(0),g(:)) € D(A)
such that (AI - A)g =¢. This is equivalent, in view of Proposition 3.1 (i),
to that 0

' 0

Ag(0) - A.g(0) - I dn(s)g(s) = ¢, g(0) « D(A,) (6.13)
-h

Ag(s) - 158(s) = ¢'(s), s (6.14)

We solve the differential equation (6.18) to obtain
0

g(s) = €"5g(0) + J 58yl gy ae, (6.15)

S

(g(0),g) = Eyg(0) + Tyo. (6.16)

Substituting (6.15) in (6.13) and using (6.9) , we have

0 0
A g(0) [ dn(s)f 5Bl gyae + ¢f
-h

[
0 [

J ers J dn(g)¢1(g-s)ds + ¢O = HyF¢. (6.17)
-h -h

Assume that A € p(AO,n). Then by definition, A()A) has a bounded inverse

A'l(x) = R(X; AO,n). So that by (6.16) and (6.17), we derive
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(g(0),2) = EyR(}; Ay>nIH,Fo + Ty ¢. (6.18)

Since all operators appearing in (6.18) are bounded, A € p(A) and the resolvent
R(A; A) 1is given by (6.11). Next we show the inclusion p(A) ¢ p(AO,n). Let
Ae p(A). Then for any ¢ = (¢O,¢1) € Mp there exists a unique g = (g(0),g)

€ D(A) such that (AI - A)g = ¢ , or equivalently, (6.16) and (6.17) hold.

We note that A()\) is one to one. Because if not, there exists a. go € D(AO),
gO # 0 such that A(A)go = 0. The element g = Exgo € D(A) satisfies

(AI - A)g = 0, g # 0, which contradicts to A ¢ p(A). For special ¢ = (¢O,O),

¢0 € X, the equality (6.17) means that there exists a g = (g(0),g) € D(A) such
that A(A\)g(0) = ¢O. This concludes that the densely defined closed linear
operator A()) : D(AO) € X > X 1is onto and one to one. Hence by open mapping

theoren, A()\)_1 exists and is bounded, i.e., A € p(AO,n). Therefore (i) is

proved. The part (ii) is proved in quite analogous manner as in (i).
Next we characterize the resolvents of the adjoint operators A* and A;.

LEMMA 6.1. The relation
A1 - A = ¢, fe D(A*Y), ¢ € M; (6.19)

is equivalent to
AE = Hy, ¢ DAr)  and £ = KU + F*E £0. (6.20)
T A 0 5 A :
Proof. In view of Proposition 3.3, (6.19) is written by the following
equivalent condition

0 0 0

O - axe’ - gl =y, ¥ < pan), (6.21)

ML) - S wDE) =vl ), se T, (6.22)

~ . ~0.0 0
where w(f) is given in (3.19). Put r (fo,fo) € M; i.e., [f] = £,
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[%0]1(5) = fo, and w = - w(f). Since el - [F*%O]1 +w by (3.19), we can

solve the differential equation (6.22) with the initial condition w(-h) =0

to obtain

S

W(s) = e‘*sf hekg{wl(g) - arre e dae

S S

£
S B - | e*(g‘s)xf an*(B)£°dE, s € I
Joh J-h -h

By (6.3) and applying the Fubini theorem to the last term of the above equality,

we obtain without difficulty that

ws) = (K1 (s) - [FE1(s) + [FE, 011 (s), sel. (6.23)
Thus,
£ = F0t e W= [ka]1 + [F*Exfo]l,
which shows the second equality in (6.20). Substituting s = 0 in (3.19) and

(6.23), we have

0
£ 00y = j dn* (s)£° + w(0) = J Syl (s)ds + J e*San* () £°.
_h -h -h
Hence the equality (6.21) is rewritten as
0 0
(T - A% - J San*(s))£0 = 0 + J MSplisyas, 0 DAY,
-h -h

which is the first equality in (6.20).

THEOREM 6.2. (1) p(A*) = p(AB,n*) and the resolvent R(A; A*) of A* is

given by

R(A; A%) = F*E,R(\; A%,n*H, + K\, A e p(A%). (6.24)

A’
(ii) p(A%) = p(AO,n) and the resolvent R(}; A{) of A% is given by

R(X; A%) = FEAR(A; AO’n)HA + KA’ A€ p(A%). (6.25)
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Proof. Using Lemma 6.1 we can prove (i) by analogous argument as in the

proof of Theorem 6.1. The proof of the remaining part (ii) is similar.

Here we give important relations between the operators EX’ HX’ TA and

KA' Taking into account of the relation (2.18), we can verify by direct compu-

tations involving the pairing < , M that for each X € Cl,
p
EK = Hx, Hi = Ei’ TX = Ki’ K;\ = T;\. (6.26)

Consequently, by using the equality (2.17) and (6.26) Theorem 6.2 can be derived
as the adjoint version of Theorem 6.1. This may be a simple proof of Theorem

6.2.

