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Chapter 1 Introduction

CHAPTER 1

INTRODUCTION

1.1 Mushy-State Forming

To save material and energy in manufacturing, precision forming and near net
shape forming, which requires further processing, are demanded and mushy-state
forming (or semi-solid forming) is one method of meeting these needs. The forming
process of a solid metal heated to a temperature of partial melting is called thixoforming,
and that of a liquid metal cooled down to a temperature of partial solidification is
rheoforming or rheocasting. These forming methods necessitate fewer forming
processes than conventional casting or hot forming, and they are expected to have the
following advantages [1,2]:

(1) Since solid and liquid are mixed and the flow stress is low, high workability is
possible with a small working load using small and simple equipment.

(2) Because of the high fluidity, complex shapes can be given and near net shape
forming is feasible.

(3) It s possible to mass-produce long or thin products of hardly formable materials.

(4) Fine grains and a uniform distribution of precipitation can prevent internal defects
and improve mechanical properties such as strength, extending the life of products.

(5) New compound materials can be manufactured homogeneously by mixing materials
having different relative densities.

(6) Because of a low working load, the forming process requires less energy.

Mushy-state forming is developed by improving the methods for
manufacturing and forming the metallic slurry. In the early 1970’s, a manufacturing
method for the metallic slurry was developed by Flemings et al. and research into the
effect of grain shape on the fluidity of semi-solid metals were carried out. Machines for

the continuous manufacturing of metallic slurry were contrived based on experiments
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for solidification with rotary stirring and other methods [3,4] were developed.
Mechanical properties of metallic slurry were reported [5-10] and models for analysis
were proposed [11-15]. Casting, forging, rolling and extrusion in the mushy state have
been developed and research in the development of materials using mushy-state forming
was performed [16-22]. Some automotive components made of aluminium alloy were

manufactured by mushy-state forming [23].

1.2 Analysis of Mushy-State Forming

Since the mushy-state metal has different deformation properties from both
solid and liquid metals, methods for forming the metallic slurry and basic forming
properties have been investigated mainly by experiments. Since only a few experiments
and limited knowledge about the mushy-state metals have been recorded, it is difficult
to design the forming proéesses and decide the optimum working conditions, and thus it
is desired to use numerical simulations.

The finite element method is one of the numerical simulation methods that are
used in various engineering fields, and it is also used for the numerical simulation for
mushy-state forming. Lapkowski et al. [12] and Kog er al. [24] modelled a mushy-state
metal as a \}iscoplastic material and the flow stress obtained in the experiments is used
in the simulations. Toyoshima et al. [13] proposed a model that a mushy-state material
is a porous material filled with a liquid component, and Kiuchi et al. [25] and Kang et al.
[26] used the Toyoshima’s model. The deformation behaviour of the mushy-state metal,
however, depends on its shape, size and distribution of grains. Continuum models such
as the finite element method cannot treat microscopic parameters. Consequently, the

calculated deformation behaviour differs somewhat from the experimental one.

1.3 Distinct Element Method

The distinct element method [27-69] is one of the granular models [70-74] to
overcome the limits of the continuum models in treating the motion of many grains in
mushy-state forming or powder forming. In the distinct element method, a granular

material is modelled to an assembly of particles, namely distinct elements, and each
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particle is an element. In the case of contact between elements, the spring-dashpot
model shown in Fig. 1.1 is considered and the interactive force is calculated. The
elements are considered not to deform, and the virtual overlap between the elements is
caused. The elastic repulsive force is obtained by multiplying the virtual overlap by the
spring stiffness of the elements, and then the motion of the elements is calculated by
solving Newton’s equations of motion.

In the distinct element method, rectangular [27,30,31] and circular [28,32-
43,64-67] elements are used in two-dimensional simulations. Circular elements are
mainly used because the simulation using rectangular elements requires a large storage
capacity for parameters of the elements such as position and shape and a long
computing time for detecting contact between the elements. Since the circular element
(in two-dimensional analysis) and the spherical element [29,44-47,65,66,68] (in three-
dimensional analysis) cannot express phenomena that depend on the shape of real grains,
elements of various shapes such as elliptical [48-59], hexagonal [60], ellipsoidal [61]

and combined spherical [62,63] have been used.

Element
Q Element
Spring Dashpot T_Daﬁshpot Slider
Spring
Element Element
(a) Normal (b) Tangential

Fig. 1.1 Spring-dashpot model used in distinct element method.
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Although the distinct element method is mainly used in soil mechanics and
geotechnology, it has been applied to forming. The distinct element method is used in
analyses of compaction [32,33,44-47,58,73,74], sintering [39] and extrusion [59] of
metallic powders, metal injection moulding [40,41], the motion of metallic powder in a
magnetic field [38,42,58] and the grain alignment of mushy-state forming [48-53,61].
Since the simple spring-dashpot model is used for calculating the force acting on the
element, plastic deformation of the element is neglected. Further, forces such as the

working load can be obtained qualitatively, but not quantitatively.

1.4 Research Objective
1.4.1 Grain Alignment of Mushy-State Magnet

Rare-earth magnets such as Nd-Fe-B [75] are increasingly produced recently
because of their high magnetic properties. Grains have magnetic anisotropy and the
magnetic properties are enhanced by aligning the direction of easy magnetisation of the
grains. Rare-earth magnets are generally produced from powder metallurgy and
magnet powder is formed in the magnetic field. Powder forming requires many forming
processes and is not suitable for mass production. The strength of products derived from
powders is low, and moreover, the attainable size of the product is small. To improve
these shortcomings, a cast method of rare-earth magnets using Pr-Fe-B [76-79] has been
recently developed. The as-cast magnets are worked by mushy-state forging or rolling
to align the grains mechanically because the degree of grain alignment of the as-cast
magnet is not high. In mushy-state forming, the boundaries of the grains melt and the
rotation of the grains becomes easy. The grains cannot be aligned by magnetic forces
because the magnet heated to the mushy state loses its magnetic properties. Although
working conditions in the mushy-state forming of rear-earth magnets are determined in
industry by trial and error experimentation, the acquired information is not enough yet.
Since only limited knowledge and experience have been accumulated that would aid the
design of this new process, it is desirable to develop a method for simulating the grain
alignment in mushy-state forming.

The first aim of this dissertation is to establish a method for simulating the
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motion of grains in mushy-state forming of magnet on the basis of the distinct element
method. The individual grains of the magnet are modelled as elements in the distinct
element method, and the grain alignment of the mushy-state magnet is simulated. A

model experiment is carried out to examine the accuracy of the calculated results.

1.4.2 Distribution of Solid Fraction

In the beginning of mushy-state forging, only a part of the billet is in contact
with the die and most of its surface is free. As the billet is compressed, the liquid
component tends to flow separately from the solid component. In many such cases, the
liquid component moves toward the surface layers and in some cases, furthermore,
flows out of the billet during the deformation. Since the squeezed liquid component is
concentrated at the surface layers, the internal structure of the forged product in the
mushy state becomes heterogeneous and most of the surface layers generally consist of
the structure made from the liquid component. _

Although this heterogeneous distribution of the internal structure is not
desirable in most cases, it may be possible to utilise the distribution for functionally
gradient material. Since mushy-state metals are easy to join with other metals, more
than two billets made of different kinds of metal can be joined and formed
simultaneously by mushy-state forging to obtain combined products. It is required to
develop the technology for controlling the flow of the liquid component, and design the
billet and the forging process to obtain the desired internal structure of the product.

The second aim of this dissertation is to develop the distinct element
simulation method taking into account the pressure of the liquid phase in mushy-state
forming. The deformation behaviour and the distribution of the pressure of the liquid

phase and solid fraction are investigated by the simulation of mushy-state upsetting.

1.5 Outline of Dissertation

It is difficult to simulate mushy-state forming by the continuum models such as
the finite element method because the deformation behaviour is effected by the shape

and the size of the grain. As examples of mushy-state forming, the grain alignment of
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rare-earth magnet in mushy-state forging and the distribution of solid fraction in mushy-
state upsetting are treated in this dissertation.

This dissertation consists of seven chapters:

Chapter 2 presents the formulation for the distinct element method using
elliptical elements. In order to treat the grain alignment of rare-earth magnet in mushy-
state forging, the forming process is approximated to the plane-strain deformation and
the grains are modelled as an assembly of elliptical elements. The effects of reduction in
height, solid fraction and grain aspect ratio on the degree of grain alignment are
investigated. The distribution of the degree of grain alignment is also investigated.

In Chapter 3, the distinct element simulation presented in Chapter 2 is applied
to decide the optimum working conditions in mushy-state forging of rare-earth magnet.
In the optimisation of the working conditions, the degree of grain alignment and the
crop loss are evaluated. The aspect ratio of the magnet, the volume rate of the capsule
and the die angle are selected for optimising working conditions. The volume rate of the
capsule and the die angle are fixed and the aspect ratio of the magnet is optimised, first.
Next, the volume rate of the capsule is optimised using the fixed die angle and the
optimised aspect ratio of the magnet. Finally, the die angle is optimised with the
optimised aspect ratio of the magnet and volume rate of the capsule.

Chapter 4 presents the formulation for the three-dimensional distinct element
method using ellipsoidal elements. A simulation and a model experiment of mushy-state
forging of rare-earth magnet are performed. Two and three-dimensional calculated
results for degree of grain alignment are compared. The distribution of the degree of
grain alignment is also investigated.

In Chapter 5, the formulation for the two-dimensional distinct element method
including the pressure of the liquid phase is proposed. The distribution of solid fraction
in mushy-state forming is investigated. The solid particles are modelled as circular solid
elements and the liquid phase is divided into triangular liquid elements having different
values of pressure. The triangular liquid elements are generated by connecting the
centres of the circular solid elements by means of the Delaunay triangulation.

Chapter 6 presents the formulation for the three-dimensional distinct element
method including the pressure of the liquid phase. The solid particles and the liquid

phase are modelled as spherical solid and tetrahedral liquid elements, respectively. The

-6-
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distribution of solid fraction in mushy-state forming is studied.