COROLLARY 6.1. (i) FR(A; A) = R(A; ADF,  R(A; A)G = GR(A; A})

for A € p(A) = O(A%) = O(Ao,n). 6.27)
(ii) R(A; A*)F* = F*R(A; AL), G*R(A; A*) = R(X; AL)G*
for A € p(A*) = p(AT) = o(Aa,n*)- (6.28)

Proof. (i) follows from Theorems 4.1, 4.2, 6.1 and 6.2. (ii) follows from

Proposition 6.1(i), Theorems 6.1 and 6.2.
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7. Spectral Decomposition

In this and following sections we study the spectral decomposition theory
for the FDE's in Banach spaces. The spectral theory for various types of FDE's
in R" is further developed by many authors (see [6,15,18,19,20,24,36,40] for
examples). An attempt to extend the spectral theory to retarded FDE's in infi-
nite dimensional spaces was first made by Travis and Webb [44] whose main con-
cern is the stability of mild solutions. Their analysis and investigationms
have been carried in the space C(Ih; X), but seems incomplete compared with
those for X = R". The purpose here is to construct é rather complete spectral
decomposition theory for the equation (E) on the space Mp’ which extends the
work of [15,29] to general Banach space case. Our analysis, however, is more
delicate than those in [15,29] because of permitting X being infinite dimensi-

onal.

7.1. Classification of Spectrum
The retarded spectrum introduced in Section 2 is efficiently used to deter-

. P . . . T
mine the spectrum of the infinitesimal generators associated with (E) and (E ).

PROPOSITION 7.1. Three kinds of spectrum of A and AT are given by

OP(A) = GP(AO’n)’ OC(A) = OC(AO’n)’ OR(A) = OR(AO,n), (7.1)
op(Ap) = o, (A7, n*), o (Ap) = o (Ag*), Op(Ap) = op (A5, N9, (7.2)
respectively.

Proof. First we recall the following fact which is already shown in the
proof of Theorem 6.1. That is, the relation (AI - A)g = ¢, g € D(A), ¢ € Mp
is equivalent to that A(A)go = HyF¢, gO € D(AO), g = Exgo + Ty¢. If we
substitute ¢ = 0 in the above equivalence, then we have that Ker (AI - A) =

{0} is equivalent to that Ker A(A) = {0}, and hence Ker (AI - A) # {0} if
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and only if Ker A(A) # {0}. This concludes, by definition, UP(A) = OP(AO,n).
By the same reason, from Lemma 6.1 it follows that Ker (AI - A*) = {0} if and
only if Ker AT(A) = {0}. Then by putting A = XA and using the duality theo-
rem, we have that Cl1(Im (AI - A*)*) = C1(Im (AL - A)) = Mp if and only if
Cl(Im AT(X)*) = C1(Im A(A)) = X. This implies, by contradiction, that Im A(A)
is not dense in X if and only if Im (AI - A) is not dense in Mp' Now we
are ready to prove OR(AO,n) = GR(A). From the definition of residual spectrum,

A€ op(AO,n) if and only if

A()\)—1 exists (i.e., Ker A(A) = {0})

but Im A(A) is not dense in X. (7.3)
It then follows that (7.3) is equivalent to that
(I - A)-1 exists but Im (AI - A) is not dense in Mp. (7.4)

The statement (7.4) is exactly the definition of A ¢ OR(A). Hence OR(AO,n)
= GR(A) is proved. The rest equality oC(AO,n) = OC(A) is now evident. The

part for AT is proved in a same manner as above.

Remark 7.1. In the case where X = Rn, it is well known that o(A) = OP(A)
= { X: det A(A) = 0 } is countable and isolated. However there exists an
operator A defined by (3.2) and (3.3) such that GC(A) # ¢ or GR(A) # ¢

in our infinite dimensional case.

7.2. Generalized Eigenspaces and Spectral Decomposition
Let A € OP(A). The generalized eigenspace MA of A corresponding to

A is defined by

[+]

_ l
Ml = Zl=J0Ker (AT - A)". (7.5)

To characterize the structure of Ker (AI - A)Z, 1=1,2,--- , we introduce
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operator valued matrices AZ = AZ(A) defined by

1 D2 ...... DZ
Dl ...... DZ__l
AZ = .
0 0 -v-- . Dl > Z = 1,2"“' . (7.6)
where
_ U C) _
Dj+1 - DJ+1()‘) - j! A (A)’ J = 0,1’2, . (7.7)

The following result extends the results of [15,Proposition 4.3] and [18,Lemma

3.3,p.177] to reflexive Banach space case.

PROPOSITION 7.2. Let A € OP(A). Then Ker (AI - A)Z coincides with the

space of functions ¢ € Mp of the form

1-1
6= 3L

L O, (7.8)
j=0 7’

where Y = col (Yys 005 Y925 Y541
1

in X .

€ D(Ao)’ j = 0’1,..., Z_l satisfies Azy =0

Proof. Let ¢ ¢ Ker (AI - A)Z. Set ¢0 =¢ and ¢j = (AT - A)¢j_1, j =1,
-, 1; then ¢ 1is characterized by ¢Z= 0. The relation ¢j = (AL - A)q)j_1

is written as

= 0 0 _
= Ek¢j-l + T)\daj and A(X)¢j_1 = HAF¢j’ ¢

1
j=1l,--0, 1. (7.9)

Since ¢Z = 0, we have

CPZ"]. = E ¢Z—1’ ¢Z-2 = E>‘¢Z_2 T>\¢Z_1 = E)‘¢Z_2 T)\E>\¢Z_1, ..... .
-1 _ . -
- 0
b5 = TIEa, oo B R e (7.10)
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so that by (6.6) and a change r - j,
7-1 o
0
6= I e, 1leh D),
j=0 J: J
If we put y,,, = (-1)J¢? € D(A)), j = 0,1,---, I-1, we obtain (7.8). From

the second equality in (7.9) it follows by (7.10) that

. ' - 1-1 .
- (_1yJ-1 = (_133-1 r-j -r
AY; = CDITHFS, = (1) (rfjHAFTA By (-1 Ty,,,)
l-1 - roi
= (-1) I (-1)77TH,FT, JEAyr+1. (7.11)
r=j
By virtue of (6.8), the equation (7.11) is written as
-1 .
- (- 1 (r-j+1)
A()\)Yj - ( 1) E:. (r'j“'l)! A (A)yr“'l’
r=j
and hence (by changing r =+ r+l),
é L A Doy =0, j=1,---, 1 (7.12
ey G9! Yp =0 3= dere b 12

The system of equations (7.12) is rewritten simply by AZV =0 in XZ, where

Y = col (yl,----, yz). This completes the proof.

In order to go into a further spectral decomposition theory we have to
restrict A to the isolated spectrum. We now require the following defini-

tions:
GI(AO,n) ={ Xe CI:A is an isolated singular point of R(u; Ao,n)}.
OO(AO,n) = { A,eCI: A is a pole of R(y; AO,n)}.

Similarly we define the spectral sets OI(A) and OO(A). It is obvious that
OO(AO,n) c OI(AO,n), OO(A) c OI(A). Since all Ey, Hy and T, are entire
functions, Theorem 6.1 (i) implies that A is a pole of R(M; A) of order kx
if and only if A is a pole of R(u; Ao,n) of same order k,. Then, OO(A)

= OO(AO,n).
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Let A € OI(A) and let P, be the projection operator

1

PA = EE{IT R(u; A)du, (7.13)
A

where FA is a closed rectifiable curve containing A inside and all other
singular points of R(u; A) outside. By Yosida [49,p.228-231] (see also Taylor

and Lay [41], Tanabe [43] and Kato [25]), we obtain the following decomposition

of the space Mp.

THEOREM 7.1. Let X be a pole of R(y; Ao,n) of order ky. Then A e

GP(A) and the direct sum decomposition

M = Ker O\ - ¥ 8 m a1 - ok, My = P\M, = Ker (AI - NS 7.9

holds. Both MA and Im (AI - A)kA = Ker PA are closed and invariant under

S(t). Moreover the resolvent R(U; A) has the Laurent series expansion

RGw; A) = 2 (-0 (7.15)
n=-kA

in a neighbourhood of A, where Qn is given by

1

Q, = E;gjr (u - A)’“'IR(u; A)dy. (7.16)
A

Clearly PA = Q—l' Put QA = Q-Z’ then from the expression (7.16) (cf.

Kato [25,p.180] it follows that

= !t = 2,4, k Ao (nilpotent) (7.17)
Q_n = QA , n =2, > Ky, QA = nilpotent), .
PQy = QP = Qs AP, = APA + Q- (7.18)

The decomposition of Mp in Theorem 7.1 is slightly generalized as

k
M = (BM)HYBR,, R = 1 In (AI - A) A, 7.19
p Ael A A A Ael ( )

where A c OO(A) is a finite set (see e.g., Kato [25,p.181]).
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Remark 7.1. Proposition 7.2 tells us dim Ker (AI - A)Z = dim Kex‘AZ, but the
dimension may be infinity even if A is a pole of R(u; A).

From (7.13),(7.16),(7.18) and (6.11) the following corollary follows at

once. Notice that TA is entire.

COROLLARY 7.1. For A € GI(AO,n),

. _ _ 1 _ .
(1) PA = EAF’ EA = 353]r EUR(U’ AO’n)HUdu ; (7.20)
A
F Foo L
A
(iid) Ker F < Ker Pk c Ker QA‘ (7.22)
Next we consider the case for the transposed operator AT' Let M§

denote the generalized eigenspace of AT corresponding to A € OP(AT) ; let

the matrices A; = A{(A), 1 =1,2,--- be defined by (7.6) in which Dj+1 is

1

replaced by —3T-A§J)(A), j=0,1,2,--- ; and let PI denote the spectral

projection corresponding to A € OI(AT). Then we have:

THEOREM 7.2. (i) If A 1is a pole of R(u; Aa,n*) of order m then X €

OP(AT) and the decomposition

* m m T T L _ m
Mp = Ker (AI - AT) A0 Im (AT - AT) A, MA = PAM; Ker (A1 AT) A

holds. Moreover the resolvent R(u; AT) has the Laurent series expansion

oo

R A = T (- M)

=_mA

in a neighbourhood of A, where Q: is given by (7.16) in which R(M; A) is
replaced by R(u; AT).
(ii) For A ¢ OP(AT), the space Ker (AI - AT)Z coincides with the set of

functions Y ¢ M; of the form
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1-1

1 T ()
= Z rarad E . >
T -— T * s s @ T T * 1 = . e 3 3 T —
where Y = col vy » Y1) Yie1 € D(AO), j =0,1, , L satisfies AZV =
0 in X*Z.
... T T . T 1 . *
(i) pA = EAF* ; EA = —ZWiJF EUR(U’ Aa,n )Hudu,
A
T _ rTow . T __1_ . ) x
_ A
where Q§ = QTZ'
(iv) Ker F* © Ker PK < Ker Q{.