Finally, the concluding remarks for the present study are given in Chapter 7.
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CHAPTER 2

TWO-DIMENSIONAL GRAIN ALIGNMENT OF MUSHY-
STATE MAGNET o

2.1 Introduction

Rare-earth magnets are generally produced from powder metallurgy and
sintered magnets lack strength. To improve their strength, cast rare-earth magnets have
been recently developed [1-4]. The cast magnets are deformed by mushy-state forging
or rolling to align the grains mechanically because grains have magnetic anisotropy.
This leads to heightened magnetic properties. In mushy-state forming, the boundaries of
the grains melt, thus facilitating the rotation of the grains. The grains cannot be aligned
by magnetic forces because a magnet heated to the mushy state loses its magnetic
properties. Since the magnetic properties are greatly influenced by the degree of grain
alignment, it is important to predict the alignment induced by mushy-state forming. It is
impossible, however, to simulate the motion of individual grains in mushy-state forming
by continuum models such as the finite element method.

To deal with the motion of particles in granular materials, the distinct element
method has been developed by Cundall [5]. In this method, a granular material is
modelled by an assembly of particles, namely distinct elements, and Newton's equations
of motion are solved for individual elements under interactions with neighbouring ones.
Naturally, the effects of the size, shape and distribution of the particles can be taken into
consideration. Although the distinct element method has been used mainly in the field
of soil mechanics and geotechnoldgy, Lian et al. [6] and Tamura er al. [7] have applied
this method to powder forming processes. The distinct element method has a possibility
of analysing microscopic behaviour in a deforming material.

In this chapter, a method for simulating the motion of grains in the mushy-state
forming of magnets is presented on the basis of the distinct element method. The
individual grains in the magnet are modelled by elliptical elements in the distinct

element method.

-14 -



Chapter 2 Two-Dimensional Grain Alignment of Mushy-State Magnet

2.2 Method of Simulation
2.2.1 Modelling of Mushy-State Forming

The cast magnets are deformed by mushy-state forming to align the grains
mechanically. In mushy-state forming of magnets, the magnet is contained in a metallic
capsule so as to avoid squeezing the liquid phase out, as shown in Fig. 2.1. In the
present study, the distinct element method is used to simulate the motion of the grains in
the magnet, and the viscoplastic finite element method is used for plastic deformation of
the capsule. For the sake of simplicity, plane-strain deformation is assumed. In the
distinct element method, the grains in the magnet are modelled by means of many
elliptical elements [8], and the effect of the liquid component on the motion of the
grains is treated as viscous resistance to the movement. The cross-sectional shape of the
real grains is not circular as typically the case in the distinct element method but more
closely resembles an ellipse. The distinct and the finite element simulations are
separately carried out. Plastic deformation of the capsule is first calculated by the
viscoplastic finite element method, and then the distinct element simulation is
performed by using the calculated motion of the interface between the capéule and
magnet as a boundary condition. The degree of grain alignment induced by the forming
is obtained from the motions of grains. The grain alignment results from the use of

elliptical elements as opposed to circular ones.

Capsule++*+++*‘

(Viscoplastic
finite Mushy-
element R T PR state
method) [ A 2A Y magnet
Grain " (Distinct
(Element) element
Liquid ' method)
phase

T T T

Fig. 2.1 Model for mushy-state forming of magnets using distinct and finite element

methods.
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2.2.2 Distinct Element Method

Since the grains in the rare-earth magnet are intermetallic compounds, the
grains do not undergo plastic deformation during the forming. This is convenient to the
distinct element simulation because the elements are ordinarily modelled to be rigid.

In the distinct element method, Newton's equations of motion are solved for
individual elements using a small time step as follows:

2.1
I+ M, =0, D

{mfz +F +F, =0
where m is the mass of the element, v is the acceleration, F, is the contact force, F,
is the viscous force against the liquid phase, 7 is the moment of inertia, ¢ is the angular
acceleration and M is the contact moment. The contact force and moment are applied
to the element only in the case of the contact, whereas the viscous force invariably
exists. The velocity of each element is determined by integrating the acceleration
obtained from Equation (2.1) with respect to the time increment, and then the position
of the element is renewed for the next step. |

The contact force is composed of the elastic repulsive and frictional forces.
When two elements touch as shown in Fig. 2.2, the contact force in the normal direction,

F,, by the elastic repulsion is assumed to be linear with an overlap, 6.

F-igs, 2.2)
2
where K, is the normal spring stiffness. Since the elements are treated as being rigid,
the virtual overlap, 6, between the two elements is introduced to calculate the elastic

repulsive force.
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|l

Element |
Q

Element i

4

Fig. 2.2 Virtual overlap in contact of two elliptical elements.

The shape of the element is not changed even when a contact force is applied.
The treatment of the contact for the elliptical elements is more complex than that for the
circular ones commonly used in the distinct element method. The angle, 6 (see Fig.
2.3(a)), for the normal of the ellipse passing through an arbitrary point (p,q) is expressed
by

apsin@ - gcosé — (a2 —l)rsinH cosf =0, 2.3)

where a is the aspect ratio of the elliptical element (the ratio of the length of the major
axis to that of the minor axis). The normal of element j through point 4 on the major
axis of element i is obtained by solving Equation (2.3) by the use of the Newton-
Raphson method, and point B is determined as shown in Fig. 2.3(b). The normal of
element i through point B is again calculated by solving Equation (2.3). The common
normal is obtained by minimising the difference of the angle, A8, iteratively.

From the determined common normal, the virtual overlap between the two
elements for calculating the normal contact force of Equation (2.2) is obtained. It means
that the normal contact forces have the same magnitude for the two elements and are

acting in the opposite directions.
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The tangential contact force, F;, induced by the elastic repulsion or the
friction is expressed by

1
F = EKJ’ (Kt}’ = l‘Fn) (2.4)
F =uF,  (Ky>uF,),
where K, is the tangential spring stiffness, y is relative displacement in the tangential

direction calculated with the relative movement and rotation between the two elements

and p is the coefficient of friction.

i
e - (®.9)
/.. r {
; A\
i L
i 7 ‘ar
- X
'\.. O j
‘-.\ /
.'\._ /,/
(a) Normal
z
/]
A6 .
- & - X
Element i A

(b) Iterative calculation

Fig. 2.3 Iterative calculation of common normal to two elliptical elements.
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The contact moment, M., is obtained from the normal and tangential contact

forces using L, and L, defined in Fig. 2.2, as follows:

M, =LF,+L,F. @2.5)

From the motion of a circular cylinder in a viscous medium, the viscous force

against the liquid component is approximated by

F=- 2L3 : 44”"""’ - 2.6)
o log(——ﬂ"’—) -E+=
arp,v 2

where L, is the projection length as shown in Fig. 2.4, 5, is the coefficient of
viscosity, v is the velocity, p, is the density of liquid and E is the Euler constant.

Direction
of motion

X
g)

2ar

Fig. 2.4 Projection length of ellipse moving in viscous medium.
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2.2.3 Viscoplastic Finite Element Method

Plastic deformation of the capsule containing the magnet is calculated by the
viscoplastic finite element method. Although it is desirable that the distinct element
method is coupled with the viscoplastic finite element method, the coupling is
complicated. In the distinct element simulation, the pressure at the interface between the
capsule and magnet is not accurately calculated because the pressure in the liquid phase
is not taken into consideration. Thus, the distinct and the finite element simulations are
separately carried out. Plastic deformation of the capsule is first calculated by the
viscoplastic finite element method, and then the distinct element simulation is carried
out by using the calculated motion of the interface between the capsule and magnet as a
boundary condition.

In the viscoplastic finite element simulation, the mushy-state magnet is
assumed to have a uniform distribution of the macroscopic hydrostatic pressure because
the flow stress of the magnet is sufficiently smaller than that of the capsule. The volume
constancy of the magnei is introduced into the viscoplastic finite element formulation
by the use of the Lagrange multiplier method [9], and the following functional is

minimised
® = fV [ J;ads JdV + ﬁ 7,AvdS + AE,V,,, 2.7)

where & is the equivalent stress, £ is the equivalent strain-rate, 7, is the frictional
shear stress, Av is the relative velocity, A is the Lagrange multiplier, £ is the
volumetric strain-rate of the magnet and ¥, and V,, are the volumes of the capsule and

magnet, respectively. The volumetric strain-rate, ¢, of the magnet is expressed as a

function of the nodal velocities at the interface between the capsule and magnet, and
only the capsule is divided into elements. The Lagrange multiplier, A, coincides with the
macroscopic hydrostatic stress of the magnet in the minimisation. The viscoplastic finite
element method for the calculation of the capsule is formulated on the basis of the
plasticity theory for a material with slight compressibility [10,11]. The macroscopic
information such as the working load and the deforming shape is provided by the

viscoplastic finite element method.
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2.3 Simulation of Mushy-State Upsetting
2.3.1 Computational Conditions

The motion of grains in mushy-state plane-strain upsetting of a rare-earth
magnet contained in a mild steel capsule is simulated. The computational conditions
used for the finite and the distinct element simulations are given in Table 2.1. The
spring stiffness for the elastic repulsive force is obtained from the elastic finite element
simulation of the plane-stain side-pressing of an elliptical bar. The relationship between
the elastic repulsive force and the displacement is nearly linear.

To set the initial disposition of elements in the magnet before upsetting, the
elements are first randomly located allowing overlap between elements as shown in Fig.
2.5(a), and then the distinct element simulation is continued without changing the shape
of the interface between the capsule and magnet until a stable state has been reached
(see Fig. 2.5(b)). By using this treatment, the initial disposition is almost random.

Table 2.1 Computational conditions used for finite and distinct element simulations of

mushy-state plane-strain upsetting.

Solid fraction 3 /% 65,70, 75, 80, 85, 87
Grain aspect ratio a 2,2.5,2.9

Final reduction in height AWk /% 50

Number of distinct elements # 500

Coefficient of friction between distinct elements u 0.1

Normal spring stiffness K, /MN-mm 65

Tangential spring stiffness X, /MN-mm" 15

Density of solid phase /g'-mm™ 0.00786
Density of liquid phase p, /g'mm™ 0.0069
Coefficient of viscosity 7, /mPa-s 8

Flow stress of capsule (mild steel, 1000°C) /MPa o =1054"¢°"
Coefficient of friction between die and capsule 0.25

Ratio of height of magnet to width 1
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OOy o

(a) Start

(b) Stable state
Fig. 2.5 Initial disposition of distinct elements in magnet before upsetting.
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2.3.2 Model Experiment

Since real rare-earth magnets are worked at about 1000°C, model materials are
used in the experiment as shown in Fig. 2.6. The mushy-state magnet is modelled by
means of acrylic resin grains and a Vaseline liquid phase, and the capsule is plasticine
having deformation behaviour similar to that of hot steel. The grains are produced by
cutting an acrylic resin plate into elliptical discs using a laser beam. The specimen is
sandwiched between two transparent acrylic resin plates to observe the motion of grains.
The capsule is upset with two dies under dry friction. The cross-section of the
encapsulated magnet is measured by an image scanner at every 5% reduction in height,
and then the orientations of the acrylic resin grains are obtained from the measured

image data using a personal computer.

Steel plate

Acrylic resin particles Acrylic resin plate
and Vaseline

Fig. 2.6 Model experiment using acrylic resin grains and plasticine capsule.
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2.3.3 Evaluation of Grain Alignment

The direction of easy magnetisation in the Pr-Fe-B rare-earth magnets is equal
to that of the minor axis of the grain. By assuming that the intensity of magnetisation

acts only in the direction of the minor axis, the component, H,, of the intensity of

ui ®

magnetisation in the upsetting direction for element i is expressed by

H, = Hlsing,

: 2.8)

where H is the intensity of magnetisation in the direction of the minor axis and ¢, is
the angle of the major axis to the upsetting direction. The degree of grain alignment, 4,
for the magnet is defined by

1
A=—-——§:H., 2.9
nH 4 “ 29)

where 7 is the number of distinct elements. The degree of grain alignment is 1 when the
minor axes of all the elements are parallel with the upsetting direction, while the degree

is 2/n=0.64 for the fully random orientation.

24 Calcufated and Experimental Results

Since the calculated results depend on the initial disposition of the grains, the
calculation is performed for three initial dispositions of the grains. On the other hand,
the model experiments are carried out only one time in each case.

The calculated motion of grains and finite element mesh in mushy-state forging
for solid fraction ¢=80% and grain aspect ratio =2 and =2.9 are illustrated in Fig. 2.7
and Fig. 2.8, respectively. The results obtained by the finite and distinct element
simulations are simultaneously shown. The distinct elements are mechanically aligned
by the interaction with neighbouring ones. The distinct elements turn perpendicular to
the upsetting direction as the reduction in height increases. In the case of AW/h=50%, the
liquid phase is squeezed near the side edge of the magnet. Since the direction of easy
magnetisation is that of the minor axis of the grain, thin magnets are produced by
mushy-state upsetting. This is convenient for miniaturising electrical products. The

tendency for &=2.9 is similar to that for a=2.
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(a) AWh=0%

(b) AWh=30%
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(c) AWh=50%
Fig. 2.7 Calculated motion of grains and finite element mesh for =80% and o=2.
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(a) AWh=0%

(b) AWh=30%
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(c) AWh=50%
Fig. 2.8 Calculated motion of grains and finite element mesh for y=80% and o=2.9.
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The calculated degree of grain alignment A for ¥=80% and &=2 is compared
with the experimentally measured result in Fig. 2.9. Since the effect of the material
properties on grain alignment is small, the properties for the rare-earth magnet and the
mild steel capsule, and not the model materials, are used in the simulation. The average
value for three initial dispositions is shown in this figure because the results more or
less scatter for the disposition. In the initial dispositions of both calculation and
experiment, the degrees of grain alignment are close to 2/n=0.64, i.e. almost random.
The degree of grain alignment increases as the height is reduced. The gradient of the
grain alignment is high until the point of saturation at the height reduction of 30%. The
calculated degree of grain alignment is in good agreement with the experimental result.
Although the number of elements in the distinct element simulation is less than that of
real magnets, the calculated tendency is similar even if the number is increased.

The distribution of the calculated degree of grain alignment for ¥=80%, a=2
and AW/h=50% is shown in Fig. 2.10. The degree of grain alignment is large near the
centre of the magnet but decreases at the sides because of insufficient compression.

The effect of the solid fraction on the degree of grain alignment for o=2,
AWh=50% is plotted in Fig. 2.11. Although the degrec of grain alignment increases with
the solid fraction, the degree is almost constant in the solid fraction above 80%. This is
owing to the fact that the rotation of the elements becomes difficult in the case of a high
solid fraction.

The effect of the grain aspect ratio on the degree of grain alignment for y=80%
and Ah/h=50% is illustrated in Fig. 2.12. The degree of grain alignment increases as the
aspect ratio increases. When the aspect ratio exceeds 2.5 and the solid fraction is large,
it is difficult to set the initial disposition of distinct elements, and the system cannot

settle into a stable state.
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Fig. 2.9 Comparison between calculated and experimental degrees of grain alignment
for y=80% and o=2.
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Fig. 2.10 Distribution of calculated degree of grain alignment for =80%, =2 and
AWH=50%.
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Fig. 2.11 Effect of solid fraction on degree of grain alignment for e=2 and A/h=50%.
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2.5 Conclusions

The motion of grains in the mushy-state forming of magnets was simulated by
the distinct element method using elliptical elements. Grain alignment caused by the
interaction between elements was calculated. Macroscopic plastic deformation of a
metallic capsule containing the magnet was calculated by the viscoplastic finite element
method, and the obtained motion of the interface between the capsule and magnet was
used as a boundary condition in the distinct element simulation. Although a two-
dimensional simulation was performed, the real grains of the rare-earth magnet are close
to ellipsoids. It is desirable to develop a three-dimensional method using ellipsoidal
elements. In the three-dimensional simulation, the treatment of the contact of ellipsoidal
elements is complicated.

Although the finite element method has been widely applied to forming
processes, most of these applications have been limited to the simulation of
macroscopic behaviour. An extremely fine element mesh is required to simulate
microscopic behaviour, and thus it takes much computing time. In this study, both
microscopic and macroscopic methods were employed to compensate for each other's
deficiencies. The macroscopic behaviour is first obtained by the finite element
simulation, and then microscopic information is calculated from the distinct element
simulation by using the obtained macroscopic information as the boundary condition.
The combined approach that is proposed in this study leads to high efficiency of
simulation. Such a method may have a wide range of applications in the field of

forming processes.
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CHAPTER 3

OPTIMUM WORKING CONDITION

3.1 Introduction

Rare-earth magnets such as Nd-Fe-B [1] are increasingly produced because of
their high magnetic properties. The electrical industry has a strong demand for the
development of products with high magnetic properties. The magnetic properties of
rare-earth magnets are enhanced by aligning the direction of easy magnetisation of the
grains. This means inducing magnetic anisotropy by the forming. Although rare-earth
magnets are generally produced from powder metallurgy, the strength of the products is
low, and moreover the size is not large. To produce strong and large size magnets, cast
rare-earth magnets using Pr-Fe-B have been recently developed [2-5]. The as-cast
magnets are worked by mushy-state forging or rolling to align the grains mechanically
because the degree of grain alignment of the cast magnet is not high. In mushy-state
forming, the boundaries of the grains melt and the rotation of the grains becomes easy.
The grains cannot be aligned by magnetic forces because the magnet heated to the
mushy state loses magnetic properties. The alignment is caused by the collision between
non-circular grains in the forming. It is desirable to develop a method for simulating the
grain alignment in mushy-state forming because little experience and knowledge have
been accumulated concerning the design of this new process.

Although the finite element method provides valuable information for the
design of metal forming processes, it is impossible to simulate the motion of individual
grains in the deforming metal. A method for simulating grain alignment in mushy-state
forming of magnet is proposed in Chapter 2. In the proposed method, the distinct
element method has been extended to the simulation of the motion of individual grains.
The distinct element method is mainly used to deal with the motion of particles in
granular material [6]. The proposed method is effective in determining working
conditions for mushy-state forming. ‘

In this chapter, optimum working conditions for grain alignment in mushy-
state plane-strain upsetting of rare-earth magnets are obtained by the method written in
chapter 2. The effects of the aspect ratio of the magnet, the volume rate of the capsule
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and the die angle on grain alignment and the rate of crop loss are examined.

3.2 Evaluation and Working Conditions

3.2.1. Evaluation

The magnet exhibits an irregular shape by inhomogeneous deformation in the
upsetting. Since the formed magnet is cropped into a rectangular block, it is important
to reduce the crop loss from the economical point of view. Since the largest rectangle is

taken from the deformed magnet as shown in Fig. 3.1, the rate of crop loss, C, is defined

3.1)

M M t
MWMM#I — a(llg/)ne

|

)

Fig. 3.1 Definition of rate of crop loss of deformed magnet.
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The direction of easy magnetisation in the Pr-Fe-B rare-earth magnets is equal
to that of the minor axis of the grain. By assuming that the intensity of magnetisation

acts only in the direction of the minor axis, the component, H , of the intensity of

ui ®

magnetisation in the upsetting direction for element i is expressed by

H, = Hlsing||, (3.2)

where H is the intensity of magnetisation in the direction of the minor axis and ¢, is
the angle of the major axis to the upsetting direction. For the cropped product, the
degree of grain alignment, 4, for the magnet is defined by

1
=— H ., 3.3
nHz “ 3-3)

where # is the number of distinct elements in the rectangular magnet after the cropping.
The degree of grain alignment is 1 when the minor axes of all the elements are parallel
with the upsetting direction, while the degree is 2/7=0.64 for the fully random
orientation.

Since the calculated results depend on the initial disposition of the grains, the
calculation is performed for five initial dispositions of the grains. The degree of grain
alignment is indicated as the average of five results. On the other hand, the model

experiments are carried out only one time in each case.