We shall describe a group property of S(t). For this the following disc-

rete spectrum od(A) of A is needed to be defined by
od(A) = { A.ecI(A) : dim (Im PX) < 4},

It is well known (Kato [25,p.181]) that 04(8) < OO(A) € 0,(A) and Im P, =

k .
Mk = Ker (XI - A)A for A« OO(A). Let X ¢ od(A) and let dA = dim MA‘
We shall write by &= { ¢A,1""" ¢A’dx } a basis of M, of the form (7.8).
Since AMA c MA ’ there exists a dl X dA matrix BA such that
B.t
A@A = QABA and S(t)Qk = @Ae A for t > 0. (7.23)

Hence the only eigenvalue of BA is A and S(t) can be extended to a holo-
morphic group on MA' Now we can prove the following result in a similar
fashion as in Hale [18 ,Chapter 7,Theorem 2.2] with suitable modifications to

the space Mp.

PROPOSITION 7.3. Assume that A < 0 (A) is a finite set {A,----, A L.

Let QA = {Qxl,----, @An} and B, = diag (Bxl,----, Bkn). Then for any

column vector @ of the same dimension as QA (= dy +--- dy ), we have
1 n
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(i) S(t)@Aa can be defined on (-*,©%} by the relation

S (t)lDAa = ‘DAeXP (tBA)a,

where
[QA]I(S) = [QA]Oexp(sBA), s € Ih’
(9% = {8, (©,----, &, (O};
1 n
(ii) [S(t)¢Aa]1(s) = [@Aexp((t+s)BA)a]0, s € I,

for t 20 ;
(s(t)2,a1° = [8,]%xp(t8))a,

(i) x(t) = [S(t)‘DAa-]0 is a mild solution (in fact, a strong solution) of (E)

on (-«,®) with the initial condition g = @Aa and u =20 ;

(iv) Mp is decomposed into the direct sum

M =M @R,, M, = @M
P A A xep A

as in (7.19), where MA is given by

_ o dim ¢
MA ={¢c¢ Mp : ¢ =¢a for some a € C A}
Moreover, S(t)MA c MA for all t e (-»,)
S(t)RA c RA for all t 2 0.

The above proposition gives a precise information on the asymptotic beha-
viour of the mild solution of (E) on generalized eigenspaces for discrete

spectrum. Analogous result to Proposition 7.3 for AT holds true.

Remark 7.2. If A0 has compact resolvent, then the retarded resolvent

R(A; Ao,n) is compact. From this and the representation (7.20) the compact-

ness of PA follows, so that OI(A) = Od(A) is true in this case.

PROPOSITION 7.4. (i) For A € 0,(A), F is one to one on MA.

. . T
1 *
(ii) For X ¢ oO(AT), F is one to one on MA'
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Proof. We prove only (i). Assume first that ¢ € Ker (AI - A) and F¢ = 0.
Then by (4.11), 0 = GF¢ = S(h)¢ = exh¢ and hence ¢ = 0. This shows F is
one to one on Ker (AI - A). Next assume ¢ € MA_ = Ker (AI - A)kk and F¢ =

0. If we set ¢1 = (AI - A)k)\_1 , then ¢1 € Ker (AI - A) and

(AL - A)kx'IS(h)(p = (AL - A)k)\_lGFd) = 0.

S(h)e,

So that ¢1 = 0. Continuing this procedure kk times we have ¢ =0, i.e., F

is one to one on MA'
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8. Adjoint Spectral Decomposition

In this section we study the spectral decomposition theory for the adjoint
operator A* of A in the space M;, with an emphasis of the relations bet-
ween A* and the transposed operator AT' The structural operators F* and

G* will appear to key connections between the generalized eigenspaces of A*
and AT.
8.1. Generalized Eigenspaces and Structural Operators

*
Let M, (not the adjoint space of MA!) denote the generalized eigenspace
*
of A* corresponding to A € OP(A*). Similarly we denote by M; the

generalized eigenspace of A% corresponding to A € OP(A%)'

THEOREM 8.1. (i) Three kinds of spectrum of A* and AT are identical

and are given by

0p(A¥) = 0,(Ap) = 0,(A5,n*), 0p(A*) = op(Ay) = op (AF,n*),
0o (A%) = 0 (A) = O (A%,n%), (8.1)
respectively.

(ii) For each X € 0,(A*) = 0,(AL),

Ker (AI - A*)Z = F* Ker (AI - AT)Z, l 1,2,--- (8.2)

In particular

M, = FxMT, (8.3)

Proof. (i). Using Lemma 6.1 we can prove this part by similar arguments as
in the proof of Proposition 7.1.

(ii). By (4.30), (AI - A*)F* = F*(AI - AT) on D(AT). Hence, by induction,

we have

(AT - A*)ZF* = F*(AI - AT)Z on D(A.).
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Thus F* Ker (A1 - AT)Z < Ker (Al - A*)Z, 1=1,2,--- . (8.4)

The reverse inclusions in (8.4) were proved by Delfour and Manitius [15] by
using mathematical induction. Here we give a direct proof based on Lemma 6.1.