3.2.2. Working Conditions

Mushy-state plane-strain upsetting of a rare-earth magnet contained in a mild
steel capsule with concave or convex dies is investigated in the present study. The
effects of the aspect ratio of the magnet, the volume rate of the capsule and the die angle
on grain alignment and the rate of crop loss are examined. The aspect ratio of the
magnet, &, is defined by |

E=—"1, (3.4)

where 5, and w, are the height and width of the initial magnet part, respectively (see
Fig. 3.2).
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Fig. 3.2 Definition of aspect ratio of magnet and die angle.

Since the capsule is scrapped after the forming, the volume rate of the capsule,
g, is defined by

-7 ’
=t 3.5
& Vv (3.5)

where V' and V, are the volumes of the magnet and capsule, respectively.

In the optimisation of working conditions, the effect of the aspect ratio of the
magnet is obtained for the volume rate of the capsule £=50% and the die angle 6,=0°,
and then the volume rate of the capsule is determined for the obtained aspect ratio and
0,=0°. The die angle is finally determined for the obtained aspect ratio and volume rate.
The working conditions in mushy-state upsetting and the computational conditions used
for the distinct and finite element simulations are shown in Tables 3.1 and 3.2,

respectively.
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Table 3.1 Working conditions in mushy-state upsetting.

Aspect ratio of magnet & 0.33,0.5,0.67,1.0,1.5,2.0,3.0
Volume rate of capsule £ /% 20, 30, 40, 50, 60
Die angle 6, /° -2,-1,0,1,2,3,4,5

Table 3.2 Computational conditions used for finite and distinct element simulations of

mushy-state plane-strain upsetting.

Solid fraction v /% 80
Grain aspect ratio a 2

Final reduction in height A#W/h /% 35
Number of distinct elements » 500
Coefficient of friction between distinct elements u 0.1
Normal spring stiffness K, /MN-mm" 65
Tangential spring stiffness X, /MN-mm’ 15
Density of solid phase /g'mm™ 0.00786
Density of liquid phase p, /g'mm” 0.0069
Coefficient of viscosity 7, /mPas 8

Flow stress of capsule (mild steel, 1000°C) /MPa o =105g"¢""
Coefficient of friction between die and capsule 0.25
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3.3 Determination of Working Conditions

3.3.1. Reduction in Height

The calculated motion of grains and finite element mesh in mushy-state
upsetting for the aspect ratio of the magnet £0.67, the volume rate of the capsule
£=50% and the die angle §,=0° are illustrated in Fig. 3.3, where AW/ is the reduction in
_ height. The results obtained by the finite and distinct element simulations are
simultaneously shown. The die angle 6, is expressed as the angle between the horizontal
direction and the die surface, i.e. concave dies for a positive value and convex dies for a
negative value. The distinct elements are mechanically aligned by their interaction with
neighbouring ones. The distinct elements are turned perpendicular to the upsetting
direction as the reduction in height increases.

A comparison between the calculated and experimental deformed shapes of the
capsule for £=0.67, £=30%, 6,~0° and AW//=35% is shown in Fig. 3.4. Since the
Vaseline 1s squeezed out from the plasticine capsule due to the high pressure, the
experimental shape of the capsule after deformation is smaller than the calculated one.
The magnet contained in the capsule exhibits an irregular shape, and the magnet is
cropped into a rectangular shape after forming.
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(a) AWH=0%

(b) AWh=20%
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Fig. 3.3 Calculated motion of grains and finite element mesh in mushy-state upsetting

for £0.67, £=50% and 6,~0°,

(b) AWh=35%
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(a) Calculated (b) Experimental
Fig. 3.4 Comparison between calculated and experimental deformed shapes of capsule
for £=0.67, £&=30%, 6,=0° and AW/h=35%.

The calculated variation in the rate of crop loss C with the reduction in height
for £50.67 is compared with the experimentally measured one in Fig. 3.5. As the
reduction in height increases, the rate of crop loss also increases.

The calculated variation in the degree of grain alignment 4 with the reduction
in height for £=0.67 is compared with the experimentally measured one in Fig. 3.6. As
the height is reduced, the degree of grain alignment increases. The change in the degree
is relatively large, up to a 30% reduction, and then the system is saturated. The degree
of grain alignment agrees well with the experimental one. Although the number of
elements in the distinct element simulation is as much as that for real magnets, the
calculated tendency is similar even if the number is increased.

The degree of grain alignment increases with the reduction in height, while the
rate of crop loss also increases. Since the increase in the degree of grain alignment is
saturated at about a 35% reduction in height, the working condition is evaluated for the
35% reduction. However, in the experiment, the volume of the magnet decreases due to
the squeeze of the Vaseline, thus, the experimental result has an error. Therefore, the
effects of working conditions on grain alignment are determined from the calculation.
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Fig. 3.5 Variation in rate of crop loss C with reduction in height for £&0.67.
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Fig. 3.6 Variation in degree of grain alignment 4 with reduction in height for £0.67.
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3.3.2. Aspect Ratio of Magnet

The effect of the aspect ratio of the magnet on the rate of crop loss for £=50%,
6,~0° and Ah/h=35% is shown in Fig. 3.7. The rate of crop loss has a minimum value at
&0.67. "

The effect of the aspect ratio of the magnet on the degree of grain alignment
for £=50%, 6,=0° and AW/h=35% is illustrated in Fig. 3.8. Although the degree of grain
alignment has a peak at £=1.0, the degree of grain alignment at £=0.67 and &1.0 is
almost the same. Since the rate of crop loss is about 20% at £=0.67 and about 25% at
&=1.0, £=0.67 is chosen as the optimum aspect ratio of the magnet.

40

30 |~

25 —

15 =

Rate of crop loss C /%

10

0 I I N

0 0.5 1 1.5 2 2.5 3
Aspect ratio of magnet &

Fig. 3.7 Effect of aspect ratio of magnet on rate of crop loss for &=50%, 6~0° and
AWh=35%.
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Fig. 3.8 Effect of aspect ratio of magnet on degree of grain alignment for &=50%, 6,=0°
and AW/h=35%.
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3.3.3. Volume Rate of Capsule

The effect of the volume rate of the capsule on the rate of crop loss for £=0.67,
6,7=0° and AhW/h=35% is shown in Fig. 3.9. The rate of crop loss has a minimum value at
=30%. '

The effect of the volume rate of the capsule on the degree of grain alignment
for £&0.67, 670° and AWh=35% is illustrated in Fig. 3.10. The degree of grain
alignment has a peak at {=40%. Since the difference of the degree of grain alignment
between {=30% and 40% is small, {=30% is chosen as the optimum volume rate of the
capsule.

25
°\\° 20 - O\o___—-o——_'o—___(>
©)
3
L 15 |-
Q.
(o)
b
s 10 =
Q
E
14 5 |-

0 | | | | |

0 10 20 30 40 50 60

Volume rate of capsule £ /%

Fig. 3.9 Effect of volume rate of capsule on rate of crop loss for &0.67, 6~0° and
AWh=35%.
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Fig. 3.10 Effect of volume rate of capsule on degree of grain alignment for £0.67,
6,~0° and AWh=35%.
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3.3.4. Die Angle

The effect of the die angle on the rate of crop loss for &0.67, £=30% and
Ah/I=35% is shown in Fig. 3.11. The rate of crop loss has a minimum value at 6=1°.

The effect of the die angle on the degree of grain alignment for £&0.67, £=30%
and AW/h=35% is illustrated in Fig. 3.12. Since the degree of grain alignment is almost
constant for the die angle, 6~1° is chosen.
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Fig. 3.11 Effect of die angle on rate of crop loss for &0.67, £&=30% and Ah/h=35%.
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Fig. 3.12 Effect of die angle on degree of grain alignment for £&0.67, £&=30% and
AWh=35%.
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3.4 Conclusions

Although working conditions in mushy-state forming of rare-earth magnets are
determined in industry by trial and error experimentation, the acquired information is
not enough yet. The numerical simulation using the distinct and finite element methods
provides valuable information for the design of the new process. The effects of the
aspect ratio of the magnet, the volume rate of the capsule and the die angle on the grain
alignment and the rate of crop loss were derived from the numerical simulation.
Although the effect of the reduction in height on the degree of grain alignment is large,
35% reduction is enough because of saturation. The effect of the aspect ratio of the
magnet on grain alignment and rate of crop loss is comparatively large, whereas those

of the volume rate of the capsule and the die angle are small.
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CHAPTER 4

THREE-DIMENSIONAL GRAIN ALIGNMENT OF MUSHY-
STATE MAGNET |

4.1 Introduction

Rare-earth magnets are increasingly produced because of their high magnetic
properties. To improve the low strength and productivity of the magnets produced from
powder metallurgy, cast rare-earth magnets using Pr-Fe-B have been recently developed
[1-4]. Since the degree of grain alignment of as-cast magnets is not high enough, the as-
cast magnets heated to a mushy state are worked by a forging or rolling operation to
align the grains mechanically. A two-dimensional method for simulating the grain
alignment in the mushy-state forming of magnets using the distinct element method is
proposed in Chapter 2. The distinct element method has the capability of simulating the
motion of individual grains. Since the behaviour of grains calculated by the two-
dimensional method is more or less different from that for the actual forming process,
e.g. the packing state of real grains, it is desirable to develop a three-dimensional
method for simulating the grain alignment in the mushy-state forming of magnets.

The distinct element method has been developed by Cundall [5,6] to simulate
the motion of particles in granular materials. In the distinct element method, the
granular material is modelled as an assembly of elements representing particles, and the
equations of motion for the elements are solved for small time steps. The alignment of
grains in the mushy-state forming of magnets can be induced because of their non-
spherical shape. For the two-dimensional simulation, rectangular [5] and elliptical [7-
12] elements have been presented as non-circular elements. However, spherical
elements have been used in most of three-dimensional distinct element simulations [13].
Although elements lining spheres up [14] and hexahedral elements [15] have been
developed as non-spherical elements, these elements are not accurate enough for the
modelling of real grains. Since the shapes of grains are similar to ellipsoids, it is
realistic to develop ellipsoidal elements for the simulation of mushy-state forming.

In this chapter, a three-dimensional distinct element method using ellipsoidal
elements is proposed. A scheme for treating three-dimensional contact between

ellipsoidal elements is presented. The proposed method is applied to simulation of the
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grain alignment in mushy-state axi-symmetric upsetting of a rare-earth magnet.
4.2 Three-Dimensional Method

4.2.1 Equation of Motion

To simulate the three-dimensional behaviour of grains in the mushy-state
forming of a rare-earth magnet, a distinct element method using ellipsoidal elements is
presented. Since the shape of the element is not spherical, the treatment of contact
between elements and the equilibrium equations of the forces and the moment become
complicated. To avoid the complexity of this formulation, the physical quantities such
as the position, velocity, acceleration, force and moment are represented in vector forms.
Newton’s equations of motion are solved for individual elements using a small time step

as follows:

@.1)

mv+F +F,=0
Ixo+M, =0,

where m is the mass of the element, v is the acceleration, F. is the contact force, F,

4

is the viscous force against the liquid phase, I is the moment of inertia, @ is the

angular acceleration and M is the contact moment.

4.2.2 Detection of Contact

When two elements touch, a contact force is applied to these elements.
Although the contact between the spherical elements is evaluated from the distance
between the centres of two elements, it is not easy to treat the contact for the ellipsoidal
elements. To facilitate it, a local coordinate system is introduced for each element. The
origin of the local coordinate system is defined as the centre of the ellipsoid, and the z-
axis coincides with the major axis of the ellipsoid.

When the ellipsoidal element touches the boundary plane as shown in Fig. 4.1,
the boundary plane is expressed in the local coordinate system of the element by
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Boundary
Plane

Element

Fig. 4.1 Contact between ellipsoidal element and boundary plane.

ax+by+cz+d =0, (4.2)

where a, b, ¢ and d are constants in the local coordinate system. The minor and major
axes of the ellipsoidal element are 2r and 2ar (1<a), respectively. The common normal
to the element and boundary plane is used to evaluate the contact. Points 4, B and C are
defined as the intersections of the common normal with the element surface, the major
axis of the element and the boundary plane, respectively. The positions of points 4, B
and C are analytically determined as follows:

2
(4,,4,,4,)= (%%%ﬁ) 4.3)
a’-1)c
(8.B,.B.)= (o,o,ﬁk—)) (4.4)
(C..C,.C, )= (at,bt,ct + B,), (4.5)
where
k_—d/c_ a® +b% +(ac) @.6)
- |— d/cl 7 '
B +d

The overlap, d, between the ellipsoidal element and the boundary plane is presented by
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6 =BA-BC. , (4.8)

When the value of d is positive, the element is in contact with the boundary plane.

For the contact between two ellipsoidal elements, a common normal to the
elements is searched as shown in Fig. 4.2. Points 4 and B are defined as the
intersections of the common normal with the surface and the major axis of the elements,

respectively. Points 4 and B are given in the local coordinate system (see Fig. 4.3) by

(Ax,Ay,AZ ) = (rsin6 cosg,rsin O sin ¢, arcos6) (4.9)
1
(8..8,.8,)= (o,o,{ —;}rcos&). (4.10)

The equation of a normal of an ellipsoidal element through point P(Px,Py,Pz ) is

expressed as follows:
aP, cosgsing - w/sz + Py2 cosf ~ (az - 1)rcos¢sin60050 =0, 4.11)

where

_leose" /B |
cos® = [cosd P | (4.12)
/B
sin@ = ’smB }— 4.13)
P)’
Y
6" =tan™! > (4.14)
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Fig. 4.2 Contact between ellipsoidal elements.
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Fig. 4.3 Contact between ellipsoidal elements.
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The variable ¢ in Equation (4.11) can be determined analytically on the plane including
both point P and the major axis of the element. The variable 6 is calculated by solving
Equation (4.11) using the Newton-Raphson method and the normal through point P is
obtained. A normal to element j through point B, on the major axis of the element 7 is
first obtained, and then intersection point B'j of the normal with the major axis of the
element j is determined. Next, a normal to the element i through point B . 1s determined
and the intersection of the normal with the major axis of element i is point B,'. The
common normal is determined by repeating this procedure until convergence of 8. The
overlap, d, between the elements 7/ and ; is obtained by

6 = A4,B, +4,B,-BB,. (4.15)
4.2.3 Contact Force and Moment

When the elements touch each other, the elastic repulsive forces in the normal
and tangential directions at the contact point are applied. The unit normal vector, n, at

point 4 on the element surface is expressed using the normal vector, N, by

M= | (4.16)

N=(—AX,-Ay,—A’). (4.17)

The elastic repulsive force in the normal direction is calculated by

F,=Kon+CAv,, (4.18)

where K, is the normal spring stiffness, C, is the dumping modulus in the normal
direction and Av, is the relative velocity vector between elements in the normal
direction. In the tangential direction, both elastic repulsive and frictional forces are
applied. The frictional force is calculated from the law of Coulomb friction. The

tangential contact force is expressed as follows:

i)

) (4.19)

F' (r

ct
F 1]
|\uF,, X (%,

ct

<|uF,
F, =
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F,'=K(Av,At +y)+CAv,, (4.20)

where u is the coefficient of friction, K, is the tangential spring stiffness, Av, is the

relative velocity in the tangential direction, Az is the time increment for a step, 7 is the

shear strain in the last step and C, is the damping modulus in the tangential direction.
The contact moment, M, is obtained from the normal and tangential contact

forces as follows:

M=Lx(F, +F,), 4.21)

where L is the position vector of the contact point in the local coordinate system. When
an element touches more than two elements, all contact forces and moments are

summed up as follows:

F.=Y(F,+F,) | (4.22)

M, = E M. 4.23)
4.2.4 Viscous Force
When the grain moves in the liquid phase, the viscous force acts on the grain.

The viscous force is approximated as that for the sphere having the same diameter to the
length of the minor axis of the element as shown in Fig. 4.4;

F, = LFH (4.24)
2r
F, =—6mn,rv, (4.25)

where / is the projection length shown in Fig. 4.4, 2r is the length of the minor axis of
the element, 7, is the coefficient of the viscosity of the liquid phase and v is the
velocity vector of the element. Since the velocity and the angular velocity of elements

are not large, the lift for the rotation is neglected in the present study.
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Direction of
motion

Element

Fig. 4.4 Projection of ellipsoidal element onto plane perpendicular to motion of
element.

-57-



Chapter 4 Three-Dimensional Grain Alignment of Mushy-State Magnet

4.3 Mushy-State Upsetting

4.3.1 Working Conditions

The mushy-state magnet is housed in a cylindrical capsule (made of mild steel)
so as to avoid squeezing the liquid phase out. Its upsetting is shown in Fig. 4.5. The
capsule is upset with two flat dies in the axial direction and the final reduction in height
is 25%. The volume of the magnet is equal to that of the capsule.

IR

P T

Fig. 4.5 Mushy-state upsetting.
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4.3.2 Computation

The viscoplastic finite element method is employed to calculate the
macroscopic plastic deformation of the capsule, and the microscopic motion of the
grains in the mushy-state magnet is simulated by the distinct element method. Axi-
symmetric deformation of the capsule is first calculated by the viscoplastic finite
element method, and then the three-dimensional distinct element simulation is carried
out using the calculated motion of the interface between the capsule and the magnet as a
boundary condition.

The computational conditions used for the finit¢é and the distinct element
simulations are given in Table 4.1. To set the initial disposition of elements before the
upsetting, the centres of the elements are located concentrically like hexagonal close-
packed crystal structure of metals first, and the directions of the elements are randomly
located while allowing overlap between elements. Then the distinct element simulation
is continued without changing the shape of the interface between the capsule and
magnet until a stable state has been reached. To stabilise the motion of the elements, the
motion of all elements is stopped, i.e. the velocities of all elements are set for zero in
every 50 steps.

To compare the two and three-dimensional simulations, the two-dimensional
distinct element simulation using elliptical elements is performed. The three-
dimensional simulation is performed under the same computational conditions as the
two-dimensional simulation except a variation in the solid fraction and number of

elements.
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Table 4.1 Computational conditions used for finite and distinct element simulations of

mushy-state plane-strain upsetting

Solid fraction ¢ /%

Grain aspect ratio a
Final reduction in height Ak/h /%
Number of distinct elements n

Coefficient of friction between distinct element u
Normal spring stiffness K, /MN-mm"
Tangential spring stiffness K, /MN-mm
Density of solid phase /g'mm

Density of liquid phase p, /g'mm”

Coefficient of viscosity 7, /mPa‘s

Flow stress of capsule (mild steel, 1000°C) /MPa
Coefficient of friction between die and capsule

30, 40 (3-D)

80 (2-D)

1.67

25

293, 589, 921 (3-D)
148 (2-D)

0.1

65

15

0.00786

0.0069

8

o =105g"¢g%"

0.25
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4.3.3 Model Experiment

Since real rare-earth magnets are worked at about 1000°C, model materials are
used in the experiment. The mushy-state magnet is modelled using acrylic resin grains
and a Vaseline liquid phase, and the capsule is plasticine having similar deformation
behaviour to hot steel. The grains are produced by casting acrylic resin into dies having
_ ellipsoidal cavities. In the casting, solder bars are inserted at the major axis of the
ellipsoid for one-third amount of grains. The capsule is upset with two flat dies using
calcium carbonate as a lubricant. X-ray photographs are taken in the upsetting direction
for every 5% reduction in height. Fig. 4.6 illustrates the X-ray images of the specimen
in the model experiment for #=293 distinct elements and solid fraction y¥=40%. Only
the image of the solder bars is obtained because X-ray easily passes through Vaseline
but not solder. Since the length of all solder bars is known, the orientations of the
acrylic resin grains are obtained from the measured length of solder bars in the image
data.

(a) AWh=0% (b) AWh=35%
Fig. 4.6 X-ray images of specimen in model experiment for =293 and y=40%.