Let ¥ € Ker (M - A*)Z and put

by =¥ and wj = (AI - A*)wj_l, j=1,.--, L. (8.5)

1
Then ¥ € Ker (AI - A*)  is equivalent to ¥;= 0. In view of Lemma 6.1 we

is equivalent to

see that wj = (AI - A%)Y, 1

j-
0 0 N - P
AT(A)wj_l = kaj’ wj— € D(AO) and ¥ = waj + F Eij_l. (8.6)

1 j-1

Since ¥y = 0, it follows from the last equality in (8.6) that

_ 0
Y71 = FEy
v o= FEd o+ ko, = FEY  « K F*E. 90
1-2 AT1-2 AT1-1 AT1-2 A ALl
= pE 0 o+ P . = FrEa0l Lo+ TE WY ), (by (6.5))
= F*E\V7 5 2B Wiz T IRV, by (6.
-1,

If we set y§+1 (-1)Jw?, j =0,1,---, 7-1, then by (6.6) ¢ can be written

-1 .
as Y = F*( L —;T{EAyT )(J)), where VT = col (yT,----, yT) satisfies
j=o0 3! j+1 1 1
T, T . 1 : .. 7 .
AZV =0 in X* . Hence by Theorem 7.2 (ii), ¥ € F* Ker (AI - AT) , 1.e.,
the reverse inclusions of (8.4) are proved. Therefore (8.2) is shown. The

rest equality (8.3) is clear from (8.2) and the definition of generalized eigen-

spaces.

The statement (ii) of Proposition 8.1 has concluded that the null space
Ker (AI - A*)Z is obtained by the application of F* to Ker (AI - AT)Z,

whose elements are straightforwardly computed as given in Theorem 7.2 (ii).
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If we notice (AT)T = A, we have the following corollary.

COROLLARY 8.1. (i) OP(A;) =0_(A) = OP(AO’n)’

OR(A;) = 0p(A) = 0, (Ay,N), cc(Af) = OC(A) = GC(AO,n)-

(i1) For each X € OP(Aé) op(A),

l
Ker (AI - Azf)Z =FKer (A\I - A), 7 =1,2,"+-"
In particular
MT* _ e
A F X
Analogous inclusions to (8.4) involving the operator G are:

*) = = *

LEMMA 8.1. For each AeOP(A) oP(AT) (resp. Aeop(A) OP(AT)),

G* Ker (AT - A*)Z c Ker (AI - AT)Z, 1=1,2,----

(resp. G Ker (AI - A,’Ii)Z < Ker (AI - A)Z, 1=1,2,---+).

Proof. This lemma can be proved similarly as in the proof of (8.4) by using

(4.26) and (4.27) instead of (4.30).

THEOREM 8.2. (i) od(A*) = od(AT).

(ii) G* Ker (\I - A¥)Y = Ker (AT - AT)Z,

dim Ker (AL - A*)% = dim Ker (AI - AT)Z = dim Ker A;(A) < w,
L=1,2,-05, Xeay(A).
In particular

*
dim MA = dim M§ for X ¢ Od(A*) = Od(AT).

(8.7)

(8.8)

(8.9)

(8.10)

Proof. (i). Let A ¢ Od(A*). Then X ¢ OO(A*) and from Kato [25,p.180]

and Theorem 7.1, we have

X« Od(A) is a pole of R(u; A) of order ki at U = A,
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M. = Ker (AT - A)ki, dim M. = dim My < o, (8.11)
A A A
sup dim Ker (AI - A)Z = dim MX < oo, (8.12)
121

Since G 1is one to one and
- /A — /A
GKer (\I - A%)” < Ker (\I - A)", 1 =1,2,-"" (8.13)
for X e 04(A) < 0p(A) = 0 (A%) (by Lemma 8.1), it follows from (8.11)-(8.13)

— * —_—
that sup dim Ker (AI - A%)Z< w0, This implies dim MT < o, and hence A €
1>1 A

Od(A%)' Again by using Kato [25,p.181] we have A = ) € Od(AT), which proves

. . * . . .. _
Gd(A*) c Od(AT). The reverse inclusion Od(AT) c od(A ) is obtained similar
ly as above. Thus, (8.7) is shown.

(ii). For A € Gd(AT)’ the space Ker (AI - AJZ is finite dimensional and is

invariant under the semigroup ST(t). Then the operator ST(h) = G*F* in

(4.13) 1is bijective on Ker (AI - AT)Z (cf. Proposition 7.3). Consequently

by (8.2),
Z— *R* Z— * *Z
Ker (AI - AT) = G*F* Ker (A1 - AT) = G* Ker (AI - A*)".

Since G* is one to one and dim Ker (AI - AT)Z < o, we have (8.9) by (8.8)

and Theorem 7.2 (ii).

COROLLARY 8.2. (i) Ud(A%) = Ud(A).

(ii) GKer (AI - A,’lt)l = Ker (I - A2,

dim Ker (AI - A:lt)z = dim Ker (AI - A)Z dim Ker AZ()\) < oo,

l

t]

1’2,"" > )\Eod(A)-

Lastly in this subsection we give an Mp—adjoint result for A which is

an immediate consequence from Kato [25,p.184].