-61 -



Chapter 4 Three-Dimensional Grain Alignment of Mushy-State Magnet

4.3.4 Evaluation of Degree of Grain Alignment

The direction of easy magnetisation in Pr-Fe-B magnets is located in the plane
perpendicular to the major axis of the grain. By assuming that the intensity of
magnetisation acts only in the direction perpendicular to the major axis, the component,
H

U,

.» of the intensity of magnetisation in the upsetting direction for element i is
expressed by

H,=H lsinqai

: (4.26)

where H is the intensity of magnetisation in the direction perpendicular to the major
axis and g; is the angle between the major axis and the upsetting direction. The degree
of grain alignment, 4, for the magnet is defined by

1 n
-=—VYH,, 4.27)
nH 21

where 7 is the number of distinct elements. The degree of the grain alignment is 1 when
the major axes of all the elements are perpendicular to the upsetting direction, whereas
the degree is 7/4=0.79 and 2/7 =0.64 for the three and two-dimensional simulations in

the fully random orientation, respectively.

4.4 Results

The calculated motion of grains in mushy-state upsetting for =293 elements
are illustrated in Fig. 4.7. The grains are mechanically aligned through local interactions
with their neighbours. As the height is reduced, the grains are turned and the major axis
of the grains is orientated perpendicular to the upsetting direction.

Calculated and experimental degrees of grain alignment for #=293 is plotted in
Fig. 4.8. Although calculated and experimental degrees of grain alignment are different
in the initial stage, the tendencies of variation are similar, and especially, the calculated
and experimental results are in good agreement when the reduction is greater than 25%.

The variations of the degree of grain alignment with the reduction in height for
the three-dimensional simulation of #=293 and the two-dimensional simulation of
n=148 are plotted in Fig. 4.9. As the height is reduced, the degree of grain alignment
increases. Although both tendencies of the three and the two-dimensional simulations
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are similar, the value of degree of grain alignment for the three-dimensional simulation
is larger than that for the two-dimensional one in early stages of upsetting, whereas the
values are reversed at a*\17% reduction. In the three-dimensional simulation, the solid
fraction for the full packing and the degree of grain alignment in the random packing
state are 0.74 and 0.79, respectively, whereds in the two-dimensional simulation, those
values are 0.91 and 0.64. To simulate the motion of the grains, the use of the three-
dimensional simulation is required.

The calculated distribution of the degree of grain alignment for #=293 and
AW/h=25% is shown in Fig 4.10. The degree of grain alignment is large near the centre
of the magnet. Since elements near the interface between the capsule and the magnet are
easy to move, the degree of grain alignment in the region near the interface is small.

The variations of the degree of grain alignment with the reduction in height for
n=293, 589 and 921 are shown in Fig. 4.11. Although the initial disposition for n=293 is
almost random orientation, those for =589 and 921 are more or less aligned to the
vertical direction. It is difficult to set the random orientation due to the anisotropy of
shape for the ellipsoidal elements. Although the initial orientations have different values,

the final degree of grain alignment is similar.
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Fig. 4.7 Three-dimensional calculated motion of elements for »=293 and y=40%.
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Fig. 4.10 Distribution of degree of grain alignment for #n=293, y=40% and AW/h=25%.
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4.5 Conclusions

A three-dimensional distinct element method using ellipsoidal elements was
proposed to simulate the three-dimensional motion of grains in mushy-state forming of
magnets. Three-dimensional equations of motion and treatment of the contact were
presented.

The calculated degree of grain alignment was in good agreement with the
experimental one using a plasticine capsule, acrylic resin grains, and Vaseline liquid
phase. The variation of the degree of grain alignment with the reduction in height was
investigated. As the height decreased, the degree of grain alignment increased. The
distribution of the degree of grain alignment was obtained and the degree of grain
alignment was large near the centre of the magnet. In the case when the number of
elements was larger than about 300, although the initial degrees of grain alignment were
different, the final degrees were almost equal.

Since the grains in the rare-earth magnet are intermetallic compounds, the
grains do not undergo plastic deformation in the early stages of forming. The grains,
however, are deformed plastically as the forming progresses. It is desirable to develop a
distinct element method taking the effect of plastic deformation of grains into account.

Although spherical elements have been used in most of the three-dimensional
distinct element simulations for the sake of simplicity, real particles and grains are not
spherical. The ellipsoidal elements have a wide range of application in the field of not

only engineering but also science.
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CHAPTER 5

TWO-DIMENSIONAL DISTINCT ELEMENT SIMULATION
OF MUSHY-STATE FORMING INCLUDING PRESSURE
OF LIQUID PHASE

5.1 Introduction

In mushy-state forming, a heated metal is deformed under a mixture of solid
and liquid phases. Since mushy-state forming has many advantages such as small
working load and high mechanical properties of product compared with cast one,
mushy-state forming has been recently applied to the production of automotive wheels
made of an aluminium alloy [1].

In the early stages of mushy-state forging, only a part of a billet is in contact
with dies and most of its surface is free. As the billet is compressed, liquid phase flows
separately from solid phase. Since the squeezed liquid is concentrated at the surface
layer, internal structure of the formed product in mushy state becomes heterogeneous.
Although this heterogeneous distribution of internal structure is not desirable in most
cases, it may be possible to utilise the distribution for functionally gradient materials. It
is required to develop the technology for controlling the flow of liquid phase, and
design billets and the forging process to obtain desired internal structure of the products
[2].

In continuum mechanics such as the finite element method, however, the
microscopic interaction between solid and liquid phases is neglected, i.e. macroscopic
approach is taken. To simulate the microscopic behaviour on the scale of solid particles,
the distinct element simulations for mushy-state forming are proposed in Chapter 2 and
Chapter 4. These methods have been applied simulating the motion of grains in the
mushy-state forming of rare-earth magnets. Since the magnet is contained in a steel
capsule, the effect of pressure of liquid phase is neglected. In most mushy-state forming
processes, however, workpieces héated to mushy state are directly deformed, and thus
the effect of the pressure is not negligible.

In this chapter, the effect of pressure of liquid phase in mushy-state forming is
introduced into the distinct element method to improve the accuracy of the calculated

results. The solid particles are modelled as circular solid elements and liquid phase is
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divided into triangular liquid elements having different pressure values. Plane-strain
upsetting of a mushy-state billet is simulated and the distribution of pressure of liquid

phase is investigated.

5.2 Method of Simulation
5.2.1 Modelling

Deformation behaviour of a mushy-state material strongly depends on solid
fraction. The deformation of a high solid fraction material is induced by the interaction
of solid particles, while that of a low solid fraction material is mainly caused by the
flow of liquid phase. Since the flow of liquid phase results from local pressure gradient
of liquid phase, it is very important to treat the pressure of liquid phase in the simulation
of mushy-state forming. In this study, pressure of liquid phase is taken into account in
the distinct element simulation. A model for the distinct element simulation of mushy-
state forming including pressure of liquid phase is illustrated in Fig. 5.1. For the sake of
simplicity, plane-strain deformation is treated. The grain of mushy-state material is
modelled using circular solid element and the motion of the elements is calculated by
the distinct element method. Liquid phase exists between grains and the distribution of
pressure of liquid phase is calculated. The workpiece is divided into triangular liquid
elements by connecting the centres of circular solid elements using the Delaunay
triangulation [3], and pressure of liquid phase is evaluated at the centroid of the
triangular liquid element. The pressure is obtained from the distribution of pressure
around a moving cylinder in a viscous fluid. The effect of the change of pressure caused
by the flow of liquid phase between neighbouring triangular liquid elements is also
taken into consideration. The pressure of liquid phase and the frictional force between
grain and liquid phase act on the grain.

The pressure of liquid phase caused by the motion of the grain is calculated
first, and then the force acting on the grain is obtained by integrating the pressure on the
surface of the grain. Next, the frictional force and the contact force between grains are
calculated. All forces are summed up and the position and velocity of the grain are
obtained by solving Newton’s equations of motion.
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Grain -
(Circular
Element)

Liquid Phase
(Triangular
Liquid Element)

NN

Fig. 5.1 Model for distinct element simulation of mushy-state forming including

pressure of liquid phase.

5.2.2 Triangulation of Mushy-State Material

A mushy-state material is triangulated using the Delaunay triangulation by
connecting the centroids of circular solid elements to calculate the pressure of liquid
phase. In the Delaunay triangulation, a virtual triangle which contains the centroids of
all circular solid elements inside is created. One circular solid element is selected and its
centroid is connected to the vertexes of the virtual triangle, and then three new triangles
are created. The next circular solid element is selected and the triangle which includes
its centroid is searched. The centroid is connected to the vertexes of the found triangle
and three new triangles are created. A tetragon created by joining two neighbouring
triangles is considered. When the tetragon is convex, the common border of the two
triangles is erased, the lengths of the two diagonals of the tetragon are compared, and
the shorter one is selected. The other is removed and two new triangles are created. This
process is repeated until all circular solid elements are used. Finally, the virtual triangle
created in the first step is removed.

Since only convex polygons can be created by the Delaunay triangulation,
when the area is slightly concave, long triangles are created at the border of the area.
Since it is meaningless to evaluate the pressure of the long triangular liquid elements,
long triangles having smaller angle than 10 degree or larger than 170 degree are erased.
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5.2.3 Pressure of Liquid Phase

The pressure of the triangular liquid element is approximately obtained from
the pressure distribution around a moving cylinder in a viscous fluid. A cylindrical
coordinate system is considered. The origin is defined as the centre of the cylinder and
the R-axis is the direction of the motion of the cylinder. The pressure at an arbitrary

point, P(R,0), is expressed as follows [4]:

P(RO)—— 2 - C";@ , 5.1)
log(—ni) -E+—
oy 2

where 7, is the coefficient of viscosity of the liquid phase, v is the velocity of the
cylinder, p, is the density of the liquid phase, r is the radius of the cylinder, and E is
the Euler constant.

The pressure in the triangular liquid element is uniform. The pressure at the
centroid of the triangular liquid element obtained from Equation (5.1) is added to that in
the last step. A change in the pressure of the triangular liquid element caused by the
flow between the neighbouring triangular liquid elements is illustrated in Fig. 5.2. P
and S, are the pressure and area of the triangular liquid element i, respectively. L, is
the width between the triangular liquid elements i and m. When the circular solid
elements overlap each other, L, is set for zero.