THEOREM 8. 3. Let A be a pole of R(u; AO,n) of order kA at u = A,

Then A is a pole of R(u; Aa,n*) of same order kA at W = A. Furthermore
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* — k *
M- = - * = IV s = = M— . P
5 Ker (AT - A*) A = (P Mp’ dim M\ dim 5 (may be infinity),

)
where the adjoint (PA)* of PA in (7.13) is given explicitly by

1 . -
(Py)* = Z"iJTXR(u’ A*)du = P;

with f& the miller image of FA'

The same result for AT holds, but we omit to give such a representation.

8.2. Representations of Spectral Projections

It was shown in the proof of Theorem 8. 2  that if A € Od(A), then A €

* -
od(A ) = od(AT) and
. URT L AY) U o
dim MA = dim Mi = dim Mi = dy < o, (8.14)
T
Let @ = { IPRRRR ¢dA} and VY = { Yoot wdk} be the bases of MA and Mi

respectively. Let M be a dA X dk matrix- of element mij = <¢i,F*¢j>M .

P
Then by (8.14) and (8.3), M is nonsingular. Hence we can suppose
<¢i,F*wj>M =<«¢i,¢j» = 6ij’ i, j = 1,¢---, dA’ (8.15)
p

where <« , » denotes the hereditary pairing in (4.35). Now we introduce
the continuous projection operator

dA

= *
Plg z <g,F wi>M s> g € Mp.
i=1 P

It is easily verified that 1Im ﬁk = MA and Ker 5A = Im (AI - A)kk, so that

5 = P Thus, we obtain the following desired result.

A AT

THEOREM 8.4. Let X ¢ od(A). Then the spectral projection PA in (7.13)

has the following equivalent representation

d
~ A
= 8.
ng ii{Kg,wi»>¢i, g € Mp, (8.16)
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where { ¢1,----, ¢dA } is a basis of MA and { wl,---~, wdk } is a basis of

M{ satisfying (8.15).

COROLLARY 8.4. Let A € Gd(AT). Then the spectral projection P{ associ-

ated with AT has the following equivalent representation

d>'\
- *
P>\f = iil« ¢i,f>>1pi, f e Mp,

— 3 T — 3 . o o 0 3 3 T

where di = dim MA = dim Mi , { ¢1' s wdi } is a basis of Mk and

{ ¢1,"°', ¢d' } is a basis of MX satisfying the same condition in (8.15).
A
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9. Completeness of Generalized Eigenfunctions

The problem of completeness of generalized eigenfunctions of retarded FDE's
has been studied by Delfour and Manitius [15] and Manitius [29] for n-dimensional
equations. The purpose of this section is to extend some of their resluts to
infinite dimensional case.

First we give characterizations of the kernels of spectral projections PA

and others in terms of F, H, and the retarded resolvent. Let A.eoo(A) and

A

PA be the projection in (7.13). Then by (7.15),(7.16) and (7.18), we have

that

g € Ker Py if and only if Q;g = ((AT - A)P)\)ng =0, n=1,-, k

if and only if R(u; A)g 1is holomorphic(h.1l.) at u = A.
Since EX’ HA and Tk are operator valued entire functions, the equality

{ge Mp : R(u; A)g is h.l. at p =211}

={ge Mp : R(y; Ao,n)qJFg is h.1. at u=2X1} 9.1

follows from the representation (6.11) of R(u; A). Hence Ker PA is given

*
by the right hand side of (9.1). Let Pi and PK denote the spectral pro-
jections associated with A* and A;, respectively. Then the next proposition

follows from the representations of R(u; A*) and other resolvents given in

Theorems 6.1 and 6.2 as above. Note that [R(u;A*)f]0 R(Y; Aa,n*)Huf.

PROPOSITION 9.1,

(1) Ker P, = {ge Mp: R(y; Ao,n)Hqu is h.l1. at u=2i}l, Aesoo(A).
(i1) Ker P, = { fe¢ M5 R(us AS,NOMFRE Bs RuLooat b=AY, Aeog(Ap)
(i) Ker P} = { fe M;: R(Y; Aa,n*)Huf is h.l1. at u =2}, Aeoo(A*).
(iv) Ker P;*= {ge Mp: R(u; AO,n)Hug is h.l. at U =X}, Ae:OO(A;).
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For notational brevity we set

T T * * T* T*
U My, M M, M= Uy M, M u M

M= = =
AeOP(A) Aeop(AT) AEOP(A*) AeOP(A$)

DEFINITION 9.1. The systems of generalized eigenfunctions of A, A*, AT

and A% are said to be complete if

* T T*
CI(M) =M, CI(M) =M+, CI(M) = M¥, CI(M™ ) = M,
M) =M (M) 5 M7y = M2 (M™ ) p

respectively.

For a set E < Cl, E denotes the miller image of E. Following the
consideration in preceding sections, we know that
= *) = = * n* o (A ) = *) = =
Go(A) = 0 (A%) = o (A)) = o (A%,n*), T AT = Oy(A%) = 0 (A) = o (A .M).
(9.2)

PROPOSITION 9.2. (i) If GP(A) = OO(AO,n), then

Mt = { f e Ms: R(A; A*

* 3 * * * *
s )HAf is h.1. on p(AO,n ) v oy (Agn™) Y, (9.3)

T* 1 _ . . %* * 3 * % * Kk
M Y={fe¢ M;. RO AZn*)HF*f is h.l. on p(A5,n*) u 0, (A5:n*) I CRD)
(i1) If op(Ag) = g4(A5,n*), then

Wt

{ ge Mpt R(X; Ao,n)HAg is h.l. on p(Ao,n) u OO(AO,n) 1, (9.5)

M)t

{ge M: R(A; Ag,n)H,Fg is h.1l. on p(Ag,n) u gy(Agn) 1, (9.6)

Proof. We shall prove only (9.3). Other equalities are proved quite ana-
logously. Using the duality theorem and assumption, we have by the first

relation in (9.2) that

M- Mi = (Im P)‘)l = N Ker (P)*
Aeop(A) AeoO(A) AeoO(A)
= Ker P% = Ker Pi = N Ker Pi. (9.7)
AeoO(A) Aeoo A) Aeoo(A*)

Hence the equality (9.3) follows immediately from Proposition 9.1 (ii).
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See Proposition 8.3 for completeness in deriving (9.7). Hence the equality

(9.3) follows immediately from Proposition 8.4 (iii).

. oL
Since C1(M) = Mp if and only if M~ = {0}, from Proposition 9.2 we have

the following criteria for the completeness of generalized eigenfunctions.

THEOREM 9.1. (i) Assume that O(A) = OO(AO,n). Then the system of genera-

lized eigenfunctions of A (resp. A%) is complete if and only if
{ fe M; : R(A; Ag,n*)H, £ is entire } = {0} (9.8)
(resp. { f ¢ M; : R(A; A$,n*)H,F*f  is entire } = {oh. (9.9)

a,n*). Then the system of generalized eigenfun-

ctions of AT (resp. A*) 1is complete if and only if

(ii) Assume that o(AT) = OO(A

{ge Mp : R(; Apn)H,g is entire } = {0} (9.10)

(resp. { g ¢ Mp : R(A; AO’H)HAFg is entire } = {0}). (9.11)

We now recall the definition of HA appearing in the conditions (9.8) and

(9.10): 0
Hyo = ¢0 + J eks¢1(s)ds =c+ q), (9.12)

for ¢ € M; in (9.8) or for ¢ ¢ Mp in (9.10), where c¢ = ¢0. The last term

q(A\) 1in (9.12) is a finite Laplace transform of ¢1 € Lp,(Ih; X*) in the case
(9.8) or of ¢1 € Lp(Ih; X) in the case (9.12). We denote these sets of all
such functions by FLT; and by FLTP, respectively.

An additional property of HA is given by

LEMMA 9.1, ﬂl Ker Hy = {o}.
AeC
Proof. We shall show the case H, : M~ X. Let ¢e€ [] Ker H,. Then by
- A p A€ C1 A

(9.12},
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0
0 + J %o (s)ds = 0 for all A e cl. (9.13)

Tending Re A + - in (9.13) we have ¢O = 0. Then ¢1 = 0 follows from

(9.13) and the bijectivity of Laplace transform.

= = * %k
COROLLARY 9.1. Assume that o(A) = GO(AO,n) (resp. O(AT) oo(Ao,n )).

The system of generalized eigenfunctions of A (resp. AT) is complete if and

only if for ¢ e€ X* and q(A) € FLT;,
R(A; Aa,n*)(c + q(A)) 1is entire = ¢ + q(A) £ 0
(resp. for c e X and q(A) € FLTp,

R(A; Ao,n)(c + q(1)) is entire = c + q(A) = 0).
Proof. Obvious from Theorem 9.1 and Lemma 9.1.

Corollary 9.1 is interpreted as that the completeness for A 1is equiva-

lent to the nonexistence of nontrivial entire function in the class c¢ + q(A),

c e X*, q(A) € FLT;, which completely cancellate all poles of R(A; Aa,n*)

in the form R(A; Aa,n*)(c + q(A)), provided that R(X; A*,n*) has poles only.
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10. Illustrative Examples
We shall give some applications of the abstract results of preceding

sections to practical partial FDE's in the following examples.

EXAMPLE 10.1. Consider the parabolic partial FDE

m
BX(:’E) = 'a%(a(g)axa%_).) + b(E)X(t,g) + ar(g)x(t_hr,g)

r=1
0
+ J aI(s,E)x(t+s,£)ds, t>0, & e (0, 1) (10.1)
-h
with boundary and initial conditions
x(t,0) = x(t,1) = 0, t >0, . (10.2)
x(0,8) = g’ €), x(5,6) = g (5,6) ace. (s,€) € I x [0, 1].  (10.3)

For the system (11.1)-(11.3) we assume

(G) a@) >0 for £ec [0, 1], a(-) € C[0, 1], b(:) e C[0, 1] ;  (10.4)

(ii) ar(-) € LZ[O’ 1], r=1,++-+, m, 0 < h1 < teee < hm = h,
aI(-) € LZ(Ih x [0, 1]) ; (10.5)
(i) g= (g(),8 () € Ly[0, 11 x L, (1, x [0, 11). (10.6)