The pressure of the triangular liquid element m calculated from Equation (5.1)
is set for P, and the pressure after the change caused by the flow between the
neighbouring triangular liquid elements, P,", is obtained as follows:

_LBHLPLE'

" 52

" L+L +L, " (5-2)

E':M. (5.3)
S, +S,

The pressures of the triangular liquid elements at the free surface are always set for

atmospheric pressure.
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Fig. 5.2 Change of pressure of triangular liquid element caused by flow between

neighbouring triangular liquid elements.

5.2.4 Formulation for Distinct Element Method

In the distinct element method, all forces acting on every circular solid element
are summed up and Newton’s equations of motion are solved. The acceleration of the
circular solid element is obtained from the equation, and the velocity is calculated by
integrating the acceleration. The position in the next step is obtained from the
acceleration and velocity. Newton’s equations of motion are expressed as follows:

mv+F +F, +F =0
R (5.4)
Io+M +M, =0,

where m and 7 are the mass and the moment of inertia of circular solid element,
respectively. v and @ are the acceleration and the angular acceleration, respectively.
F, and M, are the contact force and moment, and F, and M, are the frictional
force and moment between circular solid element and liquid phase, respectively. F, is

the force induced from the pressure of the triangular liquid elements. Since the
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translation velocity and the angular velocity of rotation are small, the lift that acts while
a rotating object moves in a viscous fluid, is neglected. F  and M, are expressed [4]

2mn,v

Fp=- 4 1 (5-3)
log B \_E+—
p@r[v] 2

M, = -4mn,0r’ . (5.6)

The force induced from the pressure of liquid phase around the circular solid element is

represented by
F, =Pm"r1/2il—c051(;np, (5.7)

where x is the central angle of the arc applied pressure of the triangular liquid element
and n, is the unit vector of the resultant force of the pressure as shown in Fig. 5.3.

Circular
Solid
Element
(Grain)

Triangular
Liquid Element
(Liquid Phase)

Circular
Solid Circular
Element Solid
(Grain) Element
(Grain)

Fig. 5.3 Force induced from pressure of liquid phase.
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5.3 Simulation of Mushy-State Upsetting
5.3.1 Computational Conditions

In this study, plane-strain mushy-state upsetting is treated. The shape of the
workpiece is a square and two flat dies are used. The lower die is fixed and the upper

one is moved downward at a constant velocity. Computational conditions used for
simulation of mushy-state upsetting are given in Table 5.1.

Table 5.1 Computational conditions used for simulation of mushy-state upsetting.

Solid fraction ¥ /% 65
Final reduction in height Ah/h /% 15
Number of distinct elements » 314

Coefficient of friction between circular solid elements x4 0.1

Normal spring stiffness K, /MN-mm’ 65
Tangential spring stiffness K, /MN-mm 15
Density of solid phase /g'-mm 0.00786
Density of liquid phase p, /g'mm” 0.0069
Coefficient of viscosity 7, /mPa-s 8

Ratio of height of billet to width 1
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5.3.2 Results

The calculated motion of grains in mushy-state upsetting is shown in Fig. 5.4.
In the initial state, the number of triangular liquid elements is 570 and it increases as the
height is reduced, because the disposition of circular solid elements becomes irregular
and the number of triangular liquid elements sharing same circular solid element
increases at the deformed surface. For the reduction in height Ak/#=15%, the lower part
of the workpiece is not deformed yet and the circular solid elements are aligned
regularly, while the upper part is deformed and the distances between circular solid
elements are reduced. The solid fraction of the upper part of the free surface is low.

Shear bands are observed in the central part.

LN ININ INININ TN I\J\JULJU\J\J\J\)

Fig. 5.4 Calculated motion of grains in mushy-state upsetting for AW/A=15%.
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The calculated distribution of the pressure of liquid phase for AWA=15% is
illustrated in Fig. 5.5. Compressive pressure (positive value) occurs along the shear
bands, and expansive pressure (negative value) is distributed in the upper central part
and near the free surface because the circular solid elements move toward the outer side.
Although the pressure in the upper central part is compressive in the early stages, it
becomes expansive after the circular solid elements come to touch each other. Since the
condition of volume constancy is not taken into account, the circular solid elements near
the free surface shatter when the reduction becomes larger.

-600 -900
A

P

a

Fig. 5.5 Calculated distribution of pressure of liquid phase for A/h=15%.
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5.4 Conclusions

Deformation behaviour of a mushy-state material strongly-depends on solid
fraction. The deformation of a low solid fraction material is mainly caused by the flow
of liquid phase. Since the flow of liquid phase results from local pressure gradient of
liquid phase, it is very important to treat the pressure of liquid phase. In this study, the
effect of the pressure of liquid phase was introduced into the distinct element simulation
for mushy-state forming. Simulation of mushy-state upsetting was performed and
compressive pressure along the shear bands was observed. The problem of handling the
condition of volume constancy remains.

Although a two-dimensional simulation was performed, the deformation
behaviours result from two and three-dimensional simulations are different. It is

desirable to develop a three-dimensional method.
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CHAPTER 6

THREE-DIMENSIONAL DISTINCT ELEMENT
SIMULATION OF MUSHY-STATE FORMING INCLUDING
PRESSURE OF LIQUID PHASE

6.1 Introduction

In mushy-state forming, a heated metal is deformed under a mixture of solid
and liquid phases. In the early stages of mushy-state forging, only a part of a billet is in
contact with dies and most of its surface is free. As the billet is compressed, liquid
phase flows separately from solid phase. Since the squeezed liquid is concentrated at the
surface layer, internal structure of the formed product in mushy state becomes
heterogeneous. Although this heterogeneous distribution of internal structure is not
desirable in most cases, it may be possible to utilise the distribution for functionally
gradient materials. It is required to develop the technology for controlling the flow of
liquid phase, and design billets and the forging process to obtain desired internal
structure of products [2].

In ‘continuum mechanics such as the finite element method, however, the
microscopic interaction between solid and liquid phases is neglected, i.e. macroscopic
approach is taken. The two-dimensional distinct element simulation of mushy-state
forming including pressure of liquid phase is proposed in Chapter 5. Since the
behaviour of grains calculated by the two-dimensional method is more or less different
from that for the actual forming process, it is desirable to develop a three-dimensional
method for simulating the motion of grain in mushy-state forming.

In this chapter, three-dimensional distinct element simulation of mushy-state
forming including pressure of liquid phase is presented. The solid particles are modelled
as spherical solid elements and the liquid phase is divided into tetrahedral liquid
elements having different pressure values. Axi-symmetric upsetting of a cylindrical
mushy-state billet is simulated and the distribution of solid fraction is investigated.
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6.2 Method of Simulation
6.2.1 Modelling

Deformation behaviour of mushy-state materials strongly depends on solid
fraction. The deformation of a high solid fraction material is induced by the interaction
of solid particles, while, that of a low solid fraction material is mainly caused by the
flow of liquid phase. Since the flow of liquid phase results from local pressure gradient
of liquid phase, it is very important to treat the pressure of liquid phase in the simulation
of mushy-state forming. In this study, the method proposed in Chapter 5 is expanded to
the three-dimensional one and pressure of liquid phase is taken into account in the
three-dimensional distinct element simulation. A model for the distinct element
simulation of mushy-state forming including pressure of liquid phase is illustrated in
Fig. 6.1. The grains of mushy-state material is modelled using spherical solid elements
and the motion of the elements is calculated by the distinct element method. Liquid
phase exists between grains and the distribution of pressure of liquid phase is calculated.
The workpiece is divided into tetrahedral liquid elements by connecting the centres of
spherical solid element using the three-dimensional Delaunay triangulation [3], and
pressure of liquid phase is evaluated at the centroid of the tetrahedral liquid element.
The pressure is obtained from the distribution of pressure around a moving sphere in a
viscous fluid. The effect of the change of pressure caused by the flow of liquid phase
between the neighbouring tetrahedral liquid elements is also taken into consideration.
The pressure of liquid phase and the frictional force between grain and liquid phase act
on the grain.

The pressure of liquid phase caused by the motion of the grain is calculated
first, and then the force acting on the grain is obtained by integrating the pressure on the
surface of the grain. Next, the frictional force and the contact force between grains are
calculated. All forces are summed up and the position and velocity of the grain are
obtained by solving Newton’s equations of motion.
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Spherical Solid
Element

Fig. 6.1 Model for distinct element simulation of mushy-state forming including
pressure of liquid phase.

6.2.2 Triangulation of Mushy-State Material

A mushy-state material is triangulated using the three-dimensional Delaunay
triangulation by connecting the centroids of the spherical solid elements to calculate
pressure of liquid phase. In the Delaunay triangulation, a virtual tetrahedron which
contains the centroids of all spherical solid elements is created. One spherical solid
element is selected and its centroid is connected to the vertexes of the virtual
tetrahedron, and then four new tetrahedra are created. The next spherical solid element
is selected and the tetrahedron which includes its centroid is searched. The centroid is
tested to determine which circumsphere of the adjacent tetrahedra to the found
tetrahedron. A polyhedron is created by associating the all tetrahedra which
circumspheres include the centroid, and the tetrahedra are removed. New tetrahedra are
created by connecting the centroid to all triangular facets on the surface of the
polyhedron. This process is repeated until all spherical solid elements have been used.
Finally, the virtual tetrahedron created in the first step is erased.

Since only convex polyhedra can be created by the three-dimensional Delaunay
triangulation, when the area is slightly concave, long tetrahedra are created at the border
of the area. Since it is meaningless to evaluate pressure of the long tetrahedral liquid
elements, long tetrahedra are removed. Long tetrahedra are determined as follows. The
height ratio of the tetrahedron in question and that of the right tetrahedron having the
same volume as it are calculated. When the height ratio is larger than 10 or smaller than
0.1, the tetrahedron is removed.
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6.2.3 Pressure of Liquid Phase

The pressure of the tetrahedral liquid element is approximately obtained from
the pressure distribution around a moving sphere in a viscous fluid. A spherical
coordinate system is considered. The origin is defined as the centre of the cylinder and
the R-axis is the direction of the motion of the sphere. The pressure at an arbitrary point,

P(R,0), is calculated from Stokes’ approximation as follows [4]:
P(R,0)=-—-—"—"cos@, 6.1
(R,0) 3 "R (6.1)

where 7, is the coefficient of viscosity of the liquid phase, v is the velocity of the
sphere and r is the radius of the sphere.