The product space LZ[O’ 1] % LZ(Ih x [0, 1]) in (10.6) can be identified with
o (s o+ Let Aj
be the realization in LZ[O’ 1] of the Sturm-Liouville operator 93/9% (a(§)3/9E)

LZ[O’ 1] x L L2[0, 1]), so we denote this space simply by M

+ b(§) with Dirichlet boundary condition (10.2). In what follows we shall

write L2 instead of L2[0, 1] for brevity. Since L2 is a Hilbert space,

we identify L2 and L; as usual. Now we define the operator Ar € B(Lz),

r=1,---, m and AI € Lz(Ih; B(Lz)) by
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(A2)(E) = a (B)z(8) a.e. £ [0,1], T=1,----, m

and

(AI(s)z)(E) = aI(s,E)z(é) a.e. & e [0, 1] for a.e. s € Ih’

respectively. By the condition (10.5) and the use of Schwartz inequality the
above operators are well defined. Then the system (10.1)-(10.3) can be written

in the same form as of (E) on the space X = L2. The (weak) solution x(t,§; g)

of (10.1)-(10.3) is interpreted as the mild solution x(t; g)(§) of (E) at the
point £ € [0, 1]. So, for each t > 0, x(t,&; g) has sense for a.e. & ¢

[0, 1]. Since AO is selfadjoint with compact resolvent in L, by (11.4) and

2
(11.7), there exists a set of eigenvalues and eigenfunctions { Moo Wn :n=1,2,

...} of A, such that

(iv) {Wn} is a complete orthonormal system in L2;

v) V-un = Cn + 0(%9 as n *», where C 1is a constant depending only on
the coefficient a(g) (cf. Kato [25,p.277], Ince [23,p.270-273]).
Consequently, A0 generates an analytic semigroup T(t) given by

) oo
T(t)z = e”nt<z,\yn>L ¥, zel,
n=1 2

1
where <z,wn>L = I z(E)?n(E)dE. Using the asymptotics of un in (v), we can
2 0

verify that T(t) 1is compact for all t > 0. Then by Proposition 3.1 (ii),
S(t) 1is compact for t > h. This implies by spectral mapping theorem (cf.
Yosida [49,p.277]) that o(A) = OP(A) = cd(A) is countable, bounded from below
and 0(A) n{ z : a<Rez} isa finite set for each a ¢ R'. Now following

the line of Hale's proof in [18,Chapter 7,Section 4] with some obvious modifi-

cations, we have the following result on the asymptotic stability.
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The zero solution of (10.1)-(10.3) is exponentially asymptotic stable in

L., i.e., there exist constants K = 1 and € > 0 such that

2 0
1 1 10
J |x(t.65 )] %dE < Ke'eot(J BRGIKE J J 8" (s,8) | Pagas),  t20, gem,
0 0 0" -h (10.7)
provided that
sup { Re A : A ¢ g,(A) } <o. (10.8)

For the system (10.1)-(10.3), in view of Proposition 7.1, the condition (10.8)

is replaced by that, for Re A 2 0,

0
0 m
0 0 -Ah 0 A 0 0
2 - ®E) - bE) - Te Mra_£)g° - J_he Sa (s,8)g°ds = 0, g ¢ D(A)
implies go =0 in L,. (10.9)

EXAMPLE 10.2. In this example, we consider the special equation

2 m
2.8 - 2 X;gég) FOX(E) « Iax(thuD, €20, 8¢ (0, 1) (l0.10)

of (10.1) with the same mixed conditions (10.2) and (10.3), where a > 0, b,
a. are real constants. For the system (10.10),(10.2),(10.3) we have easily
that

UH=‘an2ﬂ2 + b, ‘{’n = ¥2 sin nmg, n=1,2,----,

so that the spectrum 0o(A) 1is given by

m
o(A) = { A ¢ CI:X + anzTr2 -b- I are-khr =0 for some n =1,2,:-+ }.

r=1
It is evident that O(A) is countable and each A €0(A) has finite multipli-
city (may be # 1). The asymptotic stability condition (10.9) is now reduced

to a verifiable condition that
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[
all roots of the transcendental equations
m
-A
| A=-—an2w2 +b+ I are hr, n=1,2,:--- (10.11)
r=1
L have negative real parts.
0 2
A simple sufficient condition for (10.11) is I Iar|< am. - b, which is
r=1

shown by direct calculations using contradiction. Recently Lenhart and Travis

[28,Corollary 1.2] have proved that (10.11) holds for all hr 2 0 if and only

if Zla|<ar -b and Ia_< am - b, Set A (A) = A+ an"m" -
T T n
r=1 r=1
m b -
b- Zae r. Let {X_.}. be the set of roots of A (A) = 0 and let
r=1 T nj j=1 n

knj be the multiplicity of Anj' Then the retarded resolvent R(}; Ao,n) is
given by
> 1
R(X; Ao,n)z = § _ngij-<z’51n nﬂ£>L sin nmE, X e C - {Anj: n, j =1,2,---};
n=1 "n 2
the basis of the generalized eigenspace Mxn_ corresponding to Anj e 0(A) 1is
given by ’

{ eAansin nmE, «e-, sknj'le')‘njS sin nmE }.

1f a # 0, this system of generalized eigenfunctions is complate in M But

2
if a = 0, the completeness does not hold in general (cf. [29,35]).
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