The pressure in the tetrahedral liquid element is uniform. The pressure at the
centroid of the tetrahedral liquid element obtained from Equation (6.1) is added to it in
the last step. A change in the pressure of the tetrahedral liquid element caused by the
flow between the neighbouring tetrahedral liquid elements is illustrated in Fig. 6.2. P
and V, are the pressure and the volume of the tetrahedral liquid element i, respectively.
S, 1s the area between the tetrahedral liquid elements i and m. When the spherical solid
elements overlap each other and the value of S, becomes negative, S, is set for zero.

The pressure of the tetrahedral liquid element m calculated from Equation (6.1)
is set for P, and the pressure after the change caused by the flow between the

neighbouring tetrahedral liquid elements, P,", is obtained as follows:

_SE4SPHSBSE

- . 6.2)
S, +Sj +S,+§,
JORAAL Y 6.3)
V.+V,

The pressures of the tetrahedral liquid elements at the free surface are always set for

atmospheric pressure.
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Tetrahedral
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Tetrahedral
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Fig. 6.2 Change of pressure of triangular liquid element caused by flow between
neighbouring tetrahedral liquid elements.

6.2.4 Formulation for Distinct Element Method

In the distinct element method, all forces acting on every spherical solid
element are summed up and Newton’s equations of motion are solved. The acceleration
of the spherical solid element is obtained from the equation, and the velocity is
calculated by integrating the acceleration. The position in the next step is obtained from

the acceleration and velocity. Newton’s equations of motion are expressed as follows:

Io+M,+M, =0, ©4)

{mi:+Fc +F, +F, =0
where m and I are the mass and the moment of inertia of the spherical solid element,
respectively. v and @ are the acceleration and the angular acceleration, respectively.
F, and M, are the contact force and moment, and F, and M, are the frictional |
force and moment between spherical solid element and liquid phase, respectively. F,
is the force induced from the pressure of the tetrahedral liquid elements. Since the
translation velocity and the angular velocity of rotation are small, the lift that acts while
a rotating object moves in a viscous fluid, is neglected. F, and M, are expressed [4]

by

F, = ~4mn,rv (6.5)
M, = -8mro. (6.6)
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The force induced from the pressure of liquid phase around the spherical solid element

is represented by

F, =fSPndS , ' (6.7)
where n is the unit vector of the resultant force of the pressure as shown in Fig. 6.3.
Tetrahedral

Liquid
Element

Spherical
Solid
Element

Fig. 6.3 Force induced from pressure of liquid phase.
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6.3 Simulation of Mushy-State Upsetting
6.3.1 Computational Conditions

In this study, axi-symmetrical mushy-state upsetting is considered. The shape
of the workpiece is cylindrical and two flat dies are used. The lower die is fixed and the
upper one is moved downward at a constant velocity. Computational conditions used for

simulation of mushy-state upsetting are given in Table 6.1.
6.3.2 Results

The calculated motion of grains in mushy-state upsetting is shown in Fig. 6.4.
In the initial state, the number of tetrahedral liquid elements is 1662 and the number
increases as the height is reduced and it is 1894 in the final state. Most of the calculating
time is taken for the Delaunay triangulation process. Since the condition of volume
constancy is not taken into account, the spherical solid elements near the free surface
shatter when the reduction becomes larger. Consequently, the final volume is about 2.3
times as large as the initial one.

The calculated distribution of solid fraction for AW/A=50% is illustrated in Fig.
6.5. Solid fraction is high near the symmetrical axis and low at the free surface.

Table 6.1 Computational conditions used for simulation of mushy-state upsetting.

Solid fraction v /% 57
Final reduction in height Ah/h /% 50
Number of distinct elements # 357

Coefficient of friction between spherical solid elements ¢ 0.1

Normal spring stiffness X, /MN-mm" 65
Tangential spring stiffness K, /MN-mm" 15
Density of solid phase /g'mm™ 0.00786
Density of liquid phase p, /g'mm™ 0.0069
Coefficient of viscosity 7, /mPa's 8
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Fig. 6.4 Calculated motion of grains in mushy-state upsetting.
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‘Fig. 6.5 Calculated distribution of solid fraction for Ah/A=50%.

6.4 Conclusions

The effect of pressure of liquid phase is introduced into the three-dimensional
distinct element simulation for mushy-state forming. Simulation of axi-symmetrical
mushy-state upsetting is performed and the distribution of solid fraction is calculated.
Since most of the calculating time is taken for the Delaunay triangulation process, it is
necessary to improve the algorithm for triangulation. The problem of taking the
condition of volume constancy into account remains.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Summary
7.1.1 Two-Dimensional Grain Alignment of Mushy-State Magnet

The distinct element simulation of grain alignment of rare-earth magnet in
mushy-state forging is performed. Since the alignment is caused by the shape of grain,
elliptical elements are used in the simulation. The procedure of detecting contact for
elliptical elements is proposed. The effect of the liquid phase is treated as the viscous
resistant force. The degree of grain alignment increases as the height is decreased. The
increase in grain alignment is large, up to a 30% reduction, and then the alignment is
saturated. The calculated degree of grain alignment is in good agreement with the
experimental one using a plasticine capsule, acrylic resin grains and Vaseline liquid
phase. Although the degree of grain alignment increases with the solid fraction, the
degree is almost constant in the solid fraction above 80%. The degree of grain
alignment increases as the aspect ratio increases. The distribution of grain alignment is
also investigated. The degree of grain alignment is large near the centre of the magnet,

while that is small at the sides.

7.1.2 Optimum Working Condition

The simulation method proposed in Chapter 2 is applied to decide the optimum
working conditions for the mushy-state forging of rare-earth magnet. In the optimisation
of the working conditions, the degree of grain alignment and crop loss are evaluated.
First, the volume rate of the capsule and the die angle are fixed and the aspect ratio of
the magnet is optimised. Next, the volume rate of the capsule is optimised using the
fixed die angle and the optimised aspect ratio of the magnet. Finally, the die angle is

optimised with the optimised aspect ratio of the magnet and volume rate of the capsule.
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The aspect ratio of the magnet, the volume rate of the capsule and the die angle are
determined to be 0.67, 30% and 1°, respectively. To compare with the case in which the
aspect ratio of the magnet, the volume rate of the capsule and the die angle are 0.33,
50% and 0°, respectively, the degree of grain alignment and the crop loss are improved

2.9% and 8.9%, respectively.

7.1.3 Three-Dimensional Grain Alignment of Mushy-State Magnet

The simulation method proposed in Chapter 2 is expanded to three dimensions
and the three-dimensional distinct element method using ellipsoidal elements is
proposed. The procedure of detecting contact for ellipsoidal elements is represented.
The calculated degree of grain alignment is in good agreement with the experimental
one using a plasticine capsule, acrylic resin grains, and Vaseline liquid phase. The
variations of the degree of grain alignment with the reduction in height for the three-
dimensional simulation are compared with that for the two-dimensional one. As the
height decreases, the degree of grain alignment increases. Although the tendencies of
both the three and two-dimensional simulations are similar, the value of the degree of
grain alignment for the three-dimensional simulation is larger than that of the two-
dimensional one in early stages of upsetting, whereas the values are reversed in the later
stages. The distribution of the degree of grain alignment is obtained and the degree of
grain alignment is large near the centre of the magnet. The effect of the number of
elements on the variations of the degree of grain alignment with the reduction in height
is investigated. In the case when the number of elements is larger than about 300,
although the initial degrees of grain alignment are different, the final degrees are almost

equal.

7.1.4 Two-Dimensional Distinct Element Simulation of Mushy-State Forming
Including Pressure of Liquid Phase

The two-dimensional distinct element method including the pressure of the
liquid phase is proposed. The grains are modelled as circular solid element and pressure

of liquid phase is calculated at the centres of the triangular liquid elements. The
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triangular liquid elements are created by connecting the centre of the circular solid
element using the Delaunay triangulation. In the simulation of mushy-state upsetting,
the shear bands are observed and the pressure of liquid phase is high near the shear

band.

7.1.5 Three-Dimensional Distinct Element Simulation of Mushy-State Forming

Including Pressure of Liquid Phase

The simulation method presented in Chapter 5 is expanded to three dimensions.
The grains are modelled using spherical solid elements and the pressure of liquid phase
is calculated at the centres of the tetrahedral liquid element. The tetrahedral liquid
elements are created by connecting the centres of the spherical solid elements using the
three-dimensional Delaunay triangulation. The distribution of solid fraction in axi-
symmetrical mushy-state upsetting is obtained and solid fraction is high near the

symmetrical axis and low at the free surface.

7.2 Further Prospects
7.2.1 Simulation of Grain Alignment of Mushy-State Magnet

The grains are treated not to undergo plastic deformation but it is possible to
occur plastic deformation in forming. It is desired to take plastic deformation of the
grains into account for the distinct element method.

Magnetic property of products is roughly approximated and evaluated by
degree of grain alignment in this study. If the magnetic properties were evaluated more
accurately in the simulation, the simulation would be more useful tool to design forming

process.

7.2.2 Distinct Element Simulation of Mushy-State Forming Including Pressure of
Liquid Phase

In the distinct element simulation, the motion of elements is calculated by the

interaction of the elements. In mushy-state forming in low solid fraction, deformation
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behaviour depends on not the interaction of grains but the flow of liquid component.
Since pressure of liquid phase is roughly calculated in this study, it is necessary to
calculate the flow of liquid phase more accurately, e.g. the condition of volume

constancy of liquid phase, distribution of pressure and flow front at the free surface.

7.2.3 Distinct Element Simulation for Forming

Although the distinct element method is a powerful tool to handle microscopic
factors such as the size, shape and distribution of particles, it is difficult to calculate
plastic deformation of particles and working load quantitatively because the simple
spring-dashpot model is employed. It is desired to develop new models that can treat the
force between particles accurately.

In the distinct element method, each particle is modelled as element and it is
impossible to treat actual number of particles. It is desired to combine microscopic

method and macroscopic one.
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